MINI REVIEW

Applied Research

Check for updates

V_2O_5 as a versatile electrode material for postlithium energy storage systems

Oiang Fu¹ 💿

| Hainan Zhao^{1,2} | Angelina Sarapulova¹ | Sonia Dsoke¹

¹Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany

²Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, People's Republic of China

Correspondence

Qiang Fu, Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany. Email: qiang.fu@kit.edu

Funding information China Scholarship Council. Grant/Award Number: 202006170127; Deutsche Forschungsgemeinschaft, Grant/Award Number: ProjectID390874152

Abstract

Postlithium batteries have received intense attention as an alternative for large-scale electric energy storage systems due to their rich resources and low cost. Vanadium pentoxide (V_2O_5) is very promising as a host material because of its rich structure, high capacity, easy preparation, and adequate safety. V₂O₅ has several modifications, including α -, β -, δ -, γ -, ζ -, and ϵ -V₂O₅ as well as hydrate V₂O₅ (V₂O₅·nH₂O). In this mini-review, we comprehensively summarize the crystal structure of polymorphs V_2O_5 materials, their relationships, and their applications in postlithium batteries, including monovalent (Na⁺, K⁺), multivalent-ion (Mg²⁺, Ca²⁺, Zn²⁺, Al³⁺), and nonmetallic (H^+ , NH_4^+)-based batteries. Finally, general strategies are reviewed to improve the performance of V_2O_5 .

KEYWORDS

crystal structure, energy storage systems, postlithium batteries, strategies, V₂O₅ polymorphs

INTRODUCTION

Renewable energy sources play a crucial role being power supplies to reduce global warming and environmental pollution [1] caused by the large consumption of fossil fuels. In particular, solar and wind power are gradually becoming a large part of the energy proportion share due to the transition to carbon neutrality setting worldwide. However, they are inherently intermittent and generally dispersed, while the consumption and demands of electric energy increase [1e, 2]. Consequently, rechargeable batteries are necessary and essential for large-scale electric energy storage systems (EESs) to realize the smooth integration of these intermittent energies into grids [3].

Lithium-ion batteries (LIBs) have been widely used in portable devices, electric vehicles, and grid storage since their commercialization in the 1990s, because of their high power/energy density, high voltage,

and long cycle life [4]. However, their applications on EESs are firmly limited by the manufacturing cost and safety concerns [1e, 5] due to the high cost of raw materials, such as Li₂CO₃, and the low abundance of lithium (only 20 ppm) [6]. Moreover, the unevenly distributed lithium resources (mainly in South America) result in an increased supply chain risk and price. Therefore, it is urgent to develop postlithium batteries based on rich resources and low cost, for example, Na- [4c, 7], K- [8], Mg- [9], Ca- [10], Zn- [11], Al- [12], and nonmetallic (H⁺, NH₄⁺) [13] batteries.

The reversible intercalation of Li-ions in vanadium pentoxide (V_2O_5) was first reported by Whittingham in 1976 [14] and since then, V_2O_5 has received great attention as cathode material for LIBs. V₂O₅ possesses a layered structure and high capacity (theoretical capacity of 294 mAh g⁻¹ with 2 Li⁺ ions insertion) and provides high cost-efficiency, easy preparation, and adequate safety [4e, 15]. Moreover, the rich abundance

-----This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2022 The Authors. Applied Research published by Wiley-VCH GmbH.

of vanadium (the 20th most abundant element in the earth's crust) [16] makes it promising for practical application. Besides its application in LIBs, V₂O₅ also has been used as a host for post-Li species, including monovalent (Na⁺, K⁺), multivalent-ion (Mg²⁺, Ca²⁺, Zn²⁺, Al³⁺), and nonmetallic (H^+ , NH_4^+) [17] owing to large enough interstitial voids in its structure and high capacity (i.e., much higher than that of Prussian blue analogs (PBAs), manganese oxides and organic cathodes). Note that the term metal-batteries should be used when we consider systems using a metallic anode, while metal-ion (Mg-ion, Ca-ion etc.) batteries should be used when we have a type of "rocking-chair" battery. For the sake of brevity, in this mini-review, we only use the term "metal-ion" batteries. Considering the significant progress and the versatility of this material, it is necessary to compile and provide to the research community such a review. In this mini-review, we provide a comprehensive introduction of the crystal structure of polymorphs V₂O₅ materials and describe their applications in various "postlithium" batteries. Accordingly, this review is structured as follows: In the first part, the classification of V2O5 crystal structure, including α -, β -, δ -, γ -, ζ -, and ϵ -V₂O₅, as well as hydrate V₂O₅ $(V_2O_5 nH_2O)$ are reported. In the second part, the progress of V_2O_5 in post-Li batteries is summarized. Finally, in the last section, general strategies used to improve the performance of V₂O₅ are included.

CLASSIFICATION OF V₂O₅ CRYSTAL STRUCTURES

Up to now, several V₂O₅ polymorphs are reported, including α -, β -, δ -, γ -, ζ -, and ϵ -V₂O₅ as well as hydrate V₂O₅ (V₂O₅·nH₂O). They crystallize in orthorhombic or monoclinic structures with different space groups because of the different frameworks and arrangements of atoms. Thermodynamically stable phase α -V₂O₅ is the most important and has a close relationship with all other polymorphs that can be obtained via different synthesis approaches using α -V₂O₅ as a starting material. Figure 1 displays the schematic crystal structures of various V₂O₅ polymorphs and their relationship with α -V₂O₅.

$\alpha - V_2O_5$

The thermodynamically stable polymorph of vanadium pentoxide, α -V₂O₅, is a two-dimensional layered structure, built up from VO₅ square pyramids by sharing edges and corners, where the layers are held together by weak van der Waals forces [18]. It crystallizes in the orthorhombic structure with space group *Pmmn* or *Pmn*2₁, where

FIGURE 1 Schematic crystal structures (a) of various V_2O_5 polymorphs and their relationship (b) with α - V_2O_5

Pmmn is the common space group [18]. Novák et al. [19] proposed the space group *Pmn2*₁ by studying the single crystal of V₂O₅. *Pmn2*₁ is noncentrosymmetric, while *Pmmn* is centrosymmetric due to the existence of additional inversion symmetry in *Pmmn*. It is impractical to distinguish the two space groups through X-ray powder diffraction analysis, as proved by Novák et al. [19] and Fu et al. [20]. Furthermore, the [VO₅] square pyramids layer of V₂O₅ in space group *Pmn2*₁ is perpendicular to b-axes, while in *Pmmn* it is perpendicular to c-axes. Alternatively, the orthorhombic V₂O₅ structure can be expressed as layers of highly distorted VO₆ octahedra by sharing corners to form a three-dimensional framework.

$\beta - V_2 O_5$

 β -V₂O₅ [21] is a metastable phase prepared at high pressure (6.0 GPa) and V atoms are six-coordinated within distorted VO₆ octahedra. It belongs to the monoclinic structure with a space group $P2_1/m$ and its structure consists of quadruple units of edge-sharing VO₆ octahedra linked by sharing edges along [010] and mutually connected by sharing corners along [001]. This arrangement forms layers of V₄O₁₀ composition in planes parallel to (100). The layers are mutually held together by weak forces. β -V₂O₅ is metastable and transforms to α -V₂O₅ at 643–653 K (370–380°C) under ambient pressure.

$\delta - V_2 O_5$

 δ -V₂O₅ [22] is another metastable polymorph and has very low stability at ambient pressure, which has an isostructure with the B-Nb₂O₅ and Sb₂O₅ and is stable at pressure >8.0 GPa. It also crystallizes in a monoclinic structure but with a space group C2/c. The structure can be described as strings of pairs of edge-sharing VO₆ octahedra, which share corners to connect in a zigzag arrangement. The layers formed by strings are stacked parallel to the ac-plane. The δ -V₂O₅ undergoes a phase transformation to α -V₂O₅ in the temperature region 220–290°C in two steps. Both high-pressure phases (β -, δ -) transform into the α -modification when exposed to intense laser radiation [23].

$\gamma - V_2 O_5$

A metastable variety of vanadium pentoxide is γ -V₂O₅, obtained at atmospheric pressure by chemical or electrochemical deintercalation of Li from γ -LiV₂O₅ as reported by Cocciantelli et al. [24]. γ -V₂O₅ belongs to the orthorhombic structure with space group *Pnma*. The layer structure is built up of puckered layers of edge-sharing distorted VO₅ pyramids. The linkage of the pyramids within the layers is approximately the same as that in γ -LiV₂O₅, but differs from that in the α -V₂O₅ structure. Interestingly, γ -V₂O₅ retains the memory of the original γ -LiV₂O₅ and easily undergoes a phase WILEY-VCH

transformation into α -V₂O₅ upon heating at temperatures higher than 340°C.

$\zeta - V_2 O_5$

In contrast to the two-dimensional (2D) layered structure of α -V₂O₅, ζ -V₂O₅ [25] adopts a one-dimensional (1D) tunnel structure based on the hydrothermal deintercalation of Ag⁺ ions from nanowires of β -Ag_xV₂O₅ tunnel structure. This metastable polymorph crystallizes in a monoclinic structure with space group *C*2/*m* and has three distinct distorted VO₆ octahedra and VO₅ square pyramids by sharing edges and corners. These linked chains of polyhedra enclose 1D tunnels along the b-axis with two distinct sites for intercalating cations. The tunnel framework appears to be stable up to 490°C and transforms into α -V₂O₅ only at temperatures >500°C [26].

$\epsilon - V_2 O_5$

 ϵ -V₂O₅ [27] crystallizes in a monoclinic structure with C2/m space group. The coordinates of ϵ -V₂O₅ were optimized from ϵ -Cu_xV₂O₅ by removing Cu ions since a full structure solution is not available so far. In this structure, distorted V(1)O₆ octahedra share edges with an inequivalent set of distorted V(2)O₆ and share corners along b- and aaxes to form infinite sheets, which in turn are fused at the edges to form a double-layered structure. The double layers are further connected together via van der Waals force with a larger interlayer spacing than those of α - and ζ -V₂O₅.

Hydrate V₂O₅

Hydrate V₂O₅ (V₂O₅·nH₂O) [28] is another typical form of vanadium pentoxide and can be obtained through a direct reaction between crystalline V₂O₅ and H₂O₂, which, in turn, can be transformed into orthorhombic V₂O₅ by heat-treatment above 320°C. V₂O₅·nH₂O xerogels are composed of V₂O₅ bilayers separated by water molecules, where the double chains are formed by edges and corners sharing VO₆ octahedra. It has a large interplanar spacing of 11.5 Å, where its distance expands or contracts upon guest species (de) intercalation and a distance of about 2.90 Å between the two single V₂O₅ bilayer slabs. The coordination environment of V atoms in each bilayer slab is taken as octahedral.

APPLICATION OF V₂O₅ IN POST-LI BATTERIES

Among these polymorphs, α -V₂O₅ has received the most attention as host materials for Li and post-Li batteries. Herein, we mainly focus on the study of various V₂O₅ in nonaqueous systems for monovalent and multivalent-ion batteries, as shown in Figure 2. Moreover, some

FIGURE 2 Schematic diagram of various post-Li batteries based on V_2O_5 polymorphs

FIGURE 3 Schematic diagram of review order of various V_2O_5 in NIBs. NIBs, Na-ion batteries.

new research findings related to V_2O_5 in aqueous and nonmetallic ion batteries are also summarized.

Na-ion batteries (NIBs)

NIBs, which share a similar working principle as LIBs, have received much attention due to their low cost and abundant resources [3b, 29]. The investigation of NIBs started in parallel with LIBs in the 1970s-1980s [30], but it was then considerably decreased because of the successful commercial application of LIBs in the 1990s. Nowadays, with the increased need to improve the performance of NIBs, it is necessary to explore new electrode materials (cathode and anode), as most of the available cathode materials face structure degradation, low capacity, and slow kinetic diffusion properties owing to the large size of Na⁺ ion (1.02 Å of Na⁺ vs. 0.76 Å of Li⁺) [4d]. Among the polymorphs discussed above, α -V₂O₅ and bilayered V₂O₅ have received the most attention for NIBs due to their high capacity. In this subsection, we will first review the applications of α - V_2O_5 and bilayered V_2O_5 in NIBs (Figure 3). However, V_2O_5 exhibit poor electrochemical performance with limited capacity and cycling stability due to the intrinsic low conductivity of V2O5, sluggish diffusion of Na⁺, and large volume expansion. Thus, we will also summarize those strategies to address these issues, including the

morphology and crystallinity control of V₂O₅, modification of the crystal structure, surface and crystallinity of V₂O₅, and so on. In the end, we will also give an overview about the applications of β -, γ -, and ϵ -V₂O₅ in NIBs, followed by the studies of V₂O₅ in aqueous NIBs.

 α -V₂O₅ was first studied by Jacobsen [31] in 1988 together with channel-type β -Na_xV₂O₅ and layered Na_{1+x}V₃O₈ in all-solid-state batteries by applying poly(ethylene oxide)-based electrolyte at 80°C. This material demonstrated the insertion of 2 mole of Na⁺ insertion during the first discharge and the reversible (de)insertion of 1.7 mole of Na⁺ reversible (de)insertion in the following cycles. The formation of a new phase during the first cycle has been observed. In the same year, Pereira-Ramos [32] investigated the electrochemical performance of V₂O₅ in dimethyl sulfone-based molten electrolytes at 150°C for various guest cation insertions, including Na⁺, K⁺, Cs⁺, and Ca²⁺, which could be inserted with 1.6, 1.2, 0.8, and 0.5 moles per unit, respectively. Interestingly, Dunn et al. [17] in 2004 observed the reversible 1.7-mole insertion of Na⁺ into V₂O₅ aerogel in a threeelectrode cell configuration, consisting of a carbon paper counter electrode and an Ag wire reference electrode. They also demonstrated the insertion number of various cations, which was up to 1.2 mole of K^+ , 0.6 mole of Mg^{2+} , 0.4 mole of Ba^{2+} , per mole V_2O_5 aerogel, respectively. On the other hand, only limited work focuses on the mechanism study of α -V₂O₅ upon Na insertion. Muller-Bouvet et al. [33] reported that upon Na insertion into V₂O₅, the structure of pristine α -phase is maintained in $x \le 0.2$ in Na_xV₂O₅ and proceeds via a solid solution mechanism in the range $0.2 \le x \le 1.6$. The irreversible NaV₂O₅ phase is formed during the first Na insertion and the NaV₂O₅ phase can reversibly insert 0.8 sodium ions in the potential range of 1.4-3.0 V versus Na⁺/Na. However, Ali and coworkers [34] proposed a different reaction mechanism. A two-phase mixture composed of a major phase NaV₂O₅ and a minor phase Na₂V₂O₅ was observed during the discharge process. According to Ali et al., upon charging, the material returns back to its original structure of V₂O₅ with a minor phase of NaV₂O₅.

To improve the capacity and cycling stability of V₂O₅, amorphous V₂O₅ was prepared, which demonstrated two times the higher specific capacity of 241 mAh g⁻¹ than the crystalline one (120 mAh g⁻¹), as well as a high discharge potential, high energy density, and long cycle stability [35]. Differently, Liu et al. reported that amorphous V₂O₅ can provide higher reversible capacities than the crystalline one at low current densities, but not at high current densities (>320 mA g⁻¹) [36]. The encapsulated V₂O₅/nanoporous carbon nanocomposite exhibits a capacity of 170 mAh g⁻¹ at 40 mA g⁻¹ and high-rate performance with a capacity of 90 mAh g⁻¹ at 640 mA g⁻¹ [37]. Porous hollow spherical α -V₂O₅ with exposed (110) facets delivers a specific discharge capacity of 150 mAh g⁻¹ at 20 mA g⁻¹ and good cycling performance [38]. V₂O₅ microspheres [39], thin film [40], V₂O₅/TiO₂ [41], nanocomposite [42], were also studied.

Nanostructured V_2O_5 - nH_2O with different interplanar spacings [43] were prepared and applied as electrode materials in NIBs. In addition, cation preinsertion such as Fe- [44], K- [45], Na- [46],

Mn- [47], NH_4^+ [48] preintercalated V_2O_5 nH₂O, graphene oxide/ V₂O₅·nH₂O [49] composites were also introduced to improve the performance of V₂O₅·nH₂O. For example, electrochemically deposited nanostructured V_2O_5 ·n H_2O has an interplanar spacing of ~13.5 Å and achieves a reversible capacity of 250 mAh g^{-1} at 20 mA g^{-1} with average potentials of 3 V in NIBs [43a]. Single-crystalline $V_2O_5 \cdot nH_2O_5$ nanobelts via the solvothermal method have a large interlayer spacing of ~11.53 Å with a thickness of ~50 nm. The material exhibits a high capacity of $231.4 \text{ mA h g}^{-1}$ at 80 mA g^{-1} with the formation of $Na_2V_2O_5$ (expanded interlayer spacing of 15.35 Å) [43b]. V_2O_5 aerogel was applied as an anode and delivers a capacity of 200 mAh g^{-1} in the voltage range 0.01–1.5 V versus Na⁺/Na. Furthermore, the material was coupled with a carbon-coated $Na_3V_2(PO_4)_3$ cathode to build a full Na-ion cell, showing an average voltage of 2.5 V [43e]. V₂O₅·nH₂O nanoflakes grown on a threedimensional (3D) stainless steel mesh substrate display excellent electrochemical performance for Li-, Na-, and Al-ion intercalation, with a stable capacity of 250, 110, and 80 mA h g^{-1} after 100 cycles for Li-, Na-, and Al-ion batteries, respectively (Figure 4) [43j]. Bilayered Na_xV₂O₅·nH₂O nanowires were synthesized and demonstrated a high initial discharge capacity of 365 mAh g^{-1} at 20 mA g^{-1} (1.0-4.3 V vs. Na/Na⁺) [50].

5 of 22

The layered β -V₂O₅ modification was investigated for NIBs by Córdoba et al. [51] and exhibits an initial discharge capacity of 132 mAh g^{-1} with multiple clear plateaus above 2.4 V at C/20 and a maximum capacity of 147 mAh g^{-1} (1-mole Na⁺ ion insertion) under equilibrium conditions. They claimed the appearance of several isostructure $Na_xV_2O_5$ ($0 \le x \le 1$) by ex situ X-ray powder diffraction (XRD) and the irreversible phase transformation after the full Na⁺ extraction. The same group also studied the impact of partial fluorine substitution on monoclinic β -Na_{0.33}V₂O₅ by both theoretical and experimental methods. The oxyfluoride β -Na_{0.33}V₂O_{4.67}F_{0.33} shows the same structure as that of β -Na_{0.33}V₂O₅ with space group A2/m, but significant changes in sodium environment (shortening of the Naanion bond lengths) [52]. However, β -Na_{0.33}V₂O_{4.67}F_{0.33} displays a less capacity than that of $\beta\text{-Na}_{0.33}\text{V}_2\text{O}_5$ owing to its lower diffusion coefficient, less adequate morphology, and a lower oxidation state of vanadium originating from aliovalent O/F substitution. γ -V₂O₅ was applied as a new Na-ion insertion cathode material for NIBs, which was prepared by a chemical reaction between γ -LiV₂O₅ and NO₂BF₄ oxidizing agent [53]. γ -V₂O₅ displays a flat plateau at 3.3 V with a maximum specific capacity of 145 mAh g^{-1} (1 Na⁺ insertion). The material suffers from a strong kinetic limitation, as proven by the low efficiency at room temperature (RT) and high efficiency at 50°C.

FIGURE 4 Cycle performance and discharge-charge profiles of $V_2O_5 \cdot nH_2O$ in Na-ion batteries (a, b) and Al-ion batteries (c, d) at 100 mA g⁻¹. Reproduced with permission from Wang et al. [43j], Copyright 2017 Wiley-VCH.

 γ -V₂O₅ undergoes a two-phase transition involving the formation of a new phase γ -Na_{0.7}V₂O₅ followed by a solid solution. Due to its zero strain, γ -Na_xV₂O₅ structure also has remarkable cycling stability [53]. The structural changes upon sodiation are highly correlated to the evolution of cathode impedance, diffusion coefficient, and charge transfer [54]. Compared with the as-synthesized γ -V₂O₅, ball-milled γ-V₂O₅ demonstrates smaller particles, an increased charge efficiency of 90% from 50%, and an enhanced discharge capacity of 120 mAh g^{-1} at C/2 [55]. Later on, the crystal structure of the electrochemically synthesized γ-Na_{0.97}V₂O₅ was solved by Rietveld refinement and Raman spectroscopy, showing an orthorhombic layered structure (Pnma space group) with Na ions occupied the large octahedral sites between interlayer [56]. Then, high crystallinity γ -Na_{0.97}V₂O₅ was synthesized by chemical reaction using γ -V₂O₅ and Nal in acetonitrile at RT. The cathode material demonstrates an initial specific capacity of 125 mAh g^{-1} at C/5 and 112 mAh g^{-1} after 50 cycles [57]. ε -V₂O₅ and γ -V₂O₅ materials possess a high average voltage of 2.8 V in NIBs, which is 1 V higher than α -V₂O₅ and related to their unique open frameworks that result in higher chemical potentials [58]. ε -V₂O₅ delivers a much higher capacity (200 mAh g⁻¹) than that of γ -V₂O₅ (120 mAh g⁻¹) at C/10, where the electrodes using carbon nanotubes (CNTs) conductive agent exhibit a muchimproved capacity and rate capability compared with that using carbon black/graphite (AB/graphite) [59].

In addition, graphene-modified vanadium pentoxide ($V_2O_5@G$) was applied as electrode material in aqueous NIBs, which was coupled with a high-voltage cathode $Na_{0.44}MnO_2$ to assemble a full cell. However, the electrode delivers limited charge–discharge capacity (38 mAh g⁻¹) and cyclic stability with a retention of 53% after 200 cycles at $1 A g^{-1}$ [60]. $V_2O_5 \cdot 0.6H_2O$ nanoribbons were investigated in aqueous electrolyte solutions of 0.5 M Li₂SO₄, Na_2SO_4 , and K_2SO_4 , providing a reversible capacity of 37, 43, and 50 mAh g⁻¹ at 100 mA g⁻¹. Interestingly, the material shows the most capacity and facile K⁺ insertion, despite its highest ionic radius among the three cations (Li⁺, Na⁺, and K⁺) [61].

At present, NIBs are a very promising technology and alternative to LIBs due to the advantages of abundant resources and the low cost of the related raw materials. Particularly, the breakthrough of commercial NIBs made by contemporary amperex technology co. limited (CATL), consisting of Prussian white cathode and porous structure hard carbon anode, brings light to the world [62]. The battery developed by CATL provides a high energy density of 160 Wh kg^{-1} and fast charge to 80% state of charge (SOC) in 15 min [62], which is comparable with that of commercial LiFePO₄ (90–160 Wh kg⁻¹). This further encourages researchers and scientists to put more effort into developing advanced electrode materials with high capacity and cycling stability. It is well-known that analogs electrode materials in NIBs behave significantly differently than in LIBs. Still, NIBs face the issues that few electrode materials can reversibly (de)insert Na⁺ ions with fast kinetics and good cycling stability because of the large size of Na⁺ ions. Vanadium oxide has a much higher capacity than that of commercial Prussian white (150 mAh g^{-1}) and is very promising for the application in NIBs, in

particular, given its large interlayer spacing, which can minimize the volume expansion and increase the diffusion kinetics upon cycling. However, as a general hint to researchers in this field, careful attention should be paid during the electrochemical study of electrode materials to the usage of the highly reactive metallic Na in ether-based electrolytes [63]. In summary, much work still needs to be done in the development of advanced vanadium oxide electrode materials before their practical application in NIBs.

Potassium-ion batteries (KIBs)

Eftekhari [64] designed the first rechargeable KIB in 2004 by employing Prussian blue and potassium metal with 1 M KBF₄ in a carbonate-based electrolyte, where KIBs share a similar working principle ("rocking chair") as that of LIBs. However, KIBs did not receive much attention until Kim et al. [65] reported the electrochemical activity of an amorphous FePO₄ cathode in 2014. Afterward, KIBs received much interest as a promising candidate for the large-scale EESs due to the abundance and low cost of potassium. Although K-ion is larger and heavier than Li⁺, Na⁺, and Mg²⁺, the K⁺/K couple has a lower standard electrode potential (-2.936 V vs. SHE) than that of Na⁺/Na (-2.714 V vs. SHE) and Mg²⁺/Mg (-2.37 V vs. SHE) [27b, 66].

Pereira-Ramos [32] in 1988 investigated the electrochemical performance of V₂O₅ in dimethyl sulfone-based molten electrolytes at 150°C for various guest cation insertions, including Na⁺, K⁺, Cs⁺, and Ca²⁺, 1.6, 1.2, 0.8, and 0.5 moles per unit, respectively. The first application of V₂O₅ at RT as a host for K-ion insertion dates back to 2004 when Dunn et al. [17] realized the reversible insertion of Na⁺, K^+ , Mg^{2+} , and Ba^{2+} applying V_2O_5 aerogel in a three-electrode cell, consisting of carbon paper counter electrode and Ag wire reference (RE). They demonstrated the insertion number of various cations up to 1.7 moles of Na⁺, 1.2 moles of K⁺, 0.6 moles of Mg²⁺, 0.4 moles of Ba^{2+} , per mole V₂O₅ aerogel, respectively. Huang et al. [67] prepared a core-shell structured V₂O₅@CNT sponge that is able to offer fast ion insertion/deinsertion with a high capacity of 206 mAh g^{-1} at 5 mAg^{-1} . V₂O₅ nanorod@rGO [68] shows a higher reversible capacity of 271 mAh g^{-1} at 29.4 mA g^{-1} and good cycling stability of 80% after 500 cycles. The potassium storage mechanism in orthorhombic V₂O₅ nanoparticles was studied in our previous work [20] via in operando synchrotron diffraction and XAS. However, in that work, V₂O₅ nanoparticles suffered from a fast and severe capacity fading from 200 to 54 mAh g^{-1} followed by a slight and slow increase to 80 mAh g⁻¹ after 200 cycles. Moreover, a "cathode electrolyte interphase" (CEI) formation/decomposition was revealed during the first cycle. First-principles calculations demonstrated that a monolayer of V₂O₅ has a much smaller migration barrier for Na⁺ and K^+ (0.44 and 0.39 eV) than bulk V_2O_5 (1.66 eV) [69], demonstrating that bulk V₂O₅ is not suitable for Na-, K-, and Mg-ion batteries because of high migration barriers. Moreover, Manzhos et al. [70] demonstrated that metastable β -V₂O₅ offers much smaller diffusion barriers compared with orthorhombic α -V₂O₅ for K-ion insertion.

Compared with α -V₂O₅, layered γ -V₂O₅ polymorph shows a flat plateau at the high potential of 3.3 V versus K⁺/K and limited initial depotassiation capacity of 72 mA h g⁻¹ at C/10 as reported by Pereira-Ramos et al. [71]. γ -V₂O₅ undergoes a two-phase transition to form K_{0.5}V₂O₅ (space group *Pnma*), followed by a solid solution with the formation of K_{0.78}V₂O₅ during the first discharge. In the following cycles, the material displays reversible depotassiation-potassiation within K_xV₂O₅ (0.3 ≤ *x* ≤ 0.78) and less than 2% volume variation.

K⁺ preintercalation is a strategy adopted to overcome the challenges of relatively low capacity and unsatisfactory cycling stability. Indeed, K⁺ preintercalcated V₂O₅ materials (K_{0.83}V₂O₅ [72], K_{0.5}V₂O₅ [73], δ-K_{0.51}V₂O₅ [74], K_{0.486}V₂O₅ [75], K_{0.23}V₂O₅ [76]) are supposed to have improved performance with respect to V₂O₅. One example is a layered and moisture nonsensitive K_{0.83}V₂O₅ (space group *Pnma*), which was reported by Zhu et al. [72]. K_{0.83}V₂O₅ displays an initial potassiation capacity of 90 mAh g⁻¹ with a plateau at 3.5 V and capacity retention of 88% after 90 cycles. DFT calculation shows that K_xV₂O₅ (0 < x ≤ 0.875) displays a (semi)metallic feature upon potassiation and one-dimensional K-ion transport path. Jiang and coworkers [74]

WILEY-VCH-

7 of 22

prepared single-crystalline bilayered δ -K_{0.51}V₂O₅ nanobelts (KVOs) via reorganization of α -V₂O₅, which shows a high average voltage (3.2 V), high capacity (131 mAh g⁻¹), and good rate capability even at 10 A g⁻¹ (Figure 5). They also found that the excellent K-ion storage performance of KVO is due to the large interlayered structure and unique 1D morphology by combining experiments with theoretical calculations. Xie et al. [75] synthesized K⁺ preintercalated K_{0.486}V₂O₅ (interplanar spacing of 9.4 Å) nanobelts. K_{0.486}V₂O₅ cathode displays a high capacity of 159 mAh g⁻¹ at 20 mA g⁻¹ with a capacity retention of 67.4% after 100 cycles at 100 mA g⁻¹, which is ascribed to the lower diffusion barriers and shorter diffusion distances in

Hydrate V₂O₅ (V₂O₅·nH₂O) is very promising as a cathode as its large interplanar spacing is >11 Å. Li et al. [77] synthesized a reticular V₂O₅·0.6H₂O with a large interplanar spacing of 13.3 Å, which delivers an initial discharge capacity of 224 mAh g⁻¹ with capacity retention of 46% after 500 cycles at 50 mA g⁻¹. The material exhibits improved electrochemical activity because of the enlarged layer space compared with crystalline α -V₂O₅·0.8H₂O@GO material displays good cycling stability (94% after 200 cycles at 50 m Ag⁻¹)

comparison to α -V₂O₅ [74].

FIGURE 5 Charge-discharge profiles of the KVO electrodes at different current densities (a), Ragone plots of the KVO cathode and other advanced potassium-ion battery cathodes (b), and cycle performance (c) of the KVO electrodes at 100 and 4000 mA g^{-1} . Reproduced with permission [74], Copyright 2019 Elsevier.

but low reversible capacities of 93 mAh g⁻¹ at 50 m Ag⁻¹ as reported by Passerini et al. [78], who demonstrated that a highly concentrated potassium bis(trifluoromethanesulfonyl)imide-glyme electrolyte effectively suppresses the decomposition of the electrolyte solvent and dissolution of Al current collector. δ -K_{0.42}V₂O₅·0.25H₂O [79], K_{0.5}V₂O₅·0.5H₂O [73c], and Na_{0.29}V₂O₅·nH₂O/rGO/CNT composites [80] are also reported as cathode for KIBs. Interestingly, δ -K_{0.42}V₂O₅·0.25H₂O with an interlayer spacing of 9.65 Å shows an initial discharge capacity of 268 mAh g⁻¹ at C/50 and 226 mAh g⁻¹ at C/15 with capacity retention of 74% after 50 cycles, which is much higher than that of Na_{0.29}V₂O₅·nH₂O/rGO/CNT (interplanar spacing of 11 Å, 120 mAh g⁻¹ at 0.1 A g⁻¹).

Moreover, aqueous KIBs based on V_2O_5 are also reported. For example, Teng et al. [81] reported a polymer pre-intercalated V_2O_5 (polymer molecule in the interlayer) with an increased interlayer distance of 22 Å for aqueous KIBs, which shows high capacities of 126, 114, and 91.0 mAh g^{-1} in 1 M KCl at the current densities of 50, 100, and 200 mAg⁻¹ after 100 cycles, respectively. Later on, the same group [82] synthesized disordered vanadium oxide nanosheets K_{0.22}V_{1.74}O_{4.37}·0.82H₂O for aqueous KIBs. This material delivers a high capacity of 183 mAh g⁻¹ and excellent cycle stability in KCl electrolyte; its good performance is attributed to the crystal water and structural reorganization. Interestingly, Jiang et al. [83] reported an aqueous K-ion microbatteries, consisting of amorphous/crystalline dual-phase K_xV₂O₅·nH₂O anode and K_xMnO₂·nH₂O cathode in aqueous 0.5 M K₂SO₄. The resulting full microbattery delivers a maximum energy density of 103 mWh cm⁻³ and maximum power densities of $\sim 600 \,\mathrm{W \, cm^{-3}}$, which is comparable with carbon-based microsupercapacitors.

Nowadays, KIBs are still at their beginning stages due to the lack of suitable host materials with satisfactory electrochemical performance. Insertion materials often suffer from sluggish K^+ diffusion kinetics and irreversible structural transformation arising mostly from the large size of K^+ during cycling. Fortunately, considerable progress has been made with regard to the development of anodes for PIBs. Carbon-based materials deliver high capacities ($\geq 250 \text{ mAh g}^{-1}$) with good cycling stability [8]. However, the capacity of most cathode materials is still unsatisfactory (~150 mAh g^{-1}). V₂O₅ polymorphs can deliver a higher capacity of \sim 250 mAh g⁻¹ but still suffer from poor rate capability, cycling stability, and phase transitions owing to the large ionic size of K⁺. Further engineering of vanadium oxides is needed to provide sufficient storage sites and diffusion channels for the large K-ions, and the in-depth reaction mechanisms need to be clarified. For full-cell configurations, V₂O₅ can be coupled with presodiated hard carbon in NIBs and prepotassiated graphite in KIBs, while V₂O₅ can be coupled with Na/K metal in half-cell configurations for NIBs and KIBs. The problems are arising in half-cell configurations due to the highly reactive K metal and side reaction of electrode/K metal (similar to Na). Therefore, special attention should be paid to the electrode/electrolyte interphase and electrolyte engineering to reduce side reactions and improve the overall performance of KIB (NIBs) half cells.

Magnesium-ion batteries (MIBs)

MIBs are considered a promising candidate for large-scale EESs since they offer high safety, low cost, and high volumetric capacity (3833 mAh cm⁻³). The first Mg rechargeable battery system was proposed by Gregory et al. [84] in 1990, consisting of an electrolyte containing Mg-organo-borate moieties, Mg(BBu₂Ph₂)₂, in tetrahydrofuran (THF). The electrolyte allows reversible Mg deposition/ dissolution with an electrochemical stability window of <2 V, while it is incompatible with transition metal oxides or sulfides. Ten years later, Aurbach et al. [85] made the second breakthrough in this field and developed the first rechargeable magnesium battery consisting of Mg metal, Chevrel phase cathode, and Mg(AlCl₂BuEt)₂ electrolyte. Then a new all-phenyl-complex (APC) electrolyte with a wide electrochemical window (>3 V) was developed by the same group [86]. Despite these breakthroughs, one of the major issues faced by MIBs is the lack of high-performance cathode materials and the lack of an electrolyte that is simultaneously compatible with high-voltage cathodes and the Mg anode [87]. In addition, the most common Mgion electrolytes exhibit high corrosion to the battery casing and current collectors. For instance, stainless steel becomes unstable above 2 V versus Mg²⁺/Mg in the well-known APC electrolyte [88].

The magnesiation behavior of α -V₂O₅ through either electrochemical or chemical intercalation was first studied in 1980s [89] and 1990s [84, 90] despite the development of Mg(BBu₂Ph₂)₂/THF electrolyte. These pioneering efforts demonstrate the promising aspects of V₂O₅ due to its high OCV (2.66 V) and modest capacity of 196 mA h g⁻¹. V₂O₅ can reversibly (de)intercalate Mg²⁺ ions, while no electrolyte is available that is compatible with both V₂O₅ and Mg. Aurbach et al. [91] studied the reversible Mg (de)intercalation of thin V₂O₅ film in nonaqueous Mg salt solutions using activated carbon (AC) as both counter electrode (CE) and RE (Figure 6). The V₂O₅ electrode exhibits reversible Mg-ion intercalation with capacities around 150–180 mAh g⁻¹. The rational design of electrode materials is an effective method to improve their electrochemical performance, such as preparing nanostructured materials, heterogeneous structures (including surface coating, composites), and cation doping.

Spherical V₂O₅ with a hierarchical architecture was proven to deliver a high capacity of 225 mA h g⁻¹ at 10 mA g⁻¹, which stabilized at ~190 mA h g⁻¹; the V₂O₅ material remains in its phase and morphology after cycling [92]. Zhao et al. [93] designed a dual-functional V₂O₅ with a honeycomb-like structure and rich oxygen vacancies with the aim to improve electronic conductivity and diffusion kinetics. They proved that Mg²⁺ intercalation occurs from the (101) plane of V₂O_{5-x}. Amorphous V₂O₅ [94], V₂O₅-P₂O₅ [95], GO/V₂O₅ [96], and V₂O₅/S [97] composites are also prepared to improve the capacity and cycling stability of V₂O₅. For instance, V₂O₅/S composite displays a much higher capacity (310 mAh g⁻¹) than that of pristine V₂O₅ (160 mAh g⁻¹). Manzhos et al. [98] calculated the interaction mechanism of α -V₂O₅, β -V₂O₅, VO₂(R), and VO₂(R) holds the largest binding energy and a low diffusion barrier

FIGURE 6 Scheme of the cell configuration and the electrode processes. AC cloth was used as RE and CE. The charge passage needed for the magnesiation/demagnesiation processes of the working electrode (CE, V_2O_5) is maintained by non-Faradaic, electrochemical adsorption/desorption on the high surface area CE (interfacial capacitance). The potential (E) of the CE is linear with the charge (Q), with a slope of 1/C, where C is the capacitance of CE. Reproduced with permission from Gershinsky et al. [91]. Copyright 2013 American Chemical Society. AC, activated carbon; CE, counter electrode; RE, counter electrode.

for Al³⁺ and β -V₂O₅ displays the highest binding energy and reduced diffusion barrier for Mg²⁺ compared to α -V₂O₅. NH₄V₄O₁₀ [99] and Zr⁴⁺-doped NH₄V₄O₁₀ [100] present an improved discharge capacity and cycling stability due to the expanded interlayer space.

Water in electrolytes plays an important role in achieving high capacity. Yu and Zhang [101] reported that V_2O_5 displays the highest first discharge specific capacity of 159 mAh g^{-1} in 0.1 M Mg(ClO₄)₂ + 1.79 M H₂O/PC among various electrolytes, as water can facilitate the electrochemical Mg²⁺ (de)intercalation. Sa et al. [102] studied the compatibility of Mg(TFSI)₂/diglyme electrolyte with Mg metal and α- V_2O_5 at very low water levels. They found that electrolytes containing high-level water cannot reversibly deposit Mg, but contributes to higher capacities, which originate from the reversible proton insertion. On the other hand, it is critical to reduce the water amount in the Mg(TFSI)₂/diglyme electrolyte to obtain reversible Mg plating/stripping. Hong et al. [103] reported that the crystal structure of magnesiated α -V₂O₅ has a general formula of Mg_{0.17}H_xV₂O₅, $(0.66 \le x \le 1.16)$ in 0.5 M Mg(ClO₄)₂/AN + 2.0 M H₂O and found that single Mg^{2+} ions or protons are the only intercalated ions since H_2O , H_3O^+ , or solvated magnesium ions are too big for the cavities. Palacín et al. [104] demonstrated the formation of H^+ inserted V_2O_5 with negligible Mg²⁺/Ca²⁺ content in both dry and wet carbonate-based electrolytes at RT and 100°C and the formation of orthorhombic phase caused by degradation via both water and temperature. α -V₂O₅ is traditionally regarded as a promising host to reversibly uptake high content of Mg²⁺, while it is reported that H⁺ intercalation dominates the observed electrochemical activity rather than Mg²⁺. To address this controversy, Yoo et al. [105] performed electrochemical tests using chemically and anodically stable ionic liquid electrolyte at 110°C and found that the layered α-V₂O₅ reversibly deliver capacities above 280 mAh g⁻¹ with 1 mol Mg²⁺ intercalation

9 of 22

per unit formula. Aurbach et al. [106] studied the effect of DME on the Mg²⁺ intercalation kinetic into thin V₂O₅ films in Mg(ClO₄)₂/AN electrolyte. They found that DME-Mg interaction forms stable solution structures that kinetically slow down the insertion of the Mg²⁺ cations into V₂O₅ since DME forms a more stable 3DME-Mg²⁺ solvated structure by replacing the ACN-Mg²⁺ cation. Mukherjee et al. [107] demonstrated the phase formation from α -V₂O₅ to ϵ -Mg_{0.5}V₂O₅, which is different from the chemically synthesized sample of δ -MgV₂O₅. In our previous work [88], we clarified the reaction mechanism of α -V₂O₅ cathode Mg_xMo₆S₈ ($x \approx 2$) anode and 1 M Mg(ClO₄)₂/AN electrolyte. α -V₂O₅ phase (Figure 7).

Metastable ζ -V₂O₅ was first used as Mg²⁺ insertion host by Banerjee et al. [108], which holds up to 0.33 mol Mg²⁺ per V₂O₅ with a capacity of 90 mAh g⁻¹ after 100 cycles. However, ζ -V₂O₅ suffers from poor Mg²⁺ kinetics and large voltage hysteresis, Darr et al. [109] improved the discharge capacity of ζ -V₂O₅ to 130 mAh g⁻¹ with low voltage hysteresis of 1.0 V by synthesizing nanosized (ca. 100 nm) ζ -V₂O₅. Cabana et al. [110] investigated the role of H₂O in ionic liquid electrolytes using tunnel ζ -V₂O₅, where H₂O concentration closely influences the electrochemical reaction and V reduction, but not on changes in cell volume and Mg content. They concluded that H₂O raises competing pathways rather than enhancing Mg²⁺ intercalation, suggesting that the addition of H₂O into electrolytes is not a universal solution to improve Mg²⁺ intercalation for oxides.

Interplanar spacing expansion of V_2O_5 is believed to be an effective approach to improve ion diffusions, such as using water crystal water [111] and/or cations or polymer/composites [112]. Smyrl et al. [113] demonstrated that V₂O₅ aerogel can hold polyvalent cations such as Mg²⁺, Al³⁺, and Zn²⁺ inside the host via chemical intercalation, which has up to 4 mol of Mg²⁺, 3.33 mol of Al^{3+} 2.5 mol of Zn^{2+} , per mol V_2O_5 aerogel, respectively. V_2O_5 xerogel/carbon composites [114] show 1.84 mol of Mg²⁺ intercalation per mol of V_2O_5 at 0.1 mV s⁻¹, corresponding to a capacity of 540 mAh g^{-1} , which is much higher than that of V₂O₅ xerogel (150 mAh g^{-1}). The Mg²⁺ intercalation of V₂O₅ xerogel/carbon composites shows two main broad peaks similar to that of Li⁺, where the first and second peaks are related to Mg²⁺ intercalated into innerlayer site of V_2O_5 and interlayer site, respectively [115]. Yao et al. [111b] fabricated V₂O₅·1.42H₂O@rGO nanocomposite, which delivers a capacity of 330 mAh g^{-1} at 50 mA g^{-1} and displays high capacity retention of 81% after 200 cycles at 1 A g⁻¹. Moreover, the material works well in a wide temperature range of [-30°C, 55°C] with a capacity higher than 200 mAh g^{-1} at 55°C. Ceder et al. [116] calculated and H₂O-Mg²⁺ cointercalation into V₂O₅ Xerogel and revealed the important role of H₂O during intercalation, where H₂O-Mg²⁺ cointercalation in wet electrolytes results in higher voltages compared with that obtained with dry electrolytes. Sa et al. [117] proved Mg²⁺-diglyme cointercalation into V₂O₅·nH₂O using NMR, where V₂O₅·nH₂O shows contraction/expansion upon Mg intercalation/deintercalation because of the strong electrostatic interaction

FIGURE 7 Scheme of the half-cell for the electrochemical preparation of the $Mg_xMo_6S_8$ anode (a), $V_2O_5 | Mg(ClO_4)_2/AN | Mg_xMo_6S_8 (x \approx 2)$ cell configuration (b), and Contour maps of in operando synchrotron diffraction of V_2O_5 collected during the first two cycles at C/25 (c). Reproduced with permission [88]. Copyright 2019 American Chemical Society.

between Mg^{2+} and $V_2O_5 \cdot nH_2O$. Mn^{2+} and Mg^{2+} preintercalated hydrated vanadium oxides [118] exhibit excellent rate performance and cycling stability, where crystal water inside the structure enables fast Mg^{2+} ions mobility because of its charge shielding effect and preintercalated Mn^{2+}/Mg^{2+} cations lead to high electronic conductivity and structural stability.

In addition, V_2O_5 nanowires exhibit a high discharge capacity of 359 mAh g⁻¹ with capacity retention of 80% after 100 cycles in aqueous Mg-ion batteries, as demonstrated by Fu et al. [119], who designed a highly safe aqueous Mg-ion electrolyte with a wide electrochemical stability window of 3.7 V, consisting of polyethylene glycol and 0.8 m Mg(TFSI)₂. The authors also revealed two 2-phase transition processes with the formation of ϵ -Mg_{0.6}V₂O₅ and Mg-rich Mg_xV₂O₅ ($x \approx 1.0$) and CEI containing MgF₂ as the major component in aqueous Mg-ion batteries. Xu and coworkers [120] developed a tetraethylene glycol dimethyl ether (TEGDME) – water hybrid electrolyte with an electrochemical stability window of 3.9 V. NaV₈O₂₀·nH₂O shows a specific capacity of 351 mAh g⁻¹ at 0.3 A g⁻¹ and long cycle life of 1000 cycles in this hybrid electrolyte due to the dissolution suppression of vanadium species.

In summary, great progress has been made in the development of V_2O_5 polymorphs in MIBs with capacities of over 250 mAh g⁻¹ and

good cycling stability. However, MIBs face challenges such as sluggish Mg-ion diffusion in host materials and the incompatibility of electrolytes with high-voltage V_2O_5 cathode and Mg anode. Moreover, the most common Mg-ion electrolytes show high corrosion to the battery casing and current collectors. The break-through of a new methoxyethyl-amine chelants-based electrolyte [121] brings new light to the development of high-voltage Mg systems, which greatly enables the usage of both high-voltage Mg_{0.15}MnO_2 cathode and Mg metal anode with high reversibility and stable cycling. The application of V₂O₅ polymorphs in such a new electrolyte is not reported yet. More efforts should be done to improve the overall electrochemical performance (capacity, rate capability, and cycling stability) by the engineering of V₂O₅ polymorph hosts, electrolytes, and electrode/electrolyte interphase.

Calcium-ion batteries (CIBs)

In 2016, Palacín et al. [122] carried out pioneering work on the reversible Ca stripping/plating using 0.45 M Ca(BF₄)₂ in EC:PC at 100°C with high stability window >3.5 V and opened the door to new rechargeable battery technology. At RT, the study of V_2O_5 in

CIBs dates back to 2003, when Hayashi et al. [123] showed both crystalline and amorphous V₂O₅ delivering discharge capacity of more than 400 mAh g^{-1} in Ca(ClO₄)₂ in acetonitrile (only the first discharge curve is shown) for CIBs. However, this electrolyte only enables anodic Ca dissolution, but no cathodic deposition, when metallic Ca is used as a negative electrode. Ex situ XRD demonstrates the new phase formation during Ca^{2+} insertion and the recovery after Ca²⁺ deinsertion. Palacín et al. [104] studied Mg²⁺ and Ca²⁺ insertion into α -V₂O₅ under diverse conditions, where both dry/wet alkyl carbonate-based electrolytes are used for electrochemical characterization at RT and 100°C. They claimed that a proton-inserted V₂O₅ phase forms during cycling and the new orthorhombic phase formation of V₂O₅ at 100°C in alkyl carbonate is most likely attributed to degradation by water and temperature. However, δ -MgV₂O₅ and α -CaV₂O₅ prepared by solid-state reaction are electrochemically and chemically inactive. Sakurai et al. [124] investigated the effect of water in the electrolyte on Ca^{2+} (de) intercalation into α -V₂O₅. The results display that the overpotential gradually reduces with the increase of water and that H⁺ cointercalation only contributes a small portion of capacity while its amount differs depending on the amount of water. Later on, the same group [125] studied different electrolytes using V₂O₅ cathode for CIBs. They claimed that the electrochemical performance strongly depends on the molar ratio of the contact ion pair (CIP) in the total ionic species. Despite the low coulombic efficiency, V_2O_5 shows the highest capacity in 0.5 M Ca(TFSI)₂/triglyme, which has relatively small molar ratios of CIP.

Na-doped NH₄V₄O₁₀ [126] with reduced particle size shows an initial capacity of 150 mAh g⁻¹, without notable fading after 100 cycles. Moreover, a full cell consisting of Na-doped NH₄V₄O₁₀ cathode and Mn-bdcNH₂ anode delivers a maximum discharging capacity of 75 mAh g⁻¹ with no capacity fading after 100 cycles. V₂O₅·1.6H₂O/PC composite [127] in 0.4 M Ca(ClO₄)₂/PC electrolyte offers a high capacity of 465 mAh g⁻¹, which is much higher than that obtained without PC, demonstrating the critical role of this solvent. Mai et al. [128] reported bilayered Mg_{0.25}V₂O₅·H₂O with a large interlayer spacing of 10.8 Å, which exhibits a reversible discharge capacity of ~120 mAh g⁻¹ at 20 mA g⁻¹ and good cycling stability (capacity retention of 87% after 500 cycles) (Figure 8). The good cycling stability is attributed to a small variation (~0.09 Å) of interlayer spacing during Ca²⁺ (de)intercalation.

In addition, few works also focus on aqueous CIBs using vanadium oxide materials such as bilayered V₂O₅·0.63H₂O [129], V₃O₈, CaV₂O₆, and CaV₆O₁₆·7H₂O [130]. Hong et al. [129] synthesized bilayered V₂O₅·0.63H₂O via electrodeposition on graphite foil for aqueous CIBs. The material shows a high reversible capacity of 204 mAh g⁻¹ at 0.1 C rate in aqueous 1 M Ca(NO₃)₂ and capacity retention of 86% (at 5 C) after 350 cycles. The combination of bulk intercalation and surface pseudo-capacitance reactions is proposed for Ca²⁺ storage. CaV₆O₁₆·7H₂O [130] shows a high capacity of 205 mA h g⁻¹ with long cycle life and high-rate performance upon Ca-ion (de)intercalation.

-WILEY-VCH-

11 of 22

In summary, V_2O_5 polymorphs already show their promising aspects regarding multiple redox reactions, cycling stability, and abundant resources. However, many efforts are needed to further improve their capacity, rate capability, and diffusion kinetics by adopting the host materials. The development of noncorrosive electrolytes [121, 131] will surely push forward the combination of high-voltage V_2O_5 and Ca metal. Moreover, more efforts should also be made on the electrode/electrolyte interphases, and the development of suitable electrolytes and anode materials due to the reactive property of Ca metal via appropriate strategies.

Zinc-ion batteries

Zinc metal is abundant in the earth's crust with a high specific capacity (820 mA h g⁻¹) and high volumetric capacity (5854 mA h cm⁻³), making it promising as an anode. It also has sufficiently high overpotentials with respect to the hydrogen evolution, overcompensating the negative value of -0.76 V versus SHE that makes it usable in water [132] and, therefore, a suitable anode for aqueous Zinc-ion battery system (AZIBs) [11a]. Compared with nonaqueous electrolytes, aqueous electrolytes provide higher ionic conductivity (up to 1 S cm⁻¹), lower activation energy for charge transfer [133] as well as high safety. Moreover, water-based electrolytes are nontoxic and reduce the manufacturing costs of AZIBs, making them very promising. However, the higher reduction potential of Zn²⁺ (-0.76 V vs. SHE) would result in a rather low output voltage in a full-cell configuration. Another drawback is that the water decomposition limits the electrochemical stability window (~1.23 V) of aqueous electrolytes [11b]. Moreover, although the radii of Zn²⁺ (0.74 Å) is similar to Li⁺ (0.76 Å), the higher charge density of Zn²⁺ results in low solid-state mobility in the electrode bulk [134]. Overall, more efforts need to be made to develop high-performance electrodes and electrolytes for AZIBs.

The first application of V₂O₅ for Zn-ion batteries was reported by Zhu et al. [89b] in 1987, where Mg/V₂O₅ and Zn/V₂O₅ cells were built using Mg- and Zn-montmorillonite solid electrolytes. Later on, Smyrl et al. [113] demonstrated that V₂O₅ aerogel can not only uptake Mg^{2+} and AI^{3+} but also Zn^{2+} inside the host via chemical intercalation with 2.5 mol of Zn^{2+} , per mole V₂O₅ aerogel. V₂O₅ is a very popular cathode for AZIBs due to its layered structure and large theoretical capacity (589 mA h g^{-1} , based on 2 Zn²⁺ insertion) [133]. It also possesses multiple crystal structures, has a low cost, and has a suitable flat potential at 0.8-1.0 V versus Zn²⁺/Zn. Among the available polymorphs of V_2O_5 , α -type and hydrated V_2O_5 received the most attention. A reversible Zn/V₂O₅ full cell using a nonaqueous electrolyte was reported to deliver a capacity of 170 mA h g^{-1} at 0.85 V [135]. Meanwhile, Nazar et al. [132] opened the door to Zn/ vanadium-based oxides for AZIBs, consisting of Zn_{0.25}V₂O₅·nH₂O cathode with a Zn²⁺/water co(de)intercalation as shown in Figure 9a. They found that the structure of pristine Zn_{0.25}V₂O₅·nH₂O changes through water intercalation upon immersion in the electrolyte,

FIGURE 8 Electrochemcial properties of $Mg_{0.25}V_2O_5 H_2O$ upon Ca^{2+} (de)intercalation: (a) CV curves based on the three-electrode cell with AC counter electrode and Ag⁺/Ag reference electrode, (b) Galvanostatic intermittent titration technique measurement based on the two-electrode cell, (c) charge-discharge profiles of $Mg_{0.25}V_2O_5 H_2O/AC$ cell at 20 mA g⁻¹, and (d, e) cycling performance at 50 and 100 mA g⁻¹. Reproduced with permission [128]. Copyright 2019 American Chemical Society. AC, activated carbon.

resulting in an expanded interlayer spacing that facilitates the Zn²⁺ intercalation. Since then, many vanadium-based oxides cathode materials have been studied in AZIBs, including LiV₃O₈, H₂V₃O₈, tunnel-structured VO₂, spinel-structured ZnV₂O₄, NH₄V₃O₈, Na₂-V₆O₁₆·3H₂O, V₂O₅, and so on [136], where several reviews have reported the developments and challenges of cathode materials and electrolytes [11b, 133, 134, 136, 137]. Among them, V₂O₅ has received intense attention, and the developments and perspectives of V₂O₅ cathode in AZIBs were reviewed in 2020 by Luo et al. [137f], including its storage mechanism, composition optimization,

12 of 22

application in flexible AZIBs, and their perspectives on future development trends. In the following, we briefly summarize the storage mechanism and recent advances.

Liang et al. [138] studied the behavior of α -V₂O₅/Zn cell in different types and concentrations of electrolytes. α -V₂O₅/Zn cell with 3 M ZnSO₄ electrolyte delivers a capacity of 224 mA h g⁻¹ at 100 mA g⁻¹ (this is only normalized by the cathode). They proposed a new phase formation of Zn_xV₂O₅ upon Zn insertion confirmed via ex situ XRD. Zhang et al. [139] showed an improved performance of V₂O₅ in 3 M Zn(CF₃SO₃)₂ electrolyte with a capacity of 470 mA h g⁻¹

FIGURE 9 (a) Scheme of water intercalation into $Zn_{0.25}V_2O_5 \cdot nH_2O$ immersed in electrolyte and reaction mechanism of $Zn_{0.25}V_2O_5 \cdot nH_2O$ upon cycling. Reproduced with permission from Kundu et al. [132]. Copyright 2016 Springer Nature. (b) Schematic illustration and cycling performance of V_2O_5 in 3 M ZnSO₄ electrolyte at 2.0 A g⁻¹. Reproduced with permission from Dong et al. [141]. Copyright 2020 American Chemical Society. (c) Scheme of the dissolution and phase transformation mechanisms of α - V_2O_5 in aqueous ZnSO₄ and Zn(CF₃SO₃)₂ Electrolytes and cycling performance after different treatments. Reproduced with permission from Zhu et al. [146]. Copyright 2021 American Chemical Society.

at 0.2 A g⁻¹ and proposed the coinsertion of hydrated Zn ions into the structure. Then Chen et al. [140] demonstrated the phase transition from V_2O_5 to zinc pyrovanadate for the first discharge and reversible Zn²⁺ (de)insertion of the formed zinc pyrovanadate during subsequent cycles. Reversible proton and Zn²⁺ cointercalation into V_2O_5 was also reported in aqueous ZnSO₄ electrolyte [141], involving the formation of ZnSO₄Zn₃(OH)₆·5H₂O (Figure 9b). Then, Li et al. [142] reported that yolk-shell microspheres V₂O₅ initially showed an interlayer spacing expansion to $V_2O_5 \cdot nH_2O$ through water and H^+ insertion and demonstrated the formation of $Zn_xV_2O_5 nH_2O_5$ during cycling. Moreover, zinc pyrovanadate was formed after being soaked in the electrolyte. Fu et al. [143] further clarified the structural evolution of orthorhombic V_2O_5 upon Zn^{2+} (de)insertion via in operando techniques and confirmed that two solid-solution reactions and one 2-phase reaction occur during the discharged process with the appearance of by-product (ZnSO₄Zn₃(OH)₆·5H₂O

and $Zn_{3+\delta}(OH)_2V_2O_7\cdot 2H_2O)$. Chung et al. [144] directly visualized the co-intercalation of Zn^{2+} and H_2O into V_2O_5 in an aqueous $ZnSO_4$ electrolyte using atomic-column-resolved scanning transmission electron microscopy and demonstrated the formation of multiple intermediate phases (VO₂ and VO-rocksalt-type) and structurally topotactic correlation between the phases.

However, V₂O₅ suffers from poor ionic conductivity, a fragile layered structure, and dissolution in aqueous solutions [11b], leading to inferior cycling stability [145]. Huang et al. [146] investigated the dissolution mechanisms and phase transformation phenomenon of α -V₂O₅ (Figure 9c). They found the dissolution of V₂O₅ in ZnSO₄ led to phase transition to a hydrated V₂O₅·1.75H₂O xerogel, while in Zn (CF₃SO₃)₂, major hydrated V₂O₅·1.75H₂O xerogel and minor harmful Zn₃(OH)₂V₂O₇·2H₂O (ZVO) were formed, where H-V₂O₅ is the active material for Zn²⁺/H⁺ storage. Other researchers also confirmed the phase transition of V₂O₅ to ZVO, but they believed that

13 of 22

ZVO was still electrochemically active [147]. Although the role of ZVO above is controversial, these studies play an integral role in investigating the dissolution mechanism of V_2O_5 .

Meanwhile, V₂O₅·nH₂O and cations pre-intercalated V₂O₅·nH₂O have gained a lot of attention due to the large interlayered spacing, where the crystal water can shield charge and preintercalated cations M^{n+} can help to maintain the structural stability during cycling. The preintercalated cation, Mⁿ⁺ includes alkali metal, alkaline earth metal ions and other metal ions (Li⁺, Na⁺, K⁺, Mg²⁺, Zn²⁺, Ca²⁺, Ba²⁺) [148], transition metal ions (Fe²⁺, Co²⁺, Ni²⁺, Mn²⁺, Ag⁺) [149], nonmental ion (NH₄⁺) [150]. The specific capacity and the long-cycle performance of these kinds of materials are greatly improved compared to V_2O_5 . For example, Li_x V_2O_5 ·*n* H_2O [148a] (232 mA h g⁻¹ after 500 cycles at 5 Ag^{-1} , and 192 mA h g^{-1} after 1000 cycles at 10 Ag^{-1}), $Mg_{0.34}V_2O_5 \cdot 0.84H_2O$ [148b] (352 mA h g⁻¹ at 100 m Ag⁻¹, and ~97% capacity retention for at least 2000 cycles at 5000 mAg^{-1}). In addition to cations/water pre-intercalation, morphology regulation [140, 142, 151], carbon materials or conductive polymer composite [152] and high-concentration electrolytes [145] have also been used to overcome the dissolution, structure instability, and poor ionic conductivity of V₂O₅, thus improving the zinc storage properties of V_2O_5 .

In summary, AZIBs are one of the most promising systems in recent years due to their high safety, low cost, low toxicity, and simple fabrication. V_2O_5 polymorphs have demonstrated their promising aspects in the application of AZIBs because of their high capacity (>300 mA h g⁻¹) and long cycle life. However, V_2O_5 materials still suffer from low operating voltage (~1 V), vanadium dissolution, poor electrical conductivity, sluggish kinetics, and structural instability. Moreover, special attention should also be given to the surface passivation, zinc dendrites formation, and self-corrosion of zinc in electrolytes to speed up its commercial progress.

Al-ion batteries

The first attempt and success of intercalation of $Al^{3^{+}}$ into V_2O_5 dates back to 1998 when Le and coauthors [113] performed chemical intercalation of $Al^{3^{+}}$ into V_2O_5 aerogel to form an $Al_xV_2O_5$

compound. They assembled a cell consisting of two types of V₂O₅: a virgin one and a preintercalated one (Figure 10a) in Al(CF₃SO₃)₃ (triflate)/propylene carbonate electrolyte. Although the electrolyte was not optimized, they successfully demonstrated the exchange of 3.3 equivalents of Al³⁺ between the two vanadium oxide electrodes. To highlight the relevance of this discovery, it is important to mention that in 1998 rechargeable aluminum batteries with reversible Al stripping/plating electrolytes were not existing yet.

The scientific community had to wait until 2011 to see the first "rechargeable aluminum battery" based on an aluminum negative electrode and V_2O_5 nanowires [153] (Figure 10b). The probable delay was due to the difficulty in the design of an appropriate electrolyte, which could enable a reversible plating and stripping of aluminum at the metal negative electrode. Today, the most promising electrolyte is based on a mixture of EMimCl ionic liquid and AlCl₃ salt in proportion 1:1.5 [154].

This ratio is extremely important because it enables the formation of the proper amount of $Al_2Cl_7^-$ complex, which is the specie responsible for Al plating and stripping. However, with the knowledge available in 2011, the first aluminum battery was based on an electrolyte composed of EMImCl/AlCl₃ with a ratio of 1:1.1 (less acidic). The current collector was based on stainless steel. The combination of these two factors could have led to a limited number of cycles (only 20 cycles are shown in this publication) [153].

Two years later, Reed and Menke demonstrated that the obtained capacity was instead due to the corrosion of the stainless steel current collector [155]. From that moment, a critical discussion questioning the electrochemical activity of V_2O_5 in ionic liquid electrolytes was started [156].

Table 1 summarizes the available experimental data in chronological order from top to down. An important factor when evaluating V_2O_5 together with an aluminum anode is the choice of the electrolyte (which should enable Al plating and stripping). The electrolyte (the highly corrosive AlCl₃/EMimCl mixture) is then connected to the stability and the choice of all other components like the binder, current collector, and additives, which, in turn, influences the side reactions and the correct evaluation of the V_2O_5 behavior. For a correct evaluation, the redox activity of the aluminum negative electrode in the corresponding electrolyte should also be

FIGURE 10 Schematic representation of the (a) $V_2O_5/Al_xV_2O_5$ "rocking chair" battery and (b) the aluminum/ V_2O_5 battery.

Cathode	Current collector	Anode	Electrolyte	Cycles number	Capacity/ m Ah g ⁻¹	Remarks	References	Publication year
V ₂ O ₅ Xerogel	Carbon foil	$AI_xV_2O_5$	0.1 M AI(CF ₃ SO ₃) ₃ /PC	,	ı	Redox activity from CV	[113]	1998
V ₂ O ₅ nanowires	Stainless Steel	AI	Al(CF ₃ SO ₃) ₃ /PC/THF	0	0	No capacity: the electrolyte does not allow Al plating/stripping	[153]	2011
V ₂ O ₅ nanowires	Stainless Steel	AI	EMImCI/AICI ₃ (1:1.1)	20	280		[153]	2011
V ₂ O ₅ aerogel	Stainless Steel	AI	EMImCI/AICI ₃ (1:1.2)	,	1	Redox activity from CV	[155]	2013
V ₂ O ₅ aerogel	Pt	AI	EMImCI/AICI ₃ (1:1.2)		ı	No redox peaks in the CV	[155]	2013
V ₂ O ₅ nanowires– binder free	Ni foam	A	[BMIM]CI/AICI ₃ (1:1.1)	Ŋ	200		[156a]	2015
V ₂ O ₅ nanowires—PTFE	Ni foam	AI	$[BMIM]CI/AICI_3$ (1:1.1)	5	85		[156a]	2015
V ₂ O ₅ nanowires—PVDF	Ni foam	AI	[BMIM]CI/AICI ₃ (1:1.1)	2	40	Demonstrated impact of PVDF degradation	[156a]	2015
Amorphous V ₂ O ₅ —carbon composite	Mo	AI	AlCl ₃ /dipropylsulfone/toluene (1:10:5 in mole ratio)	30	150		[156d]	2015
V ₂ O ₅ Xerogel	Carbon paper	Glassy Carbon	$1 \text{ M AlCl}_3/\text{H}_2\text{O}$	12	140		[158]	2016
V ₂ O ₅ nanowires	Ni foam	AI	[BMIM]CI/AICI ₃ (1:1.1)	10	50		[156b]	2017
V ₂ O ₅ scaffolds	Μο	AI	EMImCI/AICI ₃ (1:1.5)	50	100/60 (at 0.5/2 A g ⁻¹)		[156c]	2020
V ₂ O ₅ nanofibers/carbon composite	Mo	AI	EMImCI/AICI ₃ (1:1.3)	10	80	(mixed intercalation Al^3+ on V_2O_5 and AlCl4 $^-$ in carbon	[156e]	2020
Abbreviations: PVDF, polyv	inylidene difluori	de; PTFE, polyt	etrafluoroethylene.					

TABLE 1 Experimental reports on the electrochemical activity of V_2O_5 toward Al³⁺ intercalation

confirmed, which has been rarely reported in the papers dealing with cathode materials. It is nowadays accepted that AI is active when the molar ratio between $AICI_3$ and the ionic liquid is >1.3 (which is the case only for references [156c] and [156e] of Table 1).

By summing up, the factors that need to be taken into account for the electrochemical activity of V_2O_5 are its intrinsic properties, such as: (1) higher interlayer spacing facilitates the insertion of the trivalent ion [113, 157], (2) amorphous V_2O_5 seems to favor the reaction with Al³⁺ compared with crystallinity one [156d, 158], (3) small pores lengths translate in short diffusion distance. [113]

Further research should be done considering the combination of the appropriate cell, electrode, and electrolyte components to correctly assess the capacity and cycling stability of V_2O_5 and to make it a plausible cathode material candidate for next-generation aluminum batteries.

Nonmetallic cations batteries (proton and ammonium)

Besides the above metallic cations charge carriers, batteries based on nonmetal cations, for example, proton (H^+/H_3O^+) and ammonium (NH_4^+) ions have received much attention due to the abundant resources and sustainability of the contained elements.

Ji et al. [13b] summarized the most advances of proton ion batteries, including cathode, anode, and electrolytes, and proposed their viewpoints on its current challenges and future directions. The application of protons as charge carriers dates back to the lead-acid batteries in 1859, involving the reaction Pb + PbO₂ + 4H⁺ + $2SO_4^{2-}$ \leftrightarrow 2PbSO₄ + 2H₂O [159]. Proton insertion also involved the Ni-Cd (1899) and Ni-MH batteries (1967), where protons are released from neutral water dissociation [160]. Recently, proton coinsertion has been discovered and discussed in both nonaqueous (Li⁺, Mg²⁺, Ca²⁺) [103, 104, 124, 161] and aqueous (Li⁺, Zn²⁺) [141, 146, 162] batteries. Currently, PBAs [163], metal oxides [141, 146, 162b, 162c, 164], and organic compounds [13b] have been intensively studied as protonstorage cathode materials. Although proton batteries usually do not provide as high energy density as that of the nonaqueous batteries, they often show superhigh rate capability up to 4000 C and super long cycle of 0.73 million [163a]. Moreover, proton batteries can exhibit outstanding low-temperature performance at -78°C and even -88°C despite their low capacity.

Pioneering work on NH₄⁺ ions batteries was first reported by Cui et al. [165] in 2012, where they studied the various guest intercalation (Li⁺, Na⁺, K⁺, and NH₄⁺) in PBAs host materials. Since then, many efforts have been made concerning electrode materials, including vanadium-based oxides, manganese-based compounds, and PBAs [13a, 13c, 166]. Passerini et al. [13c] reviewed the most advances in ammonium (NH₄⁺) ions batteries, including cathode, anode, and electrolytes, and also proposed possible solutions to overcome its current limitations. Ji et al. [167] investigated bilayered V₂O₅ (V₂O₅·nH₂O) cathode for NH₄⁺ storage and showed the H bonding between NH₄⁺ and bilayered V₂O₅ with pseudocapacitive behavior, whose storage is much stronger and faster than that of K⁺. Moreover, $V_2O_5 \cdot nH_2O$ still delivers 58 mAh g⁻¹ with capacity retention of 80% after 30,000 cycles at 50 C. Wang et al. [168] designed a flexible aqueous ammonium-ion full cell consisting of $NH_4V_4O_{10}/carbon$ fiber and polyaniline/carbon fiber with high rate capability and long cycle life. The full cell shows a high initial capacity up to 167 mA h g⁻¹ at 0.1 A g⁻¹ and maintains a capacity of 66 mA h g⁻¹ after 1000 cycles. Mai et al. [169] prepared polyaniline-intercalated vanadium oxide, displaying the highest reported capacity of 307 mA h g⁻¹ at 0.5 A g⁻¹. The reversible insertion/deinsertion of NH_4^+ corresponded to H bond formation/breaking with V = O groups as demonstrated by in situ FT-IR and XPS.

As a result, proton and ammonium ion batteries hold their advantages, such as abundant resources and inherently safe, which show good capability and long cycling stability. However, it remains big challenge regarding energy density compared with other batteries using metallic anode. In addition, most cathode materials do not contain proton/NH₄⁺ ions in their original structure and aqueous electrolytes suffer from intrinsic restriction of the low ESW. Therefore, the optimization of suitable cathode/anode and electrolytes with extended ESW should be carried out to improve the overall energy density of the full cells.

APPROACHES TO IMPROVE THE PERFORMANCE OF V₂O₅

V₂O₅-based materials have shown their great electrochemical performance and potential for practical application for various type of batteries and Table 2 provides some examples to show the type of M-battery and reports the key performance (e.g., electrolyte, counter electrode, capacity, cycle number, current used, and average voltage). Despite its advantages, V₂O₅ suffers from serious issues such as low electronic conductivity (10⁻²-10⁻³ S cm⁻¹) [170], intrinsic low diffusion coefficient $(10^{-12}-10^{-13} \text{ cm}^2 \text{ s}^{-1})$ [28c, 170] and dissolution, which results in poor cycling stability of this material and retarders its practical application. Moreover, V₂O₅ is subjected to a low average voltage compared with other cathode materials, such as MnO₂. Numerous efforts have been made to overcome these problems, including the synthesis of nanostructured materials, heterogeneous structures (including surface coating, composites), and cation doping (Figure 11). Moreover, special attention should be paid to other factors such as the selection/engineering of the appropriate cell, the counter electrode, and electrolyte components to obtain reliable results for further research.

(1) Nanostructured V₂O₅. Numerous nanostructured V₂O₅ materials (0D, 1D, 2D, 3D) were synthesized to improve the electrochemical performance, including cycling stability and rate capability, since nano-sized materials offer short diffusion lengths for cation insertion and facilitate the transport kinetics of electrons, resulting in higher capacities [172]. The small particle size and the large specific area increase the contact area between the electrode and electrolyte, which is beneficial for rate capability [172a, 173].

Cathode	Batteries	Electrolyte@ Counter electrode	Specific capacity/current	Capacity retention/cycle number/current	Average voltage	References
V ₂ O ₅ .nH ₂ O	NIBs	$1 \text{ M} \text{ NaClO}_4$ in PC @ Na	$250 \text{mAh g}^{-1}/20 \text{mA g}^{-1}$	$85\%/320/20\mathrm{mAg^{-1}}$	3V	[43a]
V ₂ O ₅ nanorod @rGO	KIBs	1 M KPF $_{6}$ in EC:DEC @ Na	$222 \text{mA g}^{-1} / 147 \text{mA g}^{-1}$	$80\%/500/147 \text{mA g}^{-1}$	~2.7 V	[68]
NaV ₈ O ₂₀ ·nH ₂ O	Aqueous MIBs	$1 \text{ M} \text{ Mg(ClO)}_2$ in TEGDME/H2O @ Pt	$351 \text{ mAh g}^{-1}/0.3 \text{ A g}^{-1}$	$50\%/1000/1.5~{\rm A~g^{-1}}$	~2.7 V	[120]
CaV ₆ O ₁₆ ·7H ₂ O	Aqueous CIBs	4.5 M Ca(NO ₃) ₂ (pH adjusted to 10 with Ca(OH) ₂) @activated carbon	205 mAh $g^{-1}/12.5$ mA g^{-1}	$97\%/200/150 \text{mAg}^{-1}$	~2.8 V	[130]
V ₂ O ₅ /GO	Aqueous ZIBs	3 M Zn(CF ₃ SO ₃)2 @Zn	525 mAh g^{-1} /0.1 A g^{-1}	$90.8\%/10,000/20\mathrm{A~g^{-1}}$	~0.8 V	[171]
V ₂ O ₅ -Ni foam	AIBs	[BMIM]CI/AICI ₃ (1:1.1) @ AI	$239 \text{ mAh g}^{-1}/44.2 \text{ mA g}^{-1}$	77%/5/44.2 mAg ⁻¹	~0.6 V	[156a]
Prussian blue analogue	proton batteries	2.0 M H ₂ SO ₄ @activated carbon	$95 \mathrm{mAh}\mathrm{g}^{-1}/95\mathrm{mAg}^{-1}$	60%/0.73 million/47.5 A g ⁻¹	~0.7 V	[163a]
Polyaniline-intercalated V ₂ O	5 ammonium ion batteries	0.5 M (NH ₄) ₂ SO ₄ @ Pt	307 mA h $\rm g^{-1}$ at 0.5 $\rm Ag^{-1}$	$42\%/100/5 \mathrm{Ag^{-1}}$	~0.2 V versus SCE	[169]

FIGURE 11 Schematic diagram of various engineering strategies to improve the electrochemical performance of V_2O_5 polymorphs.

(2) Heterogeneous structures. Heterogeneous structured materials, consisting of multinanocomponents, surface-coated materials, and composites, are currently regarded as very promising materials for the development of electrochemical EESs, due to their synergic properties, which arise from the integration of multi-nanocomponents, each tailored to satisfy a different requirement, such as high conductivity and high energy density, as well as outstanding mechanical stability [174].

(3) Cation doping. The structure and electronic state of electrode materials can be greatly influenced by the doping, including (1) increased electronic conductivity due to the formation of a lower oxidation state of V (V³⁺ and V⁴⁺); (2) the formation of $[MO_6]$ octahedral units that can stabilize the layer structure of V₂O₅ during cycling; (3) facilitating charge transfer and the ion diffusion of V₂O₅ by expanding the interlayer spacing; (4) reducing the particles size and alter the morphology, improving the electrochemical performance of V₂O₅ [15b,175]. However, the excess dopant may block the pathway for the inserted ions and induce impurity or a second phase, thus reducing the capacity of the materials. Note that cation doping can also enhance the average voltage of V₂O₅ as compared with vanadate cathodes [137h].

Furthermore, other strategies such as the selection of the appropriate cell, counter electrode engineering, and electrolyte engineering should be considered to improve the electrochemical performance of V_2O_5 polymorphs. Especially, the appropriate cell/ setup is critical to evaluate the performance of V_2O_5 due to the corrosion of the current collector/cell casing in electrolytes in some specific electrolytes (i.e., electrolytes for Mg and Al batteries). Surface and interface engineering of the counter electrode is vital to enable reversible metal stripping/plating, to suppress dendrites growth, and to reduce the side reaction between the metal and electrolyte, thus improving the overall performance of V_2O_5 polymorphs. The electrolyte plays an important role in controlling the performance of cells because of the direct contact with both the cathode and anode materials. It remains a great challenge to regulate a cathode/

anode compatible electrolyte to overcome the challenges of both the cathode and anode [176], such as electrolyte decomposition, cathode dissolutions, dendrites growth, and side reactions.

SUMMARY AND OUTLOOK

Vanadium pentoxide (V2O5) attracted much attention as host materials for post-Li batteries because of their rich structure, high capacity, easy preparation, and adequate safety, including α -, β -, δ -, γ -, ζ -, and ϵ -V₂O₅ as well as hydrate V₂O₅ (V₂O₅·*n*H₂O). Among these polymorphs, α -V₂O₅ and bilayered V₂O₅ have received the most attention in various guest insertions. However, V₂O₅ exhibit poor electrochemical performance with limited capacity and cycling stability because of the intrinsic low conductivity of V₂O₅, structure degradation, and electrode dissolution. Numerous efforts have been made to overcome these issues, including the synthesis of nanostructured materials, heterogeneous structures (including surface coating, composites), and cation doping. Further research should be done by considering the combination of the appropriate cell, electrolyte, and electrode components to improve the capacity and cycling stability of V₂O₅ and to make it possible for commercialization in next-generation batteries.

ACKNOWLEDGMENTS

This work contributes to the research performed at CELEST (Center for Electrochemical Energy Storage Ulm-Karlsruhe) and was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy–EXC 2154–Project ID 390874152 (POLiS Cluster of Excellence). H.Z. acknowledges the financial support from the China Scholarship Council (No. 202006170127) during the visiting PhD study in KIT. Open Access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Qiang Fu ២ http://orcid.org/0000-0002-2507-5477

REFERENCES

- a) J. Muldoon, C. B. Bucur, T. Gregory, Chem. Rev. 2014, 114, 11683; b) D. Larcher, J. M. Tarascon, Nat. Chem. 2015, 7, 19; c)
 G. Jeong, Y.-U. Kim, H. Kim, Y.-J. Kim, H.-J. Sohn, Energy Environ. Sci. 2011, 4, 1986; d) B. Scrosati, J. Hassoun, Y.-K. Sun, Energy Environ. Sci. 2011, 4, 3287; e) Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577.
- [2] a) C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Adv. Mater. 2010, 22, E28;
 b) B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.

- [3] a) J. Liu, Adv. Funct. Mater. 2013, 23, 924; b) H. Pan, Y.-S. Hu,
 L. Chen, Energy Environ. Sci. 2013, 6, 2338; c) W. Tang, Y. Zhu,
 Y. Hou, L. Liu, Y. Wu, K. P. Loh, H. Zhang, K. Zhu, Energy Environ.
 Sci. 2013, 6, 2093.
- [4] a) Y. Wang, J. Yi, Y. Xia, Adv. Energy Mater. 2012, 2, 830; b)
 J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167;
 c) J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Chem. Soc. Rev. 2017, 46, 3529; d) K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Chem. Rec. 2018, 18, 459; e) M. S. Whittingham, Chem. Rev. 2004, 104, 4271.
- [5] H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim, K. Kang, Chem. Rev. 2014, 114, 11788.
- [6] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636. https://doi.org/10.1021/cr500192f
- [7] J. Deng, W.-B. Luo, S.-L. Chou, H.-K. Liu, S.-X. Dou, Adv. Energy Mater. 2018, 8, 1701428.
- [8] T. Hosaka, K. Kubota, A. S. Hameed, S. Komaba, Chem. Rev. 2020, 120, 6358.
- P. Saha, M. K. Datta, O. I. Velikokhatnyi, A. Manivannan, D. Alman, P. N. Kumta, Prog. Mater. Sci. 2014, 66, 1.
- a) M. E. Arroyo-de Dompablo, A. Ponrouch, P. Johansson, M. R. Palacín, *Chem. Rev.* **2020**, *120*, 6331; b) B. Ji, H. He, W. Yao, Y. Tang, *Adv. Mater.* **2021**, *33*, 2005501.
- [11] a) B. Tang, L. Shan, S. Liang, J. Zhou, *Energy Environ. Sci.* 2019, 12, 3288; b) X. Jia, C. Liu, Z. G. Neale, J. Yang, G. Cao, *Chem. Rev.* 2020, 120, 7795.
- [12] a) G. A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin,
 E. Knipping, W. Peters, J.-F. Drillet, S. Passerini, R. Hahn, Adv.
 Mater. 2016, 28, 7564; b) J. Tu, W.-L. Song, H. Lei, Z. Yu, L.-L.
 Chen, M. Wang, S. Jiao, Chem. Rev. 2021, 121, 4903.
- [13] a) G. Liang, F. Mo, X. Ji, C. Zhi, Nat. Rev. Mater. 2021, 6, 109; b)
 Y. Xu, X. Wu, X. Ji, Small Structures 2021, 2, 2000113; c) J. Han,
 A. Varzi, S. Passerini, Angew. Chem. Int. Ed. 2022, 61, e202115046.
- [14] M. S. Whittingham, J. Electrochem. Soc. **1976**, 123, 315.
- [15] a) Y. Wang, K. Takahashi, K. H. Lee, G. Z. Cao, Adv. Funct. Mater. 2006, 16, 1133; b) J. Yao, Y. Li, R. C. Massé, E. Uchaker, G. Cao, Energy Storage Mater. 2018, 11, 205; c) C. Wu, Y. Xie, Energy Environ. Sci. 2010, 3, 1191.
- [16] M. Sutradhar, J. A. L. Da Silva, A. J. L. Pombeiro, Vanadium Catalysis, The Royal Society of Chemistry, United Kingdom, 2021, pp. 1. https://doi.org/10.1039/9781839160882-00001
- [17] P. E. Tang, J. S. Sakamoto, E. Baudrin, B. Dunn, J. Non-Cryst. Solids 2004, 350, 67.
- [18] R. Enjalbert, J. Galy, Acta Crystallogr. C 1986, 42, 1467.
- [19] V. Shklover, T. Haibach, F. Ried, R. Nesper, P. Novák, J. Solid State Chem. 1996, 123, 317.
- [20] Q. Fu, A. Sarapulova, L. Zhu, G. Melinte, A. Missyul, E. Welter, X. Luo, M. Knapp, H. Ehrenberg, S. Dsoke, J. Energy Chem. 2021, 62, 627.
- [21] a) V. P. Filonenko, M. Sundberg, P.-E. Werner, I. P. Zibrov, Acta Crystallogr. B 2004, 60, 375; b) M. E. Arroyo y de Dompablo, J. M. Gallardo-Amores, U. Amador, E. Morán, Electrochem. Commun. 2007, 9, 1305; c) J. M. Gallardo-Amores, N. Biskup, U. Amador, K. Persson, G. Ceder, E. Morán, M. E. Arroyo y de Dompablo, Chem. Mater. 2007, 19, 5262.
- [22] P. Balog, D. Orosel, Z. Cancarevic, C. Schön, M. Jansen, J. Alloys Compd. 2007, 429, 87.
- [23] I. P. Zibrov, V. P. Filonenko, S. G. Lyapin, V. A. Sidorov, *High Press. Res.* 2013, 33, 399.
- [24] J. M. Cocciantelli, P. Gravereau, J. P. Doumerc, M. Pouchard, P. Hagenmuller, J. Solid State Chem. 1991, 93, 497.
- [25] a) P. M. Marley, T. A. Abtew, K. E. Farley, G. A. Horrocks, R. V. Dennis, P. Zhang, S. Banerjee, *Chem. Sci.* **2015**, *6*, 1712; b) J. V. Handy, Y. T. Luo, J. L. Andrews, N. Bhuvanesh, S. Banerjee, *Angew. Chem. Int. Ed.* **2020**, *59*, 16385.

- [26] Y. Luo, S. Rezaei, D. A. Santos, Y. Zhang, J. V. Handy, L. Carrillo, B. J. Schultz, L. Gobbato, M. Pupucevski, K. Wiaderek, H. Charalambous, A. Yakovenko, M. Pharr, B.-X. Xu, S. Banerjee, Proc. Natl. Acad. Sci. USA 2022, 119, e2115072119.
- [27] a) T. M. Tolhurst, B. Leedahl, J. L. Andrews, S. Banerjee, A. Moewes, J. Mater. Chem. A 2017, 5, 23694; b) A. Parija, Y. Liang, J. L. Andrews, L. R. De Jesus, D. Prendergast, S. Banerjee, Chem. Mater. 2016, 28, 5611.
- [28] a) S. Kittaka, N. Uchida, H. Miyahara, Y. Yokota, Mater. Res. Bull. 1991, 26, 391; b) K. West, B. Zachau-Christiansen, T. Jacobsen, S. Skaarup, Electrochim. Acta 1993, 38, 1215; c) J. Livage, Chem. Mater. 1991, 3, 578; d) V. Petkov, P. N. Trikalitis, E. S. Bozin, S. J. L. Billinge, T. Vogt, M. G. Kanatzidis, J. Am. Chem. Soc. 2002, 124. 10157.
- [29] a) N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636; b) X. D. Xiang, K. Zhang, J. Chen, Adv. Mater. 2015, 27, 5343.
- [30] a) J.-P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier, P. Hagenmuller, J. Solid State Chem. 1971, 3, 1; b) M. S. Whittingham, Prog. Solid State Chem. 1978, 12, 41; c) A. S. Nagelberg, W. L. Worrell, J. Solid State Chem. 1979, 29, 345; d) J.-J. Braconnier, C. Delmas, C. Fouassier, P. Hagenmuller, Mater. Res. Bull. 1980, 15, 1797; e) C. Delmas, C. Fouassier, P. Hagenmuller, Physica B+C 1980, 99, 81; f) K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull. 1980, 15, 783.
- [31] K. West, Solid State Ion. 1988, 28-30, 1128.
- [32] J. P. Pereira-Ramos, R. Messina, J. Perichon, J. Electrochem. Soc. 1988, 135, 3050.
- [33] D. Muller-Bouvet, R. Baddour-Hadjean, M. Tanabe, L. T. N. Huynh, M. L. P. Le, J. P. Pereira-Ramos, Electrochim. Acta 2015, 176, 586.
- [34] G. Ali, J. H. Lee, S. H. Oh, B. W. Cho, K.-W. Nam, K. Y. Chung, ACS Appl. Mater. Interfaces 2016, 8, 6032.
- [35] E. Uchaker, Y. Z. Zheng, S. Li, S. L. Candelaria, S. Hu, G. Z. Cao, J. Mater. Chem. A 2014, 2, 18208.
- [36] S. Liu, Z. Tong, J. Zhao, X. Liu, J. Wang, X. Ma, C. Chi, Y. Yang, X. Liu, Y. Li, Phys. Chem. Chem. Phys. 2016, 18, 25645.
- [37] V. Raju, J. Rains, C. Gates, W. Luo, X. Wang, W. F. Stickle, G. D. Stucky, X. Ji, Nano Lett. 2014, 14, 4119.
- [38] D. W. Su, S. X. Dou, G. X. Wang, J. Mater. Chem. A 2014, 2, 11185.
- [39] Z. Zhao, D. Li, C. Wang, D. Fang, B. Wang, J. Li, H. Jin, J. Alloys Compd. 2022, 895, 162617.
- [40] Y. Li, C. Liu, Z. Xie, J. Yao, G. Cao, J. Mater. Chem. A 2017, 5, 16590.
- [41] F. Liu, X. Sun, Y. Liu, X. Song, J. Gao, G. Qin, Appl. Surf. Sci. 2019, 473, 873.
- [42] a) S. Fleischmann, D. Leistenschneider, V. Lemkova, B. Krüner, M. Zeiger, L. Borchardt, V. Presser, Chem. Mater. 2017, 29, 8653; b) S. Tian, T. Cai, D. Wang, D. Kong, H. Ren, W. Xing, IOP Conf. Ser.: Earth Environ. Sci. 2021, 692, 022042.
- [43] a) S. Tepavcevic, H. Xiong, V. R. Stamenkovic, X. B. Zuo, M. Balasubramanian, V. B. Prakapenka, C. S. Johnson, T. Rajh, ACS Nano 2012, 6, 530; b) D. Su, G. Wang, ACS Nano 2013, 7, 11218; c) H.-Y. Li, C.-H. Yang, C.-M. Tseng, S.-W. Lee, C.-C. Yang, T.-Y. Wu, J.-K. Chang, J. Power Sources 2015, 285, 418; d) A. Moretti, F. Maroni, I. Osada, F. Nobili, S. Passerini, ChemElectroChem 2015, 2, 529; e) A. Moretti, M. Secchiaroli, D. Buchholz, G. Giuli, R. Marassi, S. Passerini, J. Electrochem. Soc. 2015, 162, A2723; f) D. W. Su, S. X. Dou, G. X. Wang, ChemSusChem 2015, 8, 2877; g) H. Wang, X. Gao, J. Feng, S. Xiong, Electrochim. Acta 2015, 182, 769; h) Q. Wei, J. Liu, W. Feng, J. Sheng, X. Tian, L. He, Q. An, L. Mai, J. Mater. Chem. A 2015, 3, 8070; i) K. Zhu, C. Zhang, S. Guo, H. Yu, K. Liao, G. Chen, Y. Wei, H. Zhou, ChemElectroChem 2015, 2, 1660; j) H. L. Wang,

VILEY-VCH

X. X. Bi, Y. Bai, C. Wu, S. C. Gu, S. Chen, F. Wu, K. Amine, J. Lu, Adv. Energy Mater. 2017, 7, 1602720.

- [44] K. Zhang, G. Gao, W. Sun, X. Liang, Y. Liu, G. Wu, RSC Adv. 2018, 8, 22053.
- [45] R. Baddour-Hadjean, L. Thanh Nguyen Huynh, D. Batyrbekuly, S. Bach, J. P. Pereira-Ramos, ChemSusChem 2019, 12, 5192.
- M. Clites, J. L. Hart, M. L. Taheri, E. Pomerantseva, ACS Appl. [46] Energy Mater. 2020, 3, 1063.
- [47] R. Parmar, D. B. de Freitas Neto, E. Y. Matsubara, R. Gunnella, J. M. Rosolen, Sustain. Energy Fuels 2020, 4, 3951.
- a) A. Sarkar, S. Sarkar, T. Sarkar, P. Kumar, M. D. Bharadwai, [48] S. Mitra, ACS Appl. Mater. Interfaces 2015, 7, 17044; b) A. Sarkar, S. Sarkar, S. Mitra, J. Mater. Chem. A 2017, 5, 24929.
- [49] X. Liu, B. Qin, H. Zhang, A. Moretti, S. Passerini, ACS Appl. Energy Mater. 2019, 2, 2786.
- [50] M. Clites, B. W. Byles, E. Pomerantseva, J. Mater. Chem. A 2016, 4, 7754
- [51] R. Córdoba, A. Kuhn, J. C. Pérez-Flores, E. Morán, J. M. Gallardo-Amores, F. García-Alvarado, J. Power Sources 2019, 422, 42.
- R. Córdoba, J. Goclon, A. Kuhn, F. García-Alvarado, Inorg. Chem. [52] 2020. 59. 16361.
- M. Safrany Renard, N. Emery, R. Baddour-Hadjean, J.-P. Pereira-[53] Ramos, Electrochim. Acta 2017, 252, 4.
- [54] M. Safrany Renard, R. Baddour-Hadjean, J. P. Pereira-Ramos, Electrochim. Acta 2019, 322, 134670.
- [55] R. Baddour-Hadjean, M. Safrany Renard, J.-P. Pereira-Ramos, J. Power Sources 2021, 482, 229017.
- [56] M. Safrany Renard, N. Emery, E. M. Roginskii, R. Baddour-Hadjean, J.-P. Pereira-Ramos, J. Solid State Chem. 2017, 254, 62.
- [57] N. Emery, R. Baddour-Hadjean, D. Batyrbekuly, B. Laïk, Z. Bakenov, J.-P. Pereira-Ramos, Chem. Mater. 2018, 30, 5305.
- [58] C. Liu, Z. G. Neale, G. Cao, Mater. Today 2016, 19, 109.
- [59] R. Baddour-Hadjean, M. Safrany Renard, N. Emery, L. T. N. Huynh, M. L. P. Le, J. P. Pereira-Ramos, Electrochim. Acta 2018, 270, 129.
- [60] N.uR. Lashari, M. Zhao, J. Wang, X. He, I. Ahmed, M. Liang, S. Tangsee, X. Song, Energy Fuels 2021, 35, 20394.
- [61] Q. T. Qu, L. L. Liu, Y. P. Wu, R. Holze, Electrochim. Acta 2013, 96, 8.
- [62] CATL Unveils Its Latest Breakthrough Technology by Releasing Its First Generation of Sodium-ion Batteries. https://www.catl.com/ en/news/665.html
- [63] K. Pfeifer, S. Arnold, J. Becherer, C. Das, J. Maibach, H. Ehrenberg, S. Dsoke, ChemSusChem 2019, 12, 3312.
- [64] A. Eftekhari, J. Power Sources 2004, 126, 221.
- [65] V. Mathew, S. Kim, J. Kang, J. Gim, J. Song, J. P. Baboo, W. Park, D. Ahn, J. Han, L. Gu, Y. Wang, Y.-S. Hu, Y.-K. Sun, J. Kim, NPG Asia Mater. 2014, 6, e138.
- [66] a) J. Y. Hwang, S. T. Myung, Y. K. Sun, Adv. Funct. Mater. 2018, 28, 1802938; b) A. Eftekhari, Z. Jian, X. Ji, ACS Appl. Mater. Interfaces 2017, 9, 4404; c) C. B. Bucur, T. Gregory, A. G. Oliver, J. Muldoon, J. Phys. Chem. Lett. 2015, 6, 3578.
- [67] F. Ye, D. Lu, X. Gui, T. Wang, X. Zhuang, W. Luo, Y. Huang, J. Materiomics 2019, 5, 344.
- [68] P. Vishnuprakash, C. Nithya, M. Premalatha, Electrochim. Acta 2019, 309, 234.
- [69] X. Zhao, X. Zhang, D. Wu, H. Zhang, F. Ding, Z. Zhou, J. Mater. Chem. A 2016, 4, 16606.
- D. Koch, V. V. Kulish, S. Manzhos, MRS Commun. 2017, 7, 819. [70]
- [71] A. Bhatia, J.-P. Pereira-Ramos, N. Emery, R. Baddour-Hadjean, Chem. Mater. 2021, 33, 5276.
- [72] Y. Zhang, X. Niu, L. Tan, L. Deng, S. Jin, L. Zeng, H. Xu, Y. Zhu, ACS Appl. Mater. Interfaces 2020, 12, 9332.
- [73] a) L. Deng, X. Niu, G. Ma, Z. Yang, L. Zeng, Y. Zhu, L. Guo, Adv. Funct. Mater. 2018, 28, 1800670.; b) Y. Fan, Z. Qu, W. Zhong, Z. Hu, H. A. Younus, C. Yang, X. Wang, S. Zhang, ACS Appl. Mater.

19 of 22

Interfaces **2021**, 13, 7377; c) X. Niu, J. Qu, Y. Hong, L. Deng, R. Wang, M. Feng, J. Wang, L. Zeng, Q. Zhang, L. Guo, Y. Zhu, J. Mater. Chem. A **2021**, *9*, 13125.

- [74] Y.-H. Zhu, Q. Zhang, X. Yang, E.-Y. Zhao, T. Sun, X.-B. Zhang, S. Wang, X.-Q. Yu, J.-M. Yan, Q. Jiang, *Chem* **2019**, *5*, 168.
- [75] K. Yuan, R. Ning, M. Bai, N. Hu, K. Zhang, J. Gu, Q. Li, Y. Huang, C. Shen, K. Xie, *Energy Technol.* **2020**, *8*, 1900796.
- [76] C. Liu, S. Luo, H. Huang, Z. Wang, Q. Wang, Y. Zhang, Y. Liu, Y. Zhai, Z. Wang, J. Power Sources 2018, 389, 77.
- [77] B. Tian, W. Tang, C. Su, Y. Li, ACS Appl. Mater. Interfaces 2018, 10, 642.
- [78] X. Liu, G. A. Elia, X. Gao, B. Qin, H. Zhang, S. Passerini, Batter. Supercaps 2020, 3, 261.
- [79] M. Clites, J. L. Hart, M. L. Taheri, E. Pomerantseva, ACS Energy Lett. 2018, 3, 562.
- [80] G. Xu, X. Liu, S. Huang, L. Li, X. Wei, J. Cao, L. Yang, P. K. Chu, ACS Appl. Mater. Interfaces 2020, 12, 706.
- [81] D. S. Charles, F. Guo, X. Shan, S. Kim, Z. W. Lebens-Higgins, W. Xu, D. Su, L. F. J. Piper, X. Teng, J. Mater. Chem. A 2021, 9, 15629.
- [82] D. S. Charles, M. Feygenson, K. Page, J. Neuefeind, W. Xu, X. Teng, Nat. Commun. 2017, 8, 15520.
- [83] Y.-Q. Li, H. Shi, S.-B. Wang, Y.-T. Zhou, Z. Wen, X.-Y. Lang, Q. Jiang, Nat. Commun. 2019, 10, 4292.
- [84] T. D. Gregory, R. J. Hoffman, R. C. Winterton, J. Electrochem. Soc. 1990, 137, 775.
- [85] D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, *Nature* 2000, 407, 724.
- [86] O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad, D. Aurbach, J. Electrochem. Soc. 2008, 155, A103.
- [87] H. D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, *Energy Environ. Sci.* **2013**, *6*, 2265.
- [88] Q. Fu, A. Sarapulova, V. Trouillet, L. Zhu, F. Fauth, S. Mangold, E. Welter, S. Indris, M. Knapp, S. Dsoke, N. Bramnik, H. Ehrenberg, J. Am. Chem. Soc. 2019, 141, 2305.
- [89] a) J. P. Pereira-Ramos, R. Messina, J. Perichon, J. Electroanal. Chem. Interfacial Electrochem. 1987, 218, 241; b) W.-h Yu, D.-z Wang, B. Zhu, S.-j Wang, L.-x Xue, Solid State Commun. 1987, 61, 271; c) W.-h Yu, D.-z Wang, B. Zhu, G.-e Zhou, Solid State Commun. 1987, 63, 1043.
- [90] P. G. Bruce, F. Krok, J. Nowinski, V. C. Gibson, K. Tavakkoli, J. Mater. Chem. 1991, 1, 705.
- [91] G. Gershinsky, H. D. Yoo, Y. Gofer, D. Aurbach, *Langmuir* 2013, 29, 10964.
- [92] A. Mukherjee, S. Taragin, H. Aviv, I. Perelshtein, M. Noked, Adv. Funct. Mater. 2020, 30, 2003518.
- [93] D. Wu, Y. Zhuang, F. Wang, Y. Yang, J. Zeng, J. Zhao, Nano Res. 2021. https://doi.org/10.1007/s12274-021-3679-2
- [94] D. Kim, J. H. Ryu, Electron. Mater. Lett. 2019, 15, 415.
- [95] T. S. Arthur, K. Kato, J. Germain, J. Guo, P.-A. Glans, Y.-S. Liu, D. Holmes, X. Fan, F. Mizuno, *Chem. Commun.* **2015**, *51*, 15657.
- [96] X. Du, G. Huang, Y. Qin, L. Wang, RSC Adv. 2015, 5, 76352.
- [97] E. Sheha, E. M. Kamar, Mater. Sci.-Pol. 2019, 37, 570.
- [98] V. V. Kulish, S. Manzhos, RSC Adv. 2017, 7, 18643.
- [99] E. A. Esparcia, M. S. Chae, J. D. Ocon, S.-T. Hong, Chem. Mater. 2018, 30, 3690.
- [100] D. Muthuraj, A. Sarkar, M. R. Panda, M. Adil, A. Sagdeo, S. Mitra, Batter. Supercaps 2021, 4, 1.
- [101] L. Yu, X. Zhang, J. Colloid Interface Sci. 2004, 278, 160.
- [102] N. Sa, H. Wang, D. L. Proffit, A. L. Lipson, B. Key, M. Liu, Z. Feng, T. T. Fister, Y. Ren, C. J. Sun, J. T. Vaughey, P. A. Fenter, K. A. Persson, A. K. Burrell, J. Power Sources 2016, 323, 44.
- [103] S. C. Lim, J. Lee, H. H. Kwak, J. W. Heo, M. S. Chae, D. Ahn, Y. H. Jang, H. Lee, S. T. Hong, *Inorg. Chem.* 2017, 56, 7668.

- [104] R. Verrelli, A. P. Black, C. Pattanathummasid, D. S. Tchitchekova, A. Ponrouch, J. Oró-Solé, C. Frontera, F. Bardé, P. Rozier, M. R. Palacín, J. Power Sources 2018, 407, 162.
- [105] H. D. Yoo, J. R. Jokisaari, Y.-S. Yu, B. J. Kwon, L. Hu, S. Kim, S.-D. Han, M. Lopez, S. H. Lapidus, G. M. Nolis, B. J. Ingram, I. Bolotin, S. Ahmed, R. F. Klie, J. T. Vaughey, T. T. Fister, J. Cabana, ACS Energy Lett. **2019**, *4*, 1528.
- [106] R. Attias, M. Salama, B. Hirsch, Y. Gofer, D. Aurbach, ChemElectroChem 2018, 5, 3514.
- [107] A. Mukherjee, N. Sa, P. J. Phillips, A. Burrell, J. Vaughey, R. F. Klie, *Chem. Mater.* **2017**, *29*, 2218.
- [108] J. L. Andrews, A. Mukherjee, H. D. Yoo, A. Parija, P. M. Marley, S. Fakra, D. Prendergast, J. Cabana, R. F. Klie, S. Banerjee, *Chem* 2018, 4, 564.
- [109] I. D. Johnson, G. Nolis, L. Yin, H. D. Yoo, P. Parajuli, A. Mukherjee, J. L. Andrews, M. Lopez, R. F. Klie, S. Banerjee, B. J. Ingram, S. Lapidus, J. Cabana, J. A. Darr, *Nanoscale* **2020**, *12*, 22150.
- [110] M. Lopez, H. D. Yoo, L. Hu, J. L. Andrews, S. Banerjee, J. Cabana, ACS Energy Lett. 2020, 5, 3357.
- [111] a) M. Inamoto, H. Kurihara, T. Yajima, *Electrochemistry* 2012, 80, 421; b) Q. An, Y. Li, H. Deog Yoo, S. Chen, Q. Ru, L. Mai, Y. Yao, *Nano Energy* 2015, 18, 265; c) S. Tepavcevic, Y. Liu, D. Zhou, B. Lai, J. Maser, X. Zuo, H. Chan, P. Král, C. S. Johnson, V. Stamenkovic, N. M. Markovic, T. Rajh, *ACS Nano* 2015, *9*, 8194.
- [112] a) L. F. Jiao, H. T. Yuan, Y. J. Wang, H. S. Cao, Y. M. Wang, Electrochem. Commun. 2005, 7, 431; b) L. F. Jiao, H. T. Yuan, Y. C. Si, Y. J. Wang, J. S. Cao, X. L. Gao, M. Zhao, X. D. Zhou, Y. M. Wang, J. Power Sources 2006, 156, 673; c) R.-H. Kim, J.-S. Kim, H.-J. Kim, W.-S. Chang, D.-W. Han, S.-S. Lee, S.-G. Doo, J. Mater. Chem. A 2014, 2, 20636; d) C. L. Zuo, Y. Xiao, X. J. Pan, F. Y. Xiong, W. W. Zhang, J. C. Long, S. J. Dong, Q. Y. An, P. Luo, ChemSusChem 2021, 14, 2093.
- [113] D. B. Le, S. Passerini, F. Coustier, J. Guo, T. Soderstrom, B. B. Owens, W. H. Smyrl, Chem. Mater. **1998**, 10, 682.
- [114] D. Imamura, M. Miyayama, M. Hibino, T. Kudo, J. Electrochem. Soc. 2003, 150, A753.
- [115] D. Imamura, Solid State Ion. 2003, 161, 173.
- [116] G. Sai Gautam, P. Canepa, W. D. Richards, R. Malik, G. Ceder, Nano Lett. 2016, 16, 2426.
- [117] N. Sa, T. L. Kinnibrugh, H. Wang, G. Sai Gautam, K. W. Chapman, J. T. Vaughey, B. Key, T. T. Fister, J. W. Freeland, D. L. Proffit, P. J. Chupas, G. Ceder, J. G. Bareno, I. D. Bloom, A. K. Burrell, *Chem. Mater.* **2016**, *28*, 2962.
- [118] a) S. H. Lee, R. A. DiLeo, A. C. Marschilok, K. J. Takeuchi, E. S. Takeuchi, ECS Electrochem. Lett. 2014, 3, 87; b) X. Deng, Y. Xu, Q. An, F. Xiong, S. Tan, L. Wu, L. Mai, J. Mater. Chem. A 2019, 7, 10644; c) Y. Xu, X. Deng, Q. Li, G. Zhang, F. Xiong, S. Tan, Q. Wei, J. Lu, J. Li, Q. An, L. Mai, Chem 2019, 5, 1194.
- [119] Q. Fu, X. Wu, X. Luo, S. Indris, A. Sarapulova, M. Bauer, Z. Wang, M. Knapp, H. Ehrenberg, Y. Wei, S. Dsoke, Adv. Funct. Mater. 2022, 32, 2110674.
- [120] X. Wang, X. Zhang, G. Zhao, H. Hong, Z. Tang, X. Xu, H. Li, C. Zhi, C. Han, ACS Nano 2022, 16, 6093.
- [121] S. Hou, X. Ji, K. Gaskell, P. Wang, L. Wang, J. Xu, R. Sun, O. Borodin, C. Wang, *Science* **2021**, 374, 172.
- [122] A. Ponrouch, C. Frontera, F. Bardé, M. R. Palacín, Nat. Mater. 2016, 15, 169.
- [123] M. Hayashi, H. Arai, H. Ohtsuka, Y. Sakurai, J. Power Sources 2003, 119-121, 617.
- [124] Y. Murata, S. Takada, T. Obata, T. Tojo, R. Inada, Y. Sakurai, Electrochim. Acta 2019, 294, 210.
- [125] Y. Murata, R. Inada, Y. Sakurai, J. Electrochem. Soc. 2021, 168, 020528.
- [126] T. N. Vo, H. Kim, J. Hur, W. Choi, I. T. Kim, J. Mater. Chem. A 2018, 6, 22645.

- [127] M. Bervas, L. Klein, G. Amatucci, Solid State Ion. 2005, 176, 2735.
- [128] X. Xu, M. Duan, Y. Yue, Q. Li, X. Zhang, L. Wu, P. Wu, B. Song, L. Mai, ACS Energy Lett. 2019, 4, 1328.
- [129] M. S. Chae, J. W. Heo, J. Hyoung, S. T. Hong, ChemNanoMat 2020, 6, 1049.
- [130] L. Liu, Y.-C. Wu, P. Rozier, P.-L. Taberna, P. Simon, H. Yuan, P. Han, K. Tao, S. Liu, E. Gazit, R. Yang, C. J. Liu, N. N. Zhu, J. G. Ma, P. Cheng, Y. Jian, B. Wu, X. Le, Y. Liang, Y. Zhang, D. Zhang, L. Zhang, W. Lu, J. Zhang, T. Chen, J. Jiang, T. Xu, J. Lu, L. Sun, Z. Ni, J. Liu, L. Gu, N. Cui, Q. Xu, Y. Qin, R. Yang, Z. Wu, L. Liu, S. Li, S. Ji, P. Chen, S. Cui, Z. Ma, Y. Weng, Q. Huang, Z. Wu, H. Wu, Y. Lin, R. Fu, H. Lin, X. Tian, P. K. Chu, F. Pan, T. He, B. Lu, Y. Chen, Y. Wang, Y. Zhang, J. L. Davenport, A. P. Chen, C. W. Pao, M. Liu, Z. Sun, A. Stram, A. Mordaunt, J. Velasco, Y. Ping, Y. Zhang, S. Chen, H. Xu, L. Liu, F. Teng, N. Lu, *Research.* 2019, 2019, 1.
- [131] a) Z. Y. Li, O. Fuhr, M. Fichtner, Z. Zhao-Karger, *Energy Environ. Sci.* **2019**, 12, 3496; b) A. Shyamsunder, L. E. Blanc, A. Assoud, L. F. Nazar, *ACS Energy Lett.* **2019**, 4, 2271; c) K. V. Nielson, J. Luo, T. L. Liu, *Batter. Supercaps* **2020**, 3, 1.
- [132] D. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah, L. F. Nazar, Nat. Energy 2016, 1, 16119.
- [133] G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 2018, 3, 2480.
- [134] A. Konarov, N. Voronina, J. H. Jo, Z. Bakenov, Y. K. Sun, S. T. Myung, ACS Energy Lett. 2018, 3, 2620.
- [135] P. Senguttuvan, S.-D. Han, S. Kim, A. L. Lipson, S. Tepavcevic, T. T. Fister, I. D. Bloom, A. K. Burrell, C. S. Johnson, Adv. Energy Mater. 2016, 6, 1600826.
- [136] J. Ding, H. Gao, D. Ji, K. Zhao, S. Wang, F. Cheng, J. Mater. Chem. A 2021, 9, 5258.
- [137] a) J. Ming, J. Guo, C. Xia, W. Wang, H. N. Alshareef, *Mater. Sci. Eng. R Rep.* 2019, 135, 58; b) M. Song, H. Tan, D. Chao, H. J. Fan, Adv. *Funct. Mater.* 2018, 28, 1802564; c) D. Selvakumaran, A. Pan, S. Liang, G. Cao, *J. Mater. Chem. A* 2019, 7, 18209; d) P. Yu, Y. X. Zeng, H. Z. Zhang, M. H. Yu, Y. X. Tong, X. Lu, *Small* 2019, 15, 1804760; e) V. Mathew, B. Sambandam, S. Kim, S. Kim, S. Park, S. Lee, M. H. Alfaruqi, V. Soundharrajan, S. Islam, D. Y. Putro, J.-Y. Hwang, Y.-K. Sun, J. Kim, ACS Energy Lett. 2020, 5, 2376; f) W. Zhang, C. Zuo, C. Tang, W. Tang, B. Lan, X. Fu, S. Dong, P. Luo, *Energy Technol.* 2021, *9*, 2000789; g) J. Huang, H. Liang, Y. Tang, B. Lu, J. Zhou, S. Liang, Adv. Energy Mater. 2022, 12, 2201434; h) X. Ma, X. Cao, M. Yao, L. Shan, X. Shi, G. Fang, A. Pan, B. Lu, J. Zhou, S. Liang, Adv. Mater. 2022, 34, 2105452; i) P. Ruan, S. Liang, B. Lu, H. J. Fan, J. Zhou, *Angew. Chem. Int. Ed.* 2022, *61*, e202200598.
- [138] J. Zhou, L. Shan, Z. Wu, X. Guo, G. Fang, S. Liang, Chem. Commun. 2018, 54, 4457.
- [139] N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang, M. Qiu, J. Xu, Y. Liu, L. Jiao, F. Cheng, ACS Energy Lett. 2018, 3, 1366.
- [140] X. Chen, L. Wang, H. Li, F. Cheng, J. Chen, J. Energy Chem. 2019, 38, 20.
- [141] Y. Dong, M. Jia, Y. Wang, J. Xu, Y. Liu, L. Jiao, N. Zhang, ACS Appl. Energy Mater. 2020, 3, 11183.
- [142] R. Li, H. Zhang, Q. Zheng, X. Li, J. Mater. Chem. A 2020, 8, 5186.
- [143] Q. Fu, J. Wang, A. Sarapulova, L. Zhu, A. Missyul, E. Welter, X. Luo, Z. Ding, M. Knapp, H. Ehrenberg, S. Dsoke, J. Mater. Chem. A 2021, 9, 16776.
- [144] P. Byeon, Y. Hong, H. Bin Bae, J. Shin, J. W. Choi, S. Y. Chung, Nat. Commun. 2021, 12, 4599.
- [145] P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei, J. Li, L. Zhou, Z. Li, L. Chen, L. Mai, ACS Appl. Mater. Interfaces 2017, 9, 42717.
- [146] K. Zhu, T. Wu, K. Huang, Chem. Mater. 2021, 33, 4089.
- [147] a) Y. Lu, T. Zhu, W. van den Bergh, M. Stefik, K. Huang, Angew. Chem. Int. Ed. 2020, 59, 17004; b) X. Chuan, G. Jing, L. Yongjiu, L. Hanfeng, Z. Chao, A. H. N., Adv. Mater. 2018, 30, 1705580.

- [148] a) Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo, W. Zhang, C. Wang, L. Wang, J. Zhou, S. Liang, *Energy Environ. Sci.* 2018, 11, 3157; b)
 F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi, H. N. Alshareef, ACS Energy Lett. 2018, 3, 2602; c) X. Chuan, G. Jing, L. Peng, Z. Xixiang, A. H. N., Angew. Chem. Int. Ed. 2018, 57, 3943.; d) P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Adv. Energy Mater. 2018, 8, 1702463; e) B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei, C. Wang, T. Lin, Y. Tang, S. Liang, Nano Energy 2018, 51, 579; f) X. Wang, B. Xi, X. Ma, Z. Feng, Y. Jia, J. Feng, Y. Qian, S. Xiong, Nano Lett. 2020, 20, 2899.
- [149] a) C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang, M. Yan, M. Tian, M. Wang, J. Yang, G. Cao, *Energy Environ. Sci.* 2019, 12, 2273; b)
 L. Ma, N. Li, C. Long, B. Dong, D. Fang, Z. Liu, Y. Zhao, X. Li, J. Fan, S. Chen, S. Zhang, C. Zhi, *Adv. Funct. Mater.* 2019, *29*, 1906142; c)
 L. Shan, Y. Yang, W. Zhang, H. Chen, G. Fang, J. Zhou, S. Liang, *Energy Storage Mater.* 2019, *18*, 10; d) J. W. Li, K. McColl, X. K. Lu, S. Sathasivam, H. B. Dong, L. Q. Kang, Z. N. Li, S. Y. Zhao, A. G. Kafizas, R. Wang, D. J. L. Brett, P. R. Shearing, F. Cora, G. J. He, C. J. Carmalt, I. P. Parkin, *Adv. Energy Mater.* 2020, 10; e)
 Y. Luo, L. Wei, H. Geng, Y. Zhang, Y. Yang, C. C. Li, *ACS Appl. Mater. Interfaces* 2020, *12*, 11753.
- [150] a) B. Y. Tang, J. Zhou, G. Z. Fang, F. Liu, C. Y. Zhu, C. Wang, A. Q. Pan, S. Q. Liang, J. Mater. Chem. A 2019, 7, 940; b) X. Wang, B. Xi, Z. Feng, W. Chen, H. Li, Y. Jia, J. Feng, Y. Qian, S. Xiong, J. Mater. Chem. A 2019, 7, 19130; c) H. Zhao, Q. Fu, D. Yang, A. Sarapulova, Q. Pang, Y. Meng, L. Wei, H. Ehrenberg, Y. Wei, C. Wang, G. Chen, ACS Nano 2020, 9, 11809.
- [151] a) M. S. Javed, H. Lei, Z. Wang, B.-t Liu, X. Cai, W. Mai, *Nano Energy* **2020**, 70, 104573; b) Y. Li, Z. Huang, P. K. Kalambate, Y. Zhong, Z. Huang, M. Xie, Y. Shen, Y. Huang, *Nano Energy* **2019**, 60, 752.
- [152] a) X. Wang, Y. Li, S. Wang, F. Zhou, P. Das, C. Sun, S. Zheng, Z.-S. Wu, Adv. Energy Mater. 2020, 10, 2000081; b) D. M. Xu, H. W. Wang, F. Y. Li, Z. C. Guan, R. Wang, B. B. He, Y. S. Gong, X. L. Hu, Adv. Mater. Interfaces 2019, 6; c) M. Narayanasamy, B. Kirubasankar, M. Shi, S. Velayutham, B. Wang, S. Angaiah, C. Yan, Chem. Commun. 2020, 56, 6412; d) Y. Tian, Y. An, H. Wei, C. Wei, Y. Tao, Y. Li, B. Xi, S. Xiong, J. Feng, Y. Qian, Chem. Mater. 2020, 32, 4054.
- [153] N. Jayaprakash, S. K. Das, L. A. Archer, Chem. Commun. 2011, 47, 12610.
- [154] M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell,
 C. Chen, J. Yang, B.-J. Hwang, H. Dai, *Nature* 2015, 520, 324.
- [155] L. D. Reed, E. Menke, J. Electrochem. Soc. 2013, 160, A915.
- [156] a) H. Wang, Y. Bai, S. Chen, X. Luo, C. Wu, F. Wu, J. Lu, K. Amine, ACS Appl. Mater. Interfaces 2015, 7, 80; b) S. Gu, H. Wang, C. Wu, Y. Bai, H. Li, F. Wu, Energy Storage Mater. 2017, 6, 9; c) A. M. Diem, J. Bill, Z. Burghard, ACS Appl. Energy Mater. 2020, 3, 4033; d) M. Chiku, H. Takeda, S. Matsumura, E. Higuchi, H. Inoue, ACS Appl. Mater. Interfaces 2015, 7, 24385; e) N. Canever, T. Nann, Nano Express 2020, 1, 010016.
- [157] T. Das, S. Tosoni, G. Pacchioni, Comput. Mater. Sci. 2021, 191, 110324.
- [158] J. R. González, F. Nacimiento, M. Cabello, R. Alcántara, P. Lavela, J. L. Tirado, RSC Adv. 2016, 6, 62157.
- [159] P. Ruetschi, J. Power Sources 1977, 2, 3.
- [160] Y. Liang, C.-Z. Zhao, H. Yuan, Y. Chen, W. Zhang, J.-Q. Huang, D. Yu, Y. Liu, M.-M. Titirici, Y.-L. Chueh, H. Yu, Q. Zhang, *InfoMat* **2019**, 1, 6.
- [161] R. Benedek, M. M. Thackeray, A. van de Walle, Chem. Mater. 2008, 20, 5485.
- [162] a) Q. Shu, L. Chen, Y. Xia, X. Gong, X. Gu, J. Phys. Chem. C 2013, 117, 6929; b) H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K. T. Mueller, J. Liu, Nat.

Energy **2016**, 1, 16039; c) W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu, M. Zhu, C. Wang, *J. Am. Chem. Soc.* **2017**, 139, 9775.

- [163] a) X. Y. Wu, J. J. Hong, W. Shin, L. Ma, T. C. Liu, X. X. Bi, Y. F. Yuan, Y. T. Qi, T. W. Surta, W. X. Huang, J. Neuefeind, T. P. Wu, P. A. Greaney, J. Lu, X. L. Ji, *Nat. Energy* **2019**, *4*, 123; b) X. Y. Wu, S. Qiu, Y. K. Xu, L. Ma, X. X. Bi, Y. F. Yuan, T. P. Wu, R. Shahbazian-Yassar, J. Lu, X. L. Ji, *ACS Appl. Mater. Interfaces* **2020**, *12*, 9201; c) Y. K. Xu, X. Y. Wu, H. Jiang, L. T. Tang, K. Y. Koga, C. Fang, J. Lu, X. L. Ji, *J. Phys. Chem. C* **2020**, *59*, 22007.
- [164] a) J. Choi, E. Alvarez, T. A. Arunkumar, A. Manthiram, *Electrochem. Solid-State Lett.* 2006, *9*, A241; b) Q. Zhao, L. Liu, J. Yin, J. Zheng, D. Zhang, J. Chen, L. A. Archer, *Angew. Chem. Int. Ed.* 2020, *59*, 3048.
- [165] C. D. Wessells, S. V. Peddada, M. T. McDowell, R. A. Huggins, Y. Cui, J. Electrochem. Soc. 2011, 159, A98.
- [166] a) W. Xu, L. Zhang, K. Zhao, X. Sun, Q. Wu, Electrochim. Acta 2020, 360, 137008; b) P. Wang, Y. Zhang, Z. Feng, Y. Liu, C. Meng, J. Colloid Interface Sci. 2022, 606, 1322.
- [167] S. Dong, W. Shin, H. Jiang, X. Wu, Z. Li, J. Holoubek, W. F. Stickle, B. Key, C. Liu, J. Lu, P. A. Greaney, X. Zhang, X. Ji, *Chem* **2019**, *5*, 1537.
- [168] H. Li, J. Yang, J. Cheng, T. He, B. Wang, Nano Energy 2020, 68, 104369.
- [169] C. Han, J. Zhu, K. Fu, D. Deng, W. Luo, L. Mai, Chem. Commun. 2022, 58, 791.

- [170] Y. Wang, G. Cao, Chem. Mater. 2006, 18, 2787.
- [171] S. Wu, S. Liu, L. Hu, S. Chen, J. Alloys Compd. 2021, 878, 160324.
- [172] a) A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nat. Mater. 2005, 4, 366; b) C. Jiang, E. Hosono, H. Zhou, Nano Today 2006, 1, 28.
- [173] Y. Ren, A. R. Armstrong, F. Jiao, P. G. Bruce, J. Am. Chem. Soc. 2010, 132, 996.
- [174] a) R. Liu, J. Duay, S. B. Lee, Chem. Commun. 2011, 47, 1384; b)
 Z. Chen, Y. Qin, K. Amine, Y. K. Sun, J. Mater. Chem. 2010, 20, 7606.
- [175] a) X. Huang, X. Rui, H. H. Hng, Q. Yan, Part. Part. Syst. Charact.
 2015, 32, 276; b) F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai, B. Tang, J. Zhou, S. Liang, Nano-Micro Lett. **2019**, 11, 25; c) X. Liang, L. Yan, W. Li, Y. Bai, C. Zhu, Y. Qiang, B. Xiong, B. Xiang, X. Zou, Nano Energy **2021**, 87, 106164.
- [176] H. Zhao, Q. Fu, X. Luo, X. Wu, S. Indris, M. Bauer, Y. Wang, H. Ehrenberg, M. Knapp, Y. Wei, *Energy Storage Mater.* **2022**, 50, 464.

How to cite this article: Q. Fu, H. Zhao, A. Sarapulova, S. Dsoke, *Appl. Res.* **2022**, e202200070. https://doi.org/10.1002/appl.202200070

APPLIED RESEARCH