

Chemical Recycling of Mixed Plastics Waste by Pyrolysis

VIth International Symposium (Waste), Stuttgart, November 4, 2022

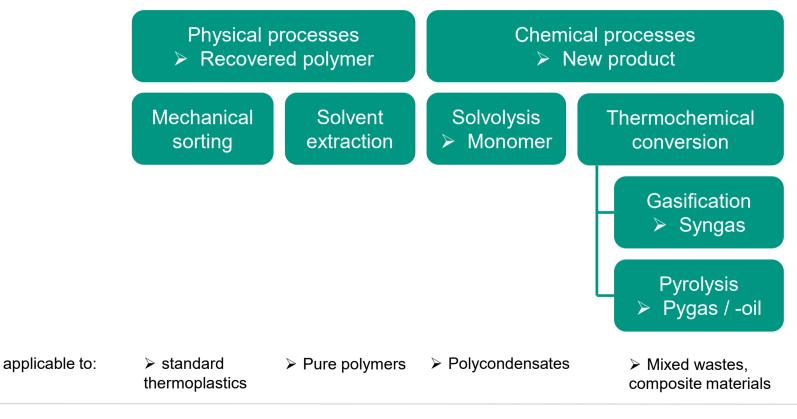
Dieter Stapf

www.kit.edu

Plastics Production and Plastics Waste Generation

[Mt / year]	EU 28+2*	Germany**
Plastics production	61.8	19.9
Plastics consumption	51.2	12.6
Plastic waste	29.1	6.2
- Landfill	7.2	< 0.1
- Energy recovery	12.4	3.2
- Recycling	9.4 (export 1.8)	2.9 (export: 0.6)

Additional plastics recycling capacity demand until 2030: 11 Mt / year


*) Lindner,C. et al.: Circular Economy of Plastics 2018 EU-28+2, Conversio Market & Strategy GmbH, Mainaschaff (2019) **) Lindner,C., Schmitt, J.: Stoffstrombild Kunststoffe in Deutschland 2017, Conversio Market & Strategy GmbH, Mainaschaff (2018)

Recycling Processes for Mixed Plastics Waste and Key Products

3 November 4, 2022 Dieter Stapf – Chemical Recycling of Mixed Plastics Waste by Pyrolysis

Capital Investments (excerpt): Chemical Recycling of Plastics Waste

Enerkem, CAN

→ W2C project, Rotterdam, NL

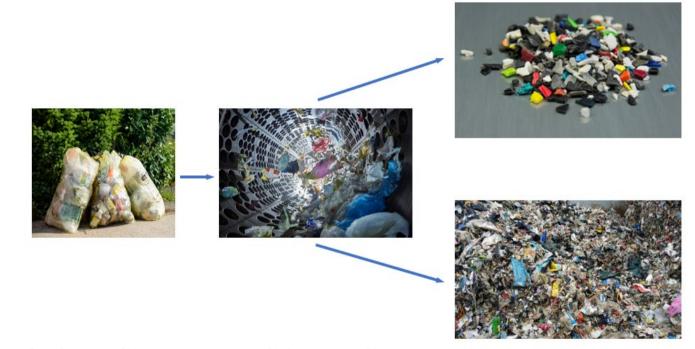
- Plastic Energy, UK
 - Operations @ Almeria & Sevilla, ES
- Sabic, SAU

Cooperation with Plastic Energy, Geleen, NL

LyondellBasell

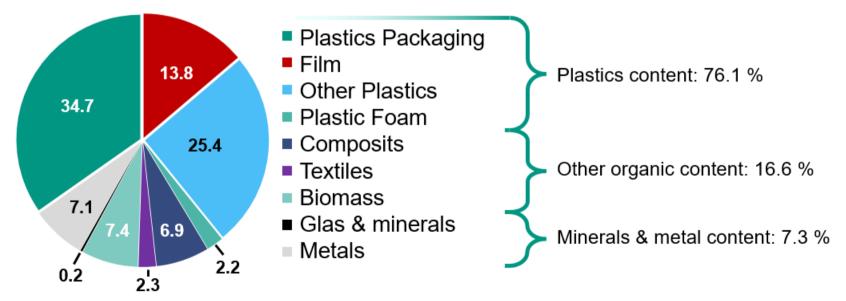
➡ MoReTec-Pilot plant, Ferrara, IT

- BASF
- Cooperation with Quantafuel, NOR
- → Cooperation with Pyrum, GER
- Cooperation with Arcus Greencycling Technologies, GER



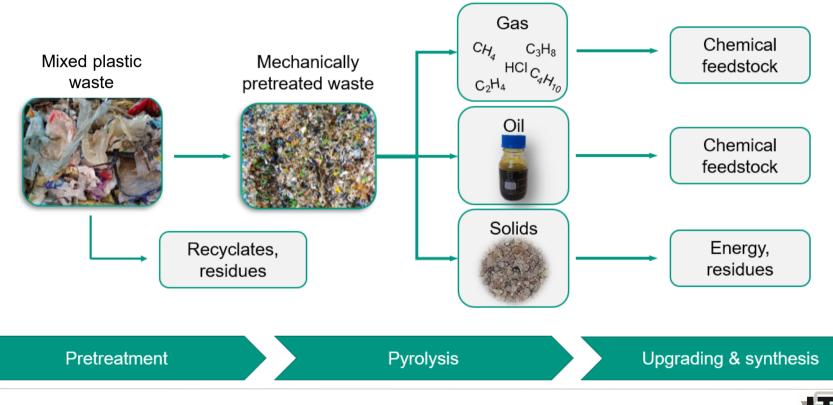
www.plasticenergy.com

Collection and Sorting of Lightweight Packaging Waste (LWP)


<u>Images: www.awg-info.de/index.php?id=65</u>, <u>www.erema.com/de/erema_news/IDobj=200</u>, ww.reclaygroup.com/de/images/Content/Presse/pressefotos/bilddatenbank/sortierung/161010_Sortieranlage_Reclay_by-ASP_DSF3429.jpg

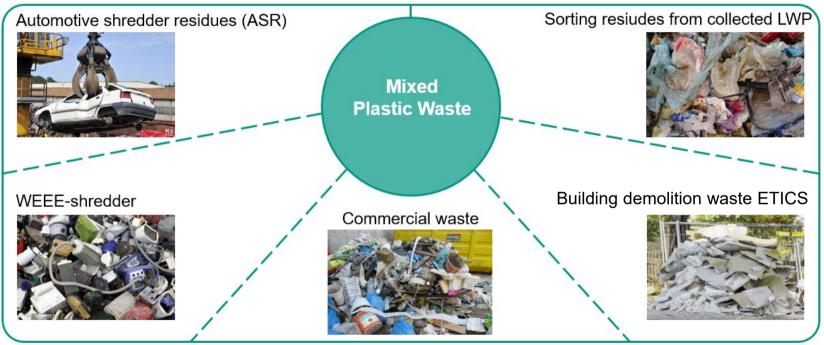
Composition of LWP Waste Sorting Residues

- Mechanical treatment of leight weight packaging (LWP) collected
- Sorting residues (SR) resulting from separation of high value plastics & metals for recycling as well as coarse mineral fraction → energy recovery



Composition of a sorting plant random sample

Recycling of Mixed Plastics Waste: The Pyrolysis Value Chain Example


7 November 4, 2022 Dieter Stapf – Chemical Recycling of Mixed Plastics Waste by Pyrolysis

Institute for Technical Chemistry

Examples of Plastics Waste Produced

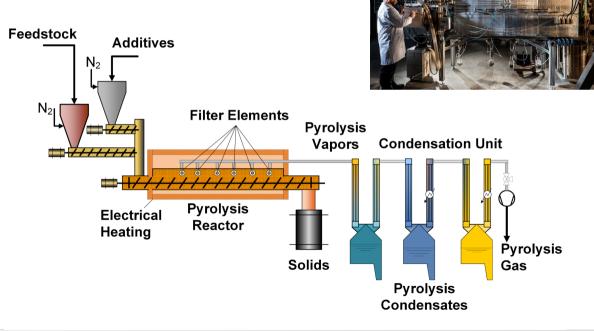
WEEE = Waste of Electrical and Electronic Equipment LWP-SR = Sorting Residues from Light Weight Packaging Waste collected ETICS = Thermal Insulation Composite System

Waste Feedstock Analysis

	LWP-SR [m%]	WEEE [m%]	ETICS	[m%]	CW	ASR
			EPS	XPS	[m%]	[m%]
Moisture ⁽¹⁾	1.7	0.5	0.0	0.0	0,0	1.5
Ashes (550 °C) ⁽²⁾	10.6	27.6	8.2	6.7	9.2	13.3
C ⁽²⁾	58.5	53.1	82.5	79.4	74.7	67.0
H ⁽²⁾	7.5	6.1	7.1	7.1	8.8	8.5
N ⁽²⁾	< 1.0	1.5	< 1.0	< 1.0	< 1.0	1.8
S (2)	0.1	0.1	< 0.1	< 0.1	< 0.1	0.2
CI + Br ⁽²⁾	2.0	2.8	0.3	0.1	3.3	1.2
O (2) (3)	21.3	8.8	1.9	6.7	4.0	6.1
Calorific value ⁽²⁾ / MJ/kg	ca. 25	са. 23	ca. 35	ca. 34	ca. 34	ca. 31
⁽¹⁾ pretreated	⁽²⁾ dry	⁽³⁾ calculated		Waste	random samples	

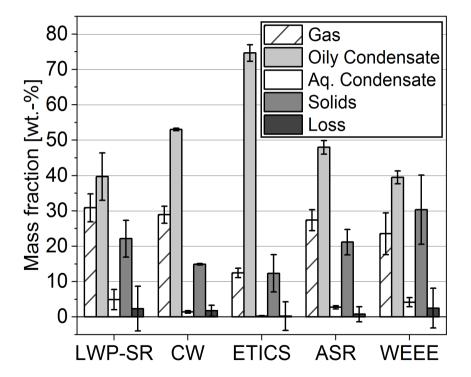
H / C – Ratio

	LWP-SR	WEEE			CW	ASR
	[m%]	[m%]	EPS	XPS	[m%]	[m%]
H / C - ratio	1.5	1.4	1.0	1.0	1.4	1.5



Pyrolysis technology in pilot scale

Screw reactor with integrated hot gas/vapour filtration

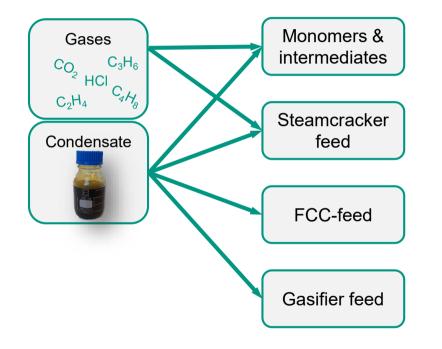

- Flow rate < 10 kg/h</p>
- Temperature < 550°C</p>
- Pressure: 1 atm
- Solids residence time < 60 min</p>

Pyrolysis Mass Balance

Zeller, M., et al.: Chemical recycling of mixed plastic wastes by pyrolysis. Chem. Ing. Tech. 2021, 93 (11), 1-9. https://doi.org/10.1002/cite.202100102

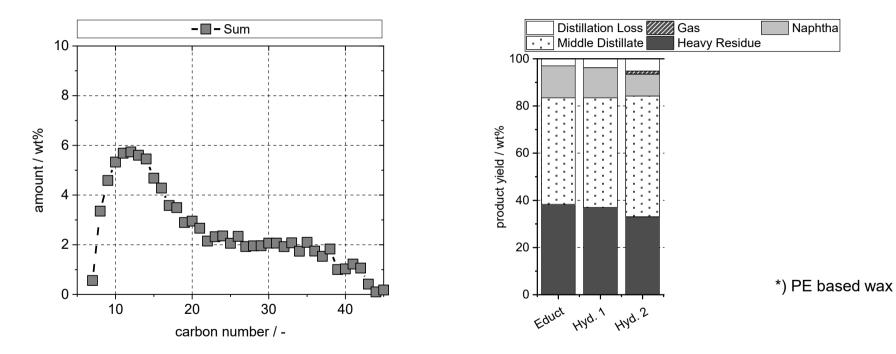
Pyrolysis Carbon Recovery

Feedstock	Fraction of C-feed found back in oily condensate
	[wt-%]
LWP-SR	51.1
CW	60.0
ETICS (XPS)	74.6
ETICS (EPS)	72.9
ASR	57.5
WEEE	60.5


Pyrolysis Energy Balance

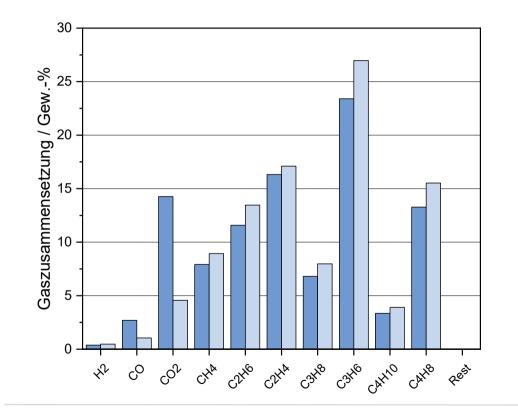
Feedstock	Energy demand for heating, melting, thermal degradation, evaporation	
	[% of feedstock higher heating value]	
LWP-SR	5.1	
CW	5.2	
XPS	4.9	
ASR	5.4	
WEEE	3.7	

Upgrading of Pyrolysis Products to Secondary Petrochemical Feedstock


Upgrading of pyrolysis products

- Removal of heteroatoms (N, O, Cl, Br, S, …)
- Fractionating (monomers, petrol refinery boiling cuts)
- Hydroprocessing (adapt hydrocarbon substance group contents)

Pyrolysis Oil Characterization* and Hydrotreatment



Neuner, P. et al.: Chemical Conversion of Fischer–Tropsch Waxes and Plastic Waste Pyrolysis Condensate to Lubricating Oil and Potential Steam Cracker Feedstocks. Reactions 2022, 3, 352–373. https://doi.org/10.3390/reactions3030026

Pyrolysis Gas Characterization*

*) Polyolefinic waste based pyrolysis gases as petrochemical feedstock

- Thermal, non-catalytic pyrolysis of collected waste agricultural films, screw-pyrolysis @ 450°C, 30 min
- Contaminated polyolefinic waste (LDPE basis)
- Average gas composition of 2 waste samples

Research on Chemical Recycling of Mixed Plastics Waste by Pyrolysis

- Growing volume of complex (plastics) waste that can hardly or cannot be recycled to high value products through collection, sorting and regranulation
- High recycling rates can be achieved through a combination of mechanical and chemical recycling, only
- Pyrolysis as a thermal separation and product conditioning step
- Carbon efficiency: yield and composition of liquid (and gaseous) pyrolysis products; product upgrading depending on feedstock utilization
- **Energy efficiency:** no external energy demand of integrated pyrolysis process
- Chemical recycling technology readiness is developping towards flexibility and efficiency: mixed plastic waste feedstocks, reactor scale-up, product upgrading, process evaluation

Acknowledgement

Waste feedstock samples supply by:

ARN B.V.

Pre Zero GmbH & Co. KG

Electrocycling GmbH

I.A.R. RWTH Aachen*

Project funding through:

*BMBF-project 033R214D KUBA: Nachhaltige Kunststoffwertschöpfungskette: Pilotfall Kunststoffe in Bauwirtschaft und Gebäuden

KIT/Conversio, 2019: "BKV-Studie" Thermal Processes for Feedstock Recycling of Plastics Waste, http://www.bkv-gmbh.de/infothek/studien.html

