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Abstract
Karst aquifers are important resources for drinking water supply and are very vulnerable to contamination. Microbial concen-
trations at karst springs, in particular, often vary quickly over a short period of time. In this study, the response of microbial 
water quality and particle-size distribution of two alpine karst springs to rainfall events was investigated to test and validate 
parameters that can be used as early-warning systems for fecal contamination. At both investigated karst springs, total organic 
carbon, particle-size distribution (especially small particle fractions), and particle load show a good correlation to the fecal 
indicator bacteria E. coli and can therefore be used as a real-time indicator of fecal contamination at the investigated springs. 
In addition to conventional bacterial determination methods, the β-D-glucuronidase activity, which can be measured in near 
real-time, was used as a novel indicator parameter for fecal contamination. At the event scale, the β-D-glucuronidase (GLUC) 
activity shows a good correlation to E. coli and can be used as an additional real-time indicator of fecal contamination. 
For the studied springs, when they show two peaks in turbidity and small particles, these two parameters are suitable for 
an early warning system because the bacterial contamination occurs during the secondary peak of these parameters. These 
results highlight the vulnerability of karst aquifers and demonstrate the applicability of advanced measurement techniques 
in detecting fecal contamination in real-time, which is especially important given the time-consuming nature of conventional 
bacterial detection methods.
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system · fecal contamination · indicator parameter

Introduction

Karst aquifers are an important source for drinking water 
supply. Approximately 750 million people worldwide 
depend on drinking water from these aquifers (Stevanović 
2019). In many alpine and Mediterranean countries, karst 
aquifers contribute substantially to the freshwater supply. 
Large cities like Rome (Italy), Damascus (Syria), Beirut 
(Lebanon), and Vienna (Austria) obtain their drinking water 
from karst aquifers (Kralik 2001; Kresic and Stevanovic 
2010). With the worldwide increasing water demand, high 

alpine karst aquifers offer a potential untapped for future 
water supply.

Because recharge to karst aquifers occurs either directly 
through solutionally enlarged conduits and fractures or 
through diffuse pathways, these aquifer types often have 
complex hydrological characteristics (Bakalowicz 2005). 
Turbulent flow regimes in conduit systems and short resi-
dence times lead to a rapid hydraulic and hydrochemical 
response to rainfall events which results in high vulnerability 
of karst groundwater (Ford and Williams 2007; Pronk et al. 
2007; White 1988).

Fecal pollution of spring waters is typically determined 
via fecal indicator bacteria (FIB) such as E. coli (e.g. Fergu-
son et al. 2012). In karst aquifers, the microbial water qual-
ity often varies quickly over a wide range with short-term 
peaks in pathogen concentrations. Therefore, the need for 
rapid assessment and near real-time quantification of FIB 
is apparent (e.g. Fiksdal and Tryland 2008; World Health 
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Organization 2017). However, standard cultivation-based 
methods for the detection and enumeration of E. coli require 
between 18 and 72 hours, depending on the incubation time 
(Wildeboer et al. 2010), a time frame where many individu-
als are possibly already exposed to pathogens.

Some studies of freshwaters have used organic matter 
fluorescence as a tracer of groundwater flow in aquifers and 
especially protein-like fluorescence as a possible indica-
tor of bacterial contamination (Baker and Inverarity 2004; 
Baker and Lamont-Black 2001). The data of Determann 
et al. (1998) and Quiers et al. (2014) show tryptophan-like 
fluorescence to be directly related to the microbial activity 
of bacteria. Other studies also support the relation between 
bacteria and tryptophan-like fluorescence and promote the 
use of peak T fluorescence as a real-time indicator of bac-
terial contamination (Fellman et al. 2009; Sorensen et al. 
2018; Sorensen et al. 2015). However, peak T fluorescence 
is only a good indicator of bacterial contamination at high 
contamination levels. At low contamination levels, the corre-
lation between protein-like fluorescence and E. coli is not as 
good as at high contamination levels (e.g. Frank et al. 2018).

Another promising alternative to conventional culture-
based bacterial determination methods is enzyme assays 
because they are relatively easy to perform and can provide 
results in less than one hour (Fiksdal and Tryland 2008; 
Heery et al. 2016). About 97 % of E. coli strains demon-
strate β-D-glucuronidase (GLUC) activity while this enzyme 
is absent in almost all other coliform bacteria (Wildeboer 
et al. 2010). GLUC activity is therefore considered as a suit-
able indicator of E. coli bacteria (Farnleitner et al. 2002; 
Wildeboer et al. 2010. There is increasing research inter-
est in determining GLUC activity in order to evaluate the 
microbial water quality including development of auto-
mated devices for long-term, on-site measurement, such 
as the ColiMinder (VWMS, Austria). This instrument was 
tested by Stadler et al. (2016) in an open-air hydrological 
laboratory. A major outcome of this study was that GLUC 
activity was not a useful proxy for E. coli but further field 
experiments were required in other outdoor settings. Here, 
a mobile ColiMinder device was tested at a karst spring in 
the Austrian Alps to determine the microbial contamination 
patterns after rain events.

In addition to natural fluorescence and enzymatic activ-
ity, turbidity and particle-size distribution were investigated 
at the two karst springs. Abia et al. (2016) postulated that 
the risk of an infection due to E. coli increases 10-fold if 
there is a turbidity event because bacteria tend to adhere 
to particles and are then more persistent within the aquatic 
environment than free floating bacteria (Dussart-Baptista 
et al. 2003; Pronk et al. 2006). In karst systems, particles 
can be transported over large distances and are influenced 
by processes of sedimentation and mobilization (Mahler 
et al. 2000). Turbidity itself is a bulk parameter without 

any information about the origin or nature of the detected 
particles. The measurement of the particle-size distribution 
(PSD) can deliver more information and is a valuable tool 
to specify the type of turbidity and to identify particle-size 
classes that are possibly related to bacterial contamination 
(Ender et al. 2017; Frank et al. 2018; Pronk et al. 2007).

This study aims to determine parameters that can be used 
as early-warning parameters or at least real-time indica-
tors of fecal contamination at karst springs. In this study, 
a mobile ColiMinder device was tested and compared the 
results to conventional bacterial determination methods 
and fluorescence measurements. Furthermore, turbidity 
and particle-size distribution are compared to bacterial and 
enzymatic measurements and evaluated as complementary 
parameters to assess their suitability as parameters for early- 
or real-time warning parameters.

The main research questions of this study are:

•	 How does the measured enzymatic activity (GLUC) react 
to a rainfall event compared to turbidity and particle-size 
distribution?

•	 What is the relation between GLUC activity and conven-
tional cultivation-based determination methods of E. coli 
as well as to other water quality parameters?

•	 What information about the investigated karst system can 
be obtained from the measured parameters?

•	 Is one of the investigated parameters, or a combination 
of several parameters, suitable for the use of an early-
warning or real-time indication system for bacterial con-
tamination?

Study site and methods

Study site

The study area is located along the eastern flank of Mount 
Hochifen in the northern Alps at the border between Ger-
many and Austria (Fig. 1a). The altitude varies between 
1035 m above sea level (asl) (Sägebach Spring) and 2230 
m asl (summit of Mt. Hochifen). The Gottesacker karren 
field (Fig. 1b) covers an area of about 10 km2. Geologi-
cally, the valley follows the contact between two tectonic 
units, the Helvetic Säntis Nappe, and the Flysch zone (Wag-
ner 1950). The most important Helvetic rock formation is 
the Cretaceous Schrattenkalk limestone (75 – 125 m thick) 
which forms the surface of the Gottesacker terrain and acts 
as the main karst aquifer (Goldscheider 2005). The mountain 
range southeast of the valley is formed by low-permeability 
sedimentary rocks, including flysch and Amdener marl. It 
is characterized by low to moderate permeability and drains 
by surface runoff (Chen and Goldscheider 2014). The 
karst aquifer in the catchment of Aubach Spring (QA) and 
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Sägebach Spring (QS) (Fig. 1b-d) is recharged directly from 
precipitation and snowmelt (either diffuse or concentrated) 
and indirectly from surface streams that drain the southern 
part of the catchment area (Fig. 1b).

In the valley, two parallel drainage systems exist: a sur-
face stream and an underground karst drainage system along 
the valley axis. An estavelle, together with a cave system, 
forms the hydraulic connection between the two flow sys-
tems. During high-flow conditions the estavelle acts as a 
karst spring and discharges up to 4000 L/s while during low-
flow conditions, the surface stream sinks underground into 
the cave entrance with a rate of up to 500 L/s (Goldscheider 
2005). Further downstream in the valley, the large, inter-
mediate Aubach Spring (Fig. 1b, c) discharges up to 8000 
L/s but runs completely dry during periods of drought and 
in winter. The largest permanent spring in the study area is 
the Sägebach Spring further downstream (Fig. 1b, d) which 
discharges up to 3500 L/s (Chen and Goldscheider 2014).

The nearest permanent weather station is in the Breitach val-
ley (1140 m asl) and gives a mean annual rainfall of 1840 mm  

and an air temperature of 5.7 °C. In the elevated parts of the 
study site, the precipitation is certainly higher and much of it 
is snow. Assuming a vertical temperature gradient of 0.6 °C/ 
100 m (e.g., Veith 2002) a mean annual temperature of 0 °C 
is expected at an altitude of 2100 m. Due to intense karsti-
fication and the absence of soil and vegetation in the higher 
parts of the study site, the evapotranspiration is low and 
a large portion of rainfall contributes to the recharge and 
therefore to the discharge at the monitored springs.

Methods

Physicochemical data

Aubach Spring (QA) and Sägebach Spring (QS) were moni-
tored from 01.07.2020 to 23.08.2020. Water temperature, 
electrical conductivity (EC) and turbidity were measured 
continuously at 5 to 15 min intervals using a GGUN-FL30 
field fluorometer (detection limit 0.02 nephelometric tur-
bidity units (NTU), Albillia Sàrl., Neuchâtel, Switzerland). 

Fig. 1   a Location map (red 
arrow indicates the location 
of the test site at the German - 
Austrian border in the northern 
Alps; blue color represents car-
bonate rocks; red triangles indi-
cate the border between exposed 
and non-exposed karstifiable 
rocks (WOKAM, modified after 
Chen et al. 2017). b View of 
the test site, with the karst and 
surface catchment of the inves-
tigated springs; Subcatchment 
1 is only drained by Sägebach 
Spring (QS), Subcatchment 2 
is drained by Aubach Spring 
(QA) + QS, Subcatchment 3 is 
drained by Estavelle + QA + 
QS (basemap: Land Vorarlberg 
2022). c Photo of the outlet of 
QA at a discharge of 3500 L/s. 
d Photo of the outlet of Säge-
bach Spring (QS) at a discharge 
of 450 L/s
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Water level data at Sägebach Spring was recorded with an 
OTT Orpheus Mini (OTT HydroMet GmbH, Kempten, 
Germany) water level logger. Discharge measurements 
were done using the salt dilution method with point injec-
tion. In total, 12 measurements were used to create a rating 
curve (R2 = 0.94) to convert water levels into continuous 
discharge data. Water level (BD Sensors LMP308, Thier-
stein, Germany) at Aubach Spring has been continuously 
recorded since 1999 by the Water Management Department 
of Vorarlberg. Water level measurements were converted 
into discharge data using the rating curve of the Water Man-
agement Department of Vorarlberg. Their high-resolution 
data (15 min intervals) were used for this study.

Total organic carbon (TOC) and fecal indicator bacteria (E. coli)

Total organic carbon was detected using the flow-through 
field fluorometer GGUN-FL30 (Albillia Sàrl, Neuchâtel, 
Switzerland). It measures TOC by means of UV fluorescence. 
In addition, manual water samples were taken in 50 mL brown 
glass bottles and acidified with HCl (37 %) to stabilize the 
sample. TOC measurements were done in our laboratory 
at KIT, with a TOC analyzer (vario TOC cube, Elementar 
Analysensysteme GmbH, Hanau, Germany). These samples 
were analyzed in triplicate and the mean value was computed 
and used as TOC concentration. These measurements were 
utilized to create a rating curve for the field fluorometer 
to create continuous TOC data (Fig. S1 of the electronic 
supplementary material (ESM)).

Water samples for the subsequent analysis were taken 
manually or with an automatic sampler (Teledyne ISCO 
3700, Lincoln, USA). For the analysis of fecal indicator bac-
teria, 159 water samples were taken each at Aubach Spring 
and Sägebach Spring in 3–8-hour intervals; 100 mL bottles 
containing sodium thiosulfate were filled. The bottles were 
stored in the dark at 4°C until analysis for total coliforms 
and E. coli, which is widely accepted as fecal indicator (e.g., 
Edberg et al. 2000). Bacteria were identified as the most 
probable number (MPN) per 100 mL following the Colisure-
Quanty-Tray/2000 method (IDEXX Laboratories Inc., West-
brook, USA), which is approved by the U.S. Environmental 
Protection Agency and included in the Standard Methods for 
Examination of Water and Wastewater. The microbial detec-
tion range of this testing method is from 1-2419 MPN/100 
ml. Where an exceedance of this value was expected, the 
samples were diluted with ultrapure water.

Enzymatic activity of β‑D‑glucuronidase and ATP

The measurement of the enzymatic activity is based on 
the increase of the fluorescence intensity, resulting from 
the activity of β-D-glucuronidase (GLUC) and, hence, the 
accumulation of the highly fluorescent reaction product 

4-Methylumbelliferone (Stadler et al. 2016). The measure-
ments were performed with a mobile instrument (ColiMinder, 
VWMS GmbH, Zwerndorf, Austria) that was automatically 
cleaned before and after each measurement. A detailed 
description of the device can be found in Koschelnik et al. 
(2015). For each measurement, a fresh, unfiltered water 
sample is pumped into the measurement chamber, where 
it is mixed with a defined buffer and the substrate solution 
(QuickDetect Reagents, VWMS GmbH). Because the maxi-
mal GLUC activity can be observed at 44 °C (George et al. 
2000), the solution is preheated to a constant temperature 
of 44 °C before the measurement cycle is started automati-
cally. Results of GLUC activity measurements are expressed 
in Modified Fishman Units (MFU) following the standard 
Sigma Quality Control Test Procedure (Sigma-Aldrich 
1998). The measurement interval can be set up manually. A 
complete measurement cycle takes approximately 20 min. 
The device is equipped with an internal battery, but in this 
case, the ColiMinder was set up at the Sägebach Spring 
where power supply was available.

Adenosine triphosphate (ATP) as an indicator of water 
hygiene was previously used especially for drinking water and 
in the food industry (e.g. Hansen et al. 2019). In this study, 
the spring water quality was determined using the Hygiena 
AquaSnap Total test kits (Hygiena LLC, Camarillo, USA). 
The AquaSnap Total test measures both, microbial (living 
cells and particulate matter) and free ATP (non-microbial 
or dead cells) in water. The test device contains a detergent 
to release ATP that is bound to microbial and non-microbial 
organic matter. The dipper of the test device collects 100 μL 
of water, then the contained luciferase enzyme comes into 
contact with ATP and produces a bioluminescence reaction. 
The light emitted from this reaction can be measured and 
was quantified with the Hygiena Ensure Touch luminom-
eter (limit of detection (LOD) = 1 relative light unit (RLU)).

Fluorescence spectroscopy

Colored dissolved organic matter (CDOM) is the optically 
measurable component of dissolved organic matter in water. 
Excitation-emission matrices (EEMs) are the state-of-the-art 
measurement technique for fDOM fluorescence (fluorescent 
dissolved organic matter). EEMs were obtained using the 
Aqualog fluorometer (Horiba Ltd., Kyoto, Japan). An EEM 
is acquired by simultaneous scanning of the excitation spec-
trum and the fluorescence emission spectrum at each excita-
tion wavelength. The field samples were analyzed in a quartz 
cuvette with a path length of 10 mm maintained at a constant 
temperature of 20 °C in the laboratory. The cuvette was cleaned 
after each measurement. For each sample, a simultaneous scan 
of excitation and emission wavelength from 240 to 600 nm with 
5 nm intervals was performed. First and second order Rayleigh 
scattering was removed by nullifying the signal intensities of 
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the Rayleigh lines. The Raman scatter line is removed by sub-
tracting a blank measurement from the sample EEM. EEMs 
were corrected for inner filter effects (IFE) using the parallel 
absorbance measurement from the blank and from the sample 
(Gilmore 2011). The fluorescence intensities were determined 
with the peak-picking technique (Coble 1996). Usually, several 
peaks can be observed in samples from karst spring waters, 
which are referred to as follows: Peak A (humic-like sub-
stances) was identified at excitation wavelength (ex) 240–260 
nm and emission wavelength (em) 400–480 nm in all samples, 
peak T (protein-like fluorescence) was identified at ex 270–280 
nm and em 300–350 nm, which is in accordance with Coble 
(1996) and Frank et al. (2018). The samples were not diluted.

Particle‑size distribution

Particle-size distribution (PSD) was measured using two 
portable PCSS Fluid Lite particle counters (Markus Klotz 
GmbH, Bad Liebenzell, Germany). The PCSS Fluid Lite 
counts suspended particles in the range of 0.9-400 μm and 
groups them into 16 definable size classes. The automated 
measuring procedure starts with a rinsing process followed 
by the actual measurement in which 10 mL of the sample 
water passes through a small glass tube. The tube is irradi-
ated by a laser beam and the contained particles cause a 
decrease in the laser light at the detector. The instrument 
assumes an equivalent spherical diameter of the particle and 
thereby the size of the particle. The particle counters were 
placed directly at the two springs. In all, 16 particle size 
classes were measured but only the small size classes were 
of special interest: 0.9-1.0 μm (hereinafter 1.0 μm), 1.1-2.0 
μm (2.0 μm), 2.1-3.0 μm (3.0 μm), 3.1-4.0 μm (4.0 μm) 
and 4.1-5.0 μm (5.0 μm). These size fractions have a higher 
mobility compared to larger ones and can be transported 
through the whole aquifer. They are well suited to be com-
pared to E. coli which have a size of about 1-3 μm (Reshes 
et al. 2008) and are likely to show similar mobility.

In the measurements taken as part of this study, the small 
particle-size classes 1 and 2 μm reached values of approxi-
mately 3 million particles per 10 mL and about 1.2 million 
particles per 10 mL. When the used particle counter reaches 
a cumulative particle amount of over 1.2 million particles per 
10 mL, coincidence occurs. Because of this, the particle frac-
tions 1 and 2 μm were correlated with turbidity measurements 
(R2 = 0.9) and the values for these two particle-size classes 
were used for further analysis. In this case, it was assumed 
that the fraction between the different size classes remained 
approximately the same during different turbidity levels.

Hydrochemical investigations

During the detailed monitoring periods at both springs, 
water samples were collected in 3- to 8-hour intervals, 

manually and with an automatic sampler. For the analysis 
of anions, 50 mL PE bottles were used and 15 mL PP tubes 
for the analysis of cations. Water samples were filtered with 
cellulose acetate membrane filters (0.45 μm, 25 mm, Sarto-
rius AG, Göttingen Germany). The samples for the analysis 
of cations were acidified with HNO3 (65 %) on-site and all 
samples were stored at 4 °C until the analysis in the labo-
ratory. Alkalinity was measured as triplicate by volumet-
ric titration on-site using an alkalinity test (Merck KGaA, 
Darmstadt, Germany) and the mean value was taken. All 
other anions were measured using an IC system (Dionex 
ICS-2100, Sunnyvale, USA). The LODs for the anions are 
as follows: Cl- = 0.34 mg/L, SO4

2- = 0.79 mg/L, NO3
- = 

0.34 mg/L. All cations were analyzed with an ICP-MS 7800 
(Agilent Technologies, Santa Clara, USA). The LODs for 
the cations are as follows: Na+ = 1.04 μg/L; K+ = 4.46 
μg/L; Ca2+ = 64.24 μg/L; Mg2+ = 2.27 μg/L. For Aubach 
Spring, the ion charge balance error, calculated according to 
DIN 38402-62 (2014), is -2.05 % and for Sägebach Spring, the 
calculated charge balance error is 0.88 %.

Results and discussion

Time series of Aubach and Sägebach springs

The investigations for this study were carried out from 
30.06.2020 to 25.08.2020, a period that was not affected by 
snowmelt in the catchment. At both springs, distinct reactions 
of the measured parameters after rainfall events were recorded 
for all measured parameters. At Aubach Spring, minimum dis-
charge during the investigation period was 149 L/s while the 
minimum discharge at Sägebach Spring was 204 L/s (Table 1).

Maximum discharge values were recorded after a heavy 
rain event on 04.08.2020 with 6183 L/s (Aubach spring) 
and 3670 L/s (Sägebach spring) respectively. The values 
of electrical conductivity (EC) show an inverted reaction 
compared to the discharge (Figs. 2 and 3). Minimum val-
ues for EC were 190 μS/cm at Aubach Spring and 166 μS/
cm at Sägebach Spring while 276 μS/cm and 227 μS/cm 
respectively were the maximum measured values. The EC 
minimum represents fairly well the real arrival of the event 
water, which is also supported by many other studies (e.g. 
Frank et al. 2018; Linan Baena et al. 2009; Nannoni et al. 
2020) which also found negative correlations with a slight 
time-lag between EC and discharge.

Large turbidity peaks were recorded at both springs on 
03.08.2020 and 04.08.2020 and on 17.08.2020 and 18.08.2020 
while Sägebach Spring shows another large turbidity peak on 
23.07.2020 (Figs. 2 and 3). This peak is believed to be caused 
by an extremely focused rain event which occurred in sub-
catchment 1 (Fig. 1b) during the evening of 22 July 2020 and 
therefore only affected Sägebach spring.
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Table 1   Summary statistics for 
discharge, water temperature, 
electrical conductivity (EC), 
turbidity, total organic carbon 
(TOC), bacteria, fluorescence 
peaks A and T (A.U. arbitrary 
unit) and ATP total for Aubach 
and Sägebach spring for the 
whole investigation period. 
S.D. standard deviation; CV 
coefficient of variation

Aubach Spring Sägebach Spring

Discharge n 5062 5098
Min. [L/s] 149 204
Max. [L/s] 6183 3670
Mean [L/s] 677 463
S.D. 919 812
CV [%] 136 162

Water Temperature n 11707 11741
Min. [°C] 5.1 5.4
Max. [°C] 6.8 8.4
Mean [°C] 6.0 5.6
S.D. 0.3 0.1
CV [%] 5.5 2.7

EC n 11707 11741
Min. [μS/cm] 190 166
Max. [μS/cm] 276 227
Mean [μS/cm] 245 204
S.D. 17 13
CV [%] 7 6

Turbidity n 11707 5609
Min. [NTU] 0.1 0.0
Max. [NTU] 23.9 27.2
Mean [NTU] 0.5 0.9
S.D. 1.6 2.5
CV [%] 342.0 262.8

TOC n 11707 11746
Min. [mg/L] 0.7 0.9
Max. [mg/L] 4.5 7.1
Mean [mg/L] 1.4 2.3
S.D. 0.6 1.1
CV [%] 43.1 47.6

E. coli n 159 159
Min. [MPN/100mL] 25 19
Max. [MPN/100mL] 3466 3973
Mean [MPN/100mL] 311 273
S.D. 548 474
CV [%] 176 176

Peak A n 112 105
Min. [A.U.] 1136 1637
Max. [A.U.] 6401 9204
Mean [A.U.] 2097 3202
S.D. 990 1572
CV [%] 47 50

Peak T n 112 105
Min. [A.U.] 228 299
Max. [A.U.] 2139 1396
Mean [A.U.] 597 645
S.D. 288 336
CV [%] 51 49

ATP total n 112 113

Min. [RLU] 13 6

Max. [RLU] 614 972

Mean [RLU] 101 82

S.D. 111 119

CV [%] 110 145
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Total organic carbon (TOC) varied between 0.7 and 4.5 mg/L 
at Aubach Spring and between 0.9 and 7.1 mg/L at Sägebach 
Spring (Table 1). The evolution of E. coli shows a similar 
pattern at both springs and the values at Aubach Spring var-
ied between 25 and 3466 MPN/100 mL while the values at 
Sägebach Spring varied between 15 and 3973 MPN/100 mL 
(Table 1). The maximum bacteria levels at Sägebach Spring 
were measured after the heavy rain event on 02 August 
2020 and 03 August 2020, where also maximum discharge, 
maximum TOC and minimum EC were recorded (Fig. 3). 

Maximum E. coli values at Aubach Spring were detected on 
17 August 2020, after a rather small rain event. While dis-
charge only increased by about 500 L/s and EC only decreased 
by 25 μS/cm, the maximum turbidity peak was recorded with 
23.9 NTU after this event (Fig. 2).

Detailed monitoring campaigns

For a more detailed investigation of bacterial and particle 
dynamics, detailed monitoring was done from 22.07.2020 

Fig. 2   Temporal patterns of 
discharge, EC, and turbidity, 
together with TOC, fecal indica-
tor bacteria E. coli and rainfall 
data from a nearby weather 
station for Aubach Spring. The 
grey bars indicate the detailed 
monitoring periods
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to 26.07.2020, directly after a rainfall event. Because of the 
extremely focused rain event in Subcatchment 1, Aubach 
Spring showed no reaction (see Fig. 2 and Fig. S2 of the 
ESM) therefore, another detailed investigation at Aubach 
Spring was carried out from 16 August 2020 to 19 August 
2020. In addition to the already mentioned parameters, PSD, 
natural fluorescence (peaks A and T) and ATP total were 
measured at Aubach Spring. Additionally, the enzymatic 
activity of β-D-glucuronidase (GLUC) was measured with 
the ColiMinder device at Sägebach Spring. The temporal 

patterns for the detailed monitoring periods at Sägebach 
Spring are given in Fig. 4 and for Aubach Spring in Fig. 5.

During the 22 July 2020 to 26 July 2020 event monitored at 
Sägebach Spring, the particle-size classes, GLUC activity and 
turbidity clearly show two identifiable peaks. Natural fluores-
cence, E. coli, and ATP total only show one peak. The single 
peaks of E. coli, natural fluorescence and ATP total seem to 
appear at the same time as the second peak of particles and 
turbidity. The steep increase of particle concentrations and tur-
bidity is most probably caused by a hydraulic pressure pulse 

Fig. 3   Temporal patterns of 
discharge, EC, turbidity, TOC 
and E. coli together with rainfall 
data from a nearby weather sta-
tion for Sägebach Spring. The 
grey bar indicates the detailed 
monitoring period at Sägebach 
Spring (same period as for 
Aubach Spring in Fig. 2)
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triggered by the rain event. This led to a remobilization of sedi-
ments from inside the karst network which results in the first 
peak of particles and turbidity. Further, the second peak can 
be attributed to the arrival of turbid water from the land sur-
face (allochthonous) which is enriched with bacteria and other 
organic content flushed into the karst aquifer from the rain event. 
A similar behavior was also observed in previous studies at other 
investigated karst sites (e.g. Pronk et al. 2009). In this case, at 
Sägebach Spring, the parameters turbidity and PSD can act as 
an early-warning system for fecal contamination because the 
bacterial contamination occurs during the second peak of these 
parameters. As mentioned previously, both turbidity and PSD 
can be measured in near real-time and automatically, while e.g. 
ATP samples have to be taken manually.

During the monitoring at Aubach Spring from 16 August 
2020 to 19 August 2020 (Fig. 5), concentrations in all particle-
size classes, turbidity, natural fluorescence, ATP total and E. 
coli show a simultaneous increase and the peak was reached 
almost at the same time. The increase of these parameters occurs 
with a time lag of about three hours compared to the increase 
of discharge which is most probably caused by the piston effect 
(Ravbar et al. 2011). While all parameters except the direct 
determination of E. coli can be measured in near real time, these 
parameters are potentially suitable as real time indicators for 
bacterial contamination at Aubach Spring. As the increase of all 
parameters occurs simultaneously but with a time lag relative to 
discharge, discharge can be used as an early-warning parameter 
at this spring. Interesting to note is also, that at Aubach Spring:

•	 The parameter TOC seems to reflect both fluorescence 
parameters (peak A and peak T) as it also shows a slight 
double peak pattern (in contrast to Sägebach Spring, 
whereas TOC clearly has only one peak).

•	 The measured particles seem to be completely flushed out 
of the system within approximately 3 days for Sägebach 
Spring and within less than 2 days at Aubach Spring after 
the respective rain event.

A correlation table for all parameters investigated during 
the detailed monitoring at both springs, together with their 
significance is given in Fig. S3 of the ESM. At Sägebach 
Spring, the best correlation with E. coli was found with the 
particle-size classes 2, 3 and 4 μm (with a Spearman’s rank 
correlation p of 0.91–0.93) and with peak T fluorescence. The 
correlation with GLUC activity is also significant (p = 0.88).

For both storm events, the hydrochemical behavior of 
Aubach Spring and Sägebach Spring, together with all meas-
ured parameters, are given in Fig. 6.

At both springs, many parameters, including all particle sizes, 
bacteria and organic material show a strong increase after the 
rain events (at Aubach Spring on 17.08.2020 at 01:30 and at 
Sägebach Spring on 23.07.2020 at 04:00 (Fig. 6). This suggests 
that these substances are mobilized by the respective rain events 

and transported to the spring. In contrast, anions and cations, 
as well as EC, show a sharp decrease after the respective rain 
events because of dilution with fresh and low-mineralized water 
entering the karst system and reaching both springs.

Conclusions

Two alpine karst springs in Austria were monitored to gain a 
more detailed knowledge about the spring dynamics occur-
ring in conduit-dominated karst aquifer systems. During 
high-resolution monitoring of a storm event, new param-
eters were tested to check and validate their use as real-time 
or early-warning parameters for bacterial contamination at 
karst springs. To characterize transport processes within the 
aquifer and to determine the reaction of the springs to rainfall 
events, particle-size distribution and physicochemical param-
eters were measured. The results show:

•	 A fast and marked response of these parameters after 
rainfall events was observed which demonstrates a con-
duit-dominated karst system with fast flow components.

•	 A high correlation and a simultaneous response to the rain 
event of all recorded water quality parameters was found.

•	 While conventional E. coli determination methods need 
about 24 h for final results, TOC, the particle load and the 
particle-size distribution can be measured in near real-
time, and therefore can be used as a real-time indication 
system for bacterial contamination.

In addition to the already-mentioned parameters, a focus 
of the investigation was the application of the ColiMinder 
device and the use of the GLUC activity as a possible sur-
rogate parameter for E. coli. GLUC activity results show:

•	 A double peak pattern for particles and turbidity after 
the rain event at Sägebach Spring (QS), while TOC, 
conventional E. coli determinations, and natural 
f luorescence only show one peak, concurrent with 
the second peak of TOC, E. coli and natural fluores-
cence.

•	 The best correlations for E. coli were found with small 
particle-size classes, peak T fluorescence and GLUC 
activity. Therefore, particle load and particle-size distri-
bution and/or turbidity, together with GLUC activity are 
suitable parameters for an early-warning system regard-
ing bacterial contamination, because the real E. coli 
contamination occurs during the second peak of these 
parameters.

•	 At least at the event scale, that GLUC activity can be 
used as a real-time indicator of fecal contamination 
because GLUC measurements with the ColiMinder take 
about 25 minutes compared to 24 h for conventional E. 
coli determinations. However, since the ColiMinder does 
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Fig. 4   Temporal patterns of 
discharge, EC, particle size 
classes 1–5 μm, turbidity, ß-D-
glucuronidase activity, TOC, E. 
coli, and fluorescence peaks A 
and T for Sägebach Spring
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not deliver the actual E. coli quantity, it cannot substitute 
conventional determination methods.

At both springs, this study clearly shows the need for 
high-resolution monitoring to record the contamination 

dynamics in this karst aquifer. All measured parameters 
showed a fast and marked reaction to rain events, so it is 
especially important to determine parameters which are 
related to fecal contamination and can be measured in near 
real-time.

Fig. 5   Temporal patterns of 
discharge, EC, particle size 
classes 1–5 μm, turbidity, TOC, 
fluorescence peaks A and T, 
together with the determined 
E. coli values for the Aubach 
Spring
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On the one hand, rain events lead to a mobilization, 
especially of particles, organic material and bacteria, 
while on the other hand rain events lead to a dilution 
effect, which mainly affects the major anions and cations. 
This effect was also observed at a different karst spring 
by Stange and Thiem (2020). These results presented in 
this study highlight the vulnerability of karst aquifers, 
especially after rain events and demonstrate the need for 
advanced measurement techniques and novel parameters 
to detect and predict fecal contamination, which is impor-
tant in regard to time-consuming conventional bacterial 
detection methods.
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