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Abstract

This thesis consists of 5 chapters: In Chapter 1, we provide an introduction to OLEDs. In

Chapter 2, we briefly discuss the basics of quantum chemical methods and provide an

overview of Molecular Dynamics.

Simulation of charge transport in amorphous organic semiconductors requires the

analysis of the electronic structures. Therefore, in Chapter 3 we provide a fundamental

background describing the mechanism of charge transport in organic semiconductors. In

particular, we focus more on amorphous organic semiconductors which is a primary focus

of my research. The way we model charge transfer in organic semiconductors is based

on charge hopping transfer which occurs at a certain rate. These rates can be calculated

based on the Marcus rate theory. Therefore, we briefly describe the Marcus rate theory

and also discuss some of the important properties of organic semiconductors.

In Chapter 4, we simulate absorption spectra of 4,4-Bis(carbazol-9-yl)-2,2-biphenyl

(CBP), which is widely used as a host material in phosphorescent organic light-emitting

diodes (PhOLEDs), using the efficient time-dependent long-range corrected tight binding

density functional theory (TD-LC-DFTB). The accuracy of the condensed-phase absorption

spectra computed using the structures obtained from classical molecular dynamics (MD)

and quantum mechanical/molecular mechanical (QM/MM) simulations is examined by

comparison with the experimental absorption spectrum. We observe that there is a good

agreement between the CC2, GW-BSE, and TD-LC-DFTB results, indicating TD-LC-DFTB

is an accurate and robust method for calculating the excitation energies of CBP. The

good agreement between computed and experimental absorption spectra is therefore an

indicator for the structural model developed. Concerning dynamic disorder, we find that

molecular changes occur on long timescales in the nanosecond-regime, which requires the

use of fast computation approaches to reach convergence. Furthermore, in order to see

how dihedral angles affect the excitation energies, we compute vertical excitation energies

and consequently obtain absorption spectra for different dihedral angles.

Finally, in Chapter 5 which is still an ongoing project, we study the impact of molecular

structures and dynamical fluctuations on the charge transfer rate constant. The research

question of interest is whether saving snapshots of a molecule from QM/MM simulations

and consequently computing electronic coupling using a static method can be a reliable

approach for calculating the rate constant. In addition, we discuss the critical timescales

which play an important role in charge transfer reactions with fluctuating behavior. This

topic is very well studied in biological systems and we aim to investigate it in amorphous

organic semiconductors.
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Zusammenfassung

Diese Arbeit besteht aus 5 Kapiteln: In Kapitel 1 wird eine Einführung zu OLEDs gegeben.

In Kapitel 2 werden kurz die Grundlagen quantenchemischer Methoden erörtert und ein

Überblick über die Molekulardynamik gegeben.

Die Simulation des Ladungstransports in amorphen organischen Halbleitern erfor-

dert die Analyse der elektronischen Strukturen. Daher wird in Kapitel 3 der theoretische

Hintergrund zum Mechanismus des Ladungstransports. Dabei konzentrieren wir uns ins-

besondere auf amorphe organische Halbleiter, die einen Schwerpunkt meiner Forschung

darstellen. Die Art und Weise, wie wir den Ladungstransport in organischen Halblei-

tern modellieren, basiert auf dem sogenannten charge hopping transfer, der mit einer

bestimmten Rate erfolgt. Diese Raten können auf der Grundlage der Marcus-Raten-Theorie

berechnet werden. Daher beschreiben wir kurz die Marcus-Raten-Theorie und erörtern

einige der wichtigsten Eigenschaften organischer Halbleiter.

In Kapitel 4 simulieren wir die Absorptionsspektren von 4,4-Bis(carbazol-9-yl)-2,2-

biphenyl (CBP), das weithin als Wirtsmaterial in phosphoreszierenden organischen Leucht-

dioden (PhOLEDs) verwendet wird, mit Hilfe der effizienten zeitabhängigen long-range

corrected Dichtefunktionaltheorie (TD-LC-DFTB). Die Genauigkeit der Absorptionsspek-

tren in der kondensierten Phase, die mit Hilfe der aus klassischen Molekulardynamik-

(MD) und quantenmechanischen/molekularmechanischen (QM/MM) Simulationen ge-

wonnenen Strukturen berechnet wurden, wird durch Vergleich mit dem experimentellen

Absorptionsspektrum untersucht. Wir stellen fest, dass es eine gute Übereinstimmung

zwischen den CC2-, GW-BSE- und TD-LC-DFTB-Ergebnissen gibt, was darauf hinweist,

dass TD-LC-DFTB eine genaue und robuste Methode zur Berechnung der Anregungsener-

gien von CBP ist. Die gute Übereinstimmung zwischen berechneten und experimentellen

Absorptionsspektren ist daher ein Indikator für das entwickelte Strukturmodell. Hinsicht-

lich der dynamischen Unordnung stellen wir fest, dass die molekularen Veränderungen im

Nanosekunden-Regime auf langen Zeitskalen stattfinden, was den Einsatz von schnellen

Berechnungsansätzen erfordert, um Konvergenz zu erreichen. Um zu sehen, wie sich

Flächenwinkel auf die Anregungsenergien auswirken, berechnen wir vertikale Anregungs-

energien und erhalten so Absorptionsspektren für verschiedene Flächenwinkel.

Schließlich untersuchen wir in Kapitel 5, das noch ein laufendes Projekt ist, den Einfluss

von Molekülstrukturen und dynamischen Fluktuationen auf die Ladungstransferratenkon-

stante. Die Forschungsfrage, die uns interessiert, ist, ob die Speicherung von Momentauf-

nahmen eines Moleküls aus QM/MM-Simulationen und die anschließende Berechnung der

elektronischen Kopplung mit einer statischen Methode ein zuverlässiger Ansatz für die

Berechnung der Geschwindigkeitskonstante sein kann. Darüber hinaus diskutieren wir
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Zusammenfassung

die kritischen Zeitskalen, die bei Ladungstransferreaktionen mit fluktuierendem Verhalten

eine wichtige Rolle spielen. Dieses Thema ist in biologischen Systemen sehr gut untersucht

und wir wollen es in amorphen organischen Halbleitern untersuchen.
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1 Introduction

Over the last few decades, there has been a significant increase in popularity of elec-

tronic components made from amorphous solids or crystalline organic materials. These

amorphous solids or crystalline organic materials are regarded as organic semiconductors

(OSCs) [1, 2]. OSCs are made from hydrogen, carbon and some other hetero-atoms such as

oxygen, sulfur, nitrogen. These materials have properties which are generally associated

with semiconductors. They transport energy and charge when grown as a thin film which

is designed with suitable optical band gap. The semiconductors materials are commonly

used in organic light emitting diodes (OLEDs) [3, 4], organic photovoltaic devices (OPVs)

[5, 6], and organic field effect transistors (OFETs) [7, 8], due to their sufficient high degree

of conductivity, which is result from the injection of charge at the electrode or dissociation

of photogenerated electrons.

OLEDs are considered as highly efficient light sources which are used in various elec-

tronic devices such as displays in smart watches, mobile phones and flat screen televisions.

Thin film thickness in the order of 100nm, can be used to make ultra thin and bendable dis-

plays. In comparison to inorganic semiconductors, OSCs have lower brightness level and

shorter life span. In an OLED, the first step to creating light is the injection of charge carri-

ers from the electrodes. Holes and electrons are typically injected into the hole-transport

layer (HTL) and the electron transport layer (ETL), respectively. Afterwards, these charge

carriers migrate toward the center of the device under the influence of the applied field.

The rates of charge migration are field-dependent and depend on the mobilities of both

holes in the HTL and electrons in the ETL. In the center of the device, at the HTL/ETL

interface, these injected charges meet each other and recombine to form an excitonic

(excited) state, from which emission occurs to create light in an OLED display. Exciton

migration and following decay of an exciton produce the light (Fig. 1.1).

OPVs are another example where charge and energy transport properties are relevant for

the performances of the device. OLEDs emit light in response to an electric current, while

solar cell does the opposite: it converts the energy of sunlight directly into electric current.

This process can be described by the following steps: (1) absorption of an incoming photon

leading to the formation of a exciton, a bound electron-hole pair; (2) exciton diffusion; (3)

exciton dissociation (charge separation); and (4) migration of separated electrons and holes

within the organic semiconductor to the respective electrodes. The longer it takes for an

electron-hole pair to reach the electrodes, the higher the chances of premature deexcitation

as well as charge recombination. Organic solar cells are cheap and environmentally friendly

alternatives to inorganic solar cells, which have lower power conversion ratio. The organic

solar cells are not only scalable in chemical synthesis but also the materials required for the

synthesis are available cheaply. These solar cells are 1000 times thinner than traditional

silicone solar cells which also makes transportation much easier. Flexibility of organic

1



1 Introduction

Figure 1.1: The working principle of a typical OLED: 1. injection of electrons and holes, 2.

transport of the two types of carriers, 3. formation of the exciton between the

two organic layers, 4. the emission of light.

solar cells allows them to be used in variety of opto-electronics devices applications such

as clothing, baggage and many more.

Despite having many advantages, there are several underlying problems and open

questions regarding selection of materials and tuning their properties. The major drawback

of an organic solar cell is that it has low efficiency (5%), which is lower than inorganic

solar cells (15%). Also, organic solar cells have less lifetime in comparison to the inorganic

solar cells. Due to long exposure to the ambient light, they degrade faster than inorganic

solar cells. Other major problems include low stability, low-strength and color balance.

To design and build better OLEDs, it is important to understand the charge transport

mechanism, which can be a complex phenomenon. This is the primary focus of my

research. Distribution of electrons and holes are important factors for the efficiency of the

electron and hole combination.

Theoretical tools can play a vital role in quantitative and material prediction of the

transport properties, which can further support the development of improved complex

materials. A complete model of any system involves electron-hole injection/ejection,

electron- hole combination and dissociation, charge propagation, exciton transport and

decay, as well as other interacting molecules in the simulations.

Although, the fundamentals of charge and energy transport are known but the predictive

and detailed quantitative model is still lacking at microscopic and mesoscopic level. One of

themain problemswith simulation of these systems is the size of the realistic representation

of the system.
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2 Computational Toolbox

In the past few decades, there has a vast development in the experimental techniques as

well as mathematical description of the matter at the atomistic level. One of the main

aspects of the mathematical description is to determine the degree of precision to which

it reproduces the observed experimental behaviour. Computational simulations have

become the most important tool to imitate the gap between experimental observations

and atomistic resolutions.

Considering the molecule as ball and connected with springs and modelled with an

approach molecular mechanics (MM). Molecular dynamics (MD) is a numerical approach

which can be used to calculate trajectory of many systems such amorphous organic solids.

These trajectories can be used to extract relevant information or properties at the atomistic

scale, which is beyond feasibility of experiments. By solving the Newton’s equation

iteratively, the trajectories can be generated.

Using MM formalism, it is difficult to describe the bond breaking and bond formations,

molecualar or atomic spectra obtained due to interaction of matter with light, effect

observed due to electronic delocalisation and other effects which require the concept of

electronic states. In order to study these phenomena, quantum mechanics was specifically

developed to describe the interactions between nuclei, electrons and other subatomic

particles.

QM formalism takes into account the wave and particle duality nature of the matter.

QM description can potentially describe the behaviour of atoms and molecules. However,

computational costs associated with QM studies are very high.

The combination of quantum mechanics/molecular mechanism (QM/MM) can bring

the cost down whereas at the same time it can provide relevant information of the system

under observation.

Several methods have been developed to perform simulations on many solids including

the amorphous solids such as Hartree-Fock(HF), density functional theory(DFT) and others.

This chapter briefly recapitulates the basics of quantum chemical methods for the excited

states as well as basic understandings of Born-Oppenheimer approximation and Molecular

Dynamics. Density functional theory applies the stationary electronic Schrödinger equa-

tion to solve for a system of interacting electrons and nuclei using several approximations.

Interacting electrons are replaced by non-interacting quasi particle which implies that

field approximations and other assumptions can lead to systematic error, where can be

further corrected.

3



2 Computational Toolbox

2.1 Born-Oppenheimer approximation

The Born-Oppenheimer approximation assumes that electronic and nuclear motion in a

molecule can be separated. Thus, the molecular wave function can separated in terms of

electronic position and nuclear positions which involves the following assumptions:

1. The electronic wave function solely depends upon the nuclear position of the atom

but not their velocities as nuclear motion is much lower than electronic motion,

thus it can be considered to be fixed.

2. Nuclear motion such as rotation and vibration is tainted by the speedy electron

motion.

The basis for the Born-Oppenheimer approximation is due to the fact that mass of the

nuclei is much larger than the mass of the electron. Thus, nuclei moves much slower

than electron. The Hamiltonian of a system of n electrons described by coordinates

r1, r2, r3, ...., r𝑁 = r and N nuclei described by coordinates R1,R2,R3, ....,R𝑁 = R and

momenta is described by P1,P2,P3, ....,P𝑁 = P is given by:

𝐻̂ (r, R) = 𝑇𝑒(r) +𝑇𝑁 (R) +𝑉𝑁𝑁 (R) +𝑉𝑒𝑁 (r, R) +𝑉𝑒𝑒(r) (2.1)

where 𝑇𝑁 denotes kinetic energy of the nuclei, 𝑇𝑒 kinetic energy of the electrons and

𝑉𝑁𝑁 ,𝑉𝑒𝑁 and𝑉𝑒𝑒 denotes the interactions of nucleus-nucleus, nuclei-electron, and electron-

electron respectively. These terms are further expanded as:

𝑇𝑒 =

𝑁𝑒∑︁
𝑖=1

P2

𝑖

2𝑀𝑖

(2.2)

𝑇𝑁 =

𝑁∑︁
𝐼=1

P2

𝐼

2𝑀𝐼

(2.3)

𝑉𝑁𝑁 =
∑︁
𝐼>𝐽

𝑍𝐼𝑍 𝐽𝑒
2

r𝐼 𝐽
(2.4)

𝑉𝑒𝑁 = −
∑︁
𝐼>𝐽

𝑍𝐼𝑒
2

r𝐼𝑖
(2.5)

𝑉𝑒𝑒 = −
∑︁
𝐼>𝐽

𝑒2

r𝑖 𝑗
(2.6)

Overall equation of the atomic Hamiltonian can be written as

𝐻̂ = 𝑇𝑒(r) +𝑉𝑁𝑁 (R) +𝑉𝑒𝑁 (r, R) +𝑉𝑒𝑒(r) (2.7)

This equation is very complicated but intractable. Therefore, we require several approx-

imations to solve the Eq. 2.7 for heavier element.

4



2.2 Quantum mechanical Method

The kinetic energy of the electron nuclei is proportional to the ratio of the mass of the

electron (𝑀𝑒) = 1 to the mass of the nucleus (𝑀𝑝) = 1836.15, which is approximately

0.00054. This leads to strong separation of time scale between the electronic and nuclear

motion. Thus, the two wave form can be separated using quasi-separable ansatz of the

form

𝜓 (𝑟, 𝑅) = 𝜙𝑒 (r, R)𝜙𝑁 (R) (2.8)

where𝜙𝑁 (R) represents the nuclear wave function and𝜙𝑒 (x, R) represents an electronic
wave function which depends on the nuclear coordinates. But Eq. 2.5 can prevents us from

applying this concept for the separation of the variable. In a dynamical sense, electrons

are much lighter than the mass of the proton, thus nuclear motion governs the motion

of the electron. The electrons are dragged along the with nuclei with requiring a finite

relaxation time. After this consideration, 2 terms from the Eq. 2.7 can be neglected.

𝐻̂ = −
𝑛∑︁
𝑖=1

1

2

▽2

𝑖 +
∑︁
𝑖< 𝑗

1

|®𝑟𝑖 − ®𝑟 𝑗 |
−
𝑛,𝑁∑︁
𝑖,𝐼

𝑍𝐼

|®𝑟𝑖 − ®𝑅𝐼 |
+

∑︁
𝐼<𝐽

𝑍𝐼𝑍 𝐽

| ®𝑅𝑖 − ®𝑅 𝑗 |
(2.9)

such that

𝐻̂𝑒𝑙𝜓 (r;R) = 𝐸𝑒𝑙𝜓 (r;R) (2.10)

This Eq. 2.9 is called "clamped-nuclei" Schrödinger equation. Also, 𝑉𝑁𝑁 term is also

neglected form this equation, which is justified since R is just a parameter and therefore it

yields a constant and only shifts the eigenvalues only by some constant amount. Thus,

Leaving out 𝑉𝑁𝑁 from the Eq. 2.1 gives:

𝐻̂ (r, R) = 𝑇𝑒(r) +𝑉𝑒𝑁 (r, R) +𝑉𝑒𝑒(r) (2.11)

such that

𝐻̂𝑒𝜓 (r;R) = 𝐸𝑒𝜓 (r;R) (2.12)

As of now, we will assume that 𝑉𝑁𝑁 (R) is included in the electronic Hamiltonian.

In the next section, the solution of the electronic Schrödinger equation using density

functional theory along with development in DFT is presented.

2.2 Quantum mechanical Method

2.2.1 Density Functional Theory (DFT)

DFT is one of the advanced method and the most popular method which is available in

computational physics, computational chemistry and condensed-matter physics. DFT was

considered as an inefficient method for the quantum calculation of the molecules until

late 1990s. DFT has one major advantage in comparison to the traditional methods such

as Hartree–Fock theory and that is because of its very low computational cost. Despite

5



2 Computational Toolbox

recent development in the DFT, there are still challenges in describing the intermolecular

interactions, charge transfer excitation, transition state, etc.

Traditional methods attempt to approximate the solution of Schrödinger equation of N

interacting electrons moving in external potential. This traditional approach has some

issues:

1. Even for the smallest system having N number of electrons, the resultant wave

length is very complicated. So the problem is highly nontrivial.

2. The computational support and cost even for a smaller system is very high, so the

description of larger systems seems impossible.

So, in order to find a possible solution to the aforementioned problems, a different

approach has been suggested by the DFT. According to DFT approach, instead of consid-

ering many-body wave-function, one-body density is used as a functional variable. The

density function 𝑛(r) is a function of three spatial coordinate rather than 3N coordinate

wave-function as in traditional approach. Using density functional theory approach, de-

scription of larger systems are possible to investigate. The foundation of density functional

theory was led by Hohenberg-Kohn and Kohn-Sham theorem, which will be explained in

details in the following sections. Furthermore, the various levels of approximation to the

exchange-correlation energy functional are discussed. In the next section, the extension of

original Hohenberg-Kohn and Kohn-Sham therorem, are presented to cover a wide range

of physical situations.

Hohenberg-Kohn and Kohn-Sham theorem
For a system of N interacting electrons, ground state DFT is described by given Hamil-

tonian:

𝐻̂ = 𝑇 +𝑉 +𝑉𝑒𝑒

= −
𝑁∑︁
𝑖=1

▽2

𝑖

2

+
𝑁∑︁
𝑖=1

𝑣 (r𝑖) +
1

2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑖≠𝑗

1

|r𝑖 − r 𝑗 |
(2.13)

where𝑇 ,𝑉 and𝑉𝑒𝑒 represents the kinetic energy, potential energy and electron-electron

interaction energy, respectively.

The central idea of density functional theory for non-degenerate ground states is given

by Hohenberg-Kohn theorem [9], which is given by the following assumptions.

1. The ground state electron density of a system of interacting electrons 𝜌 (r) uniquely
determines the external potential v(r) of the system and thus all physical properties

of the system and the Hamiltonian can be determined.

2. Using theory of variational principle, the ground-state energy 𝐸0 having ground-

state density 𝜌0(r) and ground-state potential 𝑣0(r) can be obtained. It only involves
the density of the system which further implies that ground state energy of the

system can be described as the function of density 𝐸𝑣0
[𝑛]. The ground state energy

6



2.2 Quantum mechanical Method

is 𝐸0 if and only if the true value of the ground-state density is put. For all the other

densities 𝑛(r)

𝐸𝑣0
[𝜌0] < 𝐸𝑣0

[𝜌] (2.14)

According to Rayleigh-Ritz variational principle, ground state wave function mini-

mizes the energy expectation value.

3. Functional energy of the system can be written as

𝐸𝑣0
[𝜌] = 𝐹 [𝑛] +

∫
𝑑3𝑟𝑣0(r)𝜌 (r) (2.15)

where functional 𝐹 (𝜌) is a universal functional depicting the particle-particle

interaction, which is independent of particular system under investigation. This

implies that the same functional can be used irrespective of how big or small the

system can be.

From Hohenberg-Kohn variational principle which is explained in the second assump-

tion can be obtained as the solution of the euler equation, which is given as

𝛿𝐸𝑣 [𝜌]
𝛿𝜌 (r) =

𝛿𝐹 [𝜌]
𝛿𝜌 (r) + 𝑣 (r) = 0 (2.16)

This equation can be treated as an alternative to the time-independent Schrödinger equa-

tion. Hohenberg-Kohn therorem is exact, but no explicit form of 𝐸 [𝜌] is known. Therefore,
it can lead to the complexity in solving the exact wave functions and ultimately nothing

would be gained as of now. Density function theory employs several approximations

leading to very efficient and reasonable results for big or small systems.

The Hohenberg-Kohn functional 𝐹 [𝜌] is given by:

𝐹 [𝜌] = 𝑇 [𝜌] +𝑉𝑒𝑒 [𝜌]
= ⟨𝜓 [𝜌] |𝑇 |𝜓 [𝜌]⟩ + ⟨𝜓 [𝜌] |𝑉𝑒𝑒 |𝜓 [𝜌]⟩

(2.17)

where 𝜓 [𝜌] denotes the wave function of n-interacting electrons, which yields the

density 𝜌 which minimises the expectation value of𝑇 +𝑉𝑒𝑒 of the system under observation.

The explicit density dependence of the Hohenberg-Kohn functional 𝐹 [𝜌] is still unknown.
For this purpose, Thomas-Fermi approximation has been suggested. Nevertheless, the

accuracy of these kind of approximation is limited to practical uses. Thus, the Eq. 2.16 is

hardly used in electronic structure calculation.

Hohenberg-Kohn theorem provides the basis for the constructions of the single particle

scheme which effectively allows the calculation of density as well as energy of the inter-

acting electrons. This improvement to the Hohenberg-Kohn theorem is well known as the

Kohn-Sham equation, which is now considered as the heart of modern density functional

theory. Kohn-Sham equation is given by:[
− ▽

2

2

+ 𝑣𝑘𝑠 (r)
]
𝜙𝑖 (r) = 𝜖𝑖𝜙𝑖 (r) (2.18)

7
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Density of the N-interacting particles occupied in orbital can be computed by using

Slater determinant:

𝜌 (r) =
𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑∑︁

𝑖

|𝜙 (r) |2 (2.19)

The principal idea of the Kohn-Sham scheme is to build the single-particle potential

𝑣𝑘𝑠 (r), such that the density of the interacting system of interest is equal to the density

of the auxiliary non-interacting system. Thus, the Hohenberg-Kohn functional can be

described as:

𝐹 [𝜌] = 𝑇𝑘𝑠 [𝜌] +𝑈 [𝜌] + 𝐸𝑒𝑥𝑐 [𝜌] (2.20)

where𝑈 [𝜌] represents the classical electrostatic energy of the charge distribution 𝜌 (r)
which is further expressed as:

𝑈 [𝜌] = 1

2

∫
𝑑3𝑟

∫
𝑑3𝑟 ′

𝜌 (r)𝜌 (r’)
|𝑟 − 𝑟 ′ | (2.21)

and 𝐸𝑒𝑥𝑐 [𝜌] is called exchange energy-correlation energy and defined as follows:

𝐸𝑒𝑥𝑐 [𝜌] = 𝑇 [𝜌] +𝑉𝑒𝑒 [𝜌] −𝑈 [𝜌] −𝑇𝑘𝑠 [𝜌] (2.22)

Using the above equation, we can derive the effective potential of the system by putting

back to the Eq. 2.18

𝑣𝑘𝑠 [𝜌] (r) = 𝑣 (r) +
∫

𝑑3𝑟 ′
𝜌𝑟 ′

|𝑟 − 𝑟 ′| + 𝑣𝑒𝑥𝑐 [𝜌] (r) (2.23)

where 𝑣𝑒𝑥𝑐 is the exchange-correlation potential, which is described as:

𝑣𝑒𝑥𝑐 [𝜌] (r) =
𝛿𝐸𝑒𝑥𝑐𝜌 (r)
𝛿𝜌 (r) (2.24)

Eq. 2.21 𝑣𝑘𝑠 [𝜌] (r) depends on the density of the system, thus all the equations have to be

solved self-consistently. The Eq. 2.23 is called Kohn-Sham equation. Using this equation,

the orbitals can be found and further energy can be calculated through reinsertion of

into the functional. For the orthonormal condition, orbital eigenvalues are entered as

Lagrangian multipliers [10, 11]. Moreover, the principal definition of exchange-correlation

energy is not useful for the practical implications. Thus, we use an approximation for this

quantity, which is further discussed in the following section.

2.3 Density function approximation

Though, DFT provides accurate results for big or small system under observation, however

it is yet not clear how to construct the exchange-correlation functional. The most challeng-

ing task concerning 𝐸𝑒𝑥𝑐 is that, it is a universal function of density, meaning that it has to

be the same for all the systems. The first practical attempt to provide approximation to

8



2.3 Density function approximation

exchange-correlation functional predate the foundations of DFT by Hohenberg and Kohn.

Thomas and Fermi propose a model where kinetic energy of the electrons are expressed in

terms of density [12, 13]. Moreover, the model predicts that there is no stable molecules,

thus it is unfit for the quantum mechanical calculations. Continuous development has

been made in quantitative performance of DFT, which is computationally efficient and

cost effective.

Exchange correlation function has twomajor consequences, first, it promises to construct

an approximate functional according to the system of interest and second, it is challenging

as a good approximation should perform the calculation of different systems as well as

different physical situations.

Local density approximation
Both aforementioned promises and challenges can be reflected in the local density

approximation (LDA) which goes back to the Kohn-Sham theorem [14]. This kind of

approximation has become popular for solid-state systems, though it is very inaccurate

for molecules. In LDA approach the exchange-correlation energy is given by

𝐸𝐿𝐷𝐴𝑒𝑥𝑐 [𝜌] =
∫

𝑑3𝑟𝜌 (r)𝑒𝑢𝑑𝑒𝑥𝑐 (𝜌 (r)) (2.25)

where 𝑒𝑢𝑑𝑒𝑥𝑐 (𝜌 (r)) represents the exchange-correlation energy of an electron in a ho-

mogeneous electron gas of the same density 𝜌 (r). LDA can also be generalised to the

polarised systems, which then known as local spin density approximation (LSDA). The

most accurate data can be obtained from the Quantum Monte Carlo calculations [15].

LDA approximation is expected to be a good approximation especially for molecules

with low varying densities. Although, this condition is hardly ever met for real electronic

systems. Nevertheless, LDA has proved to be exceptionally accurate for a wide variety

of systems where the densities are varying slowly. In a system where LDA works well,

it often consists of sp bonds, geometries are good, bond lengths and angles are accurate

within a few percent.

The principal advantages of this approximation in DFT over the other method such

as Hartree-Fock is that it performs well and many experimentally observed physical

properties can be determined to a great level of accuracy. In weakly bonded systems these

inaccuracy are exaggerated and bond lengths are too short. The question is whether LDA

is applicable or not. For example, LDA works well with the group IV semiconductors, but

the performance using this approximation was unclear.

Generalise gradient approximation
LDA is exceptionally accurate for small molecule where density does not vary much

due to adoption of uniform electron gas. For this reason, improved functional has to be

developed to take into account the density fluctuation through the inclusion of density

gradient ▽𝜌 (r). This approximation is called generalized gradient approximations (GGAs).

Exchange-correlation energy using GGA approximation is given by:

𝐸𝐺𝐺𝐴𝑒𝑥𝑐 [𝜌] =
∫

𝑑3𝑟 𝑓 (𝜌 (r),▽𝜌 (r)) (2.26)

9
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In LDA, 𝐸𝑢𝑑𝑒𝑥𝑐 was unique, however in GGA, it is not unique, thus many different ap-

proaches are possible depending on the system of interest. While constructing the GGA,

one should keep in mind the properties one tries to incorporate using the exact functional

into the restricted functional approximation. GGA has gained a lot of popularity and

been quite accurate in quantum calculation, especially in chemistry, and it is also less

computationally expensive.

One of the most popular GGA approximations is the Perdew-Burke-Ernzerhof (PBE)

functional [16]. It is derived by using a certain condition which holds true for the exact

functional that can be reproduce by using approximative form. Thus, it is free from fitted

parameters, which holds true for broad range of systems. GGA functional also employs

fits to the reference data, which limits their applicability.

In recent years, GGA has been further developed into a new class of "meta-GGA"

functional. In addition to the LDA and GGA functional depends of the kinetic energy of

the Kohn-Sham orbitals, which is given by:

𝜏 (r) = 1

2

𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑∑︁
𝑖

|▽𝜙𝑖 (r) | (2.27)

The "meta-GGA" functional is given by:

𝐸𝑚𝐺𝐺𝐴𝑒𝑥𝑐 [𝜌] =
∫

𝑑3𝑟 𝑓 (𝜌 (r),▽𝜌 (r), 𝜏 (r)) (2.28)

The additional flexibility in the mGGA functional gained by introducing a new variable,

which is used to incorporate more exact properties into the approximation. Unlike LDA

and GGA, mGGA also depends explicitly on the Kohn-Sham orbitals.

Hybrid functional
Despite the improvement in LDA and GGA, both the functionals suffer from error due

to self-interaction. Both failed to remove the interaction of interaction with themselves or

with other electrons which has the same spin following the pauli exclusion principle, from

the energy contribution. This can lead to underestimation of the band gap and the artificial

delocalisation of the electron. LDA and GGA functionals are local as the energy is integral

over the function of the density at a specific point of the system and also independent of

all other spatial locations. Some non-locality is introduced using gradient information,

but it can not be accounted for the interaction over the larger distances. On the contrary,

exchange term in Hartree-Fock theory (HF) method cancels the self-interaction specifically,

but it is non-local i.e., it is calculated as an integral over two spatial coordinate. The hybrid

functional is a mix fraction of the exact exchange and the GGA exchange, which is given

by:

𝐸𝐻𝑌𝐵𝑒𝑥𝑐 [𝜌] = 𝛼𝐸𝐻𝐹𝑒𝑥𝑐 [𝜌] + (1 − 𝛼)𝐸𝐺𝐺𝐴𝑒𝑥𝑐 [𝜌] (2.29)

where 𝛼 is a parameter which controls the HF exchange. Different values of 𝛼 is used

for different functionals, which can further improve the performance for the system under

observation.

The original theory given by Hohenberg, Kohn and Sham can only be applied to the

non-degenerate quantum system. Hohenberg-Kohn formalism establishes the connection
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2.3 Density function approximation

between the density of ground state and the Hamiltonian, thus the variational principle

only yields an equation for the ground state. The central idea of full time-dependent

extension of DFT (TD-DFT) was given by Runge-Gross theorem, which is briefly explained

further in this section.

2.3.1 Time-dependent density functional theory (TD-DFT)

Time-dependent Schrödinger equation is given by:

𝑖
𝜕

𝜕𝑡
𝜓 (r, 𝑡) = 𝐻̂ (𝑡)𝜓 (r, 𝑡) (2.30)

where𝜓 is the many-body wave-function of N interacting electrons with coordinates

r = (r1, r2, .., r𝑁 ) and 𝐻̂ (𝑡) time dependent external potential . This equation describes the

time evolution of a system which satisfies the given initial condition:

𝜓 (r, 𝑡 = 𝑡0) = 𝜓 (r) (2.31)

The Runge-Gross theorem states that, there is one-to-one correspondence between the

time-dependent density 𝜌 (r, 𝑡) and the external time-dependent potential, 𝑣 (r, 𝑡), which
ultimately lead to the time evolution of 𝜌 (r, 𝑡). All the observable of the system can be

written as a function of density. The practical framework of the Runge-Gross theorem

was give by Kohn-Sham scheme.

Let’s define a system of non-interacting electrons, obeying Schrödinger equation:

𝑖
𝜕

𝜕𝑡
𝜙 (r, 𝑡) =

[
− ▽

2

2

+ 𝑣𝑘𝑠 (r, 𝑡)
]
𝜙𝑖 (r, 𝑡) (2.32)
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Similarly, Kohn-Sham potential is given by

𝑣𝑘𝑠 [𝜌] (r, 𝑡) = 𝑣 (r, 𝑡) +
∫

𝑑3𝑟 ′
𝜌𝑟 ′, 𝑡

|𝑟 − 𝑟 ′| + 𝑣𝑒𝑥𝑐 [𝜌] (r, 𝑡) (2.33)

where 𝑣 (r, 𝑡) denotes the Coulombic potential of the nuclei as well as the time-dependent

contribution of an external electromagnetic field. Further, the time-dependent exchange-

correlation potential is given function is chosen in such a way that the density of the

Kohn-Sham orbital electrons is equal to density of the electrons in the interacting system.

𝜌 (r, 𝑡) =
𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑∑︁

𝑖

|𝜙 (r, 𝑡) |2 (2.34)

Exchange-correlation potential 𝑣𝑒𝑥𝑐 is a complex quantity, which has to approximated.

The most common approximation is known as adiabatic local density approximation

(ALDA). In ALDA approximation, it is assumed that exchange-correlation potential at time

𝑡 is equal to the ground-state LDA potential, which is given by:

𝐸𝐴𝐿𝐷𝐴𝑒𝑥𝑐 [𝜌] (r, 𝑡) = 𝐸𝑢𝑑𝑒𝑥𝑐 [𝜌] (r, 𝑡) (2.35)

In the similar fashion, we can derive the adiabatic GGA or meta-GGA. In the adiabatic

approximation, the time-dependent density is simply introduced into the time-independent

exchange-correlation function. This approximation performs quite well, but there are also

some failures which have been reported in the literature.

Time-dependent DFT proves to be effective for the simulation of time-independent quan-

tum mechanical process in solids and in molecules. It provides a theoretical background

of the charge transfer and calculation of the properties of the excited states.

2.3.2 Density Functional Tight binding (DFTB)

Despite, DFT is accurate in quantum calculations and computationally efficient in compar-

ison to most of the electronic structure based methods, there has been a major concern

regarding simulation of large system with thousands of atoms. Another major concern

is regrading expanding applicability of this method from a single molecular dynamics to

simulation of chemical reaction at an active site of a protein in aqueous solution. Further,

the time scale of these kind of simulation requires millions of QM calculations and can be

nanosecond scale. These QM calculations are well beyond the scope of the DFT calculation.

In order to overcome this limitation, semi-empirical methods with some approximation

can be applied at the cost of some accuracy but with a low computational cost. These

methods rely on fitting parameters to reference data, which limits the transferability.

The Density Functional based Tight binding method is derived from the second-order

expansion of Kohn-Sham total energy. DFTB [17, 18] is originally based on the minimal

basis set, which means that only valence electrons are considered explicitly, whereas the

core electrons are treated by two-center potential. DFTB performs well with organic

molecules as the underlying assumptions are fulfilled. Starting form the energy expression

of Kohn-Sham system of non-interacting electrons:
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𝐸 [𝜌] =
∑︁
𝑖

𝑓 𝑖 ⟨𝜙𝑖 |
(
− 1

2

▽2 +𝑉𝑒𝑥𝑡 +
1

2

∫
𝑑3𝑟 ′

𝜌 (r)𝜌 (r’)
|𝑟 − 𝑟 ′ |

)
|𝜙𝑖⟩ + 𝐸𝑒𝑥𝑐 [𝜌] + 𝐸𝑛𝑢 (2.36)

This is another way of writing Kohn-Sham orbitals |𝜙𝑖⟩ and 𝑓𝑖 represents the orbital
occupation and the last term can be expanded as:

𝐸𝑛𝑢 =
∑︁
𝐴,𝐵

𝑍𝐴𝑍𝐵

|𝑅𝐴 − 𝑅𝐵 |
(2.37)

It can be further expanded as follows:

𝐸 [𝜌] =
∑︁
𝑖

𝑓 𝑖 ⟨𝜙𝑖 | −
1

2

▽2 +
∫

𝑑3𝑟 ′
𝜌0(r’)
|𝑟 − 𝑟 ′ | +

𝛿𝐸𝑒𝑥𝑐 [𝜌0]
𝛿𝜌 (r) +𝑉𝑒𝑥𝑡 (r) |𝜙𝑖⟩

+ 1

2

∫
𝑑3𝑟

∫
𝑑3𝑟 ′

(
1

|𝑟 − 𝑟 ′| +
𝛿2𝐸𝑒𝑥𝑐 [𝜌0]
𝛿𝜌 (r)𝛿𝜌 (r’)

)
+ 𝐸𝑒𝑥𝑐 [𝜌] + 𝐸𝑛𝑢 −

1

2

∫
𝑑3𝑟𝑑3𝑟 ′

𝛿𝜌 (r)𝛿𝜌 (r’)
|𝑟 − 𝑟 ′| −

∫
𝑑3𝑟

𝛿𝐸𝑒𝑥𝑐 [𝜌]
𝛿𝜌 (r) 𝜌0(r)

= 𝐸0 [𝜌0] + 𝐸1 [𝜌0, 𝛿𝜌] + 𝐸2 [𝜌0, (𝛿𝜌)2] + 𝐸3 [𝜌0, (𝛿𝜌)3] + ...

(2.38)

where, 𝛿𝜌 is fluctuation in density and 𝜌0 is atomic reference density. Overall density

can be given as 𝜌 = 𝜌0 + 𝛿𝜌 . The first line of the equation represents the band structure

energy(BSE), which is given by:

𝐸𝐵𝑆𝐸 [𝛿𝜌] =
∑︁
𝑎

𝑓𝑖 ⟨𝜙𝑎 |𝐻 [𝜌0] |𝜙𝑏⟩ (2.39)

where the Hamiltonian 𝐻 0 = 𝐻 [𝜌0] and it does not contain any charge. It only de-

pends on the reference density. The second line in the equation represents the Coulomb

interaction and not exchange contribution, which is given by:

𝐸𝑐𝑜𝑙𝑚𝑏𝛿𝜌 =
1

2

∫
𝑑3𝑟

∫
𝑑3𝑟 ′

(
1

|𝑟 − 𝑟 ′| +
𝛿2𝐸𝑒𝑥𝑐 [𝜌0]
𝛿𝜌 (r)𝛿𝜌 (r’)

)
+𝑂 (𝛿𝜌3) (2.40)

And finally the third line represents the collective repulsive energy, which is given by:

𝐸𝑟𝑒𝑝 = 𝐸𝑒𝑥𝑐 [𝜌] + 𝐸𝑛𝑢 −
1

2

∫
𝑑3𝑟𝑑3𝑟 ′

𝛿𝜌 (r)𝛿𝜌 (r’)
|𝑟 − 𝑟 ′| −

∫
𝑑3𝑟

𝛿𝐸𝑒𝑥𝑐 [𝜌]
𝛿𝜌 (r) 𝜌0(r) (2.41)

Finally the overall equation can be given as:

𝐸 [𝜌] = 𝐸𝐵𝑆𝐸 [𝛿𝜌] + 𝐸𝑐𝑜𝑙𝑚𝑏𝛿𝜌 + 𝐸𝑟𝑒𝑝 (2.42)

The three energy contributions in the Eq. 2.42 will be further approximated.

As mentioned before, in the DFTB method we only consider the valence electrons and

the core electrons effects only contribute to the repulsive energy. The different methods
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of DFTB correspond to different levels of truncation of the Taylor series. The truncation

after the first-order term produces the original form of DFTB. Further, the inclusion of

second-order term in the Eq. 2.38 leads to the DFTB2 [18] method. Consequently, the

inclusion of third term produces the DFTB3.

In DFTB, matrix elements are listed in tables in such a manner that they do not have to

be integrated explicitly for each geometry. LACO approach is used for KS orbital which

separates the density into the atomic contribution and is given by:

𝜌0(r) =
∑︁
𝑖

|𝜙 (r) |2 =
∑︁
𝑎

𝜌𝑎 (r) (2.43)

Usually, the three center contributions are neglected as in the DFTB method these

expanded terms are approximated as a pairwise potential, which are set to produce the

DFT energies. In Eq. 2.38, the first term represents the Hamiltonian matrix-element, which

are approximated using minimal basis set of slater type for the KS orbital, which is given

by:

𝐸0 [𝜌0] =
𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑∑︁

𝑖

⟨𝜙𝑖 | 𝐻̂0 |𝜙𝑖⟩

=

𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑∑︁
𝑖

∑︁
𝜇

∑︁
𝜈

𝑐
𝜇

𝑖
𝑐𝜈𝑖 𝐻

0

𝜇𝜈

(2.44)

All the four terms in Eq. 2.41 depend only on the reference density 𝜌0 and are categorised

as the repulsion energy, which is given by:

𝐸𝑟𝑒𝑝 =
1

2

∑︁
𝑎

∑︁
𝑏

𝑉
𝑟𝑒𝑝

𝑎𝑏
[𝜌0

𝑎, 𝜌
0

𝑏
, 𝑟𝑎𝑏] (𝑎) (2.45)

In this case, fluctuation in the density is not taken into account, which is generally

referred as original DFTB. Additional approximation are required to speed up the calcula-

tions. In order to do this, density fluctuation 𝛿𝜌 is used to express as a sum of the atomic

density fluctuations, which is given by:

𝛿𝜌 =
∑︁
𝑎

𝛿𝜌𝛼 (2.46)

where 𝛼 represents the alpha atom and the equation describes the fluctuation in charge,

which is given by 𝛿𝑞𝛼 = 𝑞𝛼 − 𝑞0

𝛼 , where 𝑞𝛼 is the Mulliken charge and 𝑞0

𝛼 is the valence

electron of the neutral atom 𝛼 . Using these approximation, the second order term can be

written as:

𝐸2𝑛𝑑 =
1

2

∑︁
𝛼𝛽

𝛾𝛼𝛽𝛾𝑞𝛼𝛾𝑞𝛽 (2.47)

𝛾𝛼𝛽 =
1

𝑅𝛼𝛽
− 𝑆 (𝑅𝛼𝛽,𝑈𝛼 ,𝑈𝛽) · ℎ (2.48)
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2.3 Density function approximation

𝛾𝛼𝛽 in the Eq. 2.48 represents the integral over the product of two normalised Slater-type

charge densities. The interaction between two atoms having fluctuating charge densities

is mediated via 𝛾𝛼𝛽 , where 𝛾𝛼𝛼 represents the electron-electron interaction confined to a

single atom, which is further described by Hubbard parameter𝑈𝛼 . For the system having

larger interatomic distances, the exchange-correlation terms vanishes and 𝛾𝛼𝛽 reduced to

the coulombic interaction between the two partial charges.

The function 𝑆 denotes a complicated expression, which is responsible for the correct

convergence of 𝛾𝛼𝛽 at 𝑅𝛼𝛽 = 0. DFTB2 approach is widely used in QM calculation in

inorganic, organic, molecules and solids. However, DFTB2 has a direct relation between

the chemical hardness and atomic size. Furthermore, the Hubbard parameter does not

depend on the charge fluctuation of the atom, which leads to substandard description of

systems where charge atoms are involved.

In order to tackle this problem, approximation are employed. This is led to the develop-

ment of DFTB3 approach, which take into account the third energy term, where charge

atoms are involved. This improves the descriptions of the charged molecules and the 𝐸3𝑟𝑑

are given by:

𝐸3𝑟𝑑 =
1

3

∑︁
𝛼𝛽

Γ𝛼𝛽𝛿𝑞
2

𝛼𝛿𝑞𝛽 (2.49)

The matrix Γ contains the derivative of 𝛾 function with respect to the charge and is

given by the following equation:

Γ𝑎𝑏 =
𝜕𝛾𝛼𝛽

𝜕𝑞𝛼

�����
𝑞0

𝛼

=
𝜕𝛾𝛼𝛽𝜕𝑈𝛼

𝜕𝑈𝛼𝜕𝑞𝛼

�����
𝑞0

𝛼

(2.50)

Γ𝑎𝑏 =
𝜕𝛾𝛼𝛼

𝜕𝑞𝛼

�����
𝑞0

𝛼

=
𝜕𝛾𝛼𝛼𝜕𝑈𝛼

𝜕𝑈𝛼𝜕𝑞𝛼

�����
𝑞0

𝛼

(2.51)

The Hubbard parameter is given by 𝑈 𝑑
𝛼 = 𝜕𝑈𝛼/𝜕𝑞𝑎

��
𝑞0

𝛼
is calculated analytically, which

is the third derivative of the total energy w.r.t. charge. With this approximation, the

Kohn-Sham equation can be formulated in a matrix form which is given by:

𝐻𝜇𝜈 = 𝐻
0

𝜇𝜈 + 𝑆𝜇𝜈
∑︁
𝑐

𝛿𝑞𝑐
(1

2

(𝛾𝛼𝑐 + 𝛾𝛽𝑐) +
1

3

(𝛿𝑞𝛼Γ𝛼𝑐 + 𝛿𝑞𝛽Γ𝛽𝑐) +
1

6

𝛿𝑞𝑐 (Γ𝑐𝛼 + Γ𝑐𝛽)
)

(2.52)

Using this description, biological or organic systems with charge have been improved.

2.3.3 Time-dependent density functional bight binding (TD-DFTB)

Self-consistent DFTB provides the calculation of ground-state, however we are also inter-

ested in the excited state calculation. Within the limit of DFT, excited state calculation can

be done using TD-DFT formulation. Using the same approach, DFTB method is further

extended in a time-dependent (TD-DFTB) approach, which is analogous to the linear
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response theory of the Kohn-Sham DFT approach to compute the excitation energy of the

system. TD-DFTB methods refer to the Casida’s equation, which is given by:∑︁
𝑚𝑛

[
((𝜖𝑠 − 𝜖𝑖)2𝛿𝑖𝑚𝛿𝑠𝑛 + 4

√
𝜖𝑠 − 𝜖𝑖𝐾𝑖𝑠,𝑚𝑛

√
𝜖𝑚 − 𝜖𝑛)𝐹𝑚𝑡

]
= Ω2𝐹𝑖𝑠 (2.53)

The above equation is Hermitian eigenvalue problem on the space of orbital excitation.

where, indices i,m,.. are occupied orbital, whereas s,n,.. refer to the unoccupied virtual

orbital, Ω represents the eigenvalues excitation energies, 𝐾𝑖𝑠,𝑚𝑛 describes the Coulombic

interaction between orbital excitations, which can be approximated in DFTB.

𝐾𝑖𝑠,𝑚𝑛 =
∑︁
𝐴,𝐵

𝑞𝑖𝑠𝐴𝑞
𝑚𝑛
𝐵 𝛾𝐴𝐵 (2.54)

where 𝑞𝑖𝑠
𝐴
is Mulliken transition charges which is given by:

𝑞𝑖𝑠𝐴 =
1

2

∑︁
𝜈∈𝐴,𝜇

(𝑐𝜈𝑖𝑐𝜇𝑠 + 𝑐𝜇𝑖𝑐𝜈𝑠)𝑆𝜇𝜈 (2.55)

Finding the solution for eigenvalues is very expensive as it requires 𝑂 ((𝑁𝑜𝑐𝑐. · 𝑁𝑣𝑖𝑟𝑡 .)3)
operations. Davidson algorithm can be used if low lying eigenvalues are required, which

allows the problem to be restricted to a small space. Thus, application to the excitation

transport is particularly easy using TD-DFTB approximation.

2.3.4 Long-range corrected DFTB (LC-DFTB)

The long range corrected functional improves the original DFT functional by removing

asymptotically self-interaction error via the long range contribution. Taking this idea into

consideration, DFTB approach can be further extended to long-range separated functionals

which is led to development of the LC-DFTB.

Baer, Neuhauser and Livshits functionals are used to extend the DFTB, which splits the

Coulomb interaction (𝜈) into short-range and long-range, which is given by:

𝜈 =
1

𝑟12

= 𝜈𝑠𝑟 + 𝜈𝑙𝑟

=
𝑒𝑥𝑝 (−𝜔𝑟12)

𝑟12

+ 1 − 𝑒𝑥𝑝 (−𝜔𝑟12)
𝑟12

(2.56)

The functional is dependent on 𝜔 . The DFTB formalism has to be modified slightly

w.r.t. the reference density matrix 𝑃0. Energy is expanded with reference to the reference

density matrix and fluctuation up to the second order. Eq. 2.38 is re-written as:

𝐸𝜔𝑒𝑥𝑐 = 𝐸
𝜔
𝑒𝑥𝑐 [𝜌0] +

∑︁
𝜇𝜈

Δ𝜇𝜈𝑣
𝜔,𝑒𝑥𝑐
𝜇𝜈 [𝜌0]

+ 1

2

∑︁
𝜇𝜈𝛼𝛽

Δ𝑃𝜇𝜈Δ𝑃𝛼𝛽 𝑓
𝜔,𝑒𝑥𝑐

𝜇𝜈𝛼𝛽
[𝜌0] +𝑂 (𝛿𝜌3)

(2.57)
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where 𝑣𝜔,𝑒𝑥𝑐 and 𝑓 𝜔
𝜇𝜈𝛼𝛽

denote the first and second order derivative of the atomic orbital

functional, respectively. The Greek letters denote the Slater-type atom-centered basis

function (Φ𝜇). Density matrix (𝑃𝜇𝜈) for a closed shell si is given as:

𝜌 (r, r’) =
∑︁
𝜇𝜈

[
2

𝑁 /2∑︁
𝑖=1

𝑛𝑖𝑐𝜇,𝑖𝑐𝜈,𝑖

]
Φ𝜇 (r)Φ𝜈 (r’) (2.58)

After re-arrangement of the above equation:

𝐸 =
∑︁
𝜇𝜈

𝑃𝜇𝜈𝐻
0

𝜇𝜈 +
1

2

∑︁
𝜇𝜈𝛼𝛽

Δ𝑃𝜇𝜈Δ𝑃𝛼𝛽 [(𝜇𝜈 |𝛼𝛽) + 𝑓 𝜔,𝑒𝑥𝑐𝜇𝜈𝛼𝛽
[𝜌0]]

− 1

4

Δ𝑃𝜇𝜈Δ𝑃𝛼𝛽 (𝜇𝛼 |𝛽𝜈)𝑙𝑟 + 𝐸𝑟𝑒𝑝
(2.59)

where 𝐸𝑟𝑒𝑝 denotes the repulsive energy and it only depends on the reference density.

The matrix elements are calculated and tabulated for various internucleic distances. Mul-

liken approximation is applied and four center integral are reduced and thus two-center

integral becomes

(𝜇𝛼 |𝛽𝜈)𝑙𝑟 = 1

4

𝑆𝜇𝜈𝑆𝛼𝛽 [𝛾 𝑙𝑟𝜇𝛼 + 𝛾 𝑙𝑟𝜇𝛽 + 𝛾
𝑙𝑟
𝜈𝛼 + 𝛾 𝑙𝑟𝜈𝛽] (2.60)

𝛾 𝑙𝑟𝜇𝛼 are parameterized as in the standard DFTB, but with a long-range contribution.

Finally, the Hubbard parameter in LC-DFTB is obtained as:

𝑈 𝐿𝐶−𝐷𝐹𝑇𝐵
𝛼 = 𝛾

𝑓 𝑟
𝛼𝛼 −

1

2(2𝑙 + 1)𝛾
𝑙𝑟
𝛼𝛼 (2.61)

where 𝛾
𝑓 𝑟
𝛼𝛼 denotes the full-range 𝛾 integral which contains the 𝑓 𝜔,𝑒𝑥𝑐 . 𝛾

𝑓 𝑟
𝛼𝛼 and 𝛾 𝑙𝑟𝛼𝛼

contain the 𝜔 are a separation parameter. Moreover, l represents the angular moment of

the highest occupied orbital.

2.4 Molecular Dynamics Simulation

2.4.1 Molecular Mechanics

Molecular mechanics have become very popular to envisage biological system using the

laws of classical mechanics. The principle idea is to describe the energy of the system as a

function of nuclear position of the system and not considering the electrons as individual

particles. The potential energy of the system is measured by using empirical force field.

Force fields describes the energy of the molecules by atom specific parameters obtained

by experiments or by some quantum mechanical calculations. Energy measured by force

field method contains mainly two parts which correspond to the parameterization of

bonded as well as non-bonded interactions between the atoms. The bonded interactions

are described by the chemical bond between two atoms, angles and torsion angle of the

molecules. Whereas the non-bonded interactions are described by the Van der Waals

(VdW) interactions and the coulombic interaction using Coulomb’s law. Van der Waals
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interactions consist of two parts, namely Pauli repulsion and the London dispersion, which

is described as Lennard Jones potential.

The overall equation of total energy of a force field is given as:

𝐸 =
1

2

∑︁
𝑖

𝑘𝑖 (𝑟𝑖 − 𝑟 0

𝑖 )2︸               ︷︷               ︸
𝐸𝑏𝑜𝑛𝑑𝑠

+ 1

2

∑︁
𝑗

𝑘𝜐𝑗 (𝜐𝑖 − 𝜐0

𝑖 )2

︸                ︷︷                ︸
𝐸𝑎𝑛𝑔𝑙𝑒

+ 1

2

∑︁
𝑛

𝑉𝑛 · cos[𝑛𝜔 − 𝛾𝑛]︸                        ︷︷                        ︸
𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛

+
𝑁∑︁
𝑖

𝑁∑︁
𝑗=𝑖+1


4𝜖𝑖 𝑗

((
𝜎𝑖 𝑗

𝑟𝑖 𝑗

)
12

−
(
𝜎𝑖 𝑗

𝑟𝑖 𝑗

)
6

)
︸                        ︷︷                        ︸

𝐸𝑣𝑑𝑤

+ 1

4𝜋𝜖0

𝑞𝑖𝑞 𝑗

𝑟𝑖 𝑗︸     ︷︷     ︸
𝐸𝑐𝑜𝑢𝑙𝑜𝑚𝑏



(2.62)

The first term in the above equation describes the potential energy curve of the bonded

atoms, which can be measured using the Morse potential. Morse potential potential is

given as:

𝑉 (𝑟 ) = 𝐷𝑒 [1 − 𝑒𝑥𝑝 (−𝛼 (𝑟 − 𝑟0))]2
(2.63)

where 𝐷𝑒 denotes the depth of the potential energy well, 𝑟0 denotes the equilibrium

distance, 𝛼 = 𝜔
√︁

1/2𝐷𝑒 , 𝜇 is the reduced mass of the bonded atoms and 𝜔 is the bond

vibration. Harmonic approximation is applied on the taylor expansion, at equilibrium

bond length 𝑟0. The Taylor series expansion is truncated after second order which gives

the energy of the bonds (𝐸𝑏𝑜𝑛𝑑𝑠), and 𝜅 is the spring constant.

Second term in the force field equation represents the total energy contribution due

to a bonded angle of a molecule, which can be also described analogous to the harmonic

potential, where 𝜐0 is equilibrium angle and 𝜅𝜐 is bending frequency at equilibrium.

The third term in the above equation represents the energy contribution due to the

torsion angle which is expressed as the periodic function of several cosine functions. 𝑉𝑛
represents the amplitude, 𝛾𝑛 represents the phase shift and n is the periodicity.

The last two terms represent the energy contribution due to non-bonded atoms, which

are given by VdW potential and the Coulomb potential. The VDW is given by the Lennard-

Jones-(12,6) potential, whereas the electrostatic interaction is given by using the Coulomb’s

law. Lennard-Jones-(12,6) potential consists of two parts: First part describes the repulsive

interaction at short distances by 𝑟−12
term and second, the attractive interactions due to

the induced dipole interaction which is known as the London interaction and described as

𝑟−6
term.

2.4.2 Verlet integration method

Newton’s second law of motion is solved numerically to progress the Molecular dynamics

simulations. The second laws of equation motion is given by:
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𝜕2𝑟𝑖

𝜕𝑡2
= − 1

𝑚𝑖

𝜕𝑉𝑝𝑜𝑡

𝜕𝑟𝑖
=

1

𝑚𝑖

−→
𝐹 (2.64)

In the above equation,

−→
𝐹 is the derivative of the potential energy 𝑉𝑝𝑜𝑡 . Forces are

calculated at 𝑡0 and 𝑟0, which are followed by calculation at new positions and new velocities

at time 𝑡 + 𝜕𝑡 . This is an iterative process and in every cycle the former coordinates are

used to calculate the energy and force.

To obtain the new positions and velocities, Verlet integrator in the equation is used.

This method uses virtual time steps in positive and negative time. Taylor expansion up to

a second order of the Verlet scheme is given by:

𝑟 (𝑡 + Δ𝑡) = 𝑟 (𝑡) + 𝑣 (𝑡) · Δ𝑡 + 1

2

𝑎(𝑡) · Δ𝑡2
(2.65)

𝑣 (𝑡 + Δ𝑡) = 𝑣 (𝑡) + 1

2

(𝑎(𝑡) + 𝑎(𝑡 + Δ𝑡) · Δ𝑡 (2.66)

where Δ𝑡 is the time step, often chosen in accordance with the fastest motion in the

molecule. Usually, it should be Δ ≤ 0.1 of the fastest period which results most of the time

step of 1fs.

2.5 Quantum Mechanics/Molecular Mechanics

Warshel and Levitt developed a Quantum mechanical method combined with a molecular

method, popularly known as QM/MM which leads to efficient description of a molecule.

The chemical reaction like bond breaking, bond forming or an electron transfer reaction

can be explained using quantum mechanical calculations. QM methods are very expensive

for large system, thus it can be applied to a small system. Thus, a combined quantum

mechanical and molecular mechanics can be used to study a large system where active

site calculation is done by semi-empirical, ab initio or density functional methods whereas

the remaining larger part of the molecule can interact via non-covalent interactions by

classical force field.

The Hamiltonian of a system with QM/MM scheme can be divided into three parts:

𝐻𝑡𝑜𝑡 = 𝐻𝑄𝑀 + 𝐻𝑀𝑀 + 𝐻𝑄𝑀/𝑀𝑀 (2.67)

Subsequently, the total energy of the hybrid system is given by:

𝐸𝑡𝑜𝑡 = 𝐸𝑄𝑀 + 𝐸𝑀𝑀 + 𝐸𝑄𝑀/𝑀𝑀 (2.68)

where 𝐸𝑄𝑀 , 𝐸𝑀𝑀 , 𝐸𝑄𝑀/𝑀𝑀 are the energies of the QM region, MM region and QM and

MM interacting system, respectively. The interaction between the QM and MM regions

can be treated in various ways.

Mechanical embedding describes unpolarized interactions between QM and MM regions

by the means of force field as described in the equation. Both kind bonded and non-bonded

interaction between QM and MM can be described as classical force field equation. To
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be specific treating non-bonding interaction between QM and MM with Lennard-Jones

parameters. Furthermore, there is no Coulomb interactions between the QM and MM

atoms, which leads to problems with having polar surroundings.

In order to solve the problem faced by mechanical embedding, electronic embedding is

used to improve the description of the QM and MM interactions. In this case, MM atoms

are allowed to polarise the atoms in the QM regions. QM atoms feel the electric potential

for the atom present in the MM region, due to inclusion of the point charges of the MM

atoms in the Hamiltonian of the QM calculations.

𝐻̂
′
𝑄𝑀 = 𝐻̂𝑄𝑀 −

𝑄𝑀∑︁
𝐴

𝑀𝑀∑︁
𝐵

(
𝑞𝐵

𝑟𝐴𝐵

)
(2.69)

Subsequently, the total interaction energy of QM/MM region is:

𝐸𝑄𝑀/𝑀𝑀 =

𝑄𝑀∑︁
𝐴

𝑀𝑀∑︁
𝐵

𝑄𝐵 · 𝑞𝐴
|−→𝑅 𝐴 − −→

𝑅 𝐵 |
(2.70)

Further improvement of the interaction between QM and MM atoms can be done by

using polarizable embedding, where QM atoms are also allowed to polarise the MM atoms.

In this case, polarizable force fields are also necessary, that the respond to the changes in

the electron density. This method incurs high costs but provides high accuracy.

The highest occupied molecular orbital (HOMO) of molecules is considered to represent

the site energy 𝜖𝑖 (ionization potential (IP)). The electronic couplings between HOMO’s 𝜙𝑖
and 𝜙 𝑗 of neighboring molecules 𝑖 and 𝑗 are calculated as follows:

𝑇𝑖 𝑗 = |⟨𝜙𝑖 | ˆ𝐻𝐾𝑆 |𝜙 𝑗 ⟩| (2.71)

By applying the atomic orbital (AO) basis (𝜙𝑖 =
∑
𝜇 𝑐

𝑖
𝜇𝜂𝜇) the coupling in molecular-

orbital (MO) basis are evaluated as:

𝑇𝑖 𝑗 =
∑︁
𝜇𝜈

𝑐𝑖𝜇𝑐
𝑖
𝜈 ⟨𝜂𝜇 | ˆ𝐻𝐾𝑆 |𝜂𝜈⟩ =

∑︁
𝜇𝜈

𝑐𝑖𝜇𝑐
𝑖
𝜈𝐻𝜇𝜈 (2.72)

The effect of environment, i.e., the electrostatic interaction with the remainder molecules

is taken into account as classical point charges (the second term in the parentheses).

𝐻𝜇𝜈 = 𝐻
0

𝜇𝜈 +
1

2

𝑆
𝛼𝛽
𝜇𝜈

(∑︁
𝛿

Δ𝑞𝛿 (𝛾𝛼𝛿 + 𝛾𝛽𝛿 ) +
∑︁
𝐴

𝑄𝐴 (
1

𝑟𝐴𝛼
+ 1

𝑟𝐴𝛽
)
)

(2.73)
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3 Fundamentals of charge transfer in
organic semiconductors

In this chapter, a fundamental background of the charge transfer in the amorphous organic

semiconductors is presented. Section 2.1 gives a summary of the electronic structure of

amorphous organic material which leads to charge hopping between two localized states.

Section 2.2 explains about the charge hopping mechanism in amorphous organic materials.

Further, Section 2.3 introduces the Marcus hopping rates for charge and energy transport

using the quantum mechanical approach.

3.1 Electronic structure of OSCs and OLEDs

Organic semiconductors materials are generally formed by the small covalently bonded

organic molecules. These materials are mostly made up by carbon and hydrogen atom

along with a few hetero-atoms such as oxygen, nitrogen and sulfur. These materials absorb

and emit light in the visible spectrum and their conductivity is sufficient for the operation

of semiconductor devices such as light-emitting diodes and solar cells. Despite they show

semiconducting properties, but still the semiconducting nature varies strongly between

organic and inorganic materials.

Traditional inorganic semiconductors such as silicon and germanium have low band

gaps. Free charge can be created by thermal excitation from valence band to conduction

band. Intrinsic conductivities of inorganic semiconductors are in the range of 10
−8

to 10
−2

Ω
−1 𝑐𝑚−1

. Dielectric constant for these materials is large 𝜖𝑟 = 11, thus the coulomb effect

between electrons and holes are insignificant due to dielectric screening. Consequently,

light absorption at room temperature can create free electron and hole.

On the contrary, organic semiconductors are extrinsic in nature which result from the

formation of electron-hole pairs due to absorption of the light. In this case, absorption and

emission take place in the range of 600 - 400 nm, which creates significant charge carrier

concentration at thermal excitation at room temperature. Moreover, dielectric constant

is low which is around 𝜖𝑟 = 3.5. Thus, coulombic interaction can be ignored, which is

significant. It also implies that electron-hole pair generated by optical excitation is bound

by a coulomb energy of about 0.5 - 1.0 eV. Thin film of OSCs can be made by vacuum

sublimation, ink-jet printing and spin coating. Broadly, organic semiconductor materials

can be classified into three categories.

1. Amorphous organic films are created by organic molecules deposited as amorphous

molecules through the process of evaporation or spin coating. These type of

materials are used in devices like LED and molecularly doped polymer (MDP).
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3 Fundamentals of charge transfer in organic semiconductors

2. Molecular crystals films consist of a lattice and a basis. Molecules such as polyacenes

in particular naphthalene and anthracene, can form the basis of the molecular

crystal, which is held together by weak van-der-Waal interactions. The charge

mobilities are higher in comparison to the noncrystalline organic materials, which

makes it suitable for the use in transistor applications.

3. Polymer films can be considered as the repeated unit of covalently bondedmolecules.

These are usually processed from solution, which allows the deposition techniques

including ink-jet deposition and spin-coating. These type of films are suitable for

the blending due to thermodynamic stability.

In order to conduct electricity, both electrons and ions can be served as charge carriers

for the conductivity inside any organic or inorganic solids. These materials can be regarded

as good or bad electrical conductors based on the energy gap between the valence band

and conduction band. As far as organic semiconductors are concerned, the energy gaps

between the valence band and the conduction band is not high. Thus, it is possible to

overcome this energy gaps by thermal process or chemical doping of the semiconductors.

Figure 3.1: Illustration of the formation of delocalized 𝜋 orbitals in ethene. Both carbon

atoms contribute in the formation of 𝑠𝑝2
(s, 𝑝𝑥 and 𝑝𝑦) hybrid orbitals. These

hybrid orbitals are aligned in the xy-palne, whereas 𝑝𝑧 orbital is perpendicular

to the 𝑠𝑝2
plane. (source:https://www.heftfilme.de/)

Organic materials conduct electricity due to excess or vacancy of electron which are

free to move across the solids. Electrons present in the 𝑠𝑝2
hybrid orbitals are aligned in

the plane with an angle of 120
◦
. Organic conducting molecules have 𝜋 - electrons which

are delocalised out of the plane, which is formed by the 𝑝𝑧 orbitals of the carbon atom.

It is important to have a small energy gap between valence band and the conduction band

respectively derived from the highest occupied molecular orbital (HOMO) and the lowest

unoccupied molecular orbital (LUMO) of the organic molecules, to be a good candidate

semiconductor.

With increasing number of carbon atoms and the 𝜋-electrons, the energy levels of the

delocalized 𝜋 orbital’s will get closer due to larger overall splitting among the 𝜋 orbitals.
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3.2 Charge hopping in amorphous organic materials

Figure 3.2: Illustration of the energy between the HOMO and LUMO in ethene. The gap

between the HOMO and LUMO determines the semicondution nature of the

organic material. (source:https://chem.libretexts.org/)

consequently, the gaps between the valence band and the conduction band decrease.

Therefore, the energy gaps between the HOMO and LUMO lead to smaller energy gaps.

In small molecular organic semiconductors, band structures are evolved and charges

are localised over the several molecules. Due to amorphous nature of the material, it has

spatial disorder which leads to unique morphology. The disorder in an amorphous solid

can be given by the Gaussian distribution and the corresponding energy levels of different

molecules is given by the below equation:

𝐷𝑠 (𝐸) =
𝑛

√
2𝜋𝜎𝑠

exp− (𝐸𝑠 − 𝐸)2

2𝜎2

𝑠

(3.1)

where 𝑛 is the number density, 𝜎𝑠 is the standard deviation of the distribution, 𝐸𝑠 is the

average value of energy levels over all the molecules. Due to different environments

of each molecule in amorphous organic materials, the energy levels are shifted. Weak

electronic coupling of 𝜋-systems of different molecules lead to another phenomenon called

Anderson localization on individual molecules. Since 𝜋 orbitals are delocalised over the

entire molecule, occupied 𝜋-orbitals can donate their electrons and unoccupied 𝜋-orbitals

can accept the electrons. Consequently, the overlap of wave function between the 𝜋

orbitals of different molecules can lead to the hopping of charge from one molecule to

another.

3.2 Charge hopping in amorphous organic materials

In disordered organic semiconductors, the reorganization of the molecule upon charging

prevents the hybridisation between the different electronic state, due to weak van der

waals and electronic coupling interactions. This leads to strong localization of charge in a

molecular semiconductor thus charge transfers from one site to another is possible if there
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3 Fundamentals of charge transfer in organic semiconductors

is sufficient quantum-mechanic overlap between the two states. The process of transfer

from one localised state to another is generally referred as "hopping". One electron state

on different small molecules are coupled weakly and the hopping rate can be calculated

by Fermi’s Golden rule.

𝜔 =
2𝜋

ℏ

∑︁
𝑖

∑︁
𝑓

𝑝𝑖 ⟨𝜓 𝑓 |𝐻 |𝜓𝑖⟩2 𝛿 (𝐸 𝑓 − 𝐸𝑖) (3.2)

where 𝑖 and 𝑓 represent initial and final states and 𝑝𝑖 is the occupation probability of

the initial state, ⟨𝜓 𝑓 |𝐻 |𝜓𝑖⟩ is the coupling wave function between the initial and the final

state and 𝛿 (𝐸 𝑓 − 𝐸𝑖) is the resonance condition for the energy transfer.

In the case of polaronic transport between the identical molecules, there is no difference

between a forward jump from i to j or vice-versa. Both sites have the same polaronic

binding energy and isoenergetic, which lead to the same hopping rate for the forward and

backward jumps. This symmetry is broken when static energetic disorder is introduced

into the semiconductor. Consequently, the forward and backward jumps will no longer be

the same. In such disordered medium, the use of dipole coupling can be appropriate to

describe the incoherent hopping of excitons. This approximation is expressed by Miller

and Abrahams:

𝜔𝑖 𝑓 = 𝜔0𝐽
2

𝑖 𝑓

{
𝑒𝑥𝑝 −

(𝐸 𝑓 − 𝐸𝑖)
𝑘𝐵𝑇

𝐸 𝑓 > 𝐸𝑖

1 𝐸 𝑓 ≤ 𝐸𝑖

(3.3)

where 𝑖 and 𝑓 are the initial and final electronic states and 𝐸 𝑓 and 𝐸𝑖 are the final and

initial total energies, respectively. 𝐽 2

𝑖 𝑓
denotes the electronic coupling, T is the temperature

and 𝑘𝐵 is the Boltzmann constant. For the downhill hopping, the excess energy is dissipated

while for uphill hopping, an activation energy is required in the form of Boltzmann factor.

This introduces an energy dependence which need to be multiplied with the hopping rate

due to the electronic coupling between the two sites. This approximation assume that the

Boltzmann factor is equal to 1 for the downhill hopping.

Hopping transport can also be quantitatively described in several other ways. Modeling

approach such as master equation approach (ME) can be used to describe the amorphous

system in a coarse grained fashion. In advanced approaches, a distribution of points are

used which follows the same neighbouring molecules as the center of mass position in

disordered material.

The below equation describes the time derivative of the occupation probability:

𝑑𝑝𝑖 (𝑡)
𝑑𝑡

=
∑︁
𝑗

(𝑝 𝑗 (𝑡) 𝐽𝑘 𝑗𝑖 − 𝑝𝑖 (𝑡) 𝐽𝑘𝑖 𝑗 ) (3.4)

where 𝑝𝑖 (𝑡) and 𝑝 𝑗 (𝑡) are the occupation probabilities at site i and j, respectively. The
term 𝑝 𝑗 (𝑡) 𝐽𝑘 𝑗𝑖 describes the probability flux from neighbouring site j to site i whereas
𝑝𝑖 (𝑡) 𝐽𝑘𝑖 𝑗 describes the probability flux away from site i to neighbouring site j. 𝑘𝑖 𝑗 denotes
the hopping from site i to site j. This equation can be solved analytically as well as

numerically.
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3.3 Marcus theory of electron transfer

Another modelling approach is the Kinetic Monte Carlo (KMC) method where all charge

hopping processes are modelled explicitly. In this case, certain number of electrons are

distributed in the system and rates k of all possible process are calculated. One rate is

chosen with a probability corresponding to the sum of all the rates. Further, chosen step

is carried out and time is updated and this way, a random but representative trajectory

of the system is obtained. This trajectory obeys thermodynamic laws and it can used to

extract important information such as equilibrium charge density, charge mobility and

percolation path.

A more detailed and advanced hopping rate is given by Rudolph A. Marcus where he

describes how an electron transfers from a donor to an acceptor molecule in a solution.

Marcus theory of charge transfer will be explained in detail in the next section.

3.3 Marcus theory of electron transfer

Marcus theory was originally proposed by Rudolph A. Marcus in 1956 to explain the rate

of electron transfer processes taking place in a solution. Since its development, the Marcus

theory has been applied in a number of important processes in chemistry, biology, solar

cells and many more. This theory can also be applied to describe the charge transfer

process in localized states in organic semiconductors.

Marcus considered the electron transfer to progress via a solvent rearrangement coordi-

nate, such that solvent reorganise itself in the direction of the field of charge, which is

termed as orientation polarisation. At the same time, atoms and electron in the solvent

are slightly displaced from their initial position. Marcus emphasised that the system will

fluctuate in the conformational transition state where either of the charges species are

in resonance. This implies that energy is conserved during the process and the Franck-

Condon principal is hold true.

Marcus theory uses the concept of parabolic approximation of the Gibbs free energy of

the system as a function of multi-dimensional reaction coordinate (𝑞). In case of frozen,

molecular orientation such as in condensed amorphous system, entropic contribution is

negligible. Thus, total energy of the entire system can be approximated for the calculation

of the Gibbs free energy.

The energy barrier or the activation energy for the electron transfer is calculated by the

below equation:

𝐸𝐴 =
1

4𝜆
(𝜆 + 𝐸 𝑓 − 𝐸𝑖)2

(3.5)

where 𝐸𝐴 denotes the activation energy barrier, 𝜆 is the reorganisation energy (energy

required for the vertical electron transfer without change of the nuclear frame) and 𝐸 𝑓 −𝐸𝑖
is the difference of the energies between the final and the initial states for the charge

transfer process. The activation energy for the entire process can be calculated as the

intersection of the two parabolas. Marcus formulated the hopping rate [19, 20, 21, 22]

using the Boltzmann occupation ratio, which is given as:

𝑘 =
2𝜋

ℏ
〈
|𝐻𝑖 𝑓 |2

〉 1

√
4𝜋𝜆𝑘𝐵𝑇

𝑒𝑥𝑝

(
− (𝜆 + Δ𝐸)2

4𝜆𝑘𝐵𝑇

)
(3.6)
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3 Fundamentals of charge transfer in organic semiconductors

Figure 3.3: Donor and acceptor potential surfaces and accepting mode vibrational energies

(Reprinted from [24]).

where 𝑇𝐷𝐴 is the electronic coupling between the initial and the final states and Δ𝐸 is

the total free energy change for the electron transfer reaction. The Marcus rate theory

(eq. 2.6) is valid when the difference of the internal and external phonons are small as

compared to the thermal energy of the environment (ℏ𝜔 << 𝑘𝑇 ). The energy difference

between initial and final states of the system in the Marcus theory, is equivalent to the

effects of energetic disorder in a polaron model. The nonadiabatic ET rate, Eq. 5.2, takes

both vibrational overlap and the electronic coupling between reactant and product states

into account (Fig. 3.3). |𝐷⟩ and |𝐴⟩ are the D and A electronic states and 𝑃𝑖𝐷 represents

initial vibrational population at thermal equilibrium of state i when the electron is on the

donor. The total energies of |𝑖𝐷⟩ and |𝑓𝐴⟩ are 𝑈𝑚𝑖𝑛
𝐷

+ 𝜀𝑖𝐷 and 𝑈𝑚𝑖𝑛
𝐴

+ 𝜀 𝑓𝐴 , consisting of

the minimum electronic state energies (𝑈𝑚𝑖𝑛
𝐷

/ 𝑈𝑚𝑖𝑛
𝐴

) and vibrational state energies (𝜀𝑖𝐷
/ 𝜀 𝑓𝐴 )[23]. The DA electronic coupling 𝑇𝐷𝐴 is the overlap between the initial and final

vibrational levels (the total initial to final vibronic state coupling). The electronic part

|⟨𝑖𝐷 |𝑇 |𝑓𝐴⟩|
2

indicates that the molecular structure with large 𝑇 2

𝐷𝐴
contributes to 𝑘𝐸𝑇 more

efficiently.

In the following sections, detailed explanations of the molecule and system depen-

dent parameters such as electronic coupling (𝐻𝑖 𝑓 ), reorganisation energy (𝜆) and energy

difference (Δ𝐸) are provided, which are required for the Marcus rate calculation.

3.3.1 Electronic coupling

For electron transport in a disordered system, electronic coupling between two states can

be calculated using the Löwdin orthogonalization method. In this case, HOMO represents
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3.3 Marcus theory of electron transfer

the wave function of the missing electron(hole), whereas the LUMO represents the wave

function of electron. The electronic coupling 𝑇𝑖 𝑗 is calculated as given below:

𝑇𝑖 𝑓 =
𝐻̂𝑖 𝑓 − 1

2

(
𝐻̂𝑖𝑖 + 𝐻̂ 𝑓 𝑓

)
𝑆𝑖 𝑓

1 − 𝑆2

𝑖 𝑓

(3.7)

where 𝐻̂𝑖𝑖 represents HOMO or LUMO eigenvalues of molecule A, 𝐻̂ 𝑗 𝑗 represents HOMO

or LUMO eigenvalues of molecule B, 𝐻̂𝑖 𝑗 represents the matrix elements calculated using

Fock and overlap matrices of molecule A and B. 𝐻̂𝑖 𝑗 matrix elements are given by :

𝐻̂𝑖 𝑓 = ⟨𝜙𝑖 |𝐻̂𝑃𝑄 |𝜙 𝑓 ⟩ (3.8)

where 𝐻̂𝑃𝑄 denotes the effective Hamiltonian of the neutral dimer system, 𝜙𝑖 and 𝜙 𝑓
represents the HOMO (LUMO) orbitals of the molecule A and B. 𝑆𝑖 𝑓 is the overlap matrix

element of the HOMO (LOMO) orbitals.

𝑆𝑖 𝑓 = ⟨𝜙𝑖 |𝜙 𝑓 ⟩ (3.9)

The basis function of the molecule A and molecule B are non-orthogonal and thus it is

non-zero.

3.3.2 Reorganization energy

Reorganisation energy (𝜆) is the energy cost due to the geometry modification while going

from a neutral to charge molecule in presence of a solution. Lower the reorganisation

term, implies the lower the geometrical modification and vice-versa and thus higher the

chances of electron transfer. For example, if the initial ionized molecule have the same

geometry as that of the geometry of the final neutral molecule, then the electron transfer

will happen swiftly, without waiting for the vibration. Similarly, if the difference between

the geometry between the initial and the final molecule is more, then the electron transfer

will only happen if there is vibration or thermal fluctuations.

As stated in the equation 3.5, reorganisation of the charge transfer between two states

can be calculated using Nelsen’s four-point-procedure. So for the calculation of the

reorganisation energy, the charge transfer has to be partitioned into different processes,

which decouple the fast electronic process from the slower ionic response of the system.

This procedure is generally regarded as the Nelsen’s four-point-procedure and described

as follows:

1. Total energy (𝐸𝑖) of the confrontationally relaxed molecule in vacuum is calculated.

2. An electron is added to the molecule to step 1 and total energy (𝐸𝑢𝑟 ) of the molecule

is calculated.

3. In third step, step 2 structure is relaxed and total energy (𝐸𝑟 ) of the relaxed structure
is calculated.

4. In the last step, extra electron is removed from the step 3 structure and total energy

(𝐸 𝑓 ) is calculated.
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3 Fundamentals of charge transfer in organic semiconductors

Finally, the reorganisation energy of a system is given by the below equation:

𝜆 = (𝐸𝑢𝑟 − 𝐸𝑟 ) + (𝐸 𝑓 − 𝐸𝑖) (3.10)

Reorganisation energy can be separated into two parts,inner part 𝜆𝑖𝑛𝑛𝑒𝑟 as well as outer

part 𝜆𝑜𝑢𝑡𝑒𝑟 . The 𝜆𝑖𝑛𝑛𝑒𝑟 includes the relaxation of the donor and the acceptor molecules,

whereas the 𝜆𝑜𝑢𝑡𝑒𝑟 includes the relaxation from the environment. If the electron transfer

happens between two different types of systems then the overall reorganisation energy is

given by:

𝜆1,2 =
1

2

(𝜆1,1 + 𝜆2,2) (3.11)

where 𝜆1,1 and 𝜆2,2 are the reorganisation energies between two different types of molecules

1 and 2, respectively.

3.3.3 Site energy

The rates of charge transport are generally determined by onsite energy difference between

the molecules. The difference of electron affinity (EA) from hopping site 𝑖 to hopping site

𝑓 is given by:

Δ𝐸𝐴𝑖 𝑓 = [𝐸𝐴0

𝑓
+ |𝑞 |Φ𝑑𝑦𝑛

𝑓
] − [𝐸𝐴0

𝑖 + |𝑞 |Φ𝑑𝑦𝑛
𝑖

] + |𝑞 | ®𝐹 · ®𝑟𝑖 𝑓 (3.12)

where 𝑞 denotes the electron charge, 𝐸𝐴0

𝑥 denotes the electron affinity of the specific

molecule 𝑥 at zero charge concentration, Φ
𝑑𝑦𝑛
𝑥 is the electrostatic charge potential at the site

𝑥 which is developed by the other neighbouring charges in the given boundary condition,

®𝐹 is the electric field applied and 𝑟𝑖 𝑓 is the direction from site 𝑖 to site 𝑓 . Similarly, the

Ionization potential (IP) difference for a hopping from site 𝑖 to site 𝑓 is given by:

Δ𝐼𝑃𝑖 𝑓 = [𝐼𝑃0

𝑓
+ |𝑞 |Φ𝑑𝑦𝑛

𝑓
] − [𝐼𝑃0

𝑖 + |𝑞 |Φ𝑑𝑦𝑛
𝑖

] + |𝑞 | ®𝐹 · ®𝑟𝑖 𝑓 (3.13)

All the terms in the equ. 3.13 represent the same parameters which are used in the equ.

3.12 except the term 𝐼𝑃0

𝑥 , which represents the ionization potential of molecule 𝑥 at zero

charge concentration.

Quantum patch method is used to calculate the 𝐸𝐴0

𝑥 and 𝐼𝑃
0

𝑥 for a sample of few hundred

molecules. In an isotropical material, onsite energy is assumed to follow a Gaussian

distribution which is given by:

𝑔(𝐸) = 1

𝜎
√

2𝜋
𝑒
− 𝐸2

2𝜎2
(3.14)

There are two contributions to the site energy, first due to the conformational changes or

disorder and the second contribution is due to the inhomogeneous electrostatic potential

which is created by another neighboring molecule.

The electrostatic contribution to the EA/IP on site 𝑖 considered as first order due to

the monopol-dipole interactions which results from the added charge with the dipole

moments of the environment.
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3.3 Marcus theory of electron transfer

𝑉 𝐸𝐴0/𝐼𝑃0

𝑖 = ±
∑︁
𝑓 ≠𝑖

|𝑞 |
4𝜋𝜖0𝜖𝑟

®𝑟 𝑓 𝑖 · ®𝑑 𝑗
|𝑟𝑖 𝑓 |3

(3.15)

where sum is taken over all the molecules and
®𝑑 𝑓 denotes the dipole moment of the

molecule 𝑓 and 𝑟𝑖 𝑓 is the distance between 𝑓 and 𝑖 . In the similar way, neighbouring sites

also feels the similar electrostatic environment, which is spatially correlated.
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4 Understanding excited state properties
of host materials in OLEDs

Chapter 4 is reprinted with permission from Ref. [25]:

• Samaneh Inanlou, Rodrigo Cortés-Mejıa, Ali Deniz Özdemir, Sebastian Höfener,

Wim Klopper, Wolfgang Wenzel, Weiwei Xie, and Marcus Elstner. “Understanding

excited state properties of host materials in OLEDs: simulation of absorption

spectrum of amorphous 4, 4-bis (carbazol-9-yl)-2, 2-biphenyl (CBP)”. In: Physical

Chemistry Chemical Physics 24.7 (2022), pp. 4576–4587.

Copyright 2022 The Royal Society of Chemistry.

Author Contributions: This work was done in cooperation with Ali Deniz Özdemir

and Rodrigo Cortés-Mejıa. Ali Deniz Özdemir generated the amorphous morphology of

OSCs. Rodrigo Cortés-Mejıa performed Bethe–Salpeter equation (BSE) method from the

GW approximation (GW-BSE) to assess the accuracy of TD-LC-DFTB. Samaneh Inanlou

computed the absorption spectrum and performed QM/MM MD simulations.

4.1 Introduction

Nowadays, organic light-emitting diodes (OLEDs) have been considered as a new gen-

eration of technologies due to their high brightness, low-cost, low energy consumption,

light weight and mechanical flexibility [26, 27, 28, 29]. They can be used in many devices

such as televisions, mobile phones, and other lighting resources [30, 31]. Among different

types of OLEDs, the phosphorescent OLEDs (PhOLEDs), serving as the second-generation

OLEDs, have recently attracted much attention because they can generate light from both

singlet and triplet states and thus allow the internal quantum efficiency to reach nearly

100% [32, 33]. In PhOLEDs, the heavy metal-based phosphorescent emitter is doped in an

appropriate host material, which is used to transfer excitation energy to the emitter and

confine the exciton in the emissive layer.

Amorphous materials have been widely used as host materials in PhOLEDs, because the

emitter is uniformly distributed in the amorphous matrix to minimize the concentration

quenching effect [34]. In addition, the absence of grain boundaries in amorphous materials

further minimizes the exciton recombination [35]. The excited-state properties of the

host material play an important role in photoluminescence characteristics of OLEDs. For

instance, it has been found that the excited-state molecular aggregation in the vicinity

of host material/emitter layer interfaces limits the operation lifetimes of PhOLEDs [36].

Therefore, the fundamental understanding of the excited-state properties of host materials
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4 Understanding excited state properties of host materials in OLEDs

is the key for the design of highly efficient PhOLEDs. In the present work, we explore

the excited-state properties of a representative host material using reliable and efficient

quantum chemistry methods. Hence, we obtain an accurate description of excited states

energies and exciton couplings, where the phase space has been sufficiently sampled.To

achieve this, we first benchmark semi-empirical quantum chemical methods, the so-

called density functional based tight-binding method (DFTB), as well as its long-range

corrected version called LC-DFTB, which allows us to describe excited state properties

with reasonable accuracy.

In the past decades, DFTB has been used as an alternative to the widely used density

functional theory (DFT) to compute molecular properties. DFTB is 2–3 orders of mag-

nitude faster than DFT and can reach the accuracy of DFT methods by using careful

parameterization approaches [37, 38]. However, DFTB uses semilocal PBE functionals

[39, 40] for calculations of the Hamiltonian matrix and thus inherits the errors of typical

DFT functionals using generalized gradient approximations (GGA) [41, 42]. Recently,

the LC-DFTB approach was developed by the incorporation of arbitrary LC functionals

in the DFTB to partly cure the DFT-GGA errors [43]. The time-dependent scheme of

LC-DFTB (TD-LC-DFTB) has been successfully parameterized and benchmarked for a test

set of small organic molecules involving charge-transfer excitations [44], rhodopsins and

light-harvesting complexes [45] and biological molecules. In the present study, we will

examine the quantitative accuracy of TD-LC-DFTB in calculating the absorption spectra

of a most widely used host material in PhOLEDs, [32, 46] 4,4- bis(9-carbazolyl)-biphenyl

or CBP.

By combining classical MD simulations with quantum mechanical/molecular mechan-

ical methods (QM/MM), where the DFTB methods are used in the QM part, we will be

able to address the effects of static and dynamic disorders on the absorption spectra of

CBP. The paper will proceed as follows: first, the benchmark calculations of TD-LC-DFTB

approach are performed by comparing the excitation energies of CBP molecules using

various quantum chemistry methods. Second, the absorption spectra of CBP in the gas and

condensed phase are computed using TD-LC-DFTB and different structure sampling meth-

ods are discussed. Finally, the aggregation effect on the optical properties of amorphous

CBP has been addressed.

4.2 Methodology

4.2.1 Benchmark of TD-LC-DFTB

The bond length alternation (BLA) is defined as the difference in average single and double

bond lengths along extended p systems. In the present study, the p-conjugated chain

marked with red color in Fig. 4.1b is used to evaluate BLA of CBP. To compare the accuracy

of different quantum chemistry methods, geometry optimizations of CBP molecule at the

ground state are performed using HF, DFT functionals (B3LYP, PBE, 𝜔B97XD) and MP2

with 6-31+g* basis set, respectively. The geometry optimization using DFTB is performed

using the third-order DFTB (DFTB3) with 3OB parameter set [47]. In the constrained

optimizations, the central, side and improper dihedral angles are fixed at 45°, 60°and 0°,

32



4.2 Methodology

Figure 4.1: (a) Schematic representation of the 4,4’-bis(N-carbazolyl)-1,1’- biphenyl (CBP).

𝛼 , 𝛽 and 𝛾 are the side dihedral angle, central dihedral angle, and improper

dihedral angle. (b) Marked bonds in red are considered in calculation of BLA.

respectively, which are obtained by fully optimization by𝜔B97XD/6-31+g*, while the other

degrees of freedom are relaxed. The excitation energies are computed using CIS, TD-DFT,

ADC(2), CC2 and the Bethe–Salpeter equation (BSE) from the GW approximation (GW-

BSE) method with 6-31+g* basis set and TD-LC-DFTB with mio-0.8 parameter set, [48]

respectively. All DFTB and TD-LC-DFTB calculations in the present study are performed

using the DFTB+ program suite[49], if not specified otherwise. The GW-BSE and ADC(2)

calculations are performed using the TURBOMOLE v7.4 computational chemistry package

[50]. All other calculations are carried out with the GAUSSIAN 09 package [51].

Recently, the gas phase single-point absorption spectrum of CBP has been studied using

GW-BSE method [52]. The GW-BSE method is an accurate and reliable approach for

calculating the excited-state properties of extended systems [53, 54] and thus it is used to

assess the performance of TD-LC-DFTB in this work. Therefore, the geometry is adopted

from ref. [52] which is optimized at the ground state using PBE0 functional [55] with

the def2-TZVP basis set [56, 57] . Afterward, vertical excitation energies and oscillator

strengths of the lowest 25 excited singlet states are computed using TD-LC-DFTB with mio-

0.8 parameter set. The energy lines are broadened by a Lorentzian function with a width of

0.05 eV and summed up to provide the absorption spectra normalized to the highest peak.

Note that the inclusion of the dielectric screening into LC corrected functional can lead to

significant shifts in the condensed-phase adsorption spectra. However, we would expect

that the inclusion of the dielectric screening makes negligible differences in the adsorption

spectra for the systems with strongly localized excitations. The small exitonic couplings

between the CBP monomers (shown below) indicates that the localized electronic structure

of CBP, which justifies the use of LC corrected functional with bare (i.e., unscreened 1/r)

electron–hole interaction.

The self-consistent eigenvalue-only GW method with def2-TZVP basis set is performed

to benchmark the accuracy of TD-LC-DFTB for the calculation of the adsorption spectrum

of CBP. We use the spectral representations for the response and Green’s function [54,

58], which enables an analytic evaluation of energy integrals and derivatives. The advan-

tage of this approach is that it avoids the uncertainties that may arise from the widely

used plasmon-pole models and prevents additional computational parameters needed in

numerical frequency integration methods.
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4.2.2 Molecular dynamics simulations

The force field parameters are taken from the general AMBER force field (GAFF) [59, 60],

where the atomic charges are generated by the restrained electrostatic potential [61, 62]

fitting procedure (RESP) calculated at the HF/6-31g* [63, 64] level using the Gaussian 09

package [51]. The force field parameterizations are imposed on two types of dihedral

angles (see Fig. 4.2). The first are the proper dihedral angles between two central phenyl

groups and the dihedral angle between carbazole moiety and phenyl group (henceforth,

referred to as “central angle” and “side angle” or 𝛼 and 𝛽) and the second type is improper

dihedral angles (referred to as 𝛾 ). The dihedral constants for 𝛼 , 𝛽 and 𝛾 are parametrized

by fitting to the relaxed potential energy scan along each angle using 𝜔B97XD/6-31+g*

method.

4.2.2.1 Force field reparameterization

This section presents the reparametrization of dihedral angles which is restricted to

the proper and improper dihedral angles. The reason behind this is that the excitation

energies and consequently the absorption bands can be affected by the dihedral angles.

Force-field reparameterization can be performed by matching the quantum mechanical

potential energy surface (PES) scans with the corresponding force-field based scans. To

reparametrize the parameters of the general AMBER force field (GAFF), three sets of

parameters are considered: side/central dihedral angles (𝛼 and 𝛽) and improper dihedral

angle (𝛾 ) (Fig. 4.1a).

The potential energy scans for the corresponding angles are performed using density

functional theory (DFT) methods (𝜔B97XD functional) and 6-311g+(d,p) basis set. The

potential energies are obtained from rotational scans where the corresponding angle is

fixed (e.g., 𝛼 in Fig. 4.1). Throughout the calculations, all the geometrical parameters are

simultaneously relaxed while their respective dihedral angles vary from 0° to 180° for side

and central angles and from 0° to 30° for improper angles in steps of 5°. The difference

between DFT and force-field based energies is then fitted, yielding the parameterization

constants of the dihedral using the GAUSSIAN package, and all force-field computations

are carried out using the GROMACS package. For the proper and improper dihedral angles,

the periodic and harmonic functions are used as per equations 4.1 and 4.2, respectively.

𝑉𝑑 (𝜙𝑖 𝑗𝑘𝑙 ) = 𝑘𝜙 (1 + cos (𝑛𝜙 − 𝜙𝑠)) (4.1)

𝑉𝑖𝑑 (𝜁𝑖 𝑗𝑘𝑙 ) =
1

2

𝑘𝜁 (𝜁𝑖 𝑗𝑘𝑙 − 𝜁0)2. (4.2)

After fitting, the coefficients of the periodic and harmonic functions (𝑘) for side (𝛼),

central (𝛽) and improper (𝛾 ) dihedral angles are 4.25, 2.883 and 11.88 respectively. The

results are shown in Fig. 4.2b). For the side angle, the DFT scan shows that the torsional

potential has 2 minima when 𝛼 ≈ 60° and another local minimum at 𝛼 ≈ 120°. The geometry

at 𝛼 ≈ 90° has a barrier to planarity of about 3 kcal/mol. Concerning the central angle,

the rotational barrier at 0° and 90° of biphenyl originate from two factors, the interaction

between 𝜋 orbitals of the benzene rings, which makes biphenyl planar and repulsion

between ortho-hydrogen atoms to makes the molecule to rotated the geometry with 𝛽 ≈
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Figure 4.2: a) Distributions of central (upper panel), and side (center panel) and improper

(lower panel) angles obtained by MD sampling using original GAFF and repa-

rameterized GAFF force fields. b) Potential energy relaxed scans along central

(upper panel), and side (center panel) and improper (lower panel) angles using

𝜔B97XD/6-311g+(d,p) (black) and original GAFF (red) and reparameterized

GAFF (green).

40° or 140° [65]. The barrier at 𝛽 = 90° is about 6 kJ/mol. For the improper angle, as the

out-of-plane angle decreases, the electronic conjugation increases. Therefore, the planar

geometry (𝛾 ≈ 0° or 180°) has an extended electronic conjugation of 𝜋-electrons which

facilitates extended conjugation of CBP. The rotational barrier at 𝛾 ≈ 30° or 150°, is a result

of breakage of the electronic conjugation.

The van derWaals (vdW) interactions are represented by a 6–12 Lennard-Jones potential,

𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 =
∑︁

𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑

𝜀

[(
𝑅𝑚𝑖𝑛,𝑖 𝑗

𝑟𝑖 𝑗

)
12

− 2

(
𝑅𝑚𝑖𝑛,𝑖 𝑗

𝑟𝑖 𝑗

)
6

]
(4.3)

where the parameters 𝜖 and 𝑅𝑚𝑖𝑛,𝑖 𝑗 are derived from the GAFF force field. Since we

take the structures from the MD-trajectories, vdW effects are included. This also holds

for the QM/MM simulations, where the vdW interactions are included in the QM/MM

Hamiltonian.

In gas-phase classical MD simulation, a CBP molecule is first minimized using the

steepest descent algorithm and then equilibrated at 300 K for 5 ns with a time step of 1 fs.

The Nose–Hoover thermostat [66] is employed to control the temperature. 5000 structures

are saved during the equilibrium simulation. For each CBP structure, 25 excitation energies

are computed using TD-LC-DFTB and the absorption spectrum is given by the sum of
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all energy lines broadened by a Lorentzian function with a broadening width of 0.05 eV.

In the present study, all classical MD simulations are carried out using the GROMACS

(version 2016.3) program package [67] unless stated otherwise.

A disordered thin-film morphology of 5000 CBP-molecules is generated by simulating

physical vapor deposition, based on a Monte-Carlo (MC) protocol. During the deposition

process, molecules are added to the simulation box (𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 90 Å) one after another

where the flux of molecules is parallel to the 𝑧-axis and the 𝑥𝑦-plane represents the surface

of the substrate. The deposition simulation starts with a molecule at a random initial

position, followed by 32 simulated annealing (SA) cycles. Within each SA-cycle, the

molecules’ conformation space is sampled by 130 000 MC-steps, where only molecule

translations or rotations of a dihedral (𝛼𝑜𝑟𝛽) are considered. Based on a Metropolis

criterion, MC moves are accepted and stored or rejected, where the temperature at MC-

step n is given by 𝑇𝑛 = 𝑇𝑠𝑐
𝑛
. The 𝑐 = (𝑇𝑒/𝑇𝑠)1/𝑁

determines the cooling rate as per MC

step, 𝑇𝑠= 4000 K and 𝑇𝑒= 300 K denote the start- and end-temperature, respectively. After

the SA-cycles are performed, the conformation with the lowest energy is accepted as

the final conformation. Subsequently, the electrostatic and Lennard- Jones potential are

updated. This procedure is repeated 5000 times until all molecules are deposited [68]. After

deposition, an equilibrium simulation of 2 ns at 300 K and 1 bar is performed to equilibrate

the temperature and pressure. The Nose–Hoover thermostat [69] and Parrinello–Rahman

barostat [70] are employed to obtain a reasonable canonical ensemble.

The absorption spectra of CBP in the condensed phase are simulated using two initial

sampling methods, ensemble sampling and time-series sampling. In the former approach,

the vertical excitation energies of 25 excited states are computed using TD-LC- DFTB for

each monomer (5000 in total) in the equilibrated CBP supercell and summed up to generate

the absorption spectra. In the time-series sampling, the absorption spectra are simulated

using the structures of a specific CBP molecule in 5000 snapshots uniformly selected along

5 ns MD simulation. In both cases, the electrostatic effects from the environment on

the excitation energies are considered by including the MM point charges in the DFTB

calculation.

In the quantum mechanics/molecular mechanical molecular dynamics (QM/MM MD)

simulations, the whole system is divided into a quantum mechanical (QM) region, con-

taining only one CBP molecule treated by DFTB3 with 3OB parameter set, and molecular

mechanical (MM) region, where the remaining CBP molecules are treated on a molecular

mechanics (MM) level using the modified GAFF. The equilibrated supercell obtained from

the classical MD simulation is used as a starting point for a 1 ns QM/ MM simulation with

a time step of 1 fs, where 5000 snapshots are taken as reference structures for the excited-

state calculations of the CBP molecule in the QM region. The QM/MMMD simulations are

performed with the GROMACS program package [71]. The excitation energy calculations

including the effects of the electrostatic interactions from the environment are carried out

with the DFTB+ program suite [49]. The experimental data [72] are digitized using the

open-source tool WebPlotDigitizer [73].

The static and dynamic properties of molecular aggregations are described by the

excitonic coupling between the excited states of monomers. Excitonic couplings are

conventionally composed of the long-range Coulomb contributions and the short-range

(exchange and overlap) contributions. In the present work, only the Coulomb contributions
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are considered and the complete evaluation of excitonic coupling is planned for the

future. The Coulomb coupling can be determined as the interactions between the atomic

transition charges of monomers [74]. The Coulomb coupling with the nearest neighbour

is considered in the present study. The atomic transition charges are computed using

the TD-LC-DFTB method implemented in the DFTB+ program suite [49]. Recently, TD-

LC-DFTB excitonic couplings have been successfully benchmarked for rhodopsins and

light-harvesting complexes [45].

4.3 Results

Optical properties of CBP have been studied in detail in a recent work [52], where the

performance of DFT approaches has been compared with GW-BSE estimates. As described

for many other molecules, standard DFT-GGA and even several hybrid DFT functionals

such as B3LYP or PBE0 suffer from the delocalization error, which renders their prediction

for many molecules of interest unreliable. Especially for charge-transfer excited states,

excitation energies are severely underestimated, which is also the case for CBP. Range-

separated DFT functionals, however, can systematically improve the description of these

states. In the following, TD-LC-DFTB will be tested and applied for the description of CBP

excited states.

4.3.1 Bond length alternation and excitation energies

Excitation energies of conjugated organic molecules are very sensitive to the molecular

structure. Dihedral angles and the BLA are two parameters which have a sizable impact

on excitation energies. Recently, the importance of these structural details for excitation

energies has been discussed in detail [45]. For CBP, different quantum chemical methods

predict slight differences in the central geometrical parameters, as can be seen from Table

4.1. The calculated bond lengths and BLAs are listed in the Table. 4.2.

DFTB MP2 PBE B3LYP 𝜔B97XD HF FF

BLA 0.014 0.017 0.020 0.021 0.025 0.031 0.036

𝛼 43.3 53.0 53.3 56.9 55.8 94.2 54.4

𝛽 28.0 39.4 37.4 39.0 42.0 43.4 41.9

𝛾 0.0 0.0 0.0 0.0 0.0 0.3 0.0

Table 4.1: Bond length alternation and dihedral angles for the CBP molecule optimized by

various quantum chemistry methods. The bond length alternation is defined in

Fig. 4.1b.
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Bond length [Å]

BLA

C1
––C2 C2 –C3 C3

––C4 C4 –C5 C5
––C6 C6 –C7 C7

––C8

FF 1.410 1.400 1.399 1.514 1.393 1.402 1.410 0.036

HF 1.388 1.380 1.382 1.488 1.382 1.380 1.389 0.031

𝜔B97XD 1.393 1.383 1.389 1.480 1.389 1.383 1.393 0.025

B3LYP 1.399 1.387 1.394 1.480 1.394 1.387 1.399 0.021

PBE 1.395 1.383 1.391 1.474 1.391 1.383 1.395 0.020

MP2 1.397 1.390 1.402 1.471 1.402 1.390 1.397 0.017

DFTB 1.408 1.392 1.408 1.484 1.408 1.392 1.408 0.014

Table 4.2: Bond lengths and bond-length alternation (BLA) for the CBP molecule optimized

by various quantum chemistry methods.

DFTB gives the lowest value of BLA while HF leads to the highest BLA. The values for

BLA obtained by hybrid methods lie in between due to the varying moderate amount of

exact exchange [45, 75]. This finding is in line with an earlier work on other conjugated

molecules [45]. The method for optimization of the ground state structure has a notable

impact on excitation energies, as can be seen in Fig. 4.3. The vertical excitation energies

computed with various quantum chemistry methods for ground state geometries are

provided in the Table 4.3.

Figure 4.3: Influence of the applied methods on the computed vertical excitation energies.

The x-axis shows the methods used to compute the ground state geometries;

vertical excitation energies are then computed with various methods for these

respective geometries. Note that, ADC(2) and GW-BSE are superimposed.
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FF MP2 HF 𝜔B97XD B3LYP PBE DFTB3

HF/CIS 4.82 4.79 5.06 4.97 4.90 4.84 4.50

𝜔B97XD 4.25 4.28 4.42 4.35 4.32 4.33 4.11

TD-LC-DFTB 4.01 3.98 4.26 4.10 4.05 4.04 3.83

CC2 3.89 3.97 4.11 4.04 4.01 4.02 3.85

ADC(2) 3.89 3.95 4.09 4.01 3.98 4.00 3.84

GW-BSE 3.85 3.93 4.09 4.00 3.97 3.98 3.86

PBE 3.72 3.66 3.80 3.75 3.69 3.68 3.53

B3LYP 3.58 3.51 3.61 3.59 3.53 3.53 3.40

TD-DFTB 3.11 3.03 3.01 3.11 3.03 3.07 2.97

Table 4.3: Vertical excitation energies (eV) of fully optimized geometries in vacuum using

various quantum chemistry methods.

All methods show a slight variation with optimized structures, but differ significantly

in absolute excitation energy values. As expected, HF/CIS overestimates the excitation

energies for all optimized geometries, while the local and semi-local methods underestimate

them due to the (semi-) local nature of the functionals. CC2, ADC(2) and GW-BSE are

in excellent agreement with each other. The excitation energies computed by the range-

separated 𝜔B97XD method are slightly higher, as reported before, probably due to the

amount of exact exchange used in this functional. LC-DFTB, similar to the LC-DFT

methods, tends to overestimate excitation energies systematically, as has been shown for

both ground state [76] as well as excited-state [77] optimized geometries, representing

absorption and fluorescence energies. Different range-separated functionals have been

shown to differ slightly in their predictions, and the excellent absolute agreement of LC-

DFTB in this matter can be regarded as fortuitous. For the calculation of absorption spectra,

this will simplify the comparison with experimental data. However, more important is the

fact that the effect of structural changes on excitation energies is represented accurately,

which will be investigated in the following.

As can be seen from Table 4.1, the different methods predict variations in both, BLA

and dihedral angles. As it will be discussed later, the values of the dihedral angles in the

bulk are determined by the intermolecular interactions. For the isolated molecule, the

rotational barriers (6.5 kcal mol
−1

and 3 kcal mol
−1

for central and side angles, respectively,

see Fig. 4.2) are low and can be overcome at room temperature; however, rotations may be

constrained by the surrounding molecules in the bulk which stabilizes the rotamers. On

the other hand, the BLA is found to impact excitation energies in conjugated molecules

[45].

To estimate the effect of BLA on excitation energies, the CBP molecule in the gas phase

is optimized with the side-, central-(𝛼 , 𝛽) and improper dihedral (𝛾 ) angles constrained

to 45°, 60° and 0°, respectively. The optimizations are performed by 𝜔B97XD/6-31+g*. As

shown in Table 4.4, a clear pattern of increasing BLA with increasing amount of exact

exchange is observed in the DFT methods, while the BLA tends to be more precisely

predicted with MP2, since HF tends to overestimate this value [52].
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Bond length [Å]

BLA

C1
––C2 C2 –C3 C3

––C4 C4 –C5 C5
––C6 C6 –C7 C7

––C8

FF 1.397 1.400 1.418 1.510 1.410 1.400 1.393 0.032

HF 1.376 1.383 1.391 1.490 1.391 1.383 1.386 0.030

𝜔B97XD 1.392 1.386 1.396 1.483 1.396 1.386 1.392 0.024

B3LYP 1.398 1.390 1.402 1.484 1.402 1.390 1.397 0.021

PBE 1.394 1.386 1.398 1.477 1.398 1.386 1.393 0.021

DFTB 1.406 1.392 1.407 1.487 1.407 1.393 1.406 0.018

MP2 1.403 1.395 1.407 1.476 1.407 1.395 1.403 0.017

Table 4.4: Bond lengths and bond-length alternation (BLA) for the constrained optimiza-

tions with the different methods. Bond length and BLA are given in Å.

Figure 4.4: Excitation energies (eV) for different optimized geometries with constraint

dihedral angles.

FF HF 𝜔B97XD B3LYP PBE

ADC(2) 5.195 5.360 5.294 5.254 5.269

HF/CIS 4.960 5.063 5.066 5.023 5.052

𝜔B97XD 4.290 4.453 4.395 4.363 4.380

B3LYP 3.638 3.669 3.622 3.588 3.601

PBE 3.790 3.833 3.784 3.749 3.761

Table 4.5: Vertical excitation energies (eV) of optimized CBP geometries in vacuum with

constraint dihedral angles at 45°, 60° and 0° for 𝛼 , 𝛽 and 𝛾 .
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The excitation energies follow the BLA trends, i.e. a blue shift with increasing BLA

is observed, because the dihedral angles are the same for all methods and the vertical

excitation energies only depend on the BLA. The vertical excitation energies can be found

in the Fig. 4.4 and Table 4.5. A closer inspection of the bond lengths shows that the force

field gives the least reliable estimates. In particular, the C–N bond-lengths deviate from

the values computed by the other methods, which leads to a smaller excitation energy,

as would be expected from the value of the BLA. Therefore, for the final estimation of

absorption spectra, the QM/MM geometries using DFTB for the QM region are used. DFTB

uses the PBE functional, and its geometrical prediction is therefore quite close to that of

the other DFT methods, as discussed in detail in recent works [45, 78].

4.3.2 Absorption spectra in gas phase

Recently, a detailed study on CPB electronic structure has been published based on the

GW-BSE method, which is taken as a reference here [52]. The lower panel of Fig. 4.5

shows a comparison of the gas-phase absorption spectra of CBP using TD-DFTB, TD-LC-

DFTB and the GW-BSE reference (using the global minimum geometry taken from ref.

[52]), respectively. As expected, TD-DFTB largely underestimates the excitation ener-

gies by about 1 eV, compared to GW-BSE, while TD-LC-DFTB reproduces the GW-BSE

absorption spectrum well. The strong red-shift of TD-DFTB spectrum can be related to the

well-known notorious self-interaction error of GGA functionals. It is not surprising that

the introduction of long-range (LC) functionals in DFTB can reduce the errors of GGA,

which leads to a good agreement between TD-LC-DFTB and GW-BSE spectra.

The upper panel of Fig. 4.5 shows themain orbital transitions in the gas-phase absorption

spectrum of CBP. Some other electron transitions are shown in Fig. 4.6. The electron

density of HOMO is delocalized over the whole molecule, while the lower occupied orbitals

(HOMO-n, n = 2, 3, 5) exhibit a strong electron localization on the carbazole groups.

The electron density of LUMO is localized on biphenyl rings, while the electron density

of higher unoccupied orbitals (LUMO–n, n = 1, 2, 6) is localized on two carbazole groups.

The peak at 308 nm corre- sponds to the charge transfer (CT) from the carbazole groups to

biphenyl rings, which may be sensitive to the rotation of the central dihedral angle. Two

higher energy excitations (<250 nm) are related to the locally excited states in the carbazole

groups. Therefore, the rotation of central and side dihedral angles may have little impact

on high energy excitations, while it affects the lowest excitation energy significantly [52].

To estimate the effect of dihedral angles on excitation energies, we compute the 25

lowest vertical excitation energies and consequently the absorption spectra for different

central and side angles, respectively. The dihedral angles are incremented in 10° from 0°

to 90° using the ground-state optimized structure at the PBE0/def2-TZVP as the starting

structure, taken from ref. [52]. For these structures, single-point energy calculations are

carried out with TD-LC-DFTB and GW-BSE, respectively. Fig. 4.7(a) shows that for the

central dihedral angles, the lowest-energy peak shifts from 3.91 eV to the higher energy

at 4.15 eV and the intensity becomes lower with the increasing central angles, while the

location and intensity of the high-energy peak at about 5.2 eV change slightly. Further

information regarding the comparison between TD-LC-DFTB and GW-BSE excitation

energies of the lowest-energy peaks, as well as the corresponding Kohn–Sham orbitals, is
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Figure 4.5: Absorption spectra of CBP in the gas phase and Kohn–Sham orbitals involved

in the main orbital transitions of CBP. TD-DFTB, TD-LC-DFTB and GW-BSE

calculations are shown in purple, blue and green lines, respectively. The excited

states calculations are based on the global minimum geometry taken from ref.

[52].

Figure 4.6: Electron transitions relevant to HOMO-n (n=1,2,4) obtained by LC-DFTB.
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Figure 4.7: Absorption spectra computed by TD-LC-DFTB for different central (a) and side

(b) dihedral angles.

0 ° 10 ° 20 ° 30 ° 40 ° 50 ° 60 ° 70 ° 80 ° 90 °

𝛼
3.96 3.96 3.97 3.98 4.00 4.02 4.05 4.07 4.09 4.10

(3.86) (3.87) (3.90) (3.94) (3.97) (3.98) (3.99) (4.00) (4.02) (4.01)

𝛽
3.91 3.92 3.95 3.99 4.04 4.09 4.12 4.14 4.15 4.15

(3.92) (3.96) (3.98) (3.98) (3.99) (3.99) (3.97) (3.98) (3.98) (3.98)

Table 4.6: Excitation energies (in eV) of the lowest-energy peak in the gas-phase static

absorption spectra for side 𝛼 and central 𝛼 and 𝛽 dihedral angles from 0° to 90°

in 10 degrees obtained using TD-LC-DFTB and GW-BSE (shown in parentheses).

provided in the Table 4.6 and Fig. 4.8. It is noted that for the central angle from 0° to 90°,

the lowest-peak exhibits the excitation transition from charge-transfer excitation to local

excitation.

Furthermore, 4.7(b) shows a weak, blue-shifted absorption band at the lowest-energy

peak in comparison to the central dihedral angle. To quantify the variation found for

the different dihedral angles, the standard deviation of the lowest-energy peak has been

calculated for central dihedral angle (4.04 ± 0.09 eV), which is about 2 times larger than

that for side dihedral angle (4.02 ± 0.05 eV). This finding is consistent with the recent study

on the excited-state properties of CBP that the rotational conformation has significant

impacts on the low-energy absorption band, while it has minor effects on high-energy

bands [52]. Therefore, the CT-type excitation is more sensitive to the central dihedral

angle than the side dihedral angle.

4.3.3 Absorption spectra in condensed phase using force field geometries

The absorption in the bulk phase critically depends on the distribution of dihedral angles

of the individual molecules, which results from the intermolecular interactions. Different

values of the dihedral angles can be stabilized by steric interactions, leading to static

disorder in the system. Furthermore, it is expected that dynamic disorder will lead to
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Figure 4.8: LCDFTB KohnSham orbitals involved in the excitation of the lowest-energy

peak for side 𝛼 and central 𝛽 dihedral angles at 0°and 90°.

an additional broadening of the absorption spectrum. In principle, both effects could be

included by computing excitation energies along the trajectories of all molecules in the

simulation box. Since this is computationally demanding, a stepwise procedure is followed,

as described below. In order to get a sufficiently large sample of molecules, force field

trajectories are used, and absorption energies along each trajectory are computed with

TD-LC-DFTB. Then, the trajectories using DFTB/MM are computed in order to obtain

spectra based on more accurate geometries.

For one MD-snapshot containing all 5000 molecules in the supercell, the absorption

energy of the bulk is then computed by successively evaluating the excitation energy

of every molecule in the sample using TD-LC-DFTB, surrounded by the others using

electrostatic embedding. The total spectrum is then the overlay of all 5000 single molecule

spectra, as shown in Fig. 4.9(a). It is noted that the absorption spectrum is identical with the

spectrum computed without considering the electrostatic interactions from surrounding

molecules, which indicates that the electrostatic effects have a negligible influence on

the absorption spectrum (see Fig. 4.10). As shown in Fig. 4.9(b), the static disorder is

characterized by a significant spread in the distribution of the dihedral angles. The maxima

of the 𝛼- and 𝛽-dihedral angles are around 60 and 40 degrees, respectively, consistent with

the values of 𝛼 and 𝛽 for the structure optimized by 𝜔B97XD method in the gas phase. As

expected from Fig. 4.7, planarization of the molecule will lead to a red shift in the lowest

absorption band, which is reflected in the absorption spectrum of the ensemble snapshot
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Figure 4.9: (a) Absorption spectra for the ensemble-snapshot of 5000 molecules (ensemble,

displayed top at the left) and for the 5 ns trajectories of the three molecules

picked from the ensemble. (b) Distribution of dihedral angles obtained for the

ensemble and along the time-series of the three individual molecules. Note

that the molecule is not symmetric and therefore a presentation 1–90° is not

appropriate.

(red dashed line in Fig. 4.9(a)). It is red-shifted by 0.09 eV compared to the gas-phase

spectrum of the optimized molecule in Fig. 4.5.

Fig. 4.10 shows the absorption spectrum of 1 MD-snapshot containing 5000 molecules

with and without electrostatic interactions. The electrostatic interactions were represented

by surrounding point charges. The absorption spectra are similar, indicating that the

electrostatic interactions have minor effects on the absorption spectrum. This finding is

not unexpected, since the environment is quite apolar. To understand this in detail, the

references to other QM/MM calculations of embedded chromophores may be instructive. In

a recent work [45], we computed the excitation energies of retinal and chlorophylls in their

respective protein environments. The response to the environment is very different: While

retinal excitation e nergies are highly tunable by the protein electrostatic environment,

the excitation energies of chlorophylls are much less sensitive. This depends on (i) the

electronic structure of the pigment and (ii) the polarity of the environment. Therefore,

also in highly polar protein environments, the effects of color shifts can be very diverse.

The protein environment in retinal proteins is specifically organized, in order to promote

certain color shifts of the chromophore, which is particularly important for the process

of vision: Here, different protein environments enable color shifts over 300 nm in order

to absorb in the different wavelength regimes of visible light. In case of CBP, in contrast,

this effect is very small, as expected, since the surrounding molecules are (i) quite apolar

and (ii) randomly oriented. Please note, however, that our recent study showed [45], that

some LC-DFT methods, including LC-DFT, slightly underestimate the effect of electrostatic

tuning. This means, these methods should be applied to systems with care, where these
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Figure 4.10: Comparison of absorption spectra for an ensemble-snapshot of 5000 molecules

with and without considering electrostatic effect on excitation energy calcula-

tions. The electrostatic effects were considered by the point charge scheme.

effects are large, like retinal proteins. In systems, where this effect is small, this does

not lead to a large error in the absorption spectra. In the case of chlorophylls in light-

harvesting complexes, the main effects are exciton couplings, in the case of CBP, the main

effects are structural changes, which are both covered quite well by LC-DFTB.

4.3.3.1 Absorption spectra along trajectories of individual molecules

To investigate the impact of dynamic disorder, three molecules (referred to as M1, M2 and

M3) are selected at random positions of the supercell. Afterwards, absorption spectra are

computed on a 5 ns classical MD trajectories and excitation energies are evaluated for

snapshots every 1 ps, resulting in 5000 conformations in total. As shown in Fig. 4.9(a),

the absorption spectra of M1, M2 and M3 are quite close to the absorption spectrum

computed based on the ensemble sampling. Fig. 4.9(b) shows the comparison of the angle

distributions of side and central dihedrals for M1 to M3 with the angle distributions of the

ensemble. For the canonical ensemble, it is seen that the mean values of the central angle

distribution are at 40° and 140°, and the mean values of the side angle distribution are at

60° and 120°. The angle distributions for M1 to M3 only exhibit one peak, showing that

free rotation of the dihedral angles is impossible and the fluctuations are constrained to a

limited range. It is interesting to see that individual monomers sample only a restricted

part of phase space. The results on the ns time scale indicate that the computation of

absorption spectra needs to be performed using longer-simulation-time trajectories until

convergence. Therefore, using the same starting configurations, the classical MD trajectory

is extended to 10 ns and excitation energies are evaluated for snapshots every 2 ps, leading

to 5000 conformations in total. The convergence behavior is observed for M2 and M3 using

the 10 ns-trajectory, whereas M1 is not converged and its respective angle distribution

(mean value = 30°) is different from those obtained for M1 in the 5 ns trajectory (mean

value = 40°) (see Fig. 4.11) which will lead to a stronger red shift and increased intensities
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Figure 4.11: (a) Absorption spectra and (b) distribution of dihedral angles for the ensemble-

snapshot of 5000 molecules and molecules M1, M2 and M3 obtained by a 10

ns trajectory.

of spectrum. In order to get further insight into the sampling methods, the absorption

spectra as well as central angle distribution are examined for snapshots of molecule M1 at

each nanosecond (Fig. 4.12). The importance of the central dihedral angle compared to the

side dihedral angle on the CT-type excitation is demonstrated in Section 3.2. As shown in

Fig. 4.12(b), the mean value of the central dihedral angle between 1–5 ns of the trajectory

is around 35° whereas between 5–10 ns is around 20°.

Figure 4.12: Absorption spectra (a) and central dihedral angle distributions (b) for each ns

MD simulation in a 10 ns trajectory of molecule M1.
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As shown in Fig. 4.5, the lowest absorbance peak is located at 4 eV for the optimized

structure in the gas phase, while in the condensed phase it is red-shifted by about 0.3 eV

(Fig. 4.9a). In principle, there are several factors determining the absorption maximum,

which are (i) the dihedral angles, (ii) the electrostatic environment, (iii) and the exciton

couplings. It is shown (see Fig. 4.10) that the electrostatic environment has a minor effect

on the absorption spectrum. In the following, the effect of the other two factors will be

assessed individually.

4.3.3.2 Comparison to gas-phase MD spectrum

To estimate the effect of the molecular interactions within the bulk, a MD simulation of

CBP in the gas phase is performed, and the excitation energies along this trajectory are

computed.

Fig. 4.13(a) shows a comparison of absorption spectra of CBP for 5000 conformations

from gas-phase MD and 5000 structures from one condensed-phase MD-snapshot. The

lowest-absorbance peak in the condensed-phase spectrum exhibits a red shift of 0.05 eV

in comparison with the gas-phase MD spectrum. This is consistent with the central/side

dihedral angle distribution shown in Fig. 4.7, i.e., more conformations with smaller angles

occur in the condensed phase than in the gas phase. This indicates that intermolecular

interactions in the bulk have a moderate influence on the absorption spectrum of CBP.

The difference is not due to the electrostatic effect, but due to the accessible phase space.

In the gas-phase MD, the molecule can sample the full angular degrees of freedom, since

rotational barriers can be overcome at room temperature. However, in condensed phase

molecules may be more restrained, leading to a narrower angular distribution. Since in the

bulk, the molecules sample more planar structures, a red-shift of the spectrum is observed

(see Fig. 4.7).

Figure 4.13: (a) Absorption spectra of CBP obtained using the conformations from gas-

phase MD (blue line) and one condensed-phase MD-snapshot (red line) and

(b) the corresponding central and side dihedral angle distributions.
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Figure 4.14: Partial absorption spectra of (a) central and (b) side dihedral angles are shown

for three categories, 0°–30° and 150°–180° (blue), 30°–60° and 120°–150° (green)

and 60°–90° and 90°–120° (red).

4.3.3.3 Effects of rotational conformation

The distribution of dihedral angles for the amorphous ensemble containing 5000 molecules

(Fig. 4.9(b)) is split into 6 categories, where each category represents molecules with

dihedral angles in increment of 30°. To obtain good statistics, the absorption spectra of

each category from 0° to 90° and their complementary categories from 90 to 180 degrees are

merged, e.g., structures with dihedral angles of 0°–30° and 150°–180° are pooled together.

Fig. 4.14 shows the partial absorption spectra of dihedral angles for all 3 pooled cate-

gories: Category 1: 0°–30° and 150°–180°, Category 2: 30°–60° and 120°–150° and Category 3:

60°–90° and 90°–120°. For the central dihedral angle at the peak with the lowest energy, as

the angle gets closer to 0° (i.e., the planarity of biphenyl increases), the spectrum becomes

more red-shifted and the intensity increases. Furthermore, it seems there are additional

peaks around 4.4 and 5.4 eV for Category 3. For the side dihedral angle, it seems there is

no dependency between intensity and dihedral angles. It is also noted that the curve for

the side dihedral angle in Category 1 is not smooth due to the low sample size.

4.3.3.4 Absorption spectra for QM/MM sampling

As discussed above, the structures of a single molecule over a long simulation time are

unable to represent all structures in the phase space. The snapshot of the ensemble, on the

other hand, includes static disorder but misses the explicit treatment of dynamic disorder,

which can be obtained by analysing MD trajectories. To investigate how many molecules

are sufficient to represent the ensemble, 3 sets of molecules containing 10, 20 and 50

molecules are randomly selected from different locations of the supercell. A 5 ns long NPT

MD simulation is performed. From this trajectory 500, 250 and 100 snapshots are taken

for these 3 sets of molecules, respectively, to maintain the same number of structures in

every test set. The convergence test with respect to the number of molecules (Fig. 4.15)

shows that 50 molecules is sufficient to obtain converged angle distributions as well as a

converged absorption spectrum.
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Figure 4.15: Convergence of the absorption spectra (a) and dihedral angles (b) with the

number of individual molecules sampled in the supercell. From a 5 ns MD

trajectory, three sets of molecules containing 10, 20 and 50 molecules are

randomly selected and 500, 250 and 100 snapshots are taken for these three

sets, respectively, to maintain the same number of structures in every test set.

As discussed in Section 3.1, DFTB gives a reasonably accurate estimation for the

bond lengths in CBP molecules. Here, the QM/MM simulations are performed for amor-

phous CBP, where 50 molecules randomly distributed in the CBP supercell are treated by

DFTB/3OB while the remaining molecules of the system are treated by the modified force

field. Fig. 4.16(a) shows the comparison of the experimental absorption spectrum of CBP

[72] with the absorption spectrum using the structures from QM/MM simulations and 5000

conformations from one MD-snapshot, respectively. The QM/MM simulation reproduces

the peaks of the experimental absorption spectrum of CBP quite well. The experimental

spectrum is much broader than the computed spectrum., which may be due to the defect

absorption in the CBP film. A key ingredient of this good agreement for the absorption

peaks is the (fortuitous) accuracy of LC-DFTB for the CBP excited states, as discussed

above, which allows us to compute absolute excitation energies in this case. In particular,

the BLA is sufficiently well represented by the ground state DFTB/MM calculations. In

comparison to the spectrum based on the FF geometries, the lowest-energy peak of the

QM/MM absorption spectrum exhibits a red shift of 0.2 eV. The red-shift of excitation

energy can be attributed to the smaller BLA using GGA-type DFT method [79], in com-

parison to the BLA obtained by the parameterized force field (see Table 4.4). In addition,

there is a slight deviation in the description of the angular distribution. Fig. 4.16(b) shows

the angle distributions of CBP monomers obtained by MD and QM/ MM simulations,

respectively. MD simulation with modified force field generates fewer molecules with

angles smaller than 30° (larger than 150°) than DFTB/MM simulation, which indicates a

more planarity of CBP conformations obtained by DFTB than force field.
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Figure 4.16: (a) A comparison of the experimental absorption spectrum of CBP taken

from ref. 45 with the absorption spectra obtained using the structures from

QM/MM simulations and one condensed-phase MD-snapshot. (b) Central and

side dihedral angle distributions obtained by QM/MM (upper panel) and MD

(lower panel) simulations.

4.3.3.5 Effects of aggregation

It is well known that the aggregation of chromophores has a significant influence on

the absorption spectrum [80, 81, 82, 83]. Delocalization of excited states over two or

more molecules could lead to a further red-shift of adsorption spectrum. To examine the

aggregation effect on the absorption spectrum of CBP, we compute the nearest-neighbor

excitonic coupling, which is an important quantity to describe the extent of molecular

aggregation. For all 5000 nearest neighbours, those dimers which are doubly counted (28

dimers), are removed.

As shown in Fig. 4.17(a), the excitonic couplings exhibit a broad distribution with the

average value of 30 meV, which indicates a weak aggregation effect in amorphous CBP.

Moreover, all 4972 dimers are split into three categories with the excitonic couplings

J<30, 30<J<60 and J>60 meV, where each contains 4226, 682 and 64 dimers, respectively.

Afterwards, 25 excitation energies for each CBP monomer and 70 excitation energies for

each CBP dimer are computed, in each respective category.

The absorption spectra are shown in Fig. 4.17(b). The low energy part of the monomer

absorption spectra is very close to that of the dimer absorption spectra, for all coupling

strengths, i.e., there is no indication for a substantial delocalization of excited states. The

small couplings of J<100 meV is in the same range with the dynamical disorder, i.e., the

dynamical disorder enforces localization. This is indicated by the fact that the excitation

energies computed for monomers and dimers in every class are very similar. If a coupling

of the low energy states occurred, an additional red-shift would be expected. Nevertheless,

it is very interesting to see that a red-shift occurs which correlates with the coupling

strength, although this cannot be induced by electronic delocalization. The results can be

interpreted as follows: High excitonic couplings may indicate that dimers are stacked very

well. This stacking induces conformations more shifted towards planar conformations, as

shown in Fig. 4.17(c), and more planar conformations lead to a red-shift in the absorption

spectrum.
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Figure 4.17: (a) Nearest-neighbor excitonic coupling distributions. (b) Excitonic coupling

dependent absorption spectra of monomers (solid lines) and dimers (dashed

lines). (c) Central and side dihedral angle distributions.
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4.4 Conclusions

The absorption spectrum of CBP molecules is significantly altered in the amorphous phase

due to interactions among the monomers. While electrostatic interactions as well as

excitonic couplings turn out to be of minor importance, structural effects, in particular

torsion around the main dihedral angles play a major role. Steric interactions induce a

planarization of the molecules in the ensemble, which leads to an absorption red-shift of

about 0.3 eV w.r.t. a gas phase absorption spectrum.

Conformational sampling is a key to capture the static and dynamic disorder in the

system. Due to the packing in the amorphous phase, the individual monomers show

only restricted motions, however, relevant conformational changes appear also on the

nanosecond timescale, which requires efficient sampling techniques.

Standard force field parameters have to be taken with some care; we found that a

major reparametrization of dihedral potentials is required for a realistic model of the

amorphous structure. If these important degrees of freedom are modelled too soft or too

stiff, the molecular ensembles may be largely misrepresented, since certain parts of the

conformational space may be under- or oversampled. This, however, would show up in

the absorption spectrum, since excitation energies are very sensitive to these degrees of

freedom.

Our simulations could successfully reproduce the experimental absorption spectrum

which may indicate that our structural model is quite accurate. We can deduce this from

the computed spectrum, since the applied LC-DFTBmethod very accurately reproduces the

excitation energies of high-level quantum chemical methods as GW-BSE, CC2 or ADC(2).

Further, the ground state structures have been sampled with DFTB, which shows a very

good agreement for the molecular structures, particularly, for the BLA.

The structural model derived here will be used in future work to investigate charge

and exciton transfer processes in CBP, which will allow study of the processes behind the

degradation of this material.
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transfer for OSCs

5.1 Introduction

Electron transfer (ET), or the act of moving an electron from one center (donor) to another

one (acceptor), plays a crucial role in chemistry and electronics. To understand the

electronics functionality, it is essential to investigate the mechanism of ET. The following

scheme shows a typical electron transfer process.

𝐷 +𝐴 𝐸𝑇−−→ 𝐷+ +𝐴−
(5.1)

In the ET reaction, to form the resonant state, donor (D) and acceptor (A) require

the reorganization energy (𝜆) which is defined as the energy required to reorganize the

structure from initial to final coordinates, without making the charge transfer. This energy

arises from structural differences between the equilibrium configurations of the reactant

and product states. At resonance or transition states of electron transfer reaction, the

electron propagates from D to A (Fig. 5.1) [84, 85].

Figure 5.1: Donor and acceptor potential surfaces. ET takes place when D and A are at

resonance conformation.

The nuclear motion not only brings D and A into electronic resonance using reorga-

nization, but also causes donor-acceptor (DA) electronic interactions to fluctuate. Most

molecular structures are dynamic and have a wide range of local and global conformations
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at room temperature. Since DA electronic interactions are sensitive to conformational

changes, it is expected that the structural fluctuations have a large influence on room

temperature DA electronic couplings. When the structural fluctuations influence the DA

electronic coupling and occur on faster time scales, the failure of Franck–Condon approxi-

mations is not surprising. Therefore, to assess the impact of the aforementioned parts on

the observed rate, it is not adequate to only compute 𝑇𝐷𝐴 using a static method because it

is also the time scale of coupling fluctuations which determines the observed rate. There

are several important questions associated with structural fluctuations, averaging and ET

rates:

• Is the fluctuation of the coupling (dynamic disorder) important in ET?

• How do fluctuation of the coupling affect the ET rate?

• Which molecular modes dominate the dynamics disorder?

Early theoretical analysis indicates that variation in the electronic coupling caused

by nuclear motion can affect ET rates due to failure of the Born-Oppenheimer [86] and

Franck-Condon [87, 88] approximations. These nuclear motions can cause the fluctuations

in 𝑇𝐷𝐴, influencing on tunneling pathways [89, 90, 91, 92, 93, 94]. More recently, other

studies investigate the ET kinetics in systems with fluctuating donor–acceptor 𝑇𝐷𝐴 [95,

96]. To our knowledge, recent theoretical studies explore the dynamical effects on nona-

diabatic ET reactions only for biological system. In this thesis, we extend the previous

theoretical studies in several important organic semiconductors (OSCs). Dynamical issues

in nonadiabatic ET in semiconductor materials are the focus of this work.

In organic solids, where molecules are weakly bounded by van der Waals interactions,

the electronic coupling between D and A is weak. Thus, the ET rate can be expressed

within the framework of perturbation theory in terms of Fermi’s golden rule [97]. This

approach provides the basis for the study of nonadiabatic ET reaction; the product of the

square of 𝑇𝐷𝐴, as expected from perturbation theory and the probability of the D and A

forming a resonant state [98, 99, 100].

𝑘𝐸𝑇 =
2𝜋

ℏ
|𝑇𝐷𝐴 |2𝜌𝐹𝐶 (5.2)

where 𝑇𝐷𝐴 is the donor-acceptor (DA) electronic coupling interaction and 𝜌𝐹𝐶 is the

thermally weighted Franck–Condon density between initial and final vibronic levels.

𝑘𝐸𝑇 in Eq. 5.3 is the Fourier transform of the Franck-Condon correlation function

𝐶𝐹𝐶 (𝑡) and the electronic coupling correlation function 𝐶𝑇𝐷𝐴
(𝑡) product. A big advantage

of the time-dependent view is that it is very well suited for the description of decay

processes [101, 102]. Thus, the decay times of 𝐶𝐹𝐶 (𝑡) and 𝐶𝑇𝐷𝐴
(𝑡) can be associated with

structural fluctuations, by using molecular dynamics (MD) simulations. By derivation of

the semi-classical rate from the quantum formulation, the nonadiabatic ET rate is: [103]

𝑘𝐸𝑇 =
1

ℏ2

∫ +∞

−∞
d𝑡 𝑒𝑖 [𝑈

𝑚𝑖𝑛
𝐷

−𝑈𝑚𝑖𝑛
𝐴

]𝑡/ℏ 𝐶𝑇𝐷𝐴
(𝑡) 𝐶𝐹𝐶 (𝑡) (5.3)
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where 𝐶𝑇𝐷𝐴
(𝑡), the correlation function of DA coupling and 𝐶𝐹𝐶 (𝑡), the time-dependent

Franck-Condon factor, are given by:

𝐶𝑇𝐷𝐴
(𝑡) = ⟨𝑇𝐷𝐴 (𝑡)𝑇𝐷𝐴 (0)⟩ =

∑︁
𝑖𝐷

𝑃𝑖𝐴 ⟨𝑖𝐴 | 𝑒𝑖𝐻̂
𝑣𝑖
𝐴
𝑡/ℎ 𝑇𝐷𝐴 (0) 𝑒−𝑖𝐻̂

𝑣𝑖
𝐴
𝑡/ℎ 𝑇𝐷𝐴 (𝑡) |𝑖𝐴⟩ (5.4)

𝐶𝐹𝐶 (𝑡) = ⟨ 𝑒𝑖𝐻̂ 𝑣𝑖
𝐷
𝑡/ℏ 𝑒−𝑖𝐻̂

𝑣𝑖
𝐴
𝑡/ℏ ⟩𝐷 =

∑︁
𝑖𝐷

𝑃𝑖𝐷 ⟨𝑖𝐷 | 𝑒𝑖𝐻̂
𝑣𝑖
𝐷
𝑡/ℏ 𝑒−𝑖𝐻̂

𝑣𝑖
𝐴
𝑡/ℏ |𝑖𝐷⟩. (5.5)

𝐻̂𝐷=𝑈
𝑚𝑖𝑛
𝐷

|𝐷⟩⟨𝐷 |+ 𝐻̂ 𝑣𝑖
𝐷
and 𝐻̂𝐴=𝑈

𝑚𝑖𝑛
𝐴

|𝐴⟩⟨𝐴|+ 𝐻̂ 𝑣𝑖
𝐴
, where 𝐻̂ 𝑣𝑖

𝐷
and 𝐻̂ 𝑣𝑖

𝐷
are the vibrational

Hamiltonian for the donor and acceptor energy surfaces. 𝐶𝐹𝐶 (𝑡) is the classical thermal

average of initial nuclear wave function propagated with the electron in the 𝐷 state and

the same wave function propagated with the electron in the 𝐴 state (Fig. 2) [104, 105], i.e.,

𝐶𝐹𝐶 (𝑡) = ⟨⟨𝜓𝐷 (𝑡) |𝜓𝐴 (𝑡)⟩⟩. (5.6)

The time it takes for two nuclear wave functions to lose overlap when they are at

crossing region due to DA thermal fluctuations is often called the Franck-Condon time

𝜏𝐹𝐶 ≈ ℏ/𝜎Δ𝑈 = ℏ/
√
𝜆𝐾𝐵𝑇 where 𝜎Δ𝑈 = ℏ/

√
𝜆𝐾𝐵𝑇 is the rms fluctuation in Δ𝑈 = 𝑈𝐴 −𝑈𝐷 .

[96]. 𝜏𝐹𝐶 is ℏ over the energy gap fluctuations, which provides the duration of time the

gap is in resonance.

In the classical limit, the electronic coupling (𝑇𝐷𝐴) depends on the nuclear trajectories,

and the correlation function is approximated by:

𝐶𝑇𝐷𝐴
(𝑡) = ⟨𝑇𝐷𝐴 (𝑡)𝑇𝐷𝐴 (0)⟩ (5.7)

where 𝑇𝐷𝐴 (𝑡) is computed for successive nuclear conformations along classical trajecto-

ries, and ⟨...⟩ denote the classical thermal average. The decay time for 𝐶𝑇𝐷𝐴
(Eq. 5.7) is the

coherence time 𝜏𝑐𝑜ℎ , which contains information about how fast coherence is lost due to

the coupling fluctuation.

Figure 5.2 illustrates small versus large times limits. For small times compared with 𝜏𝑐𝑜ℎ ,

we obtain the maximum amplitude of 𝐶𝑇𝐷𝐴
(𝑡), the mean square value of coupling (⟨𝑇 2

𝐷𝐴
⟩)

which is independent of time, and for large times compared with 𝜏𝑐𝑜ℎ , 𝐶𝑇𝐷𝐴
(𝑡) approaches

⟨𝑇𝐷𝐴⟩2

.

𝐶𝑇𝐷𝐴
≈ 𝜎2

𝑇𝐷𝐴
𝑒−𝑡/𝜏𝑐𝑜ℎ + ⟨𝑇𝐷𝐴⟩2

(5.8)

To describe the effects of dynamical disorder on the electronic coupling (the magnitude

of𝑇𝐷𝐴 fluctuations), Balabin and Onuchic [90] introduced the coherence parameter, which

is characterized by

𝑅𝑐𝑜ℎ =
⟨𝑇𝐷𝐴⟩2

⟨𝑇 2

𝐷𝐴
⟩
=

⟨𝑇𝐷𝐴⟩2

⟨𝑇𝐷𝐴⟩2 + 𝜎2

𝑇𝐷𝐴

=
1

1 +
𝜎2

𝑇𝐷𝐴

⟨𝑇𝐷𝐴⟩2

(5.9)

According to Eq. 5.9, the coherence parameter falls in the range between zero and one.

In the limit where coupling fluctuations (𝜎2

𝑇𝐷𝐴
) are large in comparison with the average
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5 Effects of dynamic disorder on eletron transfer for OSCs

Figure 5.2: Decay time (𝜏𝑐𝑜ℎ) of 𝐶𝑇𝐷𝐴
(𝑡) (Reprinted from [24]).

coupling ⟨𝑇𝐷𝐴⟩, 𝑅𝑐𝑜ℎ is small (𝑅𝑐𝑜ℎ ≪ 1), whereas when the coupling fluctuations are small

compared with the average, 𝑅𝑐𝑜ℎ approaches 1.

Qualitative consideration of coupling fluctuations
In nonadiabatic rate constant expression, the Franck–Condon approximation may be-

come invalid in systems with fluctuating 𝑇𝐷𝐴 [106]. There have been several studies [94,

96, 107] characterizing nonadiabatic 𝐸𝑇 reactions in terms of distinct rate regimes (Fig. 5.3).

Regime I: 𝜏𝑐𝑜ℎ > 𝜏𝐹𝐶 (slow coupling fluctuation)

In this regime, the coupling does not have time to fluctuate while the 𝐷 and 𝐴 are

in resonance. Thus, 𝐷 and 𝐴 see a static coupling at the time of the crossing (i.e., the

Franck-Condon approximation is valid). Therefore, the ET rate is given by the Marcus–like

rate constant (𝑘𝐸𝑇 ∝ 𝜌𝐹𝐶 ), where one finds two limits (assuming timescales are longer than

the ET time (𝜏𝑐𝑜ℎ ≫ 1/𝑘𝐸𝑇 ), [108]):

a) 𝑅𝑐𝑜ℎ ≈ 1 (weak coupling fluctuations): In this situation, thermal fluctuations of the

structure do not change 𝑇𝐷𝐴 significantly. Then ⟨𝑇 2

𝐷𝐴
⟩ ≈ ⟨𝑇𝐷𝐴⟩2

and the rate becomes:

𝑘𝐸𝑇 ∝ ⟨𝑇𝐷𝐴⟩2𝜌𝐹𝐶 . (5.10)

b) 𝑅𝑐𝑜ℎ ≪ 1 (strong coupling fluctuations): In the opposite limit, it is expected that

nuclear dynamics will greatly affect 𝑇𝐷𝐴. Therefore, 𝐶𝑇𝐷𝐴
in Eq. 5.3 should be replaced by

⟨𝑇 2

𝐷𝐴
⟩. Equation 5.11 captures the effect of structural averaging of various conformations.

𝑘𝐸𝑇 ∝ ⟨𝑇 2

𝐷𝐴⟩𝜌𝐹𝐶 . (5.11)

Regime II : 𝜏𝑐𝑜ℎ < 𝜏𝐹𝐶 (fast coupling fluctuation)
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Here, the coupling has time to fluctuate while the𝐷 and𝐴 states are resonant. Therefore,

the Franck–Condon approximation is not valid in this regime as the coupling can not be

assumed to be independent of nuclear dynamics. Thus, the rate is more complex than it is

suggested by Eq. 5.3 because the decay times of 𝐶𝐹𝐶 (𝑡) and 𝐶𝑇𝐷𝐴
(𝑡) are similar [23, 109,

110]. Recently, there have been several studies to demonstrate the existence of different

kinetic regimes [23, 111, 112].

Figure 5.3: Workflow of nonadiabatic ET rate regimes.

In this work, we aim to study the aforementioned regimes that are valid for OSCs. In

addition we discuss how structure and importantly structural fluctuations influence ET

reaction rates.

5.2 Computational Details

Classical molecular dynamics (MD) simulations are performed to generate thermal fluc-

tuation of molecular structures, and then electronic coupling between donor (D) and

acceptor (A) is calculated by quantum chemical calculations for each snapshot of the MD

simulations.

Amorphous morphology of 1000 molecules is constructed by simulating physical vapor

deposition, based on a Monte-Carlo (MC) protocol. The GROMACS 5.0.4 package [113,

114] was used to set up the system and to perform classical MD simulations. The force

field parameters are obtained from the general AMBER force field (GAFF), which has been

showed to proivde good results and should describe correctly the conjugated molecules

governed by 𝜋 − 𝜋 stacking [59, 60]. The atomic charges are generated by the restrained

electrostatic potential fitting procedure (RESP) [61, 62] calculated at the HF/6-31g* [63,
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64] level using the Gaussian09 software [115]. The energy of the system is minimized

using steepest descent (SD), and from this geometry, a 2 ns equilibration process leads to

the starting trajectory points. The Nosé–Hoover thermostat [66] and Parrinello–Rahman
barostat [70] are employed to equilibrate temperature and pressure at 300 K and 1 bar,

respectively.

To compute charge transfer (CT) parameters (𝜖𝑖 and 𝑇𝐷𝐴), we pick up five random

molecules (𝐷𝑖 , 𝑖 = 1, ..., 5) with different environments and find their 10 nearest neighbours

(𝐴𝑖 𝑗 , 𝑗 = 1, ..., 10). Afterwards, we perform a combined quantum mechanics/molecular

mechanics (QM/MM) approach using GROMACS [116], which has become a standard

approach for these analyses [117] to generate trajectories. These trajectories with the

time step of 1 fs for 10 ps are used to evaluate both CT parameters, i.e., we obtain 10,000

data points for all quantities of interest to analyze. It is worth noting that the short-time

trajectories provide clearer picture of 𝑇𝐷𝐴 fluctuations since the decay of Franck–Condon

time is very rapid. Since our simulations require several millions of quantum chemical

calculations, ab initio or DFT-type methods are not reasonable. For this purpose, we

use the nonself-consistent (non-SCC) variant of density functional tight-binding method

(DFTB) because it provides the best compromise between accuracy and speed. Since 𝑇𝐷𝐴
enters with the square in the ET rate constant 5.2, the accuracy of 𝑘𝐸𝑇 strongly depends on

the value of the electronic coupling. The accuracy of the electronic couplings computed

by DFTB are demonstrated in [118, 119]. DFTB electronic couplings are scaled by a

factor of 1.54 for hole transport to reach the accuracy of the second-order couple cluster

(CC2) calculations [120]. The tight binding Hamiltonian, containing the CT parameters, is

computed for 10,000 conformations sampled at every 1 fs in the QM/MM simulations.

5.3 Results and Discussion

In the current study, to identify nonadiabatic 𝐸𝑇 rate regimes and compute ⟨𝑇𝐷𝐴⟩ and/or
⟨𝑇 2

𝐷𝐴
⟩, we apply the presented workflow (Fig. 5.3) for four organic semiconductors

(OSCs) shown in Figure 5.4, namely the hole-transport materials 4,4’-bis(carbazol-9-yl)-

2,2-biphenyl (CBP), N,N’-di(biphenyl-4-yl)-N,N’-diphenyl-[1,1’-biphenyl]-4,4’-diamine (p-

BPD), 4,4’,4"-tris(N-carbazolyl) triphenylamine (TCTA), and 5,10,15-triphenyl-5H-diindolo

[3,2-a:3’,2’-c] carbazole (TPDI).

In the following, we compute CT parameters for the above OSCs and afterwards 𝜏𝐹𝐶 , 𝜏𝑐𝑜ℎ
and 𝑅𝑐𝑜ℎ via Eqs (5.6), (5.8) and (5.9) to distinguish between ET rate regimes. In addition,

we analyze the impact of structural fluctuations on 𝜖𝑖 (ionization potential (IP)) and 𝑇𝐷𝐴.

Moreover, we discuss the critical timescales which play an important role in ET reactions

with fluctuating behaviour. Among aforementioned OSCs, TCTA is used as a typical

example since other materials have the similar pattern.

5.3.1 Site energy (𝜖𝑖)

As discussed above, we calculate the room-temperature Franck-Condon time (given by

𝜏𝐹𝐶 ≈ ℏ/𝜎Δ𝑈 = ℏ/
√
𝜆𝐾𝐵𝑇 ) of 4 amorphous OSCs shown in Fig. 5.4.

60



5.3 Results and Discussion
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Figure 5.4: Schematic structures of the hole-transport materials characterized in this work.

𝜏𝐹𝐶 𝐶𝐵𝑃
(𝜆 = 0.134 𝑒𝑉 ) = 8.06 fs,

𝜏𝐹𝐶 𝑇𝑃𝐷𝐼
(𝜆 = 0.145 𝑒𝑉 ) = 7.63 fs,

𝜏𝐹𝐶 𝑝−𝐵𝑃𝐷 (𝜆 = 0.173 𝑒𝑉 ) = 6.98 fs,

𝜏𝐹𝐶 𝑇𝐶𝑇𝐴
(𝜆 = 0.206 𝑒𝑉 ) = 6.40 fs.

(5.12)

The room-temperature 𝜏𝐹𝐶 are very short and this is due to small relaxation energy

(𝜆 ≈ 0.1 eV). As can be seen in Eq. (5.12), 𝜏𝐹𝐶 are quite close due to similar 𝜆 values. The

calculations above assume that site energy fluctuations are uncorrelated Gaussians. It has

been shown that structural fluctuations produce distributions of HOMO/LUMO energies

which are approximately Gaussian distributed ([121]).

Fig. 5.5a and 5.5b show the time series and distributions of site energy of 5 individual

molecules (D1-D5) of TCTA along a 10 ps QM/MM trajectories. It should be noted that a

similar pattern arises for the other OSCs studied, which are shown in Appendix. As can
be seen, site energies of TCTA are not static quantities and fluctuate significantly when

evaluated along the trajectory. Here, the first problem is that the distributions of IP are
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Table 5.1: Fitted single exponential values of 𝐶𝐹𝐶 (𝑡).
𝐴0 𝐴1 𝐴2 Correlation coefficient

TCTA

D1 0.597222 62.7551 3.39337e-10 0.542082

D2 0.829677 41.8224 7.27016e-11 0.623581

D3 0.47053 96.248 1.82471e-10 0.677689

D4 0.704801 41.0612 5.60474e-11 0.618929

D5 0.602502 88.2157 6.0544e-11 0.689138

quite different due to incorrect DFTB method for site energy calculations, we may have to

go to the ab initio method.

One of the interesting questions regarding the CT mechanism is that whether site

energies are correlated or fluctuate independently. However, quantitative simulations of

Elstner in DNA demonstrate that the site energy fluctuations are considerably correlated

[122, 121]. Thus, the correlation of site-energy fluctuations breaks the simple connections

between 𝜎Δ𝑈 , 𝜆, 𝐾𝐵𝑇 in 𝜎Δ𝑈 ≈
√
𝜆𝐾𝐵𝑇 . As a consequence, we ignore 𝜏𝐹𝐶 which is based on

the harmonic approximation and focus on thermal structural fluctuations. Therefore, on

the basis of the calculated time series of site energy, we evaluate the correlation function

𝐶𝐹𝐶 (𝑡) = ⟨⟨𝜓𝐷 (𝑡) |𝜓𝐴 (𝑡)⟩⟩ in the 10 ps QM/MM trajectory. The data in Fig. 5.5c show

the exponential decay of correlation function of site energies. By comparing the decay

time of 𝐶𝐹𝐶 (𝑡)to that of 𝐶𝑇𝐷𝐴
(𝑡), it can be determined how fast or slow the fluctuations

are. Therefore, to obtain the decay time, 𝐶𝐹𝐶 (𝑡) is fitted to a single exponential equation

𝑦 = 𝐴0 𝑒𝑥𝑝 (−𝑥/𝐴1)+𝐴2 (the red line). Table 6.1 shows the prefactors (𝐴0 and𝐴2), the decay

times (𝐴1) and the correlation coefficient values of the fitted single-exponential curve. The

decay time (𝜏𝐹𝐶 ) obtained from the fitting, is much longer than that of computed using

reorganization energy (𝜏𝐹𝐶 = ℏ/
√
𝜆𝐾𝐵𝑇 ), indicating that simple model may not be suitable

and more normal modes may be involved in 𝜖𝑖 fluctuations.

To study the relationship between the structural characteristics with the couplings

and site energy, and investigate which structural characteristics (e.g. dihedral angles)

determine the magnitudes and time scales of 𝑇𝐷𝐴 fluctuations, we perform the Fourier

transform (FT) of correlation function. In particular, we aim to assess the relationship

among frequency, 𝜖𝑖 and 𝑇𝐷𝐴 and dihedral angles. To obtain the frequency, the FT is used

for the conversion of time-domain signal into frequency-domain signal. Fig. 5.5d shows

the Fourier transform of site energies. The frequency of 1600 𝑐𝑚−1
(20 fs) is typical for the

double bond vibrations of the molecular skeleton [122]. However, the Fourier transform

analyses of TCTA indicate that the site energies oscillate with a frequency of 1800 𝑐𝑚−1
.

In OSCs, C-C stretching is the most dominant mode in the fluctuations of site energy.

However, we obtained the 𝜏𝐹𝐶 which is much longer than the period of C-C stretching.

5.3.2 Electronic coupling (𝑇𝐷𝐴)

We aim to explore the time dependence of 𝑇𝐷𝐴 arising from structural fluctuations by

choosing five molecules from QM/MM trajectories. In this regard, we pick up 5 random

molecules (𝐷𝑖 , 𝑖 = 1, ..., 5) with different environments from the snapshots along QM/MM
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(a) Site energies. (b) Distribution of site energies.

(c) 𝐶𝐹𝐶 (𝑡) = ⟨⟨𝜓𝐷 (𝑡) |𝜓𝐴 (𝑡)⟩⟩. (d) FT of site energies.

Figure 5.5: a) Site energies and b) Distribution of site energies. c) 𝐶𝐹𝐶 (𝑡) =

⟨⟨𝜓𝐷 (𝑡) |𝜓𝐴 (𝑡)⟩⟩ for five individual molecules (D1-D5) of TCTA. Fitted sin-

gle exponential function are plotted with a red line. d) FT of site energies.
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(a) 𝑇𝐷𝐴 (b) Distribution of 𝑇𝐷𝐴

(c) 𝐶𝑇𝐷𝐴 (d) Fitting of A1

Figure 5.6: a) Time series of 𝑇𝐷𝐴 of molecule D1 of TCTA with 10 neighbours (A1-A10).

The value of 𝑇𝐷𝐴 is computed using the conformation at every 1 fs for 10 ps. b)

Distribution of𝑇𝐷𝐴. c)𝐶𝑇𝐷𝐴
. d) The black curve represents𝐶𝑇𝐷𝐴

of A1 calculated

using the simulation data of 𝑇𝐷𝐴. The red line obtained by the fit to the black

line with use of a function made of single exponentials.

trajectories and find their 10 nearest neighbours (𝐴𝑖 𝑗 , 𝑗 = 1, ..., 10). The calculation of

coupling (𝑇𝐷𝐴) is based on the same sampling procedures using QM/MM simulations, as

discussed earlier. Fig. 5.6a shows the time series of electronic coupling of D1 to D5 for

TCTA with their 10 nearest neighbours. It has to be noted that, these simulations exhibit a

similar pattern for all four OSCs. Amorphous OSCs, which are highly disordered, have

small 𝑇𝐷𝐴. However, the electronic couplings exhibit large fluctuations. From a practical

point of view, the distributions of 𝑇𝐷𝐴 are almost described by the Gaussian distribution

function (Fig. 5.6b). According to this property, 𝑇𝐷𝐴 (𝑡) should be expressed as a sum of

many independently fluctuating elements.

In the following, coherence time (𝜏𝑐𝑜ℎ) and coherence parameter (𝑅𝑐𝑜ℎ) are computed to

investigate the time scale and the amplitude of fluctuating behavior which may affect the

observed ET rate constant. To obtain the fluctuations time scale, 𝑇𝐷𝐴 fluctuations can be

properly characterized by the correlation function of coupling ⟨𝑇𝐷𝐴 (𝑡)𝑇𝐷𝐴 (0)⟩, plotted
in Fig. 5.6c, 5.6d for TCTA. In the early time region, 𝐶𝑇𝐷𝐴

(𝑡) decays by an exponentially
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Table 5.2: Fitted parameters for 𝐶𝑇𝐷𝐴
using 𝑦 = 𝐴0 ∗ 𝑒𝑥𝑝 (−𝑥/𝐴1) +𝐴2.

𝐴0 𝐴1 𝐴2 Correlation coefficient

TCTA D1

A1 0.911871 55.6189 1.87199e-10 0.695020

A2 0.914399 89.8389 3.13798e-11 0.774433

A3 0.815112 89.0426 3.459e-10 0.711222

A4 0.956006 187.095 0.717928 0.717928

A5 0.779408 139.676 1.28214e-10 0.833046

A6 0.60339 175.04 2.35593e-11 0.889891

A7 0.884397 157.034 6.52334e-11 0.765733

A8 0.9998 191.725 1.16039e-11 0.813569

A9 0.9988 94.8061 3.97463e-11 0.771426

A10 0.999999 94.8061 4.93932e-07 0.777399

decreasing function, which indicates that the fluctuating of 𝑇𝐷𝐴 (𝑡) is based on the nuclear

motions. This result indicates that the coherence of nuclear motions is destroyed within

≈ 127 fs. Table. 5.2 provides information on the time scale of the coupling fluctuation

(lifetime of 𝑇𝐷𝐴 (𝑡)), based on the fitted single-exponential of 𝐶𝑇𝐷𝐴
using 10,000 snapshots.

𝜏𝑐𝑜ℎ values are similar for all materials in this study and is in the same order of magnitude

of 𝜏𝐹𝐶 (𝜏𝑐𝑜ℎ is a few tens to 100 fs). This characterization of𝑇𝐷𝐴 (𝑡) is useful for determining

the mechanism of the ET.

According to the aforementioned workflow 5.3, to determine the ET rate regime, firstly

we should have a slow variation timescale in the couplings which means that coherence

time much larger than FC time, and this is true for all of this system because the reorganiza-

tion energy is about 0.1 eV. Table. 6.1 shows that the lifetimes of site energy is shorter than

the𝑇𝐷𝐴 lifetimes in Table. 5.2, indicating that we deal with the slow𝑇𝐷𝐴 fluctuation regime.

Secondly is the fluctuation strength which is defined by 𝑅𝑐𝑜ℎ 5.9. To measure the magnitude

of 𝑇𝐷𝐴 fluctuation and consequently investigate how to modify the electronic part in the

Marcus theory (⟨𝑇𝐷𝐴⟩ and/or ⟨𝑇 2

𝐷𝐴
⟩), we compute 𝑅𝑐𝑜ℎ which is the ratio between the rms

of coupling and the square mean of the coupling ⟨𝑇𝐷𝐴⟩2/⟨𝑇 2

𝐷𝐴
⟩ (Fig. 5.2). This parameter is

close to 1 when Frank-Condon approximation is valid and approaches 0 when the coupling

strongly depends on the molecular structures. The calculated values of ⟨𝑇𝐷𝐴⟩2

, ⟨𝑇 2

𝐷𝐴
⟩ and

𝑅𝑐𝑜ℎ for TCTA are shown in Table. 5.6. As can be seen, the coherence parameters vary

from 𝑅𝑐𝑜ℎ ≤ 0.64 for A1 (strong𝑇𝐷𝐴 fluctuations) to 0.28 for A10. Furthermore, the value of

𝑅𝑐𝑜ℎ in Table. 5.6 indicates that the magnitude of T fluctuations are mostly large. Therefore,

the ET rates in the presence of strong fluctuating couplings, can be described by Eq. (5.11)

where 𝐶𝑇𝐷𝐴
in Eq. (5.3) should be replaced by ⟨𝑇 2

𝐷𝐴
⟩.

Moreover, we compute the instantaneous Marcus rate. As depicted in Fig. 5.7, 𝑇𝐷𝐴
modulation by molecular dynamics can alter the instantaneous Marcus rates. Particularly,

structural fluctuations may enhance or reduce the𝑇𝐷𝐴 and consequently alter the observed

ET rate.
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Figure 5.7: Time series of instantaneous Marcus rate (𝑘𝐸𝑇 ) of an individual molecule D1 of

TCTA with 10 neighbours (A1-A10). The value of 𝑘𝐸𝑇 is computed using the

conformation at every 1 fs for 10 ps.

Table 5.3: ⟨𝑇𝐷𝐴⟩ (10
−3

eV),

√︃
⟨𝑇 2

𝐷𝐴
⟩ (10

−3
eV) and 𝑅𝑐𝑜ℎ

⟨𝑇𝐷𝐴⟩
√︃
⟨𝑇 2

𝐷𝐴
⟩ 𝑅𝑐𝑜ℎ

CBP D1

A1 60 65 0.84

A2 2.5 3.4 0.57

A3 0.10 0.14 0.52

A4

A5

A6

A7

A8

A9

A10

Table 5.4: ⟨𝑇𝐷𝐴⟩ (10
−3

eV),

√︃
⟨𝑇 2

𝐷𝐴
⟩ (10

−3
eV) and 𝑅𝑐𝑜ℎ

⟨𝑇𝐷𝐴⟩
√︃
⟨𝑇 2

𝐷𝐴
⟩ 𝑅𝑐𝑜ℎ

p-BPD D1

A1 3.0 4.5 0.43

A3 4.3 6.5 0.44

A4 2.4 3.3 0.52

A5

A6

A7

A8

A9

A10
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Table 5.5: ⟨𝑇𝐷𝐴⟩ (10
−3

eV),

√︃
⟨𝑇 2

𝐷𝐴
⟩ (10

−3
eV) and 𝑅𝑐𝑜ℎ

⟨𝑇𝐷𝐴⟩
√︃
⟨𝑇 2

𝐷𝐴
⟩ 𝑅𝑐𝑜ℎ

TCTA D1

A1 5.59 6.97 0.64

A2 0.45 0.73 0.38

A3 3.73 4.81 0.60

A4 0.28 0.42 0.45

A5 2.24 2.99 0.56

A6 0.35 0.54 0.42

A7 2.23 3.40 0.43

A8 1.21 1.82 0.44

A9 3.90 5.47 0.51

A10 0.0005 0.0009 0.28

Table 5.6: ⟨𝑇𝐷𝐴⟩ (10
−3

eV),

√︃
⟨𝑇 2

𝐷𝐴
⟩ (10

−3
eV) and 𝑅𝑐𝑜ℎ

⟨𝑇𝐷𝐴⟩
√︃
⟨𝑇 2

𝐷𝐴
⟩ 𝑅𝑐𝑜ℎ

TPDI D1

A1 17 21 0.65

A2 40 50 0.62

A3 4 6 0.54

A4

A5

A6

A7

A8

A9

A10
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5.4 Conclusion and outlook

In the current ongoing research project, we aim to study the influence of molecular

structure and dynamical disorders on the charge transfer process in amorphous organic

semiconductors. The sensitivity of the charge transfer process to structural fluctuations

is very well studied in biological systems and in this chapter, we study this effect in

organic semiconductors. To describe the dynamical effects, site energies and electronic

couplings are calculated along QM/MM trajectories. For four OSCs studied, we found

that all computed Franck–Condon decay time (𝜏𝐹𝐶 ) values are shorter than 𝜏𝑐𝑜ℎ , which

indicates that the charge relaxation is much faster than the charge transfer. Moreover,

we observed that the average of time scale of coupling fluctuations is ≈ 0.12 ps, which

indicates that coupling fluctuations are fast compared to ET time (𝜏𝑐𝑜ℎ < 1/𝑘𝐸𝑇 ) and slow

compared to site energy fluctuations (𝜏𝑐𝑜ℎ > 𝜏𝐹𝐶 ). This time scale is sufficiently slow to

confine ourselves to slow coupling fluctuation regime.

Moreover, to measure the amplitude of coupling fluctuation, we compute the coherence

parameter, defined as the ratio between ⟨𝑇𝐷𝐴⟩2
and ⟨𝑇 2

𝐷𝐴
⟩. The results show that the

coherence parameter is moderately small (≈ 0.5), which indicates that we may have to

include the RMS of the coupling in the calculation of rate constant, instead of the coupling

average.

The future step in this ongoing research is to investigate the decoherence behaviour by

studying the dependence of 𝜏𝑐𝑜ℎ on dihedral angle motion. In addition, which structural

characteristics determine the magnitudes and time scales of DA coupling fluctuations.
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6 Appendix

6.1 Site energy (𝜖𝑖)

(a) CBP. (b) p-BPD.

(c) TCTA. (d) TPDI.

Figure 6.1: Time series of site energy for five molecules (D1-D5) of CBP, p-BPD, TCTA and

TPDI.
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6 Appendix

(a) CBP. (b) p-BPD.

(c) TCTA.

Figure 6.2: 𝐶𝐹𝐶 (𝑡) = ⟨⟨𝜓𝐷 (𝑡) |𝜓𝐴 (𝑡)⟩⟩ for five individual molecules (D1-D5) of CBP, p-BPD

and TCTA. Single exponential fitting function plotted with a red line.
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6.1 Site energy (𝜖𝑖)

Table 6.1: Single exponential fitting values for site energy fluctuations.

𝐴0 𝐴1 𝐴2 Correlation coefficient

CBP

D1 0.550973 71.6265 5.43543e-06 0.473797

D2 0.590564 73.42 1.98853e-09 0.454203

D3 0.459157 175.34 4.65848e-07 0.652551

D4 0.454901 117.094 2.01818e-08 0.603395

D5 0.43841 164.415 2.62047e-10 0.557034

p-BPD

D1 0.493513 184.814 2.78567e-08 0.711653

D2 0.600389 65.123 4.88144e-10 0.63341

D3 0.47121 148.034 1.22191e-10 0.673293

D4 0.472653 177.893 2.94448e-11 0.727724

D5 0.693888 43.5723 4.5524e-10 0.655280

TCTA

D1 0.597222 62.7551 3.39337e-10 0.542082

D2 0.829677 41.8224 7.27016e-11 0.623581

D3 0.47053 296.248 1.82471e-10 0.677689

D4 0.704801 41.0612 5.60474e-11 0.618929

D5 0.602502 88.2157 6.0544e-11 0.689138

(a) CBP (b) p-BPD

(c) TCTA

Figure 6.3: FT of site energies of CBP, p-BPD and TCTA.
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6 Appendix

6.2 Electronic coupling (𝑇𝐷𝐴)

(a) CBP-D1. (b) CBP-D2.

(c) CBP-D3. (d) CBP-D4.

(e) CBP-D5.

Figure 6.4: Time series of electronic coupling of 5 individual molecules (D1-D5) of CBP
with 10 neighbours (A1-A10). The value of 𝑇𝐷𝐴 is computed using the confor-

mation at every 1 fs for 10 ps.
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6.2 Electronic coupling (𝑇𝐷𝐴)

(f) p-BPD-D1. (g) p-BPD-D2.

(h) p-BPD-D3. (i) p-BPD-D4.

(j) p-BPD-D5.

Figure 6.4: Time series of electronic coupling of 5 individual molecules (D1-D5) of p-
BPD with 10 neighbours (A1-A10). The value of 𝑇𝐷𝐴 is computed using the

conformation at every 1 fs for 10 ps.
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6 Appendix

(k) TCTA-D1. (l) TCTA-D2.

(m) TCTA-D3. (n) TCTA-D4.

(o) TCTA-D5.

Figure 6.4: Time series of electronic coupling of 5 individual molecules (D1-D5) of TCTA
with 10 neighbours (A1-A10). The value of 𝑇𝐷𝐴 is computed using the confor-

mation at every 1 fs for 10 ps.
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6.2 Electronic coupling (𝑇𝐷𝐴)

(p) TPDI-D1. (q) TPDI-D2.

(r) TPDI-D3. (s) TPDI-D4.

(t) TPDI-D5.

Figure 6.4: Time series of electronic coupling of 5 individual molecules (D1-D5) of TPDI
with 10 neighbours (A1-A10). The value of 𝑇𝐷𝐴 is computed using the confor-

mation at every 1 fs for 10 ps.
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6 Appendix

(a) D1. (b) D2.

(c) D3. (d) D4.

(e) D5.

Figure 6.5: 𝐶𝑇𝐷𝐴
(𝑡) = ⟨𝑇𝐷𝐴 (𝑡)𝑇𝐷𝐴 (0)⟩ for 5 CBP molecules (D1-D5). Single exponential

fitting function plotted with a red line.
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6.2 Electronic coupling (𝑇𝐷𝐴)

(a) D1. (b) D2.

(c) D3. (d) D4.

(e) D5.

Figure 6.6: 𝐶𝑇𝐷𝐴
(𝑡) = ⟨𝑇𝐷𝐴 (𝑡)𝑇𝐷𝐴 (0)⟩ for 5 p-BPD molecules (D1-D5). Single exponential

fitting function plotted with a red line.
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Table 6.2: Fitting parameters for ⟨𝑇𝐷𝐴 (𝑡)𝑇𝐷𝐴 (0)⟩ using 𝑦 = 𝐴0 ∗ 𝑒𝑥𝑝 (−𝑥/𝐴1) +𝐴2 -CBP

𝐴0 𝐴1 𝐴2 Correlation coefficient

CBP D1

A1 0.999238 77.1032 3.54788e-07 0.821288

A2 0.999192 64.4403 1.53012e-08 0.652003

A3 0.881951 83.7292 2.47722e-10 0.770008

A4 0.999694 64.3133 7.50793e-11 0.753685

A5 0.755422 33.554 5.70966e-08 0.699050

A6 0.716209 72.5366 5.73534e-11 0.755159

A7 0.595452 139.557 1.27178e-09 0.769938

A8 0.909583 117.135 1.67013e-10 0.764032

A9 0.482154 137.959 1.72087e-09 0.709445

A10 0.994902 86.5269 3.33347e-09 0.765309

Table 6.3: Fitting parameters for ⟨𝑇𝐷𝐴 (𝑡)𝑇𝐷𝐴 (0)⟩ using 𝑦 = 𝐴0 ∗ 𝑒𝑥𝑝 (−𝑥/𝐴1) +𝐴2 -p-BPD

𝐴0 𝐴1 𝐴2 Correlation coefficient

p-BPD D1

A1 0.782436 93.2935 3.73994e-08 0.796140

A2 0.832813 101.413 2.82906e-11 0.693034

A3 0.938295 27.6096 4.41127e-06 0.761652

A4 0.517111 361.884 1.91929e-10 0.845337

A5 0.892454 133.333 8.90922e-11 0.713302

A6 0.850954 93.8256 3.54007e-11 0.635665

A7 0.629614 68.3761 1.29324e-10 0.706607

A8 0.845197 155.672 2.28237e-11 0.771248

A9 0.805421 73.8767 3.10905e-10 0.774406

A10 0.577905 166.991 3.39247e-11 0.764205

Table 6.4: Fitting parameters for ⟨𝑇𝐷𝐴 (𝑡)𝑇𝐷𝐴 (0)⟩ using 𝑦 = 𝐴0 ∗ 𝑒𝑥𝑝 (−𝑥/𝐴1) +𝐴2 -TCTA

𝐴0 𝐴1 𝐴2 Correlation coefficient

TCTA

D1

A1 0.911871 55.6189 1.87199e-10 0.695020

A2 0.914399 89.8389 3.13798e-11 0.774433

A3 0.815112 89.0426 3.459e-10 0.711222

A4 0.956006 187.095 0.717928 0.717928

A5 0.779408 139.676 1.28214e-10 0.833046

A6 0.60339 1075.04 2.35593e-11 0.889891

A7 0.884397 157.034 6.52334e-11 0.765733

A8 0.9998 191.725 1.16039e-11 0.813569

A9 0.9988 94.8061 3.97463e-11 0.771426

A10 0.999999 94.8061 4.93932e-07 0.777399
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6.3 Instantaneous Marcus rate

(a) CBP-D1. (b) CBP-D2.

(c) CBP-D3. (d) CBP-D4.

(e) CBP-D5.

Figure 6.7: Time series of instantaneous Marcus rate of 5 individual molecules (D1-D5)

of CBP with 10 neighbours (A1-A10). The value of 𝑘𝐸𝑇 is computed using the

conformation at every 1 fs for 10 ps.
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(f) p-BPD-D1. (g) p-BPD-D2.

(h) p-BPD-D3. (i) p-BPD-D4.

(j) p-BPD-D5.

Figure 6.7: Time series of instantaneous Marcus rate of 5 individual molecules (D1-D5) of

p-BPD with 10 neighbours (A1-A10). The value of 𝑘𝐸𝑇 is computed using the

conformation at every 1 fs for 10 ps.
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(k) TCTA-D1. (l) TCTA-D2.

(m) TCTA-D3. (n) TCTA-D4.

(o) TCTA-D5.

Figure 6.7: Time series of instantaneous Marcus rate of 5 individual molecules (D1-D5) of

TCTA with 10 neighbours (A1-A10). The value of 𝑘𝐸𝑇 is computed using the

conformation at every 1 fs for 10 ps.
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(p) TPDI-D1. (q) TPDI-D2.

(r) TPDI-D3. (s) TPDI-D4.

(t) TPDI-D5.

Figure 6.7: Time series of instantaneous Marcus rate of 5 individual molecules (D1-D5) of

TPDI with 10 neighbours (A1-A10). The value of 𝑘𝐸𝑇 is computed using the

conformation at every 1 fs for 10 ps.
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