KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards 3D Process Simulation for In-Situ Hybridization of Fiber-Metal-Laminates (FML)

Poppe, Christian T. ORCID iD icon 1; Werner, Henrik O. 1,2; Kruse, Moritz; Chen, Hui; Ben Khalifa, Noomane; Henning, Frank 1; Kärger, Luise ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK), Karlsruher Institut für Technologie (KIT)

Abstract:

Fiber-metal-laminates (FML) provide excellent fatigue behavior, damage tolerant properties, and inherent corrosion resistance.To speed up manufacturing and simultaneously increase the geometrical complexity of the produced FML parts, Mennecart et al. proposed a new single-step process combining deep-drawing with infiltration (HY-LCM). Although the first experimental results are promising, the process involves several challenges, mainly originating from the Fluid-Structure-Interaction (FSI) between deep-drawing and infiltration. This work aims to investigate those challenges to comprehend the underlying mechanisms. A new close-to-process test setup is proposed on the experimental side, combining deep-drawing of a hybrid stack with a linear infiltration. A process simulation model for FMLs is presented on the numerical side, enabling a prediction of the dry molding forces, local Fiber Volume Content (FVC) within the three glass fiber (GF) interlayers, and simultaneous fluid progression. The numerical results show that the local deformation of the hybrid stack and required forces are predictable. Furthermore, lateral sealing of the hybrid stacks leads to deviations from the intended initially one-dimensional fluid progression. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000152434
Veröffentlicht am 09.11.2022
Originalveröffentlichung
DOI: 10.4028/p-cr2tco
Scopus
Zitationen: 5
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1013-9826, 0252-1059, 1662-9795, 1662-9809
KITopen-ID: 1000152434
Erschienen in Key Engineering Materials
Verlag Trans Tech Publications
Band 926
Seiten 1399–1412
Vorab online veröffentlicht am 22.07.2022
Schlagwörter Composites, Deep Drawing, FE-Forming Simulation, FML, FSI, Hybrids, HY-LCM, RTM
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page