KIT | KIT-Bibliothek | Impressum | Datenschutz

Prediction of cybersickness in virtual environments using topological data analysis and machine learning

Hadadi, Azadeh 1; Guillet, Christophe; Chardonnet, Jean-Rémy; Langovoy, Mikhail 1; Wang, Yuyang; Ovtcharova, Jivka 1
1 Institut für Informationsmanagement im Ingenieurwesen (IMI), Karlsruher Institut für Technologie (KIT)

Abstract:

Recent significant progress in Virtual Reality (VR) applications and environments raised several challenges. They proved to have side effects on specific users, thus reducing the usability of the VR technology in some critical domains, such as flight and car simulators. One of the common side effects is cybersickness. Some significant commonly reported symptoms are nausea, oculomotor discomfort, and disorientation. To mitigate these symptoms and consequently improve the usability of VR systems, it is necessary to predict the incidence of cybersickness. This paper proposes a machine learning approach to VR’s cybersickness prediction based on physiological and subjective data. We investigated combinations of topological data analysis with a range of classifier algorithms and assessed classification performance. The highest performance of Topological Data Analysis (TDA) based methods was achieved in combination with SVMs with Gaussian RBF kernel, indicating that Gaussian RBF kernels provide embeddings of physiological time series data into spaces that are rich enough to capture the essential geometric features of this type of data. Comparing several combinations with feature descriptors for physiological time series, the performance of the TDA + SVM combination is in the top group, statistically being on par or outperforming more complex and less interpretable methods. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000152327
Veröffentlicht am 07.11.2022
Originalveröffentlichung
DOI: 10.3389/frvir.2022.973236
Scopus
Zitationen: 16
Dimensions
Zitationen: 16
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationsmanagement im Ingenieurwesen (IMI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2673-4192
KITopen-ID: 1000152327
Erschienen in Frontiers in Virtual Reality
Verlag Frontiers Media SA
Band 3
Seiten Art.-Nr.: 973236
Vorab online veröffentlicht am 11.10.2022
Schlagwörter virtual reality, cybersickness, navigation, TDA, persistent homology, machine learning
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page