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Abstract—We present a novel algorithm for optimal sensor
placement in multilateration problems. Our goal is to design a
sensor network that achieves optimal localization accuracy any-
where in the covered region. We consider the discrete placement
problem, where the possible locations of the sensors are selected
from a discrete set. Thus, we obtain a combinatorial optimization
problem instead of a continuous one. While at first, combinatorial
optimization sounds like more effort, we present an algorithm
that finds a globally optimal solution surprisingly quickly.

Index Terms—Multilateration, Dilution of Precision, Fisher
Information, Sensor Placement, Combinatorial Optimization,
Greedy Algorithm.

I. INTRODUCTION

A. Context

Multilateration (MLAT) is a popular method to localize
cooperative targets. It is used on a large scale (wide-area
MLAT) for air traffic localization in traditional secondary
surveillance radar (SSR) [1], [2], and can also be used to
verify the aircraft’s self-localization transmitted via automatic
dependent surveillance – broadcast (ADS-B) [3], [4]. MLAT
is furthermore applied on a small scale for indoor localization.
Either way, targets send out a radio signal, the time of arrival
(TOA) of which is precisely measured at each of the receivers.
Based on these TOAs, the MLAT algorithm computes the
target location. Alternative localization methods include re-
ceived signal strength (RSS) [5] and angle of arrival (AOA)
[6], [7, Sec. V.A], [8]. MLAT achieves much better localization
accuracy than RSS and AOA – but only if certain constraints
are carefully met. These include a precise time synchronization
between sensors, a unique and high-bandwidth radio signal to
allow accurate TOA determination, direct line of sight between
a certain number of sensors and the target, and a good choice
of the installation locations of the receivers. However, there are
methods that can still localize with unsynchronized sensors
[9], [10], [11], with ambiguous radio signals [12], or under
non-line-of-sight (NLOS) conditions [13].

B. Considered Problem

In this work, we focus on finding an arrangement of sensors
(sometimes called receivers, satellites, nodes, anchors, base
stations, ground stations, or transceiver stations) that facilitate
optimal location accuracy in a given limited area. In wide-
area MLAT systems, there is usually a discrete set of suitable

locations where installation of an MLAT sensor comes into
question, ideally exposed locations (enabling direct line of
sight in a wide range) with existing power supply and network
connection that can be rented for installation of the equipment.
Typical examples are roofs of skyscrapers, television towers,
hilltops, etc. Thus, we naturally face a discrete set of possible
installation sites. In indoor applications, one is typically less
restricted in the placement of sensors. In this case, we propose
to discretize the area of interest by using a grid.

C. State of the Art

Sensor positioning for covering an extended region of inter-
est (ROI) can be a complicated problem where no closed-form
solution exists. If sensors can be freely placed to optimally
localize targets at one specific position, equilateral polygons
(symmetrically around the target) are the optimal choice on the
plane [14] and platonic solids in the space [15]. Yet usually
an extended area rather than a single spot should be covered
by a multilateration system. The localization accuracy can
be evaluated and averaged on a grid covering the area of
interest, yielding a scalar objective function, and the wanted
sensor locations can be obtained via nonlinear optimization
methods [16]. Alternatively, instead of optimizing the average
localization accuracy in the area of interest, the worst accuracy
can be optimized, yielding two concatenated optimization
problems [17]. Now sensors can often not be freely placed, and
a set of possible sites is given. The resulting sensor selection
out of a discrete set of locations is a non-smooth and non-
convex problem. A non-optimal solution can be found via
relaxation [18] or greedy selection [19].

D. Challenges

We aim at developing an improved greedy method for
computing optimal or nearly-optimal sensor configurations for
passive source localization.

E. Key Idea

We propose the Alternating Greedy Removal and Placement
(AGREP) algorithm. In every “placement” step, a sensor is
greedily placed at the location (out of the discrete set of
possible sensor locations) that maximally improves localiza-
tion accuracy. In every “removal” step, a sensor is greedily
removed such that the localization accuracy deteriorates the



least. A random number of “placement” steps takes turns
with a random number of “removal” steps, see purple line in
Fig. 1. Each time we pass over the desired number of sensors,
we compare the localization accuracy of the current sensor
configuration with the best one we have seen so far and update
the latter if necessary. This algorithm always compares sensor
configurations where a single sensor is added or removed. We
show that this update can be efficiently calculated using the
Sherman–Morrison formula.

II. MULTILATERATION

For a given sensor configuration (that will be altered and
optimized later), the sensor infrastructure consists of sensors
or satellites at known locations si ∈ R2, i ∈ 1, . . . , N . We
assume they are able to localize themselves with respect to
each other and synchronize their clocks. A tag (sometimes
called target, moving object, aircraft, mobile station, etc.) at
unknown position p ∈ P ⊂ R2 emits an ultra-wideband
(UWB) signal at unknown transmission time t0. The signal
spreads with propagation velocity c and arrives at some of
the satellites si. The satellites measure the respective TOA ti,
subject to additive white Gaussian noise v. Therefore, we have
the measurement model

x =

[
p
t0

]
, (1)

ti = hi(x) + vi , (2)

hi(x) = c−1
∥∥p− si

∥∥+ t0 . (3)

Note that although the time difference of arrival (TDOA)
measurement model seems to be more popular in literature,
we use the TOA model because it gives identical results with
uncorrelated vi, making modeling and computation somewhat
easier. Note also that the measurement model can be made
more accurate, e.g., by introducing a distant-dependent mea-
surement noise vi. However, this is highly problem-specific
(application scenario, sensor hardware, etc.), so we choose
this simple but universal model.

Given enough measurements ti, the target location p can
be estimated using, e.g., a maximum likelihood estimator.
For additive white Gaussian noise with equal variances, this
simplifies to the least-squares estimator

x̂ = argmin
x

{
N∑
i=1

(hi(x)− ti)
2

}
. (4)

This can be efficiently solved using the Levenberg-Marquardt
algorithm [20], [21]. In the following, we assume that an
unbiased and efficient estimator is used which thus yields the
Cramér–Rao lower bound (CRLB).

III. LOCALIZATION ACCURACY

Estimating the tag position p from TOA measurements ti,
we get a certain localization error that is caused by the mea-
surement error vi. Depending on the position of the sensors
and targets relative to each other, the localization error can be
larger or smaller (for a fixed measurement error). We aim to

find a distribution of sensors that minimize the influence of the
measurement error on the localization error. For that purpose,
we derive the relationship between measurement error and
localization error in the following.

A. Linearization

The gradient of the measurement model (3) for an individual
satellite

∇hi =

[
p(x)−s

(x)
i

∥p−si∥
p(y)−s

(y)
i

∥p−si∥
1

]⊤
(5)

contains the “direction cosines” from tag to satellite, and the
Jacobian for all visible satellites

H =

∇h⊤
1

...
∇h⊤

N

 =



p(x)−s
(x)
1

∥p−s1∥
p(y)−s

(y)
1

∥p−s1∥
1

p(x)−s
(x)
2

∥p−s2∥
p(y)−s

(y)
2

∥p−s2∥
1

...
...

...
p(x)−s

(x)
N

∥p−sN∥
p(y)−s

(y)
N

∥p−sN∥
1


. (6)

Using the differential measurement model

∆t = H∆x , (7)

we can relate the covariance Cv of the measurement error v
and the covariance Cx of the unknown parameters

Cv = H Cx H⊤ , (8)

Cx =
(
H⊤ (Cv)

−1
H
)−1

, (9)

Jx = H⊤Jv H , (10)

with the Fisher information matrix (FIM) J = C−1. For Jv =
I, we obtain

Jx = H⊤H (11)

=

N∑
i=1

∇hi [∇hi]
⊤

, (12)

thus every satellite contributes an individual satellite informa-
tion matrix

Jx
i = ∇hi [∇hi]

⊤ (13)

=



(
p(x)−s

(x)
i

∥p−si∥

)2
p(x)−s

(x)
i

∥p−si∥
· p(y)−s

(y)
i

∥p−si∥
p(x)−s

(x)
i

∥p−si∥
p(x)−s

(x)
i

∥p−si∥
· p(y)−s

(y)
i

∥p−si∥

(
p(y)−s

(y)
i

∥p−si∥

)2
p(y)−s

(y)
i

∥p−si∥
p(x)−s

(x)
i

∥p−si∥
p(y)−s

(y)
i

∥p−si∥
1

 .

The overall information matrix Jx at a given location p is
simply the sum of those “satellite information matrices” where
satellites have a direct line of sight to p.

Note that we describe the method based on the two-
dimensional localization problem for ease of notation and vi-
sualization, to communicate the basic concept as intuitively as
possible. The generalization to three-dimensional geometries
is straightforward.
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Fig. 1: Exemplary representation of different search routines. There are M = 50 potential satellite locations where N =
20 satellites should be optimally placed. Greedy removal (blue) starts with a fully occupied satellite grid (50 sensors) and
consecutively removes the least important sensor until the desired 20 sensors are left. Greedy placement starts with a minimal
configuration (3 sensors in 2D) that is itself obtained either by greedy removal (orange) or combinatorial search (yellow) and
subsequently adds sensors at the most profitable locations. Greedy alternating (purple) combines greedy removal and greedy
placement randomly. Combinatorial search (green) considers all the possible combinations of 20 sensors. The point where
any method finds its final result is indicated by a dot. Note that the horizontal axis represents the number of rank-1 update
evaluations as well as computation time, but it is not quite to scale for better visualization, therefore printed without scale.

B. Information Metric

Now we need an information metric that summarizes the
FIM to a scalar value. Doing this for every point p in
space, we obtain a scalar field. This has been called the
Fisher information field (FIF) [22, Sec. 6.A.1]. The most
straightforward information metric is the trace of the FIM, also
termed T−optimality. While this metric has been successfully
applied in [22, Sec. 6.A.2], it is unfortunately not applicable
to our case as the trace of our FIM (13) is constant. This is
typical for the trace criterion, as described in [23, Sec. 6.5].
Therefore, we resort to the average-variance criterion, i.e., the
trace of the inverse of the FIM [23, Sec. 6.5]. Summarizing,
we are back to (9) or

Cx =
(
H⊤H

)−1
(14)

in case of independent and identically distributed standard
normal measurement noise. In the areas where targets are to
be localized, trace(Cx) should be as small as possible [24,
Eq. 15]. This value is very important to characterize MLAT
systems and is called the geometric dilution of precision
(GDOP).

C. Gradient Descent

In a simple setup without occlusions, as considered here,
the cost function trace(Cx) is smooth and the problem can
be solved with gradient descent or Newton-like optimization
methods. However, keeping open the possibility of extension
to more complex scenarios with non-smooth cost functions
in future works, we do not consider this path further here.
Also, the set of potential sensor locations is often a discrete
set of points by nature due to spatial and organizational
restrictions, and gradient descent methods are unsuitable for
such constraints.

D. Rank-One Update
As the trace of the inverse matrix is not a linear measure, it

is not possible to quantify the gain to the overall localization
accuracy from all individual satellites independently. We can
only quantify the additional localization gain δCx

H∪i for an
individual satellite si starting from a certain arrangement of
the other satellites (encoded in H)

Cx
H∪i =

(
H⊤H+ Jx

i

)−1
(15)

= Cx
H + δCx

H∪i (16)

= Cx
H − Cx

H∇hi [C
x
H∇hi]

⊤

1 + [∇hi]
⊤
Cx

H∇hi

(17)

with the simplification according to the Sherman–Morrison
formula [25]. The increment in our scalar metric, the trace of
the covariance matrix, is therefore

trace(CH∪i) = trace(Cx
H)−

∥Cx
H∇hi∥22

1 + [∇hi]
⊤
Cx

H∇hi

. (18)

For removing satellite si from an arrangement, we have

CH\i = Cx
H +

Cx
H∇hi [C

x
H∇hi]

⊤

1− [∇hi]
⊤
Cx

H∇hi

, (19)

trace(CH\i) = trace(Cx
H) +

∥Cx
H∇hi∥22

1− [∇hi]
⊤
Cx

H∇hi

. (20)

IV. SENSOR PLACEMENT

For optimal sensor placement, we need to optimize the N
sensor positions si such that an objective function, e.g., one
of

Θ(s1, . . . , sN ) =

∫
P

trace(Cx) dp , (21)

Θ(s1, . . . , sN ) = max
p∈P

{trace(Cx)} , (22)
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Fig. 2: (a) Geometry with M = 36 potential satellite voxels (blue circles) and 49 discretized target locations (yellow boxes).
The optimal sensor arrangement of N = 10 sensors is indicated by red dots. (b) Convergence of the various search routines.
The global optimum is found via the greedy alternating search as well as the combinatorial search.

is minimized. The problem here is that the objective function
value itself is not easy to calculate. Therefore, we discretize
the potential target locations p ∈ P as well as the potential
sensor locations si into a voxel grid. Then, there is a finite
set of intermediate results that can be pre-computed to avoid
redundant computations [22]. Note that if a mean measure
(21) is used, this can often lead to “blind spots” with high
localization error [17]. Thus, in the following, we optimize
the localization accuracy at the worst point,

p̂ = max
p∈P

{trace(Cx)} , (23)

so that in the whole covered area at least the corresponding
accuracy is achieved. Only if multiple sensor configurations
have the same accuracy at the worst point will we consider
the average localization accuracy to compare them.

A. Combinatorial Search

There are
(
M
N

)
combinations to place N satellites at M

potential satellite positions or satellite voxels. The global
optimum of the discretized problem can be determined by
iterating through all these combinations. Of course this is
feasible only for a limited number of voxels M , as the
computational complexity is about O(

(
M
N

)
). There are “Gray

code” enumerations for combinations [26, Sec. 4], where two
consecutive combinations differ only in two places (one sensor
added and one removed). Thus, we may benefit from the rank-
one update of the covariance matrix (18).

B. Greedy Removal

Much more efficient than combinatorial search is greedy
sensor removal. We initialize with fully occupied satellite
voxels (N = M ). Then we quantify how much the FIF
would degrade if any single satellite would be removed, and
ultimately remove the satellite with the least effect on the FIF.
We continue this process until the desired number of satellites
N is achieved. Computational complexity is O(M ·(M−N)).
The effect of removing a single satellite can be efficiently
calculated with (18), effectively reducing the constant factor
of the computational complexity.

C. Greedy Placement

Alternatively, we can initialize with a small sensor ar-
rangement, where one satellite at a time is added such that
the positive effect on the FIF is maximized, respectively.
Once a satellite is placed, its location stays fixed. The initial
configuration must contain three sensors in two dimensions or
four sensors in three dimensions, otherwise, the covariance is
unbounded. The initial sensor locations may be obtained via
combinatorial search, by greedy removal, or chosen heuristi-
cally, e.g., the corners of the room. Computational complexity
is O(MN), in addition to finding the initial configuration.
This method is similar to the one described in [19].

D. Alternating Greedy Removal and Placement (AGREP)

In practice, it seems advantageous to combine greedy re-
moval and greedy placement. We may start off with, e.g.,
fully occupied satellite voxels, or some random combination.
Then, we perform greedy removal, where the (intermediate)



target number of satellites Ñ is chosen randomly such that
4 ≤ Ñ ≤ N . Afterward, we perform greedy placement
with N ≤ Ñ ≤ M . Whenever we cross over the desired
final number of samples N , the FIF of the current sensor
arrangement is stored and the best one out of them is returned.
There is no natural endpoint to this routine, it can be kept
running until the best-found arrangement does not improve
furthermore for some time. See Fig. 1 for a visualization of
the course of action of the different search routines.

If the number of sensors N to be installed is not fixed
beforehand, then simply “track” more than one number of
sensors in the way described above, i.e., if any of the possible
numbers of sensors is crossed, the new best arrangement for
the respective N is stored.

V. EVALUATION

We consider a simple two-dimensional example under line-
of-sight (LOS) conditions, i.e., no obstacles. A discrete set of
potential locations for satellites as well as target positions are
chosen, see Fig. 2a. Objective function is the worst GDOP
of all target positions, and if these are equal, we compare
the mean GDOP. The sensor deployment is optimized using
the strategies outlined in Sec. IV. The achieved value of the
objective function over the computation time (single-threaded
Matlab code on server with 2.1GHz Intel Xeon Gold 6230,
7GB RAM used) is shown in Fig. 2b. The best sensor
selection yields a GDOP of 4.477 at the worst tag voxel and
a mean GDOP of 1.763. The AGREP algorithm, either with
random or dense initialization, yields that globally optimal
result three orders of magnitude earlier than the combinatorial
search. Experiments with different numbers of sensors and
other two-dimensional geometric setups without occlusions
yielded similar results.

Source Code with a MATLAB implementation of the pro-
posed methods and the simulation will be published on Code
Ocean, accessible from the paper’s IEEE Xplore page.

VI. CONCLUSION

The pure greedy removal or placement algorithms are very
fast and have a deterministic endpoint, but it depends on “luck”
whether they find a reasonably good sensor configuration for
a given setup of potential sensor voxels and target voxels. On
the other hand, combinatorial searches waste a lot of com-
putation time checking many sensor configurations that are
completely unreasonable. However, the proposed Alternating
Greedy Removal and Placement algorithm finds optimal or
nearly optimal sensor configurations surprisingly fast. Accord-
ing to Fig. 2b, an optimal result was found after 0.8 s and 1.8 s
using AGREP, versus 30min with with a full combinatorial
search.

In future work, we will apply this method to more complex
situations from L-shaped areas up to a realistic, complex three-
dimensional indoor localization scenario in an Industry 4.0
application, also considering NLOS conditions. Because the
corresponding cost function will then no longer be smooth, our

discrete approach could fully leverage its advantages. Further-
more, we will take into account more realistic measurement
models, introducing range-dependent measurement noise and
probability of detection (POD), and other constraints such as
redundancy.
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