
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

AMobility Case Study for Validating Attack
Propagation Analyses

Bachelor’s Thesis of

Yakup Ensar Evli

at the Department of Informatics

Institute for Information Security and Dependability

Reviewer: Prof. Dr. Ralf H. Reussner

Second reviewer: Prof. Dr.-Ing. Anne Koziolek

Advisor: M.Sc. Maximilian Walter

Second advisor: M.Sc. Sebastian Hahner

27th June 2022 – 27th October 2022

I declare that I have developed and written the enclosed thesis completely by myself, and have

not used sources or means without declaration in the text.

PLACE, DATE

. .

(Yakup Ensar Evli)

Abstract

The “Architectural Attack Propagation Analysis for Identifying Confidentialty Issues” proposed

by Walter et al. [25] considers vulnerability analysis in software architecture. The analysis

is using access control policies together with the vulnerabilities and their combinations to

propagate through the system. This phenomenon has to be investigated thoroughly in a real-

life context to be able to make conclusions about metrics, e.g. accuracy. However, a concrete

approach to achieve the investigation of Attack Propagation Analyses in a real-life context

is missing. This work aims to fill this gap with “A Mobility Case Study for Validating Attack

Propagation Analyses”. In order to achieve validity, conventional properties of case studies in

software engineering were identified. Afterward, the end result, in form of a software model,

was reviewed according to these properties. This review has revealed that all properties were

fulfilled, however not in the highest degree of fulfillment. A discussion about this is held in

this paper.

i

Zusammenfassung

Die “Architectural Attack Propagation Analysis for Identifying Confidentialty Issues” von Wal-

ter et al. [25] befasst sich mit der Analyse von Schwachstellen in der Softwarearchitektur. Die

Analyse verwendet Zugriffskontrollrichtlinien zusammen mit den Schwachstellen und deren

Kombinationen, um sich im System auszubreiten. Diese Analyse muss in einem Echtwelt Kon-

text untersucht werden, um Rückschlüsse auf Metriken, z. B. die Genauigkeit ziehen zu können.

Es fehlt jedoch ein konkreter Ansatz zur Untersuchung von Angreiferausbreitungsanalysen

in einem Echtwelt Kontext. Diese Arbeit zielt darauf ab, diese Lücke mit einer “Fallstudie zur

Angreiferausbreitungsanalyse in Mobilitätssystemen” zu schließen. Um Validität zu erreichen,

wurden konventionelle Eigenschaften von Fallstudien in der Software-Entwicklung identifiziert.

Anschließend wurde das Endergebnis in Form eines Softwaremodells auf diese Eigenschaften

hin überprüft. Die Überprüfung hat ergeben, dass alle Eigenschaften erfüllt worden sind, jedoch

nicht im höchsten Grad. Eine Diskussion darüber wird in dieser Arbeit geführt.

ii

Contents

Abstract i

Zusammenfassung ii

1 Motivation 1

2 Foundations 3
2.1 Palladio Component Model . 3

2.2 Architectural Attack Propagation Analysis . 3

2.3 Mobility Systems . 4

2.3.1 Open Mobility Foundation . 4

2.3.2 Mobility Data Specification Architecture 5

3 Overview 6
3.1 Case Study Properties . 6

3.2 Case Study Design . 9

3.2.1 Inputs . 9

3.2.2 Implementation Process . 10

3.2.3 Outputs . 11

4 Case Study Modelling 13
4.1 Minimal Working Example (v1.0) . 13

4.1.1 Repository . 13

4.1.2 Resource Environment . 16

4.1.3 Allocation . 16

4.1.4 Access Control Policies. 17

4.1.5 Attacker Model . 17

4.1.6 Expected result . 18

4.1.7 Evaluation Regarding Properties . 18

4.2 Detailed Modelling of Entities (v2.x) . 20

4.2.1 Provider Entity (v2.1) . 20

4.2.2 Agency Viewpoint (v2.2) . 26

4.2.3 Provider Viewpoint (v2.3) . 32

5 Lessons Learned 40
5.1 Threats to Validity . 42

5.2 Limitations . 43

6 RelatedWork 44

iii

Contents

7 Conclusion 45

Bibliography 46

iv

List of Figures

3.1 Example of the iterative process in case study building 10

3.2 Example architecture model for mobility systems 11

4.1 Iteration 1: Repository . 14

4.2 Iteration 1: Resource Environment . 16

4.3 Iteration 1: Allocation . 17

4.4 Iteration 1: Extract from Result . 19

4.5 Iteration 2.1: Extract from Repository . 21

4.6 Iteration 2.1: Resource Environment . 23

4.7 Iteration 2.1: Allocation . 24

4.8 Iteration 2.1: Extract from Result . 27

4.9 Iteration 2.2: Extract from Repository . 28

4.10 Iteration 2.2: Resource Environment . 30

4.11 Iteration 2.2: Allocation . 31

4.12 Iteration 2.2: Extract from Result . 33

4.13 Iteration 2.3: Extract from Repository . 34

4.14 Iteration 2.3: Resource Environment . 36

4.15 Iteration 2.3: Allocation . 36

4.16 Iteration 2.3: Extract from Result . 39

v

List of Tables

4.1 Iteration 1: Properties . 19

4.2 Iteration 2.1: Properties . 26

4.3 Iteration 2.2: Properties . 32

4.4 Iteration 2.3: Properties . 38

vi

1 Motivation

The Architectural Attack Propagation Analysis [25] proposed by Walter et al. considers

vulnerability analysis in software architecture. With this analysis, software architects are

enabled to determine confidentiality violations as early as in the design process of the software

in development. However, the practical use has yet to be investigated thoroughly, first and

foremost in a real-life context. A reliable method to connect theory and practice in scientific

fields is case studies. A case study in software engineering is defined by Runeson et al. as "an

empirical enquiry that draws on multiple sources of evidence to investigate one instance (or

a small number of instances) of a contemporary software engineering phenomenon within

its real-life context, especially when the boundary between phenomenon and context cannot

be clearly specified" [21]. As the boundary between theory and practical use of the analysis

cannot be determined, a bachelor thesis shall be proposed to conduct a case study in the

real-life context of mobility systems for attacker propagation analyses. Although case studies

for the analysis have been done, it is important to carry out case studies in many different

fields to generate a more in-depth insight. Mobility systems can provide a wide variety of

entities, e.g. providers for mobility systems, mobility devices in use, and users themselves.

Thus, resulting in an adequate environment to research the boundary between theory and

practical use. Every entity can be a source of data hence insight, regarding the analysis.

Further, ethical considerations for case studies are important in terms of consent, especially

when conducting a case study that exploits vulnerability issues. Since case studies demand a

real-life context, it is challenging to find an organization that consents to this regarding that

their system could be exploited. So, the open-source mobility system provided by the “Open

Mobility Foundation” [14], that will be an example for this study, delivers a solution in terms of

accessibility and consent because the information is unconditionally available and their tools

are open-source. In addition, the required properties for case studies in software engineering

have to be outlined. An example of one of these properties is “Flexibility”. These properties are

extracted from various academic literature dealing with empirical software engineering and

case study research in software engineering. One of the most important sources is provided by

the work of Runeson et al. in “Guidelines for conducting and reporting case study research in

software engineering”. Afterward, the result has to be evaluated according to these required

properties. In the following, the important foundations for the proposed thesis will be given in

Chapter 2. Further, Chapter 3 gives an overview of the case study itself, the properties required

for the case study, and the design decisions for the upcoming case study, including key goals.

In Chapter 4 models of the resulting case study are presented, design decisions are explained

and expected results are outlined. Additionally, Chapter 5 will give an overview of lessons

learned during the work for readers that may profit from such. It will also include threats to

the validity and limitations of the case study. With regard to giving a broader picture of the

work, Chapter 6 includes related work about the topic in general and earlier studies. Finally,

1

1 Motivation

a conclusion in Chapter 7 will give a summary of the achievements in this work as well as a

discussion about the future of the case study.

2

2 Foundations

Before being able to conduct the case study some important topics, which I will refer to as

foundations, have to be researched and understood. This chapter will give a brief summary of

the foundations that are needed to carry out and understand this case study. These foundations

include the Palladio Component Model that is used, the Architectural Attack Propagation

Analysis that is the context and Mobility Systems which are the domain of the case study.

2.1 Palladio Component Model

The Palladio Component Model (PCM) [20] is an approach to model, simulate and analyse the

performance of software architecture. For this, PCM offers its own framework and an own

Architecture Description Language (ADL). As the name suggests, PCM supports the component-

based development process. In this process, PCM provides a component repository. In this

repository, developers can describe the components themselves, the interfaces of components,

the component behaviour and required resources for external calls. In our case, I will be using

BasicComponents since no compositions or subsystems are needed. Components can then

require or provide interfaces. ServiceEffectSpecifications can be defined in PCM to specify the

performance of the components hence describing resource demand. Moreover, data types

can also be defined in the repository. Components in the component repository can then be

composed into a system in the system model. The system model in PCM includes different

components that are instantiated and connected to each other through the provided and

required interfaces. It also makes it possible to specify which interfaces are provided or required

outwards the system. PCM further allows hardware modelling in the resource environment.
Here, resource containers can be defined that are used to run the components but also linking

resources which are needed to connect these resource containers. Next, the allocation context
defines which allocations of the components should be placed in which resource container.

Lastly, PCM can model user behaviour in the usage model which is not relevant to the scope of

this work. To sum it up, the component-based development process will take an important

part in the architectural modelling for this case study.

2.2 Architectural Attack Propagation Analysis

In terms of Architectural Attack Propagation Analysis, this work is setting the focus on the

Architectural Attack Propagation Analysis proposed by Walter et al. [25]. It simulates an

attacker that is propagating through the system and is using vulnerabilities in the system to

propagate further. The analysis can also take place during design time. This was made possible

through an extended PCM. In the analysis, attack paths are extracted and further analysed

3

2 Foundations

concerning the combination of different vulnerabilities. If not detected, these combinations can

allow attackers to propagate through the system by exploiting vulnerabilities thus exploiting

access control policies. Moreover, Walter et al. state that “the increase in connected elements

also adds new vulnerabilities and allows additional attack vectors” [25] stressing the importance

of analysing the dependency between access control policies and vulnerabilities. What makes

this approach unique is “a fine-grained access control model together with a vulnerability

modelling based on commonly used attack classifications” [25]. The analysis extends PCM by

access control models, attacker and vulnerability specifications. The access control model that

is used is the Attribute Based Access Control (ABAC) [24]. ABAC uses different attributes that

are taken into consideration for granting access to users. Subject attributes represent attributes

which request the resource in the model. Environment attributes formalize properties like time.

Requested Operation Attributes can be operations like read, write or calls in an architecture.

Finally, an example of Requested Resource Attributes are filenames or in context: Components.

The attributes are transformed in conjunctions of boolean expressions, building a policy and

granting access whenever the expression is fulfilled. The attacker propagation of the analysis

is built upon the Karlsruhe Architectural Maintainability Prediction (KAMP) [19]. KAMP is an

approach to evaluate the maintainability of software architecture. In KAMP propagation was

also considered since architectural changes can lead to follow-up changes through references

and uses-relations. KAMP uses kinds of relations to systematically detect affected components

during the propagation process.

2.3 Mobility Systems

The context of this case study is Mobility Systems that support providers of Mobility as a

Service (MaaS) as well as cities in which these providers operate. MaaS “is a service concept

that integrates public transport with other mobility services, such as car sharing, ride sourcing,

and bicycle sharing” [6]. Mobility services from public and/or private mobility providers

are managed through a single instance, the mobility system in use. Users are being offered

mobility solutions, which they can use based on their needs. An important aspect of MaaS is the

environment in which they are used, for example, cities. Cities can have different requirements

and policies for such providers considering traffic, safety for residents, taxes, etc. In this work,

mobility systems can be seen as mediators between MaaS providers and their operational areas.

The demand for MaaS is increasing such that the worldwide market volume for the mobility as a

service market is forecasted to be 372,1 billion US-Dollars in the year 2026 [27]. As a comparison,

the market volume in the year 2018 was 42,3 billion US-Dollars [27]. Widely-known examples,

especially in the U.S., of these mobility systems in taxi contexts are Uber [23] and Lyft [5].

2.3.1 Open Mobility Foundation

The Open Mobility Foundation is a non-profit organization that supports the development

of open-source standards and tools that provide scalable mobility solutions for cities [14].

One of their open-source tools is the Mobility Data Specification (MDS) [7]. MDS is a tool

that was developed to support cities to better manage transportation. At the core, MDS

manages communication and data-sharing between cities and private mobility providers, thus

4

2 Foundations

standardizing the communication. Examples of private mobility providers are e-scooter or

bike-share companies. The advantages of this standardization are on one hand that cities can

share and validate policies through MDS. On the other hand, mobility service providers are

given a framework that they can easily implement and reuse in new markets.

2.3.2 Mobility Data Specification Architecture

In this section, a reference architecture of mobility systems based on the MDS of the Open

Mobility Foundation is outlined. MDS provides Application Programming Interfaces (APIs)

enabling standardized two-way communication. Firstly, a communication channel for cities

that collect data through the API and further publish regulations. Regulations can affect traffic

management and can include public policy decisions. Secondly, a communication channel for

private companies that can share information about their operations, f.ex. availability status of

their mobility solution, but implement the regulations. Three primary APIs provided by MDS

are the following as stated by MDS [7]:

• Provider: “Provider allows private mobility companies to report data to cities on the

number, location, status, and ride history of devices in use” [7]. The Provider API is

hosted by a provider and allows an agency to pull data from it.

• Agency: “Agency allows real-time updates and collaboration between city officials and

providers when complex city transportation problems demand dynamic solutions” [7].

The Agency API is hosted by an agency and allows a provider to push data to it.

• Policy: “Policy allows cities to set rules for how and where different vehicles can operate,

how many can operate, and other high-level policy initiatives” [7]. The Policy API is also

hosted by an agency and allows a provider to pull policy information from the agency.

A city using the MDS standard can adopt one or both of these APIs. More detailed information

on the APIs can be found in the documentation about “Understanding MDS APIs” [11]. An

example architecture is presented in Section 3.2.2. MDS does not contain and obtain any

information about users of the mobility solution. Private information about users like name,

contact information, payment information and history are in the charge of the company

providing the mobility solution. However, MDS does collect information about the mobility

solution devices for example the cars in use. In detail, MDS collects vehicle and trip data from

providers, which is forwarded by the mobility solution company through a secure channel.

After, this data is sent to cities in the same way.

5

3 Overview

Case studies are conducted in various fields. They provide an in-depth study of a phenomenon

in a real-life environment. Thus, case studies can lead to findings for phenomena that are

not easy to separate from their environments. Insightful findings for propagation analyses

cannot be generated without a real-life context, since it is used in security-relevant contexts.

Runeson et al. define a case study in software engineering as "an empirical enquiry that draws

on multiple sources of evidence to investigate one instance (or a small number of instances)

of a contemporary software engineering phenomenon within its real-life context, especially

when the boundary between phenomenon and context cannot be clearly specified" [21]. This

case study has the aim to be positivist. A positivist case study searches evidence for formal

propositions, measures variables, tests hypotheses and draws inferences from a sample to a

stated population [21]. Moreover, the case study will follow the three characteristics of case

studies proposed by Runeson et al. in [21] (Qualitative, Exploratory, and Flexible). As explained

in Chapter 1 the case study is intended to deliver insights about the Architectural Attack

Propagation Analysis for Identifying Confidentiality Issues by Walter et al. [25] in the domain

of mobility systems. Specifically, in the environment of the Mobility Data Specification by

the Open Mobility Foundation (OMF) [14]. During the case study, an architectural model is

designed. The Attack Propagation Analysis is used on this model and the case study will, later

on, be analyzed regarding the properties.

3.1 Case Study Properties

There are some properties a case study should fulfill and some that will determine the success.

By success, I refer to the insight and knowledge generated by the case study. The properties

will be used to evaluate each version of the case study. In the following, these properties will

first be explained. After, methods to measure the fulfillment of the properties will be defined

by us, as well as the graduation of fulfillment. Three main characteristics proposed by Runeson

et al. [21] that case studies should fulfill are the following:

• Qualitative: A primarily qualitative approach to the subject will be helpful in achieving

the required results. Per se, this property is not measurable.

• Exploratory: the case study aims to be exploratory, thus resulting in new insights to the

analysis and in the best case generating ideas and hypotheses for further research. In

order to measure this property, I will break it down into three grades which reflect the

degree of fulfillment of this property.

1. Analysis delivers results. The case study is feasible.

2. Analysis delivers results in the domain of mobility systems.

6

3 Overview

3. Analysis delivers results in the domain of mobility systems and expected results are

documented in such a way that conclusions can be made (e.g. accuracy).

• Flexibility: The research subject of mobility systems and solutions is a real-world phe-

nomenon and features a complex and dynamic characteristic. This raises the need for a

flexible design of the case study as given by a qualitative approach. In our case, modeling

properties of mobility systems that are not relevant will be treated as risks for the flexibil-

ity of the case study. Non-relevant properties in this context are defined as properties that

go beyond the three core APIs in MDS since they are not needed for the core functionality

of mobility systems. Further, non-relevant properties include beta functionality as they

expose a risk of change if they are modified or are not continued. This property will be

broken down into two grades that should reflect the degree of fulfillment of this property.

1. Model does not include non-relevant functionality.

2. Model is extendable. This will be measured through a comparison of changes with a

version after the measured version. For example, the first version will be measured

by changes in elements in the second version.

Further characteristics that this case study set as goals, besides the properties before, to achieve

are:

• (Data-)Triangulation: Runeson et al. list Triangulation as one of the main characteristics

of case studies. In particular, Data Triangulation is defined as “using more than one

data source or collecting the same data on different occasions.” [21]. As a consequence,

(Data-)Triangulation will take a part in our case study in form of different viewpoints

and aspects of the subject of mobility systems and solutions. For measurement purposes,

I divided this property into three degrees of fulfillment

1. Model includes the viewpoint of one of the three APIs (Agency or Policy or Provider).

2. Model includes the viewpoint of two of the three APIs.

3. Model includes all viewpoints of the three APIs.

• Real-World Context: I want to embed the case study in a real-world context to show

the behavior of the analyzed method in the real world. Since real-world scenarios come

with challenges, restrictions, and boundaries, a closer connection to the real world is

more likely to conclude in meaningful results. This property also includes non-triviality.

In a real-world context, the case study cannot be tailored such that the results reflect

the expectations of the researcher and will likely reflect a complex issue. By outlining

characteristics of case studies, Runeson et. al also describes that case studies are “coping

with the complex and dynamic characteristics of real-world phenomena” [21]. As I want

to have a metric for this property, I defined the following degrees of fulfillment.

1. Idea of a real-world system is represented.

2. Idea of a real-world system is represented and concepts are modeled so that they

could probably occur in the real world.

3. A simplified real-world system is modeled.

7

3 Overview

4. A real-world system is modeled.

• Reproducibility: As already brought forward by Runeson et al. “conclusions [of case

studies] are based on a clear chain of evidence, whether qualitative or quantitative,

collected from multiple sources in a planned and consistent manner” [21]. It should

be possible to reproduce the case study so that other people can reconstruct the case

study. A case study that is not reproducible would only offer unprovable claims for

external researchers. An important part of reproducibility is also comprehensibility.

In the end, I want to present a clear chain of evidence of our conclusions and ideally

add to existing knowledge about the Architectural Attack Propagation Analysis for

Identifying Confidentiality Issues [25]. Thus, a comprehensible case study including

comprehensible proceedings and results is unavoidable. It should be possible for other

people to understand what and why something happens in the case study, thus making it

accessible for modifications and extensions. I transfer the Artifact Review and Badging

Policy of the Association for Computing Machinery [1] to our criteria and evaluate them

based on the following degrees.

1. All models of the case study are included.

2. Artifacts are relevant to the subject of this work and contribute to the generation of

the main result.

3. Documentation for available artifacts is available. This contributes to Reproducibility

as well as Comprehensibility.

4. Models can be used, executed with the analysis by Walter et al. [25] and modified.

The model is proven to produce results and is feasible.

5. Case study is publicly available

6. Case study has been validated by another person except for the author.

• Vulnerability: Since the case study will be used for “Validating Attack Propagation

Analyses” the model needs vulnerabilities, resulting in attack paths that can be found

through the analysis. This property was defined by us specifically for this case study and

it is divided into four degrees of fulfillment for measurement purposes.

1. Model includes vulnerabilities. There are vulnerabilities in the system, but these

cannot be assigned to components or architectural elements and accuracy cannot be

calculated.

2. Model includes vulnerabilities such that accuracy can be calculated. Meaning that

vulnerabilities are security relevant and can lead to attack paths.

3. Model includes vulnerabilities such that accuracy can be calculated and vulnerabili-

ties appear in the real-world.

4. Model includes vulnerabilities such that accuracy can be calculated and vulnerabili-

ties appear in the domain of mobility systems.

• Accuracy calculability: It should be possible for Attack Propagation Analyses to measure

their accuracy through the case study. Further, it should be possible for them to measure

8

3 Overview

their accuracy when performing the analysis in different domains. As an example, the

accuracy could be the ratio between found attack paths by the analysis and the number

of attack paths that were modeled. This property was defined by us specifically for this

case study and is measured by the following metric.

1. There are attack paths and expected results of attacker propagation analyses avail-

able.

3.2 Case Study Design

The superior objective of the case study is to determine the viability of the Architectural Attack

Propagation Analysis for Identifying Confidentiality Issues [25]. As discussed earlier, I will

be using the Open Mobility Foundation and their MDS as our case. The whole theory will

be based on the frame of reference given by the Architectural Attack Propagation Analysis.

Method collection is done in the following steps. Firstly, I have to develop an architectural

model representing mobility systems, in our case the MDS. Since the Architectural Attack

Propagation Analysis is based on the framework of the Palladio Component Model (PCM) [20],

the architectural model has to be developed in PCM. In the development, I face questions that

have to be researched and for which suitable answers have to be found:

• Which level of abstraction will the architectural models have? Meaning, which parts of

the architectural model will be granular and which parts of the model should only deliver

a rough picture of the real-world system.

• Which functionalities of the real-world example should be covered?

After finishing the architectural model in PCM, I will outline the expected results of the Attack

Propagation Analysis. After, the case study will be evaluated on the required properties. The

whole case study will be built in an iterative process. I will define a scope for the iteration,

design a model covering functionalities in this frame, analyze the results of the propagation

analysis and evaluate the iteration on the evaluation criteria. In the next iteration, a model will

be designed for another scope and analyzed in the end. In Figure 3.1 you can see an example

of this iterative process. In the first iteration, there is only one scenario. This is the scope

which was defined. It consists of only one module. In the second iteration, another scope, here

scenario, is defined. Thus the model could be extended by another module. Further, it could be

possible that there are different versions of an iteration which you can see in the third iteration.

It is planned to do iterations by time described by the timeline “Time t”.

In the following, input and output artifacts for the case study will be worked out and the

implementation process of the case study will be explained.

3.2.1 Inputs

Input artifacts that are needed for the case study are the following:

• Analysed method: In our case, this will be the Architectural Attack Propagation Analysis

[25].

9

3 Overview

Module 1

Scenario 1

Module 1

Module 2

Module 1

Module 2

Module 3

Module 1

Module 2

Module 3

It
er

at
io

n
1

It
er

at
io

n
2

It
er

at
io

n
3

It
er

at
io

n
3

Ve
rs

io
n

1
Ve

rs
io

n
2

Time t

Scenario 2

Scenario 3

Scenario 1

Scenario 1

Scenario 1

Scenario 2

Scenario 2

Scenario 3

Figure 3.1: Example of the iterative process in case study building

• Mobility system: For a viable case study information about its context is inevitable. I will

focus the research on the Open Mobility Foundation.

• Architectural model: Since the analyzed method is generating results on architectural

models, I will need a model as an input. This model is not available beforehand, it will be

modeled iteratively during the case study. Specifically, the MDS by the Open Mobility

Foundation will act as a reference for the architectural modeling.

• Expected results: Before applying the Attack Propagation Analysis I have to define a set

of expected results that the Attack Propagation should deliver. This will be done for each

iteration.

3.2.2 Implementation Process

The following steps must be carried out during the case study to obtain results from the analysis:

• Model software architecture: In this step, an architectural model of the system to be ana-

lyzed has to be modeled in PCM. In Figure 3.2 you can see what an example architecture of

MDS could look like before the first iteration. There are three interfaces, Provider, Agency

and Policy, that represent the three APIs of MDS. Every interface has its functionality

as methods. The provider interface has methods to create new devices, update device

location and statuses, is able to get updates, and send updates to the agency. The agency

interface allows updating of providers or policy, whereas the policy can define new rules,

update rules, get updates or send updates to the agency. Every interface has components

that implement these interfaces.

• Create attacker model: Through the attacker model of the Architectural Attack Prop-

agation Analysis types of attacks have to be specified that should be modeled. So, the

attack types to be analyzed have to be taken into consideration during the case study. A

helpful resource with existing attack types is the Open Web Application Security Project

(OWASP) [15]. OWASP lists security risks, including OWASP10 with the top ten web

application security risks such as A01 (Broken Access Control) [16]. A01 describes a

10

3 Overview

<< interface >>
Provider

+ newDevice(Device c)

+ updateDeviceLocation()

+ update DeviceStatus()

+ getUpdate(Update u)

+ sendUpdate(Update u)

<< interface >>
Policy

+ newRule (Rule r)

+ updateVehicleRule()

+ updateTrafficRule()

+ getUpdate (Update u)

+ sendUpdate (Update u)

<< interface >>
Agency

+ updateProvider(Update u)

+ updatePolicy(Update u)

«BasicComponent»

ProviderImpl

«BasicComponent»

AgencyImpl

«BasicComponent»

PolicyImpl

Figure 3.2: Example architecture model for mobility systems

failure in access control such that users can act outside of their intended permissions

leading to e.g. unauthorized information disclosure.

• Create Vulnerability Model: In this step, vulnerabilities of the architectural elements are

determined. These vulnerabilities can be modeled manually or through vulnerability

databases, e.g. National Vulnerability Database (NVD) [13].

• Create Access Control Model: Access Control Policies that are wished to be applied in the

model can be specified in the access control policy model. To achieve this, roles have to

be defined, for example, a provider role. After, it has to be specified which access rights

these roles have. Finally, elements have to be specified that inherit these roles.

• Expected results: Results that are expected from an attack propagation analysis have to

be documented using the vulnerabilities.

After these steps, the analysis can be run and obtained results can be documented.

3.2.3 Outputs

Output artifacts that are generated during the case study are the following:

• Documentation: During the Case Study I have to create a documentation for our models,

f.ex. our architectural models. This is also needed to fulfill the property “Reproducibility”

as discussed in Section 3.1.

• Architectural model: At the end of the case study, I will be left with architectural models

that will represent a mobility system, at least partly, and are oriented around the MDS.

11

3 Overview

• Results of the analysis: After the analysis of our architectural model by the Attack

Propagation Analysis, I will receive the results of the analysis.

12

4 Case Study Modelling

This chapter provides an overview of the case study models. As described in Section 3.2 I

worked iteratively and the modeling process resulted in two iterations. The first iteration

has one version, and the second iteration has three versions in total. For each version, the

repository, resource environment, allocation, access control policy, and attacker models are

described and explained. The system model is an instantiation of the components which are

connected together. No further description is needed and explanation can be given. During the

description of the models, explanations for design decisions are given. Further, the expected

result for attacker propagation analyses is outlined. At the end of each version, the model is

evaluated regarding the case study properties. The evaluation does also include a concrete

result for an attacker propagation analysis using the analysis [25] by Walter et al.

4.1 Minimal Working Example (v1.0)

The aim of this iteration was to represent a minimal working example of the mobility system.

It includes core functionalities of the Mobility Data Specification (MDS). The implementation

consists of one provider and one agency, each with its own applications. The agency includes

core functionalities of the Agency API and Policy API since both can be managed through the

same user entity as specified in MDS. The agency and the provider are connected through a

single-point network which allows them to send and receive data.

4.1.1 Repository

13

4
C
ase

Study
M
odelling

Figure 4.1: Iteration 1: Repository

1
4

4 Case Study Modelling

A visual representation of the repository can be seen in Figure 4.1. In the repository, I defined

two different datatypes. Firstly, Data is an abstraction for data that is being transferred over

the network. Secondly, User represents data that is needed to identify users in the network, e.g.

a JSON-Token (see [10] for further information). The Mobility Data Specification is defining in

their documentation [11] that the Agency API is hosted by an agency and allows a provider to

push data to it. The Provider API is hosted by a provider and allows an agency to pull data

from it. According to MDS, a city using their standard can adopt one or both of these APIs [11].

As brought up, the Policy API is also hosted by an agency and allows a provider to pull policy

information from the agency. As already stated, this iteration has one provider and one agency

instance, modeling both APIs.

The providerwasmodeled in the repository through the Provider Interface and the Provider1

Component. The Provider Interface defines methods pushToAgency(Data data):void and pull-

PolicyFromAgency():Data. The first method should send data to the agency whereas the

second method gets policy rules from an explicit agency. Using the assumption that a provider

has at most one agency, a parameter to identify an agency is not needed for both methods.

Provider1 is the basic component that implements the Provider Interface. Provider1 represents

the main application used by a provider.

On the other hand, the agency was modeled in the repository through two interfaces and

a single component. The Agency Interface represents agency functionalities, definingmethods

pullFromProvider(User provider):Data and pullFromPolicy():Data. Themethod pullFrom-

Provider gets data from a provider, whereas pullFromPolicy gets policy data. Since the agency

can easily have multiple providers, the providers are identified through a User type provider

parameter. The Policy Interface represents policy functionalities, defining the method

generatePolicy():Datawhich is amethod for general purpose policy creation. AgencyApplica-

tion Component is the component that implements the provider and the policy interface. It

represents the application used by the agency.

In order to represent a network data exchange two networking interfaces were introduced. The

ProviderApplicationNetworking Interface is being provided and implemented by Provider1

but is required byAgencyApplication. It consists of twomethods. Themethod receiveFromAgen-

cy(Data data):void determines what should happen when Data is received from the agency.

On the other hand, the method getDataRequestFromAgency(String path):void determines

what should happen when the agency sends a data request, for example, a get data request,

to Provider1. The parameter path of type String directs to a specific GET endpoint, f.ex.

/trips as required by the Provider API in MDS [9]. Next, the AgencyApplicationNetworking

Interface is being provided and implemented by AgencyApplication but required by Provider1.

Likewise the interface consists of the two methods: receiveFromProvider(Data data, User

provider):void and getPolicyRequestFromProvider(User user, String path):void. Sym-

metrically, they define what should be done if data is received from the provider or the latter

what should happen when the provider sends a data request to the agency.

To represent example activities, SEFFs for Provider1 and AgencyApplication were defined.

Provider1 has three SEFFs:

1. Provider.pushToAgency has an external call on AgencyApplicationNetworking.receive-

FromProvider.

15

4 Case Study Modelling

Figure 4.2: Iteration 1: Resource Environment

2. Provider.pullPolicyFromAgency has an external call on AgencyApplicationNetworking-

.getPolicyRequestFromProvider.

3. ProviderApplicatioNetworking.getDataRequestFromAgency has an external call on Agency-

ApplicationNetworking.receiveFromProvider.

AgencyApplication has two SEFFs:

1. Agency.pullFromProvider has an external call on ProviderApplicationNetworking.get-

DataRequestFromAgency.

2. AgencyApplicationNetworking.getPolicyRequestFromProvider has an external call on

ProviderApplicatioNetworking.receiveFromAgency.

4.1.2 Resource Environment

The resource environment of the first iterations is held minimal and Figure 4.2 is a visual

representation. It consists of two resource containers and one linking resource. On the first

resource container Provider1, the provider application will be running. The second resource

container AgencyApplication will be used by the agency application. The linking resource

Network connects both resource containers to represent a network between them.

4.1.3 Allocation

In the allocation model, I placed the AgencyApplication Allocation in the AgencyApplication

resource container as can be seen in Figure 4.3. On the other hand, the Provider1 Allocation

was placed in the Provider1 resource container.

16

4 Case Study Modelling

Figure 4.3: Iteration 1: Allocation

4.1.4 Access Control Policies.

In our access control policies, I defined three roles. Firstly, ProviderAdmin, which represents

the administrative user of Provider1. That’s why I provided this role to the assembly context of

Provider1 through a specification container. The role AgencyAdmin represents the administrative

user of AgencyApplication and is provided to AgencyApplication for the same reason. Lastly,

the management of the network is represented by a more abstract role of a RestAPI. This

role was assigned to the linking resource Network because management has to be done in

the network between the provider and the agency. In total, three access control policies

were defined with these roles. An agency policy describes that AgencyAdmin has access to the

AgencyApplication resource container because an administrative user should have access to

all resources of an agency. A provider policy grants a ProviderAdmin access to the Provider1

resource container for the same reason. Finally, a RestAPI policy grants the RestAPI role access

to Provider1 and AgencyApplication resource containers, so it can manage the data transfer

between the two components and has access to the part of the model where the data is sent.

4.1.5 Attacker Model

Through a category specification the CWE 284 [3] vulnerability was specified. The vulnerability

represents an improper access control vulnerability that is mapped to A01 [16]. A01 has the

first place in the OWASP10 [15] thus chances for the occurrence in a real-world setting are

high. In a vulnerability container it is specified that CWE 284 implies a takeover of the affected

element. After this, CWE 284 was placed in an attack container to represent an attack by the

vulnerability. A system specification container was used to integrate the vulnerability into

17

4 Case Study Modelling

the system by a vulnerability system integration. This integration was done by using a PCM

element that holds the linking resource Network. The Network linking resource was chosen for

this since access control is crucial for data transfer, for example in a Rest Server. In a container

an attacker with the created attack container was specified. The attacker specification was

done by using a PCM element that holds the assembly context of Provider1.

4.1.6 Expected result

It is expected that the Attacker can propagate to the linking resource Network without using any

attacks, just by using the defined access control policies. However, by the modeled vulnerability

in Network there should be a takeover of this linking resource from the attacker. The attacker

should get control over the agency since Network has the role RestAPI which grants access to

the provider and agency. Finally, the attacker should have control over the whole system.

4.1.7 Evaluation Regarding Properties

In this chapter, I evaluate this iteration in regard to the desired properties for our case study that

are outlined in Section 3.1. In Table 4.1 an overview of the fulfilled and not fulfilled properties

of this iteration is given.

Exploratory This iteration delivers a result for an attack propagation analysis in the domain

of mobility systems that can be found in our published models [12]. Further, the expected

results are documented in Section 4.1.6. Thus, the highest degree of the property Exploratory

is fulfilled. It is expected that insights can already be extracted from this iteration for example

a statement about the accuracy of an analysis.

Flexbility This iteration includes high-level models of a RestAPI, Provider, and an Agency

such that further functionality or fine-granular modeling can be adapted easily. Moreover,

non-relevant functionality or beta functionality from the current state of MDS was not modeled.

That’s why Flexibility is given in our system. Since, I defined that flexibility can be measured

with the next iteration, a comparison with the versions in Section 4.2 shows that this iteration

has been adopted without any (major) changes. Flexibility is fulfilled in the highest degree.

(Data-)Triangulation The property (Data-)Triangulation is not fulfilled. This iteration includes

a very general and high-level approach. The possibility of analyzing different viewpoints is not

given yet. To achieve this, further iterations will need to reflect the different viewpoints and

their access control policies.

Real-World Context In the course of this iteration, the lowest degree of a Real-World Context

is given. Iteration one reflects the core qualities and ideas of a mobility system. However, it is

held too general to occur like this in the real world. For this, I need more granularity and a

distinct coverage of the current MDS functionality in interfaces.

18

4 Case Study Modelling

Fulfilled Degree Property Explanation

✓ 2/3 Exploratory

Analysis delivers results in the domain of mobility systems.

Expected results are documented in such a way that conclusions can be made.

✓ 2/2 Flexibility Model does not include non relevant functionality. Model is extendable.

✗ 0/3 (Data-)Triangulation High-level model, no detailed viewpoint given.

✓ 1/4 Real-World Context Idea of a real-world system is represented.

✓ 5/6 Reproducibility

Documentation available. Artifacts are relevant, contribute to the main result, and are available.

The model is proven to produce results. Not validated yet.

✓ 2/4 Vulnerability

Model includes vulnerabilities such that accuracy can be calculated.

Vulnerabilities appear in the real world.

✓ 1/1 Accuracy calculability There are attack paths and expected results of attacker propagation analyses available.

Table 4.1: Iteration 1: Properties

Figure 4.4: Iteration 1: Extract from Result

Reproducibility Documentation for the artifacts of this iteration was given in this chapter.

The artifacts with all important models as well as their documentation are publicly available

[12]. This iteration is used as a pillar for further iterations, thus they are relevant and contribute

to the generations of the main results. As already stated, the model is proven to produce results

and it is further feasible. As a result, the case study fulfills Reproducibility. However, the case

study has to be validated by another person to reach the highest degree of Reproducibility.

Vulnerability The model includes CWE 284 [3] as a vulnerability. This vulnerability appears

in the real world and accuracy can be calculated. However, it has to be further researched if

this vulnerability occurs in the context of mobility systems. Vulnerability is fulfilled in the

third degree.

Accuracy Calculability There are attack paths in this iteration and expected results of attacker

propagation analyses are available in Section 4.1.6. Accuracy Calculability is fulfilled.

4.1.7.1 Result

The returned result was exactly the same result that was expected. The analysis was correct.

In Figure 4.4 you can see an extract of the attacker propagation graph. The attacker uses

the vulnerability, namely ImproperAccessControlInAgency, to take over the network linking

resource. By using this vulnerability, the attacker gains the role RestAPI with which it has

implicit access to the agency and all its elements.

19

4 Case Study Modelling

4.2 Detailed Modelling of Entities (v2.x)

As the first iteration was a minimal working example, this iteration is aiming to provide a

detailed perspective for each entity (Policy, Agency and Provider). This detailed view allows a

better understanding of the structure of the Mobility Data Specification (MDS). It has three

versions in total for each entity so that they can be focused on separately, allowing one to

analyse access control policies and vulnerabilities without regard to other entities. Further, it

was in our interest to analyse the behaviour of the analyses for the three entities given by the

API considering the (Data-)Triangulation property (see Section 3.1). The second iteration builds

upon the first iteration and extends the model for each entity. That’s why, differences and

extensions, in comparison to the first iteration, are described for eachmodel. Themodels include

all required API features for the MDS and access control policies were extended accordingly.

The attacker model was only changed for the versions concerning the provider entity to observe

the behaviour of the analysis, and whether it would propagate correctly. The attacker model

concerning the agency and policy versions did not change since the attacker model from the first

iteration already propagates through the whole system. No further SEFFs were implemented

in this iteration since they were not crucial for the analysis yet.

4.2.1 Provider Entity (v2.1)

The first version of the second iteration includes a detailed model of the provider entity and

its view of the Mobility Data Specification. This version of the second iteration extends the

provider view with functionality and a database.

4.2.1.1 Repository

20

4
C
ase

Study
M
odelling

Figure 4.5: Iteration 2.1: Extract from Repository

2
1

4 Case Study Modelling

An extract from the visual representation of the repository can be seen in Figure 4.5. The

Provider1 Component was renamed to Provider1Application so that it is evident that the

Provider1Application is the main application of the provider. Provider1Application was ex-

tended by two provided interfaces: ProviderUserManager Interface and ProviderVehicleMan-

ager Interface. In addition, the Provider1Application further requires three interfaces: Provider-

DatabaseConnector Interface, TripsProvider Interface and StatusChangesProvider Inter-

face. Firstly, since the provider is a mobility as a service provider, it has users of the service

who have to be managed as outlined in Section 2.3. In order to fulfill this function, the

ProviderUserManager Component was introduced to represent the management of interactions

between users of the provider and the provider itself. The ProviderUserManager compo-

nent provides a ProviderUserInterface Interface for users of the provider, with which they

can send and receive data by using the methods pullFromUserManager(String path):Data

and pushToUserManager(User providerUser, Data data):void. Further, the ProviderUser-

Manager component requires the ProviderUserManager interface which is provided by the

Provider1Application basic component. The ProviderUserManager interface allows the Provider-

UserManager component to do Create, Read, Update and Delete operations concerning trips

with the followingmethods: createTrip(Data tripData):void, readTrip(String tripId):Data,

updateTrip(Data tripData):void and deleteTrip(String tripId):void. These operations

are needed tomanage trips that are initiated by users. As a result, the ProviderUserManager com-

ponent can provide for the getTrips(string tripsQuery):Datamethod in the TripsProvider

Interface. Thus, the Provider1Application is able to provide the /trips endpoint to agencies

as required by the MDS Provider API in their documentation [9].

Secondly, the ProviderVehicleManager Interface is required by the ProviderVehicleManager

Component. The component should encapsulate the management of provider vehicles, as

providers have vehicles that do need management for example to change their availability

status. To be able to manage vehicles, the ProviderUserManager has to communicate with vehi-

cles in his inventory. Thus, the component provides the VehicleManagerConnector Interface

that is needed to establish a communication channel between Vehicle Components. Effectively,

this is possible with the provided methods pullFromVehicleManager(String path):Data and

pushToVehicleManager(Data data):void. Vehicle components encapsulate vehicle behavior

and provide meaning to the methods defined in the Vehicle Interface. As described in the

MDS documentation [9], vehicles can change their states and can emit events. Thus, the

methods changeState(Data status):void can change the state of a vehicle and the method

newVehicleEvent(Data event):void can register a new event for a vehicle. For complete-

ness purposes, the methods updateVehicle(Data vehicleData):void to update a vehicle and

unlockVehicle():void to unlock a vehicle were introduced. Further, the vehicle component

provides meaning to the methods defined in the DeviceConnector Interface. The DeviceCon-

nector interface is needed to establish a communication channel between a provider vehicle

and a device for a vehicle. A vehicle device can send geographical data to a vehicle which

is needed for a vehicle as seen in the documentation [9]. As a result, the DeviceConnector

interface declared the method pullFromVehicle(String path):Data to pull data from a vehicle

to a device and pushToVehicle(Data data):void to receive data as a vehicle from a vehicle

device. Symmetrically to the ProviderUserManager, the ProviderVehicleManager interface al-

lows the ProviderVehicleManager component to do Create, Read, Update and Delete operations

concerning vehicles with the following methods: createVehicle(Data vehicleData):void,

22

4 Case Study Modelling

Figure 4.6: Iteration 2.1: Resource Environment

readVehicle(String vehicleId):Data, updateVehicle(Data vehicleData):void and delete-

Vehicle(String vehicleId):void. These operations are needed to manage the status changes

of vehicles. As a result, the ProviderUserManager component can provide for the getStatusChang-

es(string statusChangesQuery):Data and getEvents(string eventsQuery):Data methods

in the StatusChangesProvider interface. Thus, the Provider1Application is able to provide the

/status_changes and /events endpoints to agencies as required by the MDS Provider API in

their documentation [9].

Finally, a database for the Provider was needed to save provider data. The management of

the database is done with the DatabaseManager Component to outsource the responsibility

from Provider1Application. The DatabaseManager component was introduced to encapsulate

management of data, f.ex. queries submissions, database connection establishment et cetera.

The DatabaseManager provides readData(string query):Data and writeData(string query)

methods in the ProviderDatabaseConnector Interface. However, the DatabaseManager re-

quires an interface to the Database in usewhich is represented by the ProviderDatabaseManager

Interface with its readData(string query):Data and writeData(string query):Data meth-

ods. As a result Provider1Application does not depend on a low-level database implementation.

4.2.1.2 Resource Environment

As a change to the first iteration, the resource container AgencyApplication was renamed to

Agency as can be seen in the visual representation in Figure 4.6. The reason for this name

change is that it does not make sense to name a resource container Application rather it is the

element in which the application is running. In addition, the connecting linking resource be-

tween former AgencyApplication and Provider1 was renamed to AgencyAndProvider1Network.

This change was done to emphasize that this linking resource connects specific elements

as new linking resources are added in this version. Further, the resource environment was

extended by a Provider1Database, Provider1Vehicle and User. The Provider1Database is

the resource environment in which the database of the provider is running. It is connected

by Provider1AndDatabaseNetwork linking resource to Provider1. The User resource envi-

ronment should represent the user’s device from which the user connects to the provider.

The connection to Provider1 is represented by Provider1AndUserNetwork linking resource.

Lastly, Provider1Vehicle is a resource environment for the provider’s vehicles. Provider1 and

Provider1Vehicle is connected through Provider1AndVehicleNetwork linking resource.

23

4 Case Study Modelling

Figure 4.7: Iteration 2.1: Allocation

4.2.1.3 Allocation

In the allocation model, I placed the AgencyApplication Allocation in the Agency resource

container as can be seen in Figure 4.7. The Provider1Application Allocation, ProviderUser

Allocation, and ProviderVehicle Allocation was placed in the Provider1 resource container.

The Provider1DatabaseManager Allocation was placed in the Provider1Database resource

container to see how the attacker would behave when placing the DatabaseManager in a sepa-

rate resource container from the resource container of the application itself. As a comparison,

this was done differently in the other versions of this iteration. The Vehicle Allocation was

placed in the Provider1Vehicle resource container since it should run on the vehicle itself.

Moreover, it would be interesting to see if an attacker could propagate to the vehicle resource

container, allowing him to manipulate the vehicle. The User resource container was left empty

since no allocation for the user is available and is out of our scope.

4.2.1.4 Access Control Policies

The access control policymodel was extended by two roles: Provider1User and Provider1Vehicle.

Provider1User should represent a user of the provider, thus it is provided to the User re-

source container in a specification container. Provider1Vehicle should represent a user ve-

hicle and is provided to the Provider1Vehicle resource container in a specification container.

The provider policy was renamed to Provider1 policy to be consistent with the repository.

Further, it is extended and has now access to: Provider1AndUserNetwork linking resource,

Provider1Database resource container and Provider1AndVehicleNetwork linking resource

as it needs access to them for data transfer. Two new policies were introduced. Firstly, a

Provider1User policy grants a Provider1User access to Provider1User resource container

and Provider1AndUserNetwork linking resource for data transfer purposes. Secondly, a

Provider1Vehicle policy grants a Provider1Vehicle access to Provider1Vehicle resource container

and Provider1AndVehicleNetwork linking resource for data transfer purposes.

24

4 Case Study Modelling

4.2.1.5 Attacker Model

In this version of the second iteration, a new attacker model was defined to have an attacker in

the user itself. I wanted to see if a provider user, which could be anyone using the provider’s

vehicle, could gain control over the whole system. There were no changes to the first iteration

regarding the attack container, vulnerability container and category specification. In the

attacker model, the attacker specification was done by using a PCM element that holds the

resource container User. A system specification container was used to integrate the vulnerability

to the system by a vulnerability system integration. The integration into the system was done

by using a PCM element that holds the linking resource AgencyAndProviderNetwork, as in the

first iteration. In addition, another integration was done by using a PCM element that holds

the assembly context of ProviderUserManager.

4.2.1.6 Expected Result

It is expected that the Attacker, starting in the User resource container, can propagate to the

Provider1AndUserNetwork by making use of the defined access control policy for the User

role. Propagating further to the ProviderUserManager where a takeover should take place. By

exploiting the vulnerability in the ProviderUserManager and taking the component over, the

attacker should get access to provider components and roles. Therefore, using the same attack

as in the first iteration, the provider should get access to the RestAPI role hence getting access

to the agency role and components.

4.2.1.7 Case Study Properties

In this chapter, I evaluate this iteration in regard to the desired properties for our case study that

are outlined in Section 3.1. In Table 4.2 an overview of the fulfilled and not fulfilled properties

of this iteration is given.

Exploratory This iteration delivers a result for an attack propagation analysis in the domain

of mobility systems that can be found in our published models [12]. Further, the expected

results are documented in Section 4.2.1.6. Thus, the highest degree of the property Exploratory

is fulfilled. It is expected that insights can already be extracted from this iteration.

(Data-)Triangulation In this version, the provider view is extended. It fulfills the property

(Data-)Triangulation by the lowest degree since the model includes only the viewpoint of the

provider API.

Flexbility As no major changes to the first iteration were made except for example name

changes, this is evidence of the flexibility of the first iteration. Since, I defined that flexibility can

be measured with the next iteration and this is the last iteration, a comparison is not possible.

However, this iteration includes a detailed model of the provider such that further functionality

or fine-granular modeling can be adapted easily. Moreover, non-relevant functionality or beta

functionality from the current state of MDS was not modeled. That’s why Flexibility by the

first degree is given in our system.

25

4 Case Study Modelling

Fulfilled Degree Property Explanation

✓ 3/3 Exploratory

Analysis delivers results in the domain of mobility systems.

Expected results are documented in such a way that conclusions can be made.

✓ 1/2 Flexibility Model doesn’t include non relevant functionality

✓ 1/3 (Data-)Triangulation Model includes provider viewpoint.

✓ 2/4 Real-World Context

Idea of a real-world system is represented.

Concepts are modeled so that they could probably occur in the real world.

✓ 5/6 Reproducibility

Documentation available. Artifacts are relevant, contribute to the main result, and are available.

The model is proven to produce results. Not validated yet.

✓ 3/4 Vulnerability

Model includes vulnerabilities such that accuracy can be calculated.

Vulnerabilities appear in the real world.

✓ 1/1 Accuracy calculability There are attack paths and expected results of attacker propagation analyses available.

Table 4.2: Iteration 2.1: Properties

Real-World Context In contrast to the first iteration, this iteration achieves a higher degree of

a Real-World Context. That’s because concepts, namely provider concepts, are modeled so that

they could probably occur in the real world as they fulfill the API requirements given by MDS.

Reproducibility A documentation for the artifacts of this iteration was given in this chapter.

The artifacts with all important models as well as their documentation are publicly available

[12]. This iteration is used as a pillar for further iterations, thus they are relevant and contribute

to the generations of the main results. As already stated, the model is proven to produce results

and it is further feasible. As a result, the case study fulfills Reproducibility. However, the case

study has to be validated by another person to reach the highest degree of reproducibility.

Vulnerability The model includes CWE 284 [3] as a vulnerability. This vulnerability appears

in the real world and accuracy can be calculated. However, it has to be further researched if

this vulnerability occurs in the context of mobility systems. Vulnerability is fulfilled in the

third degree.

Accuracy calculability There are attack paths in this iteration, including the provider view,

and expected results of attacker propagation analyses are available in Section 4.2.1.6. Thus,

Accuracy calculability is fulfilled.

4.2.1.8 Result

The returned result was exactly the same result that was expected. The analysis was correct. In

Figure 4.8 a visual extract of the attacker propagation graph is available. The attacker uses the

vulnerability, namely ImproperAccessControlInAgency, to take over the ProviderUserManager.

The name may be confusing since it is the same vulnerability used for the agency attack in the

first iteration. At the bottom of the figure, you can see that the attacker also gained control

over the agency, including AgencyApplication and the AgencyAdmin role.

4.2.2 Agency Viewpoint (v2.2)

The second version of the second iteration includes a detailed model of the agency view of the

Mobility Data Specification (MDS). This version of the second iteration extends the agency

view with functionality and a database.

26

4 Case Study Modelling

Figure 4.8: Iteration 2.1: Extract from Result

4.2.2.1 Repository

27

4
C
ase

Study
M
odelling

Figure 4.9: Iteration 2.2: Extract from Repository

2
8

4 Case Study Modelling

An extract from the visual representation of the repository can be seen in Figure 4.9. The

AgencyApplication componentwas extended by three required Interfaces: ProviderAuthentica-

tion Interface, VehicleManager Interface and AgencyDatabaseManager Interface. In ad-

dition, the AgencyApplication further provides the interface VehicleProvider Interface.

Firstly, since the agency is a regulatory instance, it has providers who are managed through the

data of the agency and thus consume the Agency API as outlined in Section 2.3. In order to fulfill

this function, the VehicleManager Componentwas introduced to represent vehicle data manage-

ment needed for providers. Further, the VehicleManager component requires the VehicleMan-

ager interface which is provided by the AgencyApplication component. The VehicleManager in-

terface allows the VehicleManager component to do Create, Read, Update and Delete operations

concerning vehicles with the following methods: createVehicle(Data vehicleData):void,

readTrip(String vehicleId):Data, updateTrip(Data vehicleData):void and deleteTrip-

(String vehicleId):void. These operations are needed tomanage the vehicle data of providers.

As a result, the VehicleManager component can provide the VehicleProvider interface. The

VehicleProvider interface allows the AgencyApplication component to register, update and

get vehicle data. Moreover, the AgencyApplication is able to register vehicle events and

vehicle telemetry data (for example location of the vehicle). This is represented with the fol-

lowing methods in the VehicleProvider interface: registerVehicle(Data vehicleData):void,

updateVehicle(string deviceId, string vehicleId):void, getVehicle(string deviceId)-

:void, newVehicleEvent(string deviceId, Data eventData):void and newVehicleTelemetry-

(Data telemetryData):void. Thus, the AgencyApplication is able to provide the /vehicles

endpoint to providers as required by the MDS Agency API in their documentation [8].

Since data from providers have to be stored (for example vehicle data), the agency needs a

database. Themanagement of the database is donewith the AgencyDatabaseManager Component

to outsource the responsibility from AgencyApplication. The AgencyDatabaseManager compo-

nent was introduced to encapsulate management of data, f.ex. queries submissions, database

connection establishment et cetera. The AgencyDatabaseManager component provides to

the AgencyDatabaseManager interface, allowing database operations through the provided

writeData(String query):void and readData(String query):Data methods. However, the

AgencyDatabaseManager component requires an interface of the database, which is named

AgencyDatabase to read and write from the database. As a result AgencyApplication does not

depend on a low-level database implementation.

Finally, in the documentation of MDS [9], it is specified that the provider should get autho-

rized with a JWT-Token. In order to model this, the ProviderAuthentication Component is

providing to the belonging ProviderAuthentication Interface, giving functionality to the

authenticate(User providerUser):bool method.

4.2.2.2 Resource Environment

In addition to the first iteration, a new resource container AgencyDatabase was introduced as

can be seen in the visual representation in Figure 4.10. It is used to run the database application

on it. The AgencyDatabase resource container is linked with the AgencyApplication through

the linking resource AgencyAndDatabaseNetwork so data change can be done between the

database and the AgencyDatabaseManager therefore the AgencyApplication.

29

4 Case Study Modelling

Figure 4.10: Iteration 2.2: Resource Environment

4.2.2.3 Allocation

A visual representation of the allocation model can be seen in Figure 4.11. All new introduced

components or rather their allocations, ProviderAuthentication Allocation, VehicleManager

Allocation and AgencyDatabaseManager Allocation were placed in the AgencyApplication

resource environment. In this version I did not separate the AgencyDatabaseManager from

the AgencyApplication resource environment since I do not need to introduce microservices,

rather it is preferred this way in terms of overhead, performance, and latency. This leaves the

AgencyDatabase resource environment without any allocations.

4.2.2.4 Access Control Policies

The access control policy was only changed in the Agency policy. The AgencyAdmin role

has now access to the AgencyDatabase resource container since the agency has to access the

database for read or write operations.

4.2.2.5 Attacker Model

There was no change in the attacker in comparison to the first iteration.

4.2.2.6 Expected Result

It is expected that the Attacker can propagate to the linking resource Network without using any

attack just by the defined access control policies. However, through the modeled vulnerability

in Network there should be a takeover of this linking resource to the attacker. The attacker

should get control over the agency since Network has the role RestAPI which grants access

to Provider and Agency. Finally, the attacker should have complete control over the whole

system.

30

4 Case Study Modelling

Figure 4.11: Iteration 2.2: Allocation

4.2.2.7 Case Study Properties

In this chapter, I evaluate this iteration in regard to the desired properties for our case study that

are outlined in Section 3.1. In Table 4.2 an overview of the fulfilled and not fulfilled properties

of this iteration is given.

Exploratory This iteration delivers a result for an attack propagation analysis in the domain

of mobility systems that can be found in our published models [12]. Further, the expected

results are documented in Section 4.2.2.6. Thus, the highest degree of the property Exploratory

is fulfilled. It is expected that insights can already be extracted from this iteration.

(Data-)Triangulation In this version, the agency view is extended. It fulfills the property

(Data-)Triangulation by the lowest degree since the model includes only the viewpoint of the

agency API.

Flexbility As no major changes to the first iteration were made except for example name

changes, this is evidence of the flexibility of the first iteration. Since, I defined that flexibility can

be measured with the next iteration and this is the last iteration, a comparison is not possible.

However, this iteration includes a detailed model of the agency such that further functionality

or fine-granular modeling can be adapted easily. Moreover, non-relevant functionality or beta

functionality from the current state of MDS was not modeled. That’s why Flexibility by the

first degree is given in our system.

31

4 Case Study Modelling

Fulfilled Degree Property Explanation

✓ 3/3 Exploratory

Analysis delivers results in the domain of mobility systems.

Expected results are documented in such a way that conclusions can be made.

✓ 1/2 Flexibility Model doesn’t include non relevant functionality.

✓ 1/3 (Data-)Triangulation Model includes agency viewpoint.

✓ 2/4 Real-World Context

Idea of a real-world system is represented.

Concepts are modeled so that they could probably occur in the real world.

✓ 5/6 Reproducibility

Documentation available. Artifacts are relevant, contribute to the main result, and are available.

The model is proven to produce results. Not validated yet.

✓ 3/4 Vulnerability

Model includes vulnerabilities such that accuracy can be calculated.

Vulnerabilities appear in the real world.

✓ 1/1 Accuracy calculability There are attack paths and expected results of attacker propagation analyses available.

Table 4.3: Iteration 2.2: Properties

Real-World Context In contrast to the first iteration, this iteration achieves a higher degree of

Real-World Context. That’s because concepts, namely agency concepts, are modeled so that

they could probably occur in the real world as they fulfill the API requirements given by MDS.

Reproducibility A documentation for the artifacts of this iteration was given in this chapter.

The artifacts with all important models as well as their documentation are publicly available

[12]. This iteration is used as a pillar for further iterations, thus they are relevant and contribute

to the generations of the main results. As already stated, the model is proven to produce results

and it is further feasible. As a result, the case study fulfills Reproducibility. However, the case

study has to be validated by another person to reach the highest degree of reproducibility.

Vulnerability The model includes CWE 284 [3] as a vulnerability. This vulnerability appears

in the real world and accuracy can be calculated. However, it has to be further researched if

this vulnerability occurs in the context of mobility systems.

Accuracy Calculability There are attack paths in this iteration, including the agency view,

and expected results of attacker propagation analyses are available in Section 4.2.2.6. Thus,

Accuracy calculability is fulfilled.

4.2.2.8 Result

The returned result was exactly the same result that was expected. The analysis was correct.

In Figure 4.12 a visual extract of the attacker propagation graph is available. The attacker uses

the vulnerability, namely ImproperAccessControlInAgency, to take over the Network linking

resource. The name may be confusing since it is the same vulnerability used for the agency

attack in the first iteration. By using this vulnerability, the attacker gains the role RestAPI with

which it has implicit access to the agency and all its elements. Because of this, the attacker has

also access to the newly added VehicleManager.

4.2.3 Provider Viewpoint (v2.3)

The third version of the second iteration includes a detailed model of the policy view of the

Mobility Data Specification (MDS).

32

4 Case Study Modelling

Figure 4.12: Iteration 2.2: Extract from Result

4.2.3.1 Repository

33

4
C
ase

Study
M
odelling

Figure 4.13: Iteration 2.3: Extract from Repository

3
4

4 Case Study Modelling

An extract from the visual representation of the repository can be seen in Figure 4.13. The

AgencyApplication component was extended by two required Interfaces: PolicyProvider

Interface and PolicyDatabaseManager Interface. In addition, the AgencyApplication fur-

ther provides the interface PolicyManager Interface. Firstly, since the agency is a regulatory

instance, it is able to establish policies for providers who are managed through the data of the

agency and thus consume the Agency API as outlined in Section 2.3. In order to fulfill this

function, the PolicyManager Componentwas introduced to represent the policy management of

the agency. Further, the PolicyManager component requires the PolicyManager interface which

is provided by the AgencyApplication component. The PolicyManager interface allows the Poli-

cyManager basic component to do Create, Read, Update and Delete operations concerning poli-

cies with the following methods: createPolicy(Data policyData):void, readPolicy(String

policyId):Data, updatePolicy(Data policyData):void and deletePolicy(String policyId)-

:void. These operations are needed to manage the policy data of the agency. As a result, the

PolicyManager component can provide the PolicyProvider interface. The PolicyProvider in-

terface allows the AgencyApplication get policy data with the method getPolicies(string

policiesQuery) in the interface. Thus, the AgencyApplication is able to provide the /policies

endpoint to providers as required by the MDS Agency API in their documentation [8].

Finally, this policy data has to be stored in a database. The management of the database

is done with the PolicyDatabaseManager Component to outsource the responsibility from

AgencyApplication. The PolicyDatabaseManager component was introduced to encapsu-

late management of data, f.ex. queries submissions, database connection establishment et

cetera. The PolicyDatabaseManager component provides to the PolicyDatabaseManager inter-

face, allowing database operations through the provided writeData(String query):void and

readData(String query):Data methods. However, the PolicyDatabaseManager component

requires an interface of the database, which is named PolicyDatabase Interface to read and

write from the database. As a result AgencyApplication does not depend on a low-level database

implementation.

4.2.3.2 Resource Environment

In addition to the first iteration, a new resource container PolicyDatabase was introduced as

can be seen in the visual representation in Figure 4.14. It is used to run the database application

on it. The AgencyDatabase resource container is linked with the AgencyApplication through

the linking resource AgencyAndPolicyDatabaseNetwork so data change can be done between

the database and the AgencyDatabaseManager as well as the AgencyApplication.

4.2.3.3 Allocation

A visual representation of the allocation context can be seen in Figure 4.15. All new introduced

components or rather their allocations, PolicyManager Allocation and PolicyDatabaseManager

Allocation were placed in the AgencyApplication resource environment. In this version I did

not separate the PolicyDatabaseManager from the AgencyApplication resource environment

since I do not need to introduce microservices, rather it is preferred this way in terms of

overhead, performance, and latency. This leaves the PolicyDatabase resource environment

without any allocation contexts.

35

4 Case Study Modelling

Figure 4.14: Iteration 2.3: Resource Environment

Figure 4.15: Iteration 2.3: Allocation

36

4 Case Study Modelling

4.2.3.4 Access Control Policies

The AgencyAdmin role is provided to the AgencyApplication assembly context. The access

control policy was only changed in the Agency policy. The AgencyAdmin role has now access

to the AgencyDatabase resource container since the agency has to access the database for read

or write operations.

4.2.3.5 Attacker Model

There was no change in the attacker in comparison to the first iteration.

4.2.3.6 Expected Result

It is expected that the attacker can propagate to the linking resource Network without using any

attack just by the defined access control policies. However, through the modeled vulnerability

in Network there should be a takeover of this linking resource to the attacker. The attacker

should get control over the agency since Network has the role RestAPI which grants access to

the provider and agency. Finally, the attacker should have complete control over the whole

system since the role ProviderAdmin has also access to the PolicyDatabase resource container.

4.2.3.7 Case Study Properties

In this chapter, I evaluate this iteration in regard to the desired properties for our case study that

are outlined in Section 3.1. In Table 4.4 an overview of the fulfilled and not fulfilled properties

of this iteration is given.

Exploratory This iteration delivers a result for an attack propagation analysis in the domain

of mobility systems that can be found in our published models [12]. Further, the expected

results are documented in Section 4.2.3.6. Thus, the highest degree of the property Exploratory

is fulfilled. It is expected that insights can already be extracted from this iteration.

(Data-)Triangulation In this version, the policy view is extended. It fulfills the property (Data-

)Triangulation by the lowest degree since the model includes only the viewpoint of the policy

API.

Flexibility As no major changes to the first iteration were made except for example name

changes, this is evidence of the flexibility of the first iteration. Since, I defined that flexibility can

be measured with the next iteration and this is the last iteration, a comparison is not possible.

However, this iteration includes a detailed model of the agency such that further functionality

or fine-granular modeling can be adapted easily. Moreover, non-relevant functionality or beta

functionality from the current state of MDS was not modeled. That’s why Flexibility by the

first degree is given in our system.

Real-World Context In contrast to the first iteration, this iteration achieves a higher degree of

Real-World Context. That’s because concepts, namely policy concepts, are modeled so that

they could probably occur in the real world as they fulfill the API requirements given by MDS.

37

4 Case Study Modelling

Fulfilled Degree Property Explanation

✓ 3/3 Exploratory

Analysis delivers results in the domain of mobility systems.

Expected results are documented in such a way that conclusions can be made.

✓ 1/2 Flexibility Model doesn’t include non relevant functionality. Model is extendable.

✓ 1/3 (Data-)Triangulation Model includes agency viewpoint.

✓ 2/4 Real-World Context

Idea of a real-world system is represented.

Concepts are modeled so that they could probably occur in the real world.

✓ 5/6 Reproducibility

Documentation available. Artifacts are relevant, contribute to the main result, and are available.

The model is proven to produce results. Not validated yet.

✓ 3/4 Vulnerability

Model includes vulnerabilities such that accuracy can be calculated.

Vulnerabilities appear in the real world.

✓ 1/1 Accuracy calculability There are attack paths and expected results of attacker propagation analyses available.

Table 4.4: Iteration 2.3: Properties

Reproducibility A documentation for the artifacts of this iteration was given in this chapter.

The artifacts with all important models as well as their documentation are publicly available

[12]. This iteration is used as a pillar for further iterations, thus they are relevant and contribute

to the generations of the main results. As already stated, the model is proven to produce results

and it is further feasible. As a result, the case study fulfills Reproducibility. However, the case

study has to be validated by another person to reach the highest degree of reproducibility.

Vulnerability The model includes CWE 284 [3] as a vulnerability . This vulnerability appears

in the real world and accuracy can be calculated. However, it has to be further researched if

this vulnerability occurs in the context of mobility systems.

Accuracy calculability There are attack paths in this iteration, including the policy view, and

expected results of attacker propagation analyses are available in Section 4.2.2.6. Thus, Accuracy

calculability is fulfilled.

4.2.3.8 Result

The returned result was exactly the same result that was expected. The analysis was correct.

In Figure 4.16 a visual extract of the attacker propagation graph is available. The attacker uses

the vulnerability, namely ImproperAccessControlInAgency, to take over the Network linking

resource. The name may be confusing since it is the same vulnerability used for the agency

attack in the first iteration. By using this vulnerability, the attacker gains the role RestAPI with

which it has implicit access to the agency and all its elements. Because of this, the attacker has

also access for example to the PolicyDatabase as seen in the figure.

38

4 Case Study Modelling

Figure 4.16: Iteration 2.3: Extract from Result

39

5 Lessons Learned

During the preparation of this work a deeper understanding of many subject areas was achieved

and the lessons learned can be divided into the following groups: component-based modeling

including the palladio component model, access control policy modeling and attacker modeling,

case studies, especially in software engineering and academic work in general. This chapter

gives an overview of the lessons that were learned during this work but aims to give useful

information for further research in the context of this use case. It is worth noting that the

useful information only represents the way of work that was pursued in this case study and

does not represent the only way to solve a problem.

In the beginning, it was difficult to model a system and stay in the component-based modeling

context. As I did not use the theoretical knowledge of components-based modeling in prac-

tice an obstacle was holding the abstraction level of component-based modeling. It occurred

multiple times that the modeling, especially the repository modeling, strived towards more

low-level modeling. However, in the process of this work, I have learned what component-based

modeling means in practice. It is important to keep the functionality of the software in the

foreground and to subdivide these functionalities into different areas. Conversely, this means

that implementation details, the how do not play a role. To give an illustrative example in

the context of this work: The agency can already be seen as a component and in the sense of

component-based software development, it is irrelevant how this component (here the agency)

implements its functionality. It is sufficient to know that the agency has a functionality, which

in this case can be distinguished from the functionality of the provider. This does not mean

that modeling ends here; instead, the functionality of the agency can be subdivided into further

components.

In the course of component-based modeling, I had to use the Palladio Component Model. As

already mentioned in Chapter 2, the Palladio Component Model provides a framework for

component-based modeling and uses Eclipse for this. While using the Palladio Component

Model in combination with the attack propagation analysis extension, I learned a lot about their

practical use, which I will summarise below. Firstly, for the repository, resource environment,

allocation and system there are representations on which component-based modeling can

be done with a UI. For allocation modeling, a resource environment is needed beforehand

to assign allocations to resource environments. In the system, it is possible to provide in-

terfaces to the outside of the systems. In our work, this was done for the provider, agency,

and policy application interfaces. Access control policies and attacker specifications don’t

have a representation in form of a diagram. Thus, elements had to be added in a specific

way. For the access control policies, I learned that the root element is a Confidential Access

Specification. This element then consists of three children. Firstly, Attributes in which a

Simple Attribute Role child element can hold different roles of the system. Secondly, a Set in

which multiple Policy child elements can be placed. These policy elements represent different

access control policies for the system and include Rule child elements. In this rule element, the

40

5 Lessons Learned

type of conditions could be specified. In our case, a Simple Attribute Condition was enough.

Further, the access conditions were specified with All of child elements which specifies for

which model elements the policy applies. These model elements can be specified with an

Entity Match child element. Lastly, a Specification Container which is used to assign roles

to different elements of the system. This can be done with a PCM Attribute Provider child

elements which define the elements that should get the roles. The assigned roles are then

defined in a Usage Specification child element of the PCM attribute provider. Concerning

attack specifications the root elements is a Specification element. I used five children el-

ements: Container, Attack Container, Vulnerability Container, Category Specification

and System Specification Container. It is useful to first decide on a vulnerability that should

be integrated into the system. In the category specification element a CWEID or CVEID child

element can then be added where vulnerability information is stored. After, in the vulnerability

container a CVE Vulnerability or CWE Vulnerability child element can be added where the

effects of the vulnerability in the system are defined. This is needed in the system specification

container where the vulnerability is integrated into the system with a Vulnerability System

Integration where the vulnerability is stored. Further, the vulnerability system integration

has a PCM Element child element in which it is defined where the vulnerability is placed. The

attack container holds the CWE Attack or CVE Attack as a child element. This is needed to give

the attack to an attacker in the Container element. The container element has an Attacker

child element in which the attack is defined. Lastly, the attacker element has a PCM Element as a

child in which the attack is assigned to a model element. Finally, to run the attack propagation

analyses of Maximilian Walter et al. [25] a kamp4atttackmodificationmarks file is needed. It

stores propagation details. However, the root element Kamp4attack Seed Modifications is

needed in which the attacker is defined through an Attacker Selection child element. For the

access policy context, attacker model, and the kamp4attackmodificationsmarks, it is sometimes

necessary to load the other models manually to be able to assign their elements. This can be

done through right-clicking and “Load Repository”.

Besides the theoretical knowledge about case studies, I’ve learned that the evaluation process

of the case study is one of the most important but also the most difficult parts. During the case

study design there are many properties that one could think of. However, measuring these

properties is the harder part. That’s why measurement methods have to be discussed while

defining properties for the evaluation. These measurement methods can be different from case

study to case study and there is no general approach to this. Moreover, only with an evaluation

and proven properties, are other researchers enabled to confirm their results. An example of

this is the Accuracy calculability property. The measurement of this property was that

There are attack paths and expected results of attacker propagation analyses are available

Section 3.1. Thus, the researcher is able to give an estimate of the accuracy of the attack

propagation analyses. Finally, the most valuable lesson was that implementation work should

be done in iterations whenever possible, in academic works and in general. By recommendation

of my advisors, the implementation progress was done in iterations as described in Section 3.2.

This gave me the possibility to better organize my time since nothing had to be planned

for a long time period before. Furthermore, iterative modeling is fault tolerant. Faults in

prior iterations can be corrected in post-iterations. In addition, it was better in terms of time

management since I could decide when to stop with the implementation of the case study.

41

5 Lessons Learned

5.1 Threats to Validity

In this chapter, I want to discuss the validity of this case study and must therefore discuss

potential threats to the validity. The discussion will be based on the four categories of validity

as suggested by Runeson et al. [21].

Construct Validity describes whether the end result of this work is representing a mobility

case study for validating attack propagation analyses. Firstly, it is of concern if this work fulfills

the requirements to be a case study. If it is a case study, then it has to be clarified whether it

can validate attack propagation analyses. In the progress of constructing this work, I examined

properties that case studies in software engineering should fulfill from academic literature.

These properties were then listed in Section 3.1 together with possibilities to evaluate them. The

chapters about Evaluation Regarding Properties for our second iteration have revealed that all

of them were fulfilled. Regarding these results, I can assume that this work can be categorized

as a case study. This list of properties further included properties that were introduced by us

specifically for attack propagation analyses, namely Vulnerability and Accuracy calculability.

Accuracy calculability required that “There are attack paths and expected results of attacker

propagation analyses are available”. As this property is fulfilled in the second iteration and I

could additionally verify the result of the attack propagation analyses of Walter et al. [25] in

each version, I can also assume that this case study can validate attack propagation analyses.

Internal Validity discusses whether there are internal factors that could be a threat to the

validity of which I am not aware. A major threat to internal validity is that I constructed the

measurement methods for our properties myself. These measurement methods have to be

validated by external researchers or already validated measurement methods have to be used

to minimize the threat to internal validity. In detail, I have set the metrics in form of degrees

for the following properties: Exploratory, Flexibility, (Data-)Triangulation, Real-World Context,

Reproducibility, Vulnerability and Accuracy calculability.

External Validity deals with the question if the result can be generalized. Firstly, the Mobility

Data Specification was our reference for mobility systems in this case study. The Open Mobility

Foundation is providing a way to standardize “communication and data-sharing between cities

and private mobility providers” [14] with the Mobility Data Specification. It is used already by

many cities. Therefore, the aspect of the modeled mobility system should not be a threat to

validity in this case study. However, the implementation of the mobility system in our case study

offers a component repository, a resource environment, an allocation context, access control

policies, and an attacker model as explained in Section 3.2.2. If there are attack propagation

analyses that need other elements, a generalization would be restricted. As a result, this would

represent a threat to the external validity of the case study and has to be researched.

Reliability describes if the results, in this context the case study, can be reproduced by

other researchers. In the list of properties, the case study is evaluated, I defined the property

Reproducibility. This property covers exactly this aspect. As in our second iteration, this

property is fulfilled, I can assume that the risk for reliability in the context of the case study in

42

5 Lessons Learned

general is minimized. However, Reliability describes also if the evaluation can be reproduced

by other researches. As already discussed for Internal Validity, I set the metrices for the case

study properties. It is possible that other researchers would find different methods to measure

the properties. To minimize this risk, I discussed the properties regularly with my advisors.

The possibility that other researchers would use completely different properties is low since

the properties were extracted from popular academic literature.

5.2 Limitations

The current version of the case study consists of two iterations and four versions in total. It was

planned to do a third iteration nevertheless the time was not enough. This leaves the case study

with properties in Section 3.1 that are not fulfilled in the highest grade. There is no version of

the case study which has all three viewpoints of MDS in a single model, thus the highest degree

of “(Data-)Triangulation” could not be achieved. Concerning the “Reproducability” the case

study has to be validated by another person except for the author. Since the second iteration

consists of three different versions, each representing one view of the three APIs in MDS, the

property “Real-World Context” is fulfilled to the second degree. Third degree “Real-World

Context” would be achieved if they were merged into one model which was planned for the

third iteration. Lastly, the highest degree of “Vulnerability” couldn’t be achieved since there is

no evidence that the used vulnerabilities in this case study appear in the domain of mobility

systems.

43

6 RelatedWork

This case study mainly relates to two works. First of all, the case study refers to the “Archi-

tectural Attack Propagation Analysis” [25] which is being investigated here. Secondly, the

“Guidelines for conducting and reporting case study research in software engineering” [21],

which is referred to by many papers about case studies in software engineering and which I’ll be

using as a reference work. Wohlin published a paper namely “Case Study Research in Software

Engineering—It is a Case, and it is a Study, but is it a Case Study?”[26] in which she refers to

the already mentioned Guidelines and clearly shows the boundaries of case studies. It is useful

for this work since it’s easy to cross these boundaries as shown in the statistics of the work.

Runes et al. have published a book, namely “Case Study Research in Software Engineering

- Guidelines and Examples” [17] with guidelines and valuable examples for case studies in

software engineering. Another important work about case study research is found in “Guide

to Advanced Empirical Software Engineering” by Schull et al [22]. It concentrates mainly on

empirical software engineering in which case study research takes a role. Furthermore, it deals

with philosophical stances about empirical truth which must be kept in mind for academic

research. However, these academic works concentrate mainly on the creation of case studies.

This case study was done specifically in the domain of mobility systems. Concerning the “Ar-

chitectural Attack Propagation Analysis”, the Palladio Component Model (PCM) [20] is needed

to understand architectural models and to model themselves. However, important aspects

can be found in the introduction paper about PCM [4]. In addition, the Common Component

Modeling Example (CoCoME) [18] delivers an approach to model the component-based part of

the architecture.

Concerning earlier studies, there are three case studies that have been conducted for the Attack

Propagation Analysis in [25]. Firstly, a case study that simulates in its real-world context a

cyber attack on the retail store Target in the year 2013. They have modelled a component for

a business backend and a component handling the billing. In addition, the model contained

Point of Sale devices, storage devices and a database. All of them include a CWEVulnerability,

same for the business backend component. Secondly, a case study with a cyber attack on the

modelled Ukrainian Power Grid as context. In that case study, two networks were modelled

and connected through a component that acted as a VPN gateway. Further, CVE-2014-1761 [2]

was included as a vulnerability. Lastly, a case study with the context of a mobile application to

book flights. Customer, credit card centre, travel agency and airline were modelled, and CWE

vulnerabilities based on the OWASP Top Ten were included and analyzed.

44

7 Conclusion

In this work, I built a case study in the domain of mobility systems that can be used for

attack propagation analyses. In our case study, I defined properties for evaluation purposes.

Furthermore, all concepts of the Mobility Data Specification were modeled. The case study

was evaluated according to the properties for case studies in software engineering in general

and for the mobility system domain in particular. The evaluation showed that all properties

are fulfilled to some degree. This allows to analyze attack propagation works in the mobility

system domain. Attack propagation analyses can use this case study and are enabled to present

references and proofs for their evaluation.

I want to discuss the future of this work including a third iteration that was planned but could

not be implemented. It was planned that the third iteration is a merge of all three versions

in the second iteration. So, the third iteration could be a single model of a complete mobility

system. To achieve this, the policy and agency repository should be merged together. In this

merge progress, the AgencyDatabaseManager and PolicyDatabaseManager component could

be unified to one single AgencyDatabaseManager component. It is useful to separate a policy

database from the agency database since both datasets have different concerns and it is easier to

scale one of both. However, both databases should be managed by the same DatabaseManager

component and should have the same databases to minimize work expenditure and for better

maintainability. No changes are required when merging the provider repository. In addition,

more datatypes could be introduced for example PolicyData to have a distinction in the data

flow regarding the attack propagation analyses. Further, the database allocations are also placed

in these resource containers. An interesting extension in the third iteration would be to have

multiple User allocations and resource containers as well as multiple vehicle allocations and

resource containers. This could be useful for the analyses of the attack propagation analyses

in terms of scalability. The case study could be used to measure performance and quality

with many resource containers, and allocations, thus a big system. Generally, future work

concerning this case study should strive to accomplish the highest grade of the properties in

Section 3.1. This includes “(Data-)Triangulation” where the highest grade requires a view of

all three APIs. Further, “Real-World Context” where an idea for future work could be to work

with companies or instances who are using the Mobility Data Specification or at least third

degree with the proposals for the third iterations. Lastly, in terms of “Vulnerability” it would be

interesting to research which vulnerabilities occur in real-world mobility systems to integrate

them into this case study. This would reach the highest degree of “Vulnerability” and improve

the quality of the case study tremendously.

45

Bibliography

[1] Artifact Review and Badging by ACM. Last accessed 3 October 2022. url: https://www.

acm.org/publications/policies/artifact-review-and-badging-current.

[2] CVE-2014-1761 Vulnerability. Last accessed 23 June 2022. url: https://nvd.nist.gov/

vuln/detail/CVE-2014-1761.

[3] CWE 284: Improper Access Control. Last accessed 7 October 2022. url: https://cwe.

mitre.org/data/definitions/284.html.

[4] Heiko Koziolek et al. “Evaluating Performance of Software Architecture Models with the

Palladio Component Model”. In: Model-Driven Software Development: Integrating Quality
Assurance (Jan. 2008). doi: 10.4018/978-1-60566-006-6.ch005.

[5] Lyft. Last accessed 13 June 2022. url: http://lyft.com.

[6] Miloš N. Mladenović. Mobility as a Service. 2021, pp. 12–18. isbn: 978-0-08-102672-4. doi:
https://doi.org/10.1016/B978-0-08-102671-7.10607-4.

[7] Mobility Data Specification (MDS). Last accessed 13 June 2022. url: https://openmobilityfoundation.
org/about-mds/#.

[8] Mobility Data Specification (MDS), Agency. Last accessed 12 October 2022. url: https:

//github.com/openmobilityfoundation/mobility-data-specification/blob/main/

agency/README.md.

[9] Mobility Data Specification (MDS), Provider. Last accessed 3 October 2022. url: https:

//github.com/openmobilityfoundation/mobility-data-specification/blob/main/

provider/README.md.

[10] Mobility Data Specification (MDS), Provider Authorization. Last accessed 7 October 2022.

url: https://github.com/openmobilityfoundation/mobility-data-specification/

blob/main/provider/auth.md.

[11] Mobility Data Specification (MDS), Understanding APIs. Last accessed 3 October 2022. url:
https://github.com/openmobilityfoundation/governance/blob/main/technical/

Understanding-MDS-APIs.md.

[12] Models for A Mobility Case Study for Validating Attack Propagation Analyses. Last accessed
27 October 2022. doi: 10.5281/zenodo.7257735. url: https://doi.org/10.5281/zenodo.

7257735.

[13] National Vulnerability Database (NVD). Last accessed 12 June 2022. url: http://nvd.

nist.gov/vuln.

[14] OpenMobility Foundation (OMF). Last accessed 30May 2022. url: http://openmobilityfoundation.

org.

46

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://nvd.nist.gov/vuln/detail/CVE-2014-1761
https://nvd.nist.gov/vuln/detail/CVE-2014-1761
https://cwe.mitre.org/data/definitions/284.html
https://cwe.mitre.org/data/definitions/284.html
https://doi.org/10.4018/978-1-60566-006-6.ch005
http://lyft.com
https://doi.org/https://doi.org/10.1016/B978-0-08-102671-7.10607-4
https://openmobilityfoundation.org/about-mds/#
https://openmobilityfoundation.org/about-mds/#
https://github.com/openmobilityfoundation/mobility-data-specification/blob/main/agency/README.md
https://github.com/openmobilityfoundation/mobility-data-specification/blob/main/agency/README.md
https://github.com/openmobilityfoundation/mobility-data-specification/blob/main/agency/README.md
https://github.com/openmobilityfoundation/mobility-data-specification/blob/main/provider/README.md
https://github.com/openmobilityfoundation/mobility-data-specification/blob/main/provider/README.md
https://github.com/openmobilityfoundation/mobility-data-specification/blob/main/provider/README.md
https://github.com/openmobilityfoundation/mobility-data-specification/blob/main/provider/auth.md
https://github.com/openmobilityfoundation/mobility-data-specification/blob/main/provider/auth.md
https://github.com/openmobilityfoundation/governance/blob/main/technical/Understanding-MDS-APIs.md
https://github.com/openmobilityfoundation/governance/blob/main/technical/Understanding-MDS-APIs.md
https://doi.org/10.5281/zenodo.7257735
https://doi.org/10.5281/zenodo.7257735
https://doi.org/10.5281/zenodo.7257735
http://nvd.nist.gov/vuln
http://nvd.nist.gov/vuln
http://openmobilityfoundation.org
http://openmobilityfoundation.org

Bibliography

[15] Open Web Application Security Project (OWASP). Last accessed 12 June 2022. url: http:

//owasp.org.

[16] OWASP Top 10, A01 (Broken Access Control). Last accessed 20 June 2022. url: https:

//owasp.org/Top10/A01_2021-Broken_Access_Control/.

[17] Per Runeson and Martin Höst and Austen Rainer and Björn Regnell. Case Study Research
in Software Engineering – Guidelines and Examples. Feb. 2012. isbn: 9781118104354. doi:
10.1002/9781118181034.

[18] Ralf Reussner and Heiko Koziolek et al. “The Common Component Modeling Example”.

In: vol. 5153. Jan. 2007, pp. 16–53. isbn: 978-3-540-85288-9. doi: 10.1007/978-3-540-

85289-6_3.

[19] Ralf Reussner and Robert Heinrich et al. “Architecture-based change impact analysis in

cross-disciplinary automated production systems”. In: 146 (Dec. 2018), pp. 167–185. doi:

10.1016/j.jss.2018.08.058.

[20] Ralf Reussner, Anne Koziolek, and Erik Burger et al. Modeling and Simulating Software
Architectures - The Palladio Approach. 2016.

[21] Per Runeson and Martin Höst. “Guidelines for conducting and reporting case study

research in software engineering”. In: Empir Software Eng 14 (2008), pp. 131–164. doi:

https://doi.org/10.1007/s10664-008-9102-8. url: http://dx.doi.org/10.1007/

s10664-008-9102-8.

[22] F. Schull, Janice Singer, and Dag Sjøberg. Guide to Advanced Empirical Software Engineer-
ing. Jan. 2008, pp. 1–388. isbn: 978-1-84800-043-8. doi: 10.1007/978-1-84800-044-5.

[23] Uber. Last accessed 13 June 2022. url: http://uber.com.

[24] Vincent Hu and D. Richard Kuhn and David Ferraiolo. “Attribute-Based Access Control”.

In: Computer 48 (2015), pp. 85–88. doi: http://dx.doi.org/10.1109/MC.2015.33.

[25] Maximilian Walter, Robert Heinrich, and Ralf Reussner. “Architectural Attack Propaga-

tion Analysis for Identifying Confidentiality Issues”. In: (2022), pp. 1–12. doi: 10.1109/

ICSA53651.2022.00009.

[26] Claes Wohlin. “Case Study Research in Software Engineering—It is a Case, and it is a

Study, but is it a Case Study?” In: Information and Software Technology 133 (Jan. 2021),

p. 106514. doi: 10.1016/j.infsof.2021.106514.

[27] Worldwide market volume of the mobility-as-a-service market in the years of 2018 and 2026.
Last accessed 13 June 2022. url: https://de.statista.com/statistik/daten/studie/

984840/umfrage/weltweites-marktvolumen-des-mobility-as-a-service-marktes/.

47

http://owasp.org
http://owasp.org
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://doi.org/10.1002/9781118181034
https://doi.org/10.1007/978-3-540-85289-6_3
https://doi.org/10.1007/978-3-540-85289-6_3
https://doi.org/10.1016/j.jss.2018.08.058
https://doi.org/https://doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/978-1-84800-044-5
http://uber.com
https://doi.org/http://dx.doi.org/10.1109/MC.2015.33
https://doi.org/10.1109/ICSA53651.2022.00009
https://doi.org/10.1109/ICSA53651.2022.00009
https://doi.org/10.1016/j.infsof.2021.106514
https://de.statista.com/statistik/daten/studie/984840/umfrage/weltweites-marktvolumen-des-mobility-as-a-service-marktes/
https://de.statista.com/statistik/daten/studie/984840/umfrage/weltweites-marktvolumen-des-mobility-as-a-service-marktes/

	Abstract
	Zusammenfassung
	Motivation
	Foundations
	Palladio Component Model
	Architectural Attack Propagation Analysis
	Mobility Systems
	Open Mobility Foundation
	Mobility Data Specification Architecture

	Overview
	Case Study Properties
	Case Study Design
	Inputs
	Implementation Process
	Outputs

	Case Study Modelling
	Minimal Working Example (v1.0)
	Repository
	Resource Environment
	Allocation
	Access Control Policies.
	Attacker Model
	Expected result
	Evaluation Regarding Properties

	Detailed Modelling of Entities (v2.x)
	Provider Entity (v2.1)
	Agency Viewpoint (v2.2)
	Provider Viewpoint (v2.3)

	Lessons Learned
	Threats to Validity
	Limitations

	Related Work
	Conclusion
	Bibliography

