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Abstract—Multiple particle tracking-by-detection is a widely
investigated issue in image processing. The paper presents ap-
proaches to detecting and tracking various refuse-derived fuel
particles in a industrial environment using a plenoptic camera
system, which is able to yield 2D gray value information and
3D point clouds with noticeable fluctuations. The presented
approaches, including an innovative combined detection method
and a post-processing framework for multiple particle tracking,
aim at making the most of the acquired 2D and 3D information
to deal with the fluctuations of the measuring system. The
proposed novel detection method fuses the captured 2D gray
value information and 3D point clouds, which is superior to
applying single information. Subsequently, the particles are
tracked by the linear Kalman filter and 2.5D global nearest
neighbor (GNN) and joint probabilistic data association (JPDA)
approach, respectively. As a result of several inaccurate detection
results caused by the measuring system, the initial tracking
results contain faulty and incomplete tracklets that entail a
post-processing process. The developed post-processing approach
based merely on particle motion similarity benefits a precise
tracking performance by eliminating faulty tracklets, deleting
outliers, connecting tracklets, and fusing trajectories. The pro-
posed approaches are quantitatively assessed with manuelly
labeled ground truth datasets to prove their availability and
adequacy as well. The presented combined detection method
provides the highest F1-score, and the proposed post-processing
framework enhances the tracking performance significantly with
regard to several recommended evaluation indices.

Index Terms—Multiple particle detection, multiple particle
tracking, plenoptic camera, tracking-by-detection, tracklets con-
nection.

I. INTRODUCTION

REFUSE-DERIVED fuel (RDF) has been widely utilized
in various industrial processes, such as firing in the

cement industry as a heat source. RDF impacts positively on
the CO2 balance of combustion processes owing to its biogenic
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proportion. Additionally, RDF is cost-efficient compared to
other conventional fuels. Nevertheless, the aerodynamic prop-
erties of RDF can be relatively complicated and unsteady
because of the complex composition, which increases the
difficulty of a controllable and high effective application of
RDF. To address the problem, several researchers attempted
to investigate the properties of RDFs [1]–[3]. In the present
paper, we present novel camera-based approaches to detecting
and tracking RDF particles spatially to determine RDF’s flight
and combustion properties, e.g., trajectories and velocities as
well as ignition and dwell time, for further analysis of flight
and combustion properties.

The concept of tracking-by-detection consists of two major
tasks. Firstly, objects captured in the images are detected and
localized. Secondly, tracking algorithms are applied to the
detections to perform data association and thus form object
trajectories afterward.

Multiple object detection is an essential task in various
applications, for instance, surveillance systems, robotics, and
biomedicine. Plenty of algorithms are developed to detect
diverse objects, such as human beings or cells. In our work,
we focus on detecting small fuel particles. In general, such
particles can be detected using gray value threshold based
methods, e.g., the OTSU threshold selection approach [4] and
Scale Invariant Feature Transform (SIFT) [5]. Although SIFT
is initially a feature extraction method, it can be used directly
for particle detection, as shown in [6]. Applications of the
approaches to detecting fuel particles are presented in [7],
where burning fuel particles inside a combustion chamber
are detected by applying a simple threshold to estimated
foreground models. Further practical usage of the detection
algorithms is exampled in [8], where the authors propose a
detection and tracking method of firing particles from an image
sequence based on gray level change. Principally, the detection
of microscopic objects, for instance, microscopic particles and
cells, shares the analogous solutions as detecting fuel particles.
In [9], a variety of methods to detect or classify particles
in electron microscopy are reviewed, for instance, cross-
correlation based approaches [10], texture-based methods [11],
and artificial neural networks [12]. Later, the authors of [13]
outline nuclei detection approaches for modern medicine,
including thresholding approaches [14], active contour model
[15] and K-means clustering [16]. Several methods, as the
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thresholding and cross-correlation approach, depend strongly
on local gray value distribution that could vary significantly
in actual industrial combustion processes. The artificial neural
network might provide precise performance. Nevertheless,
it entails relatively high computational costs and learning
datasets. K-means clustering relies not only on pixel values
but also on clusters’ initialization, limiting its utilization.

In case that scenes can be captured three-dimensionally,
such as using stereo cameras, RGB-D cameras, ToF cameras,
or plenoptic cameras, clustering methods can be applied to
the obtained point clouds to implement object detection. A
new idea using mean shift clustering candidate segmentation
for people detection based on the point clouds gathered by
an RGB-D camera is introduced in [17]. The authors of [18]
propose a fast clustering method on the basis of density-
based spatial clustering of applications with noise (DBSCAN)
algorithm [19] to realize traffic detection for self-driving
technology. Huang et al. [20] recommend a novel center-
based clustering algorithm QCC (Quasi-Cluster Centers) that
distinguishes dense neighbors from K nearest neighbor and
extends clusters regarding the defined quasi-cluster centers
and the corresponding dense neighbors. The results of the
proposed algorithm on synthetic and practical datasets proved
its adequacy and accuracy. Wang [21] presents a new cluster-
ing method based on morphological operations, which utilizes
morphological dilation to connect the data points based on
their adjacency. Experimental results indicate the robustness
and universality of the proposed method for clustering two-
dimensional or three-dimensional data.

In recent years, researchers attempted to fuse 2D- and 3D
information of a particular scene to realize more possibilities
in computer vision. Halima et al. [22] contribute to detecting
and tracking human heads by fusing depth and 2D thermal
information. Attamimi et al. [23] propose an object detection
approach based on a particle filter with integrated color,
texture, and depth information for the detection of everyday
items. Justen [24] conducts 3D-image processing, such as
3D-object reconstruction and object classification, based on
gray value images and individual depth information, which is
deemed a new 2D/3D camera concept. The authors of [25]
demonstrate real-time object detection by fusion of standard
RGB data with depth information to increase the performance
of current detection networks. The majority of these fusion
methods achieve sufficient accuracy in detecting relatively
large objects. Applying the approaches to industrial burning
fuel particles seems currently not feasible due to the lack of
specific object information and features.

As mentioned, multiple object detection is followed by
multiple object tracking, which enables the association of
detections to acquire object trajectories. In general, object
tracking consists of two major parts: a tracking filter and a data
association approach. The tracking filter aims at predicting
and updating particle positions in time dimension according to
the previous positions and the currently assigned detections,
such as Kalman Filter [26] and particle filters [27] . Over
the last several decades, data association algorithms have
been developed and modified. Deterministic approaches, for
instance, nearest neighbor (NN) and global nearest neighbor

(GNN) [28], assign a single detection within the gate around a
particular prediction to the corresponding track by considering
local or global minimal assignment costs. The gate of a
prediction is usually determined by a threshold of Mahalanobis
distance that considers the directional scatterings individually.
Compared to deterministic approaches, probabilistic methods,
such as probabilistic data association (PDA) [29] and joint
probabilistic data association (JPDA) [30], weight all detec-
tions within the gate to follow objects instead of assigning
simply one detection and discarding the others. Obviously,
probabilistic algorithms increase the opportunity of correct
data association in cluttered environments, while deterministic
methods could assign noise to tracks that leads to entirely
inaccurate results. Nevertheless, deterministic methods entail
less computational costs in comparison with probabilistic
methods since probabilistic methods take all detections within
the gate into consideration and enlarge the gating area in
accordance with the detections afterward. When training data
is available, deep learning methods could provide an alter-
native solution. Milan et al. [31] present an approach to
online multi-target tracking based on recurrent neural networks
(RNNs) and applies the approach to a benchmark of people
tracking. Ahmad et al. [32] investigate the performance of a
faster region convolutional neural network (Faster-RCNN) in
combination with Generic Object Tracking Using Regression
Networks (GOTURN) architecture for human-being tracking.
Deep learning methods could achieve sufficient accuracy, as
demonstrated by the authors. Nevertheless, the computational
cost is raised, and in addition, extensive training data and
specific features of the tracked objects are necessary.

The above described tracking approaches are feasible in
both 2D and 3D. Notwithstanding, the recorded 3D infor-
mation ought to deliver satisfactorily steady depth informa-
tion within a video sequence to ensure an accurate track-
ing performance. Unfortunately, the available measurement
systems fail to fulfill the condition ordinarily when tracking
small objects in complicated industrial processes, like small
burning fuel particles. Due to the partial overexposure caused
by burning particles and their small sizes, the measurement
system is not capable of providing 3D information with slight
fluctuation. Under this circumstance, direct 3D tracking is
impracticable. However, the acquired depth information can
be utilized implicitly, as presented in [33], where the depth
information is considered a threshold factor. This new concept
deals with relatively unsteady and inaccurate 3D information
in object tracking, for instance, 3D information gathered in
complex industrial processes. The 3D data can be partly
applied as a constraint for 2D tracking to optimize the tracking
performance.

Despite the efforts invested in tracking approaches, some
tracking issues remain inevitable. These issues can be resulted
in detection errors, e.g., false detections or duplications, or
in the tracking algorithm itself. Hence, researchers contribute
to proposing post-processing approaches for multiple object
tracking. In [34] and [35], approaches to reconnecting tracklets
by computing the appearance similarity of the representa-
tive objects and the motion similarity of the tracklets are
demonstrated. Nevertheless, for detecting small particles, such
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methods are not definitely adequate to amend trajectories of
target objects that are too small and too similar to extract
independent appearance features. Under the circumstance,
novel approaches relying principally on motion similarity to
processing tracking results ought to be developed.

In the present paper, we introduce and demonstrate methods
to process images captured by a plenoptic camera for detecting
and tracking RDF particles spatially. In order to enhance
the accuracy of multiple particle detection, we propose a
novel combined detection method that combines the detection
results of two distinct approaches and takes not only the
2D gray value information but also 3D point clouds into
account for detection, which we firstly introduced in [36]. This
proposed combined approach compensates for the deficiencies
of the two distinct methods and achieves the highest F1-score.
Subsequently, the detections are linked to acquire 2D particle
tracklets using a linear Kalman Filter together with a modified
data association algorithm that uses additional 3D information
for gating. Afterward, we present a post-processing framework
to deal with issues occurred in the tracklets and connect
tracklets into complete 2D particle trajectories. The developed
post-processing approach firstly eliminates faulty tracklets in
accordance with the length and motion properties (velocity,
regularity) of the tracklet. Based on the motion properties,
outliers in each tracklet can be deleted. Subsequently, the
remaining tracklets are connected or merged by computing
related paring costs, which take motion properties and time
conditions of the tracklets into consideration. The proposed
post-processing is particularly appropriate for tracking objects
without specific appearance properties since it does not require
appearance feature extraction from the objects. To prove
the adequacy of the post-processing approach, we compared
the tracking performance with and without post-processing.
The post-processing approach enhances the tracking accuracy
considerably. Because of the fluctuation of the captured depth
information, we finally estimate the 3D particle trajectories
with polynomials based on the obtained 2D trajectories to
compensate for deviations.

As schematically illustrated in Fig. 1, the paper is organized
as follows: The second section gives an overview of the ex-
perimental setup and the plenoptic camera system. In Section
III, a new methodology for particle detection combining infor-
mation of 2D gray values and 3D point clouds is presented.
We propose algorithms for particle tracking in Section IV,
including a new post-processing approach to connect tracklets
into complete trajectories. Section V outlines the performed
evaluation systems for both particle detection and tracking at
first and discusses the results afterward.

II. EXPERIMENTAL SETUP

In this section, we introduce the test facility BRENDA
located in the Campus North of Karlsruhe Institute of Tech-
nology. In addition, the selected camera system is described.

A. The test facility BRENDA

The test facility BRENDA contains a rotary kiln that allows
burner tests under conditions comparable to real industrial

Fig. 1. Overview of 3D refuse-derived fuel particle tracking-by-detection
using a plenoptic camera system.

cement production. The major components of BRENDA are
a rotary kiln and a post-combustion chamber, which provide
a thermal power of 1.5MW and 1MW, respectively [37].
We primarily conducted experiments in the rotary kiln, which
has a length of 8.4m and an inside diameter of 1.4m. As
depicted in Fig. 2, RDF particles are conveyed through a lance
into the kiln. Simultaneously, a high-speed plenoptic camera
mounted outside the kiln monitors the particles through a
quartz glass window at the kiln outlet. The inside temperature
of the rotary kiln can reach to maximum 1240 ◦C, which
causes the combustion of several fractions of RDF. In addition,
the rotary kiln rotates with a velocity of 0.2 rpm, which further
complicates the computing of the background images.

B. Camera system

With the development of camera technology, several cam-
eras are capable of performing 3D measurements, e.g., stereo
camera, ToF camera, structured light camera, and plenoptic
camera.

The stereo camera system is widely applied for the acqui-
sition of stereoviews and 3D information. Notwithstanding, a
stereo camera system entails a relatively simultaneous trigger
and a sophisticated calibration for both lenses. Moreover, for
a stereo camera system with more than one camera, the test
facility must contain more apertures and appropriate spaces for
the cameras, which restricts the application of such a system.
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Fig. 2. Schematic of the rotary kiln and combustion chamber from the
BRENDA test facility [37]. The axis of the plenoptic camera coincides with
the kiln’s rotation axis. The camera is fixed on a traverse in front of the glass
window, as depicted in the upper part of Fig 1. A computer at the right side
of the rotary kiln triggers the camera.

Time-of-flight (ToF) cameras, which employ time-of-flight
techniques to acquire distance information of objects, have
also found wide applications in various fields, e.g., robotics
and navigations. This camera system is cost-efficient and able
to provide a high real-time capability. However, the drawbacks
of the ToF cameras are noticeable. Compared to other 3D
systems, the present ToF technology offers a lower resolution.
Furthermore, the performance of the camera is relatively
sensitive to external intrusions, such as strong ambient light
or scattered light.

Structured light cameras, like RGB-D cameras using struc-
tured light, are also a viable alternative to conduct 3D mea-
surements. Available RGB-D cameras, for instance, Microsoft
Kinect, are significantly cost-efficient compared to other 3D
sensors. Therefore, object tracking based on RGB-D tech-
nology has been extensively researched, especially in the
field of human being tracking. Nevertheless, the majority of
available RGB-D cameras are not able to produce complete
depth information when objects’ surfaces are too thin, as small
particles [38]. Moreover, the depth error of the RGB-D camera
increases considerably with a distance greater than 3.5m [39].
Hence, such cameras might not achieve sufficient accuracy for
long-distance measurements.

A plenoptic camera system based on the plenoptic func-
tion is another option to realize 3D measurements. With a
microlens array in front of the image sensor, the light-field
camera is able to capture the light field of the scenes, in
accordance with which the 3D information can be restored.
In comparison to stereo camera systems, light-field cameras
involve only a single main lens and image sensor, which ben-
efits its universal usability. Meanwhile, the light-field cameras
precede the ToF cameras in terms of resolution and robustness.
Besides, the accuracy and adequacy of the focused plenoptic
camera for long-distance measurements are proved in [40].

Considering comprehensive factors, e.g., the construction of
the test facility (merely single optic access feasible and the
distance between particles and the camera could reach above
8m), and sufficient resolution to capture small particles with
enough visibility, we selected a plenoptic camera system to
capture the fuel particles.

(a)

(b)

(c)

Fig. 3. Example of captured image. (a) Total focus image. The captured image
corresponds to the image captured by a conventional camera. (b) Depth map.
The depth information is depicted as false-color image. Black indicates no
depth information available. (c) Point cloud. The camera is able to convert
the captured image information into point clouds.

The utilized plenoptic camera from Raytrix provides a
resolution of 1536 pixel×2048 pixel at a framerate of 330
frames per second fps. The lens used has a focal length of
85mm. Besides, the microlens array of the applied camera
consists of microlenses with different focal lengths, which
achieves a wide range of depth of field and a high maximal
lateral resolution [41]. Fig. 3(a) shows an example of the
captured grayscale image, and Fig. 3(b) the corresponding 3D-
depth map.

As shown in Fig. 3(b), not every pixel can be successfully
captured spatially with specific depth information. Thus, the
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total amount of points is much less than the resolution. As
illustrated in Fig. 3(c), point clouds are also available, where
each captured pixel of a 2D image owns a spatial position with
x-, y-, and z-coordinate.

III. PARTICLE DETECTION

In this section, we elaborate on a novel particle detection
approach, which combines the detection results of two dis-
tinct algorithms based on different concepts to facilitate the
detection performance.

As described in Section II, the applied plenoptic camera
stores both the gray value and the available spatial position
of the pixels. Based on the gray value images, several 2D
detection approaches can identify the fuel particles, as men-
tioned in Section I. Here, we implemented a pre-processing
of background subtraction for the 2D-SIFT algorithm [5] to
reduce the impact of the background. The background model
is received by computing the temporal median gray value
for each pixel within a time period (generally, 75 previous
frames and 75 posterior frames). Because of the slow rotation
of the rotary kiln, the selected filter time period for the
background estimation ought to be chosen long enough to
exclude fast-moving RDF particles and also short enough to
avoid distortion of the background model. Meanwhile, the
particles can also be detected by forming clusters in the
obtained point clouds using clustering methods. In the paper,
we applied three clustering algorithms: QCC, morphological
operations (MO) based clustering, and DBSCAN. Here, we
use the DBSCAN approach as an example of the 3D clustering
algorithms.

We primarily applied both of the two detection concepts
to the collected datasets. To compare the results visually, we
convert the clustering results into 2D by computing the clus-
ters’ gray value weighted central pixel position. Additionally,
we manually detect the particles (ground truth) and mark
the positions for further quantitative detection performance
evaluation. Fig. 4 shows the detection results of 2D-SIFT and
3D-DBSCAN together with the labeled ground truth.

Apparently, substantial numbers of false detections occur
in the edge regions of the image owing to artifacts caused
by the camera. This issue will be addressed later in the
paper by introducing an appropriate region of interest (ROI)
that includes as many particles as possible and, meanwhile,
excludes the artifacts region. Despite the defined ROI, both
detection results in Fig. 4 show particular demerits. The gray
value based 2D-SIFT algorithm is not able to detect particles
with slight brightness, as marked in the blue boxes in Fig. 4(b).
Additionally, due to disturbances in the estimated background
image, gray value peaks may occur in the foreground image
after background subtraction, where no particle is present,
as marked in the yellow box in Fig. 4(b). Since background
subtraction is a universal pre-processing for object detection
to reduce interferences from the background, the therefrom
occurred detection errors constitute a substantial obstacle
for detection. Unlike gray value based detection approaches,
clustering methods are less sensitive to these luminance issues.
Whereas the performances of the clustering methods are

(a)

(b)

(c)

Fig. 4. Result of particle detection. (a) Manually labeled ground truth. Each
blue circle indicates one particle. (b) Detection result of 2D-SIFT. The center
of each green circle corresponds to the position of the detected particle, whose
sizes are pointed by the circles’ radius. The yellow box is zoomed in to display
the detection on the initial frame and the frame after background subtraction.
(c) Detection result of 3D-DBSCAN. The center of each red circle corresponds
to the center of the cluster. Radius of the circle indicates the cluster size. The
yellow box shows the particle detection both on the 2D frame and in the 3D
point cloud.

constrained by other factors, for instance, the distribution of
the points within the cloud. For one relatively big particle,
several clusters might be formed inside the particle due to the
unfavorable point distribution, as marked in the purple box
in Fig. 4(c). In addition, several particles could be identified
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as one cluster since their corresponding point clouds are
connected spatially, as shown in the yellow box in Fig. 4(c).
Similarly, particles lying on the wall can be incorporated into
the cluster of the rotary kiln leading to missing detections, as
the example marked in the green box.

Under this circumstance, we propose a novel combined
detection approach, which synthesizes the gray value based
algorithm 2D-SIFT and the 3D-clustering method DBSCAN.
The presented approach is schematically illustrated in Fig. 5.
We separately implement 2D-SIFT and 3D-clustering firstly.
As mentioned, for pre-processing, the background can be
modeled by computing the temporal median gray value for
each pixel within a specific time period. Alternatively, we
could also use the difference of successive frames to acquire
simple foreground models. To avoid negative influences of
the flame on particle detection, we also segment the flame
inside the image before detection. The flame segmentation
within a certain image is accomplished by utilizing the OTSU
threshold selection approach [4] on a defined rectangular
region of interest around the burner, as illustrated in Fig. 6.
Since the gray value of the flame differs considerably from
the background, the flame region can be segmented efficiently
and effectively by the OTSU approach.

As indicated in Fig. 5, the clustering method DBSCAN is
employed twice with distinct parameter values. In accordance
with the definition of DBSCAN [19] ε stands for the size
of the search radius around a point, and minPts represents
the threshold of the point amount within the search radius
for a point to be deemed a core point. A large ε and a
small minPts benefit the formation of big clusters, e.g.,
the rotary kilns inner wall, while on the contrary, a small ε
and a sizeable minPts help distinguish particles accurately.
After implementing the first clustering, the cluster representing
the rotary kiln is determined, and the corresponding points
together with the points of the segmented flame are removed
from the point cloud to facilitate the performance of the second
clustering. With the completion of these steps, we are now
ready to combine the detection results.

First of all, a region of interest (ROI) is defined to ex-
clude the peripheral artifacts in the image. Subsequently, the
detection results of SIFT and DBSCAN are compared and
validated with each other. For ease of comparison, the formed
3D clusters are converted into 2D by presenting the points in
pixel coordinates. Taking the particle detections with respect to
their sizes into consideration, we can conclude the following
five cases for the comparison, as schematically depicted in
Fig.7.

1) Case 1: A particle candidate is identified as exactly one
particle by both methods.

2) Case 2: A particle candidate is detected as one particle
by the SIFT algorithm but is identified as more than one
particle by the clustering approach.

3) Case 3: A particle candidate is detected as one particle
by the clustering approach but is identified as more than
one particle by the SIFT algorithm.

4) Case 4: A particle candidate is only discovered by the
clustering approach.

Fig. 5. Schematic of the presented combined particle detection approach.

Fig. 6. Flame segmentation within a defined rectangular region of interest
around the burner, as marked in red rectangular. The red marked flame on the
left is the segmented flame.

5) Case 5: A particle candidate is only detected by the SIFT
algorithm.

For the sake of dealing with the mentioned cases, we
recommend the logic demonstrated in Fig.8. If both methods
validate one particle detection, this detection will be directly
accepted in the result (case 1). In case of different detection
outcomes, as in case 2 and case 3, we will analyze the gray
value distributed on the entire particle area of the current
frame to determine the precise amount of particles. On the
condition that the particle detection is merely confirmed by

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2022.3217858

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. XX, NO. XX, XXXX 2022 7

Fig. 7. Five cases of the comparison of particle detections. The blue polygon
is an instance of the defined ROI.

Fig. 8. Approach to dealing with various detection cases.

one approach (case 4 and 5), the gray value of the particle area
on both the current frame and the frame difference computed
by subtracting the previous frame from the current frame will
be considered. Only if the gray value distribution indicates
a particle-like feature in both situations, the particle will be
finally added to the detection list.

IV. PARTICLE TRACKING AND POST-PROCESSING

In this section, we detail the complete 2D tracking proce-
dure, including a post-processing approach on the basis of the
particle motion similarity that we firstly introduced in [42].

A. 2.5D Multiple Particle Tracking

In order to associate the particle detections and obtain pre-
liminary 2D particle tracklets, we perform two widespreadly
used tracking algorithms, Kalman filter with GNN and JPDA,

two-dimensionally in pixel coordinates. Both algorithms fol-
low a similar functioning pattern: prediction, gating, assign-
ment, and update. Because of the high-speed plenoptic camera
with up to 330 frames per second (fps), the particle move-
ments within a small number of consecutive frames can be
approximated as a+ uniform movement. Thus, we apply a
linear Kalman Filter containing a uniform movement model
for the prediction of the particle positions. In order to restrict
potential detection candidates for a certain prediction, we
compute the 2D Mahalanobis ellipse according to a predefined
distance threshold around the prediction as a 2D gating region.
Moreover, we also regard the depth changes as a gating factor.
Only if a detection is within the ellipse of a unique prediction
and the change in depth compared to the corresponding
detection in the previous image does not exceed a defined
limit, the detection will be judged as a possible candidate.

For each candidate, the assignment cost will be computed
utilizing the function presented in [28]. Since we take the
depth information into account, we, therefore, modify the
tracking approach to 2.5D. In GNN, the whole computed
assignment costs constitute the cost matrix, according to which
a biunique association of detections and tracks is performed
using the Kuhn-Munkres-algorithm [43]. Unlike GNN, JPDA
considers all detections within the gate and weights them for
further steps instead of a biunique association and discarding
the others.

Finally, the tracks are updated in terms of the association
outcomes, as demonstrated in [28] and [30]. Our approach
considers all thereby obtained particle traces as tracklets
regardless of their actual lengths and durations.

Principally, we could also integrate the depth changes into
the cost function to enhance the assignment accuracy. Notwith-
standing, the depth information provided by the camera fluc-
tuates significantly and is, thus, not reliable and appropriate
to be added into the cost function quantitatively.

B. Post-processing

After the particle detection and tracking have been carried
out successively, the analysis of particle aerodynamic proper-
ties is able to proceed in principle. However, the straightfor-
wardly acquired tracklets fail to provide sufficient reliability
due to the presence of tracking errors, such as incomplete
tracklets and false tracklets, which occur primarily on account
of detection inaccuracy. Hence, we propose and demonstrate
a post-processing framework for multiple particle tracking
aiming at enhancing tracking performance, as schematically
illustrated in the flow chart in Fig. 9. In the following, the
presented steps of the framework are described gradually.

1) Faulty tracklets elimination: As the first step, tracklets
that are extremely short, moving quite slowly, or too irregu-
larly are regarded as faulty tracklets and therefore ought to be
eliminated from the tracklet list. Only tracklets that fulfill the
condition:

D(Ti) > Dϵ & |Vi| > |V |ϵ & RTiT̃i
> Rϵ, (1)

are in the focus of interest and remain for further steps. Here,
D(Ti) denotes the duration of tracklet Ti, |Vi| stands for the
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Fig. 9. Outline of the post-processing framework.

Fig. 10. Schematics of the notations for outlier detection.

arithmetic average magnitude of the temporary velocity vector
of Ti, and RTiT̃i

computes the cross-correlation coefficient
of Ti and T̃i, which approximates Ti with a second-degree
polynomial. In addition, the subscript ϵ indicates the respective
threshold value of the corresponding parameter.

2) Elimination of outliers in each tracklet: Taking the fact
into account that false detections could persist in retained
tracklets, we decide to identify and delete outliers in the
tracklets. The majority of the outliers are a consequence
of detected noise and result in local irregular peaks in the
tracklets. Thus, we consider a detection belonging to Ti at
time t as an outlier, if

θi,t > θϵ & |∆Vi,t| > |∆V |ϵ, (2)

where θi,t is the angle between two successive velocity vectors
and |∆Vi,t| denotes the magnitude of the difference between
them, as shown in Fig. 10.

3) Tracklet connection: After the previous two steps ac-
complish the preparation, we are able to process the vital
task of tracklet connection. As depicted in Fig. 11, tracklet
connection is an iterative process, which starts with scanning
for possible tracklet matching pairs among the entire tracklet
list. The corresponding pairing costs will be computed after-
ward, and construct the cost matrix accordingly. Based on
the cost matrix, the connection of bilateral nearest neighbor
matching pairs is executed, and the existing tracklet list will
be updated subsequently. The process ends until there is no
possible tracklet matching pair.

Before demonstrating the components in Fig. 11 separately,
we pinpoint two cases in tracklet connection in terms of
time overlap with Fig. 12. If the potential matching pair do
not overlap in the timeline, we define their connection as a

Fig. 11. Flow chart of tracklet connection.

Fig. 12. Tracklet connection and tracklet merging. Ti and Tk is a possible
matching pair that is connected or merged to build a new tracklet Tj . Left
illustrates the connection of tracklet Ti and Tk , while the tracklet merging
is shown on the right. Dashed rectangular mark the connected part Tik . For
tracklet connection, the tracklets are simply connected. Whereas in tracklet
merging, the midpoints of simultaneous detections in both tracklets are firstly
computed and substitute the original positions in the built tracklet Tj .

simple connection. On the contrary, if the matching pair appear
partially simultaneously, their connection is associated with
merging.

In Fig. 12, we also define the concept of the connected
part Tik, which is underlined by black dashed boxes. For a
simple tracklet connection, the connected part consists of three
last temporary detections of the antecedent tracklet together
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with three first detections of the subsequent tracklet. For
tracklet merging, the first temporally coincident detection and
its two previous detections of the antecedent tracklet, as well
as the last temporally coincident detection and its following
two detections from the subsequent tracklet, belong to the
connected part.

A time gap exists in tracklet connection, while time overlap
is a prerequisite for tracklet merging. In order to be a possible
tracklet matching pair, the time gap or time overlap of the
tracklet candidates ought to vary in a rational range, viz.:

tTk,1 − tTi,end < tϵ,connect or nTi ∩ nTk
< nϵ,merge. (3)

Thereby, we follow the notations in Fig. 12 , where Ti denotes
the antecedent tracklet and Tk stands for the subsequent
tracklet. tTk,1 is the time when Tk begins, while tTi,end

denotes the end time of Ti. In addition, n is a set of discrete
appearance times of a particular tracklet and tϵ, nϵ are pre-
defined thresholds with subscripts indicating different values
for tracklet connection and merging respectively. tϵ,connect
constrains the time gap of the pairing candidate, and nϵ,merge

indicates that the paring tracklets are not allowed to have the
simultaneous time cardinality overlap greater than a threshold.

Besides the time restriction in (3), the matching pair should
also satisfy the following two requirements: First, no outliers
in the connected part; Second, the connected part itself is not
a faulty tracklet according to (1) but without the limitation of
duration. After determining potential tracklet matching pairs,
their pairing costs are calculated by

C(Ti, Tk) = aθik + b|∆V ik|+ c∆zik + e|nTi
∩ nTk

|+

d ·max ((tTk,1 − tTi,end) , 0) +
f

max(F ik, 1)
,

(4)

where θik denotes the arithmetic average of θik,t with the unit
degree, |∆V ik| is the arithmetic average of |∆Vik,t| with the
unit pixel per frame, and ∆zik stands for the arithmetic depth
change between frames with the unit millimeter per frame.
These first three terms are conducive to smooth connections.
The fourth and fifth term penalize the matching pairs with
long time gaps or time overlaps. Thereby, |nTi

∩nTk
| denotes

the number of elements of the intersection of the sets of
appearance time. The F ik in the last term is derived from the
laws’ properties, also called “texture energy measures” [44],
which pursues the goal of texture feature extraction by filtering
images with five types of masks: level, edge, spot, ripple,
and wave. By convolving a texture image with combinations
of these masks, the microstructure of the texture will be
accentuated [45]. Comparing diverse combinations of these
masks, we select the level-edge mask that delivers considerable
difference in values with and without tracklet-like features in
the images. We apply the laws’ mask to a window on the sum
of frame differences obtained by adding a set of consecutive
frame difference images within the time period of the tracklets’
appearance. The window is defined as a parallelogram with the
following vertexes for a vertically dominant connection,(

T c
i,tTi,end

− w, T r
i,tTi,end

)
,
(
T c
i,tTi,end

+ w, T r
i,tTi,end

)
,(

T c
k,tTk,1

− w, T r
k,tTk,1

)
,
(
T c
k,tTk,1

+ w, T r
k,tTk,1

)
.

Fig. 13. Example of windows for laws’ mask on the sum of difference
images acquired by background subtraction. The left window (red/green) is
a vertical window for tracklet connection, where the connection is primarily
vertical. Correspondingly, the right window (blue/yellow) is a lateral window
for tracklet merging. Moreover, the window(orange/purple) indicates a vertical
window for tracklet merging.

Accordingly, a lateral connection entails a parallelogram with
the vertexes(

T c
j,tTj,end

, T r
j,tTj,end

− w
)

,
(
T c
j,tTj,end

, T r
j,tTj,end

+ w
)

,(
T c
f,tTf ,1

, T r
f,tTf ,1

− w
)

,
(
T c
f,tTf ,1

, T r
f,tTf ,1

+ w
)

.

Thereby, T c
i,t denotes the column position of the tracklet Ti

at time t, and T r
i,t stands for the row position of the tracklet

at time t, for instance, T c
i,tTi,end

is the column position of
tracklet Ti at the end time of the tracklet Ti. And w is the
half of the window’s length. The direction of the window is
selected regarding the dominant connection distance of the
pairing tracklets. Fig. 13 shows examples of windows and
the sum of difference images. Obviously, the window size of
a particular matching case depends on the locations of the
corresponding tracklets and the window length w, which is
selected according to the average particle size in the image
coordinate. Using laws’ properties instead of a simple sum of
gray values [42] reduces the impacts of accidental illumination
changes and enhances the robustness afterward.

In (4), a, b, c, d, e, andf denote the corresponding weighting
factors of each term, whose values are discussed in the next
section. To process the connection in accordance with the com-
puted pairing cost from (4), we recommend the dual nearest
neighbor (DNN) algorithm. One possible tracklet matching
pair is allowed to be connected only if they are the bilateral
nearest neighbor, viz., the one tracklet is the nearest neighbor
of the other, and meanwhile, the other one is also the nearest
neighbor of the first one. From the performance aspect, the
DNN algorithm precedes the Kuhn-Munkres (GNN) algo-
rithm, which seeks a sole optimal solution that might lead
to an inaccurate connection.

We highlight the advantage of DNN using the example
in Fig. 14. In the cost matrix, the connection solution in
each iteration is underlined by orange background for the
Kuhn-Munkres algorithm and marked in the green box for
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Fig. 14. Example of tracklet connection using Kuhn-Munkres algorithm
and DNN respectively. In the cost matrix, C indicates the impossibility of
a connection pair with extraordinarily large value.

DNN. As depicted in Fig. 14, the Kuhn-Munkres algorithm
wrongly connects tracklets 1 and 3 in order to reach the
global minimal cost and results in an undesired outcome as a
consequence. In comparison to the Kuhn-Munkres algorithm,
DNN connects merely the dual nearest neighbor matching pair
in each iteration and succeeds in obtaining the expected result.

4) Tracklet fusion: With the completion of the last three
steps, the rest of the rational tracklets are connected into

TABLE I
PERFORMANCE EVALUATION OF PARTICLE DETECTION VIA CLUSTERING

METHODS, 2D-SIFT WITH MEDIAN BACKGROUND SUBTRACTION AND
THE NOVEL COMBINED APPROACH.

TP FP FN Precion Recall F1-score
QCC Clustering 3260 5242 1127 0.3834 0.7431 0.5058
MO-based Clustering 2869 4389 1518 0.3953 0.6540 0.4928
DBSCAN Clustering 3175 4445 1212 0.4167 0.7237 0.5289
SIFT 3687 354 700 0.9124 0.8404 0.8749
Combi
SIFT+DBSCAN

3797 229 590 0.9431 0.8655 0.9026

trajectories. For the majority of applications, the task is accom-
plished. Nevertheless, the abovementioned three steps might
not be sufficient to achieve satisfactory accuracy when dealing
with detections containing many duplications and noise since,
under this circumstance, one particle might trigger more than
one trajectory within a certain period. Thus, we suggest a
further step trajectory fusion that differs slightly from tracklet
merging. Principally, tracklet merging and trajectory fusion
follow the identical procedure. The only difference in trajec-
tory fusion is that the requirements in (3) and terms concerning
the time gap and overlap in (4) are omitted.

V. EVALUATION SYSTEMS AND RESULTS

In this section, we summarize the results of RDF particle
detection and tracking using the presented approaches. The
applied quantitative evaluation systems are briefly illustrated
as well.

A. Particle Detection

To proceed with an objective assessment of the detection
performance, we manually identify and label particles of fifty
frames from five different periods with distinct properties
as ground truth. Since the ground truth is only available
in 2D pixel coordinates, the evaluation is processed two-
dimensionally as well by representing each particle with its
central pixel position. The detections are assigned to simul-
taneous particles in the ground truth by the Kuhn-Munkres
algorithm. Considering the particle size, we select the value
of 15 pixels as the maximal cost in the corresponding cost
matrix. The successfully assigned detections are denoted as
True Positive (TP), and on the opposite, the detections that
are failed to associate with particles in the ground truth are
considered False Positive (FP). False Negative (FN) refers to
the non-assigned particles in the ground truth. The precision,
recall, and F1-score are computed accordingly. The ground
truth is divided into five datasets in accordance with their
time dimension, and we apply the cross-validation technique
to the datasets for determining the threshold value in SIFT.
The results are illustrated in Table I.

Obviously, the 3D-clustering approaches provide the lowest
precision, whose value is barely half of the SIFT and combi
methods, since the results contain more non-particle detec-
tions, such as the rotary kiln. Moreover, the recalls of the
clustering approaches are bottom as well, which results in un-
satisfactory F1-scores. Generally, the three applied clustering
methods deliver comparable outcomes. MO-based clustering

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2022.3217858

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. XX, NO. XX, XXXX 2022 11

fails to detect enough TPs, and thus, its recall ranks at the
bottom. QCC is able to identify more TPs. Nevertheless, QCC
detects more non-particle objects as well, which leads to low
precision. DBSCAN could discover sufficient TPs and avoid
FPs simultaneously, which brings the highest F1-score among
the clustering methods. The average F1-score of the clustering
approaches is around 0.5. The unsatisfactory outcomes are
the consequence of the unsteady 3D point clouds provided
by the camera that captures both particles and clutters. Since
the DBSCAN ranks at the top with respect to the F1-score, the
following combi result and detection result for further tracking
are based on DBSCAN.

Compared to the clustering approaches, the 2D-SIFT algo-
rithm reaches a high precision value of 0.9124, which indicates
a detection result with less than 10% false detections (noise,
duplications). The novel combined method owns the highest
recall of 0.8655, representing a misdetection rate of around
13.5%. These misdetections are generally small particles with
low brightness and without spatial positions, which both 2D-
SIFT and 3D-clustering cannot detect. Despite the combination
with the 3D-clustering approach that introduces substantial
numbers of false detections, the precision of the combined
method is increased to 0.9431. Consequently, the combined
method achieves the best F1-score with 0.9026. In terms of the
amount of TP, FP and FN, the combination approach detects
110 more TPs and 125 fewer FPs. In addition, roughly 450
particles in the ground truth are small gloomy particles without
3D information that limits the upper recall value of all the
utilized approaches.

B. Particle Tracking

Analogously, the tracking performance is quantitatively
evaluated by a tool recommended in [46]. The evaluation tool
matches the obtained trajectories with the ground truth that
is also manually labeled for the work, and computes several
defined measurements accordingly. Here, four measurements
are vital for performance assessment, viz. normalized pairing
score α, full normalized score β, the Jaccard similarity index
for positions JSC, and the Jaccard similarity index for tracks
JSCθ. According to the definition in [46], the measurements
of a set of candidate tracks Y and a set of ground truth tracks
X are specified as:

• Normalized pairing score α

α(X ,Y) ≜ 1− d(X ,Y)

d(X , ∅)
. (5)

Hereby, ∅ stands for the set of |X | dummy empty
trajectories and d((X , ∅) is the distance between X and
Y .

• Full normalized pairing score

β(X ,Y) ≜
d(X , ∅)− d(X ,Y)

d(X , ∅) + d(Ȳ, ∅Ȳ)
, (6)

where Ȳ denotes the trajectories in Y but not in Z∗ and
∅Ȳ stands for a set of dummy trackjectories with |Ȳ|
elements. Z∗ is the obtained ensemble set of tracks by
choosing |X | tracks from the extended set of candidate
tracks that yields the minimal distance to X .

Fig. 15. Various investigated fuel fractions. (a) Wood chips. (b) Confetti. (c)
Paper shreds. (d) PE granules.

• The Jaccard similarity index for positions

JSC ≜
TP

TP + FN + FP
. (7)

Tp denotes the number of matching pairs of positions
in (X ,Z∗). FN stands for the number of non-matching
pairs. FP represents the total amount of positions in Ȳ .

• The Jaccard similarity index for tracks

JSCθ ≜
TPθ

TPθ + FNθ + FPθ
. (8)

TPθ denotes the number of non-dummy tracks in Z∗. On
the contrary, FNθ denotes the number of dummy tracks
in Z∗. FPθ counts the number of tracks in Ȳ .

The higher the scores, the better the tracking performance is.
Unlike results of particle detection, where the RDF mixtures

are conveyed into the test facility for the purpose of creating a
comprehensive detection scenario, for particle tracking various
fuel particles are conveyed into the rotary kiln separately to
investigate the respective flight behaviors of each fuel. Overall,
four distinct fuels are investigated: wood chips, confetti, paper
shreds, and PE granules, as shown in Fig. 15.

At first, we process 2.5D particle tracking with GNN
and JPDA. To realize a preliminarily qualitative and visual
evaluation of the tracking results, we add a set of difference
images to a single image as optical ground truth, as depicted
in Fig. 16(a).

The tracking result of GNN and JPDA without post-
processing is shown in Fig. 16(b) and Fig. 16(c), respectively.
The identical color indicates an identical tracklet. Since the
computational cost and entailed storage capacity of JPDA
increase enormously with rising gate and number of tracks, the
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(a)

(b)

(c)

Fig. 16. Optical ground truth and tracking results of wood chips. (a) Optical
ground truth. (b) Tracking result of GNN. Crosses stand for detections.
Detections of same tracklets are linked with solid lines. (c) Tracking result of
JPDA. Squares stand for detections. Detections of same tracklets are linked
with solid lines.

gate of JPDA is selected to be smaller than GNN. Whereas the
updated variance by JPDA is much larger than GNN owing to
an additional term according to the mixture probability density
function [29], [30], the gating ellipse determined by JPDA is
not necessarily smaller than GNN. Obviously, discrepancies
exist in the tracking results, as highlighted by the boxes in
Fig. 16. These discrepancies are primarily caused by different

TABLE II
PARAMETER VALUE.

Parameter Value Unit Parameter Value Unit
Dϵ 2 frame tϵ,1 15 frame
|V |ϵ 1 pixel/frame tϵ,2 5 frame
Rϵ 0.9 - zϵ 1500 mm
|∆V |ϵ 18 pixel/frame ϵ 10 pixel
θϵ 30 ◦ a 2 -
b 2 - c 0.1 -
d 1 - e 2 -
f 1011 - w 15 pixel

TABLE III
EVALUATION OF TRACKING PERFORMANCE WITH AND WITHOUT

POST-PROCESSING FROM GNN AND JPDA. UPPER VALUES ILLUSTRATE
PERFORMANCE OF GNN AND JPDA WITHOUT POST-PROCESSING, AND

LOWER VALUES DISPLAYS PERFORMANCE OF GNN AND JPDA WITH
POST-PROCESSING.

Fraction
Measure

α β JSC JSCθ

GNN JPDA GNN JPDA GNN JPDA GNN JPDA

Wood chips 0.61 0.61 0.60 0.59 0.68 0.69 0.47 0.44
0.67 0.68 0.67 0.68 0.76 0.79 1.0 1.0

Confetti 0.05 0.06 0.05 0.06 0.06 0.08 0.22 0.20
0.45 0.43 0.44 0.41 0.47 0.45 0.76 0.74

Paper shreds 0.15 0.19 0.14 0.18 0.20 0.29 0.43 0.42
0.60 0.62 0.59 0.60 0.61 0.65 0.84 0.77

PE granules 0.40 0.43 0.35 0.38 0.40 0.44 0.40 0.28
0.62 0.64 0.59 0.64 0.64 0.71 0.84 0.88

values of threshold and distinct functions for updating the
covariance matrices.

In general, the direct outcomes of both approaches fail
to provide sufficient accuracy for further analysis of spatial
particles’ flight trajectories and properties. Hence, we apply
the presented post-processing framework to the tracking results
with the parameter values listed in Table II.

The tracking results with post-processing using GNN and
JPDA differ only slightly from each other, as schematically
illustrated in Fig. 17. Compared to tracking results without
post-processing in Fig. 16, the tracking outcomes with post-
processing show better visual accuracy. For the purpose of
a quantitative evaluation and comparison of the tracking per-
formance, we assessed the tracking results utilizing the tool
mentioned above. Table III exhibits the evaluation of tracking
performance with and without post-processing. Since only the
particle trajectories originating from the lance are of research
interest for further analysis of the particles’ properties and
behaviors, we, therefore, labeled and evaluated merely these
trajectories.

As shown in Table III, the tracking performances of both
GNN and JPDA are relatively inaccurate because of the
incompleteness and inexactitude of the tracklets. The presented
post-processing approach benefits a precise tracking perfor-
mance, as indicated in Table III. While α and β of the direct
tracking outcomes from GNN and JPDA are relatively low
with values of roughly 0.2-0.3 for the majority of the fractions,
the tracking results with post-processing provide considerably
higher α and β values with values around 0.5-0.6. JSC and
JSCθ are also significantly optimized with up to about 40
percent. Despite the significant improvement of the JSC by

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2022.3217858

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. XX, NO. XX, XXXX 2022 13

(a)

(b)

Fig. 17. Tracking results of wood chips with post-processing. (a) Tracking
result of GNN. Crosses stand for detections. Detections of same tracklets
are linked with solid lines. (b) Tracking result of JPDA. Squares stand for
detections. Detections of same tracklets are linked with solid lines.

our post-processing for confetti (0.06 to 0.47 and 0.08 to 0.45,
respectively), the values for confetti remain below those for
the other fuels, which can be attributed to their poor visibility
due to their small sizes.

In general, GNN and JPDA provide comparable outcomes
for tracking RDF fuel particles in the work. For measurements
concerning position precision, for instance, α, β, and JSC,
JPDA indicates a slight advantage of a few percent since
GNN might assign several noises to tracks, which results in
deviations of a few positions. Because JPDA considers all
detections within the gate for the update, the deviation caused
by noise is compensated. As for the aspect of track accuracy,
the difference is even smaller than position precision. The most
significant disparity occurs when tracking paper shreds, whose
relatively large size and intricate gray value distribution lead to
more FP detections that could result in several FP trajectories
using JPDA.

Although GNN and JPDA can offer comparable perfor-

mance, the computational cost and entailed corresponding
storage capacity of JPDA are much higher, which disables
its application for a long-time tracking with a large number
of detections. However, long-time tracking to accumulate
sufficient complete trajectories serves as the prerequisite for
analyzing particles’ flight and combustion behaviors.

C. 3D Trajectory estimation

With the completion of 2D particle tracking, the trajectories
are converted into 3D in accordance with the 3D coordi-
nates provided by the camera. Here, we only extract the
3D information for obtained trajectories from GNN for the
following three reasons: 1. JPDA is not appropriate for long-
time tracking with many detections. 2. JPDA computes the
average coordinates of all detections within the gate, which
might enhance the fluctuation of the converted 3D trajectories.
3. Since the tracking performances are comparable, using
GNN entails less computational cost and storage capacity. Due
to the considerable fluctuations of the 3D coordinates provided
by the camera, we estimate the obtained 3D trajectories
with polynomials independently in three spatial directions on
condition that each trajectory originates from the lance using a
least-squares approach. The directly converted 3D trajectories
together with their corresponding estimated polynomials are
exampled in Fig. 18.

VI. CONCLUSION AND OUTLOOK

The paper introduces approaches to detect and track RDF
particles based on images captured by a high-speed plenoptic
camera. At first, a novel combined detection method that com-
bines the detection results of 2D gray value based detection
approach and 3D-clustering method providing superior perfor-
mance is presented. Subsequently, we utilize the 2.5D linear
Kalman filter together with GNN and JPDA, respectively, to
associate temporary particle detections for the sake of particle
tracking.

To alleviate the issues occurring in the preliminary tracking
results caused by detection inaccuracy, we developed a post-
processing framework, which takes full advantage of the mo-
tion similarity between tracklets to connect and merge tracklets
to trajectories and fuse trajectories afterward. The proposed
post-processing method for Multiple-Particle-Tracking is ap-
plied to the tracking results of GNN and JPDA. The results
obtained by the presented post-processing framework signifi-
cantly outperform the standard tracking methods.

Since, for performance reasons, JPDA is not appropriate
to follow a significant number of detections for an extended
period, the particles from the whole sequence with roughly
3000 frames are tracked barely by GNN. These acquired
2D trajectories are converted into 3D particle trajectories,
which are estimated by polynomials to compensate for the
fluctuations in depth measurement from the camera afterward.
The estimated polynomials enable a statistical analysis of the
flight behaviors of various RDF particles.

Our experiments with various fuel particles indicate the
adequacy of the proposed tracking-by-detection process for the
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(a)

(b)

Fig. 18. Spatial trajectories of wood chips. (a) Estimated polynomials. Red
Cross stands for the lance, thick solid lines are the estimated polynomials and
thin solid lines represent the direct converted 3D trajectories. (b) Estimated
polynomials with corresponding particle gray values. Red Cross stands for
the lance, thin solid lines are the estimated polynomials and points represent
the corresponding gray values of the detections.

preliminary investigation of RDFs‘ flight properties. Future re-
search will aim at investigating the adaptability and robustness
of the presented approaches for the detection and tracking of
other objects and developing an integrated tool for multiple
object tracking-by-detection. For multiple particle detection,
we focus on introducing the concept of combining 2D gray
value information and 3D point clouds and chiefly experiment
with the combination of 2D-SIFT and DBSCAN. Principally,
in our combined particle detection framework, the applied 2D
detection approaches and 3D clustering algorithms can easily
be substituted, which is also a research topic in the future. In
addition, we will further research the flight and combustion
properties of the RDF particles.

REFERENCES

[1] M. Zhang, M. Vogelbacher, K. Aleksandrov, H.-J. Gehrmann, D. Stapf,
R. Streier, S. Wirtz, V. Scherer, and J. Matthes , “Analysis of spatial flight
properties of refuse-derived fuel particles based on a light-field camera
system,” in Proc. 13th European Conference on Industrial Furnaces and
Boilers, Algarve, Portugal, 2022.

[2] R. Streier, S. Wirtz, K. Aleksandrov, H.-J. Gehrmann, D. Stapf, M. Zhang,
M. Vogelbacher, J. Matthes, and V. Scherer , “Determination of the
aerodynamic properties of refuse derived fuel by computer vision,” in
Proc. 13th European Conference on Industrial Furnaces and Boilers,
Algarve, Portugal, 2022.

[3] M. N. Pedersen, M. Nielsen, S. Clausen, P.A. Jensen, L.S. Jensen, and
K. Dam-Johansen, “Imaging of Flames in Cement Kilns to Study the
Influence of Different Fuel Types,” Energy & Fuels 2017, no. 31, pp.
11424-11439, 2017.

[4] N. Otsu, “A threshold selection method from grey level histograms,” IEEE
Trans. on Systems, Man, and Cybernetics , pp. 62–66, 09. 1979.

[5] D. Lowe, “Object recognition from local scale-invariant features,” in Proc.
IEEE International Conference on Computer Vision, 2, 01 2001.

[6] M. Vogelbacher, “Eine neue Methode zur kamerabasierten Analyse von
Mehrstoffbrennern in industriellen Verbrennungsprozessen,” PhD. thesis,
Institute for Automation and Applied Informatics, Karlaruhe Institute of
Technology, Karlsruhe, Germany, 2018.

[7] J. Matthes, J. Hock, P. Waibel, A. Scherrmann, H.-J. Gehrmann and H.
Keller, “A high-speed camera based approach for the on-line analysis of
particles in multi-fuel burner flames,” Experimental Thermal and Fluid
Science, 73 (2016), pp. 10–17, 2016.

[8] Y. Xuan, J. Pei and Y. Wanhai, “Firing particle flow detection and tracking
in sequence images,” in Proceedings of the 3rd World Congress on
Intelligent Control and Automation, Hefei, 26 June–2 July, 2000, pp.
2666–2670, 2000.

[9] W. V. Nicholson and R. M. Glaeser, “Review: Automatic particle detec-
tion in electron microscopy,” Journal of Structural Biology, vol. 133, no.
2, pp. 90–101, 2001.

[10] P. C. Miller and R. S. Caprari, “Demonstration of im-proved automatic
target-recognition performance by momentanalysis of correlation peaks,”
Appl. Opt., 38, pp. 1325–1331, 1999.

[11] K. R. Lata, P. Penczek, and J. Frank, “Automatic particlepicking from
electron micrographs,” Ultramicroscopy, 58, pp. 381–391, 1995.

[12] J. J. Merelo, A. Prieto, F. Moran, R. Marabini, J. M. Carazo, “Auto-
matic classification of biological particles fromelectron-microscopy im-
ages using conventional and genetic-algorithm optimized learning vector
quantization,” Neural Process. Lett., 8, pp. 55–65, 1998.

[13] H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, “Methods for nuclei
detection, segmentation, and classification in digital histopathology: A
breview-current status and future potential,” IEEE Reviews in Biomedical
Engineering, vol. 7, pp. 97–114, 2014.

[14] P. D. Wellner, “Adaptive thresholding for the digital desk,” Xerox.,
EPC1993-110, 1993.

[15] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” International journal of computer vision, vol. 1, no. 4, pp.
321–331, 1988.

[16] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley Symposium
on Mathematical Statistics and probability, California, USA, 1967.

[17] H. Liu, J. Luo, P. Wu, S. Xie, and H. li, “People detection and
tracking using RGB-D cameras for mobile robots,” International Journal
of Advanced Robotic Systems, 2016.

[18] Y. -H. Chiang, C. -M. Hsu and A. Tsai, “Fast Multi-Resolution Spatial
Clustering for 3D Point Cloud Data,” in Proc. 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC), pp. 1678-1683,
2019.

[19] M. Ester, J. Sander, H.-P. Kriegel, and X. Xu, “DBSCAN REVISITED,
Revisited: why and how you should (still) use DBSCAN,” ACM Trans-
actions on Database Systems, 42 (2017), Article 19, 2017.

[20] Huang, J., Zhu, Q., Yang, L. et al., “ QCC: a novel clustering algorithm
based on Quasi-Cluster Centers.” Mach Learn 106, 337–357, 2017.

[21] Wang, Zhenzhou, “A New Clustering Method Based on Morphological
Operations,” arXiv.org perpetual, non-exclusive license, 2019.
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