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Abstract
We present a theoretical study for MoS2/MoSe2 Van der Waals heterojunction in the armchair direction, and periodicity in the y-direction, under the 
mechanical deformation process to explore electronic structure vs. curvature angle. Our findings reveal that the heterojunction maintains chemical 
stability, even under high deformation, and the bandgap of the heterojunction is inversely proportional to curvature angle; the shift from semicon‑
ductor—with a bandgap of 0.8 eV—to semimetal occurs at deformation angles as low as 5°, having a gapless material. The mentioned transition 
corresponds mainly to distortion of half-filled molybdenum d-orbitals and chalcogen–chalcogen p-orbitals overlapping near the Fermi level.

Introduction
Transition metal dichalcogenides (TMD) exhibit novel electrical 
and mechanical properties like tunable bandgap in addition to a 
transition from an indirect to a direct bandgap,[1] electron mobil-
ity up to 200 cm3V−1 s−1,[2] experimental values of elastic modu-
lus superior to 130 GPa,[3] and a remarkable chemical stability.[4] 
Thus, layered TMD including MoS2, WS2, and WSe2 can be used 
for atomic or monolayer deposits with potential use, especially in 
flexible electronics targeting the Internet of Things (IoT), and high-
throughput applications,[5,6] furthermore, the ability to adjust the 
electronic properties of these materials allows new functionalities 
like tuned electronic structure as occurred at twisted angles between 
two-dimensional layers of MoS2, which conforms Moiré patterns.[7] 
A recent paper published by Pu et al. shows that electrical proper-
ties in double-layer MoS2 transistor subjected to mechanical bend-
ing, still keeps its operating performance up to a bending radius of 
0.75 mm[8]; in agreement with theoretical insights as presented by 
Sharma et al. and others,[8,9] computational calculations, especially 
the density functional and molecular dynamics schemes, opens an 
opportunity to explore key aspects of charge migration and orbit-
als distribution under strain and compression conditions in the 
plastic regime. On the other hand, a state-of-the-art experiment 
presented by Casillas et al. with aid of Cs-corrected Transmission 
Electron Microscopy (TEM) and combined molecular dynamics 
simulations, determined the resilient character of MoS2 nanosheets 
due to structural restitution performance even at a curvature radius 
of 0.5 nm at applied pressure in the GPa regimes.[10] Addition-
ally, nowadays there is also an increased focus on the integration 
of TMD heterojunctions for the design and fabrication of high-
throughput electronic devices,[11] targeting large-scale fabrication, 
and tunability with notable results and progress.[12] Li et al. reported 

MoSe2/MoS2 heterojunctions as-fabricated using epitaxial growth 
techniques, indicating high-performance for hydrogen evolution 
catalytic reactions as mainly caused by band alignment and charge 
transport over its interface.[13] Hosseini et al. reported that electron 
mobility (μs) is proportional to an applied strain and multilayer 
thickness with values of μs ~ 300 cm2 V−1 s−1 at 3% tensile strain in 
multilayer MoS2 the surface.[14] And Cui et al.[15] indicated a stable 
resistive switching behavior under bending conditions for Ni/TiO2, 
making a higher p-n heterojunction in comparison with ITO/Si het-
erojunction as reported by Yao et al.[16] for tunable band structure 
as a function of elastic strain. However, there are a small number of 
reports regarding the variation of the electronic properties of TMD 
heterojunctions -especially important MoS2 and MoSe2- as a result 
of mechanical bending; thus, its understanding is crucial to take 
advantage of TMD heterojunctions in electronic applications. Here, 
we present a theoretical study to determine the electronic structure 
of Van der Waals MoS2/MoSe2 heterojunction under mechanical 
deformation from 0° to 45° bending curvature. Our results indi-
cate an overlap of chalcogen p-orbitals and distortion of half-filled 
metallic d-orbitals around the Fermi level caused by mechanical 
deformation; such distortion of the d-orbitals leads to a transition 
from semiconductor to semimetal character of the heterojunction 
at bending angles starting at ~ 5°. This theoretical study provides a 
new platform for designing bandgap-engineering devices employ-
ing TMDC and using new degrees of freedom.

Computational methods
The performed density functional theory (DFT) calcula-
tions were completed using CASTEP© code[17] as part 
of the Materials Studio® package, using the revised 
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Perdew–Burke–Ernzerhof (RPBE) as exchange–correlation 
functional as part of the Generalized Gradient Approximation 
(GGA) to describe particle’s interactions in all our systems 
during single-point energy calculations. Band structure calcu-
lations were performed by setting a self-consistent field (SCF) 
energy value of 1 × 10–5 eV atom−1, using a k-point mesh with 
a minimum separation of 0.07 Å−1. We set the cutoff energy at 
435 eV and we employed the long-range dispersion correction, 
known as the DFT-D2, as described by Grimme et al.,[18] setting 
the parameter values of s6 and d to 0.5 and 10, respectively, 
following previous reports.[19] The partial density of states 
(pDOS) was calculated using a k-point mesh of 9 × 2 × 2 sam-
pling in the reciprocal space and using the same exchange–cor-
relation functional as before.

Previous studies show that there is no relation between bend-
ing stiffness and the armchair or zigzag edges in MoS2,[20] there-
fore, MoS2 nanoribbon was built in the armchair direction with 
a length of 8-unit cells or approximately 2.2 nm and a thickness 
of one layer, approximately 0.06 nm. The MoS2 nanoribbon was 
created using a MoS2 unit cell (space group P63/mmc) with lat-
tice parameters of a = b = 0.31 nm, and c = 1.84 nm [Fig. 1(a)]. 
MoSe2 nanoribbon consists also in 8-unit cells created from the 
armchair direction of a MoSe2 unit cell (space group P63/mmc) 
with lattice parameters of a = b = 0.33 nm, and c = 1.84 nm-both 
MoS2 and MoSe2 unit cells were previously optimized with the 
DFT parameters mentioned above. The thickness of the MoSe2 
nanoribbon is 0.06 nm corresponding to a one-layer thickness. 
Both MoS2 and MoSe2 nanoribbon consist of fifteen molybdenum 
atoms and thirty chalcogen atoms, either sulfur or selenium, and 
both have periodic conditions over y-direction [Fig. 1(b)]. All 
proposed models were placed in large crystallographic lattice 
with dimensions of 0.58 nm, 3.1 nm, and 2 nm in the x, y, and 
z-direction, respectively with sufficient space to prevent atomistic 
interaction with near neighbor atoms. The heterojunction was 

manually bent from 0° to 2°, 5°, 10°, 25°, 30°, and 45°. For com-
parison, all calculated density of states and band structures were 
compared with the pristine (unbend or flat) model.

Results and discussion
Geometric optimization of bending 
structures
In our study, we started by computing the relative structural sta-
bility of MoS2/MoSe2 Van Der Waals heterojunction ( E

vdw
 ) using 

the following expression,

where E
ht

 is the computed total energy of MoS2/MoSe2 hetero-
junction, n is the number of atoms in the structure, and E

MoS
 

and E
MoSe

 are the computed total energy of the MoS2 and 
MoSe2 nanoribbon, respectively. Using the computed values 
of total energy and curvature (Table S1), the estimated value of 
E
vdw

 is 0.06 eV atom−1 and this indicates that the heterojunc-
tion with no bending curvature is geometrically stable, in agree-
ment with experimental evidence,[21] with a binding distance 
between MoS2 and MoSe2 of 0.32 nm.

By estimating the energy density (E
A
) from the computational 

calculations, which provides valuable energetic information, we 
were able to compute structural stability for heterojunctions using 
Eq. 2 which reads

where E
bend

 corresponds to the total energy of the proposed 
molecular model (in eV), E

flat
 corresponds to computed energy 

of pristine (or flat) model, and A is the cross-sectional area in 
nm2. As observed, the energy density of a proposed theoreti-
cal heterojunction is proportional to bending curvature, with 

(1)E
vdw

=

1

n

(E
ht
− E

MoS
− E

MoSe
)

(2)E
A
=

E
bend

− E
flat

A

Figure 1.   (a) MoS2 and MoSe2 unit cells (P63/mmc space group), (b) model of the MoS2/MoSe2 Van der Waals heterojunction side and top 
view, respectively. Dashed lines correspond to the periodic conditions on the as-proposed model. (c) Energy density values as a function 
of bending curvature. The red line is the polynomial fit to emphasize nonlinear behavior. Color code: cyan ball represents Mo, yellow and 
orange balls represent S and Se.
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maximum value at a 45° bending angle (~ 0.04 nm−1) as shown 
in Fig. 1(c). It is observed that the variation of energy den-
sity does not have similar values in comparison with previ-
ous reports for bending characteristics of MoS2 nanosheets.[20] 
In our work, energy density values remain with variations 
of 8.712 × 103 eV nm−2 at 5°, to 8.731 × 103 eV nm−2 at 45°, 
indicating a ΔEA of 0.019 × 103 eV nm−2. Here, as curvature 
increases, variation of energy density also increases, attributed 
to deformation effects of molecular flat nature of TDMC to 
reallocation of energy orbitals, expanding and contraction of 
Mo–S and Mo–Mo bond length, mostly at the edges.[22]

Electronic structure
The calculations of the partial density of states (pDOS), 
which express several available states per energy unit (eV), 
reveal how orbital distribution varies as a function of bend-
ing curvature. This allows us to determine the contributions of 
d-orbitals near the Fermi energy level, with a semiconductor 
to metal transition, as shown in Fig. 2(a–g). For comparison, 
it is clear that in the pristine model all density of states shows 
typical contributions from p- and d-orbitals corresponding to 
sulfur-selenium and molybdenum at valence and conduction 
band near Fermi, in agreement with previous reports.[23] How-
ever, for bending scenarios, it was detected that contribution 
of p- and d-orbitals have an increased presence near the Fermi 
level. The bending effect induces a reduction of energy band-
gap provoking a semiconductor to semimetal transition for 

maximum bending angle. The latter has been reported previ-
ously for twisting layers of 2H-MoS2,[7] or under compressive 
strain conditions in 2H-MoS2 layers,[24] attributed to orbitals’ 
interaction and indicating the high flexibility of TMD in terms 
of electronic modulation.

Previous reports suggest the increase of orbitals contribu-
tion near the Fermi level is linked to an overlap of px orbitals 
from sulfur-sulfur bonding, as caused by bending and struc-
tural deformation.[7] However, from pDOS plots we detect a 
strong metallic transition for large bending curvature values 
near energy Fermi level (EF), from 0 to 1.5 eV, in compari-
son to s- and p-orbital contributions. Contrary, for all bending 
scenarios the d-, p- and s-orbitals have a similar distribution 
regardless of the bending curvature between 0 eV and − 1.0 eV 
near EF. The half-filled d-orbitals, as observed, presented the 
higher variation as a function of bending curvature and can be 
understood as easily perturbated energy levels, mainly between 
K and Γ points in the Brillouin zone for strained 2H-MoS2 
sheets,[25] which derived in the contraction of the bandgap. A 
higher orbital weight at the conduction band and valence band 
of these d-orbitals represent an easier distortional energy level; 
as shown in Fig. 2, we have a gapless material after 5° of bend-
ing, in agreement with the bandgap contraction occurring on 
strained MoS2.[24] The analysis of pDOS results for all density 
of states computations indicates an increase of orbital contri-
bution near EF could be attributed to the interaction between 

Figure 2.   (a)–(g) The partial density of states calculated for as-proposed theoretical MoS2/MoSe2 heterojunction as a function of bending 
angle. (h) The partial density of states of at 0° curvature angles. (i) The partial density of states of 45° curvature angles. Color code: cyan 
molybdenum, yellow and orange sulfur, and selenium atoms. The perturbation of the d- and p-orbitals is indicated by the red square box 
and the red arrows.
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d-orbitals from molybdenum atoms in our proposed model,[26] 
causing irreducible points values of k =  ~ 0.7 nm−1.

For 0° and 45° bending angles, the molybdenum d-character 
and sulfur-selenium p-character orbitals distribution near EF 
reveals metallic transition, caused by d-orbitals coming mainly 
from molybdenum atoms [Fig. 2(h) and (i)] which is similar 
to metal–semiconductor interfaces as reported by Farmanbar 
et al. in similar models.[27] The p-orbitals from sulfur and sele-
nium atoms present a partial overlapping near the Fermi level, 
represented by the similar distribution between 0 eV and 3 eV, 
however, the signal is low when compared to molybdenum 
d-orbitals. The latter serves as theoretical insights that indicate 
semiconductor to metallic transitions happening at low angles 
values of 5°, meaning its relevance and extraordinary behavior 
for mechanical switching engineering applications in devices 
such as micro-electrical mechanical systems.[13]

Electrostatic potential
The electrostatic potential is understood as charge distribu-
tion perpendicular to (001)-basal plane obtained from energy 
Kohn–Sham calculations by CASTEP©. The energy electro-
static potential presents severe fluctuations as bending curva-
tures occur from 0° to 45°, with higher visible electrostatic 
perturbation for bending curvature at 45° (Fig. 3). The bending 
values of 1° to 5° reduces by about 40%, decreasing steadily 

until the heterojunction reaches a bending angle value of 45°. 
This change in the electrostatic potential is directly related to 
the orbital distribution as previously mentioned, due to the tran-
sition from semiconductor to semimetal character; p-orbitals 
overlap while d-orbitals distort due to mechanical bending, 
decreasing a total contribution to the density of states near Fermi 
energy level, and hence, the charge distribution.

Furthermore, the position of the Fermi energy level, cor-
responding to zero values, decreases as heterojunction bending 
curvature occurs (Table I) and having a drastic change from posi-
tive to negative potential inducing a shift from semiconductor to 
semimetal. The Fermi energy level position remains stable with 
only significant changes from 0° to 1° and 35° to 45°, suggest-
ing the pinning phenomenon in agreement with other theoretical 
studies.[28]

By these results, we detect that when the heterojunction is 
flat its bandgap is ~ 0.8 eV (Fig. 3), which agrees with previ-
ous studies on the band structure of TMDC heterojunctions.[29] 
Nevertheless, the intersection of energy bands with the Fermi 
level as the MoS2/MoSe2 heterojunction bends confirms the 
transition from a semiconductor to a semimetal character pre-
dicted with the pDOS happening between the M, K, and the Γ 
points of the Brillouin zone, and attributed to metallic d-orbitals 
from molybdenum and metal–metal interaction.[30] The com-
puted variation of the bandgap as the heterojunction bends, also 
indicates that band alignment could be achieved even at small 

Figure 3.   (a) Electrostatic potential profile along the z-direction from 0° to 45° of bending angle. The dashed line indicates the location of 
the interface. The distribution of the electrostatic potential degrades as the heterojunction bends, showing a clear alteration of the charge 
distribution along the z-direction. (b–d) Band structure of the MoS2/MoSe2 heterojunction under a mechanical bending situation at 0°, 
1°, and 45°; the dashed orange line indicates the position of the Fermi level just at the top of the valence band. As the bending increase, 
energy bands intercross with the Fermi level giving the transition of the heterojunction from a semiconductor to semimetal.
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deformation angles, which can induce large areas of electron-
donor acceptor ideal for catalytic properties or electronic modu-
lation for supercapacitor applications as reported by Li et al.[13]

Conclusions
We present a theoretical study by the meaning of dispersion- 
corrected DFT approximation for Van der Waals MoS2/MoSe2 
heterojunction. Our results indicate a distortion of electronic 
structure caused by angular mechanical deformation in the 
range of 0° to 45°. The partial density of states near the Fermi 
energy level reveals a strong interaction of half-filled metallic 
d-orbitals with the transition from semiconductor to semimetal 
character, due to expanding and stretching of bonds on the 
sandwich-like Van der Waals solids at bending angles ~ 5°. The 
presented band structure calculations agree with several reports 
on TMD as encountered in the literature. Our theoretical study 
serves as a framework for the experimental design of bandgap-
engineering devices employing transition metal dichalcogenide 
heterojunctions.
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