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Kurzfassung

Die Reduktion von Schwingungen in Maschinen, Anlagen und Gebäuden ist eine

wichtige Aufgabe im Ingenieurwesen. Vibrationen sind oft mit Geräuschen und Rauheit

verbundenund sind imbesten Fall nur für dieKundenzufriedenheit nachteilig. ImWorst

Case führen sie zumSystemversagen. ImGegensatz dazu führt Schwingungsminderung

zu einer längeren Lebensdauer, sichereren Systemen und finanziellen Vorteilen durch

weniger Ausfallzeiten. Daher ist es wichtig, effektive Dämpfer zu konstruieren.

DieseArbeit betrachtet Dämpfer, die sich nicht auf eine Schwingungsreduktionsstrategie

beschränken, sondern mehrere kombinieren, um optimale Ergebnisse zu erzielen. Die

Möglichkeiten herkömmlicher Reibungsdämpfer werden durch stetige, stückweise

definierten Kontaktgeometrien erweitert. Dies führt zu Reibungsdämpfern, die ihr

Verhalten je nach Amplitude der Schwingungen ändern. Der passive, abgestimmte

Keildämpfer wird entworfen und untersucht. Dieser Dämpfer bringt Dämpfung

bei hohen Schwingungsamplituden in System ein und nutzt Tilgung bei niedrigen

Schwingungsamplituden aus. Es werden numerische und analytische Untersuchungen

durchgeführt. Um das qualitative Verhalten des Dämpfers zu validieren, wird ein

Dämpferprototyp konstruiert und erprobt. Zudem wurde auch eine aktive Variante des

abgestimmten Keildämpfers betrachtet. Es werden zwei Regelstrategien entworfen, die

adaptive Mehrmodellregelung und die langsame, frequenzbasierte Regelung. Diese

werden mit einer State-of-the-Art-Regelungsstrategie in transienten, quasistationären

und Anwendungsszenarien verglichen.

Die Untersuchungen zum passiven, abgestimmten Keildämpfer zeigen, dass Dämpfung

und Tilgung entkoppelt werden. Eine Optimierung der Dämpferparameter ergibt im

Frequenzgang eine Reduktion der Maximalamplitude von 87.47% unter Beibehaltung

der Tilgung. Die Experimente validieren den Entkopplungseffekt sowie den qualitativen

Einfluss der Parameter. Die aktiven Systeme erreichen mit Amplitudenabsenkungen

von 91.11% das beste Ergebnis.
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Abstract

The reduction of vibrations in machines, plants, and buildings is a common task in

engineering. Vibrations are often coupled with noise and harshness and are at least

detrimental to customer satisfaction. In the worst case, they cause system failures.

In contrast, the reduction of vibrations yields an increase in the life expectancy, safer

systems, and financial gains due to less downtime. It is therefore essential to design

devices that are capable of mitigating large vibrations.

This work considers dampers that do not solely focus on a single vibration reduction

strategy but instead combine them to achieve optimal results. The dampers are based

on dry friction dampers. However, the capabilities of conventional dry friction dampers

are expanded by taking into account continuous piecewise defined contact geometries.

This leads to friction dampers that change their behavior depending on the amplitude

of the oscillations. The vibration damping device in this work, the tuned wedge damper,

introduces damping at high oscillation amplitudes and takes advantage of absorption

at low oscillation amplitudes. This passive system is investigated numerically and

analytically. Additionally, a damper prototype is constructed and experiments are

performed to validate the qualitative behavior of the damper. An active variant of the

tuned wedge damper is also considered. Two novel control strategies are designed,

namely the adaptive multiple model control and the slow frequency-based control.

These are compared to a state-of-the-art control strategy for friction dampers in transient,

quasistationary, and application scenarios.

The investigations into the passive design of the tuned wedge damper show that the

damper decouples damping and absorption. An optimization of the damper parameters

yields a maximum amplitude reduction in the system’s frequency response function

of 87.47% while maintaining an absorption frequency. The experiments validate the

decoupling effect as well as the qualitative influence of parameter variations. Finally,

the active systems achieve the best results with amplitude reductions of 91.11%.
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1 Introduction

Evenwithout our conscious perception, dry friction dampers are present in our everyday

life and play a role in the technological advancement of mankind. They are found in

the trains we use. They are essential in airplanes, specifically in turbines, used to cross

thousands of kilometers in a matter of hours. They also help ensure the structural

integrity of buildings. This work focuses on such dry friction dampers that help reduce

vibrations in mechanical systems. In general, systems are not designed to withstand

large vibration amplitudes. Prolonged exposure to large vibrations ultimately leads to

failure and additional costs. Dry friction dampers use only the sliding contact between

solid bodies to dissipate energy. The robustness and reliability of these dampers make

them an appealing solution in various fields. Additionally, their natural ability to stick

and slip offers advantages, which haven’t been fully utilized. This work contributes

to a better understanding of the behavior of such dampers. In this chapter, first, the

motivation for the investigations is presented in section 1.1. Second, the state of research

is detailed in section 2.1. Based on this literature overview the open research topics are

identified and the specific purpose of this thesis is stated in section 1.3. The chapter

concludes with the general thesis structure in section 1.4.

1.1 Motivation
Two main reasons drive the study of friction dampers and effective vibration reduction

mechanisms in general: financial and environmental reasons. The implementation of

effective dampers results in reduced vibration amplitudes and therefore lightweight

and efficient machines. Such machines lead to better products and financial savings.

Ultimately, they lead to a company’s competitive edge. Additionally, vibration reduction

also leads to a longer machine life and thus less unplanned downtime. In 2016,

a study by the Wall Street Journal Custom Studios estimated the average cost of

unplanned downtime for industrial manufacturers at $50 Billion per year with 42%

due to equipment failure [181]. Environmental motives come from the energy efficiency

challenges, which are required by politics. Therefore, there is a strong interest in the
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1 Introduction

reduction of unnecessary energy costs in machines. The report of the International

Energy Association "Net Zero by 2050" foresees a worldwide economic growth of 40%

by 2030 with 7% less energy consumption than in 2020 [20]. Friction dampers must

contribute toward the accomplishment of this goal. Specifically, they help to better

understand friction’s role in vibration reduction. In 1966 the costs due to the suboptimal

utilization of friction were estimated at $200 billion [16]. The targeted study of friction

dampers contributes to the efficient use of dry friction.

1.2 State of Research
This work investigates two types of friction dampers focusing on the geometrical

design of the contact surfaces and their influence on vibration reduction. The specific

investigation field of thiswork is a combination of twomajor fields: friction and vibration

reduction. It is, therefore, only natural to first treat these twomajor fields separately and

afterward consider their fusion, namely the field of friction dampers. This approach

represents the structure of the state of research subchapters.

1.2.1 Literature Overview of Friction Research
A detailed review of the friction-induced vibration and friction modeling was made

by Ibrahim [82, 83]. In the first part of the review, he detailed the different aspects

and challenges that arise when modeling friction. In the second part, the review

focused on the mechanisms that cause friction-induced vibrations and on examples

in engineering applications. A detailed historical review was presented by Feeny et

al. [48]. In this review, the contributions of friction towards technological advancements

are made evident. Furthermore, an overview of the friction influence factors, fiction

phenomena, and friction damping was given. Berger [14] gave a detailed report on

the relationship between the system model and the friction model. He concluded that

they cannot be chosen independently from one another and described the physical

implications of the friction models. For the sake of brevity, only the most important

aspects of these reviews are mentioned. Additionally, other sources found relevant by

the author are included. In this chapter, first, the investigation into friction is introduced

from a historical perspective. Second, the different factors that influence friction are

presented. Third, the models that aim to describe such dependencies are detailed.

Lastly, friction-induced phenomena are considered.

Thefirst descriptions of friction in the context ofmechanics are attributed toLeonardo Da

Vinci. In hismanuscripts, he noted the proportionality between the friction force and the

normal load. These findingswere lost because hisworkwas not published [16]. However,

2



1.2 State of Research

Da Vinci’s results were independently rediscovered by Guillaume Amontons in 1699.

He postulated two friction laws. The first one stated the proportional relationship

between the friction force and the normal force. The second law postulated the

independence of the friction force on the apparent contact area. The work of Amontons

was verified and further expanded by Charles-Augustin Coulomb in 1785. He added

the third law of friction, which states that the friction ratio is independent of the sliding

velocity between the contact areas. Both Amontons and Coulomb were motivated by

the better understanding and the reduction of friction in machines. As such, they

experimented with wood, copper, iron, and steel material pairings in both dry and

smeared configurations [35]. These three statements make up the Amontons-Coulomb

friction laws and built the basis of macrotribology. Leonhard Euler also made a

substantial contribution in 1750, since he was the first to introduce a friction coefficient

and a difference between static and dynamic friction. His work was theoretical in nature

and it stated both the letter � as the friction coefficient and the fundamental geometrical

interpretation of the friction cone. Both these concepts are still used today. Although

not explicitly mentioned in the friction laws, Coulomb and Euler had an intuitive

understanding that the ratio between the normal and friction force was dependent on

the material pairing and lubrication. A modern calculation of these ratios expressed as

the friction coefficient was presented in the work of Maissen [115].

The aforementioned concepts laid a foundation for the study of friction. However,

the state of research shows that friction characterization is not that simple. Since the

Amontons-Coulomb friction laws, additional influence factors of friction have been

identified. This is mainly due to new technological applications and advances. For

example, in contrast to Amonton’s friction laws Boden and Tabor [23] postulated that

friction is dependent on the true contact area. Different from the apparent contact

area, the true contact area is given by the sum of the junctions between the asperities

that are actually in contact with each other. Furthermore, the true contact area is itself

dependent on the surface roughness and the normal load. Both these factors influence

the junctions between the asperities in the contact area. Depending on the normal

load the asperities will deform either elastically, plastically, or even break. The sum

of these behaviors determines the true contact area. Research into this relationship

was further expanded by Andrew et al. [4], Tabor [167], and Sakamoto [148]. Models,

that approximate the contact area, were proposed by Greenwood and Williamson [68]

and Whitehouse and Archard [179]. These works assume a Gaussian distribution of

asperity and demonstrated that the true contact area depends on the normal load and

helped to describe the underlying contact mechanics.

3



1 Introduction

(a) (b)

Figure 1.1: (a) Exemplary Stribeck curve, source: [82]. (b) Acceleration influence on the friction coefficient,

source: [148].

Modern research has also corrected Coulomb’s friction law. One significant work was

derived by Stribeck [163]. His work focused on lubricated bearings and included four

different frictions regimes depending on the sliding velocity: static friction, boundary

lubrication, partial fluid lubrication, and full fluid lubrication, see Fig. 1.1a. However,

Stribeck’s studies do not imply a corresponding relation between the velocity and

the friction coefficient. Sampson et al. [149] measured the effect of acceleration and

deceleration on the friction force and noticed different values. Their measurements

revealed a declining friction coefficient for increasing velocities and a constant friction

value for declining velocities. These results were verified by Ko and Brockley [97] and

Sakamoto [148], see Fig. 1.1b. Ko and Brockley [97] also noticed a humped friction

force curve, which showed a local maximum and afterward a minimum for progressing

velocities. Gao and Kuhlmann-Wilsdorf [63] found similar results for dry friction

contacts in vacuum. However, they measured first a local minimum and afterward a

local maximum for low speeds before the friction coefficient became independent of

the velocity. Additional velocity curves for the friction coefficients were measured by

Vinogradov [174], Grosch [70], Krauter [101], Martins [119], and Kapelke [89].

The static friction force is also dependent on the rate of compression and the time of

stationary contact as suggested by Rabinowicz [142], Brockley [24], and Martins [119].

Both of these influence factors ultimately represent a dependency of friction on time.

The two factors contribute to the shear strength of the asperities in the contact area. The

normal load creates new junctions between the asperities, whereas the stationary time

strengthens the bonds between asperities, i.e. the cold-welding effect. Plint and Plint

also noticed this behavior in their experiments with smeared contacts [138]. However,

they attributed this to the squeeze-film effect. Although the effect was different, the
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1.2 State of Research

underlying result was the same, namely strengthening of the bonds between asperities

due to the passage of time. Aronov et al. [7] and Dweib and D’Souza [42] also carried

out experiments that determined that the friction force depends on the normal load for

a constant sliding velocity, see Fig. 1.2a. The results of this research determined four

regimes for rising normal loads. The first is a steady-state region where the friction is

proportional to the load. Second, comes a nonlinear regimewhere the friction coefficient

is not constant. Third a transient regime in which the friction fluctuates, and lastly, a

self-excited regime where instabilities are observed.

(a) (b)

Figure 1.2: (a) Normal load influence on friction force, source: [42]. (b) Temperature rise in friction for different

sliding velocities, source: [130].

An additional influence factor in the description of friction is the temperature of the

contact surface. It results from the heat generated due to friction. Bowden and

Tabor [21] and Sarkar [151] published in their books theoretical and experimental

results regarding effects of heat transfer on friction. They measured the well-observed

phenomenon of rising contact temperature with rising contact velocities. Additionally,

they showed that some material pairings show a saturation of the contact temperature.

Similar observations were made by Newcomb [130], see Fig. 1.2b. The heat influence on

friction was considered locally by Bhusan [15] and Kuhlmann-Wilsdorf [103], whereas

Maksimov [116] assumed a uniformly distributed temperature of the contact surfaces.

Their research offered insights into the instability mechanism that arises from the energy

exchange between mechanical and thermal modes.
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1 Introduction

The overview above gives an insight into the most influential factors on friction.

Nevertheless, additional influence factors exist such as the local wear of the contact

surfaces studied by Bowden and Leben [22], the contact stiffness investigated by Andrew

et al. [4], and the effects of dynamic normal or tangential forces acting on the contact

surface as indicated by Godfrey [67] and Keer et al. [92]. Although friction has a variety

of influence factors, this has not kept researchers from proposing models to describe

certain aspects of these dependencies.

Some models focus on the microscopical contact mechanics, which occur between

asperities in the contact surface as in the works of Greenwood and Williamson [68],

Hisikado [79], and Tabor [167]. Partly, these works stated that the friction force is

composed of two portions: one which is attributed to shearing and the other to plowing.

The shearing portion of the friction force is attributed to the van der Waals forces

between the atoms at the asperity junctions. The plowing part of the friction force

represents the force necessary to move aside the material in the path of the penetrating

asperities. This second friction mechanism becomes more relevant when one material

is significantly harder than the other one. If this is not the case, the shear portion is

dominant.

A large number of friction models are phenomenological and focus on the macroscopic

level. The most common model is the Coulomb dry friction. While sticking the

relative velocity is zero and friction force takes on the necessary value to uphold the

corresponding sum of forces. This case holds as long as the friction force does not

exceed the maximum value given by the stiction force � = �# . In the sliding case, the

Amontons-Coulomb friction laws are expressed in the equation

' = �#sgn(Erel) .

Where ' is the friction force, � is the friction coefficient, # is the normal load, Erel is the

relative velocity of the contact surfaces, and sgn(·) represents the sign function

sgn(G) :=


−1, G < 0

0, G = 0

1, G > 0

.

Although it is known that this is not the most accurate description of friction, this

model has proven to yield acceptable results in the description of friction-induced

vibrations. Additionally, for a plastic material behavior, Bowden and Tabor motivated

the proportionality between friction and the normal load with microscopical contact

mechanics. Assuming the dry contact of two rough surfaces with similar hardness, the
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1.2 State of Research

friction coefficient is interpreted as the ratio between the shear strength to the yield

stress [167]. With �0 as the true contact area, �0 as the shear strength, and �0 as the

yield stress this interpretation is summarized the equation

' = �0�0 =
#

�0

�0

!

= �# → � =
�0

�0

.

A similar results for an elastic material behavior was provided by Greenwood and

Williamson [68]. Therefore it is noted that under the assumed conditions the Coulomb

friction model offers an acceptable approximation provided the friction coefficient � is

chosen accordingly. Variations and extensions of this model have been proposed to take

into account additional factors. One extension is the consideration of different static

and dynamic friction coefficients. For example, a velocity-dependent friction coefficient

�(Erel) was used by Thomsen and Fidlin [168]. This allows the consideration of the

Stribeck effect and is found in different variations as summarized byArmstrong et al. [6].

In an effort to reduce computational effort, a commonmodification of theCoulombmodel

is the regularization of the sign function [132]. The two most common alternatives are

sgn(G) ≈ tanh

( G
�

)
and sgn(G) ≈ 2

�
arctan

( G
�

)
,

where � represents the regularization factor. As � → 0 the curves tend to the sign

function, however, stiction is impossible in such models. An alternative approach to

reduce the computational effort was presented by Karnopp [90]. He defined a small

velocity region in the vicinity of Erel = 0 where sticking is allowed even though strictly

Erel ≠ 0. This avoids the computational effort associated with event detection.

(a) (b)

Figure 1.3: (a) Multiple bristle model visualization, source: [26]. (b) Lumped bristle model visualization,

source: [39].
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The models mentioned above are algebraic models of friction. Therefore, they are

not able to take into account the history of the contact and depend exclusively on

the current state of the system. Dahl [31] formulated a friction model in which the

friction force was described with a differential equation. This allowed the model to take

into account the history of the contact and implement a model with memory. Dahl’s

model additionally introduced contact compliance which occurs when the stiction force

is not exceeded. Similar friction models based on a bristle interpretation of friction

were formulated by Haessig and Friedland [73], see Fig. 1.3a. This approach models

the asperities deformation in the contact region as bristle interactions. To this end,

additional variables and differential equations are introduced. Although not originally

formulated as a bristle model the Dahl model is often interpreted as such. An expansion

of these ideas was formulated by Canudas De Wit et al. in the LuGre model [26], which

is named after its origin in the cities of Lund and Grenoble. The LuGre model takes

into account velocity-dependent friction coefficients, which the Dahl model omitted.

Further advancement of bristle models is represented by the elastoplastic friction model

proposed by Dupont et al. [39, 40], see Fig. 1.3b. This model accurately simulates

sticking in comparison to the Dahl and LuGre models, which show a drift when the

forces acting on the friction are lower than the stiction force. For the stationary case, the

Dahl, LuGre, and elastoplastic models all converge to the Coulomb friction model [89].

All the models mentioned above take their chosen representation of friction and solve

the corresponding differential equations. Taking into account that while sticking the

friction force takes on multiple values depending on the acting forces, a set-valued

interpretation of the friction force is possible. This interpretation leads to differential

inclusions and adds a degree of difficulty to the system solution. For example, the

solution of such systems is no longer guaranteed. Advances into the mathematical

solutions of such systems were contributed by Filippov [57]. An analysis of differential

inclusions with dry friction and possible bifurcations was presented by Leine [107].

A variety of models for the simulation of friction exist. For example, the discrete

asperities model proposed by Jenkin and Ewig modeled asperities with the Jenkin

element, a serial combination of a spring and a dry friction element [38]. Another

example is Mindlin’s work. He took the Hertz contact mechanics expanded this work

by taking into account a tangential load [123]. There are more friction models. However,

for the sake of brevity, the author limits himself to friction models described above.

Taking into account the described friction influence factors and using appropriate

models researchers take on the task of describing friction-induced vibrations. If left

unchecked these oscillations cause discomfort, wear, and in worst-case system failure.
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Den Hartog analyzed a case in which such vibrations caused the system failure of a

drawbridge [33]. Two major mechanisms are attributed to friction-induced vibrations:

the negative friction gradient and themodal couplingwith nonconservative forces. Such

oscillations may lead to quasi-harmonic oscillations as shown by Brockley and Ko [25]

but may also lead to chaos as studied by Popp and Stelter [139, 141].

An explanation of the negative friction gradient mechanism was proposed by Blok [18].

He linearized the friction velocity curve and described the self-excitation linked to the

negative gradient in the friction velocity curve. At low velocities, the negative slope

causes friction to acts as an energy input which ultimately leads to instability. He also

found that increased linear damping quenches these oscillations. Depending on the

velocity of the oscillations, this self-excitation mechanism leads either to a pure-slip

behavior or to stick-slip oscillations. Lowoscillation velocities yield pure-slip oscillations,

whereas oscillations with large enough velocities fulfill the stiction conditions and result

in stick-slip oscillations. Additional works concerning self-excited oscillations due to

a negative friction gradientweremade byHetzler [77, 78] and Thomsen and Fidlin [168].

The second mechanism is commonly referred to as flutter and is caused by modal

coupling due to nonconservative friction forces. A review of the work into the instability

mechanism was presented by Kinkaid et al. [96]. A minimal model that explained the

instability sources of flutter was given by Hoffmann et al. [80], see Fig. 1.4a. Minimal

models in the context of the automotive branch were investigated by von Wagner [175].

Hervé et al. [76], and Fidlin et al. [52], see Fig. 1.4b. The description of this mechanism

leads to the explanation of friction-induced vibrations at high frequencies [77].

(a) (b)

Figure 1.4: (a) A minimal model for flutter instability, source: [80]. (b) A minimal model for flutter instability

in disks, source: [52].

Friction-induced oscillations are found in various engineering applications such as

lubricated bearings, wheel/rail systems, brakes, and machining. The vibrations are
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often audible and in some cases even desired, e.g. string instruments [16, 48]. However,

for the most part, these audible vibrations lead to discomfort. Ibrahim grouped these

phenomena into two groups: chatter and squeal. Chatter occurs at low frequencies,

whereas squeal occurs at higher frequencies. In the rotor dynamicsfield, friction-induced

oscillations occur at low rotor velocities, when the rotation speed is not able to separate

the rotor from the bearing. In such cases, dry friction contact dominates the contact

dynamics between rotor and bearing. Smith and Pam experimented with these systems

and concluded that such oscillations are caused either by increasing the load at a

constant speed or by reducing the speed at a constant load [157]. Childs also studied

such interactions and found that they lead to a parametric excitation in rotors [28].

Squeal in connection to dry friction and wheel-rail interactions occurs when trains take

curves with a short radius. Bender and Remmington investigated such friction-induced

vibrations [13] and also Scheider et al. [153]. The work of Remmington [143] showed

that such oscillations are caused by a lateral creep of the wheels on the rails. In the

context of disc brakes, the mechanisms that lead to brake noise are the negative friction

gradient, sprag-slip, and flutter. The effect of a negative velocity gradient in the context

of brakes was described by Fosberry and Holubecki [58]. The sprag-slip mechanism

was proposed by Spurr [160] and is caused by a variation of the normal load, which

leads to intermittent oscillations with slip and stick regimes. This mechanism differs

substantially from the typical stick-slip oscillations since the latter occurs for constant

normal loads. Investigations into flutter and disk brakes were made by Kinkaid et

al. [96] and Fidlin and Stamm [55]. In machining, friction-induced vibrations lead

to poor processing quality and are caused mainly by a negative friction gradient.

Investigations and minimal models concerning friction in machining are presented by

Tobias [170], Tlusty [169], and Moon [126].

As summarized above, friction is an intricate field with various influence factors.

Different models are proposed to explain some aspects of these. However, there exists

no valid and general model to take into account all of its influence factors. Friction

serves to dissipate energy, however, under some circumstances it also induces vibrations.

These vibrations are either desired as in the case of string instruments or undesired as

in the case of brake squeal. The quenching of unwanted friction-induced vibrations and

vibrations, in general, is another relevant field for engineers.

1.2.2 Literature Overview of Vibration Reduction Research
Investigations into vibration reduction began more than 100 years ago before Frahm

filed a patent for the first vibration reduction device in October 1909 [59]. Valuable

mechanical insights into the field of vibration reduction were made by Den Hartog
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in the 1930s [33]. He studied vibration reduction mechanisms in linear configurations

with varying degrees of freedom. Such mechanisms rely mainly on either: vibration

absorption, vibration damping, or vibration isolation. Absorbers use a auxiliary mass

that is connected via an auxiliary spring to the main system. The parameters of the

absorber are chosen so that its resulting movement counteracts the forces acting on the

main system. Dampers are vibration reduction devices that dissipate mechanical energy

from the system by converting it into another type, e.g. heat. Isolators are devices that

are placed between the main system and the vibration source. Their task is to transmit

as few vibrations as possible to the main system. Tuned mass dampers combine a

vibration absorber with a dissipative element that is placed in parallel to the auxiliary

spring. Depending on how the parameters are selected, it is absorption focused or

damping focused. Since for all practical purposes material damping is present in every

spring, the term vibration absorber is often used in the literature to indicate a lightly

damped tuned mass damper. There is certainly no lack of creativity when designing

tuned mass dampers, as shown in a survey by Sun et al. [164]. In this work passive,

adaptive, and active variations of the linear tuned mass damper were considered. A

review of tuned mass dampers in the context of structural engineering was presented by

Gutierrez Soto and Adeli [71] and by Elias and Matsagar [45]. A review of nonlinear

vibration dampers is given by Lu et al. [113]. A general way of classifying vibration

reduction mechanisms is either by their linearity (linear or nonlinear systems) or by

their energy source (passive or active systems). The combination of these two classifying

qualities yields four categories: passive linear mechanisms, active linear mechanisms,

passive nonlinear mechanisms, and active nonlinear mechanisms. This state of research

subchapter is presented according to these categories.

(a) (b)

Figure 1.5: (a) A mass-spring tuned mass damper for arctic pipelines, source: [74]. (b) Vibration absorber in

the Taipei 101, source: [176].

The simplest implementation of a tuned mass damper is the conventional spring-mass

system, as shown in Frahm’s original patent [59]. However, this variant still proves
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effective inmodern applications. Hart et al. used this simple variant to reduce vibrations

in arctic pipelines [74], see Fig. 1.5a. More involved implementations have been realized,

such as the beam-type tuned mass damper proposed by Aida et al. [1] or the tuned

mass damper with cables found in the Taipei 101 [176], see Fig. 1.5b. Described by

linear differential equations, the solution, handling, and design of these devices were

thoroughly investigated in the first half of the 20th century. Such systems are designed

to optimize either the vibration reduction at a single oscillation frequency or a desired

frequency range. To this end, either the whole system is considered [33] or only the

driving point, where the device is attached [46]. The latter constitutes the impedance

coupling method proposed by Ewins. The single frequency optimization yields high

peaks at the structural resonance frequencies of the system. If a broadband approach is

required the equal peak method offers the best possible results. In the literature mainly

two variations of this method are considered and were proposed by Den Hartog [33]

and Snowdon [158]. Both these works offer approximations, to achieve equal peaks

at the system’s structural resonance regimes. A closed-form solution to this problem

was presented recently by Asami and Nishihara [8]. The different goals of these design

strategies represent the limitation of the classical tuned mass damper: an optimization

of both the structural resonances and the tuned frequency is not possible [33]. To

further improve the results of Frahm’s original proposal researchers consider active and

nonlinear variations of the tuned mass damper.

The next natural step in the improvement of such systems is the study of active vibration

reduction mechanisms. Advances in this field started in the 1950s [91], and practical

applications were realized in the late 1960s in the aerospace field by Smith and Lum [156]

and Schubert and Ruzicka [154]. Since then, these concepts have only been developed

further. Depending on their design these systems are classified into fully active, hybrid,

or semi-active [164]. Fully active systems generate a force that acts on the oscillating

structure and have an input-affine structure. Thus, their solution is calculated with

manageable effort. However, this is normally coupled with high energy costs. An active

implementation of a vibration damper was presented by Bailey and Hubbard [11]. In

their work, they used a distributed piezoelectric actuator and a Ljapunov controller to

reduce vibration oscillations in a Cantilever Beam. Kim et al. made similar investigations

in the damping of beamvibrations [95]. However, they used a local piezoelectric actuator

and an active dynamic vibration absorber controller to suppress structural resonances,

see Fig. 1.6a. The hybrid vibration absorbers work in a partially active and a partially

passive way depending on the external conditions and are often found in seismic

structures. Fujita used the active modes of the hybrid damper to reduce vibrations

due to winds and weak earthquakes, whereas the passive mode was used to control

vibrations caused by strong earthquakes. The proposed system was implemented in the
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Long Term Credit Bank of Japan [61]. Additionally, Lee-Glauser et al. found that hybrid

dampers were effective in the vibration reduction of broadband earthquakes [106].

On the other hand, semi-active mechanisms change a parameter, e.g. a damping or

stiffness coefficient, to change the force acting on the oscillating structure. However,

this indirect change of the force has its disadvantages. Since the controlled parameter

often multiplies a state variable of the system, the control design is nonlinear. This

added design effort is one of its main disadvantages. Furthermore, not every desired

force can be generated, due to the parameter range limitation, e.g. positive parameters.

Nevertheless, a semi-active implementation also leads to lower energy costs, making

this an appealing solution. Such vibration reduction mechanisms are found in the

work of Karnopp, where the damping coefficient of an isolator was switched on and

off dependent on the velocities of the system’s structure [91]. Davis and Lesieutre

proposed a semi-active vibration absorber that changed the stiffness of a piezoceramic

element electrically [32]. The stiffness change allowed the vibration absorber to adapt

its absorption frequency to the system’s oscillations and effectively make use of this

vibration reduction mechanism.

(a) (b)

Figure 1.6: (a) An active vibration absorber for beam vibration reduction, source: [95]. (b) An ideal and

schematic depiction of the Skyhook damper, source: [91].

Additional design effort is required by active vibration dampers due to the design of the

control strategy. An essential contribution was made by Karnopp with the development

of the Skyhook Control Strategy. This strategy was used for vibration isolation and

was often implemented in the automotive branch, to isolate automobiles from ground

vibrations. The main idea behind this approach is the semi-active control of a damping

element that tries to emulate a damper connected to an inertial reference frame, cf.

Fig. 1.6b. To this end, the damper dissipates energy whenever possible, and when this

is not the case it does not exacerbate the vibrations of the considered system. Variations

of this control strategy were investigated by Liu et al. [109]. An overview of additional
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control strategies was made by Alkhatib and Golnaraghi [2]. In their review, they

considered feedforward, adaptive, coordinate coupling, robust, and optimal control. A

review of vibration control strategies in the context of offshore structures was presented

by Kandasamy [88].

An alternative way to improve the performance of passive linear vibration reduction

mechanisms is the consideration of nonlinear effects. Although active linear dampers

offer an improvement, they are bound by the limitations of linear systems. Passive

nonlinear devices offer improvements over linear systems albeit they do require a higher

design effort. A review of nonlinear passive elements was presented by Lu et al. [113].

Nonlinear vibration reduction devices were categorized depending on the placement of

their nonlinearity. The nonlinearities appears on the stiffness, the damping, or in both

stiffness and damping terms. This classification is adopted in this work. The categories

are mainly represented by three devices: nonlinear energy sinks, nonlinear viscous

dampers, and vibro-impact dampers.

Nonlinear energy sinks are a realization of nonlinear dissipative devices with nonlinear

stiffness and are composed of three components: an auxiliary mass, a strong nonlinear

stiffness, and a linear damping element see Fig. 1.7a. The nonlinear restoring force

transfers vibrations from the main structure to the nonlinear energy sink. Afterward,

the energy within the nonlinear energy sink is dissipated via the damping element. A

review focused on nonlinear energy sinks and targeted energy transfer was given by

Lee et al. [106]. Noticeable contributions in this field were made by Vakakis mainly in

combination with cubic spring as a nonlinear stiffness [173]. Habib et al. and Detroux et

al. noted a generalization of Den Hartog’s equal peakmethod for nonlinear systems [72]

and contributed to the design and analysis of such devices [36]. Although not explicitly

(a) (b)

Figure 1.7: (a) An schematic depiction of a nonlinear energy sink, source: [113]. (b) System considered by Jo

and Yabuno source: [86].
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named a nonlinear energy sink, Jo and Yabuno considered the similar effect in a

system with linear damping and quadratic and cubic stiffnesses generated by geometric

configuration with levers [86], see Fig. 1.7b. This configuration reduced parametric

excitations in the considered system.

A detailed work of nonlinear viscous dampers was made by Symans and Constanti-

nou [166] in the context of structural engineering. These nonlinear devices use a viscous

fluid, which is forced to flow through orifices or chambers, and have a damping force

that depends only on the velocity. The resulting force is in general expressed as

�3 = 3sgn(E)|E |
 .

Where 3 represents the damping coefficient, E the velocity, and 
 the velocity exponent

that defines the nonlinear characteristic. Rüdinger found advantages of such dampers

in systems excited by random white noise excitation [146]. Martinez-Rodrigo and

Romero focused on optimal strategies in the post-construction fitting of linear and

nonlinear viscous dampers in buildings. Nonlinear devices reduced vibrations 35%

more than their linear counterparts [118]. Advantages concerning the risk assessment

and vibration reduction in seismic structures were presented by Tubaldi et al. [172].

Devices with nonlinear stiffness and nonlinear damping are constructed in part by

the combination of the aforementioned mechanisms. Starosvetsky and Gendelman

considered a cubic spring, however, in combination with quadratic damping [162].

The work focused on the targeted energy transfers mechanism and combined it with

the advantages of nonlinear damping. On the other hand, some systems have the

combination of nonlinear stiffness and damping intertwined in the system’s design.

This is the case for vibro-impact dampers and tuned liquid dampers. Vibro-impact

dampers, also commonly known as particle impact dampers, are composed of small

particles inside one or more collision chambers. The collision chamber is attached to the

main structure, and the energy of the main structure’s vibrations is dissipated into heat

due to friction and partially inelastic collisions. Valuable contributions in this field date

back to the 1960s by Masri. His work studied a single impact mass and a single impact

chamber [121]. Studies into single impact masses in multiple impact chambers were

conducted by Bapat and Sankar [12]. A particle impact damper with multiple small

particles in a single collision chamber was investigated by Marhadi and Kinra [117],

see Fig. 1.8a. Panossian highlighted that this damping mechanism was implemented in

a non-obtrusive way into a space shuttle main engine liquid oxygen inlet tee [135], see

Fig. 1.8b. Additional overviews of vibro-impact systems are presented by Babitsky [10]

and Lu [112]. Liquid tuned dampers function similarly to vibration impact dampers,
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(a) (b)

Figure 1.8: (a) Frontal view of a particle impact damper on a cantilever beam, source: [117]. (b) A space shuttle

main engine liquid oxygen inlet tee with holes for particles, source: [135].

however, the chamber is filled with a liquid instead of particles. Although there were

other vibration reduction devices using liquids before, the term tuned liquid damper

was introduced by Fujino et al. [60]. In contrast to earlier publications, their work

proposed a shallow filled container which allowed higher damping. Modi and Munshi

considered a tuned liquid damper with obstacles in the tank that lead to increased

energy dissipation [125], see Fig. 1.9a. Multiple liquid tuned dampers attached to the

same structure were investigated by Love and Tait [110]. An equivalent model for such

dampers composed of a vibro-impact damper with a single particle attached via springs

to its impact chamber, was developed by Farid and Gendelman [47], see Fig. 1.9b.

(a) (b)

Figure 1.9: (a) A tuned liquid damper with obstacles, source: [125]. (b) An equivalent model for the tuned

liquid damper, source: [47].

Active nonlinear dampers combine the advantages of active control and nonlinear

dampers. However, they have the highest design effort. Since the whole system is

nonlinear, advanced control strategies are required. Intensely investigated nonlinear

semi-active dampers aremagneto- or electro-rheological dampers. These devices apply a

magnetic/electric field to change the properties of a non-Newtonian fluid. Suchdampers
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are representedwith a Binghammodelwhich is a parallel configuration of a linear spring,

a viscous damper, and a dry-friction element [165]. The spring and damper model the

fluid’s elasticity and viscosity, whereas the dry-friction element models the building of

chains and locking of active particles in the fluid. Depending on the magnitude of the

applied field the break-away force of the friction element is varied. Dyke et al. considered

a magneto-rheological damper combined with a clipped optimal control algorithm in

building structures [43]. Sun and Thomas studied an electro-rheological damper with an

on-off control strategy, to reduce torsional vibrations [165]. Weber developed and tested

a magneto-rheological damper that tuned its absorption frequency to the oscillating

structure [178]. Another example of active nonlinear devices was presented by Ma et

al. [114]. They used a fuzzy neural network to control a nonlinear hydraulic adjustable

isolator and reduce vibrations in automotive suspensions. A quarter vehicle test bench

was excited with white noise and the proposed active nonlinear isolator achieved a 50%

reduction of the oscillation’s root mean square.

As shown in the paragraphs above, the design of vibration reduction devices is

characterized by the vast ingenuity that researchers have embedded in these systems.

Furthermore, the research community has thoroughly studied and asserted the capa-

bilities and limitations of linear systems. Therefore, research into active and nonlinear

devices has taken on a significant role in the field of vibration reduction. Another

example of nonlinear dampers are friction dampers.

1.2.3 Literature Overview of Friction Dampers Research
The targeteduse of dry friction to reduce vibrations results in frictiondampers. Although

friction takes different forms, e.g. viscous friction, friction dampers refer to devices that

utilize dry friction, i.e. the unsmeared sliding contact of two solid bodies. To portray

the literature of friction dampers, first, the theoretical investigations of such systems

are considered. Second, selected practical applications of passive friction dampers are

presented. Lastly, the active consideration of friction dampers is detailed.

The effort required to characterize these dampers is high since they are not only nonlinear

but also nonsmooth. Mechanical insight into friction dampers is found as early as the

1930s in the work of Den Hartog [34]. He studied a one-degree of freedom system with

a dry friction element, a spring, and a sinusoidal excitation. He found a solution to

the differential equations by considering half of an oscillation and imposing boundary

conditions for a periodic solution. Additionally, he considered the system with viscous

damping in combination with dry friction. This last system was later on investigated by

Shaw. He expanded Den Hartog’s work by considering a difference in the static and
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dynamic friction coefficient and carried out a stability and bifurcation analysis [155]. The

work of Ruzicka and Derby gave valuable insights into friction dampers in an isolator

configuration, inwhich friction elementswere coupledwith elastic elements in series and

parallel [147], see Fig. 1.10a. Both devices were able to effectively cut off the resonance

peak, provided the breakaway force of the friction element is chosen appropriately.

The work into the isolator on the right side of Fig. 1.10a was expanded by Fidlin and

Lobos, who used averaging methods to describe these mechanisms. They attributed the

vibration reduction effect to the switching between stiffnesses, i.e. eigenfrequencies, that

resulted due to the sticking of the friction element [54]. A torsional vibrational damper

that consists solely of a friction element to dampen vibration and was considered by

Alspaugh [3]. He grouped the steady-state motion into three types and concluded that

the friction element acted similarly to a low pass filter. Dry friction between the ground

and cantilever beams and in between cantilever beams was investigated theoretically

and numerically by Dowell and Schwarz [37]. They focused on the variation of the

external excitation. With rising excitation magnitude three cases were found: pure

stick oscillations, oscillations with stick-slip regimes, and unbounded oscillations. A

similar system where the friction element is located in between the beams was recently

considered by Krack et al. [99]. However, they focused on modal interactions and their

effects on friction damping. The modal interactions were detrimental to the vibration

reduction capabilities of dry friction and should therefore be avoided. Ricciardelli and

Vickery studied a vibration absorber in combinationwith a dry friction element between

the masses, see Fig. 1.10b. This device was effective at reducing the resonance peak’s

amplitude provided the breakaway force was tuned correctly to the system [144]. The

examples mentioned above share a common denominator, namely the existence of an

optimal breakaway force or friction value. Too little friction results in low damping and

leads to unbounded oscillations provided there are no other sources of dissipation. Too

much friction results in pure stick oscillations that also lead to low damping and high

amplitudes. The optimal friction level lies in between and offers maximal damping for

a specific excitation level.

(a) (b)

Figure 1.10: (a) Elastically coupled friction elements in an isolator configuration, source: [147]. (b) A tuned

mass damper with a dry friction damping device, source: [144].
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A survey on the useful advantages of dry friction in vibration damping and vibration

isolationwaspresented byFerri [50]. He categorized the applications of frictiondampers

into four categories: turbomachinery systems, built-up structures, seismic structures,

and railroad applications.

Reviews of friction dampers in the context of turbomachinery applications were

presented by Popp et al. [140] and more recently by Rizvi et al. [145]. Friction dampers

are advantageous in this field since they withstand the extremely harsh conditions

in these applications. They are implemented mainly in three ways: between blades

and rotor disk, between turbine blades, and in segmented interblade shroud rings [50].

The blade to rotor disk interface usually resembles a fir-tree and is named after it, see

Fig. 1.11a. Chan and Tsuba considered a 3D finite element model to describe this region

and focused on the effects of the friction coefficient, the clearance, and the normal

load [27]. In order to improve the lifetime of turbines, Papanikos and Meguid focused

their efforts on the detection and prediction of possible cracks in the blade rotor disk

interface and compared simulations with experiments [136]. Meguid et al. studied the

design parameters; flank angle, the flank length and the number of teeth, and their

effects on the stress in blades and rotor disk [122]. Friction dampers between turbine

blades are known as underplatform dampers and are metal elements that are pressed

between two blade platforms by the centrifugal force in turbines. These dampers are

investigated in two variations: as curved friction dampers and as cottage-roof friction

dampers, see Fig. 1.11b. Csaba focused on a curved friction damper with a Winkler

foundation and a Jenkin element to model the contact dynamics [30]. A more involved

3D finite element model was proposed by Panning et al. [134] and used to model

both curved and cottage-roof dampers. For lower engine orders cottage-roof dampers

proved more efficient. Firrone et al. also used a 3D finite element model, however,

(a) (b) (c)

Figure 1.11: (a)Afir-tree blade rotor disk interface, source: [122]. (b) Curved andwedge friction underplattform

dampers, source: [144]. (c) Interblade shroud rings, source: [182]
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they considered an asymmetrical underplattform damper. Interblade shroud rings are

formed by extrusions along the blade that are in contact with extrusions from adjacent

blades and form a ring, see Fig. 1.11c. Bielawa conducted analytic studies into these

dampers and concluded that, although there was only dry friction in the contact, these

dampers behaved like structural damping for increasing vibrational amplitudes [17]. In

the context of shroud ring optimization, Griffin and Labelle used numerical tools to

optimize the normal load acting on the contact surfaces [69]. Amore recent investigation

into these dampers was conducted by Wu et al. and considered 3D finite element models

and experiments, to assess the influence of the rotational speed of the turbines of the

normal load on the shrouds [182].

Built-up systems represent structures that have been built up by detachable connections,

i.e. joints. It is known that friction in such connections provides up to 90%of the damping

in structures. However, there is an unavoidable contradiction when optimizing such

joints. On the one hand, they should be as tight as possible for a rigid structure, on the

other hand, looser joints provide higher structural damping [50]. An overview of the role

of friction in mechanical joints was presented by Gaul and Nitsche [66]. It focused on

the nonlinear transfer behavior of bolted joint connections. Furthermore, it considered

joint models with phenomenological as well as constitutive friction models. The work

suggested phenomenological models for systems with reduced degrees of freedom

and constitutive friction models for the local description of the joint contact mechanics.

A review article by Ibrahim and Pettit [84] focused on the uncertainties involved

when modeling bolted joints, e.g. friction, hardness, joint stiffness, and boundary

conditions. It presented stochastic and fuzzy finite element models to quantify these

uncertainties. Additionally, it considered the identification of bolted joints and the

relaxation phenomenon that leads to changes in the joint’s characteristics. Bograd et

al. [19] gave a more recent overview of the different models which are implemented to

describe bolted joints. This work described three models in detail: the node-to-node

contact with Jenkins friction elements, finite element models with thin layer elements,

and finite element models with zero thickness elements. A common conclusion on all

these three reviews is that uncertainties in parameter estimations are a notable limiting

factor in the description of joints and their damping in built-up systems.

The application of friction dampers in seismic structures is found in two forms: in

moment-resisting frames or in seismic isolation. Examples of both these types of

applications are shown in Ferri’s review [50]. In his general review of structural

control, Houser et al. provided a subchapter dedicated to friction dampers in the

context of building applications [81]. A noticeable mention is the Pall device, which

was proposed by Pall and Marsch [133]. The device consisted of a friction joint
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(a) (b)

Figure 1.12: (a) Pall damper in X-brace configuration, source: [133]. (b) Double concave friction pendulum,

source: [49].

with slotted holes and was placed at X-bracings of the moment-resisting frame, see

Fig. 1.12a. Morgen and Kurama also used friction dampers, however, with curved

slotted holes to reduce vibrations in beam-to-column joints [127]. In these devices, the

breakaway force in the friction joints is set large enough to prevent relative movement

during normal service loads and moderate earthquakes. Simultaneously, the preset

breakaway force is small enough to allow relative movement during severe seismic

excitation. Thus, energy is dissipated and the failure of vital structural components

is prevented. These dampers have the disadvantage that they are not self-centering

since after large vibrations plastic deformations remain. The problem is addressed

by self-centering devices which were initially presented by Nims et al. [131]. Such

mechanisms use friction springs to dissipate energy and return to their original position

after excitations subside. Additionally, the have the added feature that the energy

dissipated is proportional to the relative displacement. Filiatrault et al. considered

a similar damper and experimented with a configuration where the damper is placed

along a diagonal brace in a moment-resisting frame. The experiments showed the

damper was able to dissipate 20% of the energy fed into the structure and thus protected

the structure from plastic deformations [56]. Khoo et al. considered such a damper in

beam-to-column configuration and showed that residual drift in such arrangements

was less than 0.1% [94]. Seismic isolation is achieved in civil engineering structures by

allowing a degree of freedom between the buildings and the ground beneath them. A

historical review on this subject was published by Kelly [93], whereas a more recent

review was given by Warn and Ryan [177]. Initial propositions towards the realization

of this isolation combined rubber-bearing isolators and friction elements in a serial

arrangement, as considered by Constantinou Tadjbakhsh [29]. A more modern and

widely spread implementation of seismic isolation with friction element is realized in

the double concave friction pendulum bearing proposed by Fenz and Constantinou.

It is composed of two concave surfaces, which are separated by a jointed slider, see

Fig. 1.12b. In the presented work the concave surfaces were designed in stainless steel
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and the slider in a PTFE-Composite. Such isolation devices offer a higher number of

design parameters, allowing a better performance than their counterparts with a single

concave surface [49].

A special variant of friction dampers, the so-called wedge dampers, are used in railroad

trucks. Due to their robustness, low cost, and lowmaintenance they are still investigated

today. Furthermore, they play an essential role in reducing vertical and lateral vibrations

that lead to derailment. A state-of-the-art review into frictionwedge dampers in railroad

applications was presented by Wu et al. [183]. Such dampers are composed of a wedge

placed between the bolster, which carries the wagon, and the side frame, which is

connected to the wheels, see Fig. 1.13. Minimal models with low degrees of freedom

were considered by Garnder and Cusumano [64] and by Kaiser et al. [87]. Suchminimal

models showed the full range of vibration phenomena that occur with dry friction, e.g.

stick-slip oscillations, subharmonic bifurcations, and chaos [64]. More involved models

with 3D multi-body simulation software were considered by Kovalev et al. [98]. This

work compared simulation results with experiments and show an acceptable agreement.

Furthermore, the models were able to estimate durability and wear.

(a) (b)

Figure 1.13: (a) Free body diagram of a friction damper, source: [87]. (b) Model of a Russian 18-100 bogie,

source: [98].

Friction-based dampers have also been considered in their semi-active variant in which

the normal force is modulated. Lane and Ferri proposed an optimal control and

afterward clipped the desired input since the normal force is only positive for unilateral

contacts [105]. Dupont et al. used a Ljapunov function based controller to maximize

the energy dissipation in the controllable term and derived a corresponding bang-bang

control [41]. This controller was very similar to the Skyhook Control proposed by

Karnopp, however, it was used for vibration dissipation instead of vibration isolation.

Both the clipped optimal control as well as the Skyhook Control were implemented by

Gaul et al. to reduce vibrations in the joints of truss structures [65]. For an impulse
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perturbation, the clipped linear quadratic controller showed a faster reduction of

vibration amplitudes. An alternative approach when controlling friction dampers

is to prevent sticking since it introduces higher frequencies into the system and prevents

dissipation. Such control approaches calculate the necessary normal load for stiction

and set the actual normal load slightly under this limit. This strategy was simulated

by Lu [111] to reduce seismic vibrations. Experiments with this control strategy also in

the context of seismic vibration were performed by Lin et al. [108]. Inaudi proposed an

active friction damper with modulated normal force that resulted in a linearly scalable

response as with linear viscous damping [85]. To this end, the normal force is chosen

proportional to the last local peak. Laffranchi et al. modulated the normal force in the

joints of humanoid robots to emulate viscous damping [104].

1.3 Thesis Purpose
As noted above, friction dampers are a reliable and robust damping alternative to

conventional tuned mass dampers, even though friction is difficult to describe. This

is reflected in the wide range of systems they are implemented in and the amount

of literature available on friction dampers. The classic realization of such a vibration

reduction device relies on the sliding contact of two nominally flat surfaces, i.e. surfaces

that are flat on a macroscopic scale, however, rough on the microscopic scale. In

order to expand the capabilities of these systems, the geometric design of the sliding

surfaces is considered, e.g. curved underplatform dampers, friction pendulums, and

railroad wedge dampers. Further expansions rely on semi-active friction dampers that

modulate the normal force between nominally flat sliding surfaces. In general, friction

dampers have been mainly used to dissipate energy. However, the effective use of the

nonsmooth characteristics of dry friction in the context of vibration reduction has not

been thoroughly investigated. There is, therefore, still room for the improvement of

such dampers.

The main purpose of this thesis is the design and validation of dry friction based

damping mechanisms that rely not solely on dissipation, but instead consider vibration

absorption and targeted stick-slip transitions to reduce vibrations. To this end, this work

focuses on three secondary objectives.

First, the design of passive devices is considered. Prestressed piecewise defined contact

surfaces in combination with a vibration absorber are considered to bring damping,

absorption, and targeted stick-slip transitions into one damper. Most friction dampers

rely on flat surfaces, wedges, or concave surfaces. The piecewise definition of the

contact surfaces allows the damper to operate differently under different amplitude
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regimes. This enhances the vibration reduction ability of the damper. Additionally,

apart from [54, 147], the reviewed literature does not take into account the vibration

reduction potential of a targeted stick-slip transition. Since this transition changes the

system’s eigenfrequencies, it can be used to avoid resonances altogether.

Second, the results from the theoretical investigation and design of such dampers is

validated with experiments. A test bench is designed, built, and the dampers are tested.

A focus is set on the verification of the qualitative behavior of the deigned dampers.

Third, a further extension of the passive systems is sought after in active form. Control

strategies that do not solely focus on damping are designed and applied in combination

with thedesignedpassivedevice structure. The strategies are tested indifferent scenarios,

where transient as well as stationary simulations are considered. Additionally, these

strategies are compared to traditional damping focused control.

Focusing on these three secondary objectives contributes to the understanding of dry

friction dampers and the fulfillment of the thesis’ main purpose.

1.4 Thesis Structure
This work contains 7 chapters and is structured as follows:

Chapter 2 introduces the fundamental concepts required for the understanding of this

work. The first section considers periodic orbits and their calculation methods. The

second section focuses on the analytical analysis of nonlinear systems with two degrees

of freedom. The analysis uses themethod of averaging to simplify the system’s equations.

Lastly, the basic concepts for active control strategies are presented that are used later on.

Chapter 3 considers the wedge damper. A secondary mass is placed between two

wedges, that are connected via springs, to reduce vibrations. This arrangement yields a

force proportional to the relative displacement. It presents a first step before considering

piecewise-defined contact surfaces. To analyze the damper, first, the equations of

motion of the damper are derived and a general insight is obtained. Subsequently, both

numerical and analytical investigations are carried out. The chapter is concluded with a

damper assessment.

Chapter 4 considers the tuned wedge damper. This device represents an extension of

the wedge damper. Instead of using wedges, the device utilizes a piecewise-defined

contact surface, with a flat segment in the middle, two outer angled segments, and two
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circular connections. Additionally, as with conventional tuned mass dampers, a spring

connects the secondary mass directly to the main system. This arrangement yields

different responses at different amplitude levels. As with the wedge damper, first, the

equations ofmotion are derived and a general insight is obtained. In addition, numerical

and analytical investigations deepen the understanding of the system. Subsequently,

an optimization of the damper parameters is carried out. Finally, an assessment of the

device is presented.

Chapter 5 handles experimental investigations into the aforementioned dampers. Firstly,

the test bench, as well as the sensor signal post-processing, are described. Afterward,

the experimental results are discussed for each of the dampers.

Chapter 6 presents three active extensions of the tuned wedge damper. The control

strategies are considered separately in different scenarios and are afterward compared.

The considered strategies are the Skyhook Control Strategy, an adaptive multiple model

control, and a slow frequency-based control.

Chapter 7 summarizes the work and presents the main conclusions. Additionally, a

brief insight into future work is given.
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This work analyses two friction dampers with numerical and analytical methods.

Additionally, active dampers are considered. The necessary concepts to address these

three topics are presented in this chapter. First, the numeric methods are considered for

the targeted calculation of periodic solutions. This offers a basis of the numerical

calculations in chapters 3 and 4. Second, the averaging method for two degrees

of freedom systems is presented. This method is the foundation of the analytical

investigations in chapters 3 and 4. Third, the basic concepts of the control strategies,

which are the basis of chapter 6, are described.

2.1 Periodic Orbits
Dynamic systems are expressed via a differential equation of the form

¤x = f(x) , (2.1)

x(C0) = x0 , (2.2)

where x ∈ R= is the system’s state vector of dimension =, the dot denotes the total

derivative with respect to the time C, f : R= → R= is a nonlinear function which describes

the system’s dynamics, and x0 is the initial condition’s vector at C0. All possible values of

the states make up the phase space of a system. Consequently, every momentary state is

expressed as a point in the =-dimensional phase space. As time passes, this point moves

throughout the phase space and the set of adjacent points is referred to as a trajectory. In

this work, the function f(x) is a nonlinear, autonomous, piecewise continuous function.

It is nonlinear because the function can not be expressed as a linear combination of

the states. Since the time C is not found explicitly in the equations, the function f(x) is
autonomous. This last characteristic is not restrictive since non-autonomous systems

can always be converted to autonomous systems [137]. Furthermore, the system is

deterministic if from the initial conditions all the following states of the system are

predictable. For arbitrary initial conditions, solving the differential equations yields
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the transient behavior of the system. As C → ∞, the behavior of the system is either

unbounded and tends to infinity or it approaches a steady-state solution.

2.1.1 Steady-State Solutions of Dynamical Systems
Depending on the characteristics of the steady-state solution, it is categorized into one

of four categories [137]: equilibrium point, periodic solution, quasi-periodic solution,

and chaotic solution. Since the periodic solution is considered in detail in the following

subsection, only the remaining steady-state solutions are briefly described.

Equilibrium points are characterized by ¤x = 0. Therefore, the solution stays at the

equilibrium point for all time, provided there aren’t any external perturbations. Linear

systems contain one single equilibrium point, whereas nonlinear systems can have

multiple coexisting equilibrium points. Furthermore, except for some special cases,

non-autonomous systems have no equilibrium points [137].

When two occurring frequencies in a system have an irrational ratio, quasi-periodic

motions occur. Such solutions are separated into periodic functions that interact

nonlinearly with each other [137]. Since there is no dominant frequency, the solution

does not repeat itself after a given time. Instead, for C →∞ the trajectories in the phase

space fill up a torus hypersurface in the =-dimensional phase space.

Parker and Chua defined chaos as "a bounded steady-state behavior that is not an

equilibrium point, not periodic, and not quasi-periodic" [137]. This definition by

negation shows the difficulty regarding the description of chaos. It is characterized

by various traits, nevertheless, there is no clear definition for it. Chaos, for example,

shows extreme sensitivity to the initial conditions. Therefore, solutions that start close

to each other diverge from one another while staying bounded. Furthermore, a possible

behavior of chaotic systems is the random alternation between regimes. The explanation

of this random characteristic in a deterministic system is still an active research topic.

2.1.2 Periodic Solutions
Periodic solutions repeat themselves after a given time. This is expressedmathematically

by the equation

x(C) = x(C + )) ∀C > 0 (2.3)

where) is the period and is the smallest positive constant, forwhich Eq. (2.3) holds. Each

period has a corresponding fundamental frequency 5 = 1/) and fundamental angular
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frequency Ω = 2�/). For autonomous systems, the oscillation frequency is determined

by the system characteristics. In monoharmonically excited systems it is determined by

some multiple of the excitation frequency. In comparison, the fundamental frequency

of multiharmonic excited system is given by a combination of the excitation frequencies.

Portraying the periodic motion G(C) in the phase space yields a closed trajectory. If

there exist no other periodic solutions in the vicinity of this trajectory, the solution is

considered a limit cycle. Depending on the behavior of transient solutions in the vicinity

of the limit cycle, it is considered stable or unstable. If all solutions in a vicinity tend

towards the limit cycle, it is stable, otherwise, it is unstable. A detailed description of

the stability assessment of periodic motions is presented in [5]. The limit cycle together

with its basin of attraction build a subset of the phase space.

2.1.3 Calculation Methods for Periodic Solutions
The most commonly used methods for the targeted calculation of periodic solutions

are forward time simulations, shooting methods, collocation methods, and harmonic

balance methods. Forward time simulations calculate the dynamic system’s behavior

until the system reaches the limit cycle. However, this approach is only viable for

stable limit cycles. Additionally, this approach is time-consuming, when systems are

lightly damped. Shooting methods convert the initial value problem into a boundary

value problem by enforcing the periodicity condition. The method starts with an

approximated guess for the initial values as well as for the oscillation period. The guess

is improved with a Newton-Rhapson Method until the periodicity condition is fulfilled.

Collocation methods do not have a single support point, instead, they consider various

time points along the trajectory. These time points define intervals and the solutions

between the intervals are approximated by polynomials. The method modifies the

polynomials to fulfill the continuity and differentiability conditions at the time points,

as well as the underlying differential equations of the system. A detailed analysis of

shooting and collocations methods is presented by Marx and Vogt in [120]. Lastly,

harmonic balance methods approximate the limit cycle via a truncated Fourier series

and consider the problem in the frequency domain. The method minimizes a residuum

to calculate the amplitudes of the harmonic base functions. Harmonic balance methods

and their application for nonlinear systems are considered by Krack and Gross [100].

The following overview of the harmonic balance method is largely based on their work.

Since the harmonic balance method is based on the Fourier series, the relevant fun-

damentals are introduced. The periodic vector function f(C) ∈ R< is expressed as a
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linear combination of infinite harmonic base functions. An approximation is derived by

limiting this infinite series with the truncation order � in the form

f(C) ≈ f̃(C) = f̂c,0 +
�∑
8=1

f̂c,8 cos(8ΩC) + f̂s,8 sin(8ΩC) . (2.4)

The amplitudes f̂c,0, f̂c,8 , and f̂s,8 of the harmonic functions are calculated by evaluating

f̂c,0 =
1

)

∫ )

0

f(C)dC ,

f̂c,8 =
2

)

∫ )

0

f(C) cos(8ΩC)dC , and f̂s,8 =
2

)

∫ )

0

f(C) sin(8ΩC)dC . (2.5)

The transformation between the approximated vector function f̃(C) and the amplitudes of

the sine-cosine representation f̂sc,� iswritten in a compact formas amatrixmultiplication

f̃(C) = hsc,�(ΩC)f̂sc,� . (2.6)

An advantage of the Fourier series approach is the calculation of derivatives, which are

also expressed as a matrix multiplication of the form

¤̃f(C) = Ω∇hsc,�(ΩC)f̂sc,� , (2.7)

¥̃f(C) = Ω2

∇
2hsc,�(ΩC)f̂sc,� . (2.8)

In Eqs. (2.6)–(2.8) the amplitudes of the sine-cosine representation f̂sc,� , the matrix of

the harmonic base functions hsc,� , and differentiation matrix ∇ are given by

f̂sc,� =
[
f̂c,8 , f̂c,1 , f̂s,1 , · · · , f̂c,� , f̂s,�

]Ç
, (2.9)

hsc,� = [1 cos(ΩC) sin(ΩC) · · · cos(�ΩC) sin(�ΩC)] ⊗ I< , (2.10)

∇ = diag(0,∇1 ,∇2 , · · · ,∇�) with ∇8 =

[
0 8

−8 0

]
. (2.11)

For numerical applications, the discrete Fourier series is required. An effective

calculation of the series is implemented with the Fast Fourier Transformation [100].

The starting point of the harmonic balance method is the vector differential equation

M¥q +D ¤q +Kq + fnl(q, ¤q, C) = fext(Ω) . (2.12)
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In Eq. (2.12) M, D, and K represent the mass, damping, and stiffness matrices. With the

generalized coordinate vector q and its derivatives, they make up the linear terms of the

system. The term fnl(q, ¤q, C) introduces the influence of the nonlinear terms, whereas

fext(Ω) considers the external excitation. It is assumed that the excitation terms oscillate

with the frequency Ω and contain a single harmonic term. The generalized coordinates

are approximated by q ≈ q�(C , q̂sc,�) = hsc,�(C)q̂sc,� and the residuum is given by

r(C , ¥q, ¤q, q) = M¥q +D ¤q +Kq + fnl(q, ¤q, C) − fext(Ω)
!

= 0 . (2.13)

The basic idea of the harmonic balance method is to calculate the amplitudes q̂sc,� so

that the amplitudes of the residuum until the truncation order � vanish. To this end,

the amplitudes of the residuum are calculated as

r̂ = 1

)

∫ )

0

hsc,�(C) r( ¥q, ¤q, q, C)dC = f̂lin + f̂nl − f̂ext . (2.14)

In Eq. (2.14) the calculation of the residuum amplitudes is broken down into the

calculation of the linear terms, the nonlinear terms, and the excitation terms. In the case

of a single harmonic excitation, the term f̂ext has a single entry in the corresponding row

depending on the chosen harmonic function. The linear terms are calculated with

f̂lin = (∇2 ⊗ Ω2M + ∇
1 ⊗ ΩD + ∇

0 ⊗ K) q̂sc,� . (2.15)

The main challenge lies in the calculation of the amplitudes of the nonlinear terms.

This challenge is addressed by implementing the Alternating Frequency-Time Scheme

[100], depicted in Fig. 2.1. First, this algorithm takes the momentary estimate for q̂sc,�

and calculates the corresponding approximated time series q̃(C). Second, this time

Figure 2.1: Visual representation of the Alternating Frequency-Time scheme, source: [100].
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series is used to calculate the corresponding approximated nonlinear forces f̃nl(C) in the

time domain. Third, the algorithm calculates the Fourier series of the approximated

nonlinear forces, which yields the amplitudes in f̂nl.

In order to handle bends and multiple solutions for a single frequency, a continuation

method is implemented. To this end, the fundamental frequencyΩ is considered a vari-

able, and a new vector y = [q̂sc,� ,Ω]Ç describes the unknown variables. Consequently,

an additional equation is required. According to the pseudo-arc length parametrization,

an equation is introduced so that the difference between the solution and the initial

guess lies within a hypersphere of radius ΔB. Given an initial guess for the variables y0,

the hypersphere requirement is mathematically expressed as

(y − y0)Ç(y − y0) − ΔB2 = 0 . (2.16)

Together with Eq. (2.13), Eq. (2.16) builds the zero point problem

R(y) =
[

f̂lin + f̂nl − f̂ext

(y − y0)Ç(y − y0) − ΔB2

]
= 0 (2.17)

which is solved by the numeric optimization algorithms. In order to ease the calculations,

the algorithm is further expanded with a prediction step. The predictor estimate ypre of

the next solution is calculated with

ypre = y0 + ΔBy∗
1
, (2.18)

with y∗
1
=

y1

‖y1‖
and

%R(y)
%y

����
y0

y1 = 0 . (2.19)

In Eq. (2.19) y1 is calculated with the help of a QR-decomposition. The estimate ypre is

then used as an initial guess for the next iteration.

The algorithm above is used together with a shooting method for verification purposes.

Together they make up a solid framework for the calculation of periodic solutions in

nonlinear systems. For more details on the implementation of this algorithm, the reader

is referred to [100] and [120].

2.2 Averaging for Two Degrees of Freedom Systems
Although numerical simulations are a basic initial step, analytical investigations offer a

deeper insight into the system dynamics. Relationships between the system’s behavior

and parameters are derived via the averaging method. Developed by Krylov and
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Bogoulibov [102], the basic principle of thismethod is to decompose the system behavior

into their slow and fast oscillating parts. Furthermore, the variables of the slowdynamics

are considered constant over one period from the point of view of the fast dynamics.

This motivates the averaging of the slow dynamics over the fast oscillating variables. A

reduced order system and often simpler equations of motion are obtained. For further

details into the averaging method, the reader is referred to the works of Mitroposlkii

[124], Sanders and Verhulst [150], and Fidlin [51]. The general approach involving

the averaging method for systems with two degrees of freedom is considered in this

chapter. To this end, the methods are applied to a general nonlinear dissipative device,

see Fig. 2.2.

Figure 2.2: A general nonlinear dissipative device.

The exemplary system is composed of the main system and the dissipative device. The

main system is represented by the main spring 21 and the main mass <1. This main

system is excited by the harmonic force with amplitude � and angular frequency Ω.

In order to improve its dynamic behavior, the nonlinear dissipative device is attached

to the main system. The dissipative device is composed of an auxiliary spring 22, the

nonlinear dissipative element generating the force �nl, and the auxiliary mass <2. The

equations of motion of the system are given by

<1
¥G1 + 21G1 − 22(G2 − G1) − �nl(G1 , G2 , ¤G1 , ¤G2) = � sinΩC , (2.20)

<2
¥G2 + 22(G2 − G1) + �nl(G1 , G2 , ¤G1 , ¤G2) = 0 . (2.21)

In order to apply the averaging method, equations Eqs. (2.20) and (2.21) are considered

in the dimensionless time �. The following transformations are applied

� = $01C ,
d( )
d�

= ( )′ , $2

01
=
21

<1

, $2

02
=
22

<2

, � =
Ω

$01

, � =
<2

<1

,

?2 =
22

<1$2

01

=
22

21

, � 5nl =
�nl(G1 , G2 , ¤G1 , ¤G2)

<1$2

01

, � 5 =
�

<1$2

01

, � � 1 .

(2.22)
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As noted above, � is a small parameter and implies small nonlinear dissipative forces

and small excitation amplitudes. Applying the transformations above results in

G′′
1
+ G1 − ?2(G2 − G1) = �

(
5 sin�� + 5nl(G1 , G2 , G

′
1
, G′

2
)
)
= � 5nl,1 , (2.23)

�G′′
2
+ ?2(G2 − G1) = −�

(
5nl(G1 , G2 , G

′
1
, G′

2
)
)
= � 5nl,2 . (2.24)

The next step in the groundwork for the averaging method is the decoupling of the

equations. Hence, a modal transformation is applied to Eqs. (2.23) and (2.24), which

yields

M =

[
1 0

0 �

]
, C =

[
1 + ?2 −?2

−?2 ?2

]
, f =

[
5nl,1

5nl,2

]
, x =

[
G1

G2

]
, (2.25)

R =

[
A11 A12

A21 A22

]
, q = Rx , RÇMR = I , RÇCR = diag(�2

01
, �2

02
) , (2.26)

Mx′′ + Cx = �f → RÇMRq′′ + RÇCRq = �RÇf . (2.27)

The vector q = [@1 , @2]Ç describes the modal coordinates and the modal matrix R is

calculated considering the unperturbed system, i.e. � = 0. The modal transformation

leads to

@′′8 +�
2

08@8 = �
(
A18 5nl,1(@8 , @ 9) + A28 5nl,2(@8 , @ 9)

)
= �6(@8 , @ 9) (8 , 9) = {(1, 2), (2, 1)}. (2.28)

Since the terms on the right-hand side of Eq. (2.28) are of O(�), the system is weakly

coupled. A complete modal decoupling proposed by Fidlin and Gafur in [53, 62]

is applied. In essence, only the corresponding modal coordinate is considered for

each modal equation. However, this assumption is only valid if the eigenfrequencies

�01 and �02 are far enough from each other, i.e. |�02 − �01 | = O(1) [186]. Under this

assumption, the unrelated modal coordinate is of the magnitude order � in the vicinity

of the considered eigenfrequency. Therefore, its influence is first observed in the terms

of O(�2) in Eq. (2.28). This is made evident by considering the dependency @ 9(�) = �@̃ 9
and a Taylor expansion about the point � = 0 up to the terms of O(�), which is given by

@′′8 + �
2

08@8 =

(
6(@8 , @ 9(�)) + �

%6(@8 , @ 9(�))
%@ 9(�)

%@ 9(�)
%�

)����
�=0

(� − 0) + O(�2) . (2.29)

An evaluation of equation Eq. (2.29) ultimately results in

@′′8 + �
2

08@8 ≈ � (A18 5nl,1(@8 , 0) + A28 5nl,2(@8 , 0)) 8 = {1, 2} . (2.30)
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In order to obtain the system in standard form for averaging, the following steps

are taken. First, a Van der Pol Transformation, introduced as @8 = �8 sin(!8) and
@′
8
= �8�08 cos(!8), is applied to the modal equations. Second, the phase differences

#8 = !8 − �� are considered as slow-changing variables. Third, the response of the

system is investigated in the vicinity of the eigenfrequencies, i.e. �08 − � = ��8 . These

transformations lead to

�′8 = �
A18 5nl,1(�8 ,#8 , !8) + A28 5nl,2(�8 ,#8 , !8)

�08
cos(!8) , (2.31)

#′8 = �

(
�8 −

A18 5nl,1(�8 ,#8 , !8) + A28 5nl,2(�8 ,#8 , !8)
�8�08

sin(!8)
)
, (2.32)

!′8 = �01 − �
A18 5nl,1(�8 ,#8 , !8) + A28 5nl,2(�8 ,#8 , !8)

�8�08
sin(!8) . (2.33)

Equations (2.31) and (2.32) represent the system in standard form, whereas Eq. (2.33)

denotes the fast oscillating variables. The equations in standard form are averaged over

the fast rotating phases !1 and !2 over one oscillation period, i.e. 2�. Additionally, the

averaged variables for the amplitude �̄′
8
and phase difference #̄′

8
are introduced. For the

exemplary system, the averaged variables are given by

�̄′8 =
〈
�′8

〉
!8
=

1

2�

∫
2�

0

�′8d!8 , (2.34)

#̄′8 =
〈
#′8

〉
!8
=

1

2�

∫
2�

0

#′8d!8 . (2.35)

The equations above describe the slow system dynamics and strickly speaking the

difference between the full and the averaged system remains of O(�) for a time O(1/�)
[102]. However, Eckhaus [44] proposed theorems that showed an error estimate

extension to C → ∞ for the periodic case, provided the right-hand side of Eqs. (2.34)

and (2.35) are uniformly bounded and Lipschitz-continuous with respect to �8 and #8 .

The averaged equations are thus considered for the stationary solution (�̄′
8
= 0 and

#̄′
8
= 0) and verified with the numerical solution. Additionally, relationships between

the maximum amplitude and the excitation force are found, see sections 3.3 and 4.3.

The last step is to reconstruct the solution in the original coordinates G1 and G2. In the

case of linear systems, the transformation takes the form

�G1
=

√
A2

11
�2

1
+ A12�

2

2
+ 2A11A12�1�2 (cos�1 cos�2 + sin�1 sin�2) , (2.36)

�G2
=

√
A2

21
�2

1
+ A22�

2

2
+ 2A21A22�1�2 (cos�1 cos�2 + sin�1 sin�2) . (2.37)
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However, an explicit solution of the amplitudes �8 is not guaranteed since Eqs. (2.34)

and (2.35) are nonlinear. Furthermore, since the calculated solutions are only valid in the

vicinity of the corresponding eigenfrequencies, an application outside this frequency

range is not valid. Therefore, the reconstruction is frequency-dependent and results in

� ≈ �01 → �G1
≈ |A11 |�1 , �G2

≈ |A21 |�1 , (2.38)

� ≈ �02 → �G1
≈ |A12 |�2 , �G2

≈ |A22 |�2 . (2.39)

The procedure above describes the foundation of the analytical investigations. These

equations are analyzed, and essential relations are derived from them. Detailed practical

applications of these equations are presented in chapters 3 and 4.

2.3 Control Strategies for Friction Dampers
As mentioned in section 1.2.3 friction dampers have been used in association with

semi-active control strategies. In this subchapter, the fundamental concepts of two

control strategies are discussed in detail. Firstly, the SkyhookControl Strategy developed

by Karnopp et al. [91] is considered. Furthermore, the relationship between this strategy

and the work of Dupont et al. [41] is presented. Subsequently, the basic structure of

adaptive control with a reference model is discussed. These concepts build the basis of

the active damper investigations, which are discussed in chapter 6.

2.3.1 Skyhook Control
The idea of the Skyhook Control Strategy is to emulate a damper attached to an inertial

reference point, even though the damper itself is placed between two moving bodies.

However, this emulation is not always viable. To avoid exacerbating the oscillations of

Figure 2.3: A semi-active isolator system, modified from source: [91].
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the considered mass, the damper force is set to zero whenever damping is not possible.

This leads to a damping-focused strategy. In [91] the damping constant is varied in

combination with the system in Fig. 2.3 resulting in the damper force

�3 =

{
3Sky( ¤G − ¤G0), ¤G( ¤G − ¤G0) > 0

0, ¤G( ¤G − ¤G0) < 0

=

{
3d
¤G, ¤G( ¤G − ¤G0) > 0

0, ¤G( ¤G − ¤G0) < 0

. (2.40)

In Eq. (2.40) 3Sky represents the controlled damping coefficient, whereas 3d represents

the desired damping coefficient of the emulated damper. Alternatively, Dupont et al.

motivated this control strategy via Ljapunov functions [41]. A Ljapunov function +

based on the energy associated with main mass < in Fig. 2.3 yields

+ =
1

2

:(G − G0)2 +
1

2

< ¤G2 > 0 , (2.41)

¤+ = :(G − G0)( ¤G − ¤G0) + < ¤G ¥G = −:(G − G0) ¤G0 − �3 ¤G . (2.42)

Focusing on the controllable terms in the Ljapunov derivative results in

¤+3 = −�3 ¤G = −3Sky( ¤G − ¤G0) ¤G . (2.43)

In order to provide damping, the Ljapunov derivative of the controllable terms must be

negative. To avoid exacerbating the oscillations of the main mass, it cannot be positive.

Since the damping coefficients 3Sky and 3d are strictly positive, this yields

3Sky =


3d
¤G

¤G − ¤G0

, ¤G( ¤G − ¤G0) > 0

0, ¤G( ¤G − ¤G0) ≤ 0

. (2.44)

Equation (2.44) leads to large damping constants in the vicinity of ¤G ≈ ¤G0. This is

addressed by considering a limit on the input variable, e.g. 3Sky ∈ [0, 3max]. If the

maximal possible damping is desired, the control rule is simplified to

3Sky =

{
3max , ¤G( ¤G − ¤G0) > 0

0, ¤G( ¤G − ¤G0) ≤ 0

. (2.45)

This approach does not ensure the stability of the whole system, since only a part of

the Ljapunov derivative is considered. It does. however, provide dissipation whenever

possible and ensures the control strategy does not exacerbate the system’s oscillations.

These qualities are also ensured in the work of Karnopp et al., although Dupont et al.

formulated the strategy in a more general sense.
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2.3.2 Adaptive Control
Adaptive control is characterized by the extension of the classical control structure with

one feedback loop by an additional adaptation loop. The adaptation loop is tasked with

the adjustment of the controller parameters according to an adaption law. This allows

the design of amuchmore flexible controller that can adapt its behavior to changes in the

environment. This chapter focuses on two adaptive control methods: gain scheduling

and model reference adaptive control.

Figure 2.4: Gain scheduling adaptive control, modified from source: [152].

Gain scheduling extends the classical feedback loop with the help of an external

measurement, see Fig. 2.4. This measurement provides additional insight into the

system’s behavior. Thus, the parameter adaption is given as a function of the additional

measurement. Since the only limitation lies in the sampling time of the external

signal, this method allows a fast change in the controller parameters. However, there

is a drawback to this approach. Since the adaptation loop is open, there is no real

intelligence or ”learning” ability in the system [152]. The gain scheduler requires precise

knowledge of the system, and can only adapt if the changes in the environment are

accounted for. Therefore, it cannot improve itself against unforeseen changes.

Figure 2.5: Model reference adaptive control, modified from source: [152].
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In contrast to gain scheduling, the model reference adaptive control has a closed

adaptation loop and with it intelligence within the control structure. This approach

relies on a reference model, see Fig. 2.5. The reference model contains the desired

behavior of the system. The parameters of the controller are adjusted so that the system

asymptotically matches the reference model. To this end, the adjustment mechanism

changes the controller parameters � and is calculated to reduce 42

o
. This results in an

adaptation law of the form

%�

%C
= −264o

%H

%�
. (2.46)

As the controller parameters � tend to the ideal parameters �∗, the output error 4o

tends to zero. However, the partial derivatives of the system output depend on the

unknown and in some cases varying system parameters. This obstacle is avoided by

replacing the unknown system parameters with their identified estimates. Alternatively,

approaches via Ljapunov functions are also formulated to ensure the output error and

the difference � − �∗ tends to zero. For a detailed description concerning the calculation

of the adaptation law, the reader is referred to the work of Sastry and Bodson [152].
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3 The Wedge Damper

As previously mentioned, the analysis of the wedge damper, see Fig. 3.1, presents a

first step before taking into account dampers with piecewise defined contact surfaces.

A general description of the damper is presented in section 3.1. This offers a first

impression of the damper’s behavior. These initial insights are expanded by numerical

simulations in section 3.2. To obtain key relationships between the damper behavior

and its parameters, analytical investigations are carried out in section 3.3. Finally, an

assessment of the damper is presented in section 3.4. Works into the characteristics of

this damper are presented in [184, 185]. The minimal model of this damper is based on

a patent from the Schaeffler AG [75, 180].

Figure 3.1: The schematic model of the wedge damper.

3.1 General Damper Description
The wedge damper is attached to the main system, represented by the primary mass

<1 and the primary spring 21. The main system is excited by the harmonic force with

amplitude � and angular frequencyΩ, and it is the damper’s task to improve the system

dynamics. The wedge damper is composed of a secondary mass <2 placed between

two wedge-shaped contact surfaces with the wedge angle 
. The friction coefficient

� describes the dry friction between the secondary mass and the contact surfaces.
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3 The Wedge Damper

Furthermore, the wedges are pressed onto the secondary mass by the secondary spring

22 which has a prestress displacement Δℓ . Due to the damper design, a relative

movement between the primary and secondary masses forces the wedges apart from

each other. This increases the force in the secondary spring and thus the contact forces

between the secondary mass and the wedges. Thus, the contact forces increase with the

absolute value of the relative displacement. In contrast, classical alternatives rely solely

on dry friction, nominally flat surfaces, and constant contact forces.

Due to the nature of dry friction, the dynamics of this system are described by two sets

of equations. When the system slips, there is a relative movement between the masses,

the system has two degrees of freedom, and it is described by the differential equations

<1
¥G1 + 21G1 − �WD = � sinΩC , (3.1)

<2
¥G2 + �WD = 0 . (3.2)

Where G1 and G2 are the position coordinates of the primary and secondary mass, the

dot represents the total derivative with respect to the time C, and �WD is the horizontal

wedge damper force acting on both masses. The wedge damper force is obtained with

the free body diagram presented in Fig. 3.2.

(a) (b)

Figure 3.2: Free body diagram of the wedge contact and secondary mass for: (a) G2 − G1 > 0, ¤G2 − ¤G1 > 0 and

(b) G2 − G1 < 0, ¤G2 − ¤G1 > 0.

The sums of forces resulting from Figs. 3.2a and 3.2b are summarized in two equations.

These are given with the sign-function of the relative displacement and result in

' cos 
 + # sin 
 sign(G2 − G1) −
�WD

2

= 0 , (3.3)

' sin 
 sign(G2 − G1) − # cos 
 + �22
= 0 . (3.4)
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3.1 General Damper Description

Where # and ' are the friction forces in the contact and �22
is the spring force. With

the relation for Coulomb friction ' = �# sign( ¤G2 − ¤G1) and the secondary spring force

�22
= 22(2 tan 
 |G2 − G1 | + Δℓ ), the equations above are solved for the normal contact

force and the wedge damper force. The latter results in

�WD = 222 (2 tan 
 |G2 − G1 | + Δℓ )
tan 
 sgn(G2 − G1) + �sgn( ¤G2 − ¤G1)

1 − � tan 
 sgn(G2 − G1)sgn( ¤G2 − ¤G1)
. (3.5)

In contrast, when the system sticks, there is no relative movement between the masses.

The movement of the sticking system are described by one differential equation

(<1 + <2) ¥G1 + 21G1 = � sinΩC . (3.6)

Since both masses move as one, the system has consequently one degree of freedom

and the eigenfrequency $st =
√
21/(<1 + <2).

Additionally the system dynamics are described by sticking conditions, which expressed

as inequalities. Once these conditions are fulfilled the system transitions from the

slipping to the sticking state, and vice versa if the conditions are broken. Depending

on the system’s transition into sticking, two different sticking conditions are evaluated.

However, regardless of the transition mechanism the relative velocity ¤G2 − ¤G1 = 0 at the

transition. The system sticks either at the middle point between the wedges where the

slope changes abruptly (G2 − G1 = 0) or on the surfaces of two wedges (G2 − G1 ≠ 0). The

dominant transition is deduced later on after a closer analysis of the damper force.

For the first case, sticking at G2 − G1 = 0, the wedge damper force in Eqs. (3.1) and (3.2) is

replaced with the momentary stiction force � and it is calculated to ensure ¤G2 − ¤G1 = 0.

The maximal stiction force �max is given by the limit of �WD as G2 − G1 and ¤G2 − ¤G1

approach 0 from above. This is the maximum stiction force that the damper generates

at G2 − G1 = 0. This procedure results in

� =
<2

<1 + <2

(� sinΩC − 21G1) , (3.7)

�max = lim

G2−G1→0
+

¤G2− ¤G1→0
+

�WD = 222Δℓ
tan 
 + �

1 − � tan 

. (3.8)

|� | =≤ �max , G1 = G2 , and ¤G1 = ¤G2 . (3.9)

In the second case, sticking at G2 − G1 ≠ 0, the stiction is determined by the resulting

contact force of ' and # , which is generated by the necessary stiction force and the

spring force. The sticking condition is fulfilled, when the resulting friction force lies
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within the friction cone given by the friction coefficient �. In this case, the friction force

' is not given by the Coulomb friction and is instead a constraint force. Additionally,

�WD is also replaced by �. Furthermore, Eqs. (3.3) and (3.4) are solved for ' and # and

the sticking conditions result in

' = �22
sin 
 − �

2

cos 
 , (3.10)

'max = �# = �

(
�22

cos 
 + �
2

sin 


)
, (3.11)

|' | < 'max , and ¤G1 = ¤G2 . (3.12)

Preliminary characteristics of the system are derived by evaluating the damper force

while sliding. Due to the sign-function, the force �WD is nonsmooth both on a

displacement and on a velocity level. Thus, the force is highly nonlinear. The

force determines the damper’s behavior during the slip phase and is separated into a

conservative part �WD,c and a dissipative part �WD,d. These forces are given by

�WD,c = �WD(� = 0) = 2 tan 
22

(
2 tan 
(G2 − G1) + Δℓsgn(G2 − G1)

)
, (3.13)

�WD,d = �WD − �WD,c

= 222 (2 tan 
 |G2 − G1 | + Δℓ )
�(1 + tan

2 
)sgn( ¤G2 − ¤G1)
1 − � tan 
 sgn(G2 − G1)sgn( ¤G2 − ¤G1)

. (3.14)

The conservative part of �WD is composed of a spring force proportional to the relative

displacement between the masses and a direction-dependent prestress. The effective

secondary stiffness of the spring force is 22,eff = 422 tan
2 
. The dissipative terms are

(a) (b)

Figure 3.3: Exemplary wedge damper force for (a) vanishing prestress displacement and (b) large prestress

displacement.
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proportional to the amplitude of the relative displacement between the masses, i.e.

�WD,d ∼ �rel. Two qualitative curves of the damper forces are plotted against the relative

displacement Grel = G2− G1 in Fig. 3.3. For a vanishing prestress there is no discontinuity

at Grel = 0 and no sticking at this position. In contrast, a large prestress results in a

proportional discontinuity at Grel = 0 allowing sticking at this point. Discontinuities are

also observed at Grel ≠ 0 due to the change in the sign of the relative velocity, c.f. Eq. (3.5).

However, these discontinuities are not as pronounced as the one in the middle of the

hysteresis. This indicates that sticking at Grel = 0 is the dominant transition mechanism

between sliding and sticking for the investigated parameters.

An approximation for the dissipatedwork of the damper,�
WD,d

is obtained by assuming

a harmonic oscillation with a phase ! = ΩC for the relative coordinate Grel ≈ �rel sin!

and the relative velocity ¤Grel ≈ Ω�rel cos!. An evaluation of the work integral yields

,�
WD,d
≈ −

∫
�WD,d(Grel , ¤Grel)dGrel = −822�(tan 
�2

rel
+Δℓ�rel)

1 + tan
2 


1 − �2
tan

2 

. (3.15)

The dissipated work is proportional to the square value of the relative displacement

amplitude, i.e.,�
WD,d
∼ �2

rel
. This is also the case with viscous damping, and a similar

behavior is expected. Therefore, this vibration reduction mechanism is considered

a pseudo-viscous damper. Compared to the dissipated energy of a viscous damper

(,VD = �3Ω�2

rel
), the dissipated energy in the wedge damper is independent of the

excitation frequency. This is especially advantageous at low frequencies.

Before presenting the numerical and analytical investigations, it is helpful to identify

the stick and slip ranges. While sticking, the system is completely linear and its solution

is known. With this solution, an estimate for the adherence to the stiction condition is

obtained for the dominant stick-slip transition. A solution of the form G1 = � sin! is

plugged into the stiction inequality Eq. (3.9) and a limit amplitude is estimated. The

estimate is calculated with

|� | = <2

<1 + <2

|� sin(ΩC) − 21� sin! | = <2 | ¥G1 | = <2Ω
2�| sin! |,

≤ <2Ω
2� ≤ �max ,

� ≤ �max

<2Ω
2

=
222Δℓ (tan 
 + �)
<2Ω

2(1 − � tan 
) = �L (3.16)

where �L is the limit amplitude of the linear system. Equation (3.16) describes the limit

amplitude for sticking at G2 − G1 = 0 and offers an acceptable approximation of the

transition between the linear and nonlinear ranges.
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3.2 Numerical Investigations
The numerical investigations expand the initial insights into the behavior of the wedge

damper. This section is divided into two parts. First, parameter variations are carried

out. The algorithm described in section 2.1 is implemented to calculate the frequency

response function of the system. The variation of the design parameters leads to initial

insight into the parameters’ effect on the system. In the second part, a stability analysis

of selected frequency response functions is presented. A focus is set on chosen unstable

solutions and Poincaré maps are constructed to characterize the steady-state solutions.

Unless specified otherwise, the standard parameters for the investigations are:

<1 = 1 kg, <2 = 0.1 kg, 21 = 1 N/m, 22 = 0.1 N/m, 
 = 30
◦ ,

Δℓ = 0.01 m, � = 0.01, � = 0.01 N .

The parameter studies of the variations of the secondary spring 22 and the wedge

angle 
 are presented respectively in Figs. 3.4 and 3.5. By comparing these two studies,

similarities in their effect are found. Both parameters have a similar effect as the variation

of the auxiliary spring in a standard vibration absorber. An increase in the stiffness or

the angle increases the first resonance peak while shifting it towards higher frequencies.

The inverse effect is observed at the second resonance peak. The reason for this lies in

the change in the effective secondary stiffness these parameters cause. These parameters

optimize the performance at the resonance peaks or determine the absorption frequency.

As with linear systems, simultaneous optimization of both cannot be achieved.

The variation of the friction coefficient � is presented in Fig. 3.6. This parameter

influences the damping forces �WD,d as well as the breakaway force �max of the damper.

An increase in the friction coefficient raises the damping forces and the dissipated

Figure 3.4: Parameter study variation of the stiffness 22 from 22 = 0.01N/m ( ) to 22 = 0.9N/m ( ).

46



3.2 Numerical Investigations

Figure 3.5: Parameter study variation of the angle 
 from 
 = 5
◦
( ) to 
 = 60

◦
( ).

energy. This leads to an initial decrease of the maximum amplitude for small friction

coefficients, i.e. � � 1. This decrease is observed as long as the breakaway force does

not rise substantially. Large friction coefficients increase the breakaway force and lead

to a system that is more likely to stick. Furthermore, large breakaway forces cause

a higher limit amplitude �L, c.f. Eq. (3.16). This causes a reduction of the sliding

range and two sticking ranges appear at the edges of the frequency response. Thus,

the characteristics of the sticking system become dominant. This causes a shift of the

system’s first resonance peak to the eigenfrequency of the sticking system $st and higher

amplitudes. A transition between the two and one degree of freedom system is observed.

Figure 3.6: Parameter study variation of the friction coefficient � from � = 0.01 ( ) to � = 1 ( ).

Figure 3.7 presents the variation of the prestress displacement Δℓ . Similar to the friction

coefficient variation, a transition from a two to a one degree of freedom system is

observed. The limit amplitude for sticking is increased, and the resonance is shifted

towards $st for increasing prestress displacements. However, a substantial difference

lies in the effect on the system, since an increase in the maximum amplitude is observed.
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Figure 3.7: Parameter study variation of the prestress displacement Δℓ from Δℓ = 0m ( ) to Δℓ = 1m ( ).

Based on the work integral, the influence of Δℓ on the dissipated energy is different.

The prestress displacement increases the dissipated energy associated with the relative

amplitude �rel. In contrast, the aforementioned parameters increase the dissipated

energy associated with the terms proportional to �2

rel
. In consequence, slipping occurs

at higher amplitudeswithout the amplitude reduction observed in the friction coefficient

variation. Furthermore, a softening characteristic in the frequency response function is

observed. Sticking leads to high amplitudes at the resonance frequency $st. Once the

system transitions into slipping, its resonance frequency changes. Two eigenfrequencies

of the slipping system emerge whereas the eigenfrequency of the sticking system

vanishes. The lower eigenfrequency of the slipping system influences the damper’s

dynamics and a softening characteristic develops. The higher the amplitudes the more

the softening tends towards the lower eigenfrequency of the slipping system.

Figure 3.8: Parameter study variation of the force � from � = 0.01N ( ) to � = 0.09N ( ).

The last parameter variation in Fig. 3.8 considers the change in the harmonic force

amplitude � and its effect on the ratio +G1
= �G1

/�. In linear systems, this ratio is

equivalent to the amplification factor. The curves are normalized by the value+0, which
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is the ratio calculated with the standard parameters. As shown in Fig. 3.8 the curves are

almost identical. The first resonance peak shows a minimal decrease with an increase

in excitation force, whereas the second resonance peak increases. Since these changes

are minimal, the vibration amplitudes of the system are amplified by approximately the

same factor. This implies a kind of scalability of the amplitude responses for the chosen

parameters. Nevertheless, exact scalability is observed only in linearmechanical systems

with viscous damping. The scalability is lost with increasing prestress levels. High

prestress displacements cause large discrepancies in the nonlinear ranges for varying

excitation amplitudes. This is due to the displacement’s effect on the limit amplitude.

These changes in the nonlinear range cause nonscalable frequency response functions.

Nonscalable frequency responses as well as the softening effect noted in the prestress

variations are observed in Fig. 3.9. An advantage, however, is that the ratio +G1
does not

increase with the excitation force. Instead, the effect noted at the first resonance peak in

Fig. 3.8 is amplified. Since the amplification factors of the maximum amplitude do not

increase, the system is robust. In contrast, systems with a constant friction force have

unbounded amplitudes if the friction force is not tuned to the excitation, c.f. [53].

Figure 3.9: Parameter study variation of the force � from � = 0.01N ( ) to � = 0.09N ( ) with Δℓ = 1m.

A closer examination of the frequency response function with Δℓ = 1m and the

remaining standard parameters is presented in Fig. 3.10. A stability analysis is carried

out by taking the initial solutions of the harmonic balance method and simulating

the system’s behavior for 1000 additional cycles. The resulting steady-state solution is

compared with the initial periodic solution and the stability is evaluated. Two instability

ranges are observed. In the first instability range on the left of Fig. 3.10 multiple

solutions are observed, whereas in the second instability range they are not. In the

initial instability range, the steady-state solutions drift away from the initial solution and

converge either to the upper solution branch or to a nonperiodic steady-state solution.

The solutions, however, do not converge to the lower solution branch, where a purely

sticking solution is observed. At the second instability range, the steady-state solution
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Figure 3.10: Stability analysis of the frequency response function with Δℓ = 1m.

converges to nonperiodic state solutions. Exemplary solutions from each of these ranges

are marked with 1© and 2© in Fig. 3.10 and are studied in further detail.

To characterize the nonperiodic solutions, time simulations are performed and Poincaré

maps are constructed, see Fig. 3.11. The states of the system are recorded at multiples of

the period ) = 2�/Ω and plotted in the G1 , ¤G1-phase diagram. The Poincaré maps show

the transition from the unstable periodic solution to the stable, steady-state, nonperiodic

solution. The steady-state solution in Fig. 3.11a corresponds to the first instability range

and forms a curve in the phase space. This indicates a quasiperiodic solution. In contrast,

the solution from the second instability range in Fig. 3.11b forms an area-like structure.

This structure, which is neither a line nor a closed area, is a typical feature of chaos.

0

0
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-1

1
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Figure 3.11: (a) Quasiperiodic solution 1© at Ω = 0.9376 rad/s with Δℓ = 1m and the standard parameters.

(b) Chaotic solution 2© at Ω = 0.9507 rad/s with Δℓ = 1m and the standard parameters.

Unstable solutions are found primarily at high prestress levels. However, they are also

found at low prestress levels. A stability analysis for frequency response function of the
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Figure 3.12: (a) Stability analysis of the frequency response function with the standard parameters. (b)

Quasiperiodic solution 1© at Ω = 1.1446 rad/s with the standard parameters.

systemwith the standard parameters as shown in Fig. 3.12a. Unstable periodic solutions

at low prestress levels lead to quasiperiodic solutions. An example of such a solution is

presented in Fig. 3.12b. Since the maximal amplitudes of nonperiodic solutions are in

some cases higher than the calculated periodic motion, these solutions have to be taken

into account when designing such dampers and should be avoided.

3.3 Analytical Investigations
The studies above show the influence of the parameters on the frequency response.

However, they do not offer a deeper insight into the system’s dynamics. Therefore,

analytical investigations are carried out with the averaging method described in

section 2.2. The analytical solution is calculated and verified with the numerical

results. Lastly, the analytical insight is used to optimize the damper parameters.

In this section continuous slip is assumed. The equations of motion during the slip

phase are brought into an adequate form for averaging. First, the equations are

nondimensionalized. Subsequently, a completemodal decoupling for nonlinear systems

is applied. The following transformations are introduced:

<2

<1

= � ,
21

<1

= $2

01
, � = $01C , ¤( ) =

d( )
dC

=
d( )
d�

d�
dC

= $01( )′ , � =
Ω

$01

,

02 =
422 tan

2 


<1$2

01

, �1 =
4�22 tan 


<1$2

01
cos

2 

, �2 =

222Δℓ tan 


<1$2

01

, � 5 =
�

<1$2

01

, � � 1 .

(3.17)
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3 The Wedge Damper

The parameter � tracks the small quantities and is equal to 0.01 for the standard

parameters. This implies small friction coefficients, small prestress displacements,

and small excitation forces. Linearising the wedge damper force with respect to

the friction coefficient and introducing the transformations above yields the coupled

nondimensional equations

G′′
1
+ G1 − 02(G2 − G1) = �

(
5 sin�� + 5WD,lin

)
= � 5WD,lin,1 , (3.18)

�G′′
2
+ 02(G2 − G1) = �

(
− 5WD,lin

)
= � 5WD,lin,2 , (3.19)

5WD,lin = 1 |G2 − G1 |sgn(G′
2
− G′

1
) + 2sgn(G2 − G1) . (3.20)

Equations (3.18)–(3.20) only take into account the terms of O(�) since only a first

order averaging method is applied to the equations. These equations are decoupled

and considered in the vicinity of the corresponding eigenfrequency �01 or �02. This

procedure yields the equations

� ≈ �01 → @′′
1
+ �2

01
@1 = �(A11 5WD,lin,1(@1 , 0) + A21 5WD,lin,2(@1 , 0)) , (3.21)

� ≈ �02 → @′′
2
+ �2

02
@2 = �(A12 5WD,lin,1(0, @2) + A22 5WD,lin,2(0, @2)) . (3.22)

In Eqs. (3.21) and (3.22) A8 9 are the corresponding entries in the decoupling modal matrix

R of the unperturbed system, i.e. � = 0. A Van der Pol transformation of the form

@8 = �8 sin!8 , @′8 = �8�08 cos!8 , !8 = �� + �8 , and ��8 = �08 − � for 8 = {1, 2} is applied.
Furthermore, the resulting equations are averaged over one period of the fast oscillation

variables !1 and !2. The averaged equations result in

�̄′8 = �

(
− 5 A18 sin �̄8

2�08
− 1�̄8 (A18 − A28)2

��08

)
, (3.23)

�̄′8 = �

(
�8 −

cos �̄8 5 A18

2�̄8 �08

+ 2

2 (A11 − A21) sgn (A18 − A28)
� �̄8 �08

)
. (3.24)

Equations (3.23) and (3.24) describe changes in the slow-changing amplitude �̄8 and the

slow-changing phase difference �̄8 of the system. The approximation of the resonance

behavior is approximated by setting �̄8 = −�/2. Although this does not always apply

even for linear systems, it is an acceptable assumption since the system is lightly damped.

This is verified by considering a phase difference of the form �8 = −�/2 + ��8 ,1, where

the term ��8 ,1 represents the slight modification due to light damping. Substituting

this expression in the averaged equations and expanding the trigonometric terms with

a Taylor series yields terms of the magnitude order O(�2) in Eqs. (3.23) and (3.24). In

consequence, the effect of the damping in the phase difference is first noted with an

averaging method of second order. Using the proposed phase difference in Eq. (3.23)
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3.3 Analytical Investigations

yields an expression for the maximum amplitude depending on the excitation force. It

is derived by solving for the stationary solution �̄′
8
= 0 and leads to

�̄8 ,max =
�A18 5

21(A18 − A28)2
=

�A18 cos
2 
�

8�22 tan 
(A18 − A28)2
. (3.25)

This equation confirms the linear relationship between the maximum amplitude and the

amplitude of the excitation force. The pseudo-viscous character of the damper is thus

reinforced. Analogously, solving Eq. (3.24) for the resonance case and the stationary

solution, i.e. �̄′
8
= 0, leads to a backbone curve. This curve defines the relationship

between the maximum amplitude and the resonance frequency. This results in

�̄8 ,max = �
22 |A18 − A28 |
��08(� − �08)

. (3.26)

An analytical solution is derived for the frequency response function in the resonance

regimes from Eqs. (3.23) and (3.24) by eliminating the phase difference �8 for the

stationary solution. This implicit equation is expressed in the original coordinates

with the reconstruction rule presented in section 2.2. The comparison between the

analytical and the numerical solution is shown in Fig. 3.13. The solution approximates

the numerical results with the accuracy of asymptotic methods. The deviations from the

numerical solution are of the order of O(�), which confirms the validity of the solution.

The validity of the backbone curve is also confirmed.
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Figure 3.13: Comparison of the analytical ( ) and the numerical solution ( ∗ ), as well as the backbone

curve ( ). (a) Ω ≈ �01. (b) Ω ≈ �02.

The analytic solution assumes continuous slip and thus cannot account for sticking.

Consequently, the solution is only applied within the valid parameter range, and the
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3 The Wedge Damper

corresponding parameters remain small, i.e. O(�). Nevertheless, the added value of the

analytical solution lies in its ability to effectively optimize design functions within its

limits. A targeted optimization of the wedge angle 
 for a broadband damper design is

performed. To this end, an optimization function is defined as the sum of the squares

of the maximum amplitudes of the main mass at the eigenfrequencies. This leads to

6opt(
) = �2

G1 ,max
(
, �01(
)) + �2

G1 ,max
(
, �02(
)) . (3.27)

Equation (3.27) is plotted for the standard parameters in the semi-logarithmic plot in

Fig. 3.14a. To ensure the validity of the analytical solution, the wedge angle is limited

to 
 ∈ [0◦ , 45
◦]. A minimum of the optimization function is calculated to determine

the optimal angle 
opt = 25.33
◦
. The resulting frequency response is compared to the

response with the standard parameters, see Fig. 3.14b. As with Den Hartog’s equal

peak method, the optimal broadband solution is found when both structural resonances

have the same amplitude. Additionally, it achieves an amplitude reduction of 72.5%.

(a) (b)

Figure 3.14: (a) Optimization function 6opt(
). (b) Comparison of the optimized frequency response function

( ) and the response for the standard parameters ( ).

3.4 Damper Assessment
The wedge damper is a realization of a pseudo-viscous damper via dry friction. The

dissipated energy of the damper is proportional to the square value of the relative

vibration amplitude. This leads to the scalability of the amplitude response for certain

parameters. A difference between the wedge damper and the conventional tuned mass

damper lies in the proportionality of the dissipated energy. The dissipated energy of

the tuned mass damper is proportional to the excitation frequency, whereas that of the
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3.4 Damper Assessment

wedge damper is not. This is a useful quality at low frequencies. The damper also has

the practical advantage that no sealing is needed, which reduces manufacturing costs.

Furthermore, the damper is less affected by external changes in the environment in

contrast to its viscous counterpart. The damper is in consequence noted as an effective

alternative to viscous damping.

The advantages of thewedge damper come at the price of a higher degree of nonlinearity.

This eventually leads to quasiperiodic and chaotic solutions, which are detrimental to

the system’s behavior. Such regimes should be avoided when designing the damper.

The next natural step in the betterment of this damper is the investigation of alternative

geometries, such are considered in chapter 4. The extension of this damper into a 3D

configuration opens the possibility of independent damping in different directions. An

ellipsoidal contact surface with different slopes in the intended damping directions

provides a starting point for such investigations.
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4 The Tuned Wedge Damper

The tuned wedge damper, see Fig. 4.1, retains the advantages of the wedge damper

and addresses its main disadvantage, the coupling of damping and absorption. To this

end, the absorption and damping functions are separated by introducing an additional

spring and modifying the contact surface design. To study this device, first, the general

characteristics of the damper are investigated in section 4.1. Second, the numerical

investigations expand the initial insight in section 4.2 by determining the influence of

parameters on the system’s frequency response function. Stability analyses of selected

solutions are also presented. Third, the investigation into thewedge damper is deepened

with the analytical consideration of the system in section 4.3. As with the wedge damper,

the analytical study leads to relationships between the damper’s parameters and key

dynamic features, e.g. maximal amplitude. These analytical and numerical insights are

combined in section 4.4 where an optimized tuned wedge damper is presented. The

chapter is closed in section 4.5 with the damper assessment.

Figure 4.1: The schematic model of the tuned wedge damper.

4.1 General Damper Description
The tuned wedge damper also aims to improve the dynamics of the main system, which

is represented by the main mass <1, the main spring 21, and the excitation � sinΩC. In
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4 The Tuned Wedge Damper

contrast to the wedge damper, the tuned wedge damper implements two springs and

a different contact surface profile. In this way, the damper separates two functions,

vibration absorption and vibration damping. The secondary spring 22 is attached to the

secondary mass <2 and is responsible for vibration absorption. The vibration damping

is handled by the tertiary spring 23 and the contact surfaces. The third spring presses

the contact surfaces onto the secondary mass and thus generates a dry friction contact.

If additional damping is desired, the third spring is prestressed by the displacement

Δℓ . The contact surface profile is described by three straight segments and two curved

connections. The middle segment has a distance of 2Δ1 and is connected to the outer

segments with circular segments of radius A. The connections to the outer segments are

designed so that the transitions are continuous and smooth. The outer segments are

oriented at the wedge angle 
. The form of the varying contact geometry is described

by the function H, which is specified later on.

The tuned wedge damper is similar to the wedge damper in chapter 3. Both dampers

press the secondary mass between varying contact surfaces. Both generate a friction

force that is proportional to the relative displacement between themasses. For 22 = 0 and

Δ1 = 0 thewedge damper results as a special case of the tunedwedge damper. Therefore,

the tuned wedge damper is an extension of the wedge damper. It is also a more versatile

damper since it has more design parameters. Furthermore, its basic working principle

is different from the wedge damper. When the oscillations are small, the secondary

mass oscillates within the 2Δ1-range. The contact surfaces are not pressed apart, and

there is low damping. No damping is achieved in the inner segment for a vanishing

prestress displacement (Δℓ = 0). If the oscillations are larger, the secondary mass

oscillates partly outside the 2Δ1-range, and the contact surfaces are pressed apart. This

leads to the aforementioned varying contact forces. Moreover, additional damping is

introduced in a targetedmanner, when the oscillations are critical. The basic principle of

the tunedwedge damper is thus based on selective dampingwith varying contact forces.

The dynamics of the system are described by two differential equations while sliding

and by one differential equation while sticking. For the sliding case, these are given by

<1
¥G1 + 21G1 − �TWD = � sinΩC , (4.1)

<2
¥G2 + �TWD = 0 . (4.2)

Again G1 and G2 represent the position coordinates of the primary and secondary mass,

the dot represents the total derivative with respect to the time C, and �TWD is the

horizontal force of the tuned wedge damper. The force of the tuned wedge damper is

obtained with the free body diagram presented in Fig. 4.2.
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4.1 General Damper Description

(a) (b)

Figure 4.2: Free body diagram of the tuned wedge damper contact forces for: (a) G2 − G1 > 0, ¤G2 − ¤G1 > 0 and

(b) G2 − G1 < 0, ¤G2 − ¤G1 > 0.

In contrast to the equations in chapter 3, the momentary angle of the contact force

changes depending on the relative displacement Grel = G2 − G1. To take all segments

into account in a general way, the momentary contact angle 
̃ is introduced. It is equal

to ±
 on the outer segments, zero in the middle segment, and changes from zero to 


in the transitions segments. A general expression for the sum of forces is generated by

expressing the equations with the tangent of the momentary contact angle. Therefore,

the derivative of the contact geometry function with respect to the relative displacement

HG = tan(
̃) is used. The function HG includes both cases in Fig. 4.2 and thus sum of

forces for the free body diagrams results in

' + #HG −
�WD

2

√
1 + H2

G = 0 , (4.3)

'HG − # + �23

√
1 + H2

G = 0 , (4.4)

with ' = �# sign( ¤G2 − ¤G1) , and �23
= 23(2H + Δℓ ) . (4.5)

Since the term

√
1 + H2

G = (cos(
̃))−1
is strictly positive, it limits the considered angles to

the range 
 ∈ [−�/2,�/2]. However, since the relevant range for practical applications

is between 0 and �/2, this is not a meaningful restriction. While sliding the relationship

between the normal force # and the friction force ' is given by Coulomb friction and

the friction coefficient �, c.f. Eq. (4.5). Solving the equations above yields the force of

the tuned wedge damper in the compact form

�TWD = 22(G2 − G1) + 223 (2H + Δℓ )
HG + �sgn( ¤G2 − ¤G1)

1 − �HGsgn( ¤G2 − ¤G1)
. (4.6)
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4 The Tuned Wedge Damper

(a) (b)

Figure 4.3: (a) Contact function geometry H (b) Derivative of the contact function geometry HG with respect to

the relative displacement G
rel
.

The transition segments are designed to ensure smooth transitions between the straight

segments. To minimize the number of parameters in the design, the transition segments

are designed as circular segments. This design has the radius A as its single parameter.

Furthermore, this radius is chosen small (A � 1), so the dynamics of the system are

mainly defined by the straight segments. The contact surface geometry H and its

derivative HG result in

H =



− tan 
(G2 − G1 + Δ2) + A(1 − cos 
), G2 − G1 < −Δ2

A −
√
A2 − (G2 − G1 + Δ1)2 , −Δ2 < G2 − G1 < −Δ1

0, |G2 − G1 | < Δ1

A −
√
A2 − (G2 − G1 − Δ1)2 , Δ1 < G2 − G1 < Δ2

tan 
(G2 − G1 − Δ2) + A(1 − cos 
), Δ2 < G2 − G1

, (4.7)

HG =



− tan 
, G2 − G1 < −Δ2

G2 − G1 + Δ1√
A2 − (G2 − G1 + Δ1)2

, −Δ2 < G2 − G1 < −Δ1

0, |G2 − G1 | < Δ1

G2 − G1 − Δ1√
A2 − (G2 − G1 − Δ1)2

, Δ1 < G2 − G1 < Δ2

tan 
, Δ2 < G2 − G1

, (4.8)

with Δ2 = Δ1 + A sin 
 . (4.9)

The equation of motion while sticking is identical to the sticking case in chapter 3 and,

thus, has the eigenfrequency $st =
√
21/(<1 + <2). This equation is given by

(<1 + <2) ¥G1 + 21G1 = � sinΩC . (4.10)
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Since the transitions in this system are smooth and the masses are modeled as particles,

there is always a defined contact point. Consequently, there is only one sticking

condition. The damper force is replaced in the equations of motion with the relation

�TWD = 22(G2 − G1) − �, where � describes the stiction force which prevents relative

movement. The fulfillment conditions for sticking are described by

� =
<2

<1 + <2

(� sinΩC − 21G1) + 22(G2 − G1) , (4.11)

' = -

2�23
HG + �

2

√
1 + H2

G

and 'max = �# = �
2�23
− �HG

2

√
1 + H2

G

, (4.12)

|' | < 'max , and ¤G1 = ¤G2 . (4.13)

Accordingly, the transition into sliding is thus determined by the failure to comply with

the equations above.

The force of the tuned wedge damper is also separated into a conservative part �TWD,c

and a dissipative part �TWD,d. The separation results in

�TWD,c = �TWD(� = 0) = 22(G2 − G1) + 223(2H + Δℓ )HG , (4.14)

�TWD,d = �TWD − �TWD,c = 223(2H + Δℓ )
�(1 + H2

G) sign( ¤G2 − ¤G1)
1 − �HG sign( ¤G2 − ¤G1)

. (4.15)

The effective secondary stiffness of thedamper is definedby the conservative force �TWD,c.

In the resonance regime, large amplitudes lead to oscillations that are mainly influenced

by the angled segments. The effective secondary stiffness at the resonances is thus given

by 22,eff,res = 22 + 423 tan
2 
. In contrast, when the oscillations are in the vicinity of the

absorption frequency, the relative displacement is within the 2Δ1-range. The angled

segments do not influence on the oscillation and the effective secondary stiffness is

given by 22,eff,abs = 22. The structure of the dissipative force is similar to that of the

wedge damper. The force is proportional to the relative displacement, i.e. �TWD,d ∼ �rel.

Figure 4.4 shows qualitative curves for the tuned wedge damper force and its individual

conservative and dissipative parts. The damper forces for Δℓ = 0 are presented in

Fig. 4.4a. This parameter choice leads to a dissipation-free segment in the 2Δ1-range.

This is especially useful for absorption. Large prestress displacements lead to the loss

of the low dissipation range, see Fig. 4.4b. Furthermore, due to the smooth transitions,

the large jumps observed with the wedge damper in chapter 3 are not seen in Fig. 4.4b.

This implies that, in comparison to the wedge damper, higher prestress displacements

are necessary at Grel = 0 for the tuned wedge damper to stick. Nevertheless, the tuned

wedge damper sticks at the angled segments or in the horizontal segment. However,
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4 The Tuned Wedge Damper

(a) (b)

Figure 4.4: Exemplary tuned wedge damper forces for (a) vanishing prestress displacement and (b) large

prestress displacement.

sticking in the horizontal segment is the dominant stick-slip transition range. In the

middle segment, the full force of the spring force generates the normal force, and the

necessary stiction force � defines the contact force '. Since � is an oscillating force,

'max is maximized in the horizontal segment. This is verified by setting H = 0 and

HG = 0 in Eqs. (4.11)–(4.13).

The dissipative work of the damper gives insight into the robustness of the damper

and is calculated as with the wedge damper. A harmonic oscillation is assumed for the

relative coordinate, i.e. Grel = �rel sin! and ¤Grel = �relΩ cos! with ! = ΩC. The work

integral is evaluated for two cases. First, oscillations in the 2Δ1-range are considered,

which leads to,�
TWD,d ,Δ1

. Subsequently, oscillations in which the secondary mass partly

enters the outer segments are handled and lead to the dissipated energy,�
TWD,d

. For

small oscillation, the work integral yields

,�
TWD,d ,Δ1

≈ −
∫

�TWD,d(Grel , ¤Grel)dGrel = −823Δℓ�� . (4.16)

From Eq. (4.16) the dissipation for small oscillations is dependent on the prestress

displacement. If this value is null, there is no dissipation in this segment. Furthermore,

the energy dissipated in this segment is only proportional to the value of the relative

amplitude, i.e.,�
TWD,d ,Δ1

∼ �rel. This structure leads to amplitudes larger than Δ1 if the

presstress is not adjusted to the excitation amplitude �, c.f. [187]. Since in general Δℓ is

not adjusted for �, the relative amplitudes will in most cases be larger than Δ1. This is

especially true in the resonance regimes. To simplify the calculations of the dissipated

energy for the second case, the radius A of the transitions segments is set to null. This
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is not a strong restriction, since the transition segments are small and only functions to

ensure smooth transitions. Only the straight segments are considered and the integral

is evaluated for only for these segments. The work integral yields

,�
TWD,d

≈ −
∫

�TWD,d(Grel , ¤Grel)dGrel ,

,�
TWD,d

≈ − 8�23

1 + tan
2 


1 − �2
tan

2 

(tan 
 �2

rel
+ Δℓ�rel)

+ 8�23

1 + tan
2 


1 − �2
tan

2 


(
2�rel + Δℓ sin 
 cos 
(1 + �2) − Δ1

)
tan 
Δ1 .

(4.17)

The first part of Eq. (4.17) is identical to the dissipated work of the wedge damper. They

are in part proportional to the square value of the relative displacement amplitude,

i.e.,�
TWD,d

∼ �2

rel
. This ensures the damper’s robustness with respect to the excitation

amplitude. The second term is in part proportional to the distance Δ1 and in part to its

square valueΔ2

1
. IfΔ1 is set to zero the dissipated energy of the damper is identical to that

of the wedge damper. The Δ1-terms reduce the dissipated energy. However, since there

are dissipative terms are proportional to the square value of the relative displacement

and independent of Δ2

1
, the reduction does not affect the damper’s robustness.

The considered dampers have similar characteristics in the resonance regimes. With

dissipated energy proportional to the square value of the relative amplitude both

dampers are robust against large oscillations. Both dampers also have a dissipated

energy independent of the excitation frequency. This is advantageous at low frequencies

and does not introduce exceedingly high damping at high frequencies. The dampers

differ for small oscillations since the tuned wedge damper exhibits no dissipated energy

in this regime for a vanishing Δℓ value.

The transition between sticking and sliding is also approximated. To this end, sticking

is assumed as well as a harmonic oscillation of the main mass, i.e. G1 = � sin!. Since

the stick-slip transition occurs mainly in the horizontal segment, H and HG are set to zero.

The approximation for the adherence to the sticking conditions results in

|'(H = 0, HG = 0)| = |� |
2

=
|<2
¥G1 + 22Grel |

2

,

'max(H = 0, HG = 0) = �#(H = 0, HG = 0) = ��23
= �23Δℓ .

|'(H = 0, HG = 0)| = |<2
¥G1 + 22Grel |

2

≤ <2 | ¥G1 | + 22 |Grel |
2

=
<2Ω

2�| sin! | + 22 |Grel |
2

≤ <2Ω
2� + 22 |Grel |

2

≤ �#(H = 0, HG = 0) = �23Δℓ .
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Solving the last inequality for the amplitude � yields the estimate

� ≤ 2�23Δℓ − 22 |Grel |
<2Ω

2

= �L . (4.18)

Since the triangle inequality is used, Eq. (4.18) is a conservative estimate. Consequently,

all amplitudes below the limit curve �! are of the linear system, whereas amplitudes

well above the limit curve are of the nonlinear system. Although amplitudes slightly

above the limit curve may still be linear.

4.2 Numerical Investigations
The numerical investigations expand the initial insight of the tuned wedge damper.

This section is divided into two parts. This first one considers parameter variations

and their effect on the frequency response function. The second part of this section

focuses on selected frequency responses. Stability analyses are carried out, and Poincaré

maps are constructed. The standard parameters are chosen with a vanishing prestress

displacement, to focus on the decoupling of absorption and damping characteristics of

the damper. Unless mentioned otherwise, the standard parameters of the tuned wedge

damper are

<1 = 1 kg, <2 = 0.1 kg, 21 = 1 N/m, 22 = 0.1 N/m, 23 = 0.01 N/m, 
 = 20
◦ ,

Δℓ = 0 m, Δ1 = 0.1 m, A = 0.01 m, � = 0.1, � = 0.01 N .

The variations of the tertiary stiffness 23 and the outer segment angle 
 are considered

first. The effects of these parameters are similar to each other and are presented in

Figs. 4.5 and 4.6. These parameters influence both the amplitude and the position of the

Figure 4.5: Parameter study variation of the stiffness 23 from 23 = 0.01N/m ( ) to 23 = 0.2N/m ( ).
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Figure 4.6: Parameter study variation of the stiffness 
 from 
 = 0
◦
( ) to 
 = 60

◦
( ).

peaks. The absorption frequency, however, remains unaffected. The influence of these

parameters is also smaller in comparison to chapter 3. This is due to the structure of

the system. Since these parameters influence the effective secondary stiffness for large

oscillations andnot at the absorption frequency, their influence is limited to the resonance

regimes. Furthermore, these parameters modify the effective secondary stiffness in the

resonance only partly, since this stiffness is also determined by the secondary spring

22. The increase in the effective secondary stiffness caused by these parameters leads to

higher eigenfrequencies. Additionally, optimal values for the stiffness 23 and the angle


 are noted for the peak of the first resonance frequency. In contrast, the amplitudes of

the second resonance peak are reduced with increasing values of 23 and 
.

The variation of the parameter Δ1, which determines the length of the horizontal

segment, is presented in Fig. 4.7. An increase of the Δ1-value leads to higher amplitudes

at both peaks. The increase of the resonance amplitudes is caused by the decrease

Figure 4.7: Parameter study variation of the Δ1-range from Δ1 = 0.001m ( ) to Δ1 = 1m ( ).
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in dissipated energy due to the Δ1-terms, c.f. Eq. (4.17). Furthermore, if the Δ1-value

is increased enough frequency ranges with multiple solutions are observed. At low

vibration amplitudes only the stiffness 22,eff,abs = 22 is active, whereas for exceedingly

high oscillations the stiffness is approximately given by 22,eff,res = 22 + 423 tan
2 
. This

stiffening in combinationwith high amplitudes leads to a rangewith coexisting solutions.

Additionally, the location of the peaks shifts towards lower frequencies. An increase of

the horizontal segment’s length leads to a larger range where only the stiffness 22,eff,abs

is dominant. Because of this 22,eff,res is less active and the system’s stiffness is reduced in

comparison to lower Δ1-values. In addition, a positive effect is noted at the absorption

frequency. For longer horizontal segments lower absorption amplitudes are noted.

Figure 4.8: Parameter study variation of the friction coefficient � from � = 0.01 ( ) to � = 1 ( ).

Figure 4.8 depicts the variations of the friction coefficient �. The decoupling of damping

and absorption is observed. An increase of the friction coefficient leads to lower

resonance peaks while the absorption remains unaffected. This is caused by the

selective damping introduced by the damper. Small vibration amplitudes oscillate

within the horizontal segment, thus little to no damping is introduced. The damper

acts as a vibration absorber and is able to counter the vibrations of the main system. In

the resonance regime, where the vibrations are larger, the angled segments come into

play and introduce damping. This behavior is observed at low prestress levels, where

minimal damping is introduced in the horizontal segment. If the prestress is increased,

the decoupling effect is impaired, see Fig. 4.9. In this case high friction coefficients

introduce excessive damping and the decoupling and absorption are lost. A transition

into a one degree of freedom system is observed. In contrast to the wedge damper, the

shift towards the sticking frequency is less pronounced. The resonance of the sticking

system remains in the vicinity of the first eigenfrequency for the chosen parameters.

The variations of the prestress displacement Δℓ are presented in Fig. 4.10. An increase

in this parameter leads to an increase in the sticking ability of the system. An increase
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4.2 Numerical Investigations

Figure 4.9: Parameter study variation of the friction coefficient � from � = 0.01 ( ) to � = 1 ( ) with

Δℓ = 0.01m.

also leads to lower amplitudes since the dissipated energy increases. However, if

the prestress is set high, the system sticks excessively and less energy is dissipated.

Therefore, for high prestress displacements the resonance amplitudes rise again. Both

eigenfrequencies vanish and the system tends to the resonance frequency of the sticking

system. Like the wedge damper, a softening effect is observed. This again occurs due to

the change in eigenfrequencies caused by the transition from sticking to sliding. Once

the system slips, the sticking eigenfrequency vanishes, and the eigenfrequencies of the

two degrees of freedom system emerge. The system then tends towards the slipping

system’s first eigenfrequency and a softening effect is observed. In contrast to the wedge

damper, the amplitudes do not rise at first. This implies that the transition point from

sticking to sliding is better tuned to its dissipative capabilities than the simple wedge

damper. Lastly, the increase of the prestress displacement introduces dissipation in the

horizontal segment. Thus no absorption is observed for high Δℓ -values.

Figure 4.10: Parameter study variation of the prestress displacement Δℓ from Δℓ = 0.001m ( ) to Δℓ = 10m

( ).
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Figure 4.11: Parameter study variation of the force � from � = 0.01N ( ) to � = 1N ( ).

The last parameter variations focus on the effect of the excitation on the ratio+G1
= �G1

/�.
The ratio +G1

is normalized by the value +0 which is the value of +G1
for the standard

parameters. In Fig. 4.11 the curves lie nearly over each other and themaximumdifference

between the curve peaks is of 4.23% with respect to the standard parameters. Thus, the

system shows an almost scalable response for the standard parameters. This confirms

the damper’s robustness with respect to the excitation. The ratio +G1
does not increase

indefinitely as is the case with friction dampers that deliver a constant friction force. In

Fig. 4.12, a similar behavior as with the wedge damper is observed for a high prestress

value. The scalability of the frequency response function is lost. In contrast to the

wedge damper, the amplification factor rises. However, not unbounded as is the case

with conventional friction dampers. Instead a saturation is observed as the system

tends towards a two degree of freedom system. The saturation is due to the decreasing

influence of the horizontal segment. For high excitation forces the dissipation in the

2Δ1-range is nearly irrelevant, whereas for low excitation forces it is the dominant

dissipation mechanism.

Figure 4.12: Parameter study variation of the force � from � = 0.01N ( ) to � = 1N ( ) with Δℓ = 1m.
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(a) (b)

Figure 4.13: Frequency response function for Δℓ = 0.6m for: (a) Ω ∈ [0.5, 1.5] and (b) Ω ∈ [1.2, 1.3].

The rest of the numerical investigations focuses, in an exemplarymanner, on the system’s

solutionwithΔℓ = 0.6m. In addition to the softening behavior at the first eigenfrequency,

see Fig. 4.13a, at the second eigenfrequency the solution folds three times, appears to

cross itself, and folds again, see Fig. 4.13b. To further examine this behavior, additional

information is considered. To this end, the phase difference �G1
of the oscillation with

respect to the excitation is taken into account. Since the system is nonlinear, the phase

difference is not necessarily constant over an oscillation period. Therefore, a reference

point for the phase different is chosen. For the sake of simplicity, the phase difference

at C = 0 is considered. However, any other time point can be chosen, as long as the

reference point remains constant for all the solutions. Assuming an oscillation of the

form G(C) = �G1
sin(ΩC + �G1

(C)) and ¤G(C) = � ¤G1
cos(ΩC + �G1

(C)), the phase difference is
calculated with

�G1
(C = 0) = arctan

(
G(C = 0)/�G1

¤G(C = 0)/� ¤G1

)
. (4.19)

A similar approach was presented by Sokolov and Babitsky concerning a system with a

cubic stiffness [159]. The nature of the apparent intersection becomes clear in Fig. 4.14a.

In the 3D perspective, no intersection is observed. The crossing points in Fig. 4.13b are

equal in amplitude and frequency, however, they differ in phase difference. Instead,

these intersections are caused by four bends and the two-dimensional projection of the

3D curve. Furthermore, two projections are derived from Fig. 4.14a and are presented

in Figs. 4.14b and 4.14c. The projection in Fig. 4.14b presents the phase difference �G1

of the main mass at C = 0 with respect to the excitation frequency. The outer ranges of

theΩ-�G1
-curve are similar to a linear system since it starts at 0 and ends at �. However,

it differs in its transition due to the multiple bends caused by the nonlinearities in the

resonance regimes. The ranges with coexisting solutions for a single frequency are also
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4 The Tuned Wedge Damper

observed. Analogously, in Fig. 4.14b the crossing is a result of the 2D projection of the 3D

curve. Figure 4.14c relates the amplitude and phase difference of the coordinate G1. It is

noted that themaximumamplitude occurs approximately at−�/2. This corroborates the
assumptions for the subsequent analytical investigations at the resonance in section 4.3.

(a)

1.5

(b) (c)

Figure 4.14: Response function for Δℓ = 0.6m for: (a) Ω v.s. �G
1
v.s. �G

1
, (b) Ω v.s. �G

1
, and (c) �G

1
v.s. �G

1
.

The stability investigations are carried out by simulating 1000 additional cycles starting

from the calculated solution. If the solution diverges from the calculated solution it is

considered unstable. Otherwise it is considered stable. The results of these simulations

are shown in Fig. 4.15. Four instability ranges are noted. The first occurs in the softening

region with multiple solutions of the first eigenfrequency. The second instability range

is found in between both eigenfrequencies. The third and fourth ranges occur due to

the bends in the vicinity of the second eigenfrequency. Exemplary solutions from each

of these ranges are marked with 1©, 2©, 3©, and 4© and are investigated further in detail.

For the chosen unstable solutions Poincaré maps are constructed. The maps are

constructed by recording the states at subsequent time intervals of the excitation period

) = 2�/Ω. The results are presented in Fig. 4.16. The first unstable solution in Fig. 4.16a
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(a)

(b) (c)

Figure 4.15: Stability analysis of the frequency response function with Δℓ = 0.6m: (a) 3D-perspective, (b)

2D-perspective, and (c) 2D-perspective zoom of the second eigenfrequency.

converges to the periodic solution of the upper branch. As with the wedge damper,

the solutions in this instability range does not converge to the sticking solution of the

lower branch. Its Poincaré map is reduced to a curved segment which shows the

transient behavior from the unstable to the sable solution. The stable periodic solution

is reduced to a single point in the Poincaré map. The solution of the second instability

range is shown in Fig. 4.16b and converges to a quasiperiodic solution. This is noted

by the closed curve in the Poincaré map. The chosen quasiperiodic solution is more

involved than the quasiperiodic solutions of the wedge damper and crosses itself on two

occasions. However, not all solutions in this instability range converge to quasiperiodic

solutions with intersections. The last solutions in the third and fourth instability ranges

are presented in Figs. 4.16c and 4.16d present the same behavior as the first solution. The

solutions start from an unstable periodic solution, converge to a stable periodic solution,

and do not stick. Their Poincaré maps are, therefore, reduced to a curve. Throughout

the instability ranges no chaotic solutions were observed.
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(a) (b)

(c) (d)

Figure 4.16: Poincaré maps of the unstable solutions at different frequencies: (a) 1© Ω = 0.865 rad/s (b) 2©
Ω = 1.196 rad/s, (c) 3© Ω = 1.209 rad/s, and (d) 4© Ω = 1.264 rad/s.

4.3 Analytical Investigations
The understanding of the tuned wedge damper dynamics is further expanded via the

analytical methods presented in section 2.2. To this end, continuous slip is assumed,

and only the equations of motion while sliding are considered. First, the equations are

nondimensionalized. Second, the equations are brought in standard form for averaging

with a modal transformation and a modal decoupling. Once the equations are in

proper form, the averaging method is applied and the validity of the solution is verified

by a comparison with the numerical solution. Furthermore, relationships between

the system’s parameters and key dynamic features are derived. These include the

maximum amplitude depending on the system parameters and the excitation amplitude.

Additionally, an expression for the system’s backbone curve is also derived. These

relationships are later used to optimize the system’s frequency response.
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To nondimensionalize the system’s equations of motion the following transformations

are introduced

<2

<1

= � ,
21

<1

= $2

01
, � = $01C , ¤( ) =

d( )
dC

=
d( )
d�

d�
dC

= $01( )′ , � =
Ω

$01

,

?2 =
22

21

, �0 =
423

<1$2

01

, �1 =
223Δℓ

<1$2

01

, �2 =
423�

<1$2

01

, �3 =
223Δℓ�

<1$2

01

,

� 5 =
�

<1$2

01

, A = O(�) , � � 1 .

(4.20)

The parameter � tracks the small quantities of the system. This implies a soft tertiary

spring and small excitation forces. Additionally, the transition radius is also of the

magnitude order �. In contrast, the friction coefficient is also small, however, not of

the magnitude order �. This allows a linearisation of the damper force with respect

to the friction coefficient. The equations with the linearised force are given with the

transformations above and result in

G′′
1
+ G1 − ?2(G2 − G1) = �( 5 sin�� + 5TWD,lin) = � 5TWD,lin,1 , (4.21)

�G′′
2
+ ?2(G2 − G1) = −� 5TWD,lin = � 5TWD,lin,2 , (4.22)

5TWD,lin = 0HHG + 1HG + 2H(H2

G + 1)sgn(G′
2
− G′

1
) + 3(H2

G + 1)sgn(G′
2
− G′

1
) . (4.23)

In order to accurately approximate the system at its resonance frequency, the stiffness

caused by the angled segments is added to both sides of the equations. The introduction

of these terms provides a more accurate description of the underlying linear system at

the resonance. The modified equations are given by

G′′
1
+ G1 − ?2(G2 − G1) − 40 tan

2 
(G2 − G1)
= �( 5 sin�� + 5̃TWD,lin) = � 5̃TWD,lin,1 ,

(4.24)

�G′′
2
+ ?2(G2 − G1) + 40 tan

2 
(G2 − G1) = −� 5̃TWD,lin = � 5̃TWD,lin,2 , (4.25)

5̃TWD,lin =0HHG + 1HG + 2H(H2

G + 1)sgn(G′
2
− G′

1
) + 3(H2

G + 1)sgn(G′
2
− G′

1
)

− 40 tan
2 
(G2 − G1) .

(4.26)

A modal transformation is applied to Eqs. (4.24) and (4.25). In addition, only the

correspondingmodal coordinate is considered in the vicinity of the eigenfrequencies �01

and �02. Again the values A8 9 correspond to the entries of the decoupling modal matrix

R of the unperturbed system, i.e. � = 0. The decoupling results in equations of the form

� ≈ �01 → @′′
1
+ �2

01
@1 = �(A11 5̃TWD,lin,1(@1 , 0) + A21 5̃TWD,lin,2(@1 , 0)) , (4.27)

� ≈ �02 → @′′
2
+ �2

02
@2 = �(A12 5̃TWD,lin,1(0, @2) + A22 5̃TWD,lin,2(0, @2)) . (4.28)
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Applying a Van der Pol transformation of the form @8 = �8 sin!8 , @′8 = �8�08 cos!8 ,

!8 = ��+�8 , and ��8 = �08−� for 8 = {1, 2}, the equations are brought into standard form

and subsequently averaged. The averaged equations for the slowly varying amplitudes

�̄8 and the slow varying phase difference �̄8 are given by

�̄′8 = �

(
− A18 5 sin �̄8

2�08
±

42 tan 

(
�̄8 (A18 − A28) ± Δ1

)
2

sgn(A18 − A28)
� cos

2 
�̄8�08

∓
43

(
�̄8(A18 − A28) ± Δ1 sin

2 

)

sgn(A18 − A28)
� cos

2 
�̄8�08

)
,

(4.29)

�̄′8 = �

(
�8 −

A18 5 cos �̄8

2�̄8�08

± 4

0 tan
2 
(A18 − A28)2
�08�

arcsin

(
Δ1

(A18 − A28)�̄8

)
± 4 tan 
(0Δ1 tan 
 − 1)

√
(A18 − A28)2�̄2

8
− Δ2

1

�08�̄
2

8
�

)
.

(4.30)

For more details regarding the explicit integration of the nonlinear piecewise terms of

the tuned wedge damper force, the reader is referred to appendix A. Equations (4.29)

and (4.30) contain plus-or-minus signs as well as minus-or-plus signs. The upper signs

correspond to the first modal coordinate, whereas the lower signs correspond to the

second one. The equations above are only applicable if the relative amplitude is so large

that the outer segments influence the dynamics of the system, i.e. �rel > Δ1 + A sin 
.

Additionally, the existence conditions placed by the arcsin-term and the square root

must be fulfilled. To obtain the stationary solution, the right hand sides of Eqs. (4.29)

and (4.30) are equated to zero, i.e. �̄′
8
= 0 and �̄′

8
= 0. Solving these equations yields the

system’s response in the resonance regime. If the behavior at the resonance is sought,

the phase difference �̄8 = −�/2 is additionally plugged into the resulting equations, c.f.

chapter 3. Thus, from Eq. (4.29) a relationship between the maximal amplitude and the

excitation force is obtained. This relation is given by

�̄8 ,max =
1

2Θ1

(
� 5 A18 + Θ2 +

√
�2 5 2A2

18
+ 2Θ2�A18 5 + 23Θ3 + 32Θ4

)
(4.31)

with

Θ1 = ∓16(tan
2 
 + 1) tan 
 |A18 − A28 |(A18 − A28) ,

Θ2 = 8(tan
2 
 + 1)|A18 − A28 |(22Δ1 tan 
 − 3) ,

Θ3 = −256Δ1(A18 − A28)2 tan 
(tan
2 
 + 1) ,

Θ4 = 64(A18 − A28)2(tan
2 
 + 1)2 .
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In Eq. (4.31) the value of the maximum amplitude is mainly determined by the linear

terms in 5 . This confirms the robustness of thedamper, i.e. the scalability of the frequency

response function derived from Fig. 4.11. Additionally, the amplitude is inversely

proportional to 2, i.e. inversely proportional to the friction coefficient �. Therefore,

an increase in the friction coefficient leads to lower maximum amplitudes provided

the parameters are chosen within the validity range of the asymptotic solution. The

backbone curve of the system, the maximum amplitude dependent on the resonance

frequency, is obtained in an implicit manner by an analogous approach with Eq. (4.30).

This implicit equation is given by

0 =
�08 − �

�
± 4

0 tan
2 
(A18 − A28)2
�08�

arcsin

(
Δ1

(A18 − A28)�̄8 ,max

)
± 4 tan 
(0Δ1 tan 
 − 1)

√
(A18 − A28)2�̄2

8 ,max
− Δ2

1

�08�̄
2

8 ,max
�

.

(4.32)

The analytical solution for the response function is verified by the numerical solution. To

this end, an implicit equation for the response is derived by considering the stationary

solution and eliminating �8 . This implicit equation is then expressed in the original

coordinates. A comparison for the standard parameters and � = 0.01 is presented

in Fig. 4.17. The solution lies within the acceptable range of the asymptotic method.

Furthermore, the backbone curve accurately describes the maximal amplitude of the

system. In contrast to the wedge damper, the backbone curve bends towards lower

frequencies for decreasing amplitudes.

(a) (b)

Figure 4.17: Comparison of the analytical ( ) and the numerical solution ( ∗ ), as well as the backbone

curve ( ). (a) Ω ≈ �01. (b) Ω ≈ �02.
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4.4 Tuned Wedge Damper Optimization
To obtain an optimal damper response, key relationships derived from the analytical

investigations are used as a starting point. First, the optimization function, as well as

the optimization parameters, are defined from the analytical investigations. Second,

optimizations with the analytical functions are carried out. Third, the scope of the

analytical optimization is expanded by considering numerical methods. For the latter,

the result of the analytical optimization is used as a starting point. Finally, the frequency

responses of the optimized systems as well as their stability are considered.

The availability of an analytical solution allows the damper’s targeted optimization.

The numerical investigations show that the amplitude of the first eigenfrequency is

dominant for the chosen parameter ranges. Therefore, a reduction of this amplitude

optimizes the system’s frequency response function. The prestress displacement Δℓ is

set to zero to favor the decoupling of absorption and damping. Furthermore, a variation

of the friction coefficient is not considered. The limitations of this parameter are set

by realizability conditions, life span requirements, or both. Once the limitations are

set, the friction coefficient is chosen as high as possible. The Δ1-parameter is set as

large as necessary to ensure absorption. In practical applications, this is dependent on

the natural occurring damping in the system. Since this again is a practical restriction

on the system a variation of this parameter is not taken into account. The remaining

parameters 23 and 
 are considered for the optimization. The optimization function

6opt(23 , 
) is formulated and given by

6opt(23 , 
) = �G1 ,max(23 , 
) = |A11 |�̄1,max(23 , 
) . (4.33)

The result of Eq. (4.33) is plotted in Fig. 4.18 for separate optimizations of 23 and


. The optimizations are considered for 23 ∈ [0, 0.1]N/m and 
 ∈ [0◦ , 45
◦] since

larger values compromise the validity range of the asymptotic solution. These figures

reflect the behavior of the maximum amplitude observed in Figs. 4.5 and 4.6. For the

standard parameters, the optimal values for the stiffness and angle are respectively

23,ana,opt = 0.059N/m and 
ana,opt = 40.12
◦
. These optimizations yield respectively

maximal amplitudes of �G1 ,max(23) = 0.799m and �G1 ,max(
) = 1.167m, which are both

lower than that of the standard parameters by respectively 52.96% and 31.29%. The

separate optimizations show that the amplitude reduction has a higher sensitivity to

the tertiary stiffness than to the angle of the outer segments.

The true potential of the analytical solution lies in the cost-effective multi-parameter

optimization of the system’s maximal amplitude. The joint optimization yields the
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(a)

4530150

(b)

Figure 4.18: (a) Influence of the stiffness 23 on �max. (b) Influence of the wedge angle 
 on �max.

parameters 23 = 0.1N/m and 
 = 10.36
◦
. The maximum amplitude results in

�G1 ,max(23 , 
) = 0.547m which means a 67.79% amplitude reduction. It is noted that

the optimized value for 23 lies at the limit of the considered range. Therefore, further

amplitude reduction potential is expected with an increase in this parameter. However,

this is not within the scope of the asymptotic method.

Figure 4.19: Influence of the stiffness 23 and the wedge angle 
 on �max.

Although the analytical optimization reaches its validity limits, it constitutes a starting

point for further numerical optimizations. Analogous to Eq. (4.33), the maximum

amplitude of the frequency response function isminimized, however, for each parameter

combination the frequency response function is calculated with the harmonic balance

method described in section 2.1. The computational cost is much higher than the

evaluation Eq. (4.33) since the amplitudes for the frequency range Ω ∈ [0.5, 1.5] rad/s
are calculated instead of directly calculating the maximum amplitude. The parameters

(23 , 
) = (0.1 N/m, 10.36
◦) are used to initialize a numerical optimization. The optimiza-
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tion is carried out with the MATLAB function fminsearch. This function implements

a Nelder-Mead-Algorithm, which is a gradient-free optimization algorithm. This is

essential since the problem is highly nonlinear and therefore gradient-based methods

are costly. Furthermore, the accuracy of the gradient is not guaranteed. For more details

on the Nelder-Mead-Algorithm, the reader is referred to [9].

Figure 4.20 shows the frequency response functions of the standard parameters, the

analytical optimization, and two iterations of the numerical optimization. In addition,

the stability and instability ranges are respectively marked with a solid and dashed

line. In Fig. 4.20 the algorithm’s 12th and 50th iterations are selected. The 50th iteration

corresponds to the algorithm’s final iteration since changes in the parameter are under

the selected tolerance, namely 1e-3. The iterations result in the parameters

23,opt,12th = 1.606 N/m , 
opt,12th = 1.55
◦ ,

23,opt,50th = 27.621 N/m , 
opt,50th = 1.09
◦ .

As is noted from the parameters, with increasing iteration the stiffness rises and the

wedge angle declines. Low wedge angles are advantageous for the smooth transition

between the individual segments. Furthermore, the damping is introduced mainly via

the third spring andnot via thewedge angle. Although thepeaks of the 50thoptimization

iteration are close to another, all responses show their maximum amplitude at the first

resonance peak. The 12th and 50th iterations of numerical optimizations havemaximum

amplitude values of 0.213m and 0.062m respectively. Compared to the system with

the standard parameters, these values correspond to amplitude reduction of 87.47%

and 96.38%. The higher iterations achieve a larger amplitude reduction, however, this

comes at a cost. In certain frequency ranges, the stability of the periodic solution is lost.

Figure 4.20: Frequency response functions of the standard parameters ( ), the analytical optimization ( ),

the 12th iteration of the numerical optimization ( ), and the 50th iteration of numerical optimization ( ).
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This occurs in the vicinity of the resonance regimes as well as in the absorption range.

Although the oscillations are small and absorption is observed, the relative amplitudes

in the absorption range are larger than Δ1. Subsequently, the strong nonlinearities

introduced by the outer segments lead to unstable solutions. Due to these stability

losses, the 50th iteration is not a reliable solution. The 12th iteration shows the lowest

amplitude without the stability loss throughout the whole frequency range.

In order to assess the disturbance of the frequency response due to the unstable ranges,

sweep simulations of the tuned wedge damper are carried out. In comparison to a

simple harmonic excitation, the sweep simulation offers the advantage that it evaluates

multiple frequencies with one simulation. Additionally, by calculating the envelope of

the sweep response an approximation of the system’s amplitude response is derived.

The results are not identical but comparable to the solution of the harmonic balance.

Furthermore, since a forward-time simulation is carried out, only stable solutions are

observed in the results. Therefore, variations are expected in unstable regions. To

implement such an excitation, the harmonic force in Eq. (4.1) is replaced by the sweep

excitation �sweep(C) = � sin

(
!sweep(C)

)
with

!sweep(C) =
∫ C

0

Ωsweep(�)d� , Ωsweep(C) =
Ω1 −Ω0

C1 − C0
(C − C0) +Ω0

� = 0.01#, Ω0 = 0 rad/s, Ω1 = 2 rad/s, C0 = 0 s , C1 = 10
5

s .

The results of the sweep excitations are plotted in Fig. 4.21. The response of the system

with the standard parameters, the analytical optimization, and the 12th iteration of the

numerical optimization show a similar response as in Fig. 4.20. Due to the instability

ranges substantial differences are noted between the sweep response of the 50th iteration

Figure 4.21: Envelopes of the sweep response for the standard parameters ( ) the analytical optimization

( ), the 12th optimization iteration ( ), and the 50th optimization iteration ( ).
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and the harmonic balance solution, c.f Fig. 4.20. The absorption range and with it the

decoupling of damping and absorption are completely lost. Furthermore, the vibration

reduction observed in the harmonic balance solution is not observed. Instead, the

maximum amplitude of 0.161m is noted. However, the maximum amplitudes of the

50th iteration are still lower than those of the 12th iteration. If only the minimization

of the maximum amplitude is sought, a numerical optimization, which considers

a frequency response function obtained via sweep calculations, is a more sensible

approach. However, since the damper’s goal is partly to retain the advantages of

absorption, the 12th iteration is considered the optimal response of the tuned wedge

damper for the standard parameters.

4.5 Damper Assessment
The tuned wedge damper provides an advantageous device for vibration reduction.

It reduces the system’s vibrations while maintaining an absorption frequency. A

separation of absorption and damping is achieved by placing the classical vibration

absorber between specially designed contact surfaces. No damping is introduced when

the oscillations are small and in the Δ1-range. If the oscillations are larger, the outer

segments come into play. Energy is damped via dry friction of the contact between

the secondary mass and the outer segments. Amplitude reductions are found with

increasing friction coefficients. An effective amplitude reduction potential is obtained

through the simultaneous optimization of the tertiary stiffness 23 and the wedge angle


 via analytical and numerical methods.

The decoupling achieved by this damper is advantageous especially formachines during

run-up procedures since one or more eigenfrequencies usually have to be overcome. In

comparison to conventional friction dampers with a constant force, the tuned wedge

damper also provides a robust solution. This is especially useful in overload scenarios.

Limits on the amplitude reduction are placed by the realizable friction coefficients. High

friction coefficients lead to higher wear which affects the service life of the damper. The

exceeded increase of the friction coefficient, therefore, inhibits the damper’s functionality

in the long-term. The choice of the friction coefficient results from the counterbalancing

between amplitude reduction and life span requirements. Furthermore, the design

freedom of the friction coefficient is decreased in scenarios where additional constraints

are taken into account, e.g. weight, corrosion, or production constraints. In these

scenarios, alternatives to the tuned wedge damper are necessary. An active design of

the tuned wedge damper would amplify its intrinsic targeted dissipation.
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In chapters 3 and 4 theoretical insight was obtained on the friction-based dampers.

This insight is tested via experimental investigations in this chapter. The goal is

therefore to verify the qualitative aspects of the dampers in more realistic conditions.

A quantitative reproduction of the results is not pursued. Furthermore, this chapter

presents the first proof of concept for the implementation of these friction-baseddampers.

This chapter is structured as follows. First, the experimental setup is described in

section 5.1. Experimental investigations into the wedge damper and tuned wedge

damper are subsequently presented in sections 5.2 and 5.3. The chapter is closed with

the experimental conclusions in section 5.4.

5.1 Experimental Setup
To describe the experimental setup, first, the general arrangement of the experiments

is presented. Subsequently, its components are described in further detail. Second, the

mechanical components and the design of the friction damper are considered. Third,

the inputs and outputs of the system, namely the shaker and sensors, are presented.

Finally, the software, as well as the post-processing is described.

The test bench is presented and highlighted in Fig. 5.1 and is composed of the vibration

isolation table, the system prototype, the power amplifier, the PULSE front-end driver,

and a laptop with the PULSE software. The laptop determines the measurement

parameters, as well as the input signals. The interface between the laptop and

the shaker/sensors is the PULSE front-end driver. This component implements the

measurement parameters defined by the laptop, e.g. sampling rate. The input signal of

the shaker is generated and sent to the power amplifier. This signal is amplified and

transferred to the shaker. The shaker excites the system and causes vibrations which are

measured by accelerometers. A force sensor is placed to measure the force that acts on

the system. The sensors send the signals to the PULSE front-end driver, which converts

them into processable data for the laptop.
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Figure 5.1: The experimental setup for the investigations.

The prototype is 3D printed with an Ultimaker 5 and includes the main system and the

friction-based damper. Both subsystems are highlighted in Fig. 5.2 and printed with

polylactide fibers. The main system is highlighted in dark gray, whereas the friction

damper is accentuated in light gray. Since the wedge damper is a special case of the

tuned wedge damper, the experimental setup is described for the latter. Furthermore,

the prototype is a realization of the schematic systems described in chapters 3 and 4.

However, this is only partially true. The largest difference to the schematic systems is the

additional damping caused by friction in the guides and joints and material damping.

Another discrepancy lies in the elasticity of the experimental parts which are in the

minimal models assumed rigid.

Figure 5.2: The prototype of the main system and the friction-based damper.
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(a) (b)

Figure 5.3: (a) The shaker-system coupling with a stinger. (b) The design of the friction contact as well as the

pressing arrangement.

The main system is composed of the main mass and the main spring. The main mass is

constructed with inner steel cylinders to achieve the desired weight of approximately

1 kg. Additionally, it is excited by a shaker-stinger arrangement, see Fig. 5.3a. By bending,

the stinger compensates for any manufacturing inaccuracies and ensures a horizontal

force. Furthermore, the main mass is mounted onto the environment with ERO type

R linear guides. This arrangement allows a movement in the horizontal direction. The

main spring is realized by four VD143Q Gutekunst Feder compression springs, that are

mounted to realize a symmetrical spring force in both movement directions.

The friction damper includes the secondary mass and the secondary and tertiary

springs. The secondary mass is entirely 3D printed and weighs approximately 300 g. It

is connected to the main mass in three ways. It is mounted on top of the main mass

with ERO type R linear guides so that both masses move parallel to each other. It is also

connected via the symmetrically mounted secondary springs and via the dry friction

contact. The design of the contact components is modular to vary the contact properties

and is presented in Fig. 5.3b. They are also designed with smooth transitions to avoid

impacts. The smallest roundings in the contact surfaces have a radius of 0.3mm. To

investigate different friction coefficients the contact components are printed in three

different materials: IGUS IGLIDUR I180 (I180), polylactide (PLA), and thermoplastic

polyurethane (TPU). The IGUS-polymer is designed for low friction and high wear

resistance. PLA is a polymer commonly used printing material with little compliance.

Lastly, TPU is a highly compliant thermoplastic. For a homogeneous material pairing,

friction is lowest in IGUS, medium in PLA, and highest in TPU. Figure 5.3b also

presents the design mechanism by which the tertiary springs press the contact surfaces
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together. The linear guide allows the contact component of the friction damper a vertical

movement, whereas the contact component of the main system is fixed. Via a movement

of the prestress plate above the tertiary spring the prestress of the system is varied. It is

noted that this design is not symmetrical and presents an additional degree of freedom.

However, an interaction of this degree of freedom with the horizontal movement of the

damper is not observed. Additionally, the force of the friction dampers is reduced, since

a relative movement in this arrangement causes half of the spring displacement. Thus,

for a vanishing prestress the theoretical force of the damper prototype is by a factor 2

smaller than the force in the schematic dampers in Figs. 3.1 and 4.1. In contrast, the

effect of the prestress is unaffected by the design.

The experimental setup contains one shaker, one force sensor, and two accelerometers.

The shaker excites the system and is a LDS V201 Shaker with permanent magnets from

Brüel & Kjær. The force sensor is a PCB 208C03 force sensor and is placed between the

stinger and the main system. This placement ensures that the force that acts on the main

system is measured. This way the dynamics of the shaker and stinger are excluded

from the measurements. It is noted that the force drop effect is observed while passing

through the resonance regimes. In these regimes, the oscillations are large enough, that

the magnetic field in the shaker becomes nonlinear and the force acting on the system

drops [171]. An active control, to avoid this effect, was not pursued, since the effect

does not affect the qualitative influence of the parameters on the damper’s behavior.

The accelerometers are piezoelectric with a seismic mass and also from Brüel & Kjær

of type 4507 B004. They are placed on the main and secondary mass and measure the

acceleration. The measured signals are afterwards post-processed.

The PULSE software LabShop is used to determine the measurement parameters. First,

the input signal for the shaker is defined as a sweep-excitation. The frequencies from6Hz

to 40Hzarepassed through in 400 s. The system is excitedand the resultingvibrations are

measured. A modified low-pass third order Butterworth-filter with a cut-off frequency

of 400Hz is applied internally by the LapShop-Software. The sampling frequency is

set to 1024Hz which is above the necessary frequency to fulfill the Nyquist-Shannon

sampling criterion and ensures an accurate signal reconstruction. The three measured

signals are exported and post-processed in MATLAB. A Butterworth high-pass filter

of fifth-order with a cut-off frequency of 4Hz is applied to the measured signals. This

cuts off the lower frequency components and enables the subsequent integration. The

velocity anddisplacement signals of the primary and secondarymass are calculatedwith

a trapezoidal numerical integration. Since a sweep-excitation is applied, the envelope of

the measurement yields an approximation of the system’s amplitude response function.

It is noted that only stable solutions are present in the measurement. Therefore, the
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response is only a valid approximation if the frequency ranges with multiple solutions

are small. In contrast, if the ranges with multiple solutions are pronounced, jumps in

the measurement are expected. To obtain accurate measurements, five envelopes are

averaged. If the amplification factor is sought, an �2 estimator is used since it presents

an upper bound for the transfer function. It is also more accurate in the resonance

regimes than for example the �1 estimator. A disadvantage of this estimator is that it

yields a linear approximation of a nonlinear system. Therefore, it is only applied in the

variation of the excitation force and for solutions in which no jumps are noted. The �2

estimator is calculated as

�2($) =
����(-̃-̃(8$)(-̃�̃(8$)

���� . (5.1)

where (-̃-̃(8$) is the autospectrum of the output and (-̃�̃(8$) represents the cross-

spectrum between output and input. Additionally, 8 is in this case the imaginary

unit and $ the considered angular frequency. These terms are calculated from the

post-processed data with

(-̃-̃(8$) =
1

#

#∑
9=1

- 9(8$)-9(8$) and (-̃�̃(8$) =
1

#

#∑
9=1

- 9(8$)�9(8$) . (5.2)

�9(8$) and -9(8$) represent the Fourier transformations of the input force �(C) and the

output G1(C) of the 9-th measurement. The bar ( ) denotes the complex conjugate. To

reduce leakage, the post-processed signals are multiplied by a Hanning window.

5.2 Wedge Damper Experiments
The experimental investigations consider the effect of parameter variations on the

response of the system. The setup for the wedge damper removes the spring between

the primary and secondary mass. The spring which presses the contact surface together

is thus the secondary spring. A D205D spring from Gutekunst Ferder is chosen. For the

contact surfaces a I180-PLAmaterial pairing is selected, due to its low friction coefficient.

Since the force drop effect is observed, a single force amplitude is not available. Instead,

the excitation force is characterized by the root-mean-square (rms) value of themeasured

oscillations. The standard parameters for the wedge damper setup are given by

<1 = 1.057 kg, <2 = 0.305 kg, 21 = 15.928 N/mm, 22 = 24.232 N/mm,


 = 30
◦ , � = �I180−PLA , Δℓ = 0 mm, � = 4.072 Nrms .
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The first experimental parameter variation changes the wedge angle 
 of the lower

contact surface and is presented in Fig. 5.4. The figure confirms the qualitative effect of

the angle change in the wedge damper. The effective secondary stiffness changes as in a

conventional tuned mass damper. With an increase in the angle, both peaks are shifted

towards higher frequencies. Moreover, as the peak of the first eigenfrequency increases,

the second decreases. This agrees with the results of Fig. 3.5.

Figure 5.4: Wedge Damper experimental variation of the wedge angle 
.

Figure 5.5 shows the results of the variation of the friction coefficient. The friction

coefficient is varied by considering different material pairings. Since the friction

coefficient is not in the focus of this work, a detailed investigation into its exact value

is not considered. Instead, the curves are arranged by their expected friction value.

Although scattering in the friction coefficient is expected, the curves show the increase

in damping due to the increase in friction. As the friction coefficient increases, the

resonance peaks merge, and only one peak is observed. Deviations from this general

Figure 5.5: Wedge Damper experimental variation of the friction coefficient �.
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tendency are observed in the curves with a TPU pairing. This is in part due to the

additional compliance introduced by the elasticity of this material.

Figure 5.6:Wedge Damper experimental variation of the prestress displacement Δℓ .

The variation of the prestress displacementΔℓ is presented in Fig. 5.6. This experimental

consideration also coincides with the numerical results in section 3.2. As the prestress

increases the amplitude of the first peak rises and the secondary peak vanishes. The

system tends to a one-degree of freedom system where only sticking is observed. Thus,

absorption is lost. An increase of the first resonance peak for prestresses higher than

0.70mm is not observed. This increase is prevented by the additional material damping

of the system. In contrast to the numerical simulations, jumps in the amplitude response

are not observed. This is at least partially due to the inherent system damping since it

reduces the system’s maximal amplitudes.

Figure 5.7:Wedge Damper experimental variation of the excitation force �.

Figure 5.7 presents the investigations of the excitation force � and its effect on the

normalized�2 estimator. The estimator is normalized by the maximum�2 value for the

standard parameters. The curves lie approximately over each other. Only differences at
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low excitation forces and at the second resonance frequency are noted. At low excitations,

the dry friction in the guides and joints substantially contributes to vibration reduction.

However, at higher excitation forces this is not the case, since the reduction in amplitude

is due to the friction damper dissipation. The estimator curves are approximately equal

which implies the scalability of the response function and the robustness of the damper.

The noise at the end of the frequency range occurs due to the noise in the acceleration

G1(C) since the �2 estimator is especially sensible to the output noise.

5.3 Tuned Wedge Damper Experiments
As with the experimental investigations of the wedge damper, selected parameter

variations are considered. The setup for the tuned wedge damper is as described

in section 5.1. For the secondary and tertiary spring, a D173CJ and a VD097 from

Gutekunst Feder are respectively selected. The standard material pairing is a PLA-PLA

combination. The standard parameters for the tuned wedge damper setup result in

<1 = 1.065 kg, <2 = 0.313 kg, 21 = 15.928 N/mm, 22 = 5.948 N/mm,

23 = 2.004 N/mm, 
 = 45
◦ , � = �PLA−PLA , Δℓ = 0 mm, Δ1 = 0.5 mm,

A = 0.5 mm, � = 3.151 Nrms .

The first experimental parameter variation considers the variation of the tertiary stiffness

and is presented in Fig. 5.8. The qualitative behavior on both resonance frequencies is

verified. An optimal stiffness exists and yields minimal amplitudes in the first resonance

peak. Furthermore, the amplitudes of the secondary peak sink with rising stiffness

values. This confirms the behavior in Fig. 4.4. Additionally, the absorption frequency

remains largely unaffected. Minimal changes are observed in its position however not

Figure 5.8: Tuned Wedge Damper experimental variation of the tertiary stiffness 23.

88



5.3 Tuned Wedge Damper Experiments

in the amplitude. The changes in the position are due to imperfections in the assembly

of the contact surfaces.

Figure 5.9: Tuned Wedge Damper experimental variation of the friction coefficient via material changes.

Figure 5.9 presents the investigations into the friction coefficient via the changes in

material pairings described above. The decoupling between vibration damping and

vibration absorption is observed. Both peaks show a substantial reduction and the

absorption frequency remains largely unaffected. Due to the high elasticity of the TPU

material, deviations from the general tendency are again observed in some experiments.

However, the decoupling effect is still observed. This is evident when comparing these

results with Fig. 5.5. In contrast to the wedge damper, the maximum amplitudes are

reduced and a merging of the two resonance peaks into one is not observed.

The prestress displacement is varied in Fig. 5.10. In contrast to the results of the wedge

damper, the amplitudes do not rise monotonically with increasing prestress values. A

shift to a one-degree of freedom system is observed, and an optimal prestress value

Figure 5.10: Tuned Wedge Damper experimental variation of the prestress displacement Δℓ from Δℓ = 0mm

( ) to Δℓ = 4.9mm ( ) in 0.23mm steps.
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for the first resonance peak is noted. This confirms the numerical results in Fig. 4.10.

Furthermore, as the system transitions into complete sticking the second eigenfrequency

vanishes.

Figure 5.11: Tuned Wedge Damper experimental variation of the excitation force �.

The last experimental study handles the variation of the excitation force and is presented

in Fig. 5.11. The estimator�2 is again normalizedwith the value�20, which corresponds

to the maximum �2-value of the standard parameters. The curves lie nearly over each

other. This implies the approximate scalability of the estimator�2. Differences are noted

at the second eigenfrequency. The�2 values are lower for higher excitation forces, which

implies higher damping with increasing amplitudes. This is caused by the increased

influence of the outer dissipative segments compared to the constant influence of the

dissipation-free segment.

5.4 Experimental Conclusions
The investigations above offer the first proof of concept for the realization of these

friction-based dampers. The theoretical behavior of the damper is modified by the

real conditions of the experiment which introduce additional damping and elasticities.

Some aspects of the dampers’ behavior were confirmed.

Quasiperiodic and chaotic solutions were not observed. These types of solutions appear

as irregularities in measurements. However, no such deviations at the expected ranges

were observed. Jumps in the measurements, that imply multiple solutions, were also

not detected. A possible explanation for the vanishing of such solutions is the increased

damping provided by the experimental conditions. The vanishing of multiple solution

ranges due to increased damping, for example, is also observed with the multiple

solution ranges of systems with cubic stiffness.
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The wedge damper’s behavior as a pseudo-viscous damper is confirmed. A change in

the wedge angle 
 leads to a change in the effective stiffness and damping, whereas the

change in the friction coefficient affects the damper’s effective damping. Additionally,

the increase in amplitudes due to the prestress displacement is also confirmed. The

quasi-viscous behavior of the wedge damper is also verified by the variations of the

excitation force and its influence on the �2 estimator.

The response of the tuned wedge damper is also validated via experiments. The

existence of an optimal tertiary stiffness is observed, as well as the existence of an

optimal prestress value for the first resonance peak. As with the wedge damper, the

scalability of the response is also confirmed with the variation of the excitation force.

Lastly, the decoupling of vibration damping and vibration absorption, which is the main

advantage of the damper, is experimentally verified.
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The investigated friction dampers offer effective vibration reduction alternatives in

comparison to conventional dampers. However, in specific cases, the advantages these

dampers provide are not sufficient. Such cases include exceedingly long service life

requirements or cases where the material pairing is not freely chosen, but subject to

constraints. Such cases especially those with low friction coefficients cannot ensure an

adequate vibration reduction. An active consideration of the tunedwedge damper offers

a vibration reduction solution with small friction coefficients. Additionally, in situations

in which extremely low amplitudes are required, the amplitude reduction provided

by the optimized tuned wedge damper may not be sufficient. The active tuned wedge

damper offers a solution with more selective energy dissipation. This chapter focuses on

three such active considerations. First, the base system for the control strategies and the

framework for the simulations are presented in section 6.1. Second, a Skyhook Control is

considered in section 6.2. This is a well-investigated control strategy for friction dampers

and is taken as a reference point for the control strategies developed in this work. Third,

in section 6.3 an adaptive control strategy with multiple actuation models is detailed.

Section 6.4 focuses on a slow frequency-based control. The efficiencies of the control

strategies with respect to the amplitude reduction are compared in section 6.5, whereas

a consideration of the dissipated energy is made in section 6.6. The investigations into

active friction dampers are concluded in section 6.7 with an assessment of the control

strategies.

6.1 Base System for the Control Strategies
This section presents the general conditions for the investigations of the active system

and is divided into two parts. First, the base system, on which the control strategies are

applied, is presented. Additionally, the input parameters as well as their effect on the

damper force are detailed. The second part presents the framework of the simulations

that are used to investigate the control strategies. This includes the excitation types, the

initial conditions, and the constant damper parameters.
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The tuned wedge damper is chosen as a base system for the control strategies since the

wedge damper is a special case of the former. Furthermore, it has the advantage of

decoupling damping and absorption. The active tuned wedge damper is presented in

Fig. 6.1. The main system is represented by the main mass <1 and the main spring 21.

It is also excited by the force �(C), which is highlighted in red. From the control point

of view, this is a perturbation on the otherwise resting main system. It is the task of

the active tuned wedge damper and its control strategy to counter this perturbation. To

this end, the active wedge damper is attached to the main system. The friction damper

is composed of the secondary mass <2, the secondary spring 22, the tertiary spring

23 (with its prestress displacement Δℓ ), and the contact surfaces. The last component

is defined by the wedge angle 
, the length of the horizontal segment 2Δ1, and the

radius of the transition segments A. The positions of the main and secondary mass are

respectively described by G1 and G2. For a more detailed description of the underlying

mechanical system, the reader is referred to chapter 4. The controlled parameters of

the active tuned wedge damper are highlighted in green. Thus, the damper varies the

wedge angle 
 of the outer segments and the prestress displacement Δℓ .

Figure 6.1: The schematic model of the active tuned wedge damper.

The qualitative influence of the input parameters 
 andΔℓ on the damper force �TWD, see

Eq. (4.6), is presented in Fig. 6.2. An increase in both of these parameters leads to more

damping. The difference lies in the way the damping is introduced. Higher values of the

angle 
 lead to a damping increase only in the outer segments, whereas higher prestress

values increase the damping over the whole oscillation. From a geometrical point of

view, the wedge angle changes the opening angle of the outer force hysteresis, and the

prestress displacement changes the width of the whole force hysteresis. Furthermore,

their influence on the dissipated energy is also different. The higher angles increase the

dissipated energy proportional to the square of the relative amplitude �2

rel
. In contrast,

the prestress increment affects only the dissipated energy proportional to the relative

amplitude �rel, c.f. Eq. (4.17). The control strategies vary both of these parameters to

introduce damping in a targeted manner with low friction coefficients.

94



6.1 Base System for the Control Strategies

(a) (b)

Figure 6.2: Effects of the input parameters on the tuned wedge damper force: (a) wedge angle 
 variation for

Δℓ = 0m and (b) prestress displacement Δℓ variation.

The following subsections compare the control strategies to their passive counterpart.

Three excitation cases are considered: a rectangular pulse excitation, a sweep excitation,

and an application scenario. The rectangular pulse gives insight into the transient

behavior of the strategies, whereas the sweep excitation gives an approximation for the

stationary behavior. The application scenario provides information about the suitability

of the control strategies for more realistic applications. The sum of insights obtained

via the excitation simulations yields the theoretical basis for an active implementation

of the tuned wedge damper.

In the first case, the system is let go from nontrivial initial conditions, and the free

behavior is investigated. Afterward, a force in the form of a rectangular pulse is

applied. This excitationyields insights into the transient behavior of the control strategies.

Furthermore, understanding into the strategies’ reaction to harsh excitation is obtained.

The excitation force in this case is given by

�rect(C) =


0, C0 ≤ C < C1

�0 , C1 ≤ C < C2

0, C2 ≤ C < C3

with

�0 = 0.01 N, C0 = 0 s, C1 = 200 s, C2 = 300 s, C3 = 325 s .

The second case applies a sweep excitation and focuses on the approximation of the

system’s stationary behavior. The system starts with zero initial conditions, and a

frequency range including both structural resonances and the absorption frequency is
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slowly passed through. This yields an approximation of the control strategies’ response

at different excitation frequencies. The sweep excitation is described by

�sweep(C) = �0 sin

(
!sweep(C)

)
with

!sweep(C) =
∫ C

0

Ωsweep(�)d� , Ωsweep(C) =
Ω1 −Ω0

C1 − C0
(C − C0) +Ω0 ,

�0 = 0.01 N, C0 = 0 s , C1 = 10
5

s , Ω0 = 0 rad/s, Ω1 = 2 rad/s .

The third case considers an application scenario. First, a run-up to the system’s operation

frequency is performed starting from zero initial conditions. This is followed by a

nominal operation range with a harmonic excitation. Subsequently, an overload section

is simulated, in which the excitation amplitude rises tenfold. Afterward, the excitation is

brought again to its original level in the recovery phase. Finally, the system is shut down

in a controlled manner. In this phase, the excitation force and the excitation frequency

linearly approach zero. The consideration of both the system run-up and run-down has

the advantage that nonlinear phenomena in the system response are taken into account.

The scenario force is given by

�scen(C) = �A,scen(C) sin(!scen(C)) .

The components �A,scen(C) and Ωscen(C) are visualized in Fig. 6.3 and given by

�A,scen(C) =



�0 , C0 ≤ C < C2
�3 − �2

C3 − C2
(C − C3) + �3 , C2 ≤ C < C3

�4 − �3

C4 − C3
(C − C4) + �4 , C3 ≤ C < C4

�5 − �4

C5 − C4
(C − C5) + �5 , C4 ≤ C < C5

,

!scen(C) =
∫ C

0

Ωscen(�)d� , Ωscen(C) =


Ω1 −Ω0

C1 − C0
(C − C0) +Ω0 , C0 ≤ C < C1

Ω1 , C1 ≤ C < C4
Ω5 −Ω4

C5 − C4
(C − C5) +Ω5 , C4 ≤ C < C5

,

�0 = �1 = �2 = 0.01 N, , �3 = 10�0 , �4 = �0 , �5 = 0 N,

Ω0 = 0 rad/s, Ω1 = Ω2 = Ω3 = Ω4 = 1 rad/s, Ω5 = 0 rad/s,
C0 = 0 s, C1 = 5·10

4

s, C2 = 6·10
4

s, C3 = 11·10
4

s, C4 = 15·10
4

s, C4 = 20·10
4

s .

96



6.2 Skyhook Control

(a)

(b)

Figure 6.3: Components of the scenario excitation: (a) force amplitude �
A
(C) and (b) angular frequency Ω(C).

The initial conditions are given with the state vector x0 = [G10 , G20 , ¤G10 , ¤G20]>. The initial
conditions are chosen x0,rect = [1, 1, 1, 1]> and x0,sweep = x0,scen = [0, 0, 0, 0]> depending

on the excitation. Furthermore, the constant parameters of the tuned wedge damper are

<1 = 1 kg, <2 = 0.1 kg, 21 = 1 N/m, 22 = 0.1 N/m, 23 = 0.01 N/m,

Δ1 = 0.1 m, A = 0.01 m, � = 0.1 .

The angle and prestress displacement for the passive system are given by 
pa = 20
◦
and

Δℓpa = 0 m. The input parameters of the active system are limited to 
 ∈ [0, 
max] and
Δℓ ∈ [0,Δℓmax]. The limits 
max and Δℓmax are specified for each control strategy later

on and provide more realistic working conditions of the active tuned wedge damper.

6.2 Skyhook Control
As mentioned in section 2.3.1, the Skyhook Control emulates, when possible, a damper

attached to an inertial frame, regardless of the actual damper position. Furthermore,

this is a dissipation-oriented control strategy. To implement the Skyhook Control, it
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is first verified if the structure of dissipative forces is in accordance with the control

strategy. Subsequently, the algorithm for the inputs is defined. Additionally, the input

force is clipped to avoid sticking. Lastly, the section concludes with the simulations of

the Skyhook Control behavior and its comparison to the passive system.

As noted in chapter 4, the dissipative terms of the tuned wedge damper are given by

�TWD,d =
2�23(2H + Δℓ )(1 + H2

G)
1 − �HG sign( ¤G2 − ¤G1)

sign( ¤G2 − ¤G1) . (6.1)

The SkyhookControl assumes dissipative forces of the form �Sky = |�TWD,d | sign( ¤G2− ¤G1),
where the direction of the force is solely defined by the relative velocity. As is noted

from Eq. (6.1), the dissipative force does not strictly comply with this form. This is

due to the denominator, which can change signs depending on the relative velocity.

However, for all practical purposes, this is not the case. Since the maximum input angle

is limited to 
max ≤ 45
◦
, HG has a maximum value of 1. Furthermore, since low friction

coefficients are investigated (� < 1), it is not possible for the denominator to change

signs. Taking into account the input limitations, the force in Eq. (6.1) complies with the

necessary structure for the implementation of the control strategy.

The Skyhook Control defines a damper force that generates a braking effect on the main

mass. This is only possible when the relative velocity between the masses and the

absolute velocity of the main mass have different signs, i.e. ¤G1( ¤G2 − ¤G1) < 0. When this

is not the case, the damper force accelerates the main mass. To avoid exacerbating the

oscillation of the main mass, the damper force is set to zero in these cases, i.e. when

¤G1( ¤G2 − ¤G1) > 0. This results in the control structure

�TWD,d =

{
�TWD,d,max , ¤G1( ¤G2 − ¤G1) < 0

0, ¤G1( ¤G2 − ¤G1) > 0

. (6.2)

The input parameters are calculated to ensure Eq. (6.2) and maximize the braking effect.

For the wedge angle, this leads to a maximization of the input angle. The prestress

displacement is maximized under the condition that sticking is avoided. If sticking

occurs, no relative movement is observed, and, therefore, no energy is dissipated. Since

this strategy is solely based on damping, sticking is counterproductive. The prestress

displacement is thus calculated to comply with the slipping condition |' | = �# > 'max,

c.f. Eqs. (4.11) and (4.12). This yields for the wedge angle


Sky =

{

max , ¤G1( ¤G2 − ¤G1) < 0

0, ¤G1( ¤G2 − ¤G1) > 0

(6.3)
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and for the prestress displacement

ΔℓSky =

{
Δℓmax(', 'max), ¤G1( ¤G2 − ¤G1) < 0

0, ¤G1( ¤G2 − ¤G1) > 0

. (6.4)

To ensure smooth transitions between the extreme values, Eqs. (6.3) and (6.4) are

regularizedwith the hyperbolic tangent function (tanh) and the regularizationparameter

�Sky. This leads to


Sky =

max

2

(
1 − tanh

(
( ¤G2 − ¤G1) ¤G1

�Sky

))
, (6.5)

ΔℓSky =
Δℓmax(', 'max)

2

(
1 − tanh

(
( ¤G2 − ¤G1) ¤G1

�Sky

))
. (6.6)

Once the desired input parameters are known, the actual input parameters are changed

accordingly. However, this change is not instantaneous, instead, the input variation is

modeled dynamically with two first-order systems

¤
 = −�Sky(
 − 
Sky) and
¤Δℓ = −�Sky(Δℓ − ΔℓSky) (6.7)

where �Sky is a measure of how fast the input parameters are changed. This input

modeling approach has the advantage that it takes into account oscillations introduced

by the change of the input parameters.

The parameters of the Skyhook Control Strategy are determined by trial and error and

given by


max,Sky = 20
◦ , Δℓmax,Sky = 240 m, �Sky = 0.64 s

−1 , �Sky = 0.01 m
2/s2 .

Figure 6.4 compares the response to the impulse excitation of the Skyhook Control

against its passive counterpart. The passive system introduces low dissipation which

leads to a slow decay of the oscillations. In contrast, the Skyhook Control is able to

introduce damping despite the low relative differences in the initial conditions. The

control strategydampens the free oscillations in thefirst 150 s. Furthermore, the rectangle

impulse is countered effectively. The effect of the impulse on the main coordinate is

minimal since in the pulse range it has a maximal value of 0.038m. Once the excitation

subsides, the amplitudes return to the vicinity of zero. At the end of the simulation,

the amplitudes of the Skyhook Control are zero, whereas the amplitudes of the passive

system are roughly 0.500m.
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Figure 6.4: Response of the Skyhook Control to the rectangular pulse.

The sweep response of the Skyhook Control is observed in Fig. 6.5. The amplitudes

of both systems are approximately equal for frequencies outside the resonance and

absorption regimes. Furthermore, the maximum amplitudes of the active damper are

substantially lower than its passive counterpart. Compared to the maximum value

of 2.060m of the passive damper, the active damper has a maximum amplitude of

0.341m, which represents a reduction of 83.57%. In the vicinity of the absorption

frequency, the disadvantages of the Skyhook Control are noted. Since this strategy

is dissipation-focused, the amplitudes are higher than its passive counterpart. At the

absorption, the active damper amplitude has a value of 0.046m. After the absorption

regime the amplitudes of the active damper rise again, however, they remain under

0.101m. This rise is due to the resonance regime of the second eigenfrequency.

Figure 6.5: Response of the Skyhook Control to the sweep excitation.

The response to the application scenario is presented in Fig. 6.6. During the run-up

phase, the active system shows a lowermaximumamplitude than its passive counterpart.

The disadvantages of the active system show starting from the nominal operation phase.

Due to the focus on damping, the oscillation amplitudes are not minimal during this
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phase. Instead, they have a value of 0.049m. Additionally, the Skyhook Control shows

different amplitude ranges during the overload phase. These are caused by the changes

in the maximum input values that the control allows. Due to the increased amplitude

of the excitation, the maximum stiction force increases and with it the maximum value

of the prestress displacement. The added possibility to introduce more damping leads

to the different ranges in the response and the transition between them. In the overload

phase, a maximum amplitude of 0.580m is observed, which is by a factor 12.95 higher

than the passive system. The passive system takes advantage of absorption and therefore

has lower amplitudes. Nevertheless, over the whole scenario, the maximum amplitudes

of the Skyhook Control are 45.48% lower than those of the passive system. During

the recovery phase the amplitudes subside to the nominal operation levels. During

the run-down the system passes once again through the resonance regime and the

amplitudes rise and have a value of 0.156m. Compared to the passive system during

run-down this represents a 82.65% amplitude reduction.

Figure 6.6: Response of the Skyhook Control to the application scenario.

6.3 Adaptive Multiple Model Control
The adaptive multiple model control (MMC) is based on the adaptive control with

a reference model. This strategy combines different vibration reduction models to

achieve an optimal response. Accordingly, this control strategy does not focus solely on

damping, but instead also uses absorption and changes in the system’s eigenfrequencies

via sticking. First, the general control structure is presented. Second, the individual

actuationmodels aredescribed. Third, thedecision criterionof the supervising controller

that chooses the applied actuation model is formulated. Lastly, the simulations of the

multiple model control are presented and compared to the passive system.
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The proposed control is based on the investigations of Morse [128] and Narendra and

Balakrishnan [129]. In their work, they extended the classical adaptive control with a

reference model by using several reference models with their corresponding controllers.

All models are simulated in parallel and identify the plant simultaneously. The method

described in this work has in common with [129] that several models are simulated at

the same time. The structure of the decision criterion is also partially taken from this

work. The difference in approach is that the adaptive multiple model control does not

perform an identification. Instead, the control tries, similar to [128], to determine which

input variables of the models cause the greatest vibration reduction. For this purpose,

three models are simulated in parallel. These models represent the mechanisms for

vibration reduction: dissipation, absorption, and shifting of structural resonances via

sticking. Instead of reference models, this control uses actuation models.

Figure 6.7: Control structure of the adaptive multiple model control.

The control structure is presented in Fig. 6.7. The states of the system x = [G1 , G2 , ¤G1 , ¤G2]>
are forwarded to each actuation model. Additionally, they receive the reset signal Br.

Depending on the period of the reset signal )r, the states of the models are reset to the

states of the plant with every rising edge. Resetting the states of the actuation models

is necessary so that they can provide a relevant prediction about the system behavior.

Otherwise, the actuation models that are not in use will drift off. Furthermore, the

actuation models simulate the effect of their parameter choice, taking into account any

stick-slip transitions, but without knowledge of the perturbation �(C). The outputs of the
models Hout,D, Hout,A, and Hout,S are fed back to the supervisory controller, which then

decides which vibration reduction approach is accepted. In Fig. 6.7, the classic control

and adaptation loops cannot be separated from each other. However, the adaptation law
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is noted in the supervising controller. The controller changes its approach depending

on the simulated performance of the actuation models. In this structure, the control

and adaptation loops merge into one branched loop. Although one actuation model

is always active, the system has short intervals where it changes from a closed-loop

to an open-loop control. This is the case when it changes the actuation model. At

this moment, the desired system input and the actual system input are not equal and

therefore differences arise between the actuation model and the plant. However, the

strategy returns to a closed-loop control once these differences subside or the states are

reset.

The dissipation model adjusts the parameters according to the Skyhook Control in

section 6.2. If the relative velocity between the masses and the absolute velocity of the

main mass have different signs, damping is maximized. The angle and the prestress

displacement take their maximum values. Sticking, however, is avoided. If the signs

of the considered velocities are the same, the parameters are set to zero. This avoids

exacerbating the vibrations of the main mass.

The absorption model adjusts the parameters so that absorption is achieved. Both the

angle and the prestress are set to zero. As such the dissipation brought on by the damper

is eliminated. The system behaves like a vibration absorber with the secondary mass <2

and the secondary stiffness 22. This model is particularly relevant near the absorption

frequency $abs =
√
22/<2.

The sticking model simulates the system as if it were forced to stick. To this end, the

wedge angle 
 = 0 and the prestress displacement Δℓ = Δℓmax are set. Sticking changes

the structure of the system. The two eigenfrequencies of the slipping system vanish and

only the resonance frequency of the sticking system remains. This change is used to

avoid the structural resonance frequencies.

Based on the parameter suggestions of the actuation models, the supervisory controller

decides which of these candidates is best for vibration reduction. For this purpose, each

model is assigned a performance index. The performance index �8 is calculated using

the performance function ?8(x)with 8 = {D,A, S}. These are given by

�8 = �?8(C , x) + �
∫ C

=)r

e
−�

f
(C−�)?8(�, x)d� and ?8(x) = |Hout,d − Hout,8 | . (6.8)

In Eq. (6.8), � and � are the weight factors of the terms. The first term represents the

current value of the performance function, while the second term corresponds to the
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value of the performance function in the past. To avoid considering irrelevant dynamics

of the past, the integral only takes into account the time interval [=)r , C] transgressed
since the last state reset with = = bC/)rc. Additionally, an exponential forgetting with

the forgetting factor �f determines how the individual values of the past are weighted in

the integral. The underlying performance function represents the absolute value of the

difference between the desired output Hout,d and the output of the respective actuation

model Hout,8 . Since vibration reduction of the main mass is of interest, the position and

velocity of the main mass are implemented in the performance functions with

Hout,8 =

√
G2

1
+ ¤G2

1
(6.9)

and Hout,d = 0. The actuation model with the minimum performance index is chosen

and its value for the wedge angle and the prestress displacement are set as the desired

input parameters 
MMC andΔℓMMC. Aswith the Skyhook Control, the effect of changing

the input variables is represented by the differential equations

¤
 = −�MMC(
 − 
MMC) and
¤Δℓ = −�MMC(Δℓ − ΔℓMMC) . (6.10)

Analogously, the parameter �MMC in Eq. (6.10) is a measure of the speed at which the

input variables are changed. The advantage of this strategy is that it not only takes

into account the momentary influence of the damper but also its past performance.

Additionally, it is not limited to a single vibration reduction mechanism. Depending

on the parameter choice, the time frame of the control strategy is defined. Large rates

of change �MMC and small reset periods )r lead to a strategy that acts on a small time

frame. It is constantly updating and acts within the lapse of a single oscillation. Low

rates of change and large reset periods result in a strategy that acts on a larger time frame.

The multiple model control parameters are derived by trial and error. The control

parameters are chosen to minimize oscillations while achieving stationary solutions.

For this strategy, parameters are given by


max,MMC = 20
◦ , Δℓmax,MMC = 10 m, �MMC = 5e−4 s

−1 , � = 0, � = 1,

�Sky = 0.010 m
2/s2 , �f = 0.126 s

−1 , )r = 12.566 s .

The results for the rectangular pulse excitation are presented in Fig. 6.8. In the first 200 s,

the multiple model control reduces the free oscillations of the system, however, small

oscillations with an amplitude of 0.122m remain. During the pulse, the vibrations of

the main mass oscillate around 0.018m with an amplitude of 0.139m. After the pulse

excitation, small oscillations remain and have an amplitude of 0.123m. Compared to the
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passive systems this results in a 79.53% reduction in the vibration amplitude. In contrast

to the Skyhook Control, the system oscillations are not brought to a halt. Therefore, a

parameter or strategy change is sensible for small oscillations.

Figure 6.8: Response of the adaptive multiple model control to the rectangular pulse.

Figure 6.9 presents the response of the multiple model control to a sweep excitation.

The maximum amplitudes of the sweep response have a value of 0.247m. This equates

to an 88.08% reduction compared to the passive system. Disadvantages of this control

strategy appear in the absorption range where the optimal solution via absorption is not

recognized. Although complete absorption is not observed, the amplitudes remain low.

At the absorption frequency, an amplitude of 0.052m is observed.

Figure 6.9: Response of the adaptive multiple model control to the sweep excitation.

The response of the multiple model control to the application scenario is presented in

Fig. 6.10. In the run-up phase, the control strategy has a maximum amplitude of 0.248m,

which corresponds to a 76.72% reduction compared to the passive system. During the

nominal operation, the passive system responds with lower amplitudes than the active

control strategy. As with the sweep excitation, the control strategy does not recognize

the amplitude reduction potential via absorption. However, the amplitudes are low and
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have a value of 0.037m. Throughout the overload phase, the amplitudes rise and attain

a maximum value of 0.156m. Although the excitation plays an increasing role in the

system’s dynamics and the actuation models do not simulate it, a substantial increase in

the amplitude of the main mass is not observed. Even though the excitation increases

tenfold, the maximal amplitudes of the overload phase are only 4.20 times lager than

the amplitude during the nominal operation phase. Compared to the passive system,

the maximal overload amplitude is higher by a factor of 3.49. The oscillation amplitudes

fall to 0.034m at the end of the recovery phase. During the passage through resonance

of the run-down phase the resonance peak is lower than during the run-up phase and

has a value of 0.101m, which is 88.75% lower than its passive counterpart.

Figure 6.10: Response of the adaptive multiple model control to the application scenario.

6.4 Slow Frequency-Based Control
The slow frequency-based control (SFC) is similar to the gain scheduling control

strategies. It uses prior knowledge of the systems and defines the system parameters

accordingly. In this case, the prior knowledge used is based on the frequency response

of the tuned wedge damper. To describe the slow frequency-based control, first, the

ideal change of the control strategy is described. Second, the control structure, as well

as the necessary frequency identification, is presented. Third, the rule for the parameter

choice is formulated. Lastly, the simulations of the active control strategy are presented.

This control method uses knowledge of the frequency response to determine the system

parameters. The two frequency responses and an ideal case, are plotted in Fig. 6.11. The

figure shows the responses of the sticking (Δℓ →∞) and slipping (Δℓ = 0) systems. The

sticking response is modeled with Eq. (4.10), and the slipping response corresponds to
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Figure 6.11: The ideal change between the sticking and slipping frequency response functions.

an undamped tuned mass damper with the secondary stiffness 2eff,res = 22 + 423 tan
2 
.

The ideal response is built by selecting the branch with the lowest amplitude. The ideal

response has the advantages of low vibration amplitudes without having to forego an

absorption frequency. The slow frequency-based control method aims to reproduce

this ideal curve. The underlying basic principle of the system is the change in the

system’s structure caused by the transitions between sticking and slipping. As the

system transitions, the eigenfrequencies change from two slipping eigenfrequencies to

a single sticking frequency or vice versa. The targeted change aims to avoid resonances

and achieve absorption.

Figure 6.12: The control structure of the slow frequency-based control.

The overall system structure is shown in Fig. 6.12 and consists of three blocks: the

mechanical system block, the frequency identification block, and the controller block.

To influence the mechanical system, the two input parameters 
 and Δℓ are varied.

These two parameters serve as inputs to the mechanical system. This block contains and

simulates the equations of motion of the tuned wedge damper with the corresponding
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parameters. The resulting movement of the auxiliary mass G2(C) is recorded and passed

to the frequency identification block. This variable is chosen since it does not tend to

zero in the absorption regime. This simplifies the identification. The identification block

detects themain frequency of the system using a Fourier Transformation. The identified

frequency Ωid is then passed on to the controller, which sets the parameters 
 and

Δℓ . The idea of this controller is based on the adaptive gain scheduling considered in

section 2.3. It is similar in the sense that an additional quantity, the identified frequency,

is used, to gain additional knowledge of the system. However, it is noted that the

structure in Fig. 6.12 is that of the open-loop control, since the output is not fed back

to the system. Furthermore, as is stated later on, the strategy does not change the

parameters of a controller, but instead directly defines the desired input parameters.

Figure 6.13: Structure of the frequency identification block

A detailed view of the identification block is shown in Fig. 6.13. The measurement of

G2(C) is sampled with the sampling time Cs and the last # points are collected in a time

series. A Fast Fourier Transformation (FFT) of the time series is calculated. Subsequently,

the oscillation frequency is determined by the frequency identification function. This

function establishes the frequencies of the FFT peaks as possible frequency candidates.

The candidates are compared to the moving average of the identified frequency so far.

The oscillation frequency is identified as the candidate with the smallest distance to the

moving average. This frequency is then forwarded to the controller.

The controller chooses the desired input values 
SFC and ΔℓSFC according to


SFC =

{

max,SFC , Ω1 ≤ Ωid ≤ Ω2

0, else

, (6.11)

ΔℓSFC =

{
0, Ω1 ≤ Ωid ≤ Ω2

Δℓmax,SFC , else

. (6.12)
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In Eqs. (6.11) and (6.12), Ω1 and Ω2 represent the crossings frequencies between the

linear sticking and slipping systems, see Fig. 6.11. Outside the Ω1-Ω2-range, the lowest

amplitudes are achieved by the sticking system. Thus, the system parameters are chosen

so that the tuned wedge damper sticks. The outer segments are flat and the prestress

displacement is maximized. In the Ω1-Ω2-range, absorption is the chosen vibration

reduction mechanism. To this end, the prestress is set to zero to minimize damping.

Additionally, the wedge angle 
 is maximized to insert damping outside the 2Δ1-range.

This parameter choice funnels large oscillations into the dissipation-free range. The

control strategy highly depends on the identified frequency since the parameters are

solely determined by it. This is problematic in the presence of noise in the measured

signal. This is manageable by applying a low pass filter to the measured signal provided

the magnitude of the noise is small compared to G2(C). The frequencies Ω1 and Ω2

are calculated based on the crossings of the linear systems in Fig. 6.11. These are

independent of the excitation amplitude and are given by

Ω1,2 = $01

√
� + (1 + �)?2 ∓

√
(1 + �)2?4 − 2�?2 + �2

�(2 + �) (6.13)

with � =
<2

<1

, ?2 =
22,eff

21

, $2

01
=
21

<1

, 22,eff = 22 + 423 tan
2 
max,SFC .

As with the aforementioned strategies a dynamic input model is considered. With the

rate of change for the inputs �SFC, the differential equations for the inputs are given by

¤
 = −�SFC(
 − 
SFC) and
¤Δℓ = −�SFC(Δℓ − ΔℓSFC) . (6.14)

The slow frequency-based control does not aim to counter vibration in the lapse of

one oscillation. Instead, it focuses on the attenuation of vibrations over a large time

frame. It is therefore important that the changes of the parameter don’t introduce high

frequency oscillations in the system since the control strategy cannot promptly react

to these. To this end, the rate of change �SFC, the maximum wedge angle 
max,SFC,

and the maximum prestress displacement Δℓmax,SFC are chosen as small. However, not

unreasonably small that vibration reduction is not realized. The first two parameters

are found by trial and error. The maximum prestress value is approximated with the

transition estimate in Eq. (4.18). From the parameters of the passive system and the

amplitude of the excitation, the maximum value results in

Δℓmax,SFC =
�!(Ω1)Ω2

1
<2

223�
with �L(Ω1) =

�0

|21 − (<1 + <2)Ω2

1
|
. (6.15)
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Although the parameter �0 is found in Eq. (6.15), the exact value is not required.

Equation (6.15) is meant as an estimate for the maximum prestress value, accordingly

an estimate of the magnitude order of �0 is sufficient. The expression above yields the

minimal prestress displacement to ensure that the system sticks until Ω1.

For the identification, the sampling parameter Cs and the series length # have to be

counterbalanced. These parameters determine themaximal identified frequencyΩid,max

as well as the minimal change of the identified frequency ΔΩid. The latter affects the

resolution of the FFT. With the Nyquist-Shannon criterion, these values are given by

Ωid,max =
�
Cs

and ΔΩid =
2�
#Cs

. (6.16)

Low sampling times Cs lead to a larger frequency range, however, they also cause

low resolution in the FFT, i.e. large ΔΩid values. This is especially impairing in the

vicinity of the transition frequencies since the targeted stick-slip transition is not executed

accurately. A high time series length# helps improve the resolution of the FFT.However,

it increases the initial buffer time #Cs in which the oscillation frequency is not correctly

identified. These inaccuracies appear because at first the buffer in the identification

block is mostly filledwith zeros. Low# values, therefore, shorten this time and improve

the speed with which correct frequencies are identified. A counterbalancing of all these

properties is needed. However, since this control strategy orients itself to larger time

frames, the covering of the required frequency range and the resolution of the FFT have

priority over the initial buffer time.

The parameters for the slow frequency-based control are chosen as


max,SFC = 20
◦ , Δℓmax,SFC = 3.219 m, �SFC = 0.001 s

−1 , �0 = 0.01 N,

# = 256, Cs = 1 s, Ω1 = 0.892 rad/s, Ω2 = 1.122 rad/s .

The behavior in response to the rectangular impulse is presented in Fig. 6.14. Although

the control strategy is not designed for the transient response, it effectively reduces the

oscillation amplitudes. The amplitudes nearly vanish in the first 200 s of the simulation.

During the rectangular pulse, the amplitudes rise to 0.080m. At the endof the simulation,

an amplitude reduction of 91.83% is achieved. However, small oscillations remain in

the active system and have an amplitude of 0.049m.

Figure 6.15 depicts the sweep response of the slow frequency-based control. Although

the ideal change is not precisely realized, the control strategy has an advantageous

response. It follows the sticking system on the outer frequency range and in the vicinity
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Figure 6.14: Response of the slow frequency-based control to the rectangular pulse.

of the absorption it follows the passive system. Due to the changes in the wedge angle

during the transition between the sticking and slipping systems, oscillations in the

maximum amplitude are noted. Furthermore, a maximum amplitude of 0.180m is

noted. This results in a 91.11% amplitude reduction compared to the passive system.

With the targeted stick-slip transition, the resonance frequencies are avoided and the

advantages of sticking and slipping are combined.

Figure 6.15: Response of the slow frequency-based control to a sweep excitation.

The response of the slow frequency-based control to the application scenario is presented

in Fig. 6.16. The strategy results in a significant improvement on the passive system.

During the run-up phase, the control strategy shows a maximum amplitude of 0.154m,

which is 85.56% lower than the passive system. Since the maximum amplitude of the

passive system is larger, it is not able to realize full absorption during the nominal

operation range. In contrast, the amplitudes of the slow frequency-based control are

in the vicinity of zero. Both systems show the same response during the overload and

recovery phase and have amaximum amplitude of 0.045m. During the run-down phase,

the oscillation amplitudes rise again. The maximum amplitude in this range is higher
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than during the run-up phase and has a maximum value of 0.247m. This amplitude

equates to a 75.55% amplitude reduction compared to its passive counterpart.

Figure 6.16: Response of the slow frequency-based control to the application scenario.

6.5 Control Strategy Comparison
After investigating the control strategies separately, the focus is set on their comparison.

The comparison is carried out according to the aforementioned excitations. First, the

rectangular pulse is considered. Second, the sweep excitation is taken into account.

Finally, the strategies are compared in the application scenario.

Figure 6.17 portrays the comparison of the control strategies in response to the

rectangular pulse. The Skyhook Control shows the best results since its approach

attenuates vibrations faster. Additionally, it brings the system to a halt. In the beginning,

Figure 6.17: Comparison of the control strategies for the rectangular pulse.
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the adaptive multiple model control reduces the oscillations as well as the Skyhook

Control. However, at the end small oscillations remain. Nevertheless, it has the

advantage that it does not solely rely on damping. Therefore, a longer life span is

expected with the multiple model control. The slow frequency-based control takes

longer to mitigate the vibrations. However, large oscillations are reduced even though

this strategy was not designed for transient behavior. The amplitude of the Skyhook

Control in reaction to the rectangular pulse is smaller than the other control strategies

by a factor of 2.16 and 4.16 for the slow frequency-based control and the multiple

model control, respectively. In the end, the multiple model control and the slow

frequency-based control do not bring the system to a halt and small oscillations remain.

The comparison of the active control strategies’ response to the sweep excitation is

presented in Fig. 6.18. The slow frequency-based control yields the best response. It has

a maximal amplitude of 0.180m which is 46.14% lower than the Skyhook Control and

25.65% lower than the multiple model control. Furthermore, in the absorption range,

the slow frequency-based control achieves the lowest amplitudes. It uses vibration

absorption as its primary vibration reduction mechanism and only dissipates when the

oscillations are partly outside the 2Δ1-range. Outside the resonance and absorption

regimes, the control strategies yield approximately the same results.

Figure 6.18: Comparison of the control strategies for the sweep excitation.

Figure 6.19 shows the comparison of the active control strategies in the application

scenario. Due to the higher velocity, with which the structural resonances are passed

through, themaximum amplitudes during the run-up phase are smaller than in Fig. 6.18.

However, the qualitative behavior of the control strategies remains the same. The

slow frequency-based control still shows the lowest amplitudes. This establishes the

advantages of absorption and shifting structural resonances via sticking as effective

vibration reduction mechanisms. The second-best results are shown by the multiple

model control and the highest amplitudes are shown by the Skyhook Control. This
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is noted from the run-up to the recovery phase and confirms that dissipation is not

always the best vibration reduction strategy. During the overload phase, the slow

frequency-based control achieves the lowest maximal amplitudes of 0.045m. These are

92.28% smaller than the Skyhook Control and 71.32% smaller than the multiple model

control. The slow frequency-based control only shows a suboptimal response during the

run-down phase. During this phase, the oscillations of the slow frequency-based control

are 1.58 times higher than the Skyhook Control and 2.44 times higher than the multiple

model control. Considering that the slow frequency-based control shows overall the

lowest amplitudes, its behavior represents the optimal response.

Figure 6.19: Comparison of the control strategies for the application scenario.

6.6 Energy Investigations
The active control strategies introduce dissipation in a more targeted manner compared

to the passive system. This targeted dissipation yields lower amplitudes, however, too

much dissipation results in a shorter service life. Therefore, a counterbalancing between

amplitude reduction and life span is required. Since the control strategies suggested

in this work do not solely rely on dissipation, they are able to reduce vibrations with

a lower dissipated energy. Thus, achieving a longer damper service life and energy

savings with low vibrations amplitudes. To assess these qualities, the dissipated energy

and the input energy of the control strategies are investigated. First, the formulas

for the dissipated energy is derived. Second, the expression for the input energy is

formulated. Afterward, the formulas are used to evaluate the strategies in the three

excitation scenarios.
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The calculation of the dissipated energy �TWD,d(C) is derived from the dissipated power

%TWD,d(C). The latter is calculated from the product of the dissipative force �TWD,d

and the relative velocity ¤Grel = ¤G2 − ¤G1. The dissipated energy is associated with the

wear of materials. Increasing levels of dissipated energy lead to higher wear volume

[161]. This is especially relevant for friction dampers since surfaces are often rubbing

against each other. In the optimal case, dampers are able to reduce vibration with low

�TWD,d(C)-values. Lower values yield a longer damper life span. Considering Eq. (6.1)

and the time-dependent values 
(C) and Δℓ (C), the dissipative power results in

%TWD,d(C) = −�TWD,d(C)( ¤G2 − ¤G1) = −
2�23

(
2H(C) + Δℓ (C)

) (
1 + H2

G(C)
)

1 − �HG(C) sign( ¤G2 − ¤G1)
| ¤G2 − ¤G1 | . (6.17)

The dissipated power is always negative since mechanical energy is taken from the

system. This is confirmed by the terms above since the fraction in Eq. (6.17) is always

positive, as noted in section 6.2. From the expression above, the dissipated energy is

calculated by integrating the dissipated power above over time. This results in

�TWD,d(C) =
∫ C

0

%TWD,d(�)d� . (6.18)

Since concrete designs for the actuators are not considered, a conservative estimate for

the minimal energy consumption is approximated. To calculate the approximation, the

minimal mechanical power required by the wedge angle and the mechanical power

required by the prestress displacement are approximated. The input power of the

wedge angle is estimated by considering the minimal torque "
 needed to rotate the

outer flanks. This is determined by the minimal force #̃ to overcome the normal force

# and the lever arm ℓ
, see Fig. 6.20a. The pivot point is assumed at the transition

from the horizontal segments to the circular segments. The product of the moment

(a) (b)

Figure 6.20: Free body diagrams for the calculation of the necessary power and energy of (a) the wedge angel


 and (b) the prestress displacement Δℓ .
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"
 = #̃ℓ
 = #ℓ
 and the angular velocity of the outer segments ¤
 yields the power

associated with the angle 
. Since the prestress displacement is associated with a

portion of the spring force �23
, the mechanical power associated with this input is

directly calculated. The input power of the prestress displacement is determined by

considering the force �Δℓ = 23Δℓ and the velocity with which the surfaces are pressed

apart ¤H, see Fig. 6.20b. Since the circular transition segments are small, the lever arm is

approximated with

ℓ
 =
1 + sign(|G2 − G1 | − Δ1)

2

√
(|G2 − G1 | − Δ1) + H2 .

The dissipated power is thus given by

%inputs = %
 + %Δℓ = 2 max("
 ¤
, 0) + 2 max(-23Δℓ ¤H, 0) . (6.19)

Analogous to the dissipated energy, the input energy results from

�inputs(C) =
∫ C

0

%inputs(�)d� . (6.20)

Equation (6.20) has three implicit assumptions. First, since only the mechanical power

is used as the basis for the calculation, energy is only introduced with a displacement

of the contact surfaces or the rotation of the outer surfaces. Energy consumption

for the holding of a position is not considered. This is accurate for a self-locking

design. Furthermore, an increase in the input energy due to prestress changes, while

¤H = 0, is not considered since, again, only the mechanical power is taken into account.

Second, the use of the max-function considers only positive power values. Therefore,

energy recovery is not considered, yielding a more conservative estimate. Third, the

power associated with the angle considers only the two flanks in contact and only

the minimal resistance force. The additional force required to move the flanks with a

defined progression and the energy needed to move the flanks, not in contact, are not

considered. Nevertheless, Eq. (6.20) represents a lower limit for the input energy of

the control strategies. Furthermore, it allows the evaluation of the input energy of the

strategies in the absence of a specific actuator model.

The equations derived above are used to evaluate the control strategies with respect

to dissipated energy and input energy. First, the evaluations regarding the dissipated

energy are made for the rectangular pulse, the sweep excitation, and the application

scenario. Equation (6.18) is also applied to the passive system and compared to the

semi-active control strategies. Subsequently, the evaluations for the input energy are

116



6.6 Energy Investigations

presented for the control strategies and the aforementioned excitation.

Figure 6.21 shows the dissipated energy of the passive damper and the control strategies

for the rectangular pulse. The Skyhook Control Strategy dissipates 1.421 J and thus

dissipates the most energy. Furthermore, the dissipation is introduced in the first

106 s in a targeted manner. The second fastest control strategy is the multiple model

control which dissipates 1.043 J in 60 s. The slow frequency-based control dissipates

slightly more energy, 1.046 J, than the multiple model control. However, it requires

191 s, resulting in a slower strategy. The passive system does not reach a saturation level

and at the end of the simulations it has the lowest dissipated energy, namely 0.731 J.

Nevertheless, the main goal, vibration reduction, is not achieved since its vibration

amplitudes are much higher than the active variants, c.f. Figs. 6.4, 6.8 and 6.14. The

curves show that the control strategies are able to introduce damping in a more targeted

manner, which results in lower amplitudes in a shorter time. Taking the passive

system at the end of the simulation as a reference point, the dissipated energy of the

multiple model control, the slow frequency-based control, and the Skyhook Control are

respectively 42.78%, 43.06%, and 94.42% higher than the passive system.

Figure 6.21: Comparison of the dissipated energy for the rectangular pulse.

The dissipated energy for the sweep excitation is shown in Fig. 6.22. Once again the

Skyhook Control shows the highest dissipated energy. Over the whole sweep range, the

strategydissipates 21.365 J. Thehighest increase indissipated energy is observedbetween

the two eigenfrequencies. However, a change is noted in the rate of change in the curve

at 5e4 s. This is attributed to the phase change between the movement of the primary

and secondary mass, once the absorption frequency is crossed. The passive system has

the second-highest dissipation energy and two clear saturation levels, namely 7.321 J

and 15.635 J. These are attributed to the passage through the two resonance frequencies.

In the absorption range, the energy remains nearly constant. Themultiple model control

has the third-highest dissipated energy. It shows only one range, in which the dissipated
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energy increases substantially, and reaches the saturation level of 9.556 J. The control

strategy with the lowest dissipated energy is the slow frequency-based control. Similar

to the passive system it shows two saturation levels, but with noticeably lower energy

levels. The first saturation level has a value of 3.028 J, whereas the second has a level

of 3.457 J. The low dissipation is attributed to the foci of the control strategy, namely

vibration absorption and structural changes via sticking. Relative to the passive system,

the slow frequency-based control and the multiple model control respectively dissipate

77.89% and 38.88% less energy, whereas the Skyhook Control dissipates 36.74% more

energy than its passive counterpart.

Figure 6.22: Comparison of the dissipated energy for the sweep excitation.

Figure 6.23 shows the dissipated energy for the application scenario. The curves in

the application scenario have a similar progression. The largest increases in dissipated

energy are observed during the overload and recovery phases. This is mainly due to

the large oscillation amplitudes. Noticeable increases are also noted at the passages

Figure 6.23: Comparison of the dissipated energy for the application scenario.
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through resonances during the run-up and the run-down phases. The Skyhook Controls

remains the strategy with the highest dissipated energy, namely 583.016 J at the end

of the simulation. The multiple model control also has a high energy dissipation rate,

and dissipates 278.295 J throughout the simulation. The passive system and the slow

frequency-based control have similar results, namely 14.548 J and 12.592 J respectively.

Thus, the slow frequency-based control dissipates the least amount of energy. The

passive variant shows better results than the multiple model control since it relies on

absorption during the overload and the recovery phases. Compared to the passive

variant, the slow frequency-based control dissipates 13.44% less energy. In contrast, the

multiple model control and the Skyhook Control respectively dissipate 1812.90% and

3907.45% more energy relative to the passive system.

The minimal input energy is presented in Fig. 6.24 for the rectangular pulse. The

curves show a similar progression compared to the dissipated energy, c.f. Fig. 6.21. In

descending order of input energy, the Skyhook Control, the slow frequency-based

control, and the multiple model control consume respectively 1.968 J, 0.003 J, and

6.489e-4 J. Although the slow frequency-based control dissipates less energy than the

multiple model control, it uses more energy to vary the wedge angle and the prestress

displacement. This is due to the larger oscillations of the relative coordinate Grel = G2−G1

over a longer time period. These oscillations lead to an increase in the input power

by the prestress displacement. Apart from the Skyhook Control, it is noted that the

energies used by the control strategies of this work are lower than the dissipated energy.

Since fully active systems directly generate the necessary force to reduce oscillations, the

dissipated energy represents the minimal energy required by a such systems. Therefore,

this confirms the advantageof a semi-active systemover anactive system. Furthermore, it

shows that the Skyhook Control Strategy is not an optimal strategy for the proposed base

system. Compared to multiple model control, the input energy of slow frequency-based

control and Skyhook Control are higher by a factor of 4.61 and 3,033.17, respectively.

Figure 6.25 shows the input energy of the control strategies for the sweep excitation. The

form of the curves is the same as with the dissipated energy, however, the saturation

levels are different, c.f Fig. 6.22. Once again, the Skyhook Control consumes the

most energy, namely 16.521 J. The second highest energy usage is found in the slow

frequency-based control with 0.907 J. Requiring only 0.688 J, the multiple model control

shows the lowest energy consumption. A noticeable spike is noted in the input energy

of the slow frequency at the passage of the first resonance frequency. The main cause

for this energy spike and the strategy’s higher energy consumption is the input power

of the prestress displacement, which is caused by higher oscillation amplitudes of the

relative coordinate during the transitions between the sticking and slipping systems.
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Figure 6.24: Comparison of the input energy for the rectangular pulse.

Compared to the multiple model control, the input energy of the slow frequency-based

control and the Skyhook Control are higher by the factors 1.32 and 24.03.

Figure 6.25: Comparison of the input energy for the sweep excitation.

The last observation regarding the damper energy is presented in Fig. 6.26 and considers

theminimal input energy in the application scenario. The structure of the curves remains

similar to those in Fig. 6.23. The Skyhook Control, the multiple model control, and the

slow frequency-based control, respectively have a total input energy of 649.416 J, 32.235 J,

and 0.702 J. Due to the use of absorption during the overload and recovery phase, where

the oscillation amplitudes are largest, input energy of the slow frequency-based control

is lower than that of the multiple model control. Compared to the slow frequency-based

control, the input energy of the multiple model control and the Skyhook Control are

respectively higher by a factor of 45.953 and 925.803.

With the energy assessments of the control strategies, conclusions regarding the influence

of the strategies on thedamper’s service life and its energy costs arederived. TheSkyhook

Control shows the highest dissipated energy and the highest input energy. In all cases,
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Figure 6.26: Comparison of the input energy for the application scenario.

the input energy was higher than the dissipated energy. Therefore, this strategy is not

ideal for the base system since it leads to short life spans and high energy costs. The

multiple model control shows a medium energy dissipation. This is coupled with a low

energy requirement. The strategy, therefore, results in an acceptable service life with

low energy costs, provided the design is self-locking. Finally, the slow frequency-based

control provides a solutionwith low energy dissipation and low input energy. Therefore,

the strategy results in a long service life with low energy consumption.

6.7 Control Strategy Assessment
This section presents an assessment of the control strategies. It condenses the results of

the excitation simulations and evaluates the strategies’ suitability for vibration reduction.

First, the Skyhook Control is addressed. Subsequently, the multiple model control is

evaluated. The section is closedwith the assessment of the slow frequency-based control.

The Skyhook Control is a well-investigated control strategy, and it is taken as a reference

for the developed strategies. It maximizes damping whenever possible and prevents

exacerbating oscillations. The best performance of the control strategy is found in the

response to the rectangular pulse. Apart from the ranges where the passive system

utilizes absorption, the Skyhook Control shows an overall better response than the

passive system. The disadvantages of the system are noted in the overload phase of

the application scenario. The changes in the excitation amplitude lead to changes in

the maximum input values. This extended input range proves counter-effective for

vibration reduction. The strategy introduces more damping when absorption is the

ideal damping mechanism, which leads to higher amplitudes. Energy-wise, the strategy
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has high energy dissipation and high energy consumption.

The adaptive multiple model control simulates three models in parallel and decides

which is better suited for vibration reduction. The models are measured with a

performance index, which takes the history of the vibration mitigation into account.

Consequently, the model with the best performance index is chosen. The strategy

is effective at mitigating transient excitations. However, as seen in Fig. 6.9, small

oscillations remain. These oscillations are manageable since they are small and material

damping present in practical applications helps mitigate such behavior. In the sweep

response, the control strategy shows the second-best results. It has low amplitudes in

comparison to the Skyhook Control and the passive system, however, it does not achieve

absorption. The control strategy does not recognize this as the most effective vibration

reduction mechanism. Other performance functions and parameters may offer better

results. Furthermore, the control strategy is computationally costly since three models

are simulated in parallel. However, the strategy has the advantage that it can adapt to

unforeseen circumstances, e.g. polyharmonic and nonharmonic excitations. Finally, the

strategy yields good results as long as the actuation models accurately represent the

controlled system. For practical applications a highmodel accuracy and a corresponding

identification are required. Regarding the energy investigations, this strategy results in

moderate energy dissipation and low energy consumption.

The slow frequency-based control is designed for the stationary response of the system.

To this end, it measures the position of the secondary mass, identifies the oscillation

frequency, and with it determines the input parameters. The parameters are chosen

to realize a targeted change between sticking and slipping. It has acceptable results

in transient processes. It reduces the system’s vibration, however, small oscillations

remain. As with the multiple model control, these oscillations are manageable. Its

sweep response is nearly optimal. The strategy avoids resonances and also achieves

absorption. The advantage of the latter vibration reduction mechanism is noted in the

overload phase of the application scenario. The vibrations remain smaller than the

maximal amplitudes during the passage through resonance even though the excitation

amplitude increases tenfold. This confirms the advantages of control strategies that are

not solely dissipation-focused. It is also advantageous in slow-changing processes or

in situations where the frequency characteristics of the process are known. In these

cases, the frequency of the absorber is tuned to generate the best possible response.

Furthermore, the quality of the strategy depends highly on the identification of the

oscillation frequency. This can be problematic when more than one excitation frequency

or excessive noise are involved. Energy-wise, the energy dissipated and its minimal

input energy are low.
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This chapter concludes this work and gives a starting point for future investigations.

First, the fulfillment of the thesis purposes and the sub-objectives stated in chapter 1 is

assessed. The most important findings are reiterated. After the studies in this work are

addressed, starting points for further investigations are proposed. These starting points

are given according to the proposed sub-objectives.

The first sub-objective considered the design of passive dry friction dampers with

piecewise-defined contact surfaces. An effective alternative to conventional dampers

was suggested. The tuned wedge damper utilizes vibration damping in combination

with absorption. However, it decouples these two vibration reduction mechanisms.

Furthermore, the damper has the advantage of robustness, i.e. the scalability of the

frequency response function with respect to the intensity of the excitation. Low

amplitudes were found for high friction coefficients, however, such high values have a

detrimental effect on the lifespan of the damper. Furthermore, in situations in which

the material pairing is subject to additional restrictions, the increase of the friction

coefficient is not a reliable choice. Low vibration amplitudes were reliably obtained via

a simultaneous optimization of the system’s tertiary stiffness and wedge angle.

The experimental validation of the theoretical investigations into passive systems with

piecewise-defined contact surfaces is the focus of the second sub-objective. A prototype

of the tuned wedge damper system was designed and tested with sweep excitations.

The experiments validated the qualitative behavior concerning the variation of the

tertiary stiffness, the friction coefficient, the prestress displacement, and the excitation

force amplitude. The most important finding is the validation of the decoupling of

damping and absorption. Some of the theoretical effects, however, were not observed in

the experiments. For example, solutions with quasiperiodic or chaotic behavior were

not found. Ranges with multiple solutions were also not verified. The sum of the

experimental investigations offers the first proof of concept of the implementation of the

tuned wedge damper as an practical vibration reduction mechanism.
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The design of active dry friction dampers with piecewise-defined contact surfaces

was considered in the third sub-objective. To this end, two strategies that do not

solely focus on damping were proposed. Both control strategies show overall better

results than a damping-driven strategy. The first strategy, the multiple model control,

reduces vibrations by combining the three vibration reduction mechanisms damping,

absorption, and shifting of structural resonances via sticking. It has a high adaptability

degree, however, this comes with a high computational cost. The second strategy, the

slow frequency-based control, changes its parameters depending on the oscillation

frequency. It achieves the best results for a sweep excitation, namely the lowest maximal

amplitudes while retaining the absorption frequency. Since both strategies do not

focus on damping, they contribute to the enhancement of the life span of active friction

dampers. Furthermore, they confirm that vibration reduction devices, that combine

different vibration reduction mechanisms, achieve overall better results.

This thesis fulfills its main purpose, namely the design and validation of dry friction

dampers that rely not solely ondissipation, but instead consider vibration absorption and

stick-slip transitions to reduce vibrations. The passive investigations and experiments

provide a damper that achieves this by effectively using piecewise-defined contact

surfaces. Additionally, the investigations of active designs yield two active control

strategies. The adaptive multiple model control unites the three vibration mechanisms,

whereas the slow frequency-based control strategy does not rely on damping, but

instead focuses on absorption and resonance avoidance with a targeted stick-slip

transition. These investigations provide a starting point for additional investigations

into mechanisms that combine the vibration reduction mechanisms instead of focusing

on one single strategy.

Considering future work, the passive damping devices only took into account external

excitations. The behavior of the tuned wedge damper with self-excited or parameter

excited oscillations was not considered. It is important to assess the damper’s

effectiveness with different types of excitation. In addition, the damper’s effectiveness in

system with multiple degrees of freedom is of interest. To this end, the damper’s design

as well as its placement should be considered. Taking into account polynomial outer

segments is an additional modification to consider. These segments can offer additional

damping when it is most required, thus, leading to a more robust damper with respect

to the excitation amplitude. Since the damper does not solely rely on damping, it saves

energy. The application of the tuned wedge damper within a system force-flow should,

therefore, be assessed. This placement could improve machine efficiency.
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Extensions of the experimental investigations include more parameter variations and

the quantitative reproduction of the experimental results. The reproduction requires

a minimal model with damping and an identification of the damping present in the

prototype. Another extension is the thorough investigation of the nonperiodic solutions

and multiple solution ranges in an experimental manner. To this end, a test bench with

less damping is required, e.g. a test bench with air bearings. A more practical design

of the damper, which is closer to series production, is also of investigative value. This

has the advantage that it can be used in more realistic situations, e.g. buildings, bridges,

turbines, wheel suspensions, and drive trains.

The investigations into the active tuned wedge damper can also be expanded by

taking into account different types of excitations, i.e. self-excited and parameter excited

oscillations. Furthermore, the full vibration amplitude reduction can be exploited by

applying the control strategies to a damperwith optimized parameters. Additionally, the

influence of different performance functions, parameter combinations, and additional

models could improve the vibration reduction of themultiple model control. Additional

scenarios should also be taken into account. For example, the damper can be placed

in a drive train and different driving cycles can be tested. The ability to dampen

vibrations as well as save energy in these applications should be assessed. To improve

the approximation of the consumed energy, actuation models should be taken into

account. Lastly, the experimental design of the tuned wedge damper, as well as the

experimental validation of the control strategies, can offer a proof of concept for the

practical implementation of the active tuned wedge damper.
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A Integration of Piecewise Terms of the
Tuned Wedge Damper

This appendix handles the integration of the piecewise terms in the tuned wedge

damper. The starting point for the integration is the tuned wedge damper force in its

nondimensionalized and modified form

5̃TWD,lin =0HHG + 1HG + 2H(H2

G + 1)sgn(G′
2
− G′

1
) + 3(H2

G + 1)sgn(G′
2
− G′

1
)

− 40 tan
2 
(G2 − G1) .

(A.1)

The functions H and HG are approximated with a zero order Taylor series in A. This is

applicable since A = O(�) and all higher order terms are irrelevant for the first order

averaging method. This simplification results in Δ2 = Δ1 and

H ≈

− tan 
(Grel + Δ1), Grel < −Δ1

0, |Grel | < Δ1

tan 
(Grel − Δ1), Δ1 < Grel

and HG ≈

− tan 
, Grel < −Δ1

0, |Grel | < Δ1

tan 
, Δ1 < Grel

. (A.2)

In an exemplary manner, the terms 50 = 0HHG are considered. However, the same

procedure is applied for all the terms in 5̃TWD,lin. The piecewise definition of H and HG

results in the piecewise defined force

50 =


50,1 , Grel < −Δ1

50,2 , |Grel | < Δ1

50,3 , Δ1 < Grel

= 0


tan

2 
(Grel + Δ1), Grel < −Δ1

0, |Grel | < Δ1

tan
2 
(Grel − Δ1), Δ1 < Grel

. (A.3)

The transition points where the relative displacement Grel surpasses the Δ1 thresholds

are identified. Since these terms are integrated over the fast oscillating phases, the

transitions of Grel are identified in dependence of !8 . To this end, the Van der Pol
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Figure A.1: Transition of the relative coordinate G
rel
= �8(A28 − A18) sin!8 .

transformation and the modal decoupling is applied to the relative coordinate. In

dependence of the considered eigenfrequency �08 , this yields

Grel,i = �8(A28 − A18) sin!8 . (A.4)

The transitions of the relative coordinate are visualized in Fig. A.1. Using the symmetry

of the sine function the angles !08 are identified as

!01,8 = arcsin

(
Δ1

(A28 − A18)�8

)
, !02,8 = � − !01,8 ,

!03,8 = � + !01,8 , and !04,8 = 2� − !01,8 .

The force 50 is multiplied by sin!8 or cos!8 . The average of these products over one

period is divided into four integrals. The cosine product results in

�0,cos =
1

2�

∫
2�

0

50 cos!8d!8

=
1

2�

( ∫ !01,8

−!01,8

50,2 cos!8d!8 +
∫ !02,8

!01,8

50,3 cos!8d!8

+
∫ !03,8

!02,8

50,2 cos!8d!8 +
∫ !04,8

!03,8

50,1 cos!8d!8

)
=

1

2�

( ∫ !02,8

!01,8

tan
2 
(�8(A28 − A18) sin!8 + Δ1) cos!8d!8

+
∫ !04,8

!03,8

tan
2 
(�8(A28 − A18) sin!8 − Δ1) cos!8d!8

)
= 0 .

(A.5)
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Analogously, the sine product yields

�0,sin =
1

2�

∫
2�

0

50 sin!8d!8

=
1

2�

( ∫ !02,8

!01,8

tan
2 
(�8(A28 − A18) sin!8 + Δ1) sin!8d!8

+
∫ !04,8

!03,8

tan
2 
(�8(A28 − A18) sin!8 − Δ1) sin!8d!8

)
=

4 tan
2 


�8�

(
Δ1

√
(A18 − A28)2 �2

8
− Δ2

1
+ �2

8 (A18 − A28)2 arcsin

(
Δ1

(A18 − A28)�8

))
.

(A.6)

The procedure described above is applied to all the terms in 5̃TWD,lin. Together with

the average of the excitation, these terms yield the averaged differential equations, i.e.

Eqs. (4.29) and (4.30).
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The reduction of vibrations in machines, plants, 

and buildings is a common task in engineering, 

since, in the worst case, large vibrations cause 

system failure. The reduction of vibrations yields 

an increase in the life expectancy, safer systems, 

and nancial gains. It is therefore essential to 

design effective vibration dampers.

This work considers dampers that do not solely 

focus on a single vibration reduction strategy but 

instead combine them to achieve optimal results. 

The capabilities of conventional dry friction 

dampers are expanded by taking into account 

continuous piecewise dened contact geome-

tries. This leads to friction dampers that change 

their behavior depending on the oscillation 

amplitude. The device in this work, the tuned 

wedge damper, introduces damping at high 

oscillation amplitudes and takes advantage of 

absorption at low oscillation amplitudes. The 

device is investigated numerically and analytically. 

Additionally, a damper prototype is constructed 

and experiments are performed to validate the 

damper behavior. An active variant of the tuned 

wedge damper is also considered. Two novel 

control strategies are designed. These are compa-

red to a state-of-the-art control strategy for dry 

friction dampers in transient, quasistationary, and 

application scenarios.
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