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ABSTRACT
Glutaredoxins are small enzymes that catalyze the oxidation and reduction of protein disulfide bonds by the thiol–disulfide exchange mech-
anism. They have either one or two cysteines in their active site, resulting in different catalytic reaction cycles that have been investigated
in many experimental studies. However, the exact mechanisms are not yet fully known, and to our knowledge, no theoretical studies have
been performed to elucidate the underlying mechanism. In this study, we investigated a proposed mechanism for the reduction of the disul-
fide bond in the protein HMA4n by a mutated monothiol Homo sapiens glutaredoxin and the co-substrate glutathione. The catalytic cycle
involves three successive thiol–disulfide exchanges that occur between the molecules. To estimate the regioselectivity of the different attacks,
classical molecular dynamics simulations were performed and the trajectories analyzed regarding the sulfur–sulfur distances and the attack
angles between the sulfurs. The free energy profile of each reaction was obtained with hybrid quantum mechanical/molecular mechanical
metadynamics simulations. Since this required extensive phase space sampling, the semi-empirical density functional tight-binding method
was used to describe the reactive cysteines. For an accurate description, we used specific reaction parameters fitted to B3LYP energies of
the thiol–disulfide exchange and a machine learned energy correction that was trained on coupled-cluster single double perturbative triple
[CCSD(T)] energies of thiol–disulfide exchanges. Our calculations show the same regiospecificity as observed in the experiment, and the
obtained barrier heights are about 12 and 20 kcal/mol for the different reaction steps, which confirms the proposed pathway.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0123089

I. INTRODUCTION
Glutaredoxins (Grxs) are enzymes that are involved in many

biological processes, such as cell signaling and oxidative stress
response.1,2 They are responsible for the reduction and oxidation
of disulfide bonds in proteins, and their catalytic efficiency depends
largely on the cellular concentration of the co-substrates glutathione
and glutathione disulfide (2GSH/GSSG), which can glutathionylate
and deglutathionylate the enzyme or the protein substrate.3 Con-
sidering the number of cysteines in the active site, Grxs can be
divided into two groups, dithiol and monothiol Grxs.4 Dithiol Grxs
contain two enzymatically active cysteines (C-XX-C motif), while
monothiol Grxs contain only one active cysteine (C-XX-S motif).
The two groups operate by different mechanisms and by mutating

the second cysteine of dithiol Grxs to a serine, it has been demon-
strated that the monothiol pathway is more efficient than the dithiol
pathway.5–8 For example, Ukuwela et al. investigated the catalytic
cycles of dithiol Homo sapiens HsGrx1 (C-PY-C motif) and a
monothiol HsGrx1 mutant (C-PY-S motif) in which the C-terminal
cysteine was mutated to a serine, compare Fig. 1(a).7 The metal
binding domain HMA4n was used as substrate and GSH/GSSG
as co-substrate, see Figs. 1(b) and 1(c). Based on the analysis of
the intermediates by electrospray ionization mass spectrometry ,
they proposed a monothiol and a dithiol pathway. While monoth-
iol HsGrx1 can only use the monothiol route, shown in Fig. 1(d),
dithiol HsGrx1 can employ the monothiol and a dithiol route in
parallel. In both catalytic cycles, a sequence of thiol–disulfide
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FIG. 1. (a) Wild-type human dithiol HsGrx1 (PDB ID: 1JHB11) with two cysteines
in the active site and monothiol HsGrx1 in which the C-terminal cysteine has been
mutated to a serine. The N-terminal nucleophilic cysteines are shown in their
anionic forms. (b) The co-substrate GSH (γ-L-glutamyl-L-cysteinylglycine tripep-
tide) in its anionic form GS−. (c) The protein substrate HMA4n based on PDB
ID: 2KKH.12 The two oxidized cysteines forming a disulfide bond are highlighted.
(d) Proposed monothiol route by Ukuwela et al. for the reduction of a protein
disulfide bond by HsGrx1.7

exchanges occurs, i.e., a SN2 reaction between a thiolate anion and
two disulfide bonded sulfurs. The dithiol route requires an addi-
tional intramolecular attack of the Cys26 sulfur atom on the Cys23
sulfur atom and is, therefore, less efficient. The first step in both pro-
posed pathways is the nucleophilic attack on the protein disulfide
bond by the enzyme Grx. However, there are also other mechanis-
tic models. For example, it has been proposed that GSH attacks the
disulfide bond of the substrate in the first step, resulting in a glu-
tathionylated protein P(SH)(S-SG).3,9,10 In the next step, the GSH
moiety is then attacked by Grx, resulting in the reduced substrate

P(SH)2 and the glutathionylated Grx enzyme Grx(S-SG). Thus, the
exact mechanism is still under debate.

Computational studies could help identify the correct mech-
anism. With classical molecular dynamics (MD) simulations, the
accessibility for different nucleophilic attacks can be determined,
for example, for a direct attack of HsGrx1’s sulfur atom S23

Grx on a
disulfide bonded sulfur and, thus, the probability for the different
reactions estimated. Moreover, the reaction barriers and reaction
energies can be determined to assess whether or not the reactions
are feasible. To this end, hybrid quantum mechanical/molecular
mechanics (QM/MM) simulations of the systems can be employed,
where the reactive part of the system is described quantum mechan-
ically (QM) and the rest of the system with a classical force field.13

By generating thermodynamic ensembles, in which all relevant
microstates of the systems are sufficiently sampled, the differences
in free energy between the reactant and the product can be cal-
culated and the correct pathways determined. However, if the two
states are separated by a high barrier, the required sampling time
for the transition most likely exceeds the time scale of ab initio and
Density-Functional Theory (DFT) methods. Moreover, the config-
urational space of biomolecules exhibits many minima and saddle
points due to the large number of degrees of freedom. Thus, many
irrelevant areas of the high-dimensional free energy surface will be
sampled or the system might get trapped in a local minimum from
which it cannot escape during the simulation time. As an alternative,
several methods have been developed that systematically search for
a path connecting the reactant and product states. However, such a
path will most likely contain many irrelevant saddle points or might
not end up in the “true” product state, but rather a local minimum
similar to the product state.

Hence, there is no way around sampling, and instead of
ab initio or DFT methods, semi-empirical methods can be used,
such as the Density Functional Tight-Binding (DFTB) approach.
DFTB is derived from DFT with several well-defined approxima-
tions, which make DFTB calculations 2–3 orders of magnitude faster
than DFT calculations, using medium sized basis sets.14 Extensive
tests on organic molecules showed that for standard properties, such
as geometries, reaction energies, and vibrational frequencies, a very
good accuracy can be achieved, when an appropriate strategy for
fitting Erep is applied. On average, a slightly lower accuracy than
DFT with medium sized to large basis sets can be obtained, however,
being better than DFT-GGA with double-zeta basis sets.15 Also for
reaction barriers, quite good agreement with full DFT calculations
can be achieved.16 Although this quantitative error can be low on
average, there are also cases where DFTB shows much larger devia-
tion, which can be addressed as a qualitative error.17 It can have two
reasons: (i) In the standard DFTB/3OB method, all tabulated inte-
grals are computed from DFT using the Perdew–Burke–Ernzerhof
(PBE) functional. Thus, DFTB has the same deficiencies as DFT,
which are due to the well-known delocalization error. This error,
e.g., shows up in the reaction between a thiolate anion and two disul-
fide bonded sulfurs.18 (ii) Furthermore, qualitative errors are related
to the specific approximations inherent in DFTB, i.e., the usage of
a minimal basis set and the integral approximations. Known exam-
ples are the proton affinities of nitrogen15 and the P–O bond.19 In
these cases, the repulsive energy contribution has to be parameter-
ized specifically for a certain bonding situation, which is called a
specific reaction parameterization (SRP). The user has to decide with
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the application at hand which parameterization to use—the standard
parameters for a large class of molecules or the modified parameters
for the specific application.

The accuracy that can be achieved with the standard DFTB
parameterization is limited due to the fact that Erep represents only
a two-body interaction. Thus, the properties of linear bonds can
be improved very much; however, bond and dihedral angles are
not affected by Erep and, therefore, cannot be improved. This was,
for example, the reason for using a ΔML approach to obtain accu-
rate energies for the important dihedral angles in peptides where
the rotational barriers are underestimated with DFTB due to the
minimal basis set.20 Since the ΔML approach covers the many-body
interaction, it can be used to correct both the qualitative and quan-
titative errors of the DFTB. This is because it combines both, the
dependency of the potentials on the chemical environment (e.g.,
four-fold vs five-fold co-ordinated phosphorus) and the many-body
nature of the repulsive energy, which are neglected in standard
DFTB. At this point, we also note that the accuracy of semi-empirical
QM/MM simulations can be improved by introducing an appropri-
ate ML, perhaps a ΔML correction to the electrostatic interactions
between the QM and MM regions. Such methods are emerging, but
appear to remain somewhat limited so far, for instance, incorporat-
ing the MM region directly in an NN potential has been applied to
simple reactions,21 or the QM–MM interaction has been corrected
in a short range.22 Since reliable ΔMLs of the QM–MM interactions
for realistic systems, akin to the subject of this work, seem far from
straightforward and in need of further developments, this work will
use ML for the QM region and describe the QM–MM interactions
on the original DFTB/MM level.

In a recent study, we corrected DFTB’s description of the
thiol-disulfide exchange, the reaction studied in this work, using
the above mentioned approaches: the SRP and the ΔML frame-
work.17 A benchmark study by Neves et al. showed that proper
inclusion of electron correlation is required to obtain the correct
energetics and transition state geometry, where the three sulfur
atoms are linearly aligned with short S–S bonds of about 2.4 Å.23

However, with DFTB, the S–S bonds are too long, and the acti-
vation energy has an error of greater than 6 kcal/mol, due to
errors inherited by the PBE functional. Thus, we performed an
SRP, where we reparameterized the repulsive S–S pair potentials so
that the energetics are consistent with the higher level QM meth-
ods, B3LYP and G3B3. This ad hoc workaround led to a good
description of the thiol–disulfide exchange and yielded the correct
transition state energy and geometry. In the ΔML approach,20,24,25

we used a Behler–Parinello Artificial Neural Network26,27 (ANN)
to learn the energy difference between DFTB and the higher level
QM methods, B3LYP and coupled-cluster single double perturba-
tive triple [CCSD(T)], for the thiol–disulfide exchange in the gas
phase. The ΔML scheme reproduced the energies and geometries
of the thiol–disulfide exchange with ab initio accuracy, with a com-
putational cost similar to that of a DFTB calculation. The ANN
trained on gas-phase data could also be applied to thiol–disulfide
exchange in water and to intramolecular thiol–disulfide exchanges
in a protein, without loss of accuracy. Due to the low compu-
tational cost of the ANN, we were furthermore able to generate
accurate multi-dimensional free energy profiles of the reactions from
extensive molecular dynamics simulations and enhanced sampling
methods.

In this work, we investigate the proposed catalytic reduction
cycle of HMA4n by monothiol HsGrx1 with GSH as co-substrate.7
We perform classical MD simulations of the different systems and
analyze the sulfur–sulfur distances and angles between the sul-
furs to estimate the regioselectivity and accessibility for the various
thiol–disulfide exchanges. The free energy profiles of the reactions
are then obtained with extensive DFTB/MM metadynamics simula-
tions using the specific reaction parameters and the ΔML approach
introduced in Ref. 17.

II. METHODS
A. Density-functional tight-binding

The semi-empirical Density-Functional Tight-Binding (DFTB)
method is derived from the Density-Functional Theory (DFT) total
energy. Expanding the Kohn–Sham total energy expression in a
Taylor series up to the third order with respect to charge density
fluctuations δρ(r) = ρ(r) − ρ0

(r) yields

E DFTB3
= E0
[ρ0(r)] + E1

[ρ0(r), δρ(r)]

+ E2
[ρ0(r), (δρ(r))2

] + E3
[ρ0(r), (δρ(r))3

],

=
1
2∑A,B

Vrep
AB +

occ

∑
i
∑
μ∈A
∑
ν∈B

ci
μci

νH0
μν

+
1
2∑A,B

γABΔqAΔqB +
1
3∑A,B
(ΔqA)

2ΔqBΓAB. (1)

Truncation after the first-order term yields the original DFTB1
method.28,29 The zeroth-order term corresponds to the core–core
repulsion and is approximated as a sum of repulsive two-body
potentials Vrep

AB . These are fitted as spline functions to reference
atomization energies of given molecular geometries.15,30 The first-
order term is the electronic energy, approximated as the sum of
occupied Kohn–Sham orbital energies. The orbitals are expanded
in a confined minimal basis restricted to the valence electrons. In
addition, a two-center approximation is used for the elements of the
charge independent Hamiltonian matrix H0

μν, which are precalcu-
lated with DFT using the PBE functional. Together with the cor-
responding overlap matrix, the Hamiltonian is stored in parameter
files that are read during a DFTB calculation.

For systems that are sensitive to charge fluctuations, higher
order terms have to be considered. Including the second- and
third-order terms yields the self-consistent-charge DFTB methods,
DFTB231 and DFTB3.14,32 Here, the density fluctuations are approx-
imated by charge monopoles that are represented by atomic point
charges obtained from Mulliken population analysis. In the second
order, the charge–charge interactions are described by the analyt-
ical γAB-function, which corresponds to a Coulomb interaction at
large distances. At short distances (A = B), the on-site repulsion is
accounted for by the Hubbard parameter UA, which is related to
the atomic hardness of an isolated atom. For a better description of
charge fluctuations, the third-order term ΓAB-function is introduced,
which includes the charge derivative of the Hubbard parameter Ud

A.
Several parameter sets are available for DFTB, such as the

3OB set, which is recommended for organic and biological sys-
tems. However, some reactions are inaccurately described by this
set, for example the thiol–disulfide exchange. In our recent work, we
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improved the performance of DFTB for the thiol–disulfide exchange
with a specific reaction parameterization (SRP).17 The sulfur–sulfur
pair repulsive parameters in Eq. (1) were reparameterized such that
the potential energy surface (PES) of the thiol–disulfide exchange
obtained with DFTB agrees with the PES obtained with B3LYP
using the def2-TZVPP basis set. A detailed description can be found
in Ref. 17.

B. Artificial neural network correction
for thiol–disulfide exchange

The accuracy of DFTB can also be improved with machine
learning techniques, such as the ΔML approach.20,24,25 In a recent
study,17 we used a Behler–Parinello Artificial Neural Network26,27

(ANN) to learn the energy differences between DFTB/3OB and
CCSD(T)/aug-cc-pVTZ for the thiol–disulfide exchange

ΔE = E CCSD(T) − E DFTB. (2)

In proteins, a thiol–disulfide exchange occurs between two disulfide-
bonded cysteines and a deprotonated cysteine anion. A QM descrip-
tion of the three amino acids requires that the bonds between Cα
and Cβ are capped with a hydrogen atom, resulting in a dimethyl
disulfide and a methylthiolate anion. The ANN used these two
molecules consisting of 15 atoms as input. The complete train-
ing set included 13 548 different structures of the molecules, which
were generated with two different approaches. The first subset of
5112 different structures was obtained from an unrelaxed potential
energy scan, where the sulfurs were linearly aligned, as described
in Ref. 18. To obtain more non-linear structures, the intramolec-
ular thiol–disulfide exchange in a small protein was enforced with
QM/MM metadynamics and snapshots of the QM region were
extracted and binned regarding the sulfur–sulfur distances. This
yielded 8436 bins, and one structure from each bin was added to
the second subset. To achieve a normalized distribution of the data,
some data points were duplicated, resulting in a final dataset of
18 357 structures.

Since the Cartesian coordinates are not invariant regarding
rotation, translation, and permutation of identical atoms, they were
converted to a vector of radial and angular atom-centered symme-
try function (ACSF) values. ACSFs are functions of the interatomic
distances Rij and angles θijk between atoms within a cut-off sphere of
radius Rc,

G rad
i =

within Rc

∑
atoms j≠i

e−η(Rij−Rs,m)
2

,

G ang
i =

within Rc

∑
atoms j,k≠i

21−ζ
(1 + λ cos θijk)

ζ

eη(R2
ij+R2

jk+R2
ik)

.

(3)

By varying the hyperparameters η, ζ, and λ, different function values
can be generated for the same structure. The optimal combination of
hyperparameters was obtained with a genetic algorithm. The ANN
itself comprised two hidden layers for each atom, each consisting of
15 neurons, using the tanh as activation function. The final model
featured a root-mean-square error (RMSE) of 0.62 kcal/mol.

In order to use the machined learned energy correction in
quantum chemical calculations, the ANN was implemented in

DFTB+ as a new module that does not rely on external libraries. The
forces acting on the atoms are obtained as

Fα
DFTB−NN = Fα

DFTB −
atoms

∑
i

ACSF on atom i

∑
m

∂E
∂Gim

⋅
∂Gim

∂α
, (4)

where FDFTB is the forces obtained from DFTB, α the Cartesian coor-
dinates of the atoms, ∂E/∂G the derivatives of the ANN, and ∂G/∂α
the derivatives of the ACSFs. The modified version of DFTB+ is
freely available on Github.33 For more details about the ANN archi-
tecture, the training, and the implementation, please consult the
original work in Ref. 17.

C. System setup and simulation details
1. Structural models

The structural model of HsGrx1 is based on a nuclear mag-
netic resonance (NMR) solution structure of dithiol HsGrx1 in the
fully reduced form with PDB ID: 1JHB.11 To generate the monoth-
iol model, the C-terminal cysteine (Cys26) in the active site was
mutated to a serine with PyMOL’s Mutagenesis Wizard tool.34 The
sulfur atom of the enzymatically active Cys23 was prepared as an
anion to enable the reaction with disulfide bonded sulfurs.

For the protein substrate HMA4n, the NMR solution structure
with PDB ID: 2KKH was used.12 The additional water molecules and
the zinc ion in the structure were removed, and a disulfide bond
between Cys27 and Cys28 was formed by manually reducing the
distances between the sulfur atoms.

The sulfur atom of glutathione’s cysteine was prepared as an
anion (GS−) to enable reactions with disulfide bonded sulfurs; the
structure was generated with PyMOL Builder tool.34 GS− con-
tains a γ-glutamyl residue, which is not included in the standard
parameterization of the AMBER99SB-ILDN force field35 used in this
work, making it necessary to construct its topology and obtain the
atomic charges. For the parameterization, the zwitterionic molecule
γ-glutamyl-(N-methyl)amide zwitterion was geometry optimized at
the level B3LYP/6-31G∗ using the polarizable continuum model
(PCM) at 300 K. The application of PCM was necessary to prevent
an undesired proton transfer from the amino and to the carboxyl
group, which had occurred in pilot optimizations of the molecule in
the gas phase. Then, the electrostatic potential induced in the sur-
roundings of the molecule was obtained at the level HF/6-31G∗, and
was determined on four layers of points surrounding the molecule,
starting at a distance of 1.4 times the Merz–Kollman radius of the
respective nearest atom and spaced by 0.2 times the radius, with the
density of 1 point per Å2. (The Merz–Kollman radii are 1.2, 1.5, 1.5,
and 1.4 Å for H, C, N, and O, respectively.) The quantum chem-
ical calculations were performed with GAUSSIAN 09 A.02.36 The
atomic charges were obtained with the two-stage restrained elec-
trostatic potential fit,37 as implemented in the Antechamber tool in
the AmberTools suite.38 The charges of the peptide backbone atoms
were constrained to their respective values occurring in the stan-
dard AMBER force field. Finally, the capping group NH–CH3 was
removed, to yield the topology and parameter file for an N-terminal
γ-glutamyl residue, termed GGL.
2. Classical simulations

All classical simulations were performed with GROMACS
2020.239 pathed with PLUMED 2.6.1.40,41 The AMBER99SB-ILDN35
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force field was used, periodic boundary conditions were set, and
electrostatic Lennard-Jones interactions were calculated using a cut-
off of 1 nm. Long-range electrostatic interactions were calculated
by particle-mesh Ewald summation; the neighbor list was updated
every ten MD steps. The leap-frog integrator was used with a time
step of 2 fs. Initial velocities of the atoms were assigned from the
Maxwell–Boltzmann distribution at 300 K. The temperature was
maintained at 300 K by the Bussi thermostat42 with τT = 0.1 ps, in
the NVT- and NPT-ensemble. In NPT simulations, the pressure was
kept constant with the Parrinello–Rahman barostat43 at p = 1 bar
and τp = 2.0 ps.

For the first catalytic step 1 shown in Fig. 1(b), monothiol
HsGrx1 and HMA4n were placed together in a cubic simulation box
The distance between the molecules and the box was about 2 nm,
which corresponds to a box size of ∼11 × 11 × 11 nm3. The box was
solvated with 36 436 TIP3P water molecules and electro-neutralized
by adding four chloride atoms. The system was shortly equilibrated
for 10 ns in a NVT ensemble and subsequently for 10 ns in a NPT
ensemble, during which harmonic position restraints were applied
to the heavy atoms with a force constant of 10 000 kJ mol−1 nm−2. A
500 ns NPT simulation followed, from which two structures were
selected that showed a large difference in their root-mean-square
deviation (RMSD) and radius of gyration. Each structure was then
simulated for 500 ns after assigning new initial velocities from the
Maxwell–Boltzmann distribution at 300 K. During the simulations,
the distances between the sulfur atom of HsGrx1 and the sulfur
atoms of HMA4n were restrained to values smaller than 9 Å with a
force constant of 10 000 kJ mol−1 nm−2 to reduce the conformational
sampling.

For the reaction step 2, a snapshot of the system containing
the Grx-S-S-HMA4n intermediate was selected from a QM/MM
metadynamics simulation of reaction 1. Due to the previous
thiol–disulfide exchange, one of the sulfur atoms of HMA4n was
deprotonated and thus carried a negative charge. To prepare the
system for a nucleophilic attack by GS−, the following equilibra-
tion scheme was applied. First, the system was equilibrated with
the deprotonated sulfur atom for 100 ns. Next, the sulfur atom was
protonated, one chloride ion was added, and the system was equili-
brated for 100 ns. Then the GS− molecule was introduced, and two
chloride ions were introduced into the system, which was simulated
for another 100 ns. Two structures with high mutual RMSD and
radius of gyration were selected from the obtained trajectory and,
analogous to the procedure described in the previous paragraph,
used as starting structure for two additional 500 ns long simulations
with new initial velocities. The distances between the sulfur atom
of GS− and the sulfur atoms of the Grx-S-S-HMA4n intermediate
were restrained to values smaller than 9 Å with a force constant of
50 000 kJ mol−1 nm−2.

For the third and final catalytic step 3, a structure of the
HsGrx1-S-SG intermediate was taken from a QM/MM metadynam-
ics simulation of reaction 2. The molecule was placed in a cubic
box of ∼6 × 6 × 6 nm3, solvated with 8126 TIP3P water molecules,
electro-neutralized with one sodium ion and equilibrated for 100 ns.
The nucleophile GS− was then introduced, followed by another
simulation of 100 ns, from which two starting structures were
selected according to the same criteria described for reactions (1)
and 2. Analogously, two 500 ns long simulations were performed
with new initial velocities of the atoms, keeping the S–S distances

between GS− and HsGrx1–S–SG below 6 Å with a force constant
of 10 000 kJ mol−1 nm−2.

The 2 × 500 ns long trajectories per system were analyzed
to estimate the regioselectivity of the possible thiol–disulfide
exchanges. To this end, 2D histograms of the distances between the
nucleophilic sulfur atoms and the two respective target sulfur atoms
were obtained with a bin size of 0.1 Å.

3. QM/MM simulations
All QM/MM simulations were performed with a local

GROMACS 202039 version patched with PLUMED 2.5.140,41 and
interfaced with a modified DFTB+ 19.144 in which the ΔML cor-
rection was implemented. Analogous to previous studies,17,45 the
QM regions of the respective systems comprised the side chains of
the three cysteines for which a thiol–disulfide exchange was investi-
gated. The link atom approach was used to cap the QM region with
hydrogen atoms, which were placed along the Cα and Cβ bonds at a
fixed distance. The QM regions consisted of 15 atoms, described by
the semi-empirical density functional theory method DFTB3, and
two different sets of QM/MM simulations of the catalytic cycle were
performed. The first set used the 3OB parameter set19 with a repa-
rameterized S–S repulsive potential based on B3LYP/def2-TZVPP
data.17 In the second set, the artificial neural network correction
that learned the energy difference between DFTB with the unmod-
ified 3OB parameter set and CCSD(T)/aug-cc-pVTZ level of theory
was applied.17 The rest of the systems were described with the
AMBER99SB-ILDN35 force field and TIP3P water.

For each system, a starting structure was taken from one of the
two respective classical 500 ns MD simulations that met an acces-
sibility criterion for a possible nucleophilic attack. An attack was
considered possible if the distance between the nucleophilic sulfur
and the target was less than 5 Å, and the attack angle greater than
130○. The systems were equilibrated for 100 ns in an NPT ensem-
ble with the same settings as for the classical simulations, with two
changes. A time step of 0.5 fs was used, and the electrostatic interac-
tions between the QM region and the MM system were scaled down
by a factor of 0.75 to compensate for the missing polarization of the
MM environment.46,47

4. QM/MM metadynamics
The free energy profiles of the thiol–disulfide exchanges using

the SRP and the ΔML approach were obtained with QM/MM
well-tempered multiple walker metadynamics.48–51 A 2D setup was
considered, where the S–S distances between the respective nucle-
ophilic sulfur atoms Snuc and the attacked sulfur atoms Sctr were used
as the first reaction coordinate, and the S–S distances between the
attacked sulfur atoms Sctr and the leaving sulfur atoms Slg as the sec-
ond reaction coordinate. Depending on the system, the S–S distances
were restrained to values smaller than 10 Å with a force constant of
10 000 kJ mol−1 nm−2 to reduce conformational sampling. More-
over, the Snuc–Sctr–Slg angles were restrained to values larger than
130○ with a force constant of 100 000 kJ mol−1 rad−1. Either 16 or
24 walkers were used with a simulation time of at least 1.8 or 1.4 ns
per Walker, respectively. This resulted in a total simulation time of
at least 28.8 ns for each system. Gaussian potentials with a width of
0.2 Å and an initial height of 0.5 kJ mol−1 were deposited and read
every 500 fs. A bias factor of γ = 20 was used. Following the setup
in Refs. 17 and 45, the sum of switching functions depending on the
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three S–S distances was restrained to prevent bond breaking of the
disulfide bond, while the sulfur anion Snuc is too far away. Restraints
were also applied to the coordination numbers of the Cβ atoms with
their bonded hydrogen atoms to prevent deprotonation by the sulfur
anion at short distances.

FIG. 2. Histograms of the sulfur–sulfur distances calculated from 2 × 500 ns
long classical MD simulations of the respective systems of each reaction step. (a)
Histogram of the S23

Grx– S27
HMA4 n and S23

Grx– S28
HMA4 n distances for step 1. (b) His-

togram of the GS−1 – S23
Grx and GS−1 – S28

HMA4 n distances for step 2. (c) Histogram
of the GS−2 –S1G and GS−2 – S23

Grx distances for step 3. The gray shaded areas
correspond to structures that meet the accessibility criterion.

III. RESULTS AND DISCUSSION
The proposed monothiol reduction cycle of HsGrx1 involves

three catalytic steps; see Fig. 1(d).7 In each step, the respective nucle-
ophilic sulfur anion Snuc can attack one of the disulfide bonded
sulfurs, resulting in two possible thiol–disulfide exchanges per step.
The cycle starts with reaction 1, where the sulfur anion of HsGrx1
S23

Grx can either attack sulfur atom S27
HMA4 n or S28

HMA4 n of the protein
substrate HMA4n. In order to proceed, step 2 requires an attack of
the glutathione thiolate GS−1 on the disulfide bonded S23

Grx. However,
the disulfide bonded sulfur atom of HMA4n ( S27

HMA4 n or S28
HMA4 n)

could also be attacked, which would then lead to a different path-
way. In the final step 3, a second glutathione anion GS−2 must attack
the disulfide bonded glutathione GS1 to form GSSG, but an attack on
S23

Grx is also conceivable, although this would lead to the same mixed
disulfide molecule (HsGrx1-S–SG).

To investigate the regioselectivity, we split the calculations into
two parts: In the first step, we estimated the accessibility of a certain
reactant conformation using MD simulations. That is, we sampled
the reactant conformations, which allowed to attack a specific sul-
fur atom and computed the probabilities of special sub-ensembles,
which may support different reaction pathways. These simulations
were performed with a classical force field because of the long times
needed (500 ns) and also because sufficient accuracy is expected for
the description of different protein conformations. In the second
step, we use the conformations of these sub-ensembles to estimate
the reaction barriers for the respective reaction pathways by means
of QM/MM metadynamics simulations. Both steps together lead to
an estimate of the regioselectivity.

A. Regioselectivity
To estimate the accessibility, we calculated 2D histograms of the

distances between the respective nucleophilic sulfur atoms Snuc and
the potential nucleophilic targets Sctr from classical MD simulations,
compare Fig. 2. We then counted how many times Snuc approaches
the target sulfur atoms such that an attack complex can be formed.
Only geometries where the Snuc–Sctr distances were less than 5 Å and
the angle between the three sulfur atoms∠(SnucSctrSlg) ≥ 130○ were
considered. For each system, the accessibility for each attack was cal-
culated, expressed as the percentage of the structures that met the
criterion, see Table I.

TABLE I. Estimated accessibility of the different possible nucleophilic attacks in the
catalytic reduction cycle of HsGrx1, based on the histograms shown in Fig. 2. An
attack was considered feasible if the distance between the nucleophilic and the
attacked sulfur atom (Snuc–Sctr) was less than 5 Å and the attack angle between
the sulfurs ∠(SnucSctrSlg) ≥ 130○. The accessibility is expressed as the sum of
structures that met the criterion divided by the total number of counts.

Step Attack Accessibility (%)

1 Grx-S23− → S27-HMA4n 0.54
Grx-S23− → S28-HMA4n 0.04

2 GS−1 → S23-Grx 1.30
GS−1 → S28-HMA4n 0.39

3 GS−2 → GS1 28.04
GS−2 → S23-Grx 0.04
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FIG. 3. Potentials of the mean force (PMFs) of the three consecutive thiol–disulfide exchanges in the monothiol route of HsGrx1 with HMA4n as substrate and GSH as
co-substrate. PMFs of steps 1 to 3 (left to right) obtained with DFTB using the SRP (a-c) and with DFTB using the ΔML correction (d-f). Contour lines are drawn every 2.5
kcal/mol.

We find that in step 1, S27
HMA4 n might be attacked more often

than S28
HMA4 n by S23

Grx, compare Fig. 2(a). The estimated accessibilities
are 0.54% and 0.04%, respectively. However, QM/MM metadynam-
ics of this attack showed a very large barrier of more than 23 kcal
mol (Fig. S1), whereas the barrier height for an attack on S28

HMA4 n
is much smaller with ∼12 kcal/mol [Figs. 3(a) and 3(d)]. Therefore,
S28

HMA4 n is considered as a nucleophilic target in the following; further
details on this choice are provided in the supplementary material.

In step 2, the mixed disulfide bond S23
Grx– S28

HMA4 n between
the enzyme and the protein substrate is then attacked by GS−1 ; see
Fig. 2(b). In our classical simulations, GS−1 can easily attack S23

Grx with
an accessibility of 1.30% compared to 0.39% for an attack on S28

HMA4 n.
In the last step, another GS−2 molecule attacks one sulfur atom of
the newly formed disulfide bond GS−1 – S23

Grx, compare Fig. 2(c). An
attack on GS−1 is more likely to occur with an accessibility of 28.04%
compared to an attack on S23

Grx with 0.04%. The regioselectivity of
step 1 is not known from experiments, but our estimated regiospeci-
ficities for step 2 and step 3 are the same as those experimentally
observed by Ukuwela et al.7 They find only small traces of the glu-
tathionylated HMA4n, i.e., the less likely attack we find for step 2,
and also only small traces of the glutathionylated HsGrx1 enzyme,

i.e., the product of step 2 and the less likely attack we find for
step 3. To further investigate the possible reaction pathways, free
energy profiles of the three regiospecific attacks were computed with
QM/MM metadynamics simulations.

B. QM/MM metadynamics
Each attack was simulated twice, using either the SRP or the

ΔML energy correction. The obtained potentials of the mean force
are shown in Fig. 3 and the reaction barriers in Table II. The barrier
heights and reaction energies determined by the two methods agree
very well, with differences ranging from 0.2 to 1.5 kcal/mol.

In step 1, the disulfide bond between S27
HMA4 n– S28

HMA4 n is the
global minimum on the free energy surface and the reduction prod-
uct S23

Grx– S28
HMA4 n is a local minimum. Note that sulfur atom S27

HMA4 n
is deprotonated in the product state due to the QM/MM meta-
dynamics setup. Using DFTB/SRP or DFTB/ΔML as QM method,
the heights of the barriers are ΔG‡

red. = 11.3 and 12.5 kcal/mol,
respectively. The corresponding reaction energies are ΔG = +5.0 and
+5.8 kcal/mol and consequently, the barrier heights for the reverse
oxidation reaction are ΔG‡

ox. = 6.3 and 6.7 kcal/mol, respectively.
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TABLE II. Reaction barriers of the catalytic reactions between HsGrx1 (Grx), the protein substrate HMA4n (P), and GSH. The
barriers were obtained with DFTB using the 3OB parameter set. Either the SRP or the ΔML correction was employed. All
values in kcal/mol.

Method
Grx-S− + P-(S)2
ÐÐ⇀↽ÐÐ Grx-S-S-P(S−)

Grx-S-S-P(SH) + GS−
ÐÐ⇀↽ÐÐ Grx-S-SG + P-(SH) (S−)

Grx1-S-SG + GS−
ÐÐ⇀↽ÐÐ Grx-S− + GSSG

DFTB/SRP 11.3/6.3 18.6/12.1 12.1/11.1
DFTB/ΔML 12.5/6.7 20.1/12.1 12.4/11.4

In the next catalytic step 2, the global minimum corresponds
to a disulfide bond between S23

Grx– S28
HMA4 n with S27

HMA4 n being pro-
tonated in this setup. A nucleophilic attack of a glutathione anion
on the sulfur atom of HsGrx1 leads to a disulfide bond GS−1 – S23

Grx,
which corresponds to a local minimum on the free energy sur-
face. The reaction energies are ΔG = +6.5 and +8.0 kcal/mol with
DFTB/SRP and DFTB/ΔML, respectively. The reaction barriers for
the reduction and oxidation are ΔG‡

red. = 18.6 and 20.1 kcal/mol,
respectively, and ΔG‡

ox. = 12.1 and 12.1 kcal/mol, respectively.
In the final step 3, a second glutathione anion attacks the

first glutathione disulfide bonded to HsGrx1, forming a GSSG
molecule, which is the local minimum on the free energy sur-
face. With DFTB/SRP or DFTB/ΔML, the reaction energies are
ΔG = 1.0 kcal/mol, in each case. The barrier heights for the reduc-
tion are ΔG‡

red. = 12.1 and 12.4 kcal/mol, respectively, and for the
oxidation ΔG‡

ox. = 11.1 and 11.4 kcal/mol, respectively.
The free energy surfaces obtained with the two corrections dif-

fer not only in their energetics but also in their topography. With
DFTB/ΔML, the minima are narrower, and the energy increases
more steeply than with DFTB/SRP. For example, in step 3, the
global minimum corresponding to the disulfide bond GS1– S23

Grx
spans GS2–S1G distances from 3.5 to 5.5 Å with DFTB/ΔML [hori-
zontal minimum in Fig. 3(f)]. With DFTB/SRP, the minimum spans
over distances from 3.5 to almost 10 Å [horizontal minimum in
Fig. 3(c)]. These differences can be attributed to the treatment of
many-body interactions. The modified repulsion potential Erep of the
SRP covers only two-body interactions, whereas the ΔML accounts
for many-body interactions. These become particularly important
when the sulfur atoms are not linearly aligned, which can occur in
our setup; the angles between the respective sulfur atoms can take
values between 130○ and 180○.

C. Evaluation of energy differences
We already provided a performance analysis of the machine-

learning model in Ref. 17. Here, the previous analysis is expanded to
provide further details, and also to compare the performance of the
SRP approach with the ΔML model. The generated potential energy
surfaces and a discussion of the SRP accuracy are presented in the
supplementary material. This analysis revealed a considerably inac-
curate description of the –S–S– torsion with the SRP. The larger
errors with DFTB/SRP can be attributed to the inaccurate descrip-
tion of the torsional potential between C–S–S–C of the dimethyl
disulfide. DFTB is known to underestimate rotational barriers due
to the neglect of three-center and four-center interactions.20,52 Thus,
we performed a potential energy scan of the C–S–S–C dihedral

angle of the dimethyl disulfide in the gas phase with DFTB/SRP
and DFTB/ΔML. The angle was scanned from −180○ to 180○ with
5○ increments obtained from short 40 ps QM/MM simulations of
the dimethyl disulfide and the methyl thiolate in the gas phase. The
S–S distances between the dimethyl disulfide and the methyl thiolate
were ∼7.0 Å. The obtained potential energy profile, the C–S–S–C
dihedral, is shown in Fig. 4. For a better comparability, the mini-
mum at−135○ was set to zero. Between−145○ and−85○, the energies
obtained with two corrections agree very well within 1 kcal/mol.
However, for all other angles there are large energy differences up
to 5.5 kcal/mol at −30○.

Thiol–disulfide exchange poses considerable challenges for
computational approaches: first, the reaction barriers are highly
dependent on the interaction with the environment, and the reaction
in gas-phase is barrierless, while in solution or in protein environ-
ment, barriers of up over 20 kcal/mol can occur, as shown in this
work and Ref. 17. Furthermore, the reaction is difficult to tackle for
approximate electronic structure methods such as DFTB3, which
is derived from DFT-GGA, as shown in detail in Ref. 23. This

FIG. 4. Potential energy profile of the C–S–S–C dihedral angle of the dimethyl
disulfide in the gas phase obtained with DFTB/SRP and DFTB/ΔML.
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necessitates the augmentation of the delta learning approach. In
combination with a semi-empirical method such as DFTB, this
then allows extensive sampling of reaction barriers, needed to com-
pute reliable free energy values. Since the correction is based on
CCSD(T), the question about the absolute computational cost arises.
Generating the CCSD(T) training data for 13 500 structures in Ref.
17 took in total ∼12 node-days with a dual Xeon Silver 4214 setup,
while the time to determine a single free energy barrier using
DFTB-QM/MM metadynamics took ∼12 days on the same node. In
this work, we calculated a total of eight reaction barriers, i.e., the
parameterization procedure was considerably faster than the actual
computation of the free energies.

IV. CONCLUSION AND OUTLOOK
The mechanism of enzymatic disulfide bond reduction by

glutaredoxins is still under debate, and several models have been
proposed. In this work, we used classical and QM/MM simulations
to investigate the reduction pathway proposed by Ukuwela et al.7
Based on their experiments, the reduction cycle should proceed over
three consecutive regiospecific thiol–disulfide exchanges between
the monothiol enzyme HsGrx1, the protein substrate HMA4n, and
the co-substrate GSH. In our classical MD simulations, we find the
same regioselectivity by means of an accessibility criterion from his-
tograms of the S–S distances between the respective nucleophilic and
the two target sulfur atoms. We then obtained the free energy pro-
files of each attack with QM/MM metadynamics and determined
the barrier heights and reaction energies to analyze whether the
enzymatic reactions were feasible or not.

This approach requires extensive phase space sampling, which
poses a challenge for ab initio and DFT methods due to their
high computational cost. As an alternative, minimum energy path-
way algorithms can be employed or relaxed geometry optimization
calculations for stationary points along a reaction coordinate per-
formed, as done by Neves, Fernandes, and Ramos for glutathione
disulfide reduction by protein disulfide isomerase.53 However, such
approaches usually neglect motions of the environment, which can
lead to errors, and approximations for the entropy have to be
used to obtain the Gibbs free energy. In contrast, adequate sam-
pling accounts for all important configurational changes, and the
Gibbs free energy is obtained directly. Hence, we used the semi-
empirical DFTB method as a QM method, which is about 3 orders
of magnitude faster than DFT-GGA, using moderately sized basis
sets. However, DFTB fails to accurately describe the thiol–disulfide
exchange reaction, as do most DFT-GGA functionals due to cor-
relation effects.23 As a workaround, we developed specific reaction
parameters (SRP) and a machine learned energy correction ΔML
used in a recent study17 and used them here for the free energy
calculations. The computational cost of the ΔML correction is com-
parable to a DFTB calculation. With both corrections, the obtained
barriers heights are about 12 kcal/mol for steps 1 and 3, and about
20 kcal/mol for step 2, which lie in the order of magnitude of typ-
ical enzymatic reactions. Therefore, our calculations indicate that
disulfide bond reduction by HsGrx1 most likely occurs via the
mechanism proposed by Ukuwela et al.

Still, there is an interesting question of the relative merit of
the SRP and ΔML approaches, as ΔML offers a potential for higher

accuracy and greater flexibility for a somewhat increased compu-
tational cost. In our current work, there are minor differences in
the obtained free energy profiles: The ΔML correction yielded bar-
riers that are up to 1.5 kcal/mol higher than those obtained with the
SRP, and the minima are somewhat narrower than with the SRP. It
would be important to know in what situations this agreement may
break down, with the ΔML approach possibly becoming superior.
Comparing the corrections with their respective reference methods,
B3LYP for the SRP and CCSD(T) for the ΔML correction, showed
that the SRP reproduces the reference energies at short S–S dis-
tances very well, but exhibits large errors at larger S–S distances.
In addition, the SRP underestimates the torsional energy of the
C–S–S–C dihedral angle between disulfide bonded molecules. The
ΔML correction, on the other hand, reproduces the reference ener-
gies for all given structures accurately. The incorrect DFTB3/3OB
description of torsions –S–S– remains uncorrected and wrong with
the SRP, but it is within the applicability area of the ΔML cor-
rection. Thus, the reason for the good performance of the SRP
in the current study seems to be the fact that only S–S distances
vary during the reactions—for which the SRP could be and was
parameterized—while no other more complex degrees of freedom
such as –S–S– torsions play a role. In a more general case potentially
involving those, PMFs obtained with the ΔML correction would be
considered more accurate.

Nevertheless, all investigated reactions are uphill, which is
unexpected for enzymatic reactions. This can be attributed to the
QM/MM setup, since we did not consider the subsequent proto-
nation of the cysteinyl thiols S28 and S27 of the protein substrate
HMA4n for technical reasons. The protonated HMA4n species are
most likely lower in energy than the deprotonated ones, since most
cysteinyl thiols are considered to have a pKa of 8 or higher. In
contrast, the enzymatically active cysteinylthiols of glutaredoxins
typically have a pKa < 5 and are therefore usually deprotonated
and readily available to initiate a nucleophilic attack. Moreover, the
direction of the catalytic cycle is controlled by the concentration of
GSH. An excess of GSH leads to the reduction of the disulfide bond
of the substrate and an excess of GSSG to oxidation. Considering all
these facts, we can conclude that disulfide bond reduction by HsGrx1
most likely proceeds via the mechanism proposed by Ukuwela et al.
In a future work, the regioselectivities and barrier heights for other
mechanistic models can be studied and compared with the results
presented here.

SUPPLEMENTARY MATERIAL

See the supplementary material for force field parameters of
GSH, additional results on the regioselectivity and free energy
surface for step 1, and additional performance analysis of the
machine-learning model.
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