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ABSTRACT

Forecasting convective rainfall in the tropics is a major challenge for numerical weather prediction. The use

of convection-permitting (CP) forecast models in the tropics has lagged behind the midlatitudes, despite the

great potential of such models in this region. In the scientific literature, there is very little evaluation of

CP models in the tropics, especially over an extended time period. This paper evaluates the prediction of

convective storms for a period of 2 years in the Met Office operational CP model over East Africa and the

global operational forecast model. A novel localized form of the fractions skill score is introduced, which

shows variation in model skill across the spatial domain. Overall, the CP model and the global model both

outperform a 24-h persistence forecast. The CPmodel shows greater skill than the global model, in particular

on subdaily time scales and for storms over land. Forecasts over Lake Victoria are also improved in the

CP model, with an increase in hit rate of up to 20%. Contrary to studies in the midlatitudes, the skill of both

models shows a large dependence on the time of day and comparatively little dependence on the forecast lead

time within a 48-h forecast. Although these results provide more motivation for forecasters to use the

CP model to produce subdaily forecasts with increased detail, there is a clear need for more in situ obser-

vations for data assimilation into the models and for verification. A move toward ensemble forecasting could

have further benefits.

1. Introduction

Forecasting tropical convection remains a huge chal-

lenge for numerical weather prediction (NWP). In par-

ticular, there is an urgent need to improve forecasting

of high-impact weather, such as heavy convective pre-

cipitation, in sub-Saharan Africa. Because of their coarse

resolution, traditional globalmodels use parameterization

schemes to represent convection. Parameterized models

are not designed to produce realistic storm structures; they

almost ubiquitously produce too much light rain and are

unable to capture the highest-intensity events (Sun et al.

2006; Dai 2006; Stephens et al. 2010). Such models are

unable to simulate the diurnal cycle; the convective

maximum tends to occur at midday, rather than late af-

ternoon, as observed (Yang and Slingo 2001; Bechtold

et al. 2004). Marsham et al. (2013) and Birch et al. (2014b)

showed that an incorrect diurnal cycle may introduce

errors into the synoptic-scale flow. In addition, flows over

complex topography and those within deep convective

storms cannot be well represented at coarse resolutions

(Clark et al. 2016).

Low skill in tropical precipitation prediction means

that forecasters often use other information from

models, such as the synoptic-scale circulation and stability

measures, to determine favorable conditions for deep

convection. Consequently, predictions are heavily reliant

on forecasters’ experience and knowledge of the model

and meteorology of the region (Lafore et al. 2017).
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Convection-permitting (CP) models provide a step

change in the representation of convective storms be-

cause they explicitly represent the storms themselves

(Clark et al. 2016). CP models produce more realistic-

looking precipitation fields and have an improved di-

urnal cycle, with the peak in convection shifted further

toward the observed late-afternoon maximum (Lean

et al. 2008; Done et al. 2004; Weisman et al. 2008;

Weusthoff et al. 2010; Birch et al. 2014b; Prein et al.

2015). Marsham et al. (2013) and Garcia-Carreras et al.

(2013) have shown that the finer horizontal grid spacing

of CP models allows the simulation of cold pools, which

can affect synoptic-scale fluxes in the models and trigger

new convection. CP models also better capture the or-

ganization and propagation of convection (Weisman

et al. 2008; White et al. 2018). The benefits of using

CP models are even being utilized for future climate

projections to providemore details on regional and local

scales (Prein et al. 2015; Stratton et al. 2018).

However, increased realism of rainfall may not

translate to increased forecast skill. CP models can

produce too much rain, in particular at high intensities,

while the proportion of low-intensity events is too small

(Lean et al. 2008; Kendon et al. 2012; Marsham et al.

2013; Done et al. 2004). The horizontal grid spacing

remains on a scale larger than most convective updrafts,

meaning that cloud structures are still underresolved,

causing errors in the multiscale interactions, upscale

growth, and timing of storms (Clark et al. 2016; Lean

et al. 2008). Lean et al. (2008) showed that CP models

often perform poorly at the start of runs, since it takes

time for the high-resolution detail to ‘‘spin up’’ from the

initial fields provided by the driving model.

High-resolution simulations of mesoscale convective

systems (MCSs) in various regions of the world have

shown that the accuracy of the initial conditions (ICs)

and boundary conditions provided by the driving model

are key factors responsible for the correct prediction of

initial development of a storm (Birch et al. 2013;

Guichard et al. 2010; Melhauser and Zhang 2012;

Schumacher et al. 2013; Luo and Chen 2015; Vié et al.

2011). Sensitivity to ICs is a particular concern in much

of the tropics because of a lack of routine observations

for data assimilation into the driving model. These

studies also showed that the predictability of a storm

may depend on the type of synoptic flow. High-

resolution CP models are fundamentally limited by the

fact that predictability times are reduced on cloud-

resolving scales, compared to synoptic scales. Small-

scale errors may grow more quickly and influence larger

scales (Lorenz 1969; Hohenegger and Schär 2007).
In recent years, as computing power has increased, CP

models have becomemore feasible and more commonly

used in operational weather forecasts. They have been

used at a country level by many national meteorological

services for over a decade. The Met Office uses a CP

version of the Met Office Unified Model (MetUM) over

the United Kingdom and some tropical domains (Tang

et al. 2013); the U.S. Weather Research and Forecasting

(WRF) Model is CP and used by multiple agencies

worldwide (Michalakes et al. 2001), as is the CP version

of COSMO, created in Germany (Baldauf et al. 2011).

The Application of Research to Operations at Meso-

scale (AROME)model developed in France (Seity et al.

2011) and the Japan Meteorological Agency’s Non-

hydrostatic Mesoscale Model over Japan (Saito et al.

2006) are also CP models. Many of these models are

configured to run operationally beyond their country of

origin. Although many CP forecast models are used

across the tropics, published verification is limited, es-

pecially for an extended period.

Equatorial East Africa (Fig. 1) is a region that re-

ceives the majority of its rainfall via deep convective

storms. The prediction of severe convection is acutely

important in this region, which is at high risk of severe

FIG. 1. A map showing the orography over the domain spanned by

the current operational Met Office CP model in East Africa. Orog-

raphy data are from the Global Self-Consistent, Hierarchical, High-

ResolutionGeography (GSHHG) database (Wessel and Smith 1996).

The dashed box encloses the LV subdomain used in the analysis.
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flooding and drought. It is particularly important to

provide accurate forecasts for the Lake Victoria (LV)

basin. This densely populated region supports around

35million people, including 200000 fishermen. Nocturnal

storms over Lake Victoria produce intense precipitation

and high winds, which capsize boats. There are an esti-

mated 5000 deaths on the lake each year, with many at-

tributed to severe weather (World Bank DGF 2011).

Forecasting convection in this environment with orogra-

phy and land–lake circulations is a challenge. The localized

nature of convection and a lack of observations, especially

upper air, to assimilate into forecasts add to the difficulty.

In 2011, the Met Office began running an operational

CP forecast model over Lake Victoria, with a horizontal

grid spacing of 4.4km, funded through the Met Office

Voluntary Cooperation Programme (VCP) and intended

to aid the forecast of severe weather events, in particular

over the Lake Victoria basin (Chamberlain et al. 2014).

The domain was extended to cover a larger region in

February 2014, which currently remains operational.

Output from the model is disseminated to operational

meteorologists inEastAfrica (principally, Kenya,Uganda,

Tanzania, Rwanda, and Burundi). Model output is avail-

able to view on the VCP Africa Web Viewer, a password-

controlled site open to African forecasters, which also

shows output from the global model and recent satellite

imagery and arrival time difference (ATD) lightning.

Some verification and comparison with the global

MetUM was performed on the smaller domain by

Chamberlain et al. (2014) for spring 2012. Overall,

and in agreement with studies of other CP models, both

the global and the CP models produced too much light

rainfall, especially the global model. The CP model pre-

dicted too many intense rainfall events, whereas the

global model was unable to produce any of the highest-

intensity rainfall rates observed. Objective analysis showed

the CP model to have more skill in predicting when a

storm would occur, compared to the global model. How-

ever, it was also shown to overpredict severe events,

leading to more ‘‘false alarms.’’

Away from NWP, Thiery et al. (2017) developed a

prototype of a statistical storm predictor [Lake Victoria

Intense Early Warning System (VIEWS)] that uses

satellite observations to forecast nocturnal storms over

the lake. The model is based on the strong correlation

between intense storms over land during the afternoon

and intense nocturnal storms over Lake Victoria found

by Thiery et al. (2016). While this prototype can achieve

high hit rates and low false alarm rates, it has a lead time

of only a few hours. NWP models are vital for providing

much earlier warnings, with statistical model and now-

casting techniques playing an important role in warning

confidence and refinement closer to the event.

This paper investigates whether a CPmodel over East

Africa provides additional skill for the forecasting of

severe tropical rainfall, compared to a global model. The

rainfall field in the model was chosen for verification

following meetings with forecasters from East Africa.

While forecasters use other model fields, such as surface

pressure, relative humidity, and winds, to ensure that the

model rainfall field is realistic, the rainfall field is the main

tool used to produce forecasts. The most commonly used

output is 24-h rainfall accumulations, despite the avail-

ability of accumulations at 3-hourly intervals. A particu-

lar aim of the paper is to determine whether the CP

model provides any added value on subdaily time scales

or at specific locations. The effect of forecast lead time

and time of day is also investigated. Much of the analysis

is performed using the fractions skill score (FSS) pro-

posed by Roberts and Lean (2008), along with an exam-

ination of model biases. The analysis builds on that of

Chamberlain et al. (2014) by performing more detailed

verification on a larger model domain over a period of

2 years. The paper emphasizes the implications of the

findings on the operational aspects of the model, in-

cluding how it is run and how it may best be used by

forecasters.

The model configurations, observational data, and veri-

fication methods are introduced in section 2. Section 3

presents the characteristics of precipitation and its diurnal

cycle in the models, alongside verification of the model

skill at different spatial scales and at different times of

day. The implications of these results are discussed and

conclusions drawn in section 4.

2. Methods

This study consists of a comparison of the forecast

skill of the MetUM CP model and the MetUM global

model for rainfall over EastAfrica, alongside an analysis

of the performance of the models at different forecast

lead times and different times of day. The period of

study is the 2 years between 18 July 2014 and 17 July

2016. Analysis was performed over the whole model

domain, as well as a subdomain centered on LV, shown

within the dashed box in Fig. 1 and chosen to include all

countries using the CP model.

a. Models

Both the CP model over East Africa and the global

model are subsets of the MetUM and were used oper-

ationally in 2017. The start date of the analysis period

marks the upgrade of the global model to GA6.1 and the

EvenNewerDynamics for General atmospheric modeling

of the environment (ENDGame) dynamical core (Wood

et al. 2014), with a reduced horizontal grid spacing of
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approximately 17km in the meridional direction by 25km

in the zonal direction (in the tropics). The model is ini-

tialized every 6h, at 0000, 0600, 1200, and 1800 UTC,

although only the 0000 and 1200 UTC initializations are

considered to allow direct comparison with the CP model.

Convection is parameterized in the global model using the

mass-flux scheme introduced by Gregory and Rowntree

(1990) and with subsequent enhancements.

The CP model has a horizontal grid spacing of 4.4 km

in both directions and spans the domain from 20.58S to

17.58N and from 21.58 to 528E (Fig. 1). The model grid

consists of 762 3 950 grid points and has 70 vertical

levels up to a lid of 40 km. The model is run with a time

step of 100 s. Convection is treated explicitly, although

the model also uses a convective available potential

energy (CAPE)-dependent closure scheme (Roberts

2003) used by the Met Office in all operational models

with this configuration. This scheme adjusts the time

scale over which instability is removed in accordance

with the amount of CAPE that is present in order to

restrict the parameterized mass flux. This allows explicit

convection while trying to parameterize the effects of

smaller clouds that the CP model cannot resolve. The

parameters within the microphysics and subgrid mixing

have not been ‘‘tuned’’ for the tropics, but are the same

as those used in the 4-km U.K. (UK4) model (Eagle

et al. 2015). The New Dynamics (ND) dynamical core

(Davies et al. 2005) was replaced with ENDGame

[along with some other physics changes detailed in

Eagle et al. (2015)] approximately halfway through the

study period. Eagle et al. (2015) ran the model in both

configurations and found that they produced very similar

results, suggesting that themodel may be considered to have

similar behavior throughout the whole analysis period.

The CP model is initialized twice per day, at 2100 and

0900 UTC, using 3-h forecasts from the global model

(i.e., ICs are taken from 3h into the global model 1800

and 0600 UTC runs, respectively). The models are al-

lowed 3h for spin up until the first diagnostics are out-

putted at 0000 and 1200 UTC, respectively. Forecasts

are outputted up to a lead time of 48 h from the first

diagnostics (Chamberlain et al. 2014). The two initiali-

zations are referred to as the 0000 and 1200 UTC ini-

tializations since these are the times of the first available

forecasts. The model is forced by lateral boundary

conditions from the global model, updated every 3 h.

Smoothing is applied at the edges to remove disconti-

nuities between the models.

In both models, lake surface temperatures (LSTs) are

prescribed as the foundation water surface temperature

(temperature below the diurnal warm layer) taken from

daily Operational Sea Surface Temperature and Sea Ice

Analysis (OSTIA), available on a 1/208 (;6 km) grid

(Fiedler et al. 2014). Observations are obtained from

in situ data received via the Global Telecommunication

System (GTS; although no in situ observations existed

over Lake Victoria during this study) and satellite sea

surface temperature (SST) data from the Group for

High-Resolution SST (GHRSST). Only overnight ob-

servations and daytime observations for wind speeds

greater than 6ms21 are used, such that the effect of the

diurnal warm layer above the sea surface is not included.

These observations are assimilated onto a background

field of the analysis from the previous day, slightly re-

laxed toward the MacCallum and Merchant (2011)

ARC-Lake nighttime climatology (Donlon et al. 2012).

Using OSTIA, the temperature in the model is updated

once per day to the predawn value. When observations

are unavailable, the LST in OSTIAwill relax toward the

ARC-Lake climatology over a period of 30 days (Fiedler

et al. 2014).

At the time of the study, the OSTIA system included

no lake-specific processing; satellite retrievals were op-

timized for over oceans, meaning that the different wind

and cloud regimes and the elevations and continental

locations of some lakes may have introduced errors into

the satellite retrievals (Fiedler et al. 2014). However,

Fiedler et al. (2014) note that Lake Victoria performs

very well, compared to other lakes across the globe,

likely due to its large size, position on the equator, and

relatively low elevation. This is important since Thiery

et al. (2015) and Argent et al. (2015) showed that ac-

curate LSTs are crucial for reproducing observed pre-

cipitation patterns over and around Lake Victoria. In

addition, Lakes Malawi and Tanganyika (also in the

model domain) are said to perform well. In JJA 2009,

the lakes in this region were found to have an average of

several hundred observations per day due to satellite

overpasses (Fiedler et al. 2014). However, since JJA is a

dry period, the number of observations during the wet

seasons may be decreased as sampling issues due to

cloud cover increase.

For some analysis purposes, a time series of model

data was required. For both models, a set of four differ-

ent time series was formed by stitching together data from

either forecast lead times between T 1 12 and T 1 33h

or between T 1 24 and T 1 45h, for both the 0000 and

1200 UTC initializations. In addition, four different 24-h

accumulation periods were defined using the same lead

time bounds and the two initialization times.

b. Observations

Few in situ observations are available for the region

during the analysis period. There were no working ra-

dars and very few weather stations, forcing a reliance

on satellite-derived data for observations. Precipitation
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intensity observations are sourced from the Global Pre-

cipitation Measurement (GPM) mission, in particular

the IMERG Final Precipitation version 5 (V05) level 3

product at 0.18 (Huffman 2017; Huffman et al. 2018).

The product is available at 30-min time steps, but only

times matching the model output were used. GPM

IMERG is the successor to the Tropical Rainfall Mea-

suring Mission (TRMM) 3B42V7 product (Liu et al.

2012; TRMM 2011). IMERG takes observations from

a network of satellites in the GPM constellation and

unifies them to create a gridded product. In particular,

the GPM Core Observatory satellite hosts a dual-

frequency precipitation radar (DPR) and a conical-

scanning multichannel microwave imager (GMI) (Hou

et al. 2014). These two instruments are used as a refer-

ence to intercalibrate the passive microwave (PMW)

precipitation estimates from other satellites in the GPM

constellation using the method developed for TRMM

by Huffman et al. (2007) and including calibration against

the Global Precipitation Climatology Centre (GPCC)

gauge analysis by Schneider et al. (2008) (Huffman et al.

2018; Hou et al. 2014). Since the PMW sensors do not

have complete coverage of the ground, the National

Oceanic and Atmospheric Administration (NOAA)

Climate Prediction Center morphing technique with

Kalman filter (CMORPH-KF) (Joyce et al. 2004; Joyce

and Xie 2011) is applied, which estimates precipitation

outside the sensed area by propagation of PMW esti-

mates with motion vectors derived from geosynchronous

IR satellite imagery. For even further coverage, the

Precipitation Estimation from Remotely Sensed In-

formation using Artificial Neural Networks–Cloud Clas-

sification System (PERSIANN–CCS) uses IR retrievals,

calibrated against PMW retrievals, to estimate rainfall

(Hong et al. 2004; Sorooshian et al. 2000). For brevity, the

GPM IMERG product is referred to as GPM for the

remainder of the paper.

Many studies in different parts of the world, including

many with complex topography, have shown that the

GPM product outperforms its predecessor, the TRMM

3B42V7 product, on various spatial and temporal scales

(Tang et al. 2016a,b; Kim et al. 2017; Xu et al. 2017;

Wang et al. 2017b; Sharifi et al. 2016; Prakash et al.

2018). In particular, GPM is better able to detect low-

intensity rainfall due to four more high-frequency

channels on the GMI instrument, compared to the cor-

responding instrument for TRMM. From studies over

mainland China, Tang et al. (2016a) suggested that

GPM required improvement in dry climates and high

altitudes. This could be a cause for concern over the

Horn of Africa and East African highlands. Kim et al.

(2017) noted uncertainties with orographic convection,

and Xu et al. (2017) found that GPM has issues for

orography greater than 4500m. O and Kirstetter (2018)

found an underestimation of the diurnal variation over

mountains in the United States. Further studies have

shown that GPM underestimates high-intensity pre-

cipitation events (Wang et al. 2017a; O et al. 2017).

For comparison with GPM, the bias-corrected V1.0

CMORPH precipitation intensity dataset on an 8-km

grid (NCEP 2017) is also used. The CMORPH algo-

rithm by Joyce et al. (2004) is also used to produce GPM

as described above, but for CMORPH, V1.0, is used

without the Joyce and Xie (2011) Kalman filter. As for

GPM, CMORPH is available every 30min, but only

times matching the model output are used. The perfor-

mance of CMORPH has been shown to be very variable,

both spatially and temporally (Zeweldi and Gebremichael

2009; Habib et al. 2012; Haile et al. 2013). Studies have

shown that CMORPH is often unable to capture the

highest-intensity events and therefore overestimates the

frequency of lower-intensity rain events (Kumar et al.

2016; Habib et al. 2012). However, over complex terrain

in Mexico, Nesbitt et al. (2008) found an overestimation

of precipitation within deep convective systems. Several

studies over Ethiopia found a general underestimation of

rainfall rates (Haile et al. 2013; Romilly andGebremichael

2011; Hirpa et al. 2010). Romilly andGebremichael (2011)

note that over northwestern Ethiopia, where the ITCZ

has a strong effect and the climate is humid, CMORPH

tends to overestimate rainfall at low elevations but per-

forms well at higher elevations. Contrastingly, in the

northeast, Hirpa et al. (2010) found an underestimation at

high elevations. This shows the variability in performance

of CMORPH over even a small area.

All model and observational data were interpolated

onto the same grid for analysis. The global model has the

coarsest resolution (;17km 3 25km), but square grid

boxes were required for some of the analysis; therefore,

all data were interpolated onto a regular 0.258 grid.

c. Verification methods

1) OBJECTIVE ANALYSIS

Objective analysis was performed to compare the skill

of the models in forecasting storms over Lake Victoria.

A storm was identified if rainfall occurred with a mini-

mum given intensity over a minimum given area. A

range of size and intensity thresholds was sampled.

Stormy 3-h periods were identified in both the models

and observations to obtain the number of hits (storm in

both the observations and forecast), false alarms (storm

was forecast but did not occur), misses (storm occurred

but was not forecast), and correct negatives (storm was

not forecast and did not occur). These were then used

to compute the hit rate [hits/(hits1misses)] and false
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alarm ratio [false alarms/(hits1 false alarms)]. The false

alarm rate [false alarms/(correct negatives1 false alarms)]

was also computed.

Using a fixed size and intensity threshold to define a

storm over the lake in the observations, the hit rate was

plotted against the false alarm rate for a variety of

forecast intensity thresholds (keeping the size threshold

the same as in the observations) to produce a receiver

operating characteristic (ROC) curve (Swets 1973;

Mason 1982). A good forecast should maximize the hit

rate and minimize the false alarm rate; hence, the ROC

curve should lie in the upper-left half of the ROC dia-

gram. The closer the curve lies to false alarm rate5 0 and

hit rate 5 1, the greater the skill. This skill was captured

by computing the area under the curve (AUC), which is

greater than 0.5 for a skillful forecast and equal to 1 for a

perfect forecast (Mason and Graham 2002; Wilks 2011).

2) FRACTIONS SKILL SCORE

The ability of the models to forecast storms at the

correct time and in the correct location was assessed.

The small horizontal grid spacing of the CPmodel meant

that traditional point-to-point verification methods were

not appropriate because small-scale errors can be heavily

penalized. If the forecast position of the storm is offset

from the true position of the storm, point-to-point veri-

fication applies a ‘‘double penalty’’: where the storm was

forecast will record false alarms, and where the storm did

occur will record misses, resulting in a low skill score

(Roberts and Lean 2008; Mittermaier 2012). Forecasters

using the model should be aware of this and use judge-

ment to forecast storms over a region, rather than at a

specific location.

For this reason, the FSS, developed by Roberts and

Lean (2008), is used in this study. This metric aims to

measure the variation in skill with spatial scale and

hence the smallest scale at which a model has skill. The

verification process is as follows: first, a rainfall rate

threshold is chosen. At each grid box, the fraction of

points that exceeds this threshold within a surrounding

n 3 n gridpoint ‘‘neighborhood’’ is recorded for both

the model and observations for increasing values of n.

The square of the difference between the fraction in

the modelM(n) and the fraction in the observationsO(n)

is averaged over all grid points at a given time to com-

pute the mean squared error (MSE):

MSE
(n)

5
1

N
x
N

y

�
Nx

i51
�
Ny

j51

[O
(n)i,j

2M
(n)i,j

]2 , (1)

where Nx and Ny are the number of longitude and lati-

tude points, respectively. Since the MSE has a high de-

pendence on the frequency of the event, it is compared

against the MSE of a reference forecast with low-skill

MSE(n)ref, defined in Murphy and Epstein (1989) as

MSE
(n)ref

5
1

N
x
N

y

�
Nx

i51
�
Ny

j51

[O2
(n)i,j 1M2

(n)i, j] , (2)

to obtain the fractions skill score:

FSS
(n)

5 12
MSE

(n)

MSE
(n)ref

. (3)

A score of 1 implies that the forecast has a perfect match

for the neighborhood size used, whereas a score of

0 implies that the forecast has no skill. The skill score

that would be achieved, on average, by a random fore-

cast with the same fraction of events f0 over the domain

as the observations is given by f0. A ‘‘target’’ or uniform

forecast is defined as a forecast in which the model

fraction M(n) at each grid point is equal to f0. The score

for such a forecast is given by 0:51 (f0/2) and can be

approximated to 0.5 for comparisons when the fre-

quencies are small (Roberts and Lean 2008; Roberts

2008). In fact, if the FSS is being used as a measure of

spatial displacement, it is the value of 0.5 that should be

used (Skok 2015; Skok and Roberts 2016). The spatial

scale at which the model reaches this skill can be in-

terpreted as the spatial scale on which the model has

skill. More information regarding the details of the FSS

calculation is given in the appendix.

The traditional FSS generates a skill score at each

time step to describe the whole domain and allow vari-

ation in the model performance with time to be studied.

However, FSS cannot be used to understand how the

skill of the model varies across the spatial domain. An

adapted version of the FSS, termed the localized frac-

tions skill score (LFSS), was used to do this. The mean

squared error between the fraction of grid points ex-

ceeding the threshold in the model and observations is

found by taking the mean over time for a given neighbor-

hood size, rather than over the spatial domain. In this ver-

sion of the score, Eqs. (1) and (2) are therefore replaced by
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and
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(n)k 1M2

(n)k] , (5)

respectively, where Nt is the number of time steps.

Rather than a skill score per time, a skill score is instead

obtained per grid point over a period of time for the
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neighborhood size of interest. Because the neighbor-

hood size is still in the spatial domain, the LFSS cannot

have a ‘‘target’’ score to find the displacement of storms

in time, which would require the size of the neighbor-

hood to be in the time dimension. The LFSS is therefore

still used to understand the spatial skill. While the FSS

should be used to quantitatively find a neighborhood

size on which the model has skill, the LFSS should be

used more qualitatively to find regions that have greater

or lesser skill relative to the whole domain.

3. Results

a. Forecast example

Figure 2 shows an example of a 3-h rainfall accumulation

forecast over Lake Victoria from (Fig. 2a) the global

model and (Fig. 2b) the CP model, as would be seen by a

forecaster using the Met Office VCP Africa Web Viewer.

This example is from 0900 UTC 26 September 2017

(1200 LT; LT5 UTC1 3h). This case was chosen as an

exemplar case of a good forecast by the CPmodel, which

exhibits many of the characteristics typical of the model

performance for a significant storm event over the lake.

Both models correctly predicted an event over the lake,

with the CP model predicting a more realistic storm

structure. Although the global model forecast did show

some structure in the precipitation field, it did not pro-

duce an organized storm. Rather, it forecast rain over

most of the lake. The CP model forecast a linear storm

structure, with a region of heavy precipitation over the

south of the lake and another region over land on the

southern shore. IR observations available on the Africa

Web Viewer in Fig. 2c show that the regions of rainfall

forecast by the CPmodel coincidedwell with areas of low

IR. Precipitation rates fromGPM (Fig. 2d) show that the

heaviest region of precipitation on the southern shore

collocated fairly well with the area of highest accumula-

tions in the CP model forecast, although it was slightly

FIG. 2. The T 1 33 h 3-h precipitation accumulation forecasts from (a) the global model and (b) the CP model,

and (c) IR observations fromEUMETSAT for 0900UTC 26 Sep 2017; screenshots taken from theMet Office VCP

Africa Web Viewer. (d) Instantaneous precipitation intensity at 0900 UTC from GPM.
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farther south. The observed rainfall rates suggest that the

forecast accumulationwas too high and also too localized.

b. Diurnal cycle

The mean diurnal cycles over (Fig. 3a) the land grid

points within the LV subdomain and (Fig. 3b) Lake

Victoria (lake grid points only) are shown for GPM

observations (and CMORPH for comparison) and for

the global and CP models. Over land, the observations

show that the convective maximum occurs at 1800 LT.

During the day, the land surrounding the lake heats up

faster than the lake itself, causing divergence and hence

subsidence over the lake (Chamberlain et al. 2014).

Onshore winds trigger storms over the mountains to the

east of the lake, which reach peak intensity late in the

afternoon. However, the global model shows a mean

rainfall maximum at 1200 LT, which is larger than the

peak in the observations by a factor of 1.5. There is

actually a weak negative correlation between the mean

diurnal cycle in the model and observations (Pearson’s

r value of 20.18). Comparing the full 2-yr time series

from the global model to that of the observations, the

correlation coefficient is 0.40, showing an improved re-

lationship compared to the mean. The erroneous mid-

day maximum is in agreement with previous studies of

global models (Yang and Slingo 2001; Bechtold et al.

2004). The peak in rainfall in the CP model occurs at

1800 LT, in agreement with the observations, although

the mean rainfall rate at 1500 LT is nearly as great. The

CP model overpredicts the maximum rainfall rate by a

factor of 2.4, consistent with known biases in CP MetUM

(Lean et al. 2008; Kendon et al. 2012), but improved in

recent research configurations (Aranami et al. 2015;

Zerroukat and Shipway 2017). Despite this, correla-

tion coefficients of 0.97 and 0.78 are achieved by the

CP model for the mean diurnal cycle and the full 2-yr

time series, respectively. CMORPH exhibits a similar di-

urnal cycle to GPM over land, with a correlation co-

efficient of 0.97 for the mean diurnal cycle and 0.91 across

the whole time series.

At night, the lake remains warmer than the land, such

that convergence and, hence, convection occurs over the

lake, and the observed precipitation peaks at 0600 LT

(Song et al. 2004). The maximum rainfall occurs later, at

FIG. 3. Mean diurnal cycle of precipitation rates over (a) the land grid points within the LV subdomain (dashed

black line in Fig. 1) and (b) the lake grid points of LV for GPM, CMORPH, and the global and CP models. The

Pearson’s r value for the correlation of the mean diurnal cycle with that of GPM is given in the legend. The

correlation over the full 2-yr time series is also given in brackets. The four model time series (comprising different

initialization and lead times as described in section 2a) are used for the global and CP model data, so the results

reflect an average across these datasets. This is true in all figures unless stated otherwise.
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0900 LT, in the global and CPmodels. The global model

slightly underpredicts the maximum mean rainfall rate

over the lake, whereas the rate in the CP model is a

factor of 2.3 greater thanGPM. The correlation between

the mean diurnal cycle and the models is greater for the

global model (0.98) than the CP model (0.83), although

both show strong correlations. The correlation co-

efficients between both models and the observations

over the full time series are very similar: 0.57 and 0.56 for

the global and CPmodel, respectively. The ability of the

global model to capture the correct diurnal cycle over

the lake, when it is unable to do so over land, suggests

that the forcings that lead to storms over the lake are

particularly strong and on a scale greater than the grid

spacing of the global model. The consistently warm

temperature of the lake relative to the land may allow

storms to be triggered in the parameterization scheme,

without the need for solar insolation, while the posi-

tioning of the rain is constrained by the location of the

lake. CMORPH correlates very well with GPM, with a

correlation coefficient of 0.99 for the mean diurnal cycle

and 0.89 for the whole time series over the lake.

c. Precipitation rates

The precipitation rates corresponding to different

percentiles are shown in Fig. 4 for the observational data

(GPM) and the two models over the full domain (solid

line) and over the LV subdomain (dashed line). Pre-

cipitation rates for the additional observations from

CMORPH are also shown. The corresponding rainfall

rates were found using the data from all times and all

grid points within the analysis period and corresponding

domain. Most of the rainfall intensities within this time

were 0mmh21. This is reflected in Figs. 4a and 4b, which

show the rainfall rates as a function of percentile, com-

puted including times of no rain. Figure 4a demonstrates

that while the models do predict a large proportion of

dry events, they predict too many rainfall events, com-

pared to observations. While 90.9% of all data points in

the full domain have no rain in the observations, this is

true of 75.8% and 81.1% of data points in the global and

CP models, respectively. Similar results hold over the

LV subdomain. Figure 4b shows that above the 99.9th

percentile, the rain rates in the global model are 15%

and 20% lower than the observations over the full do-

main and LV subdomain, respectively. However, the CP

model produces far toomuch heavy rain, over a factor of

3.5 greater than the observations for the 99.9th per-

centile, and increasing with greater percentiles. However,

studies such as Wang et al. (2017a) and O et al. (2017)

suggest that GPM may underestimate high rainfall

events, so the difference between the CP model and

true rainfall amount may not be so large. Overall, there

is little difference between the full domain and LV

subdomain.

After removing data points with no rain, Figs. 4c and 4d

show how the rainfall rates are distributed. Figure 4c

shows that of the rain that was produced by both models

(and over both domains), the rain was too light for the

majority of data points. Figure 4d shows that the global

model is unable to predict the highest-intensity events,

while the CP model has a disproportionate amount of

unrealistically extreme events, with the precipitation

rate around a factor of 3 too large above the 99.9th

percentile.

The contribution of rain of different intensities to the

mean rainfall intensity is shown in Fig. 4e for GPM and

the two models. Again, this shows that the global model

produces light precipitation too often, compared to

GPM. For the very highest intensities, the global model

matches the observations well. Despite being predicted

relatively too often, the lightest-intensity precipitation

contributes to the mean rainfall too infrequently in the

CP model, because rain rates above 5mmh21 are pro-

duced far too frequently.

Comparing the two observational datasets, Fig. 4a

shows that CMORPH is drier than GPM. GPM has

higher extreme rainfall rates over the whole domain, but

CMORPH has the highest rain rates over the LV sub-

domain (Figs. 4b,d). This difference could be related to

the performance of the two observational datasets over

the complex topography within the subdomain. Low

rainfall rates contribute to the mean rainfall less in

CMORPH than in GPM, but intermediate rainfall rates

(between 6 and 19mmh21) contribute more (Fig. 4e).

Overall, the differences between the characteristics of the

observational datasets are smaller than the differences be-

tween the models and observations. Therefore, only results

using GPM observations are presented in the remainder

of the paper. Much of the following work was reproduced

using CMORPH and yielded very similar results.

d. Lake Victoria objective analysis

Because of the dangers faced by fishermen when a

storm occurs over LakeVictoria, the ability of themodels

to forecast storms over the lake itself is extremely im-

portant. Objective analysis was performed to compute

the hit rate, false alarm ratio, and ROCAUC for a range

ofminimum storm sizes and intensities over the lake. The

intensity threshold was defined by a percentile threshold

(calculated using only lake grid points) to avoid issues

with the different distributions of rain rates between the

models and observations.

Figures 5a and 5b show the hit rates achieved by the

global and CP models, respectively, as a function of min-

imum size and intensity, and Fig. 5c shows the difference in

SEPTEMBER 2018 WOODHAMS ET AL . 2765

Unauthenticated | Downloaded 11/08/22 01:51 PM UTC



skill between the two models. For all three metrics, results

are only plotted when a storm of the specified size and

intensity was detected in the observations for at least 2.5%

of the time steps (corresponding to over 500 storm events)

in order to have a large sample size for more robust sta-

tistics. The sizes and intensities where this criterionwas not

met are hatched. The hit rate for both the global and CP

models decreases as the minimum size and intensity of the

storm increases. Overall, the CP model has a higher hit rate

than the global model, and for the lowest intensities, it

predicts up to 20%more storms correctly. For a minimum

storm size of 20 grid points (approximately 12500km2,

1/5 of the size ofLakeVictoria) and rainfall above the 92nd

percentile, the CP model has a hit rate of 57%, compared

to 33% in the global model.

Similar plots of the false alarm ratios are shown in

Figs. 5d–f. For bothmodels, the false alarm ratio increases

with increasing size and intensity. The global model has a

smaller false alarm ratio for the majority of storm sizes

and intensities, especially for small, low-intensity storms.

FIG. 4. (a)–(d) Precipitation rates corresponding to different percentile thresholds for GPM, CMORPH, and the

global and CP models. (a),(b) The corresponding precipitation rates including points with precipitation rates of

0mmh21; (c),(d) neglect these points. (e) Contribution to the mean rainfall intensity, computed by binning rainfall

rates into 1mmh21 bins and multiplying the average rainfall rate within the bin by the probability of the rainfall

rate lying within that bin. The area under the curve is equal to the mean rainfall. For all panels, the solid lines show

results for the full domain, and the dashed lines show results for the LV subdomain.
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For storms with a minimum size of 20 grid points and

rainfall above the 92nd percentile, the global and CPmodels

have false alarm rates of 51% and 41%, respectively.

The ROCAUC of bothmodels generally decreases as

the size of the observed storm increases (Figs. 5g,h).

However, the AUC generally increases as the intensity

of the observed storm increases. Figure 5i shows that for

all intensities and sizes, the CPmodel scoresmore highly

than the global model, especially for large storms. The

ROC AUC for storms with a minimum size of 20 grid

points and rainfall above the 92nd percentile is 0.28 for

the CPmodel and 0.22 for the global model. The greater

skill of the CP model suggests that its greater hit rate

outweighs the increased fraction of false alarms.

FIG. 5. (a)–(c)Hit rate, (d)–(f) false alarm ratio, and (g)–(i) ROCAUC for storms of aminimum intensity over aminimum size (number

of grid points) over LV (lake grid points only) on 3-h intervals. The first column shows results for the global model, the second column for

the CP model, and the third column is the difference between the CP and global models. In the difference plots, red shows where the CP

model has increased skill relative to the global model. The hatched areas show where a storm of the given size or intensity was observed

over less than 2.5% of the time steps.
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e. FSS for 24-h accumulation rates

To verify the model over a long time period, the FSS

was used. The rainfall threshold was chosen to be the

98.5th percentile for reasons discussed in the appendix.

Over the full domain (LV subdomain), the 98.5th

percentile corresponded to 30.2 (32.0)mm day21 in the

observations and, taking an average of the four combi-

nations of forecast initializations and forecast lead time

periods, 29.0 (27.6)mm day21 in the global model and

96.2 (109.3)mm day21 in the CP model.

Figures 6a and 6b show the mean FSS as a function of

spatial scale for 24-h accumulation forecasts from the

different models and a 24-h persistence forecast for the

full domain and the LV subdomain, respectively. All

three forecasts perform better than a random forecast

over both domains, although not by much at the grid

scale. Both models improve upon the persistence fore-

cast at all spatial scales. Over the full domain, the two

models show very similar skill, only reaching the target

skill for spatial scales greater than almost 400km. Over

the LV subdomain, the CP model has increased skill,

compared to the global model, reaching the target skill

at a spatial scale of around 350km, compared to just

over 375 km for the global model.

1) LOCALIZED FSS

Maps of LFSS, computed for 24-h accumulations at a

spatial scale of 425 km (n5 17, because this is the

nearest neighborhood size at which the models first be-

come skillful over thewhole domain, according to Fig. 6)

and for a threshold of the 98.5th percentile, are shown

in Figs. 7a and 7b for the global and CP models, re-

spectively. The resulting spatial patterns are consistent

across all spatial scales and for all percentile thresholds

greater than the 95th percentile, although themagnitude

of the score does change. Both models show enhanced

skill over Lake Victoria and many of the regions of high

orography, especially the Ethiopian highlands and the

mountain ridges on either side of Lake Victoria. The

global model shows particularly poor performance along

the Somalian coastline, compared to the CP model. The

green contour encloses regions where the mean rainfall is

in the top 25% in both the observations and models.

Although some of the regions of enhancedLFSS coincide

with overlapping regions of the heaviest rainfall, this is

not exclusive, suggesting that the model does not only

performwell where rainfall is heaviest andmost common.

As shown in Fig. 7c, the CP model generally shows

greater skill over the land and lake than the global model,

but the global model shows higher skill over the ocean.

Since only a small proportion of the sea is included in the

LV subdomain, this explains why the skill of the global

model relative to the CP model drops over the LV sub-

domain (Fig. 6). Over land and on Lake Victoria are the

most important places to forecast correctly, since these

are where people live and work. The ubiquitously high

scores over the ocean in the global model suggest that the

LV subdomain should be used for further analysis to

avoid contamination by ocean grid points. As such, for

the remainder of the paper, only FSSs over the LV sub-

domain are presented.

2) LFSS SEASONAL VARIABILITY

Figures 8 and 9 show how the LFSS, computed sepa-

rately over the different seasons, differs from the LFSS

computed over the whole time period for the global and

CP models, respectively. Although quite noisy, the re-

sults are fairly similar for both models. This is likely

because the annual cycle of convection is controlled by

FIG. 6. Mean FSS as a function of neighborhood size for 24-h

rainfall accumulations above the 98.5th percentile, shown for the

global and CP models and a 24-h persistence forecast over (a) the

full domain and (b) the LV subdomain.
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the intertropical convergence zone (ITCZ), the location

of which should be similar in both models, since the

global model fields are used to initiate the CP model.

During the rainy seasons (MAMandOND), when the

ITCZ is located over equatorial East Africa, the vari-

ability in skill in both models is generally small around

the Lake Victoria basin, with areas of both moderately

increased and decreased skill. The skill over the ocean is

decreased during the short rains (OND), but increased

during the long rains (MAM). The dry seasons in the

equatorial region correspond to when the ITCZ and

main band of rainfall are to the north of the region in

June–September (JJAS) and to the south in January–

February (JF). For both models, there is broadly a large

negative perturbation in skill over the opposite region of

the domain to where the ITCZ sits. However, within the

large areas of reduced skill, there are small areas of

highly increased skill. Some of these are located in re-

gions of high orography or over some of the small lakes

or parts of the coastline. Within a contour enclosing the

regions for which the top 25% of mean rainfall overlap

in the model and observations, the mean LFSS pertur-

bation is close to zero for all seasons and both models,

showing that themodel does not just performwell where

rainfall is heaviest or most common.

f. FSS for 3-hourly precipitation rates

Figure 10 shows how the FSS for the global and CP

models and a 24-h persistence forecast varies with spa-

tial scale for the forecast rainfall rate at 3-h intervals

throughout the day. Similar to the analysis on 24-h

accumulations, a threshold of the 98.5th percentile was

chosen, corresponding to 2.1mmh21 in the observations

and (taking an average of the four combinations of

forecast initializations and forecast lead time periods)

2.3mmh21 in the global model and 3.8mmh21 in the

CP model.

All three forecasts consistently beat the random

forecast skill. The CP model outperforms the global

model and persistence forecast at almost all spatial

scales and at all times of day. The global model generally

has greater skill than the persistence forecast, except at

1800 LT. Before 1200 LT, the target ‘‘uniform’’ skill is

generally not achieved by any of the forecasts within

spatial scales below 425km. In particular, the skill of the

CP model increases after 1200 LT and is very high at

1500 and 1800 LT, reaching the target skill at a spatial

scale of approximately 275km. These times of day cor-

respond to the convective maximum over land.

Figure 11 shows how the skill of (Fig. 11a) the global

model and (Fig. 11b) the CP model at different times of

day varies with forecast lead time, using the 98.5th

percentile as a threshold. Plots are only shown for a

neighborhood size of 475 km (n5 19, the spatial scale at

which the models have reached the target score for al-

most all times of day), but trends seen are broadly con-

sistent for all spatial scales and percentiles greater than

the 95th percentile. Each line corresponds to a different

time of day, being formed of three points, since each time

of day is forecast from three different initializations (the

FIG. 7. Map of LFSS, computed for (a) the global and (b) the CP model, using a threshold of the 98.5th percentile and a neighborhood

size of 425 km (n5 17) for 24-h accumulations. (c) Map of the difference between the LFSS in the global model and CP model. The solid

green contour encloses regions with mean rainfall in the top 25% in both the observations and the model. The gray dashed and solid

contours mark orography of height 1 and 2 km, respectively. The numbers in brackets give the area average within the LV subdomain.
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FIG. 8. Maps of perturbation in LFSS from Fig. 7a for different seasons, computed for the global model, using

a threshold of the 98.5th percentile and a neighborhood size of 425 km (n5 17) for 24-h accumulations. The solid

green contour encloses regions with mean rainfall in the top 25% in both the observations and the model for the

given season. The gray dashed and solid contours mark orography of height 1 and 2 km, respectively. The numbers

in brackets give the area average within the LV subdomain.
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first 12h of forecast are discarded due to spin up). Al-

though there is small degradation in the skill of both

models as forecast lead time increases, this is almost

negligible, compared to the variation in skill between the

different times of day, especially in the CP model. These

results contrast with those of Roberts (2008) for U.K.

precipitation, who showed no dependence of the score on

time of day. This is because rainfall in the midlatitudes is

FIG. 9. As in Fig. 8, but computed for the CP model and therefore showing the perturbation in LFSS from Fig. 7b.
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FIG. 10. Mean FSS over the LV subdomain as a function of neighborhood size for rainfall above the

98.5th percentile, computed at 3-h intervals (corresponding to the model diagnostic output times) for the

global and CP models and a 24-h persistence forecast.
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generally controlled by frontal systems, whereas convec-

tion in the tropics is strongly forced by the diurnal cycle.

Figure 11a shows that the skill of the global model is

higher at 1500 LT by over 1/4, compared to other times

of day. The CP model has increased skill at 1500 and

1800 LT by around 1/4 relative to most other times of

day (Fig. 11b), and scores at 2100 LT are also elevated.

These times correspond to the period when convection

is at a maximum over land.

Figure 12a shows the probability distribution of the

98.5th percentile of precipitation rates in the GPM ob-

servations obtained from all time steps. Except between

1500 and 2100 LT, there is a high likelihood that the

98.5th percentile of the rainfall intensity is small.

Figures 12b and 12c show the mean FSS associated

with a given 98.5th percentile of rainfall intensity for the

global and CP models, respectively, for different times

of day. Except at 1800 LT in the global model, the

smallest intensities score the lowest FSS at all times of

day in both models. The high skill for very low rainfall at

1800 LT in the global model is likely because the global

model always forecasts such little rain at this time, so

any time steps that occasionally do have little rainfall at

1800 LT will automatically score highly.

One reason for the increased skill in the globalmodel at

1500 LT is that rainfall rates between 1 and 3.5mmh21

are likely to have a greater FSS than at other times of day

(Fig. 12b). Furthermore, the likelihood of the lowest

rainfall rates (which generally have reduced scores) is

decreased (Fig. 12a). Since this time lies between the

midday convective maximum in the global model and the

observed 1800 LT maximum, this increased skill is likely

an artifact of storms over land nearing the end of their

lives in the model coincident with growing storms in the

observations.

Increased skill in the CP model between 1500 and

1800 LT occurs because the scores associated with in-

termediate rainfall rates have an increased mean FSS,

compared to other times of day (Fig. 12c). In addition, the

likelihood of the 98.5th percentile being below 0.5mmh21

is greatly reduced. This is also true at 2100 LT, which

explains the increased skill at this time of day. It is spec-

ulated that increased skill in the CPmodel coincident with

the convective maximum over land is due to the model’s

ability to more accurately predict the location of storms at

this time of day, not simply because there ismore heavy rain

and therefore a reduced number of low-scoring, low-

intensity events.

4. Discussion and conclusions

The precipitation forecast produced by a CP model,

which was run operationally for East Africa by the Met

Office in 2017, was verified over a 2-yr period from

July 2014 to July 2016 using observations from GPM.

Its performance was also compared to that of the oper-

ational global MetUM in order to understand the value

added by a CP forecast. Verification was performed for

the prediction of 24-h accumulations, as well as for

rainfall rates at 3-hourly time intervals. Much of this

verification used the fractions skill score, including a

novel form of the skill score, termed the localized frac-

tions skill score, to look at spatial variations in perfor-

mance. Although extended assessments of CP models

have been performed in the midlatitudes (Mittermaier

et al. 2013), such an assessment has not been performed

in the tropics before.

FIG. 11. Mean FSS as a function of forecast lead time, using the

98.5th percentile for (a) the global model and (b) the CP model

over the LV subdomain. A neighborhood size of 475 km (n5 19) is

used, but results are consistent for all spatial scales. Each line

corresponds to a different model diagnostic output time and is

formed of three points (e.g., for 0000 LT, the first and last points are

the T1 21 and T1 45 forecasts from 0000 UTC initializations and

the middle point is the T 1 33 forecast from 1200 UTC initializa-

tions). The gray lines show the skill of a 24-h persistence forecast.
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The models show large biases in the distribution of

rainfall rates, compared to the observations. In partic-

ular, both models are too wet, and the CP model has

excessive rain rates. Therefore, percentile thresholds

were chosen to define events in both the objective and

FSS analysis instead of absolute intensities. Since there

is uncertainty associated with the GPM observations,

there is uncertainty about the ‘‘truth’’ against which the

models are compared, but using a percentile threshold

goes some way to reducing this problem.

The generally increased skill in the CP forecast shown

over Lake Victoria is encouraging, since the primary

reason for the existence of the model is to improve

safety on the lake. Objective analysis shows that the CP

model is better able to predict whether a storm will oc-

cur, compared to the global model. Despite a higher hit

rate than the global model, the CP model does produce

more false alarms, in agreement with Chamberlain et al.

(2014). Since the livelihoods of fishermen are dependent

on their ability to go out on the lake, too many false

alarms may lower trust in the forecast and thus reduce

adherence to future warnings, even if issued correctly.

Higher ROCAUC scores for the CP model suggest that

the increased hit rate does outweigh the negative effect

of increased false alarms, but the benefit of this does

depend on the needs of the lake users.

Using the FSS, both the global and the CPmodel show

greater skill than a 24-h persistence forecast, demon-

strating that themodels are valuable as forecasting tools.

The CP model improves upon the forecast produced by

the global model, especially on subdaily time scales;

severe storms are more realistic, the diurnal cycle is

improved, and this is reflected in generally elevated FSS

for the CP model. Presently, forecasters in East Africa

tend to use 24-h accumulation values produced by

the models in their forecasts (Kenya Meteorological

FIG. 12. (a) A probability distribution for the precipitation rate at the 98.5th percentile according to GPM

observations. Mean FSS as a function of the 98.5th percentile of observed precipitation intensity across the LV

subdomain for 3-h intervals (corresponding to the model diagnostic output times) for (b) the global model and

(c) the CPmodel. The intensity is only plotted within an intensity bandwhere there is a high-enough sample of data.

A neighborhood size of 475 km (n5 19) is used, with consistent results across all spatial scales.
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Department; TanzaniaMeteorological Agency; Uganda

National Meteorological Authority, 2016, personal com-

munications). Given that the CP model performs better

on 3-hourly time intervals, the provision of forecasts with

diurnal detail should be increased to providemore guidance

to users of the lake as to exactly when it may be hazardous.

The CP model has the greatest benefit in the prediction

of storms over land relative to the global model, but the

global model performs better over the ocean. Birch et al.

(2014a) show that convective initiation in explicit models

usually corresponds to low-level convergence, whereas

parameterized models tend to be unresponsive to con-

vergence, and convection is generally triggered by in-

stability. Regions of convergence are more likely over

land than ocean due to the orography and influence of the

lakes. Therefore, the increased scores over land may be

due to the increased ability of the CP model to respond to

convergence. This hypothesis is also supported by the fact

that FSSs for the CP model peak at 1800 LT and are also

elevated at 1500 and 2100 LT. These correspond to times of

storm initiation over land, suggesting that themodel is better

able to forecast initiation, but is unable to capture storm

propagation. The global model performs poorly along the

Somalian coastline, suggesting that the model cannot cap-

ture the response of convection to the sea breeze (Birch et al.

2015), but the CPmodel shows improved performance here.

Despite the superior skill of the models—especially the

CP model—relative to a persistence forecast, the level of

skill is still fairly poor. Roberts and Lean (2008) suggest

that an FSS of at least 0.5 should be the ‘‘target,’’ above

which a model may be considered skillful. Figure 6 shows

that neither the CP model nor the global model reaches

this skill within a neighborhood size of over 350km for

24-h accumulations. On subdaily time scales, the skillful

target is reached by the CP model at a spatial scale of

around 275–350km, between 1500 and 2100 LT, but at

other times of day, the target is not reached below ap-

proximately 425km. This shows how heavier rain is easier

to forecast, in the CPmodel in particular, when convection

is most widespread. It should be noted that these results

are only for the heaviest 1.5% of events, and for lower-

percentile thresholds that represent lighter and more ex-

tensive rain, the spatial scale at which useful skill is reached

is improved. Clark et al. (2016) note that the scales on

whichCPmodels have reasonable skill is large, compared to

the grid spacing of themodel, aswell as the horizontal extent

of convective rainfall events. Similar results are also shown

byMittermaier et al. (2013) for very high-intensity events in

the UK4 model. Results such as these indicate that a CP

model should not be interpreted deterministically; rather, an

‘‘ensemble’’ of the model should be run in order to obtain

probabilistic forecasts (Clark et al. 2016).However, these are

expensive and require greater computing power.

Another reason for such low skill, compared to CP

models in the midlatitudes, is the lack of observations

available for data assimilation in the tropics. Given the

sensitivity of CPmodels to initial conditions (Birch et al.

2013; Guichard et al. 2010; Melhauser and Zhang 2012;

Schumacher et al. 2013; Luo and Chen 2015; Vié et al.

2011), an increase in in situ observations, such as radio-

sondes and observations of lake surface temperature, has

the potential to greatly increase the skill of the model.

Thiery et al. (2015), Argent et al. (2015), and Anyah

and Semazzi (2004) showed the importance of accurate

LSTs for the prediction of rainfall over Lake Victoria.

Since LST observations are only available once per day,

and the model contains no interactive lake model, the

temperature of the lake will deviate from the truth

throughout the duration of the simulation. Thiery et al.

(2015) showed that a one-dimensional lake model—in

this case, the Freshwater Lake (FLake) model (Mironov

2008; Mironov et al. 2010)—did add value to climate

simulations using the COSMO model in climate mode.

The FLake model has been used with MetUM (Rooney

and Bornemann 2013) before; however, given that the

diurnal cycle is fairly well simulated in the current

model, the additional computational expense of running

the lake model may outweigh the benefits. It would be

interesting to see if an interactive lake model could shift

the peak in precipitation over the lake slightly earlier to

match the observations.

The forecast skill shows a much stronger dependence

on the diurnal cycle than the forecast lead time, in

contrast with similar studies performed in the mid-

latitudes. The results suggest that a good use of com-

puter resources could be to initialize the model only

once per day, instead of twice, and run out to a longer

lead time. This would allow for more advance warnings

to be given to users of the lake. However, further tests

would need to be run to investigate model performance

at lead times greater than 48h. An immediate solution

could be to consider forecasts from themultiple sequential

initializations as an ensemble and maintain access to

them on the VCP Africa Web Viewer, rather than older

forecasts being rapidly replaced by newer ones.

The excessive rainfall rates for the highest-intensity

events in the CPmodel are a cause for concern. This bias

exists because semi-Lagrangian advection (as used in

MetUM) does not conserve mass. Mass restoration

schemes, such as Priestley (1993) and Zerroukat (2010),

may easily be applied to global models, but they cannot

directly be applied to limited-area models (LAMs)

without knowledge of flux through the domain bound-

aries (Aranami et al. 2015). Aranami et al. (2015)

developed a mass restoration scheme for LAMs, which

reduces the excessive rainfall rates. This scheme is very
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computationally expensive, but was followed by a less

computationally intense schemebyZerroukat andShipway

(2017), which requires no computation of lateral fluxes.

This scheme is used in the latest CPMetUM configuration

for the tropics, called RA1-T, which also includes further

changes, such as tuning of the microphysical parameters to

the tropics.

CP models are still fairly novel, and the way in which

they must be used and interpreted is extremely different

to global models. The uses and limitations of global

models are well known, since these models have been

used formany years. For a forecaster to feel comfortable

using a CP model, time is required to adapt to the dif-

ferent interpretation and to learn its strengths and

weaknesses through experience. In essence, a forecaster

must learn to ‘‘trust’’ the model. This can be accelerated

by more assessment of operational CP models and a

greater understanding of when they provide increased

skill over a global model forecast.
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APPENDIX

FSS Computational Details and Choice of
Rainfall Threshold

As described in section 2c(2), the FSS relies on a

rainfall threshold, above which an ‘‘event’’ is deemed to

have occurred. However, Fig. 4 shows that the rainfall

intensities produced by CP models and global models

can be vastly different from one another and from ob-

servations. For many forecasting applications, the

magnitude of the intensity may be bias corrected, and it

is more important for the model to forecast whether or

not a storm will occur. Therefore, in the computation of

the FSS, the precipitation intensity corresponding to a

given percentile is used instead of an absolute threshold.

Consequently, the models and observations may have

different minimum rainfall rates above which an event is

defined. For the Nth rainfall percentile, at each time

step, the top (1002N)% of grid points (including dry

grid points) in the model and observations are consid-

ered as ‘‘events.’’ If it is very dry at a time step in either

the model or observations, such that there are not

(1002N)% of grid points that receive rainfall, these

fields are still included in the comparison. This means

that the effective percentile threshold is increased for

some time steps. The reason for doing this is to include

comparisons in which the percentile threshold is just

missed (not quite enough rain), but a meaningful com-

parison can still be made. If time steps with little rain

were not included, the sample size would drop consid-

erably because there are many times when the fractional

rainfall coverage over the domain is very low.

An issue arises when either the model or observations is

much drier than the other, and at least one has less than

(1002N)% coverage, such that the ratio of the number of

grid points being compared in the model and observations

is not equal to one. This leads to a frequency bias, which

can become very large when the ratio diverges from one.

Roberts and Lean (2008) showed that a frequency bias can

greatly reduce the FSS. Therefore, if the frequency bias is

more than a factor of 3, the percentile is altered in the

wetter dataset to keep the frequency bias within a factor of

3. Again, this means that the effective percentile threshold

is increased (spatial coverage is reduced) for some times.

To ensure that only the highest-intensity events are

considered, a further constraint is imposed, such that the

rainfall must also be above the (1002N)th percentile,

computed using data from all time steps. This prevents

the inclusion of light rainfall at time steps with light rain

over large areas.

Figure A1 shows how the mean FSS over the domain

varies as a function of percentile threshold. A neigh-

borhood size of 425 km (n5 17) is used, but a similar

pattern of decline in FSS as percentile threshold in-

creases emerges at all spatial scales. At lower thresholds,

the decline is gradual but becomes rapid at around the

95th percentile, because it is more difficult to get the

correct positioning of more localized rain. In this study,

a threshold of the 98.5th percentile is used to verify

the performance of the models in predicting the most
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extreme events. Although this percentile lies in the re-

gion of Fig. A1, in which there is a rapid decline in skill, a

high percentile is necessary to focus on the more ex-

treme events, while not so high that a meaningful mea-

sure of skill is lost. However, it should be noted that low

skill scores are to be expected in comparison to similar

studies over the United Kingdom by Roberts and Lean

(2008), Roberts (2008), and Mittermaier (2012).

The time steps that do not have coverage of at least

1.5% and, therefore, have a higher effective percentile

threshold will be at a disadvantage, given the rapid de-

cline in average score for high-percentile thresholds

shown in Fig. A1. To reduce this unfair effect on the

FSS, only time steps with at least 0.25% coverage in both

datasets are included.
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