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Abstract The new results on the muon anomalous mag-
netic moment (AMM) published by Fermilab in 2021 did
not lead to a reduction of its long-pending deviation from the
Standard Model (SM) value by more than 4σ . The explana-
tion of this discrepancy by adding new particles to the theory
puts many new physics models under tension when combined
with the null results of the LHC direct searches for new par-
ticles. In this paper, we investigate the CP-violating Next-
to-Minimal Supersymmetric extension of the SM (NMSSM)
with and without an inverse seesaw mechanism. We compute
the one-loop supersymmetric contributions to the AMM and
the two-loop Barr–Zee-type diagrams with effective Higgs
couplings to photons for the leptonic electric dipole moments
(EDMs). The effects of the extended (s)neutrino sector on the
muon AMM and on the mass of the SM-like Higgs boson can
be significant. Complex phases can have an important impact
on the AMM. On the other hand, the stringent limits from the
EDMs on the complex phases have to be taken into account.
Our calculations have been implemented in the Fortran codes
NMSSMCALC and NMSSMCALC-nuSS which are publicly
available. Besides the leptonic AMMs and EDMs, these pro-
grams can compute the Higgs boson masses and mixings,
together with Higgs boson decay widths and branching ratios
taking into account the most up-to-date higher-order correc-
tions in the NMSSM with and without inverse seesaw mech-
anism.

1 Introduction

At the beginning of 2021, the Fermilab Muon g − 2 collab-
oration reported their first result [1] of the muon anomalous
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magnetic moment (AMM) aμ ≡ (gμ − 2)/2,

aFNAL
μ = (11659204.0 ± 5.4) × 10−10, (1)

which is consistent with the previous measurement by the
E821 experiment at BNL with [2]

aBNL
μ = (11659208.9 ± 6.3) × 10−10. (2)

The combined result, aexp
μ = (11659206.1 ± 4.1) × 10−10

compared with the theoretical prediction of the Standard
Model (SM) [3]

aSM
μ = (11659181.0 ± 4.3) × 10−10 (3)

leads to a deviation,

�aμ ≡ aexp
μ − aSM

μ = (25.1 ± 5.9) × 10−10, (4)

at the 4.2σ level. The SM result consists of the pure QED,
electroweak and hadronic contributions. The pure QED con-
tribution has been evaluated up to O(α5) [4] with negligible
uncertainty, the electroweak correction has been computed
up to leading three-loop order with less than one percent of
uncertainty, see [3] and references therein, and is suppressed
by the ratio m2

μ/M2
W where mμ and MW are the mass of

the muon and the W boson, respectively. The largest uncer-
tainty comes from the hadronic contributions which are cal-
culated using non-perturbative methods. Very recently, the
hadronic light-by-light contribution was computed by using
lattice QCD [5] and slightly reduced the significance of the
anomaly.

The anomaly is tantalizing in view of new physics at the
weak scale [6]. Most of the models which try to explain this
discrepancy tend to extend the electroweak sector to include
additional corrections, anew

μ . In the Minimal Supersymmetric
extension of the SM (MSSM), besides the two Higgs doublets
Hu and Hd , there are additional fields given by the super-
partners of the muons, Higgs bosons and gauge bosons that
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interact directly with the muons. They enter the one-loop dia-
grams that contribute to anew

μ . The new contributions depend
on the ratio m2

μ/M2
S , where MS represents the mass scale of

the supersymmetric (SUSY) particles and the muon Yukawa
coupling yμ = √

2mμ/(v cos β). Here v denotes the vacuum
expectation value given in terms of the two vacuum expec-
tation values vu and vd of the two Higgs doublets Hu and

Hd , respectively, v =
√

v2
u + v2

d , and tan β ≡ vu/vd . The
new contribution anew

μ can be significant when MS is small
and/or tan β becomes large. The non-observation of SUSY
particles at the LHC, however, pushes the SUSY mass scale
MS to the TeV range. Moreover, the Higgs signals measured
at the LHC require the SM-like Higgs couplings to be close
to the ones of the SM, and therefore tan β should not be large.
Furthermore, the SM-like Higgs should be the hu-dominated
Higgs boson so that it couples with a SM-like coupling to the
top quarks. These requirements constrain the value of anew

μ .
The Next-to-Minimal Supersymmetric SM (NMSSM)

contains an additional complex singlet superfield [7–22].
Its scalar component can mix with the scalar components
of the two Higgs doublet superfields which results in five
neutral scalar Higgs boson states. Although the LHC Higgs
data has pushed the mass of the dominantly doublet-like
scalar/pseudoscalar Higgs states, hd/ad , into the TeV range it
still allows for the singlet-like Higgs boson masses to be in the
GeV range. This makes the NMSSM an interesting candidate
for Higgs physics beyond the SM. As for the muon AMM,
one expects a similar contribution from the electroweakino
sector as in the MSSM. A noticeable difference may come
from the contribution of a singlet-like Higgs boson with a
mass of a few GeV. However, the one and two-loop light
Higgs contributions are of opposite sign and therefore inter-
fere destructively as shown in [23,24]. When the (s)neutrino
sector of the NMSSM is extended to include six singlet lep-
tonic superfields (N̂i , X̂i , i = 1, 2, 3), the three very small
neutrino masses can then be generated through the inverse
seesaw mechanism [25–27]. This extension of the NMSSM
was first discussed in [28]. The hu-like Higgs boson now has
interactions with the left-handed doublet neutrinos νiL and
the new singlet fermionic components Ni , and also with their
scalar partners, that are proportional to the neutrino Yukawa
couplings. These can induce new one-loop contributions to
the Higgs boson masses as shown in [29–31]. This extension
gives rise to the mixing between left-handed doublet sneu-
trinos ν̃iL with the right-handed ones so that the sneutrino
masses can be rather light. This opens the possibility that
the lightest sneutrinos can be a feasible Dark Matter candi-
date, as shown in [32,33]. The extended sneutrino sector also
gives rise to a new one-loop contribution to the AMM of the
charged leptons, as shown in [34,35].

In this study we compute and subsequently discuss the
full one-loop SUSY contributions to the leptonic AMM and

electric dipole moment (EDM) in the NMSSM and a variant
of the NMSSM with inverse seesaw mechanism (abbrevi-
ated as NMSSM-nuSS) taking into account non-vanishing
CP-violating phases. We further include contributions from
the two-loop Barr–Zee-type diagrams with effective hγ γ

couplings. We show in this study the correlation between
the impacts of the extended (s)neutrino sector on the muon
AMM and on the loop-corrected hu-like Higgs boson mass.
The impacts can be significant simultaneously. In the regions
where a positive SUSY contribution to the muon AMM is
necessary to explain the anomaly, the one-loop contributions
from the extended (s)neutrino sector to the hu-like Higgs
boson mass can become negative since the sneutrino contri-
butions dominate over the neutrino contributions. We also
study the effects of the complex phases on the muon AMM
in both models. All these contributions to the AMM and to
the EDM of the charged leptons have been implemented in
our two published Fortran codes NMSSMCALC [36–40] and
NMSSMCALC-nuSS [31] which compute the Higgs boson
masses and mixings, together with Higgs boson decay widths
and branching ratios taking into account the most up-to-date
higher-order corrections. The codes can be downloaded from
the url:

https://www.itp.kit.edu/~maggie/NMSSMCALC/

and

https://www.itp.kit.edu/~maggie/NMSSMCALC-nuSS/

The paper is organised as follows. Section 2 introduces the
models and our notations. In Sect. 3 we present our computa-
tion and analytical expressions of the one-loop and two-loop
contributions to the leptonic AMM and EDM. The set-up
of the calculation and the numerical analysis are given in
Sect. 4. We conclude in Sect. 5.

2 The complex NMSSM and the NMSSM with inverse
seesaw mechanism

The difference between the complex NMSSM and the com-
plex NMSSM with inverse seesaw mechanism manifests
itself mainly in the neutrino and sneutrino sectors. We start
with a short description of the complex NMSSM to introduce
the model parameters. We follow the same notation which
has been used in our previous studies [36–40]. The complex
NMSSM superpotential is given by (i, j = 1, 2)

WNMSSM = εi j [ye Ĥ i
d L̂

j Êc + yd Ĥ
i
d Q̂

j D̂c − yu Ĥ
i
u Q̂

j Û c]
− εi jλŜ Ĥ

i
d Ĥ

j
u + 1

3
κ Ŝ3, (5)

with the quark and leptonic superfields Q̂, Û , D̂, L̂ , Ê , and
the Higgs doublet superfields Ĥd , Ĥu and the singlet super-
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field Ŝ and the totally antisymmetric tensor ε12 = ε12 = 1.
Charge conjugated fields are denoted by the superscript c.
Color and generation indices have been suppressed for the
sake of clarity. The Yukawa couplings yu, yd and ye are taken
as diagonal 3×3 matrices in the flavour space. The coupling
parameters λ and κ are complex numbers in the CP-violating
NMSSM. The soft SUSY-breaking Lagrangian reads

Lsoft,NMSSM

= −m2
Hd

H†
d Hd − m2

Hu
H†
u Hu − m2

Q̃
Q̃† Q̃ − m2

L̃
L̃† L̃

− m2
ũ R
ũ∗
RũR − m2

d̃R
d̃∗
Rd̃R

− m2
ẽR
ẽ∗
RẽR − (εi j [ye AeH

i
d L̃

j ẽ∗
R + yd Ad H

i
d Q̃

j d̃∗
R

− yu AuH
i
u Q̃

j ũ∗
R] + h.c.)

− 1

2
(M1 B̃ B̃ + M2W̃ j W̃ j + M3G̃G̃ + h.c.)

− m2
S|S|2 +

(
εi jλAλSH

i
d H

j
u − 1

3
κAκ S

3 + h.c.

)
. (6)

The Hu,d are two scalar Higgs doublets, S a scalar singlet
field, Q̃ scalar squark doublets, L̃ scalar slepton doublets, ũ R

and d̃R scalar squark singlet fields, and ẽR a scalar slepton
singlet field. The soft SUSY-breaking gaugino mass param-
eters Mk (k = 1, 2, 3) of the bino, wino and gluino fields B̃,
W̃l (l = 1, 2, 3) and G̃ as well as the soft SUSY-breaking
trilinear couplings Ax (x = λ, κ, u, d, e) are complex in the
CP-violating NMSSM.

After electroweak symmetry breaking, the Higgs boson
fields can be expanded around their vacuum expectation val-
ues (VEVs) vu , vd , and vs , respectively,

Hd =
(

vd+hd+iad√
2

h−
d

)
, Hu = eiϕu

(
h+
u

vu+hu+iau√
2

)
,

S = eiϕs√
2

(vs + hs + ias), (7)

with the CP-violating phases ϕu,s and we obtain the tree-level
spectrum of the Higgs sector. The relation to the SM VEV
v ≈ 246.22 GeV is given by

v2 = v2
u + v2

d (8)

and we define the mixing angle tan β as

tan β = vu

vd
. (9)

The effective μ parameter is given by

μeff = λvseiϕs√
2

. (10)

Besides the gauge bosons, quarks, charged leptons, and three
left-handed neutrino fields as in the SM, we have an extended
Higgs spectrum and new SUSY particles, in particular:

• The CP-even and CP-odd Higgs interaction states
(hd,u,s, au,d,s) mix to form five CP indefinite Higgs mass
eigenstates hi (i = 1, . . . , 5), with their masses per con-
vention ordered as mh1 < mh2 < mh3 < mh4 < mh5 ,
and one neutral Goldstone boson G0. We use a two-fold
rotation to rotate from the interaction to the mass eigen-
states,

(hd , hu, hs, a, as,G
0)T

= RG(β) (hd , hu, hs, ad , au, as)
T , (11)

(h1, h2, h3, h4, h5,G
0)T

= RH (hd , hu, hs, a, as,G
0)T , (12)

where the first rotation matrix RG with one rotation
angle β singles out the neutral Goldstone boson and
the second rotation matrix RH rotates the five interac-
tion states (hd , hu, hs, a, as) to the five mass eigenstates
(h1, h2, h3, h4, h5).

• The charged Higgs interaction states h±
d , h±

u constitute
the charged Higgs bosons H± with mass MH± and the
charged Goldstone bosons G±.

• The fermionic partners of the neutral Higgs bosons, the
neutral higgsinos H̃u , H̃d and the singlino S̃, mix with the
neutral gauginos B̃ and W̃ 3, resulting in five neutralinos
denoted as χ̃0

i , (i = 1, . . . , 5). The mass ordering of the
χ̃0
i is chosen asmχ̃0

1
≤ · · · ≤ mχ̃0

5
and the rotation matrix

N transforms the fields (B̃, W̃ 3, H̃d , H̃u, S̃)T into the
mass eigenstates.

• The two chargino mass eigenstates,

χ̃+
i =

(
χ̃+
Li

χ̃−
Ri

)
, i = 1, 2, (13)

are obtained from the rotation of the interaction states,
given by the charged Higgsinos H̃±

d , H̃±
u and the charged

gauginos W̃±, to the mass eigenstates. This is done by
a bi-unitary transformation with the two 2 × 2 unitary
matrices V χ and Uχ ,

χ̃+
L = V χ (W̃+, H̃+

u )T , χ̃−
R = Uχ (W̃−, H̃−

d )T . (14)

• The scalar partners of the left- and right-handed up-type
quarks are denoted by ũiL/R , of the down-type quarks by

d̃iL/R , and of the charged leptons by l̃ iL/R (i = 1, 2, 3).
We do not include flavor mixing. Within each flavour the
left- and right-handed scalar fermions with same electric
charge mix and they are rotated to the mass eigenstates
by a unitary matrix U f̃ .

• There are three scalar partners of the left-handed neutri-
nos, denoted as ν̃i (i = 1, 2, 3) with their masses given
by

123
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m2
ν̃i

= 1

2
M2

Zc2β + m2
L̃i

, (15)

where the short hand notation cx ≡ cos(x), sx ≡
sin(x), tx ≡ tan(x) is used in this paper and the second
term comes from the soft SUSY-breaking Lagrangian in
(6).

The complex NMSSM with inverse seesaw mechanism is
obtained from the complex NMSSM by including six gauge-
singlet chiral superfields N̂i , X̂i (i = 1, 2, 3) that carry lepton
number. We follow the same notation as in our previous inves-
tigation of the loop corrections to the neutral Higgs boson
masses presented in [31]. The superpotential of the model
reads (i, j = 1, 2)

WNMSSM-nuSS = WNMSSM − yνεi j Ĥ
i
u L̂

j N̂ c

+ λX Ŝ X̂ X̂ + μX X̂ N̂ c, (16)

where the neutrino Yukawa coupling yν and the coupling λX

are 3 × 3 complex matrices in general, and the superscript c
denotes the charge conjugation. The λX Ŝ X̂ X̂ term violates
the lepton number by two units, see Ref. [31], therefore we
require λX to be extremely small. The 3×3 matrix μX is the
only parameter with the dimension of mass in the superpo-
tential. It, however, does not participate in the spontaneous
electroweak symmetry breaking process and therefore does
not give rise to the well known μ-problem in the MSSM. Fur-
thermore, the μX X̂ N̂ c term preserves lepton number as dis-
cussed in [31], hence μX can be of the order of the SUSY con-
serving mass scale and is naturally large. This is essential for
the seesaw mechanism. The soft SUSY-breaking NMSSM
Lagrangian respecting the gauge symmetries and the global
Z3 symmetry reads (the assignment of the Z3 charges is pro-
vided in [31])

Lsoft
NMSSM-nuSS = Lsoft

NMSSM + (εab yν AνH
a
u L̃

b Ñ∗

+ λX AX S X̃ X̃ + μX BμX X̃ Ñ∗ + h.c.)

− m̃2
X

∣∣∣X̃
∣∣∣
2 − m̃2

N

∣∣∣Ñ
∣∣∣
2
, (17)

which introduces the soft SUSY-breaking trilinear couplings
Aν, AX , the soft SUSY-breaking masses m̃2

X , m̃2
N , and the

soft SUSY-breaking bilinear mass BμX .
In the neutral leptonic sector, the three left-handed neutri-

nos νLi mix with the six leptonic component fields of the six
singlet superfields N̂ c

i , X̂i , i = 1, 2, 3, and the mass term in
the Lagrangian reads

Lν
mass = −1

2

(
νL Nc X

)
Mν

ISS

⎛
⎝

νL
Nc

X

⎞
⎠ , (18)

where the mixing mass matrix is given by

Mν
ISS =

⎛
⎝

0 MD 0
MT

D 0 μX

0 μT
X MX

⎞
⎠ , (19)

where blocks MD, μX and MX are 3 × 3 matrices with μX

defined in Eq. (16) and

MD = vueiϕu√
2

yν, MX = vseiϕs√
2

(λX + λT
X ). (20)

Diagonalizing the neutrino mass matrix with a unitary rota-
tion matrix U ν , one obtains nine neutrino mass eigenstates
with their masses mνi (i = 1, . . . , 9) being sorted in ascend-
ing order. By exploiting the fact that all matrix elements of
MD and MX are much smaller than the eigenvalues of μX ,
the 3 × 3 light neutrino mass matrix can be expressed at
leading order as

Mlight = MDM
−1
N MT

D, with MN = μXM
−1
X μT

X , (21)

and then can be diagonalized by the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix UPMNS,

U∗
PMNSMlightU

†
PMNS = mν, mν = diag(mν1,mν2 ,mν3).

(22)

In order to reproduce the light neutrino oscillation data, two
different parameterizations have been considered. In the so-
called Casas–Ibarra parameterization [41], MD is computed
from the relation

MD = UT
PMNS

√
mνR

√
MNVν,

MN = diag(MN1, MN2 , MN3) = V ∗
ν MNV

†
ν , (23)

with R being a complex orthogonal matrix and Vν a unitary
matrix diagonalizing MN . The yν are then obtained from
(20). The other possibility is to use the μX -parameterization
[42] in which MX is computed from the relation

MX = μT
X M

−1
D U∗

PMNSmνU
†
PMNSM

T,−1
D μX , (24)

where MD is calculated from the input yν .
In the sneutrino sector, each sneutrino field is split up into

its CP-even and CP-odd components as

ν̃ = 1√
2

(ν̃+ + i ν̃−) , (25)

Ñ∗ = 1√
2

(
Ñ+ + i Ñ−

)
, (26)

X̃ = 1√
2

(
X̃+ + i X̃−

)
. (27)

The mass term in the basisψ = (ν̃+, Ñ+, X̃+, ν̃−, Ñ−, X̃−)T

(generation indices are suppressed) is given by

L = 1

2
ψT Mν̃ψ, (28)
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where the mass matrix Mν̃ is an 18 × 18 symmetric matrix
that can be found in Appendix A. An orthogonal matrix Uν̃

can be used to obtain the masses of the sneutrinos as

diag
(
m2

ñ1
, . . . ,m2

ñ18

)
= Uν̃Mν̃Uν̃

T , (29)

where their mass values are ordered as m2
ñ1

≤ · · · ≤ m2
ñ18

.

3 SUSY contributions to the leptonic AMM and EDM

The SUSY contributions to the leptonic AMM al and EDM
dl (l = e, μ, τ) can be calculated in perturbation theory by
considering the matrix element decomposed into a relativistic
covariant form,

〈l(p2)| jμ(q)|l(p1)〉
= −ieū(p2)

[ (
γ μ − /qqμ

q2

)
(F̄L(q2)PL + F̄∗

L (q2)PR)

+ iσμνqν

2ml
(FL(q2)PL + F∗

L (q2)PR)

+qμ

ml
( ¯̄FL(q2)PL + ¯̄F∗

L (q2)PR)

]
u(p1) (30)

where σμν = i
2 [γ μ, γ ν], PL/R = 1∓γ5

2 , q = p2 − p1, ml is
the lepton mass and u(p) denotes the Dirac spinor. The form

factors FL , F̄L , ¯̄FL are functions of q2 and other parameters
of the model. The operator σμνqν is called dipole matrix
operator. In the static limit (qμ → 0) we have [43]:

al = Re[FL(0)], dl = e

2ml
Im[FL(0)]. (31)

In our computation we will use this generic form for both the
AMM and EDM keeping all possible complex phases.

3.1 One-loop contributions

It is well known that the contributions to the dipole matrix
σμνqν require a chirality flip. Therefore contributions to
FL(0) are proportional either to the mass of the external lep-
ton or to the masses of the fermions running in the loop
diagrams. In Fig. 1, we present all one-loop diagrams which

contribute to FL(0) in the NMSSM-nuSS. Diagrams with
neutral or charged Goldstone bosons occur explicitly because
we work in the Feynman–’t Hooft gauge. The diagrams 1 and
2 are the same as in the SM. The diagram with the photon
exchange belongs to the QED contribution and the diagrams
with Z and G0 belong to the weak contribution. We cal-
culated these diagrams and recovered the results quoted in
the literature, see for example [43] and references therein.
Since we do not account them in anew

l we do not present
their explicit expressions here and will not mention them any
more. The diagrams 3–6 belong to the W contribution. In the
SM, neutrinos are purely left-handed and massless while in
the NMSSM-nuSS we have three light active neutrinos and
six sterile neutrinos. We denote the difference between the
NMSSM-nuSS and the SM contributions with respect to the
W diagrams as

Fnew,W
L = FNM,W

L − FSM,W
L (32)

where (l = e, μ, τ )

FNM,W
L = − m2

l

4π2v2

9∑
i=1

[
1

2
v2s2

β

∣∣∣∣
3∑

k=1

(U ν ∗
i(k+3)y

ν
lk)

∣∣∣∣
2

×
(
CW,νi

2 + CW,νi
12 + CW,νi

22

)

+ 1√
2
sβvmνi U

ν ∗
il eiϕu

3∑
k=1

(U ν ∗
i(k+3)y

ν
lk)

×
(
CW,νi

0 + CW,νi
1 + CW,νi

2

)

+M2
W |U ν

il |2
(
−2CW,νi

1 + 2CW,νi
12 + 2CW,νi

22

)

+m2
l |U ν

il |2
(
CW,νi

1 + CW,νi
12 + CW,νi

11

) ]
(33)

and

FSM,W
L = − m2

l

4π2v2

[
M2

W

(
−2CW,ν

1 + 2C̃W,ν
12 + 2CW,ν

22

)

+m2
l

(
CW,ν

2 + CW,ν
12 + CW,ν

22

) ]
. (34)

Note that we have introduced the abbreviations Cx,y
i ... for

the one-loop three-point integral coefficients which will be

Fig. 1 Generic one-loop
Feynman diagrams contributing
to the dipole matrix form factor
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defined at the end of this section. Expanding FSM,W
L with

respect toml/MW we obtained the first term in the expansion
in accordance with the well-known result in the literature, see
for example [43] and references therein,

aSM,W
l =

√
2Gμm2

l

16π2

10

3
, (35)

where Gμ is the Fermi constant of the muon. While FSM,W
L

is real in the SM, FNM,W
L can be complex. In the NMSSM

without inverse seesaw mechanism, the neutrino sector is
identical to the one of the SM, therefore Fnew,W

L vanishes.
The neutral Higgs boson contribution arises from diagram 7.
In our model there are five neutral Higgs bosons while in
the SM there is only one neutral state. We denote the new
contribution from the neutral Higgs bosons as

Fnew,H
L = FNM,H

L − FSM,H
L , (36)

where

FNM,H
L = m4

l

8π2v2

5∑
j=1

[
(RH

j1)
2

c2
β

(
2C

h j ,l
1 + 2C

h j ,l
2

+C
h j ,l
11 + 2C

h j ,l
12 + C

h j ,l
22

)

×t2
β(RH

j4)
2
(
C
h j ,l
11 + 2C

h j ,l
12 + C

h j ,l
22

)

+2i tβ
RH

j1RH
j4

cβ

(
C
h j ,l
1 + C

h j ,l
2

) ]
(37)

and

FSM,H
L = m4

l

8π2v2

[
2CHSM,l

1 + 2CHSM,l
2 + CHSM,l

11

+2CHSM,l
12 + CHSM,l

22

]
. (38)

From (37) and (38) it is clear that the Higgs contribution
is suppressed by a factor of m2

l /M
2
W compared to the W

and Z contributions. The last three diagrams 8, 9, and 10 do
not appear in the SM. They give rise to the charged Higgs,
neutralino and chargino contributions. Our calculations lead
to the following results

FNM,H±
L = − m2

l

16π2

9∑
i=1

[
2c2

β

∣∣∣∣
3∑

k=1

(U ν ∗
i(k+3)y

ν
lk)

∣∣∣∣
2

×(CH±,νi
2 + CH±,νi

12 + CH±,νi
22 )

−23/2eiϕumνi sβU
ν ∗
il

v

3∑
k=1

(U ν ∗
i(k+3)y

ν
lk)

×(CH±,νi
0 + CH±,νi

1 + CH±,νi
2 )

+4m2
l

v2

∣∣U ν
il

∣∣2
t2
β(CH±,νi

1 + CH±,νi
12 + CH±,νi

11 )

]
, (39)

FNM,χ̃±
L = ml

8π2

18∑
i=1

2∑
j=1

[
ml

(∣∣∣∣gLlχ̃−
j ν̃i

∣∣∣∣
2

+
∣∣∣∣gR

lχ̃−
j ν̃i

∣∣∣∣
2
)

×
(
C

χ̃±
j ,ν̃i

1 + C
χ̃±
j ,ν̃i

12 + C
χ̃±
j ,ν̃i

11

)

+mχ̃±
j
gR∗
lχ̃−

j ν̃i
gL
lχ̃−

j ν̃i

(
C

χ̃±
j ,ν̃i

1 + C
χ̃±
j ,ν̃i

2

) ]
, (40)

FNM,χ̃0

L = ml

8π2

2∑
a=1

5∑
k=1

[
− ml

(∣∣∣∣gLlχ̃0
k l̃a

∣∣∣∣
2

+
∣∣∣∣gR

lχ̃0
k l̃a

∣∣∣∣
2
)

×
(
C

χ̃0
k ,l̃a

1 + C
χ̃0
k ,l̃a

12 + C
χ̃0
k ,l̃a

11

)

+mχ̃0
k
gR∗
lχ̃0

k l̃a
gL
lχ̃0

k l̃a

(
C

χ̃0
k ,l̃a

0 + C
χ̃0
k ,l̃a

1 + C
χ̃0
k ,l̃a

2

)]
. (41)

The left- and right-handed couplings of the charginos and the
neutralinos are defined in the interaction Lagrangian,

l̄(igL
lχ̃−

j ν̃i
PL + igR

lχ̃−
j ν̃i

PR)χ−
j ν̃i

+χ̄0
k (igL

lχ̃0
k l̃a

PL + igR
lχ̃0

k l̃a
PR)ll̃∗a , (42)

where

gL
lχ̃−

j ν̃i
= ml

vcβ

(
U ν̃
il + iU ν̃

i(l+9)

)
Uχ ∗

j2 , (43)

gR
lχ̃−

j ν̃i
= −g2V

χ
j1√

2

(
U ν̃
il + iU ν̃

i(l+9)

)

+ 1√
2
V χ
j2

(
U ν̃
i(l+3) + iU ν̃

i(l+12)

)
yν∗
ll , (44)

gL
lχ̃0

k l̃a
=

(
g1√

2
N∗
k1 + g2√

2
N∗
k2

)
Ul̃
a1

+
√

2ml

vcβ

N∗
k3U

l̃
a2, (45)

gR
lχ̃0

k l̃a
= −√

2g1Nk1U
l̃
a2 −

√
2ml

vcβ

Nk3U
l̃
a1, (46)

where g1 and g2 are the gauge couplings of the U (1)Y and
SU (2)L gauge groups, respectively. Note that we allow for
lepton flavour mixing in the neutrino sector, therefore yν is a
3×3 complex matrix and yν

ll is the lth diagonal element with
l = 1, 2, 3 for electron, muon and tauon, respectively. For
the complex NMSSM without inverse seesaw mechanism,
one sets yν to zero and U ν,U ν̃ to a 3 × 3 unity matrix in
the charged Higgs and chargino contributions. The neutralino
contribution is the same in both models. In summary the new
one-loop contributions from the weak sector of the NMSSM-
nuSS to the leptonic AMM and EDM are given by

Fnew,1l
L = Fnew,W

L + Fnew,H
L + FNM,H±

L

+FNM,χ̃±
L + FNM,χ̃0

L , (47)

a1l
l = Re[Fnew,1l

L ], d1l
l = e

2ml
Im[Fnew,1l

L ]. (48)
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Finally, we define the abbreviations for the one-loop three-
point integrals which have been used earlier in this section,

Cx,y
i ... = Ci ...

(
m2

l , 0,m2
l ,m

2
x ,m

2
y,m

2
y

)
, (49)

where the following conventions of the one-loop three-point
integrals in D = 4 − 2ε are used

Cx,y
0 = (μ2

Rπ)(4−D)/2

iπ2

∫
dDq

1

Dx,y
, (50)

Cx,y
1 pμ

1 + Cx,y
2 pμ

2 = (μ2
Rπ)(4−D)/2

iπ2

∫
dDq

qμ

Dx,y
, (51)

Cx,y
00 gμν + Cx,y

11 pμ
1 pν

1 + Cx,y
12 (pμ

1 pν
2 + pν

1 p
μ
2 ) + Cx,y

22 pμ
2 pν

2

= (μ2
Rπ)(4−D)/2

iπ2

∫
dDq

qμqν

Dx,y
, (52)

where the denominator Dx,y is given by

Dx,y = (q2 − m2
x )((q − p1)

2 − m2
y)((q − p2)

2 − m2
y),

(53)

with p2
1 = m2

l , p
2
2 = m2

l , (p1 − p2)
2 = 0, ml being the mass

of the external lepton, mx,y being the masses of the particles
x and y. If ml � mx ,my one can use the zero external mass
approximation for these coefficients [44],

C0(0, 0, 0, x, y, y) = 1

x

(
− 1

t − 1
+ ln(t)

(t − 1)2

)
, (54)

C1(0, 0, 0, x, y, y) = 1

x

(
(t − 3)

4(t − 1)2 + ln(t)

2(t − 1)3

)
, (55)

C11(0, 0, 0, x, y, y) = 1

x

(
(−2t2 + 7t − 11)

18(t − 1)3 + ln(t)

3(t − 1)4

)
,

(56)

C2(0, 0, 0, x, y, y) = C1(0, 0, 0, x, y, y), (57)

C22(0, 0, 0, x, y, y) = 2C12(0, 0, 0, x, y, y)

= C11(0, 0, 0, x, y, y), (58)

where t = y/x . If ml is of the order of the internal masses,
one should use the following expressions

C0(m, 0,m, x, y, y) =
∫ 1

0

zdz

−mz2 + (m + x − y)z − x
,

(59)

C1(m, 0,m, x, y, y) =
∫ 1

0

−z2dz

2(−mz2 + (m + x − y)z − x)
,

(60)

C11(m, 0,m, x, y, y) =
∫ 1

0

z3dz

3(−mz2 + (m + x − y)z − x)
,

(61)

C2(m, 0,m, x, y, y) = C1(m, 0,m, x, y, y), (62)

C22(m, 0,m, x, y, y) = 2C12(m, 0,m, x, y, y)

= C11(m, 0,m, x, y, y). (63)

We have implemented the analytic expressions of these one-
loop three-point integral coefficients including the depen-
dence on m2

l and compared with the numerical results
obtained from the Package-X [45]. The zero external mass
approximation can be applied for chargino and neutralino
one-loop diagrams, and we then recover the known formula in
the MSSM [46]. To the best of our knowledge, this is the first
time that the full one-loop SUSY corrections to the leptonic
AMM and EDM in the complex NMSSM with inverse seesaw
mechanism have been presented. For the NMSSM without
inverse seesaw mechanism, the expressions of the full one-
loop contributions to the muon AMM have been presented in
[24] and the full one-loop contributions to the electron EDM
have been discussed in [47]. The one-loop chargino and neu-
tralino contributions are always considered to be dominant
in most of the parameter space, so that they are the only ones
taken into account in the analyses of the muon and electron
AMM available in the literature [34,35]. However in case of
light sterile neutrino masses and/or light singlet-like Higgs
bosons, contributions from W and/or Higgs diagrams can be
significant. Therefore, for the investigation of the full param-
eter space these contributions should be taken into account.

3.2 Two-loop contributions

The two-loop SUSY contributions to the muon AMM in
the MSSM have been classified and evaluated in [48–54]
for the CP-conserving case and in [55] for the CP-violating
case. The numerical results of all two-loop contributions
have identified some dominant contributions. These domi-
nant two-loop SUSY corrections have been generalized to the
CP-conserving NMSSM and implemented in NMSSMTools
[24]. We follow this strategy to take into account the dom-
inant two-loop contributions. We first consider the leading-
logarithmic two-loop electroweak contribution which arises
from the SUSY one-loop diagrams with an additional photon
loop. This contribution has been evaluated most efficiently
by using the effective Lagrangian approach which can be
applied for the SM and many new physic models, as per-
formed in [56]. It is given by

aqed,2l
l = −4α

π
anew,1l
l log

MSUSY

ml
,

dqed,2l
l = −4α

π
dnew,1l
l log

MSUSY

ml
, (64)

where the scale MSUSY is chosen to be of the order of the
masses of the smuons, in particular MSUSY = √

mμ̃Rmμ̃L .
The negative sign of this term gives a reduction of about ten
percent of the whole one-loop contribution.

123



  954 Page 8 of 20 Eur. Phys. J. C           (2022) 82:954 

The Higgs-mediated Barr–Zee-type diagrams [57] with
an internal photon can contribute significantly to the lep-
tonic AMM. We consider here the contributions from fermion
loops, sfermion loops, charged Higgs loops and chargino
loops generating the effective hiγ γ vertex. These contribu-
tions can be calculated by evaluating first the effective hiγ γ

vertex and then inserting this effective vertex into the second
loop. Making use of gauge invariance, the effective hiγ γ

vertex can be written as1

�
μν
hiγ γ ∗ = ((k · q)gμν − qμkν)�A + εμναβkαqβ�P , (65)

where kμ, qν are the momenta of the on-shell and off-shell
photons, respectively, and �A, �P are scalar form factors.
We evaluate these form factors for sfermion loops, charged
Higgs loops, chargino loops and fermion loops. They are
given by

�A
f̃

= −
N f
c Q2

f̃
e2ghi f̃ ∗ f̃ v

8π2

∫ 1

0
dx

x(x − 1)

q2x(1 − x) − M2
f̃

,

(66)

�P
f̃

=0, (67)

�A
H± = − e2ghi H+H−v

8π2

∫ 1

0
dx

x(x − 1)

q2x(1 − x) − M2
H±

, (68)

�P
H± =0, (69)

�A
χ̃± =

e3gS
hi χ̃

+
j χ̃−

j
Mχ̃±

j

4π2
√

2sW

∫ 1

0
dx

2x(x − 1) + 1

q2x(1 − x) − M2
χ̃±
j

, (70)

�P
χ̃± =

e3gP
hi χ̃

+
j χ̃−

j
Mχ̃±

j

4π2
√

2sW

∫ 1

0
dx

1

q2x(1 − x) − M2
χ̃±
j

, (71)

�A
f =

N f
c Q2

f e
2gS

hi f̄ f
m2

f

4π2v

∫ 1

0
dx

2x(x − 1) + 1

q2x(1 − x) − m2
f

, (72)

�P
f =

N f
c Q2

f e
2gP

hi f̄ f
m2

f

4π2v

∫ 1

0
dx

1

q2x(1 − x) − m2
f

, (73)

where Q f/ f̃ is the electric charge of fermion f /of sfermion

f̃ , Nc = 3 for quarks and Nc = 1 for leptons. We take into
account only the third generation of quarks and leptons in
the loops since they have significant Yukawa couplings. We
used the following convention for the couplings of the neutral
Higgs bosonhi to fermions, sfermions, charged Higgs bosons
and charginos,

1 In the actual calculation, there may appear some gauge-dependent
terms proportional to qμqν and to gμν . They do not contribute, however,
to the EDM and the AMM at two-loop level as shown in [58,59].

− im f

v
f̄ (gS

hi f̄ f
+ igP

hi f̄ f
γ5) f hi

− ig2√
2
χ̄−
j (gS

hi χ̃
+
j χ̃−

j
+ igP

hi χ̃
+
j χ̃−

j
γ5)χ

−
j hi

+ ivghi H+H−hi H
+H− + ivghi f̃ ∗

k f̃k
hi f̃

∗
k f̃k, (74)

with the explicit expressions for gS/P
hi f̄ f

, gS/P
hi χ̃

+
j χ̃−

j
, ghi H+H− ,

and ghi f̃ ∗
k f̃k

given by

gS
hi f̄ f

= RH
i1

cβ

, gP
hi f̄ f

= −RH
i4 tβ, f = b, τ, e, μ, (75)

gS
hi f̄ f

= RH
i2

sβ
, gP

hi f̄ f
= −RH

i4

tβ
, f = t, (76)

gS
hi χ̃

+
j χ̃−

j
= Re

[
Uχ

j2V
χ
j1RH

i1 + eiϕuUχ
j1V

χ
j2RH

i2

+ e−iϕs λ∗

g2
Uχ

j2V
χ
j2RH

i3

]

− Im[sβUχ
j2V

χ
j1 + eiϕu cβU

χ
j1V

χ
j2]RH

i4

+ Im

[
λ∗e−iϕs

g2
Uj2Vj2

]
RH

i5, (77)

gP
hi χ̃

+
j χ̃−

j
= Im

[
Uχ

j2V
χ
j1RH

i1 + eiϕuUχ
j1V

χ
j2RH

i2

+ e−iϕs λ∗

g2
Uχ

j2V
χ
j2RH

i3

]

+ Re[sβUχ
j2V

χ
j1 + eiϕu cβU

χ
j1V

χ
j2]RH

i4

− Re

[
λ∗e−iϕs

g2
Uχ

j2V
χ
j2

]
RH

i5, (78)

ghi H+H− =
(
g2

1cβc2β

4
− g2

2cβ(1 + 2s2
β)

4
+ cβs

2
β |λ|2

)
RH

i1

+
(

− g2
1sβc2β

4
− g2

2sβ(1 + 2c2
β)

4
+ c2

βsβ |λ|2
)
RH

i2

+
(

− s2βRe[Aλλei(ϕu+ϕs )]√
2v

− s2βvsRe[κ∗λei(ϕu−ϕs )]
v

− |λ|2vs
v

)
RH

i3

+
(
s2β Im[Aλλei(ϕu+ϕs )]√

2v

− s2βvs Im[κ∗λei(ϕu−ϕs )]
v

)
RH

i5, (79)

ghi t̃∗k t̃k =
(
g2

1

12
cβ(|Ut̃

k1|2 − 4|Ut̃
k2|2) − g2

2

4
cβ |Ut̃

k1|2

+ ytvsRe[λeIϕsU t̃∗
k1U

t̃
k2]

v

)
RH

i1

+
(
g2

1

12
sβ(−|Ut̃

k1|2 + 4|Ut̃
k2|2)

+ g2
2

4
sβ |Ut̃

k1|2 + y2
t sβ(|Ut̃

k1|2 + |Ut̃
k2|2)
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−
√

2ytRe[AteiϕuU t̃∗
k1U

t̃
k2]

v

)
RH

i2

+ Re[λeiϕsU t̃
k1U

t̃∗
k2]yt cβRH

i3

+
(

− Im[λeiϕsU t̃
k1U

t̃∗
k2]ytvssβ

v

+
√

2cβ yt Im[A f eiϕuU t̃∗
k1U

t̃
k2]

v

)
RH

i4

− cβ yt Im[λeiϕsU t̃
k1U

t̃∗
k2]RH

i5, (80)

ghi b̃∗
k b̃k

=
(
g2

1

12
cβ(|Ub̃

k1|2 + 4|Ub̃
k2|2)

+ g2
2

4
cβ |Ub̃

k1|2 − y2
bcβ(Ub̃∗

k1 U
b̃
k1 +Ub̃∗

k2 U
b̃
k2)

−
√

2ybRe[AbUb̃∗
k1 U

b̃
k2]

v

)
RH

i1

+
(
g2

1

12
sβ(−|Ub̃

k1|2 − 2|Ub̃
k2|2)

− g2
2

4
sβ |Ut̃

k1|2 + ybvsRe[λei(ϕu+ϕs )Ub̃
k1U

b̃∗
k2 ]

v

)
RH

i2

+ Re[λei(ϕs+ϕu )Ub̃
k1U

b̃∗
k2 ]ybsβRH

i3

+
(

− Im[λei(ϕs+ϕu )Ub̃
k1U

b̃∗
k2 ]ytvscβ

v

+
√

2sβ ybIm[AbUb̃∗
k1 U

b̃
k2]

v

)
RH

i4

− sβ ybIm[λei(ϕs+ϕu )Ub̃
k1U

b̃∗
k2 ]RH

i5, (81)

ghi τ̃∗
k τ̃k =

(
g2

1

4
cβ(|U τ̃

k1|2 − 2|U τ̃
k2|2)

+ g2
2

4
cβ |U τ̃

k1|2 − y2
τ cβ(U τ̃∗

k1 U
τ̃
k1 +U τ̃∗

k2 U
τ̃
k2)

−
√

2yτ Re[AτU τ̃∗
k1 U

τ̃
k2]

v

)
RH

i1

+
(
g2

1

4
sβ(|U τ̃

k1|2 − 2|U τ̃
k2|2)

− g2
2

4
sβ |U τ̃

k1|2 + yτ vsRe[λei(ϕu+ϕs )U τ̃
k1U

τ̃∗
k2 ]

v

)
RH

i2

+
(

− Im[λei(ϕs+ϕu )U τ̃
k1U

τ̃∗
k2 ]yτ vscβ

v

+
√

2sβ yτ Im[AτU τ̃∗
k1 U

τ̃
k2]

v

)
RH

i4

+ Re[λei(ϕs+ϕu )U τ̃
k1U

τ̃∗
k2 ]yτ sβRH

i3

− sβ yτ Im[λei(ϕs+ϕu )U τ̃
k1U

τ̃∗
k2 ]RH

i5 . (82)

The gauge invariant form of the effective hiγ γ coupling
in (65) will be inserted into the second loop to get the AMM
and EDM. The lepton mass in the numerator of the second
loop is neglected, since this leads to contributions suppressed
by the factor m2

l /M
2
S where MS is the mass of the heavy

particles. We present here the analytic expressions for the
AMM from sfermion loops, charged Higgs loops, chargino
loops and fermion loops,

a f̃ ,2l
l =

5∑
i=1

N f
c Q2

f̃
αm2

l

16π3m2
hi

(gS
hi l̄l

ghi f̃ ∗ f̃ )F (2)

⎛
⎝M2

f̃

m2
hi

⎞
⎠ , (83)

aH±,2l
l =

5∑
i=1

αm2
l

16π3m2
hi

(gS
hi l̄l

ghi H+H−)F (2)

(
M2

H±

m2
hi

)
,

(84)

aχ̃±,2l
l =

5∑
i=1

2∑
j=1

α2m2
l

2
√

2π2MWs2
W

1

Mχ̃±
j

×
⎛
⎝gS

hi l̄l
gS
hi χ̃

+
j χ̃−

j
F (1)

⎛
⎝
M2

χ̃±
j

m2
hi

⎞
⎠

−gP
hi l̄l

gP
hi χ̃

+
j χ̃−

j
G

⎛
⎝
M2

χ̃±
j

m2
hi

⎞
⎠

⎞
⎠ , (85)

a f,2l
l =

5∑
i=1

N f
c Q2

f̃
α2m2

l

4π2M2
Ws2

W

×
(
gS
hi l̄l

gS
hi f̄ f

F (1)

(
m2

f

m2
hi

)

−gP
hi l̄l

gP
hi f̄ f

G
(
m2

f

m2
hi

))
, (86)

where α is the fine structure constant and the two-loop func-
tions are given by

F (2)(z) =
∫ 1

0
dx

x(1 − x)

z + x(x − 1)
ln

x(1 − x)

z
, (87)

F (1)(z) = z

2

∫ 1

0
dx

1 − 2x(1 − x)

x(1 − x) − z
ln

x(1 − x)

z
, (88)

G(z) = z

2

∫ 1

0
dx

1

x(1 − x) − z
ln

x(1 − x)

z
. (89)

Note that these expressions are in agreement with Eq. (3.8)
of Ref. [55] for the complex MSSM, we used, however, a
different sign convention compared to their notation. These
two-loop contributions are then subtracted from the corre-
sponding SM contributions arising from top, bottom quark
and tau lepton loops. The leptonic EDM can be obtained from
the above formulae with the replacement

dx,2ll = e

2ml
ax,2ll (gS

hi l̄l
→ gP

hi l̄l
, gP

hi l̄l
→ −gS

hi l̄l
),

x = f̃ , H±, χ̃±, f. (90)
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The two-loop Barr–Zee-type contributions2 to the electron
EDM have been implemented in NMSSMCALC as described
in Ref. [47]. It does not only contain contributions coming
from the effective hiγ γ vertex but also other contributions
arising from the effective hiγ Z , H±γW∓, H±γW∓ ver-
tices. Since there is no difference between the two mod-
els in these contributions we keep them unchanged in
NMSSMCAL-nuSS.

In summary, the SUSY contributions to the leptonic AMM
and EDM considered in this study are the sum of the full one-
loop and partial two-loop contributions,

al = a1l
l + aqed,2l

l + a f̃ ,2l
l + aH±,2l

l + aχ̃±,2l
l

+(a f,2l
l − aSM, f,2l

l ) (91)

dl = d1l
l + dqed,2l

l + d f̃ ,2l
l + dH±,2l

l + d χ̃±,2l
l

+(a f,2l
l − aSM, f,2l

l ) + d2l
l (hiγ Z) + d2l

l (H±γW∓)

+d2l
l (H±γW∓) (92)

where d2l
l (hiγ Z) + d2l

l (H±γW∓) + d2l
l (H±γW∓) are the

two-loop Barr–Zee-type contributions arising from the effec-
tive hiγ Z , H±γW∓, H±γW∓ vertices.

4 Numerical analysis

In this section we investigate the numerical impact of the neu-
trino/sneutrino sector and various CP-violating phases on the
muon AMM and on the electron EDM. It has been shown in
our study in [31], that the extended neutrino and sneutrino
sectors can have a significant impact on the Higgs sector,
the charged lepton flavor-violating decays, li → l j + γ ,
and the new physics constraints from the oblique parameters
S, T,U . We therefore will investigate also what is the correla-
tion between these impacts. In order to find viable parameter
points we performed a scan in the NMSSM parameter space.
We have used NMSSMCALC-nuSS to calculate the Higgs
boson masses including the available two-loop corrections
at O(αsαt + α2

t ),
3 the Higgs decay widths and branching

ratios including the state-of-the-art higher-order QCD cor-
rections as well as the Higgs effective couplings. We then use
HiggsBounds [61] to check if the parameter points pass all
the exclusion limits from the searches at LEP, Tevatron and
the LHC, and HiggsSignals-2.6.1 [62] to check if the
points are consistent with the LHC data for a 125 GeV Higgs
boson. A parameter point is chosen if it is consistent with the

2 The contribution from the two-loop rainbow-like diagrams can be
compatible to the Barr–Zee-type contribution in the very large sfermion
mass region [60].
3 Note that we have taken into account the complete one-loop correc-
tions computed in the NMSSM with inverse seesaw mechanism [31],
but took over the two-loop corrections from the pure NMSSM.

Higgs data within 2σ . With our NMSSMCALC-nuSS code
we can also check if the parameter point is in accordance
with the active light neutrino data,4 the constraints from the
charged lepton flavor-violating decays and the electroweak
observables, see [31] for more information.

In order to show the impact of the neutrino Yukawa cou-
plings on the AMM we choose a sample parameter point from
our generated scan sample satisfying all the mentioned con-
straints, called P1 in the following. The SM input parameters
are taken from the Particle Data Group [63] and are given by

α(MZ ) = 1/127.955, αMS
s (MZ ) = 0.1181,

MZ = 91.1876 GeV, MW = 80.379 GeV,

mt = 172.74 GeV, mMS
b (mMS

b ) = 4.18 GeV,

mc = 1.274 GeV, ms = 95.0 MeV,

mu = 2.2 MeV, md = 4.7 MeV,

mτ = 1.77682 GeV, mμ = 105.6584 MeV,

me = 510.9989 keV, GF = 1.16637 · 10−5 GeV−2.

(93)

The light neutrino input parameters are set equal to their
best-fit values [63] together with a fixed value for the lightest
neutrino mass, in particular,

mν1 = 10−11 GeV, θ12 = arcsin(
√

0.297),

mν2 =
√
m2

ν1
+ 7.37 × 10−23 GeV, θ23 = arcsin(

√
0.425),

mν3 =
√
m2

ν1
+ 2.525 × 10−21 GeV, θ13 = arcsin(

√
0.0215),

δCP = 248.4◦.

All other complex phases are set to zero and the remaining
input parameters are given by

MH± = 1000 GeV, mμ̃L = 400 GeV,

M1 = 400 GeV, mμ̃R = mq̃L = mq̃R = 2000 GeV,

M2 = 400 GeV, mX̃ = 0 GeV,

μeff = 400 GeV, mÑ = 0 GeV,

mQ̃3
= 1000 GeV, Aν

11 = Aν
33 = 1000 GeV,

mt̃R = 1500 GeV, Aν
22 = −1000 GeV,

mẽL = m τ̃L = 2000 GeV, AX = 1000 GeV,

mẽR = m τ̃R = 2000 GeV, μX = 600 GeV,

At = 2000 GeV, BμX = 10 GeV,

ReAk = −100 GeV, yν
11 = yν

33 = 0.5, i = 1, 2, 3,

tan β = 12, yν
22 = 0.9,

λ = 0.252, κ = 0.297. (94)

Note that we have used the μX -parameterization where
the neutrino Yukawa couplings yν are given as inputs. For
the parameter point P1, we have chosen yν to be a diagonal
matrix. With this choice, we do not need to worry about the
violation of the charged lepton flavor-violating decays, li →
4 The non-unitary constraint on the first 3 × 3 block of the neutrino
rotation matrixU ν is included also in the active light neutrino data. The
implementation of this constraint has been described in [31].
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Table 1 Parameter point P1: Mass values in GeV and main components of the neutral Higgs bosons at two-loop O(αtαs + α2
t ) obtained for the

NMSSM without and with the inverse seesaw mechanism using OS renormalization in the top/stop sector

h1 h2 h3 h4 h5

O(αtαs + α2
t ) Without ISS 124.2 369.59 912.37 998.91 999.94

With ISS 125.46 369.65 912.40 998.85 1000.0

Main component hu as hd a hs

Table 2 Electroweakino and smuon masses in GeV for the parameter point P1

χ̃0
1 χ̃0

2 χ̃0
3 χ̃0

4 χ̃0
5 χ̃+

1 χ̃+
2 μ̃1 μ̃2

331.93 400.00 405.14 470.96 945.1 341.19 461.72 402.83 2000

Table 3 The individual contributions to the muon AMM in the NMSSM without inverse seesaw mechanism. The total sum is given in the last
column. All values are normalized to 10−10

aχ̃0,1l
μ aχ̃±,1l

μ aH,1l
μ aH±,1l

μ aqed,2l
μ a f̃ ,2l

μ a f,2l
μ aH±,2l

μ aχ̃±,2l
μ aμ

−1.30 11.55 2 × 10−5 −6 × 10−6 −2.90 3 × 10−3 −3 × 10−2 3 × 10−4 −6 × 10−2 7.26

l j + γ . In Table 1, we present the Higgs mass spectrum with
and without inverse seesaw mechanism at two-loopO(αtαs+
α2
t ) using the OS renormalization for the top/stop sector. For

the parameter point P1, the stop masses in the OS scheme
are given by

mt̃1 = 1001.62 GeV, mt̃2 = 1524.9 GeV. (95)

The main components of the Higgs mass eigenstates are also
shown in the last row.

As can be inferred from Table 1, the neutrino/sneutrino
sector increases the loop correction to the SM-like Higgs
boson given by the hu-like state. The spectrum5 of the elec-
troweakinos and smuons is the same in both models and is
given in Table 2.

In the sneutrino sector, the left-handed muon dominated
sneutrino mass is about 394.84 GeV in the NMSSM without
inverse seesaw mechanism. In the NMSSM-nuSS, the muon-
type sneutrino is the lightest superparticle (LSP) and has a
mass of 261.6 GeV. While the pure left-handed sneutrino
in the MSSM is excluded as the LSP and as a dark matter
candidate [64], here, the lightest particles are not purely left-
handed. There is a significant admixture of the left-handed
muon-type, N-type and X-type sneutrinos. A careful study is
needed to justify if these particles are good LSPs. We leave
this point for a future study. In the NMSSM without inverse
seesaw mechanism the LSP is given by the wino-like neu-
tralino.
Impact on the muon AMM: In Table 3 we present for the
NMSSM without inverse seesaw mechanism the individual

5 The masses of neutralinos, charginos and left-handed smuon satisfy
constraints for electroweakinos at the LHC.

contributions to the muon AMM as well as its total value. If
not stated otherwise the results of the AMM of the muon are
normalized to 10−10. The dominant contribution comes from
the chargino one-loop diagram. The contributions from the
neutral Higgs and charged Higgs one-loop diagrams are very
small since they are both proportional tom4

μ. The second and
third important contributions are the two-loop SUSY QED
and the neutralino one-loop ones. They are both negative. The
other two-loop contributions are small and negligible for the
parameter point P1 where the masses of the non-SM-like
Higgs bosons and the SUSY particles are rather heavy.

In the NMSSM-nuSS, the neutrino/sneutrino sector sig-
nificantly changes the one-loop and the two-loop QED con-
tributions while the two-loop contributions including the
hiγ γ effective couplings remain unchanged w.r.t. the pure
NMSSM. We present in Table 4 the individual contributions
from the one-loop diagrams as well as the two-loop QED
contribution to the AMM of the muon and its total sum.
With the light sneutrino masses and large muon-neutrino
Yukawa coupling yν

22, the chargino one-loop contribution
has increased by a factor of about 2.3 compared to that of the
NMMSM without ISS. The same behavior has been observed
in Ref. [34]. This can be seen explicitly from the coupling
gR
lχ̃−

j ν̃i
of the chargino with the muon and the sneutrino pre-

sented in (44) where the second term is proportional to the
neutrino Yukawa coupling yν

ll . Depending on the relative sign
between the first and the second term in gR

l+χ̃−
j ν̃i

, as well as

on the sneutrino spectrum, the sneutrino contribution can
increase or decrease the one-loop chargino contribution. A
surprisingly large change is also observed in the W -boson
and charged Higgs one-loop contributions. Note that we sub-
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Table 4 The individual one-loop and two-loop QED contributions to the AMM of the muon in the NMSSM-nuSS. The sum of all contributions is
presented in the last column. All values are normalized to 10−10

aχ̃0,1l
μ aχ̃±,1l

μ aH,1l
μ aH±,1l

μ aW,1l
μ aqed,2l

μ aμ

−1.3 26.99 2 × 10−5 −0.286 −1.3 −6.82 17.21

(a) (b)

Fig. 2 Upper left: The one-loop chargino contribution (blue) and the
sum of all contributions (red) to the AMM of the muon in the NMSSM-
nuSS. Lower left: The corresponding relative difference defined as
�aμ = ∣∣(axμ(NMSSM-nuSS) − axμ(NMSSM))/axμ(NMSSM)

∣∣. Both
as a function of yν

22 in the MX parameterization. Upper right: The

loop-corrected mass of the hu-like Higgs boson in GeV at order
O(αtαs + α2

t ). Lower right: The corresponding relative difference

�Mhu
=

∣∣∣(MNMSSM-nuSS
hu

− MNMSSM
hu

)/MNMSSM
hu

∣∣∣. Both as a function

of yν
22 in the μX parameterization

tract the W -boson SM contribution from the W -boson con-
tribution in the NMSSM-nuSS as mentioned in Sect. 3.1.
In the NMSSM without ISS, the W -boson contribution is
exactly equal to the SM one, that is why it does not appear in
Table 3. To understand better theW -boson contribution in the
NMSSM-nuSS, we look at the neutrino spectrum. For this
particular point μX has been set to 600 GeV, so that there are
four sterile neutrinos, two with a mass of about 600 GeV and
two with mass around 619 GeV. We have tried to reduce μX

to decrease the sterile neutrino masses so that the magnitude
of the W -boson contribution increases. But this also leads
to the violation of the unitarity constraint, see [31] for the
definition of this constraint. The magnitude of the charged
Higgs contribution has increased by a factor of about 105

compared to the NMSSM without ISS. This is because in
the NMSSM without ISS, the charged Higgs contribution is
suppressed by the factor m4

l /v
2 while in the model with ISS

there appears a new contribution being proportional tom2
l y

ν
ll ,

see (39). This contribution can be O(10−10) if the charged

Higgs mass is light enough. For our parameter point, the
charged Higgs mass is 1 TeV, so that its contribution is of
O(10−11) which does not play an important role in the sum
of all contributions.
Comparison with the impact on the SM-like Higgs mass:
We now investigate the impact of the neutrino and sneutrino
parameters on the muon AMM in the NMSSM-nuSS in com-
parison to their impact on the SM-like Higgs boson mass.
Starting from the parameter point P1, we have varied sev-
eral parameters to see the change of the sum of all contribu-
tions aμ to the AMM. We can divide them into two sets. The
first set contains parameters that change the muon-neutrino
Yukawa coupling yν

22. It enters directly the couplings of the
W boson, the charged Higgs and the chargino with neutri-
nos. In the μX parameterization, it is yν

22 that is changed,
while in the Casas–Ibarra parameterization it is μX and λX

that are changed. The second set includes parameters that
result in a significant change of the spectrum of the sneu-
trino masses. The sneutrino trilinear coupling Aν

22, A
X
22, and
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the soft SUSY-breaking masses m̃X
22, m̃

N
22, B

μX
22 belong to the

second set.
In Fig. 2 we vary yν

22 in the range [0.9, 1.35], keeping the
other parameters fixed as in the parameter point P1 using the
μX parameterization. If yν

22 > 1.45, one enters the region
where the sneutrino mass squared becomes negative. We
remind the reader that yν

22 enters the couplings between the
muon, the charginos and the sneutrinos and also enters the
mass matrix of the sneutrinos. Increasing yν

22 leads to an
increase of the mixing between the left-handed muon sneu-
trinos ν̃2, Ñ2, X̃2, so that the mass of the ν̃2-like sneutrino
becomes smaller while the mass of the Ñ2-like sneutrino
increases. In the upper left plot, we show the dependence of
the one-loop chargino contribution (blue) and the sum of all
contributions (red) to the AMM of the muon in the NMSSM-
nuSS as a function of yν

22. We see a strong dependence on yν
22

which can be understood by using an approximate expression
for the new contribution from the one-loop chargino contri-
bution in the NMSSM-nuSS. New contribution here means
the difference between the one-loop chargino contribution in
the NMSSM-nuSS and in the NMSSM. It can be obtained by
using the mass insertion method. The Feynman diagram in
Fig. 3 exemplifies the enhancement mechanism. In the region
of large yν

22, the approximate new contribution is given by

aχ±,1l
μ (new) ∼ − ml

8π2 (yν
22)

2yμ
μ2

effvRe(sβ Aν
22e

iϕu − cβμeff)

(Mν̃+ ν̃+)22 − (MÑ+ Ñ+)22

×(D1((Mν̃+ ν̃+)22, μ
2
eff, μ

2
eff, μ

2
eff)

−D1((MÑ+ Ñ+)22, μ
2
eff, μ

2
eff, μ

2
eff)), (96)

where D1 denotes the rank-1 four-point function where all
external momenta are set equal to zero,

D1(x, y, y, y) = − (2x2 + 5xy − y2)

12(x − y)3y
+ x2 log(x/y)

2(x − y)4 ,

(97)

and (Mν̃+ν̃+)22, (MÑ+ Ñ+)22 are the second diagonal compo-
nents of the sneutrino mass matrix, see Appendix A. This
contribution is proportional to (yν

22)
2 in which one factor yν

22
arises from the coupling H̃uμÑ and the other comes from
the mixing between ν̃ and Ñ . In the upper left plot Fig. 2, we
also highlighted the 1σ (light gray) and the 2σ (dark gray)
regions of the difference between the experimental value and
the SM prediction as defined in (4). The points denoted by
green triangles are those points that pass all our constraints.
In the lower left plot of Fig. 2 we show the relative differ-
ence between the muon AMM in the two models NMSSM
and NMSSM-nuSS, defined as

�aμ =
∣∣∣∣
(axμ(NMSSM-nuSS) − axμ(NMSSM))

axμ(NMSSM)

∣∣∣∣, (98)

where x can be the chargino one-loop contribution or the
sum of all contributions. The relative difference is dominated

Fig. 3 The new enhancement mechanism contributing to the anoma-
lous magnetic moment of the muon in the NMSSM-nuSS

by the chargino one-loop contribution and strongly increases
with yν

22 from 0 to more than 350% in the range of the yν
22 vari-

ation. In the upper right plot of Fig. 2 we show the variation
of the loop-corrected Higgs boson mass for the hu-like state
at orderO(αtαs +α2

t ) as a function of yν
22. As can be inferred

from the plot, in the region yν
22 > 0.65 the neutrino/sneutrino

sector strongly affects the mass of the hu-like Higgs boson.
It increases until yν

22 reaches 1.2 and then quickly decreases.
This is due to the interplay between the positive contributions
from the neutrino one-loop diagrams and the negative contri-
butions from the sneutrino one-loop diagrams. The variation
of yν

22 affects both contributions simultaneously. At large yν
22

the sneutrino mass becomes very small so that its effect gets
stronger than the neutrino one and it reduces the mass Mhu
of the hu-like Higgs boson to a very small value. The rela-
tive difference between the hu-like Higgs boson mass in the
NMSSM-nuSS and the NMSSM as function of yν

22 is shown
in the lower right plot of Fig. 2. From small values it increases
starting from yν

22 = 0.65 until it reaches a maximum of 3%
at 1.2 and decreases again to small relative differences.
Dependence on Aν

22: The dependence of the muon AMM
and the loop-corrected hu-like Higgs boson mass on the
magnitude of the neutrino soft SUSY-breaking trilinear cou-
pling Aν

22 is presented in Fig. 4. We varied Aν
22 in the range

[−1400, 1400] GeV. The notation and color code is the same
as in Fig. 2. The nearly linear dependence of the chargino one-
loop contribution seen in Fig. 4 (upper left) can be explained
by using the approximate expression in (96). The change
of the sign of the new contribution around Aν

22 ∼ 0 can be
seen in the lower left plot of Fig. 4. For the explanation of the
experimental result for (g−2)μ a negative value of Aν

22 is pre-
ferred. This feature gives also a possibility for the NMSSM-
nuSS to explain simultaneously both the positive discrepancy
in (g−2)μ and the negative discrepancy in (g−2)e [65–67]
by choosing a negative value for Aν

22 and a positive value
for Aν

11 as shown in [35]. For the parameter point P1, it is
impossible to obtain the SUSY contributions for the electron
AMM of −7 × 10−13 to be close to the deviation between
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(a) (b)

Fig. 4 Similar to Fig. 2 but now Aν
22 is varied instead

(a) (b)

Fig. 5 Effect of the complex phase of Aν
22 on the AMM of the muon (left) and the loop-corrected mass of the hu-like Higgs boson. The color code

is the same as Fig. 2

the experimental measurement and the SM prediction while
it still satisfies other constraints. In the right plots of Fig. 4, we
can see the dependence of the loop-corrected hu-like Higgs
boson mass on Aν

22 in the upper plot while in the lower plot
we see the relative difference of this mass in the two mod-
els with and without inverse seesaw mechanism. The larger
the magnitude of Aν

22 is, the larger the mixing between ν̃

and Ñ becomes. This leads to the reduction of the mass of
the left-handed muon-like sneutrino. As a consequence the
sneutrino contributions become dominant compared to the
neutrino contributions.
Influence of the CP-violating phases: We now discuss the
influence of the CP-violating phases on the muon AMM and
the loop-corrected hu-like Higgs boson mass. In Fig. 5, we
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(a) (b)

(c) (d)

Fig. 6 The AMM of the muon in the NMSSM with (red) and without (blue) inverse seesaw mechanism as a function of several CP-violating
phases: a ϕM1 , b ϕM2 , c ϕμeff , d ϕu

vary the complex phase of Aν
22 in the range [−π, π ]. The

SUSY contributions to aμ change its value from −2×10−10

at ϕAν
22

= −π to reach a maximum of 17.2 × 10−10 at

ϕAν
22

= 0 and then reduce it back to −2×10−10 at ϕAν
22

= π .
While the complex phase of Aν

22 strongly affects the (g−2)μ,
its effect on the mass of the hu-like Higgs boson is rather
mild as can seen in the right plots of Fig. 5. We further
present in Fig. 6 the influence of several complex phases,
namely ϕM1 , ϕM2 , ϕμeff , ϕu , on the SUSY contributions to aμ

in both models, the NMSSM with and without inverse see-
saw mechanism. In all these plots, the NMSSM-nuSS results
are plotted in red while the blue lines show the results in the
NMSSM without inverse seesaw mechanism. The complex
phase of M1 enters only the neutralino contribution. Fig-
ure 6a shows a mild dependence of (g − 2)μ on this phase
for this particular point where the neutralino contribution is
always negative and about four times smaller than the domi-
nant chargino contribution. The complex phase of M2 enters
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(a) (b)

Fig. 7 The EDM of the electron in the NMSSM with (red) and without (blue) inverse seesaw mechanism as a function of the complex phase of
Aν

11 where a ϕM1 = π/2, b ϕM2 = π/138

not only the neutralino contribution but also the chargino one.
In Fig. 6b we can see a similar dependence of (g − 2)μ on
this phase in both models. The two remaining phases ϕμeff

and ϕu have a stronger influence on (g−2)μ in the NMSSM-
nuSS than in the NMSSM without ISS as shown in Fig. 6c,
d. This is due to these two phases entering the new contri-
bution in the NMSSM-nuSS, see (96). Note that in Fig. 6c
the range of ϕμeff is [−0.8π, 08π ] since outside this range
the mass of the hu-like Higgs boson turns out to be nega-
tive. For illustrative purpose we show partly the light gray
and dark gray regions representing the 1σ and 2σ deviations
between the experimental measurement and the SM predic-
tion for (g − 2)μ. In these plots, except for the points where
the phases ϕM1 , φM2 , ϕμeff , ϕu are close to zero or ±π , all
other points are ruled out because of the constraints on the
electric dipole moments of the electron.
Effects on the electron EDM: We now investigate the effect
of the new complex phase in the (s)neutrino sectors on
the electron EDM. In NMSSMCALC, the electron, neutron,
Thallium and Mercury EDMs have been implemented as
described in [47]. We follow the conventions inNMSSMCALC
that all EDMs are normalized to their corresponding experi-
mental upper bounds. A thorough investigation of the com-
plex phases in the NMSSM on the electron, neutron, Thal-
lium and Mercury EDMs in [47] has shown that the com-
plex phases of the electroweak sector such as ϕM1 , ϕM2 ,

ϕ1 ≡ ϕλ + ϕs + ϕu, ϕ2 ≡ ϕκ + 3ϕs have the strongest
effects on the electron EDM which also enters the Thal-

lium and Mercury EDMs. These phases contribute to the
electron EDM through the one-loop neutralino and chargino
contributions as can be inferred from the second terms in
(41) and (40). Apart from the NMSSM-like phase ϕ2, the
stringent limit on the electron EDM has ruled out almost
any non-vanishing value of these complex phases as we
also observe in this study (see previous paragraph). In the
NMSSM-nuSS, there are new complex phases from the neu-
trino sector, δCP , ϕyν

11
, ϕμX

11
, ϕλX

11
, and from the sneutrino

sector ϕAν
11

, ϕAX
11

, ϕB
μX
11

. However, only the complex phase
ϕAν

11
gives a significant contribution to the EDMs, all other

remaining phases have a negligible effect. The complex phase
ϕAν

11
appears in the one-loop chargino contribution, see the

second term in (40). This provides a possibility for the reduc-
tion of the imaginary part of the coupling gR

lχ̃−
j ν̃i

, see (44),

and may thereby lead to the cancellation between different
contributions to the electron EDM. Such a cancellation can
never happen in the NMSSM without ISS.

To illustrate this, we show in Fig. 7 the dependence of the
electron EDM, normalized to the experimental upper bound,
on the complex phase of Aν

11 using the parameter point P1.
In the left plot, we have set ϕM1 = π/2 while in the right
plot we have set ϕM2 = π/138. All other phases are equal to
zero. These values of ϕM1 and ϕM2 correspond to the largest
possible induced EDM of the neutron from the respective
phases that still remains below the experimental upper bound.
The red (blue) lines show the electron EDMs in the NMSSM
with (without) ISS. As can be inferred from the plots, in the
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NMSSM without ISS the electron EDM is about 25 times
larger than its experimental upper bound for ϕM1 = π/2 and
about 102 times larger for ϕM2 = π/138. In the NMSSM
with ISS a cancellation of all contributions to the electron
EDM takes place at ϕAν

11
= −0.0055π for ϕM1 = π/2 and

at ϕAν
11

= 0.022π for ϕM2 = π/138 so that the electron
EDM is pushed below its experimental upper bound. Note
that all the points with the electron EDM being less than one
satisfy all our constraints mentioned in this paper. A similar
cancellation can also happen for the phases ϕ1 and ϕ2.

5 Conclusions

In this paper we have computed the full one-loop SUSY
contributions and the two-loop Barr–Zee-type diagrams with
hγ γ effective couplings to the AMM and EDM of charged
leptons in two models, the NMSSM with and without inverse
seesaw mechanism including CP-violating phases. We pre-
sented the analytic expressions and implemented them in the
two Fortran codes NMSSMCALC and NMSSMCALC-nuSS,
which compute the Higgs boson masses and mixings,
together with the Higgs boson decay branching ratios taking
into account the most up-to-date higher-order corrections.
Using a typical parameter point with an intermediate value
of tan β and large charged Higgs mass, we have investigated
in the NMSSM with inverse seesaw mechanism the effect of
the (s)neutrino sector on the muon AMM in comparison with
its effect on the SM-like Higgs-boson mass. We see a large
positive contribution to the AMM from the mixing between
the left-handed muon-type sneutrino and the right-handed
one (denoted as Ñ in the previous sections) provided that
the muon-type neutrino Yukawa coupling is of order O(1),
that the muon-type neutrino trilinear coupling is negative and
that the left- and right-handed muon-type sneutrino masses
are small. Too light sneutrino masses, however, give a large
negative correction to the Higgs boson masses. In order to
compensate this negative effect one should also require light
sterile neutrino masses. Therefore, there is a strong corre-
lation between the effects of the (s)neutrino sector on the
two observables. We have also found a strong effect of the
CP-violating phases on the AMM of the muon in the two
models.

For the electron EDM we found that the complex phase of
the sneutrino sector ϕAν

11
gives a significant contribution at

one-loop level. This provides a possibility for the cancellation
of the different contributions to the electron EDM so that it
remains below the experimental upper bound. While most of
the non-vanishing complex phases of the electroweak sector
of the NMSSM have been ruled out by the constraint on the
electron EDM, in the NMSSM-nuSS one can remain in the
region of validity with an appropriately chosen value of ϕAν

11
.

Finally, the calculations presented in this paper have been
implemented in the programs NMSSMCALC and NMSSMCAL
C-nuSS which are publicly available.
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Appendix A: The sneutrino mass matrix

Here we provide the mass matrix of the sneutrinos. Each
entry is a 3 × 3 matrix in the flavor space.

(Mν̃ )ν̃+ ν̃+ = 1

2
I3M

2
z cos 2β + 1

2

(
m̃2

L + m̃2T
L

)

+ 1

2
v2
uRe

(
yν y

†
ν

)
(99)

(Mν̃ )ν̃+ Ñ+ = 1√
2
vuRe

(
eiϕu yν Aν

)

− 1

2
vdvsRe

(
eiϕsλy∗

ν

)
(100)

(Mν̃ )ν̃+ X̃+ = 1√
2
vuRe

(
eiϕu yνμ

∗
X

)
(101)

(Mν̃ )ν̃+ ν̃− = i

2

(
m̃2

L − m̃2T
L

)
+ 1

2
v2
uIm

(
yν y

†
ν

)
(102)

(Mν̃ )ν̃+ Ñ− = 1√
2
vuIm

(
eiϕu yν Aν

)
− 1

2
vdvsIm

(
eiϕsλy∗

ν

)

(103)

(Mν̃ )ν̃+ X̃− = 1√
2
vuIm

(
eiϕu yνμ

∗
X

)
(104)

(Mν̃ )Ñ+ Ñ+ = 1

2

(
m̃2

N + m̃2T
N

)
+ Re

(
μXμ

†
X

)

+ 1

2
v2
uRe

(
yTν y∗

ν

)
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(Mν̃ )Ñ+ X̃+ = Re
(
μX BμX

) + 1√
2
vsRe

[
e−iϕsμX

(
λ

†
X + λ∗

X

)]

(106)

(Mν̃ )Ñ+ ν̃− = − 1√
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vuIm
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eiϕu AT

ν y
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ν
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eiϕsλy†

ν
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yTν y∗

ν

)
(108)

(Mν̃ )Ñ+ X̃− = −Im
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X
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(110)
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