
This is the accepted version of 10.1109/SOCC56010.2022.9908090. © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Hypervisor-Based Target Deployment Strategies for
Time Predictability in Model-Based Development

Florian Schade, Tobias Dörr, Jürgen Becker
Karlsruhe Institute of Technology, Germany

{florian.schade, tobias.doerr, juergen.becker}@kit.edu

Abstract—The model-based toolchain for software systems
engineering developed by the XANDAR project supports de-
signers in the integration of software with different degrees
of granularity. In its fully automated backend, it deploys this
software to modern target platforms such as heterogeneous
multicore processors. In this paper, we discuss target deployment
strategies that guarantee a time-deterministic execution and meet
relevant isolation requirements.

Index Terms—X-by-Construction, model-based design, system
software, embedded software, hypervisors.

I. INTRODUCTION

The next generation of networked embedded systems is
associated with major design challenges. In addition to an
increasing need for processing power, support for machine
learning components, and the consolidation of functionality
on multiprocessor system-on-chip (MPSoC) devices, non-
functional requirements such as for safety, security, or real-
time behavior have to be fulfilled.

To tackle this challenge, the XANDAR project aims to
provide a holistic toolchain for model-based software systems
engineering that supports designers in meeting these require-
ments using the X-by-Construction (XbC) paradigm [1]. It
automatically transforms user-provided inputs into implemen-
tation artifacts that meet functional and non-functional require-
ments while providing system verification artifacts.

In this work, we present strategies for the deployment of
software to hypervisor-managed target platforms and discuss
their compatibility with the XANDAR process.

II. BACKGROUND

The XANDAR process consists of the two major phases
visualized in Fig. 1. In the model-based frontend, the user
specifies the system architecture and is then supported in
integrating the functional code. This allows for a target-
agnostic system simulation that accurately represents the func-
tional and timing behavior at the system boundary, facilitating
verification and validation of the system behavior. In the
XbC backend, automated model and code transformations are
applied to achieve non-functional properties, for example to
implement safety mechanisms [2] or to increase performance.
Finally, target-specific implementation artifacts are created for
deployment on the target runtime environment (RTE).

In the architecture modeling step, software is described as
a network of software components (SWCs) interconnected
via channels. SWCs encapsulate user-provided application

Model-based frontend

XbC backend

Ô Generation framework
Model-based integration of SWCs

¨ Architecture modeling

Ð SWC code

Behavioral simulation

Ù Model and code transformations
Application of safety/security patterns, fine-grained parallelization, . . .

> Implementation artifact generation

Generation of platform configuration and application binaries

Target deployment

Toolchain user input Process step

Fig. 1. High-level overview of the XANDAR development process

code that follows a time-triggered programming model. This
model is based on the Logical Execution Time (LET) con-
cept [3] and allows for a consistent execution of SWCs in
both the simulation framework and on the target RTE. It
abstracts from the actual runtime of a task by defining a logical
task execution time. Tasks read inputs at the beginning of
their LET interval and write output data at its end, both in
conceptually zero time. In the system model, each SWC is
assigned a periodic LET window, defined by the LET, a period,
and an offset relative to the global schedule. This approach
circumvents the issue of varying task runtime per iteration on
the target platform and simplifies simulation.

III. TARGET DEPLOYMENT STRATEGIES

To meet the requirements of modern software systems,
the XANDAR toolchain supports SWCs of different degrees
of granularity. While basic SWCs contain monolithic code
implementing a single functionality, complex SWCs can com-
prise general-purpose operating systems (OS), including ap-
plications and supporting software, such as device drivers.
Therefore, the RTE is required to support both OS-based
and bare-metal SWCs. In addition, support for mixed-critical
applications is essential, which makes it necessary to provide
isolation between SWCs. The runtime is further required to
implement the LET-based execution of SWCs as well as
deterministic timing when accessing peripherals at the system
boundary, such as sensors and actuators.

https://doi.org/10.1109/SOCC56010.2022.9908090


MPSoC

Core cluster

Hypervisor

Core cluster

Hypervisor

...RTOS

SWC1 SWC2

SWC3

Fig. 2. Hybrid mapping of SWCs to an MPSoC

In the following, three strategies for mapping SWCs to
the target platform will be discussed: mapping to hypervisor
partitions (partition mapping), mapping to RTOS tasks (task
mapping), and hybrid mapping as combination of both.

Embedded hypervisors implement a virtualization layer that
allows for the integration of both bare-metal applications and
full OS stacks. Strong isolation is achieved by microkernel
approaches, which minimize the trusted computing base to fa-
cilitate analyzability and certifiability. Therefore, this approach
allows for both basic and complex SWC deployment as well as
the integration of mixed-critical SWCs on a single processor.
For short-running SWCs, however, this strategy can lead
to undesired overhead, since the reconfiguration of memory
management units and cache flushes cause a performance
penalty during context switches. Other factors such as the
maximum number of partitions or insufficient capabilities of
the programming interface exposed to guest applications might
further limit the applicability of this approach.

Real-time operating systems (RTOS) allow developers to
integrate applications in the form of tasks. They provide
mechanisms for multi-threading, such as real-time scheduling,
synchronization, and communication primitives, among others,
which simplify the deployment of basic SWCs as tasks. Since
most RTOS do not implement virtual address spaces and
memory protection [4], low context switching overhead can
be achieved. Compared to partition mapping, task mapping
can therefore be expected to achieve significantly higher
efficiency when many short-running SWCs are deployed. This,
however, comes at the cost of missing isolation, rendering task
mapping unsuitable for mixed-criticality SWCs. In addition,
missing support for virtual memory management prevents the
deployment of complex SWCs via task mapping.

To address the aforementioned requirements, XANDAR
aims at implementing a hybrid mapping scheme to allow for
the efficient deployment of both basic and complex SWCs.
As visualized in Fig. 2, the approach is based on a hybrid RTE
that enables both partition and task mapping of SWCs. While
complex SWCs are deployed to individual hypervisor par-
titions, basic SWCs can be integrated more efficiently in
a shared partition, managed by an RTOS instance. Where
isolation between basic SWCs is required, separate partitions
are used, to which SWCs are either deployed individually or
in groups of compatible SWCs on an RTOS instance.

To achieve the LET-based execution of SWCs in such a
hybrid architecture, a global, hierarchical schedule needs to
be derived by the toolchain. During runtime, it is carried out
by time-synchronized LET management components in RTOS

instances and the hypervisor, managing the activation of SWCs
and implementing buffered communication behavior. For task
mapping, LET management can be realized by a central man-
agement task per RTOS instance. For partition mapping, time-
triggered scheduling can be implemented using scheduling
mechanisms provided by the hypervisor, such as time-division
multiple access (TDMA) scheduling. Buffered communication
can either be implemented by extending the hypervisor itself
or by introducing additional management partitions.

When generating the global schedule, significant optimiza-
tion potential arises when the LET window assigned to a SWC
is longer than its worst-case execution time. In this case,
other SWCs can be scheduled for execution on the same
processor core during that LET window. Further optimization
is possible if SWCs can be scheduled outside their speci-
fied LET window without affecting data flow determinism.
This optimization, however, is not possible for SWCs that
interact across the system boundary. In this case, it has to be
ensured that the interaction with the environment takes place
deterministically. To achieve this in an LET-compatible man-
ner, such SWCs need to provide additional code to perform
hardware accesses. This code will be executed precisely at the
beginning and the end of the LET window.

IV. CONCLUSION AND OUTLOOK

Based on requirements of next-generation embedded sys-
tems in safety-critical domains and the constraints imposed
by the XANDAR development process targeting such systems,
we discussed hypervisor- and RTOS-based deployment options
and presented a hybrid approach that aims for combining
their benefits. We then introduced central considerations in
mapping SWCs to the envisioned system software architecture
and identified optimization potential to achieve an efficient uti-
lization of the target platforms. In the XANDAR project, this
deployment approach is currently being implemented using
the XtratuM hypervisor [5] and the Real-Time Executive for
Multiprocessor Systems (RTEMS) running in single-processor
mode within XtratuM partitions.

ACKNOWLEDGEMENT

This work is part of a project that has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 957210.

REFERENCES

[1] L. Masing, T. Dörr, F. Schade, J. Becker et al., “XANDAR: Exploiting
the X-by-Construction Paradigm in Model-based Development of Safety-
critical Systems,” in 2022 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 2022.

[2] T. Dörr, F. Schade, L. Masing, J. Becker et al., “Safety by Construction:
Pattern-Based Application of Safety Mechanisms in XANDAR,” in 2022
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), in press.

[3] C. M. Kirsch and A. Sokolova, The Logical Execution Time Paradigm.
Springer, Berlin, Heidelberg, 2012, pp. 103–120.

[4] K. C. Wang, “Embedded Real-Time Operating Systems,” in Embedded
and Real-Time Operating Systems. Springer International Publishing,
2017, pp. 401–475.

[5] M. Masmano, I. Ripoll, A. Crespo, and J. Metge, “XtratuM: a hypervisor
for safety critical embedded systems,” in 11th Real-Time Linux Workshop,
2009, pp. 263–272.


	Introduction
	Background
	Target deployment strategies
	Conclusion and Outlook
	References

