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ABSTRACT

In this work, we will identify a novel relation between Smoothed Particle Hydrodynamics (SPH) and explicit large eddy simulation using a
coarse-graining method from non-equilibrium molecular dynamics. While the current literature points at the conclusion that characteristic
SPH issues become restrictive for subsonic turbulent flows, we see the potential to mitigate these SPH issues by explicit subfilter stress model-
ing. We verify our theory by various simulations of homogeneous, isotropic turbulence at Re ¼ 104 and compare the results to a direct
numerical simulation [T. Dairay et al., “Numerical dissipation vs subgrid-scale modelling for large eddy simulation,” J. Comput. Phys. 337,
252–274 (2017)]. Although the simulations substantiate our theory, we see another issue arising, which is conceptually rooted in the particle
itself, termed as particle duality. Finally, we conclude our work by acknowledging SPH as a coarse-graining method for turbulent flows,
highlighting its capabilities and limitations.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0105104

I. INTRODUCTION

Since its first introduction for astrophysical flow problems by
Lucy and Gingold and Monoghan in 1977,2,3 the success of Smoothed
Particle Hydrodynamics (SPH) as a viable Lagrangian method in the
Computational Fluid Dynamics (CFD) community is undeniable. In
the last decades, there was a considerable research effort to increase
the fundamental maturity of the method, summarized in several
reviews,4–9 which was in parallel accompanied by progress regarding
applications of higher complexity, e.g., Refs. 10–12.

One of the most fundamental problems of classical Lagrangian
SPH is that it suffers from zeroth order errors, which result in a sub-
stantial amount of noise compared to grid based Eulerian meth-
ods.13,14 Physically, this noise causes excessive dissipation13–16 by
numerically induced small scale vorticity.16 Although it could already
be hypothesized based on the work of Ellero et al.15 that this might
become a severe issue for subsonic turbulence, a rigorous and detailed
analysis proving this fact for forced homogeneous, isotropic turbulence
(HIT) was presented in the seminal work of Bauer and Springel.13 To
date, the shortcomings of SPH for subsonic turbulence as discussed by
the authors persist that, namely, large scale turbulent structures can be
qualitatively captured but at comparably high computational cost

taking alternative CFD methods into account. This is quite unsatisfac-
tory given that turbulence is a key aspect of most fluid flows.

However, it might be argued that the results obtained by Bauer
and Springel13 are the consequence of a missing turbulence model and
that they are only valid for underresolved Direct Numerical
Simulations (uDNS). There were several publications on turbulence
modeling in SPH,17–23 but most of them either show a marginal
improvement or are rather inconclusive for three dimensional sub-
sonic turbulence. The latter can be attributed to the fact that the mod-
els are tested only with scarce validation runs, on setups which contain
complex boundaries adding other SPH specific uncertainties on top of
the actual turbulent flow24 or are validated for two dimensional turbu-
lence, which behaves qualitatively different25 and where the use of
usual turbulence closure models is unjustified, e.g., Refs. 26 and 27. In
our opinion, the most promising approach so far was presented in the
pioneering work of Di Mascio et al.22 and only recently extended by
Antuono et al.23 In these works, the authors explore SPH from a Large
Eddy Simulation (LES) perspective, which represents a natural option
as already noticed three decades ago.28 Despite the fact that the derived
SPH–LES approach with its various additional terms is an important
step for SPH toward turbulent flows, both works do not evaluate the
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foundations of the classical LES subfilter stress (SFS) in a SPH frame-
work, which is the central quantity in LES. In our opinion, the latter
objective is vital, because the classical Lagrangian SPH features a tur-
bulent kinetic energy deficit,13 which questions the intention of intro-
ducing mostly dissipative SFS models from the beginning.29

The work presented in this paper focuses on connecting explicit
LES and SPH with a coarse-graining method from Non-Equilibrium
Molecular Dynamics (NEMD). Hence, this study can be viewed as a
sequel of our recent publications.30,31 We will demonstrate that the
only additional term emerging from our theory is the SFS term as it is
known from Eulerian LES methods. This is contrary to the statement
of Di Mascio et al. concluding that a proper LES interpretation of SPH
necessitates the consideration of additional SPH exclusive terms,
though the authors ascertain that these terms play a minor role.22,23

Consequently, we will be able to discuss the rationality of SFS models
for the SPH simulation of subsonic turbulent flows. We are not con-
sidering further heuristic noise-mitigating techniques. Most impor-
tantly, our work is motivated by the following central question: Can
resolved large scale structures profit from the reduction in SPH typical
small scale noise by explicit use of SFS models?

In order to elaborate this hypothesis, this paper is structured as
follows:We start with a short review of the main characteristics of sub-
sonic HIT and how the large scale dynamics of such turbulent flows
can entirely be described by coarse-graining regularization of the fluid
dynamic balance equations.32 This technique is most commonly
known as LES. Then, we will relate this coarse-grained picture of sub-
sonic turbulence to SPH. We constitute that SPH can be viewed as a
Lagrangian quadrature technique for the governing equations of
explicit LES and discuss the significant implications of this approach.
To verify our theory, we will subsequently present various results of
subsonic HIT simulations at Re ¼ 104 and compare the results to a
DNS solution reported in Ref. 1. Finally, we will draw a conclusion on
the rationality of SFS models in SPH.

II. LES: COARSE-GRAINED DYNAMICS OF SUBSONIC
TURBULENT FLOWS

Despite the omnipresence and extraordinary beauty of turbulent
flows, a comprehensive theory is still missing. However, it is agreed by
the fluid dynamics community that the concept of the energy cascade is
an important cornerstone of turbulence theory.32 The cascade process
was metaphorically described by Richardson33 in 1922 for the first time,
before it was quantified for incompressible HIT by Kolmogorov,34

Obukhov,35 Onsager,36 and Heisenberg37 about 20 years later. For fully
developed turbulence, it was already demonstrated back then that, in a
statistically averaged sense, a range of large scales exists in which the
kinetic energy of velocity fluctuations of a specific wavenumber, namely,
E(k), is transferred from larger to smaller scales in the absence of viscous
dissipation effects. This range is known as inertial range32 and its scaling
characteristics of

EðkÞ � k�5=3 (1)

serves as an important benchmark for CFD solvers to prove their
capability to reproduce large scale dynamics of strongly subsonic tur-
bulent flows, e.g., Refs. 1 and 13. In contrast, latest research activities
on strongly subsonic HIT focus on the smallest scales of the cascade
process, namely, the dissipation range and beyond.38–43 Among others,
it has rigorously been argued by Sreenivasan and Yakhot that,40 with

the aid of a novel anomalous scaling theory, the actual smallest turbu-
lent length scale with wavenumber k1 falls below the Kolmogorov
scale with kg. Another example is the importance of thermal fluctua-
tions beyond the classical dissipation range, i.e., kg < k < kmfp with
kmfp denoting the wavenumber of the mean free path, eventually lead-
ing to a EðkÞ � k2 scaling.41–43 Overall, all these insights can be vividly
condensed in the turbulent kinetic energy spectrum as depicted in
Fig. 1, highlighting the different turbulent regimes.

Although all scales are of significant importance for a holistic
view of HIT, based on the work of Bauer and Springel,13 we can
already conclude that classical Lagrangian SPH struggles to directly
resolve turbulent small scale dynamics. Hence, it seems more conve-
nient to combine SPH with a coarse-grained model, which intrinsically
focuses on the turbulent large scales with its inertial range characteris-
tics [Eq. (1)]. This approach is more likely to be compatible, as the
feedback of the smallest scales only has to be modeled and not
resolved. A coarse-grained model of this kind can be derived by means
of a technique from the Non-Equilibrium Molecular Dynamics
(NEMD) community, as we demonstrated in Ref. 31. In the following,
we will shortly summarize the main ideas of this generalization of
Hardy’s theory from 1982.44

The key aspect of the Hardy theory is that it transfers arbitrary
Lagrangian particles into coarse-grained particles by appropriate aver-
aging, satisfying axiomatic conservation properties scale indepen-
dently. The averaging is mathematically accomplished by the
introduction of a normalized, symmetrical, positive, and monoto-
nously decaying functionWh with compact support suppfWhg � R3,
in a short kernel. It is assumed that the latter is spherical and its spatial
extent is quantified by the scalar index h 2 Rþ. Originally, as depicted
in Fig. 2, the Hardy theory was used to link the dynamics of discrete
molecules and individual fluid elements governed by their continuum
balance equations, e.g., Navier–Stokes for Newtonian flows. Even
more important for this work is the fact that the Hardy theory can be
generalized to a continuous set of Lagrangian particles as well, i.e., fluid
elements (Fig. 2). This generalization leads to the governing equations
of coarse-grained superfluid elements, which for h ¼ const are
completely equivalent to the governing equations of LES. The latter
represents a deterministic fluid flow model, which inherently focuses

FIG. 1. Schematic of the turbulent kinetic energy spectrum for fully developed H IT
in the strongly subsonic regime, including the thermal range beyond the classic dis-
sipation range according to Ref. 41.
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on scales above the kernel size and is able to capture the turbulence
cascade.32 Thus, we interpret it as a physical description, which
matches well with the SPH image for subsonic turbulence provided by
Bauer and Springel.13

Although this LES perspective based on Lagrangian particles
requires an additional mathematical effort compared to the common
commutable filtering operation,45 it reveals a striking similarity
between LES and SPH. A relation between the latter was already
noticed 30 years ago by Bicknell,28 but we take the view that our per-
spective on LES vividly strengthens this point. As a common feature,
both methods perform a coarse-graining of Lagrangian particles by
means of a kernel and we will use this property in Sec. III to argue that
SPH can be reinterpreted as a Lagrangian quadrature technique of the
governing equations of LES.

However, before we proceed with this objective, we will first con-
centrate on a fluid flow model, which is, in general, capable to describe
isothermal, strongly subsonic HIT. Therefore, we select a Newtonian,
barotropic fluid flow completely specified by its density, pressure, and
velocity field, namely, q; p, and v, and apply the Hardy theory to it as
detailed in Ref. 31. With x 2 R3, we denote an individual kernel cen-
ter position and its corresponding support is abbreviated as
Vx :¼ suppfWhg. Positions of specific Lagrangian particles are repre-
sented by y 2 R3. Furthermore, we assume a constant kinematic vis-
cosity � ¼ const and Mach number Ma< 0.3. The latter implies that
we can simplify the viscous stress term to div½svisc� ¼ div½2�qD� as
r � v ’ 0,46,47 with D denoting the symmetric strain rate tensor.
Finally, the considered LES model in its Lagrangian form reads

�qðx; tÞ ¼
ð
Vx

qðy; tÞWhðx � yÞ dy; (2a)

�q
d~v
dt
ðx; tÞ ¼ �

ð
Vx

rypðy; tÞWhðx � yÞ dy

þ
ð
Vx

divy 2�qD½ �ðy; tÞWhðx � yÞ dy � divx sSFS½ �ðx; tÞ;

(2b)

�pð�qÞ ¼ pref þ K
�q

qref
� 1

� �
; qref ; pref ;K 2 Rþ: (2c)

Equations (2a)–(2c) represent the averaged continuity equation,31 the aver-
aged momentum transport equation, and a linear barotropic equation of
state (EOS) with qref ; pref &K as constants. These describe the reference
density of the strongly subsonic flow, the reference pressure, and a stiffness
constant, which are highly dependent on the problem. Their choice will be
specified in Sec. IV. Furthermore, from Eq. (2a), the meaning of the over-
line notation for an arbitrary field f can be deduced. It describes a spatial
average over a superfluid elementVx of size�h, namely,

�f ðx; tÞ ¼
ð
Vx

f ðy; tÞWhðx � yÞ dy; (3)

with dy as the volume differential of a Lagrangian fluid element.
Moreover, the momentum transport equation (2b) employs a density-
weighted averaged velocity ~v over Vx as indicated by the tilde notation.
Generally, this density-weighted average for a field f is termed Favre
average,48,49 although it was already suggested by Reynolds50 in 1895.
It is defined as

~f ðx; tÞ ¼ qf ðx; tÞ
�qðx; tÞ : (4)

The use of Favre averages is not mandatory but handy, as it circum-
vents correlation terms related to the density field.49 It is important to
distinguish between quantities according to Eqs. (3) and (4), which
refer to superfluid elements in the LES framework and fluid element
quantities, which are simply noted without an overline or tilde.
Additionally, as a consequence of the coarse-graining regularization of
the balance equations by Eq. (3), an extra term divx½sSFS�ðx; tÞ appears
in Eq. (2b).31,32 It is the contribution from scales below Vx to the
momentum transport of superfluid elements. The SFS tensor sSFS can
be written as covariance tensor of the velocity field31

sSFSðx; tÞ ¼
ð
Vx

qðy; tÞðvðy; tÞ � ~vðx; tÞÞ

� ðvðy; tÞ � ~vðx; tÞÞTWhðx � yÞ dy; (5)

FIG. 2. Schematic of consecutive application of Hardy theory to different particle groups. Using a spherical kernel with size �h, smaller particles can be transferred into
coarse-grained particles by appropriate averaging. As a consequence, axiomatic conservation properties, e.g., mass, momentum, and energy, are scale-independently
satisfied.
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which is an interesting representation as the discretized version of Eq.
(5) localizes flow subdomains, where SPH struggles with accurate
approximations.30 Due to its relevance for this study, we will elaborate
on this in more detail in Sec. IIIB.

Finally, it might be surprising that the averages on the right hand
side of the transport equations in Eq. (2) are explicitly noted for each
Vx and not abbreviated by Eq. (3). By this, we intend to emphasize
that we follow the philosophy of explicit LES methods, e.g., Refs. 51
and 52. Contrary to the usual procedure in explicit LES, where the
nonlinear convective term is explicitly filtered, the filter is explicitly
applied to the right hand side of the transport equations. This is due to
the Lagrangian perspective we take, in which the convective term is
not directly considered but rather a consequence of the individual
forces on the right hand side of Eq. (2b).

III. SPH AS A LAGRANGIAN QUADRATURE
OF EXPLICIT LES

As explained in Sec. II, the governing equations of LES can gener-
ally be derived by coarse-graining of Lagrangian fluid elements using
the Hardy theory from NEMD. This explains the conceptual similarity
of LES and SPH, which becomes also evident from Fig. 2, being a
reminder of how SPH is often vividly introduced, e.g., in the work of
Price.6

The objective of this section is to argue that SPH should be gener-
ally viewed as a Lagrangian quadrature technique for the governing
equations of explicit LES. This general fluid dynamic framework
includes the kernel concept from the beginning and requires identical
to SPH a joint limit for formal convergence,53 in which the ratio of fil-
ter width to grid spacing D=Dl !1 and D! 0.52 In the following,
we will present the resulting SPH model and discuss the implications
of the explicit LES perspective.

A. The SPH–LES model and its implications

Decomposing the fluid domain into a finite number of
Lagrangian SPH particles i 2 f1; …; Ng that are connected to the
kernel center positions, i.e., 8i 2 f1; …; Ng : xi ¼ yi, one can
derive the final SPH model. The discretization procedure of Eq. (2)
is detailed in the Appendix A [Eqs. (A3), (A10), and (A16)]. It is
important to highlight that the SPH particles only have to be
Lagrangian representatives of superfluid elements Vx with the arbi-
trary length scale h instead of fluid elements. This is a significant dif-
ference to the usual SPH approach because traditionally SPH
particles suffer from pseudo-Lagrangian behavior at finite resolu-
tion.30,54 For an individual particle i with j 2 f1; …; Nngbg neigh-
bors, the model reads

�qi ¼ Mi

XNngb

j¼1
Wh;ij ¼

Mi

Vi
Vi :¼ 1

XNngb

j¼1
Wh;ij

; (6a)

�qi
d~v i
dt
¼ �

XNngb

j¼1
ð�pj þ �piÞrWh;ijVj þ 2ð2þ nÞg

�
XNngb

j¼1

ð~v i � ~v jÞ � ðxi � yjÞ
ðxi � yjÞ

2 rWh;ijVj � div sSFS½ �i; (6b)

�pið�qiÞ ¼ pref þ K
�q i

qref
� 1

� �
; qref ; pref ;K 2 Rþ; (6c)

and the particle trajectories follow from the kinematic condition

dxi
dt
¼ ~v i: (7)

Formally, the emerging system of Eqs. (6) and (7) is identical to the
SPH discretization of the weakly compressible Navier–Stokes equa-
tions (WCSPH) except for the SFS term div½sSFS�i in Eq. (6b). The lat-
ter is a direct consequence of the coarse-graining at the arbitrary
kernel scale h, compensating for subkernel effects. Contrary, in tradi-
tional SPH, the choice of the scale h is merely a matter of convergence.
We understand this as a physically convincing argument, going
beyond empty formalities, to state that SPH should be understood as a
Lagrangian quadrature technique intrinsically connected to explicit
LES. Then, from this LES perspective, deficits introduced at the kernel
scale for a specific choice of h could potentially be compensated by a
proper modeling of the SFS tensor sSFS in Eq. (2b). We believe that
empirical evidence for this reconsideration is also given by the fact
that already in the pioneering SPH works of Lucy and Gingold and
Monoghan,2,3 artificial damping terms were used. These can be inter-
preted as the first SFS models accounting for subkernel deficiencies.
Eventually, the reinterpretation of SPH as an intrinsic Lagrangian
quadrature of explicit LES comes with two significant implications:

1. Implication: Ideally, the physical resolution of SPH is limited by
the kernel scale of Vx or more precisely the kernel diameter DK.
Thus, SPH is unsuited as a DNS method.

2. Implication: Deficits introduced below the kernel scale of Vx

might be resolved by explicit consideration of the SFS term, from
which structures above the kernel scale of Vx could profit.

While the first implication can be easily understood and there is
already empirical evidence proving it, e.g., the work of Bauer and
Springel,13 the second implication should be interpreted as a working
hypothesis, which we will test by numerical experiments in Sec. V.
However, before this, we will recapitulate the current knowledge about
the origin of numerical dissipation in SPH in Sec. III B and explain its
relation to the SFS.

B. Numerical dissipation and the role of the SFS

In this paragraph, we will summarize how numerical dissipation
in kernel-based particle methods like SPH emerges and how it can be
localized by the usage of Hardy theory again. Exemplarily, we explain
the coherencies with the aid of a SPH solution of the forced two
dimensional turbulent Kolmogorov flow of Rivera et al.55,56 This was
the main topic of our work in Ref. 30, which subsequently is summa-
rized. As the discussion will reveal, the current understanding of
numerical dissipation in SPH is rather heuristic than rigorous com-
pared to conventional grid-based CFD methods. The most important
metrics for the analyzed Kolmogorov flow are depicted in Fig. 3 and
non-dimensionalized with the absolute maximum value of the viewed
snapshot.

Although the Kolmogorov flow can be generally reproduced by
proper calibration with particle discretization methods in terms of the
energy characteristics, the analysis shows that the dissipation rate is
strongly overpredicted. From current understanding, the excessive
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numerical dissipation is rooted in the increasing particle disorder at
higher Reynolds number causing local SPH particle transport perpen-
dicular to the main flow direction.15 The resulting unphysical momen-
tum transport prevails especially in zones with large velocity gradients
and introduces artificial vorticity fluctuations.16 For the considered
problem, exemplary evidence is given by the noisy vorticity field in
Fig. 3(a). Since the turbulent flow is periodic, it can be analytically
argued that the vorticity fluctuations x0 will quadratically increase the
averaged dissipation rate e according to57

e ¼ �hx02iV ¼ 2�
ð1
0
k2EðkÞ dk; (8)

with h�iV denoting a volume average. Moreover, based on Eq. (8), the
vorticity fluctuations, causing numerical dissipation, are evidently
linked to the kinetic energy spectrum E(k). An analysis of the extracted
spectrum in Fig. 3(b) for the Kolmogorov flow demonstrates that the
scalings of the inverse and direct cascades known from the experiment

can be matched above the kernel scale (k < 2p=DK).
56 Merely, the sat-

uration of E(k) below the kernel scale (k > 2p=DK) deviates from the
ideal form. Since dissipation takes place at small scales due to the �k2
weighting of E(k) in Eq. (8), it seems likely that this saturation repre-
sents the spectral signature of numerical dissipation. In accordance
with Fig. 1, we will term this bottleneck as artificial thermal range or
artificial thermalization. It should be emphasized that this spectral sig-
nature was also observed in other works, e.g., Refs. 13, 22, and 23.

The upper paragraph should be understood as a heuristic
description of numerical dissipation in kernel-based particle methods
as SPH. However, it does not locally explain how numerical dissipa-
tion in the flow field takes place. Motivated by this deficit, we applied
Hardy theory to a numerical particle set in Ref. 30 deriving a tensor,
namely, a discrete approximation of the SFS tensor, which was shown
to serve this purpose. It reacts to large velocity gradients and particle
noise, which are believed to be the root of the numerical dissipation.
In Ref. 30, the tensor was termed as molecular stress, since we
were not aware of its connection to explicit LES. Interestingly, in

FIG. 3. Metrics of a SPH solution for a two dimensional turbulent Kolmogorov flow according to Rivera et al.55,56 (a) Snapshot of the nondimensional, noisy vorticity field, (b)
kinetic energy spectrum, (c) snapshot of the nondimensional Frobenius norm of the SFS tensor, and (d) nondimensional bivariate probability density of the Frobenius norm of
the SFS tensor (abscissa) and vorticity (ordinate).
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kernel-based particle methods, this tensor can always be estimated,
even if no LES perspective is employed. Considering the fact that two
different spatial resolution scales exist, i.e., the kernel diameter DK and
the particle size Dl < DK , a Lagrangian quadrature of Eq. (5) gives the
following estimate:

sSFS;i �
XNngb

j¼1
�qjð~v j � ~v iÞð~v j � ~v iÞTWh;ijVj: (9)

For the considered Kolmogorov flow, an evaluation of the Frobenius
norm of the SFS tensor according to Eq. (9) clearly demonstrates that
the SFS estimate fits into the former dissipation characteristics. A
visual comparison between the vorticity [Fig. 3(a)] and the SFS tensor
[Fig. 3(c)] reveals an unambiguous relationship, which is supported by
the corresponding bivariate probability density function in Fig. 3(d).
The latter describes a cone-like structure indicating that high levels of
absolute vorticity and SFS are connected,30 as well as that the variance
of the absolute vorticity increases with the SFS norm up to s	SFS � 0:4.
Consequently, we conclude that the quantities x0, E(k), and sSFS are
evidently correlated with each other, containing different levels of
information about the numerical dissipation dynamics.

With the former relations, the role of the SFS term div½sSFS�i in
the discretized explicit LES equations [Eq. (6)] becomes apparent.
Since the SFS term behaves diffusive regarding the velocity field in a
statistically averaged sense,32,58 an explicit consideration of this term
will attempt to locally homogenize the velocity field. Hence, a mitiga-
tion of the SFS norm according to Eq. (9) will be caused, which is
expected to reduce the vorticity variance according to Fig. 3(d). Then,
based on Eq. (8), the artificial thermalization of the kinetic energy
spectrum should be likewise reduced. Considering again that dissipa-
tion takes place at small scales due to the �k2 weighting of E(k) in Eq.
(8), this could potentially enable a reduction in the numerical dissipa-
tion from which large scale structures might profit. Thus, the main
idea of this work is to replace numerical dissipation by an explicit, dis-
sipative SFS model, which counteracts the numerically induced small
scale fluctuations.

To verify these anticipated causalities, we deem the eddy viscosity
concept in connection with Boussinesq’s hypothesis45,58–60 for the
modeling of the SFS term div½sSFS�i in Eq. (6b) as adequate. The fol-
lowing approaches will be utilized:

1. SMAG: This represents the classical Smagorinsky model discre-
tized according to Eqs. (A20), (A21), and (A24). It is angular
momentum conserving in the continuum limit.61

2. SIGMA: This represents the superior r-model of Nicoud et al.62

discretized according to Eqs. (A20), (A21), and (A25). It is also
angular momentum conserving in the continuum limit61 but
should overcome severe drawbacks of the Smagorinsky model,
e.g., non-vanishing subfilter dissipation in laminar regions.60,62

3. SMAG-MCG: This represents the classical Smagorinsky model,
however, discretized in the Monoghan–Cleary–Gingold (MCG)
form.63,64 It is angular momentum conserving on the particle
level as well.

It is of paramount importance that the SFS dissipation is intro-
duced only on subkernel scales in order to guarantee a successful
application of the explicit SFS model, eventually reducing the artificial
thermalization. However, the SPH discretization requires non-local

approximations, which might jeopardize this goal a priori. This can be
vividly illustrated by the concept of particle duality, which results from
the coarse-graining perspective.

C. Particle duality and numerical dispersion

In order to understand the concept of particle duality, it is neces-
sary to precisely define the terminology of explicit LES. According to
Sec. II of this work, explicit LES is introduced as a general fluid
dynamic framework, in which fluid elements are coarse-grained by an
explicit kernel to so-called superfluid elements. This is illustrated in
the left part of the schematic in Fig. 4. From the schematic, an averag-
ing over a fluid element collective (gray particles) exactly determines
the properties of a single superfluid element (red particle) with its spe-
cific kernel support. This corresponds to a truly explicit LES. However,
in a SPH model, the fluid element properties are unknown, which is
synonymous to the closure problem of turbulence. This issue is
resolved in a SPH framework by a direct substitution of the fluid ele-
ments (gray particles) by superfluid elements (red particles). Only
then an averaging is performed to estimate the properties of a single
superfluid element itself. As a consequence, the SPH particles must
represent superfluid element approximants and fluid element surro-
gates at the same time, which is what we term as particle duality.
Practically, this implies that superfluid element approximants interact
with each other, which are not direct neighbors but rather separated
by some particles in between. This occurs as long as a the particles
share the same kernel support and implicitly causes an increase in the
effective interaction distance. Physically, however, the considered
interaction is inadequate as the governing LES equations are a local
model in terms of the superfluid element quantities. Thus, the particle
duality as a manifestation of the non-locality introduced by the SPH
discretization gives an picturesque description why the consideration
of an explicit dissipative SFS model might fail to result in an improve-
ment as anticipated in Sec. IIIB. Conceivably, the SFS model will not

FIG. 4. Schematic to illustrate the concept of particle duality. SPH particles repre-
sent superfluid element approximants and fluid element surrogates at the same
time.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 115108 (2022); doi: 10.1063/5.0105104 34, 115108-6

VC Author(s) 2022

https://scitation.org/journal/phf


solely remove kinetic energy from the problematic artificial thermal
range but also affect resolved scales larger than the kernel.

From the phenomenological issue described above, one might
not exclusively expect problems in terms of the application of dissipa-
tive SFS models. It is also likely that numerical dispersion effects
become relevant. Since the particle duality results in a decreased effec-
tive resolution, it should be anticipated that modes of a certain wave-
number k will be properly resolved only if the kernel wavenumber
kkern exceeds k significantly, i.e., k
 kkern, and Nngb !1. Indeed,
generic SPH dispersion studies for the Euler equations demonstrate
that the resulting dispersion errors depend on ðk=kkernÞ, the kernel
type, the number of neighbors Nngb inside the kernel, the reference
density qref, and pressure level pref, e.g., Ref. 65. However, from these
insights, it can be hardly predicted how turbulent flows will be
affected. A recent study of Yalla et al.66 investigates the effect of
numerical dispersion effects on the energy cascade in grid-based LES.
The authors conclude that numerical dispersion can spoil the Galilean
invariance in numerical simulations, finally inhibiting the energy
transfer to the small, most dispersive modes, hence causing a degrada-
tion of the inertial range in the energy spectrum. Though the one-to-
one transfer of these results to Lagrangian kernel-based particle meth-
ods as SPH is questionable, we will still test in Sec. V whether Galilean
invariance holds. This might give an indication about the relevance of
numerical dispersion errors in our study.

Having laid the foundations of SPH as a discretization intrinsi-
cally connected to explicit LES, it is now indispensable to answer our
central question: Can resolved large scale structures profit from the
reduction in SPH typical small scale noise by explicit use of SFS models?
Therefore, a thorough investigation of the influence of explicit SFS
models for a well-defined HIT problem are vital, which is why we pro-
ceed with the description of such in Sec. IV.

IV. THE HIT PROBLEM

The HIT problem that will be subsequently investigated is the
Taylor–Green flow67,68 at Re ¼ 104 presented in the work of Dairay
et al.1 (other values of Re are discussed in Appendix B). Their DNS
solution will serve as reference for our study, as well as a second order
accurate (space and time) solution of a standard Smagorinsky LES
from a Finite Volume Method (FVM). The latter was computed with
OpenFOAM 7 on a Cartesian grid with 3843 cells and closely matches
the energy characteristics of the DNS. The initial velocity field in the
tri-periodic domain X :¼ ½0; 2p�3 of the freely decaying flow is speci-
fied as

v0;xðx; y; zÞ ¼ sinðxÞ cosðyÞ cosðzÞ;
v0;yðx; y; zÞ ¼ �cosðxÞ sinðyÞ cosðzÞ;

v0;zðx; y; zÞ ¼ 0;

(10)

and the corresponding pressure field follows from the solution of the
pressure Poisson equation in the incompressible limit69

p0ðx; y; zÞ ¼ pref þ
qref v

2
0

16
ð2þ cosð2zÞÞðcosð2xÞ þ cosð2yÞÞ; (11)

with v0 ¼ 1m=s. The SPH cases that will be presented in the following
are summarized in Table I. Generally, four different particle counts
were considered, namely, N 2 f1283; 1923; 2563; 5123g, ranging
from �2 Mio. particles to �130 Mio. particles. The basis of the given

particle powers define the averaged particle distance Dl, which exem-
plary for case 1 results in Dl ¼ 2p=128m � 0:0491m. Starting from a
Cartesian lattice arrangement, the particles were regularized into a sta-
ble configuration in corresponding pre-runs following the particle
packing scheme of Colagrossi et al.70 Only then, the fields given by
Eqs. (10) and (11) were mapped onto the particles. The initial velocity
field magnitude for a N ¼ 1923 case is depicted in Fig. 5(a) highlight-
ing two shear flow planes at z ¼ p=2 and z ¼ 3p=2 and the rotational
direction at the plane z ¼ 2p. In order to match the pressure field in
the initial time step and avoid artificial dynamical effects beyond the
one resulting from the initial particle configuration, a consistent mass
distribution M0;i ¼ q0;iDl

3 was imposed. It is illustrated in Fig. 5(b).
The density field q0;i is given by the combination of the initial pressure
field in Eq. (11) and the EOS in Eq. (6c). For the latter, a reference
density of qref ¼ 1 kg=m3, a stiffness constant K ¼ qref c

2
a ¼ 25 Pa,

and a reference pressure pref ¼ K=4 ¼ 6:25 Pa were chosen. The stiff-
ness constant implies an artificial speed of sound of ca ¼ 5m=s, which
corresponds to an initial Mach number Ma0 ¼ 0:2 and justifies to
neglect r � v based forces.47 We want to emphasize that different val-
ues of pref were tested, namely, pref 2 fK=10; K=4; K=2; Kg; how-
ever, the value pref ¼ K=4 yielded the best trade-off between stability
and numerical dissipation. The results in the following were all
computed using a Wendland C4 kernel and a kernel diameter of
DK ¼ 8Dl resulting in Nngb � 250. Other comparative simulations
were conducted with DK 2 f4; 6; 8gDl (see Appendix C) and a quin-
tic B-spline kernel but only the chosen configuration was capable to
provide reasonable numerical convergence with increasing N avoiding
pairing instabilities at the same time.53,65 If not mentioned otherwise,
the before described strategy will be used for all runs in this study.

To facilitate the discussion of explicit SFS models for the SPH
method, the results in Sec. V will follow the subsequent argumentation
sequence: First, we will demonstrate that the system of Eqs. (6) and (7)
shows a convergent tendency in the numerical sense (Table I: cases
1–4). These runs correspond to usual WCSPH simulations or, from
our coarse-graining perspective in Sec. III, to a Lagrangian quadrature

TABLE I. SPH cases for the considered Taylor–Green flow.

Case

Particles SFS model

1283 1923 2563 5123 SMAG SIGMA SMAG-MCG

1 �
2 �
3 �
4 �
5 � �
6 � �
7 � �
8 � �
9 � �
10 � �
11 � CS ¼ 0:075
12 � CS ¼ 0:3
13 v0;z ¼ p
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of the explicit LES equations [Eq. (2)] without an explicit SFS model.
Hence, the SFS will only be implicitly considered. Cases 5–12 will rep-
resent runs in which the SFS is explicitly added by means of eddy vis-
cosity approaches (Sec. III B). To prove that our conclusions are
generally valid for for eddy viscosity approaches, not only the standard
Smagorinsky SMAG (Table I: cases 5–8) model will be evaluated but
also the r-model SIGMA (Table I: case 9), which should ensure van-
ishing subfilter dissipation in the initial laminar phase of the HIT
problem. Moreover, the Smagorinsky model will be additionally com-
bined with the angular momentum conserving MCG form in Eq.
(A26) called SMAG-MCG (Table I: case 10), demonstrating the robust-
ness of our observations. In order to refute that the obtained results
are the consequence of a wrong calibration of the model constant in
the eddy viscosity models,58 e.g., CS for Smagorinsky, we will further
present two SMAG runs in which the standard value CS ¼ 0:15 was
either halved or doubled (Table I: cases 11 and 12). All eddy viscosity
runs were performed with a filter width D ¼ DK=2 ¼ RK being equiv-
alent to the kernel radius RK and in accordance with Rennehen.29

From our explicit LES perspective in Sec. III, the most consistent
choice would correspond to D ¼ DK but some tests led to the conclu-
sion that only the overall dissipation is enhanced without any further
physical improvements. Interestingly, for the problem considered, the
choice D ¼ Dl had a nearly negligible effect on our solutions. We
interpret this as evidence in favor of the intrinsic connection between
explicit LES and SPH, in which the particles should approximate LES
superfluid elements and not fluid elements itself. This will be con-
firmed in Sec. VC.

The final case 13 is identical to case 3 except for the fact that in
Eq. (10) a constant velocity is superimposed on the third component,
namely, v0;zðx; y; zÞ ¼ p. By that we intend to test, according to Sec.
IIIC, whether numerical dispersion might be of relevance for our
investigation. If so, the Galilean invariance of the model could be
spoiled, finally altering the shape of the spectrum obtained in case 3
according to Yalla et al.66 We want to note that the choice
v0;zðx; y; zÞ ¼ p is an order of magnitude larger than the velocity fluc-
tuations at time t ¼ 14 s, on which our analysis mostly focuses on.
This implies a turbulence intensity of OðTuÞ � 0:1. Moreover, the
maximum of the velocity magnitude in case 13 corresponds to

vmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2
p

� 3:3m=s. To ensure initial Mach similarity with
case 1, a speed of sound ca ¼ 16:5m=s is required. This also alters the
initial mass distribution at the beginning according to the strategy
above and the choice of the reference pressure pref ¼ qref c

2
a=4 � 68 Pa

to ensure stability.
To evaluate the quality of the results, different metrics will be

invoked. On the one hand, the assessment of the overall dissipation
inside the domain will be based on the density weighted averaged
kinetic energy

evðtÞ ¼
1
2

XN
i¼1

�qi~v
2
i Vi

XN
i¼1

�qiVi

: (12)

This metric is in accordance with the definition of Dairay et al.1 except
for the density weighting. It only has a minor influence as we could
verify but should be included for consistency with the weak compress-
ibility approach. On the other hand, the overall dissipation will be
assessed by the corresponding averaged dissipation rate, which can be
computed from a finite difference approach for sufficient temporal
sampling1 using the relation:

etðtÞ ¼ �
dev
dt
: (13)

Furthermore and most importantly, we will compute the kinetic
energy spectra E(k) at time t ¼ 14 s, where HIT with the characteristic
inertial range scaling of Eq. (1) should be present up to a wavenumber
of kDNS � 50 1=m, according to Ref. 1. Therefore, we employ the near-
est neighbor sampling technique of Bauer and Springel13 on a
Cartesian grid with Dl=2 in combination with the method of Durran
et al.71 This methodology is kinetic energy conserving or in other
words satisfies the discrete Parseval relation. Due to the Nyquist crite-
rion, spectra will only be presented up to wavenumbers corresponding
to 2Dl. The interpolation method of Shi et al.72 will not be considered
as it is unclear whether it might introduce smoothing in the artificial
thermal range, which we want to avoid. Since the values evðt ¼ 14 sÞ

FIG. 5. Initialization of the Taylor–Green flow at Re ¼ 104 with N ¼ 1923 particles. (a) Velocity magnitude field with highlighted shear flow planes and rotational direction for
z ¼ 2p. (b) Mass distribution corresponding to the initial pressure field.
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for the different cases in Table I can significantly differ, we will nor-
malize the corresponding spectra with the product evðt ¼ 14 sÞLc and
Lc ¼ 1m for all runs to enable a relative comparison. Observations in
spectral space will further be related to physical space by means of the
Frobenius norm of Eq. (9), namely, jjsSFSjjF , the backward finite-time
Lyapunov exponent (FTLE)73,74 in the time range ½11; 14� s and the
vorticity component xz ¼ @xvy � @yvx . While the first is indicative
for small scale structures (see Sec. III B), the other will be used to assess
the large scale structures. Additionally, we introduce a signal to noise
(SNR) metric for the kinetic energy spectra defined by the ratio of
energy above the kernel scale (with kernel wavenumber kkern) in rela-
tion to the overall energy, namely,

SNR ¼

ðkkern
k¼0

EðkÞdk
ð1
k¼0

EðkÞdk
: (14)

It is important to stress that the SNR metric is only indicative for the
reduction in the artificial thermalization but gives no insight about the
solution quality above the kernel scale.

All computations in this work were performed for a time range
of IT ¼ ½0; 15� s with the in-house SPH code turboSPH. The latter was
developed for the prediction of primary atomization. For details, please
refer to the work of Chaussonnet et al.12

V. RESULTS AND DISCUSSION
A. Numerical convergence of the WCSPH scheme

We will first start with a qualitative discussion of the numerical
convergence of the discretized LES equations resulting from the
Lagrangian quadrature [Eq. (6)]. For now, the SFS term is neglected,
formally leading to the standard WCSPH discretization of the
Navier–Stokes equations (Table I: cases 1–4). Hence, these results will
serve as a reference to evaluate the effect of explicit SFS models in
SPH.

From Fig. 6(a), which illustrates the temporal evolution of the
averaged kinetic energy ev [Eq. (12)] for increasing particle counts N
(darker colors), one can apparently conclude that the metric is numer-
ically converging toward the DNS reference solution of Dairay et al.1

(solid black line). However, even for N ¼ 5123 � 130Mio: particles, a
significant gap remains compared to the DNS in the interval
t 2 ½2:5; 10� s. The reason for this gap can be understood from the
averaged dissipation rate et [Eq. (13)] as depicted in Fig. 6(c).
Especially in the initial timeframe t 2 ½0; 2:5� s, the vanishing dissipa-
tion rate of the DNS solution is strongly overestimated by the WCSPH
scheme. This is probably linked to the strong anisotropic particle rear-
rangement of the initially laminar vortex configuration, causing
numerical dissipation effects. Interestingly, although the highest reso-
lution contains 64 times more particles than the lowest resolution, the
curves only slowly approach the vanishing DNS level. The overestima-
tion of the dissipation rate continues until t � 7:5 s, where the
blue WCSPH lines cross the black DNS line and passes over to a sys-
tematic underestimation until the end of the simulation, except for the
N ¼ 5123 case, which overestimates the dissipation rates again for
t � 12:5 s. Nevertheless, this global dissipation characteristic leads to
the consequence that the energy levels in Fig. 6(a) approach the DNS
solution again for t � 7:5 s. Despite these quantitative deviations, it

should be highlighted that the qualitative agreement of the dissipation
rates et in Fig. 6(c) is reasonable. For all N, the temporal occurrence of
the dissipation peak at t � 9 s is matched and for increasing N the for-
mation of the second local dissipation peak at t � 11 s is also evident.
Moreover, it must be positively emphasized that after the first dissipation
peak the dissipation rates are consistent with theoretical predictions,75

which state that evðtÞ � t�1:2. This is illustrated in Fig. 6(a) by the two
black dashed lines, which only differ in the time shift parameter t0. The
latter can be understood as an indicator for the begin of the decay pro-
cess and is consequently smaller for theWCSPH runs than for the DNS.

Having verified that the global dynamics of the kinetic energy is
reasonably well approximated by the WCSPH scheme, it remains to
clarify whether HIT with the characteristic inertial range scaling in Eq.
(1) develops after the dissipation peak at t � 9 s. Therefore, we con-
sider the normalized kinetic energy spectra as explained in Sec. IV for
t ¼ 14 s, which is in accordance with the work of Dairay et al.1 From
their work, an inertial range scaling should prevail up to a wavenum-
ber of kDNS � 50 1=m. The computed spectra (Table I: cases 1–4) are
visualized in Fig. 6(e). For better orientation, the latter also contains a
solid black line representing the k�5=3 scaling and a dashed black line
with a stronger k�4 scaling. Moreover, the diagram includes the inte-
gral scale of the HIT problem (fawn dashed line) and the kernel scale
of the simulation run with the highest particle count N (fawn solid
line). The corresponding SNR values [Eq. (14)] are also listed. Indeed,
it can be observed that the utilized WCSPH scheme without SFS
model is able to recover a significant amount of the inertial range scal-
ing for increasing N. While for the lowest N, the scaling is only evident
in the range k 2 ½4; 7� 1=m, the scaling range for the highest N covers
nearly an order of magnitude in wavenumber, namely,
k 2 ½4; 32� 1=m. Hence, we can infer that WCSPH without SFS model
is generally able to capture subsonic HIT, though at significant expense
of N ¼ 5122 and Nngb � 250. This is consistent with the convergence
properties described by Zhu et al.53 The artificial thermalization as an
anticipated origin of numerical dissipation is simultaneously reduced
with increasing N, which is confirmed by an increase in the SNR values
in Fig. 6(e). Nevertheless, even for the highest resolution, the artificial
thermalization persists and likewise an approximate k�4 scaling
observable in all simulations that sets in well above the kernel scale.
The latter connects the resolved inertial ranges with the artificial ther-
mal ranges and represents a SPH characteristic kinetic energy deficit
also observed by other authors, e.g., in Refs. 13 and 29. It clearly dem-
onstrates that the WCSPH method produces coarse-grained LES solu-
tions from the beginning and in accordance with the first Implication
in Sec. IIIA. However, the explicit kernel fails to realize a sharp cutoff
close to kkern, which could be due to the issue of particle duality result-
ing in a decreased effective resolution. This is especially evident in
Fig. 7, in which the spectra of the DNS, the FVM LES, and the
WCSPH simulation with the highest resolution (Table I: case 4) are
compared. Whereas the inertial range characteristics of the DNS
(gray) and the FVM LES (red) are in perfect agreement and deviations
are only evident beyond kDNS � 50 1=m, the WCSPH (blue) solution
fails to reproduce the inertial range up to kDNS. The spectrum is
already damped at kSPH ¼ 32 1=m ¼ kkern=2, although kkern ¼
64 1=m exceeds the maximum inertial range wavenumber kDNS of the
reference DNS. Compared to the FVM LES with only 3843 cells, vs
N ¼ 5123 particles and Nngb � 250 neighbors, this result is rather
disappointing.
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FIG. 6. Comparison of quantitative metrics for different particle counts N. The first column (a), (c), and (e) represents the WCSPH solutions without SFS
model and the second column (b), (d), and (f) represents the solution with SMAG SFS model. The color coding is explained in (a). (a) and (b) Temporal evolution
of the density weighted averaged kinetic energy ev. (c) and (d) Temporal evolution of the averaged dissipation rate et. (e) and (f) Kinetic energy spectra at
t ¼ 14 s.
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With these observations, the aim of Sec. VB is to investigate
whether the explicit consideration of a dissipative SFS model can
reduce the thermalization in favor of scales larger than the kernel. This
should not only lead to an improvement of the inertial range approxi-
mation but also in terms of the global dynamics. Consequently, we
will seek for evidence for the second Implication in Sec. IIIA following
the argumentation line of Sec. III B. We start with the SMAGmodel.

B. Effect of the Smagorinsky model

Although the usage of a consistent LES model with an explicit
SFS model should lead to an overall improvement of the solution, the
investigation with the static SMAG model undermines this positive
expectation (Table I: cases 5–8). Especially in terms of the global
dynamics, represented by Figs. 6(b) and 6(d), the consideration of the
SMAG model only deteriorates the kinetic energy balance. This
becomes evident from the temporal evolution of the averaged kinetic

energy in Fig. 6(b). For the whole time range, the level of the averaged
kinetic energy is reduced compared to the reference WCSPH solution
in Fig. 6(a). It holds true for all particle counts N analyzed. The deteri-
oration of the solution must also be apparent in the corresponding dis-
sipation rates in Fig. 6(d), which is indeed the case. A comparison of
the WCSPH reference cases in Fig. 6(c) with the SMAG cases in Fig.
6(d) demonstrates that, in particular, in the initial timeframe
(t < 7:5 s), up to the point where the blue dissipation lines cross the
black DNS line, the excessive dissipation of the WCSPH solution is
significantly enhanced by the SMAG model. For the lowest particle
count of N ¼ 1283, it even results in a noticeable qualitative shift of
the first dissipation peak from t � 9 s to t � 6 s. For the remaining
particle counts, the position of the first dissipation peak in Fig. 6(d) is
quite robust, though a slight shift toward earlier times is perceptible. It
is interesting to note that in this initial timeframe the vortex system is
still in transition to HIT,1,68,69 which prompts the eventuality that this
deterioration of the solution might be linked to the drawbacks of the
Smagorinsky model as explained in Refs. 58 and 60. In order to refute
this eventuality, we will also present in Sec. VC an investigation
employing the superior SIGMAmodel (Sec. 4 in Appendix A).

From the discouraging global kinetic energy balance, one might
be tempted to conclude that the described link between explicit LES
and SPH in Sec. III might be flawed. However, the kinetic energy spec-
tra at t ¼ 14 s in Fig. 6(f) reveal that the anticipated causalities pre-
sented in Sec. III are correct. Most importantly, the comparison of the
spectra in Figs. 6(e) and 6(f) demonstrates the reduction in the artifi-
cial thermalization for a specific N, although not very effectively. The
relative energy content below the kernel scales of the individual cases
is mitigated by the SMAG model, which is consistent with a dissipative
SFS model. This is also confirmed by an increase in the SNR metric
[Eq. (14)] for a given N, which are additionally listed in Figs. 6(e) and
6(f). Moreover, this reduction in the thermalization correlates with a
reduction in the Frobenius norm of jjsSFSjjF , as anticipated in Sec.
III B and illustrated in Fig. 8. There, the estimated jjsSFSjjF distribution
is depicted for N ¼ 2563 at the plane x ¼ p for t ¼ 14 s, correspond-
ing to the time instance of the energy spectra. Without explicit SFS
[Fig. 8(a)] and with SMAG model [Fig. 8(b)], high values of jjsSFSjjF
prevail in the shear zones of the flow (cf. Fig. 5). However, as a conse-
quence of the SMAGmodel, the absolute SFS values are finally reduced.
This damping is associated with the turbulent dynamic eddy viscosity
gt distribution [Fig. 8(c)], which evidently correlates with the jjsSFSjjF
distribution [Figs. 8(a) and Figs. 8(b)]. By construction of Eq. (A24),

FIG. 7. Comparison of kinetic energy spectra at t ¼ 14 s. DNS of Dairay et al.1 is
depicted in gray, the FVM LES in red, and the WCSPH with the highest resolution
in blue.

FIG. 8. (a) Frobenius norm of the estimated SFS tensor without explicit SFS model and (b) with SMAG model. (c) Turbulent dynamic eddy viscosity resulting from the SMAG
model. All distributions refer to the x ¼ p plane at t ¼ 14 s for N ¼ 2563.
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this is plausible as the turbulent eddy viscosity reacts to high values of
spatial velocity gradients prevailing in the shear flow planes.

For the remainder of this section, we will discuss whether scales
larger than the kernel can profit from the mitigated artificial thermali-
zation. The answer to this is ambivalent and we start with the positive
aspects. As a matter of fact, the relative energy content of the first
wavenumber shells (k � 7 1=m) increases as the comparison of Figs.
6(e) and 6(f) demonstrates. Although the differences might seem
extraneous, we want to emphasize that the plots are double logarith-
mic. Interestingly, this improved spectral signature can also be linked
to the physical space for particle counts N � 2563 by means of the
backward finite-time Lyapunov exponent (FTLE) in the time range
½11; 14� s. Slices of the resulting FTLE fields at the plane z ¼ p from
the N ¼ 2563 runs without explicit SFS model and with SMAG model
are illustrated in Figs. 9(a) and 9(b). Apparently, the resulting fields
are representative for the coherent large scale vortices remaining from
the initialization. Generally, the FTLE fields are quite similar in their
appearance; however, it is undeniable that the structures formed in the
cases with the SMAGmodel in Fig. 9(b) are less tattered than the refer-
ence WCSPH solution in Fig. 9(a). The most positive difference

between the fields is that the consideration of the SMAGmodel approx-
imately restores the mirror symmetry of the vortex system at the mid-
planes x ¼ p and y ¼ p. This mirror symmetry is a characteristic of
the vortex systems68 and a vivid prove that a reduction in the artificial
thermalization can positively influence the large scale coherent
motion. As a sidenote, symmetry breaking of a similar kind was also
observed in molecular approximations of the Taylor–Green system in
the work of Gallis et al.,39 albeit caused by physical thermal
fluctuations.

Unfortunately, it must also be accentuated that the symmetry res-
toration is not discernible anymore for the highest resolution SPH
runs. This is depicted in Figs. 10(b) and 10(c). There, the vorticity field
component xz at z ¼ p and t ¼ 14 s of the highest resolution SPH
runs without and with SMAG model (Table I: cases 4 and 8) are illus-
trated. Obviously, the quantity behaves very similar to the FTLE field
in Fig. 9. The lost symmetry restoration property is quite disadvanta-
geous given that the N ¼ 5123 cases are the only runs, which repro-
duce a significant amount of inertial range scaling. Although the
qualitative large scale pattern is matched in comparison with the sym-
metric FVM field in Fig. 10(a), the SPH solutions evidently tend to

FIG. 9. Backward FTLE at the plane z ¼ p for N ¼ 2563 and t ¼ 14 s in the range ½11; 14� s: (a) without explicit SFS model, (b) with SMAG model, (c) with SIGMA model,
and (d) with SMAG-MCG model.
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smear out sharp features of the large scale vortices. This accordingly
results in smaller vorticity values as the colorbars in Fig. 10 illustrate.

Despite the slight improvements described before, the overall
effect of the SMAG model is rather malicious. The deterioration of the
global dynamics in terms of the averaged kinetic energy in Fig. 6(b)
and the corresponding dissipation rate in Fig. 6(d) strongly indicate
that the negative aspects outweigh the positive ones. This is also
reflected in the energy spectra in Fig. 6(f) for k > 7 1=m and
k < kkern. A comparison of Figs. 6(e) and 6(f) clearly shows that the
effect of the dissipative SMAG model is not restricted to scales below
the kernel. Not only the energy of the artificial thermalization but also
the kinetic energy deficit above the kernel scale is reduced. Hence, the
deficient k�4 scaling of SPH is expanded to a larger wavenumber range
at the expense of the reproduced inertial range. This proves that the
particle duality described in Sec. IIIC truly prevents the dissipative
SMAG model to operate solely on noisy scales smaller than the kernel,
which trigger numerical dissipation. Consequently, from these obser-
vations, the application of the SMAGmodel in SPH should be discour-
aged. Nevertheless, one might infer that these results are the
consequence of a wrongly calibrated SMAG model or the SMAG model
itself, instead of a consequence of the particle duality of SPH. Thus, we
will discuss the influence of alternative SFS models and the calibration
of the SMAGmodel in Sec. VC.

C. Other dissipative SFS models and model calibration

In this part, a comparison between the WCSPH solution without
SFS model and with SMAG, SIGMA, and SMAG-MCG model will
be presented, as well as a sensitivity study of the Smagorinsky constant
CS (Table I: cases 3 and 9–12). As the observations seem to be
independent from the particle count N, only the N ¼ 2563 runs
will compared. The results are depicted in Fig. 11. All in all, the obser-
vations are very similar to those presented in Sec. VB. We will start
with the influence of the explicit SFS models (Table I: cases 3, 7, 9,
and 10).

Neither the superior SIGMA model nor the discrete angular
momentum conserving SMAG-MCG model lead to an improvements
in terms of the kinetic energy characteristics. In fact, both models are
even worse. As depicted in Fig. 11(a), the averaged kinetic energy levels
of both variants are slightly below the SMAG solution. The global dissi-
pation rates in Fig. 11(c) confirm these results. Accordingly, this is also
reflected by the spectra in Fig. 11(e). This is surprising for different

reasons. For the SIGMA model, a vanishing dissipation in the initial
laminar phase by the nature of the SFS model60,62 would be expected.
However, as depicted in Fig. 11(c), the overall dissipation is increased
from the beginning. One might be tempted to concluded that this is
related to the missing zero order consistency of the SPH–LES model
in Eq. (6), prohibiting the flow discrimination required for the SIGMA
model. Nonetheless, similar observation were made using high-order
Eulerian grid based schemes utilizing the same SFS model for
Taylor–Green flows.76,77 Consequently, this indicates that the
Taylor–Green flow is a challenging problem for the SIGMA model
independent of the numerical discretization scheme. The kinetic
energy spectrum in Fig. 11(e) further demonstrates that the qualitative
effect of the SIGMA model and the SMAG model are similar.
Compared to the SMAG model, the artificial thermalization below the
kernel scale is slightly reduced, from which the first wavenumber shells
(k � 7 1=m) again slightly profit. This is also reflected by the FTLE
field in Fig. 9(c), which compared to the WCSPH solution in Fig. 9(a)
is less tattered and, moreover, approximately mirror symmetric at the
midplanes. However and most importantly, the dissipative SIGMA
model still suffers from the issue of particle duality. A removal of
kinetic energy from scales in the range k > 7 1=m and k < kkern is still
present and even leads to an intensification of the observed deficient
SPH energy scaling with EðkÞ � k�n; n > 4. The SMAG-MCG model
results tell a nearly identical story. Compared to the SMAG model the
overall dissipation is enhanced. This becomes evident in Figs. 11(a)
and 11(c). It is surprising as one would intuitively expect a general
improvement related to the restoration of the angular momentum
conservation property. Instead, the considered problem demonstrates
that this comes at a certain cost. The kinetic energy spectrum in Fig.
11(e) once more confirms the already noted observations. The SMAG-
MCG model is characterized by the strongest reduction in the artificial
thermalization, which repeatedly has a positive effect on the first wave-
number shells (k � 7 1=m) in the spectra as well as the FTLE field in
Fig. 9(d). Nevertheless, the issue of particle duality for the SMAG-MCG
model in the range k > 7 1=m and k < kkern is yet evident. Compared
to the SMAG model, the angular momentum conservation property of
the MCG form intensifies the observed deficient SPH scaling
EðkÞ � k�n; n > 4.

So far, our results can be criticized in terms of the fact that the
utilized dissipative SFS models might be wrongly calibrated for
the considered problem and discretization method.58 For instance, in

FIG. 10. Vorticity component xz at the plane z ¼ p and t ¼ 14 s. (a) FVM LES with 3843 cells. (b) WCSPH with N ¼ 5123 particles without explicit SFS. (c) SPH with
N ¼ 5123 particles and SMAG model.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 115108 (2022); doi: 10.1063/5.0105104 34, 115108-13

VC Author(s) 2022

https://scitation.org/journal/phf


FIG. 11. Comparison of quantitative metrics for different N ¼ 2563 runs. In the first column, (a), (c), and (e) represent the influence of different explicit SFS models and in the
second column, (b), (d), and (f) represent a sensitivity study of the Smagorinsky constant CS for the SMAG model. The color coding is explained either in (a) or (b). (a) and (b)
Temporal evolution of the density weighted averaged kinetic energy ev. (c) and (d) Temporal evolution of the averaged dissipation rate et. (e) and (f) Kinetic energy spectra at
t ¼ 14 s.
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the Smagorinsky model in Eq. (A24), one has the freedom to choose
the constant CS and the filter width D. Since we set D ¼ DK=2 in Sec.
IV, subsequently, the influence of CS is analyzed (Table I: cases 11 and
12). Compared to our reference, the value of CS is either halved or
doubled. We want to note that this is identical to the situation in
which CS ¼ 0:15 is fixed and D changed accordingly. The results are
depicted in the second column of Fig. 11 and the increase in CS (or D)
results in a distinct monotonous behavior. The averaged kinetic energy
is increasingly reduced within the considered time range as shown in
Fig. 11(b), which is also logically reflected by the dissipation rates in
Fig. 11(d). For the highest value CS ¼ 0:03, even an artificial dissipa-
tion rate plateau within the range t 2 ½6; 9� s is created. The dynamics
increasingly departs from the case without SFS model for larger CS (or
D). Same holds for the energy spectra in Fig. 11(f). It is interesting to
note that the artificial thermalization is only slightly reduced compared
to the range where the deficient energy scaling of k�4 prevails. This
shows again the non-local character induced by the issue of particle
duality. It becomes more pronounced with larger CS and incrementally
represses the inertial range, showing that the best choice corresponds
to CS ! 0 (or D! 0).

Clearly, from all these observations, it can be concluded that
WCSPH without explicit SFS generates a coarse-grained solution from
the beginning, however, at significant cost. This is likely due to the par-
ticle duality issue, which phenomenologically indicates that the
method suffers from an decreased effective resolution. The intrinsic
property also seems to prohibit improvements by means of standard
dissipative SFS models. Although the models mitigate the artificial
thermalization, which is believed to be the origin of numerical dissipa-
tion and the largest resolved scales can slightly profit from it, the SFS
model dominantly remove kinetic energy from scales larger than the
kernel. These scales are already badly resolved in terms of the energy
cascade, which let us confirm the statement of Rennehen that dissipa-
tive SFS models overall degrade the SPH solution.29

Having verified that the best SPH–LES model relinquishes the
explicit usage of standard dissipative SFS models, we finally proceed
with an investigation of numerical dispersion effects for the pure
WCSPH scheme.

D. Numerical dispersion and Galilean invariance

In this short paragraph, we will discuss whether numerical dis-
persion errors in the WCSPH scheme [Eq. (6)] might influence the
turbulent dynamics. Therefore, based on the idea of Yalla et al.,66 we
investigate whether our overall model is Galilean invariant. If the
energy cascade is significantly altered, this could indicate that disper-
sion errors inhibit the transfer to the smallest scales.

However, before we compare the convected case 13 with hvziV
¼ p and the quiescent case 3, we will first study how case 3 is influ-
enced by the increase in pref, which results from the requirement to
keep initial Mach similarity (see Sec. IV). The case is termed as “p-
Boost.” Evidently, as illustrated in Fig. 12, the global dissipation is
heavily increased. Even a short initial phase is created in which kinetic
energy is injected into the flow. This could be the consequence of a
weak compressibility effect. The overall increase in dissipation is com-
prehensible, considering that the value pref is adjusting the magnitude
of a force, which is the consequence of zero order errors only.6,70,78 Its
corresponding acceleration reads

ai ¼
2pref
qi

XNngb

j¼1
rWh;ijVj; (15)

and physically causes an artificial momentum transport of particles
that avoids the creation of void spaces. It ensures the stability of the
method due to an inherent particle regularization, which reacts to
irregular distributions, where the ideal condition

PNngb

j¼1 rWh;ijVj ¼ 0
is violated. It can be anticipated that this artificial transport will also
take place perpendicular to the local main flow directions, causing
numerical dissipation according to the ideas presented in Sec. III B.
However, from the generic SPH dispersion study of Dehnen and
Aly,65 it is certain that not only numerical dissipation with pref is
increased but also the influence of dispersion errors. This is reflected
in the spectra in Fig. 13. Beyond the increase in the artificial thermali-
zation, which likely reflects the increase in numerical dissipation, the
inertial range is even stronger suppressed in the p-Boost case. The defi-
cient SPH scaling k�4 profits from increased pref value. This could be
an indication that dispersion errors inhibit the transfer of energy to
the smallest scales, spoiling the development of an appropriate inertial
range similar to the study of Yalla et al.66

Ensuing from the p-Boost case, the results of the convected case
13 with hvziV ¼ p are comprehensible. As depicted in Figs. 12 and 13,
the lines for v0;z ¼ p and p-Boost perfectly overlap each other. This
shows that the WCSPH scheme is truly Galilean invariant, though
only if the mean convective velocity is changed. Practically, the super-
position of a mean flow also requires an adjustment of pref to ensure
stability, which evidently will spoil the Galilean invariance. The zero
order term in Eq. (15) can drastically increase numerical dissipation
and also inhibit the development of an inertial range due to the
increase in dispersion errors. Consequently, the results obtained in our
work might be rather positive compared to cases in which a mean

FIG. 12. Temporal evolution of the density weighted averaged kinetic energy ev
obtained from the analysis of Galilean invariance. The dissipation of the convected
case with v0;z ¼ p is strongly increased; however, this is only the consequence of
the increase in pref as the case p-Boost with v0;z ¼ 0 demonstrates. The lines for
v0;z ¼ p and p-Boost perfectly overlap each other.
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convection is superimposed onto the turbulent flow. It is certain that
this interplay of numerical dissipation and dispersion caused by pref
requires a more thorough study but from the selected tests analyzed in
this section the first observations seem reasonable.

VI. CONCLUSION

To summarize, the contributions of this work are numerous and
especially important for WCSPH simulations trying to capture sub-
sonic turbulent flows. Our main goal was to argue in Secs. II and III
that, based on the Hardy theory from NEMD, SPH should be viewed
as a non-local Lagrangian quadrature procedure intrinsically related to
explicit LES. This implies that, on the one hand, subsonic turbulence
captured by SPH will be correctly represented, in the best case, up to
the kernel scale but also at significant cost, taking the convergence
characteristics into account.9,53 This is consistent with observations in
the literature,13,53 empirically supporting our LES perspective on SPH.
On the other hand, it paves a potential way to mitigate SPH character-
istic shortcomings by explicit consideration of a dissipative SFS model
as explained in Sec. III B. The main idea followed herein was to replace
the numerical dissipation, emerging from the artificial thermalization,
by an explicit, dissipative SFS model. In order to test the hypothesis
that a reduction in the artificial thermal range results in an improve-
ment of the kinetic energy content of scales larger than the kernel, sev-
eral simulations of freely decaying HIT at Re ¼ 104 in accordance
with Dairay et al.1 were conducted and analyzed. However, it must be
stated from the results presented in Sec. V that the explicit SFS model
only leads to an marginal improvement of the largest coherent struc-
tures. This was vividly reflected by the symmetry restoration of the
vortex system in the computed FTLE fields. Concerning the inertial
range dynamics, the dissipative SFS models merely remove kinetic

energy where SPH is already characterized by a spectral energy deficit.
Eventually, it deteriorates the overall solution outweighing the positive
effects. This is rooted in the non-local character of the Lagrangian
quadrature, which can be explained by the concept of particle duality.
The latter states that the SPH particles must simultaneously represent
superfluid element approximants and fluid element surrogates at the
same time, causing an nonphysical increase in the effective particle
interaction distance. Finally, our work allows to confirm Rennehen’s
expectation that explicit SFS models in a SPH framework only degrade
the quality of the approximation for subsonic turbulent flows29 and
from our current understanding they should be disregarded. It seems
to be the case that the excessive numerical dissipation mechanisms of
SPH15,16,30 outperform the explicit dissipative SFS models considered
in this work. However, only adapted SFS models, originally developed
for grid-based Eulerian methods, were tested. This possibly indicates
that SPH native SFS models are needed that consider SPH specific
characteristics.

Furthermore, our work obviously shows that the understanding
of numerical dissipation and dispersion in kernel-based methods like
SPH and their influence on turbulent dynamics is very heuristic com-
pared to conventional Eulerian grid-based methods. This lacking rigor
must be definitely addressed in future works.

As a next step, it would be interesting to study whether the issue
of particle duality in terms of explicit dissipative SFS model can be
either circumvented by higher-order schemes or by the use of the
SPH–LES scheme developed by Di Mascio et al.22 and Antuono
et al.23 Although we currently believe that the issue of particle duality
is a conceptual problem of SPH, there may be the chance that cross-
effects between different modeling terms can restore the actual goal of
standard explicit dissipative SFS models.
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FIG. 13. Kinetic energy spectra at t ¼ 14 s obtained from the analysis of Galilean
invariance. The spectrum of the convected case with v0;z ¼ p is strongly altered,
however, this is only the consequence of the increase in pref as the case p-Boost
with v0;z ¼ 0 demonstrates. The lines for v0;z ¼ p and p-Boost perfectly overlap
each other.
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APPENDIX A: SPH DISCRETIZATION OF THE EXPLICIT
LES MODEL

1. The averaged density

In order to approximate the averaged density of a specific par-
ticle i 2 f1; …; Ng at position x ¼ xi, the integral expression in
Eq. (2a) has to be discretized. Therefore, we define a mass differen-
tial for the Lagrangian element y with dMðyÞ :¼ qdy, which allows
one to rewrite Eq. (2a) into

�qi :¼ �qðxi; tÞ ¼
ð
Vx

Whðx � yÞ dMðyÞ: (A1)

Assuming that Vx after the decomposition contains j 2 f1; …; Nngbg
neighbor (ngb) particles, a naive quadrature can be applied, in which
dMðyÞ is replaced by a finite mass at position y ¼ yj, namely,
Mj :¼ MðyjÞ. With the abbreviationWh;ij :¼Whðxi � yjÞ, this gives

�q i ¼
XNngb

j¼1
MjWh;ij þ OðN�c

ngbÞ ; c 2 1
2

; 1

� �
: (A2)

The approximation in Eq. (A2) is the standard way of density esti-
mation in SPH4–6 and contains an error term, which vanishes with
Nngb !1 according to Refs. 9 and 53.

For a homogeneous distribution of mass corresponding to Mi

¼Mj, Eq. (A2) implies a definition for the particle volume

�qi � Mi

XNngb

j¼1
Wh;ij ¼

Mi

Vi
) Vi :¼ 1

XNngb

j¼1
Wh;ij

: (A3)

Moreover, Eq. (A3) represents another common way of density
approximation in SPH, which is often used in subsonic multiphase
problems with density discontinuity even when Mi 6¼ Mj.

79,80

Hence, Eq. (A3) is chosen as density approximation in our work
due to its higher level of generality, although we utilize an inhomo-
geneous mass distribution (see Sec. IV). However, we tested both
approximations [Eqs. (A2) and (A3)] finding negligible influence
on our results.

Contrary to the usual SPH approach, Eq. (A1) is exact and
should not be interpreted as a smoothed approximation of the true
fluid density. Our goal is to approximate the density of LES super-
fluid elements, and hence the Lagrangian quadrature applied in Eq.
(A2) is the only approximation which is introduced.

2. The averaged pressure gradient

For the averaged pressure gradient in the momentum balance
of Vx in Eq. (2b), we will first apply integration by parts

�
ð
Vx

rypðy; tÞWhðx � yÞ dy

¼ �
ð
Vx

ry pðy; tÞWhðx � yÞ½ � dy þ
ð
Vx

pðy; tÞryWhðx � yÞ dy:

(A4)

Using the theorem of Gauss–Ostrogradsky with do as surface differ-
ential and the fact that Wh ¼ 0 on the boundary @Vx of the super-
fluid element Vx by definition, the first term on the right hand side
of Eq. (A4) takes the formð

@Vx

pðy; tÞWhðx � yÞ do ¼ 0 (A5)

and vanishes. For the second term on the right hand side of
Eq. (A4), the chain rule can be used to demonstrate that ryWhðx
�yÞ ¼ �rxWhðx � yÞ and this results in the exact expression

�
ð
Vx

rypðy; tÞWhðx � yÞ dy ¼ �
ð
Vx

pðy; tÞrxWhðx � yÞ dy :

(A6)

Before we apply a Lagrangian quadrature to Eq. (A6), we add the
expression pðx; tÞ

Ð
Vx
rxWhðx � yÞ dy ¼ 0, considering that the

kernel gradient is anti-symmetric by definition. With that, we can
state

�
ð
Vx

rypðy; tÞWhðx � yÞ dy

¼ �
ð
Vx

ðpðy; tÞ þ pðx; tÞÞrxWhðx � yÞ dy : (A7)

If a Lagrangian quadrature is applied to Eq. (A7), adapting the par-
ticle notation with index i and j like for the density above, one finds
the following approximation for the averaged pressure gradient

�
ð
Vx

rypðy; tÞWhðx � yÞ dy � �
XNngb

j¼1
ðpj þ piÞrWh;ijVj: (A8)

From this discretized form, the operation in Eq. (A7) becomes com-
prehensible. It generates an anti-symmetric pressure force between
particle i and j in accordance with Newtons’s third law.4 This leads
to momentum conservation in the discretized transport equations
and is often derived in the SPH community by a variational princi-
ple for an ideal Euler fluid, e.g., Refs. 4–6. However, it is important
to realize that the fluid element pressures pi and pj in Eq. (A8) are
unknowns for the superfluid elements in the LES framework.
Hence, the only option to estimate these quantities is by a replace-
ment with the averaged pressures of the approximated superfluid
elements itself, exemplarily9,53

pi ¼ �pi þ Oðh2Þ þ OðN�c
ngbÞ ; c 2 1

2
; 1

� �
: (A9)

This is a crucial step in order to obtain an expression fully consis-
tent with the well-known SPH formulation but certainly introduces
two errors: The first showing a non-local �h2 dependence due to
the superfluid element replacement and the second showing a
�N�c

ngb dependence with c 2 ½12 ; 1� due to the Lagrangian quadra-
ture. To summarize, one finally obtains a well-known SPH approxi-
mation of the LES pressure gradient from the Lagrangian
quadrature, which reads
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�
ð
Vx

rypðy; tÞWhðx � yÞ dy � �
XNngb

j¼1
ð�pj þ �piÞrWh;ijVj (A10)

and comes with the usual SPH peculiarity. The formulation
depends on the pressure level pref of the EOS in Eq. (2c) and breaks
its gauge invariance but simultaneously introduces an implicit parti-
cle regularization based on the local particle order.6,70

3. The averaged viscous stress term

For the viscous stress term in Eq. (2b), the same manipulations
can be applied in order to find an expression equivalent to Eq. (A6).
It finally reads ð

Vx

divy 2�qD½ �ðy; tÞWhðx � yÞ dy

¼
ð
Vx

2�qD½ �ðy; tÞrxWhðx � yÞ dy : (A11)

We could theoretically continue as in Sec. 2 of Appendix A for the
averaged pressure gradient, which would lead to an SPH approxi-
mation for the viscous stress term similar to the one presented in
Ref. 61. However, another formulation for strongly subsonic flows
is much more common in the SPH community, which is conserving
angular momentum in discretized form and not only in the contin-
uum limit. Thus, we change our strategy for the viscous stress term.
Therefore, it should be recognized that the tensor 2�qD in Eq.
(A11) depends on y and the integration is performed in respect to y
as well. Hence, the rx operator and integration can be inter-
changed. Assuming � ¼ const and using the abbreviation defined in
Eq. (3), it exactly yieldsð

Vx

divy 2�qD½ �ðy; tÞWhðx � yÞ dy ¼ 2�divx qD
� �

ðx; tÞ: (A12)

Equation (A12) can be rearranged with the Favre average in Eq. (4),
resulting inð

Vx

divy 2�qD½ �ðy; tÞWhðx � yÞ dy ¼ 2�divx �q ~D
� �

ðx; tÞ: (A13)

Since we are interested in strongly subsonic flows, the assumption
of weak spatial changes in q is viable. Consequently, it seems likely
that the spatial changes of �q are even weaker or negligible compared
to spatial changes in ~D. Thus, divx and �q can be interchanged and
we assume that for the dynamic viscosity g :¼ ��q ¼ const. Then,
one arrives at46

2�divx �q ~D
� �

ðx; tÞ ¼ 2gdivx ~D½ �ðx; tÞ ¼ gD~vðx; tÞ: (A14)

So far, all performed manipulations are exact, given that the
assumptions made are valid. In order to discretize the Laplacian in
Eq. (A14), a technique from the SPH community is used, which
was first introduced by Brookshaw and reduces the sensitivity of the
discretization to the local particle order. The main idea is to approx-
imate second order derivatives by a non-local integral expression.81

It was further developed by Espa~nol and Revenga79 and Hu and
Adams82 and results in the following estimate for the Laplacian of
the Favre averaged velocity field:63ð
Vx

divy 2�qD½ �ðy; tÞWhðx � yÞ dy ¼ gD~vðx; tÞ

¼ 2ð2þ nÞg
ð
Vx

ð~vðx; tÞ � ~vðy; tÞÞ � ðx � yÞ
ðx � yÞ2

rxWhðx � yÞ dy

þ Oðh2Þ ; ðA15Þ

with n being the dimension of the problem. Based on Eq. (A15),
finally, a Lagrangian quadrature for a finite number of approxi-
mation particles can be applied. With particle index notation,
one finds an estimate of Eq. (A15), which should formally be
exact for Nngb !1, and conserves angular momentum also on
the discrete level, as the resulting inter-particle forces are collin-
ear to particle interaction lines.63 It gives the well-known SPH
expressionð

Vx

divy 2�qD½ �ðy; tÞWhðx � yÞ dy

� 2ð2þ nÞg
XNngb

j¼1

ð~v i � ~v jÞ � ðxi � yjÞ
ðxi � yjÞ

2 rWh;ijVj : (A16)

4. The subfilter stress term

In order to discretize the subfilter stress term divx½sSFS�ðx; tÞ in
Eq. (2b), we start by replacing this term by its averaged, non-local
counterpart9,53

divx sSFS½ �ðx; tÞ ¼
ð
Vx

divy sSFS½ �ðy; tÞWhðx � yÞ dy þ Oðh2Þ: (A17)

This opens the opportunity to shift the effect of the divx operator to
the kernel itself, which can be computed analytically. By using the
same arguments as for the averaged pressure gradient in Eqs. (A4)
and (A5), one finds the subfilter stress term counterpart of Eq.
(A6). It reads

divx sSFS½ �ðx; tÞ �
ð
Vx

sSFSðy; tÞrxWhðx � yÞ dy: (A18)

Analogously to Eq. (A7), we can add sSFSðx; tÞ
Ð
Vx
rxWhðx

�yÞ dy ¼ 0 in Eq. (A18) to finally create an anti-symmetric force
according to Newton’s third law after the Lagrangian quadrature.
This results in

divx sSFS½ �ðx; tÞ �
ð
Vx

ðsSFSðy; tÞ þ sSFSðx; tÞÞrxWhðx� yÞdy: (A19)

Applying a Lagrangian quadrature to Eq. (A19) and using particle
index notation, the approximation takes the form

divx sSFS½ �ðx; tÞ �
XNngb

j¼1
ðsSFS;j þ sSFS;iÞrWh;ij Vj: (A20)
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However, as usual for LES, the most interesting part of the subfilter
stress term approximation consists in finding an estimate for the
SFS tensor sSFS itself.

The standard option is to employ the eddy viscosity concept in
connection with Boussinesq’s hypothesis.45,58–60 Although this class
of SFS models is known to oversimplify physical effects below the
subfilter scale,45,58–60 it is compliant with the dissipative statistical
property of the energy cascade.32,58 This means that kinetic energy is
mostly transferred from larger to smaller scales. As our goal is to
eliminate numerical noise in favor of the large scales, explained in
Sec. III B, we deem eddy viscosity models as appropriate for this
study. Therefore, the SFS tensor can be approximately expressed as48

sSFSðx; tÞ � �2�t�q ~Dðx; tÞ; (A21)

assuming that the isotropic part of the tensor is negligible for
strongly subsonic flows. In Eq. (A21), the scalar field �t denotes the
eddy viscosity and the tensor field ~D the Favre averaged strain rate.
The latter is defined by

~Dðx; tÞ ¼ 1
2
ð~J þ ~J

TÞðx; tÞ; (A22)

where ~J represents the Favre averaged velocity field Jacobian. With
the aid of the techniques described above, one can construct a
Lagrangian quadrature approximation for the Jacobian, which is
well-known in the SPH community and first order consistent in the
continuum limit,6 namely, for a specific particle

~J i :¼ ~J ðxi; tÞ �
XNngb

j¼1
ð~v j � ~v iÞrWT

h;ijVj: (A23)

Hence, Eq. (A22) is defined on the particle level as well.
For the remaining unknown field �t in Eq. (A21), we will

explore two different models. The first model will be the standard
Smagorinsky model with constant CS ¼ 0:15 and the filter width D
given by45,48,60

�t ¼ ðCSDÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 trf~D

2g
q

; (A24)

in which ~D can be computed from Eqs. (A22) and (A23) and trf�g
denotes the trace operation. The second model considered is the r-
model developed by Nicoud et al.62 It overcomes some severe draw-
backs of the Smagorinsky model, e.g., it guarantees vanishing subfilter
dissipation in laminar regions and proper wall scaling.60,62 Based on
the singular values rk, k 2 f1; 2; 3g, of the tensor ~J

T~J , the alternative
eddy viscosity model with the model constantCr ¼ 1:35 reads60,62

�t ¼ ðCrDÞ2
r3ðr1 � r2Þðr2 � r3Þ

r2
1

: (A25)

It should be noted that the modeled subfilter stress term
according to Eq. (A20) is only angular momentum conserving in
the continuum limit but not on the discrete particle level.61

Therefore, for comparative reasons, we will additionally consider a
heuristic augmentation of the averaged viscous stress term in Eq.
(A16) to variable eddy viscosity based on the ideas of Ref. 64.
Exemplary, it is utilized in the SPH–LES works of Di Mascio et al.22

and Antuono et al.23 The inherently angular momentum conserving
alternative of Eq. (A20) is

divx sSFS½ �ðx; tÞ � 2ð2þ nÞ
XNngb

j¼1
�qi�qj

�t;i þ �t;j
�q i þ �q j

ð~v i � ~v jÞ � ðxi � yjÞ
ðxi � yjÞ

2

�rWh;ijVj (A26)

and will be called Monoghan–Cleary–Gingold (MCG) form accord-
ing to Ref. 63.

APPENDIX B: INFLUENCE OF REYNOLDS NUMBER

Apart from the conclusions presented in the main part of our
work, one can further question how the viscosity or Re number
influences the shape of the energy spectra.

From a physical perspective, it is well known that the width of
the inertial range scales with �Re3=4 (see Ref. 57). However, our
study focuses on strongly underresolved Lagrangian SPH–LES sim-
ulations were viscous forces are not correctly represented due to a
lack of resolution. In order to restore viscous dissipation character-
istics using a sixth order finite difference method, as in the study of
Dairay et al.1 for Re ¼ 104, a resolution of 20483 elements was
required. Contrary, our results demonstrate that the SPH inertial
ranges are controlled by numerical dissipation and dispersion
effects representing an implicit SFS model. Therefore, we do not
expect significant change with different Re as long as the kernel
scale lies within the inertial range. This can be mathematically
proved using the Chauchy–Schwartz inequality32 and is confirmed
in Fig. 14 for case 3 in Table I with halved and doubled Re. For the
given resolution, the inertial range scaling prevails in the same
wavenumber range. However, it is interesting to note that higher
viscosities are beneficial in terms of the energy levels of the artificial
thermalization. As a consequence, scales larger than the kernel rela-
tively contain slightly more energy at lower Re, although this effect
is evidently not very pronounced.

FIG. 14. Kinetic energy spectra at t ¼ 14 s for different Re.
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APPENDIX C: INFLUENCE OF KERNEL SIZE

In the main part of our work, we only discuss cases with a ker-
nel diameter of DK ¼ 8Dl or radius of RK ¼ 4Dl. This is motivated
by the observation that adequate numerical convergence can hardly
be observed for the given problem with smaller values, highlighting
the paramount importance of Nngb. To give an idea, the temporal
evolution of the density weighted averaged kinetic energy ev is
depicted in Fig. 15 for smaller RK but otherwise same conditions as
in case 3 in Table I.

Apparently, for a given N, the dissipation rate is strongly
reduced with increasing Nngb. Likewise are the artificial compress-
ibility effects at the beginning of the simulation, which lead to a
production of kinetic energy. In spectral space, the effect is similarly
pronounced, as shown in Fig. 16. Only the RK ¼ 4Dl case shows a
pronounced inertial range scaling for N ¼ 2563 particles. These
observations are compliant with the numerical convergence behav-
ior of SPH presented by Zhu et al.53
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