KIT | KIT-Bibliothek | Impressum | Datenschutz

Providing performance portable numerics for Intel GPUs

Tsai, Yu-Hsiang M. 1; Cojean, Terry ORCID iD icon 1; Anzt, Hartwig ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

With discrete Intel GPUs entering the high-performance computing landscape, there is an urgent need for production-ready software stacks for these platforms. In this article, we report how we enable the Ginkgo math library to execute on Intel GPUs by developing a kernel backed based on the DPC++ programming environment. We discuss conceptual differences between the CUDA and DPC++ programming models and describe workflows for simplified code conversion. We evaluate the performance of basic and advanced sparse linear algebra routines available in Ginkgo's DPC++ backend in the hardware-specific performance bounds and compare against routines providing the same functionality that ship with Intel's oneMKL vendor library.


Verlagsausgabe §
DOI: 10.5445/IR/1000152438
Veröffentlicht am 10.11.2022
Originalveröffentlichung
DOI: 10.1002/cpe.7400
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1532-0626, 1040-3108, 1096-9128, 1532-0634
KITopen-ID: 1000152438
HGF-Programm 46.21.01 (POF IV, LK 01) Domain-Specific Simulation & SDLs and Research Groups
Erschienen in Concurrency and Computation: Practice and Experience
Verlag John Wiley and Sons
Band 35
Heft 20
Seiten Art.-Nr.: e7400
Vorab online veröffentlicht am 26.10.2022
Schlagwörter Ginkgo, Intel GPUs, math library, oneAPI, SpMV
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page