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pySecDec is a computer program that evaluates arbitrary multi-loop Feynman integrals numer-
ically as expansions in the dimensional regulator based on the sector decomposition approach.
In the recent release version 1.5 pySecDec introduces asymptotic expansion in the kinematic
ratios using the method of expansion by regions, and an automatic adaptive evaluation of weighted
sums of integrals (e.g. amplitudes). In this article we discuss how these features work, and what
performance benefits they bring.
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Loop integral evaluation and asymptotic expansion with pySecDec

1. Introduction

A key part in increasing the accuracy of theoretical predictions to match the experimental
accuracy of LHC and beyond is the calculation of higher-loop Feynman integrals. Already at LHC
2-loop QCD corrections are required, with future colliders demanding 3-loop QCD and mixed
QCD-electroweak corrections [1], which means that 2- and 3-loop integrals with masses are of
practical interest. This poses a big challenge to the analytical methods of calculating loop integrals,
and there are classes of integrals that are needed for phenomenological calculations but are not fully
known analytically (such as the massive 2-loop 5-point functions).

The proposed solution is to move away from the analytical, and instead use numerical methods
such as sector decomposition [2, 3] as implemented in pySecDec [4–6] and Fiesta [7], and Mellin-
Barnes integration [8–10], or semi-analytical methods such as solving the differential equations for
master integrals numerically [11–13], as implemented in e.g. DiffExp or AMFlow. The limiting
factor of the latter family of methods is the need to compute symbolic solutions to integration-
by-parts (IBP) relations for the master integrals at least in one variable, whereas the former two
approaches do not rely on IBP and instead are limited by the numerical properties of the integrands.
In other words, none of these methods can fully replace the others; in fact they can be used
complementary, as it is in the case of using sector decomposition to derive boundary conditions for
differential equations.

Here we shall concentrate on pySecDec and sector decomposition. pySecDec has a long
history; it has started as a Python-based successor to the Mathematica code SecDec [14–16]. The
current pySecDec is written in Python and C++, and is developed on GitHub1, where one can
find the source code, the installation instructions, and the issue tracker. Recently version 1.5 of
pySecDec was released bringing a number of usability improvements such as

• simplified installation via the Python package installer2 aspip3 install --user pySecDec,
with all the required dependency software built and installed automatically;

• automatic adjustment of the contour deformation parameters, which means that users no
longer need to manually fix “sign check errors”;

• automatic adjustment of the WorkSpace parameter of Form [17], which means that users no
longer need to manually fix “workspace overflow” errors.

More importantly, version 1.5 comes with two major new features targeted at improving
pySecDec performance:

• an implementation of the expansion-by-regions method of the asymptotic expansion of inte-
grals in kinematic invariants to help with e.g. high-energy regions;

• adaptive sampling of weighted sums of integrals (i.e. amplitudes).

A more detailed description and usage examples can be found in [6]; here we shall only briefly
describe how these features work, and what performance benefits should be expected from them.

1https://github.com/gudrunhe/secdec

2https://pypi.org/project/pySecDec
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Diagram\
Relative precision 10−3 10−4 10−5 10−6 10−7 10−8

mW
mZ mZ

GPU 15s 20s 40s 200s 13m 50m

CPU 10s 50s 400s 4000s 180m 1200m

mZ mZ

mt mt

mtmt
mt mt

GPU 18s 19s 30s 20s 1.2m 2m

CPU 5s 14s 60s 50s 12m 16m

mZ mZ

mt

mt
mW

GPU 6s 11s 12s 30s 3m 24m

CPU 5s 10s 50s 800s 60m 800m

Table 1: pySecDec 1.5.3 integration time with the Qmc integrator for a few massive 3-loop electroweak
self-energy integrals taken from [18]. The CPU is AMDEpyc 7302with 32 threads; the GPU is NVidia A100.

2. The expected performance

When used in the recommended configuration pySecDec can deliver precision sufficient for
practical purposes in seconds to minutes; for example see the integration times for a selection of
3-loop massive integrals in Table 1. This recommended configuration consists of:

1. Using the Qmc integrator [5], as opposed to the more well known integrators like Vegas
(which pySecDec also supports). This is because Qmc implements the Randomized Quasi
Monte-Carlo integration using rank-1 lattice rules [19] specifically constructed so that if the
integrand is smooth enough then the precision of the result is guaranteed to scale with the
number of integrand evaluations as 1/N2, while the classical Monte-Carlo techniques, even
the advanced ones such as Vegas, scale as 1/

√
N . See Figure 1 for a comparison of the scaling

for an example integral. Note that the scaling Qmc achieves is not exactly 1/N2: in practice
depending on the integrand we see everything from 1/N to 1/N3 (as it is for e.g. the second
integral in Table 1).

2. Using a GPU, preferably a server-grade one. Our testing shows that a single server-grade
CPU (e.g. a 32-thread AMD Epyc 7302) is typically as powerful as a top consumer-grade
GPU (e.g. an NVidia RTX 2080 Ti), and a server-grade GPU (e.g. NVidia A100) is 10x
faster than that, so GPUs provide a more cost-effective way of running numerical integration.

Even in the recommended configuration, some integrals will converge slowly. See for example
Table 2: four very similar integrals have wildly different integration times. For this reason we
advise spending additional time on evaluating the choice of the integrals passed to pySecDec.

While we lack a general recipe, we have found that integrals with a negative power of the U
polynomial in the Feynman parametrization converge especially slowly; same for those with the F
polynomial power lower than −2. If possible these should be avoided, and quasi-finite integrals
should be preferred (see e.g. [20]).

A different source of performance problems are extreme kinematics: if an integral depends on
multiple scale ratios, the more extreme (i.e. big or small) the ratios get, the longer the integration
time will become. See Figure 2 for an illustration. The reason is that in this case the majority of the
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Figure 1: Integration time scaling for the depicted integral using Monte Carlo (Vegas) and Randomized
Quasi Monte Carlo (Qmc) with pySecDec version 1.5.3 on an NVidia A100 GPU.

Integral Expansion orders Integration time

mW
mZ ε−3, . . . , ε0 27s

mW
mZ ε−2, . . . , ε0 57s

mW
mZ ε−2, . . . , ε0 1230s

mW
mZ ε−2, . . . , ε0 >9000s

Table 2: Integration time (to 10−3 precision on an NVidia A100 GPU with pySecDec 1.5.3) of a set of
similar integrals, different only in the position of the squared (dotted) propagator.

integral’s value becomes progressively concentrated in a smaller region of the integration space,
and more integrand evaluations are needed to sample this small space precisely. To solve this, one
can try to series-expand the integrand in the extreme ratio, taking it out from the integrand. This
brings us to the first major new feature of pySecDec 1.5: asymptotic expansion.

3. Asymptotic expansion

Expanding an integral in a small parameter may not be as simple as Taylor-expanding the
integrand. For example, consider the following integral dependent on a small parameter t and some
constants a, b, c, d, α:

I =
∫ 1

0
Pα(x) dx, P ≡ ax3 + btx + ct3 + dt3x2. (1)

Representing P simply as ax3
(
1 + bx+ct2+dt2x2

ax3 t
)
and series-expanding the bracket is not a

valid procedure in the whole integration space, because in the region where x � t the value of
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Figure 2: Time to evaluate the depicted integral to 3 digits of precision depending on the m2/s ratio. The
integration time is capped at 5 hours, and when m2/s > 3000 the precision target can not be reached in time.

t exponent

x exponent

x ∼ t1/2,

x ∼ t2,

P ∼ t3/2,

P ∼ t3,

x3

xt

t3

x2t3
I ∼ t3/2α+1/2

I ∼ t3α+2

Figure 3: The Newton polytope of the polynomial P from eq. (1).

bx+ct2+dt2x2

ax3 t is not small. Instead we can split the integration space into a set of regions such that
the integration variables are of the order of a particular power of the small parameter t in each
region. Once this is done, figuring out which terms of P are small in each regions is easy, and the
corresponding Taylor expansions are valid.

This method is expansion by regions [21]. A geometric formulation of it is given in [22]: if
we plot the monomials of P and form its Newton polytope as in Figure 3, then each facet of the
polytope pointing in a positive direction defines a region where expansion must be performed. For
example, for I we find two required regions:

1. A region where x ∼ t1/2, and P can be expanded as
(
ax3 + btx

) (
1 + ct3+dt3x2

ax3+btx

)
.

2. A region where x ∼ t2, and P can be expanded as
(
btx + ct3) (

1 + ax3+dt3x2

btx+ct3

)
.

As explained in [22], all other possible regions can be ignored, as their contribution turns out
to be zero. In fact, after we have determined the regions and Taylor-expanded in each, we can
forget that the integration space was split into regions, and integrate each expansion in the whole
integration space: the contribution of the additional integration space parts also turn out to be zero.

Note that in the above example Taylor expansion in the first region is only valid if a, b > 0, and
in the second only if b, c > 0: otherwise there are values of x for which the terms after 1+ are not
small. In general expansion by regions only works if the coefficients in front of the monomials of P
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Figure 4: Integration time of the first diagram from Table 1 to 7 digits of precision by pySecDec version.
Here wip stands for the work-in-progress code to be released in the future, and avx2 stands for compilation
with AVX2 and FMA processor instruction sets allowed (the wip code has special provisions to use them).

are positive. This limits the applicability of the method a bit; in practice this usually means that an
expansion is possible in a high-energy region, but may not be possible around a threshold.

Expansion by regions was previously implemented in Asy.m [23] and Asy2.m [24], which is
currently a part of Fiesta. As of version 1.5 pySecDec provides the function loop_regions()
that expands a given loop integral by regions; the result of it can be directly turned into a standard
pySecDec integration library, or inspected for further processing.

4. Adaptive sampling of amplitudes

The other major new improvement in pySecDec 1.5 is the adaptive sampling of weighted sums
of integrals (i.e. amplitudes). The basic idea is simple: if one wants to evaluate a sum like

1000 + 10 + 1 , (2)

then it makes sense to spendmore time on sampling the first integral as it has the largest contribution
to the sum, and spend little time on the last one: this way more precision for the sum can be achieved
within the same integration time.

This is why pySecDec 1.5 comes with a function sum_package() that takes a list of integrals
and a matrix of coefficients, and produces an integration library to integrate the specified weighted
sums. During the integration the optimal sampling distribution will then be automatically deter-
mined based on how big the coefficients of the integrals are, how well they converge, and how fast
their integrands can be evaluated. Moreover, by default pySecDec uses the same technique for
single integrals too: because during sector decomposition an integral is split into a sum of sectors,
the evaluation of this sum can be similarly optimized.

To see how much improvement this makes, take a look at at the performance progression of
pySecDec versions depicted in Figure 4. The big jump from version 1.4 to 1.5 is mainly due to
adaptive sum sampling—even though only a single integral is evaluated here.

Note that this technology is not new, and pySecDec equipped with it has previously been
successfully used in multiple 2-loop calculation such as [25–27].
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5. Conclusions

The recently released pySecDec version 1.5 comes with twomajor new features: an implemen-
tation of asymptotic expansion of integrals and automatic adaptive sampling of the weighted sums
of integrals (i.e. amplitudes). The first provides an essential tool in handling extreme kinematics
(e.g. high-energy regions). The second one brings a major speedup in the evaluation of single
integrals and allows using pySecDec to evaluate whole amplitudes optimally.

Following the release, the pySecDec team continues incrementally improving its performance
and usability, hoping to make it applicable to even more challenging integrals, and to establish it as
a tool for evaluations of whole amplitudes.
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