KIT | KIT-Bibliothek | Impressum | Datenschutz

When move acceptance selection hyper-heuristics outperform Metropolis and elitist evolutionary algorithms and when not

Lissovoi, Andrei; Oliveto, Pietro S. ; Warwicker, John Alasdair 1
1 Institut für Operations Research (IOR), Karlsruher Institut für Technologie (KIT)

Abstract:

Selection hyper-heuristics (HHs) are automated algorithm selection methodologies that choose between different heuristics during the optimisation process. Recently, selection HHs choosing between a collection of elitist randomised local search heuristics with different neighbourhood sizes have been shown to optimise standard unimodal benchmark functions from evolutionary computation in the optimal expected runtime achievable with the available low-level heuristics. In this paper, we extend our understanding of the performance of HHs to the domain of multimodal optimisation by considering a Move Acceptance HH (MAHH) from the literature that can switch between elitist and non-elitist heuristics during the run. In essence, MAHH is a non-elitist search heuristic that differs from other search heuristics in the source of non-elitism.

We first identify the range of parameters that allow MAHH to hillclimb efficiently and prove that it can optimise the standard hillclimbing benchmark function OneMax in the best expected asymptotic time achievable by unbiased mutation-based randomised search heuristics. Afterwards, we use standard multimodal benchmark functions to highlight function characteristics where MAHH outperforms elitist evolutionary algorithms and the well-known Metropolis non-elitist algorithm by quickly escaping local optima, and ones where it does not. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000152317
Veröffentlicht am 07.11.2022
Originalveröffentlichung
DOI: 10.1016/j.artint.2022.103804
Scopus
Zitationen: 13
Web of Science
Zitationen: 10
Dimensions
Zitationen: 13
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Operations Research (IOR)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2023
Sprache Englisch
Identifikator ISSN: 0004-3702, 1872-7921
KITopen-ID: 1000152317
Erschienen in Artificial Intelligence
Verlag Elsevier
Band 314
Seiten Art.-Nr.: 103804
Vorab online veröffentlicht am 04.10.2022
Schlagwörter Hyper-heuristics, Runtime analysis, Non-elitism, Metropolis, Move acceptance operators, Theory
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page