KIT | KIT-Bibliothek | Impressum | Datenschutz

Theoretical Insights into the Light Alkanes Dehydrogenation and Aldehydes Hydrogenation on Transition Metal and Metal Oxide Surfaces

Araujo-Lopez, Eduard ORCID iD icon 1
1 Institut für Katalyseforschung und -technologie (IKFT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Because of their extensive use as chemical building blocks, light olefins, such as propylene and ethylene, are among the essential types of compounds in the chemical industry. As a result, the demand for these building blocks has increased steadily over the last few years. For instance, the direct formation of propylene from propane is a well-established commercial process, which, based on energy consumption, is environmentally preferred to the current large-scale sources of propylene from steam cracking and fluid catalytic cracking. Moreover, there is still a big window for catalyst improvement, such as \ce{C-H} bond activation, reducing propane and hydrogen adsorption on surface sites, and minimizing coke formation.

By using density functional theory (DFT) calculations, it is investigated the C--H bond activation of light alkanes (methane, ethane, propane, \textit{n}-butane) on transition metals (TMs), metal oxides (MOs), and single-atom-doped-metal oxides (M$_1$-MOs) surfaces, as well as the hydrogenation of aldehydes on palladium surfaces. This thesis develops simple and highly accurate models for predicting the transition state energy $\left( \Delta E_{TS} \right)$ of the C--H bond activation of light alkanes (C$_1$-C$_4$) on TMs, MOs, and M$_1$-MOs using the final state energy $\left( \Delta E_{FS} \right)$ as a descriptor. ... mehr


Volltext §
DOI: 10.5445/IR/1000152395
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Katalyseforschung und -technologie (IKFT)
Institut für Nanotechnologie (INT)
Institut für Technische Chemie und Polymerchemie (ITCP)
Publikationstyp Hochschulschrift
Publikationsdatum 08.12.2022
Sprache Englisch
Identifikator KITopen-ID: 1000152395
HGF-Programm 38.03.02 (POF IV, LK 01) Power-based Fuels and Chemicals
Verlag Karlsruher Institut für Technologie (KIT)
Umfang vii, 107 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Chemie und Biowissenschaften (CHEM-BIO)
Institut Institut für Katalyseforschung und -technologie (IKFT)
Prüfungsdatum 18.07.2022
Referent/Betreuer Studt, Felix
Fink, Karin
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page