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Abstract
Recent stochastic homogenization results for the Francfort–Marigo model of brittle fracture under anti-plane shear indicate
the existence of a representative volume element. This homogenization result includes a cell formula which relies on Dirichlet
boundary conditions. For other material classes, the boundary conditions do not effect the effective properties upon the infinite
volume limit but may have a strong influence on the necessary size of the computational domain. We investigate the influence
of the boundary conditions on the effective crack energy evaluated on microstructure cells of finite size. For periodic boundary
conditions recent computational methods based on FFT-based solvers exploiting the minimum cut/maximum flow duality are
available. In this work, we provide a different approach based on fast marching algorithms which enables a liberal choice
of the boundary conditions in the 2D case. We conduct representative volume element studies for two-dimensional fiber
reinforced composite structures with tough inclusions, comparing Dirichlet with periodic boundary conditions.

Keywords Effective crack energy · Fast marchingmethod ·Representative volume element ·Boundary conditions · Stochastic
homogenization

1 Introduction

1.1 State of the art

In a seminal contribution, Griffith [1] postulated an ener-
getic criterion for crack propagation in an elastic body. He
noted that a preexisting crack propagates when, due to some
loading, the energy release rate reaches a certain threshold.
The dedicated material parameter is called the critical energy
release rate or crack resistance. From a different perspective,
Irwin [2] laid the foundation of what is now known as clas-
sical linear elastic fracture mechanics [3] by focusing on the
stress field of a pre-cracked homogeneous, linear elastic body
subjected to a load. He investigated three different loading
conditions, the so-called fracture modes. In this setting, the
stress state is singular with an r−1/2 singularity in the crack
tip, r denoting the distance to the latter. The local stress state
primarily depends on the prefactor of r−1/2 called the stress
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intensity factor by Irwin. Based on these stress intensity fac-
tors, Irwin postulated a criterion for crack propagation,which
is triggered whenever the stress intensity factor surpasses a
material dependent fracture toughness. In the setting of a
linear elastic, isotropic and homogeneous material, the cri-
teria proposed by Griffith and by Irwin, based on the critical
energy release rate and on the fracture toughness, respec-
tively, turned out to be equivalent.

Several extensions of classical fracture mechanics beyond
linear isotropic elasticity have been proposed, such as for
elastoplastic materials [4,5] or anisotropic elastic solids [6–
9]. In addition to these studies, which investigatewhen cracks
propagate, Chambolle et al. [10] discuss how cracks propa-
gate.

In the absence of analytical solutions, computational
strategies prevail. Rice–Tracey [11] proposed a method to
compute the local stress intensity factors numerically.

Classical finite element methods face challenges with
resolving the stress singularity at an existing and propagat-
ing crack. Therefore, enriched and extended finite element
methods, which account for a non-continuous solution field,
were proposed [12,13].
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Nearly 25 years ago, Francfort and Marigo introduced
a variational fracture model [14] based on Griffth’s origi-
nal energy criterion. The model was formulated in terms of
an energy functional to be minimized and added impetus to
phase-field fracture mechanics [15,16]. The latter is rather
popular, as it permits to simulate both crack initiation and
crack propagation in a common framework based on tradi-
tional finite element methods. The phase-field model may
be interpreted as a regularization of the Francfort–Marigo
model, inspired by the Ambrosio–Tortorelli approximation
[17] of theMumford–Shah functional [18]. Alternatively, the
phase-field fracture model may be interpreted as a non-local
damage model [19,20].

Multiscale methods [21] are used to predict the macro-
scopic behavior of microstructured materials, explicitly
accounting for the material behavior of the constituents and
their arrangement on the microscale. Homogenization the-
ories serve as the mathematical underpinning of modern
multiscale methods. Seminal contributions focus on periodic
homogenization [22–24], where the underlying microstruc-
ture is given by a periodic cell. Since microstructured mate-
rials are often random due to their manufacturing process
[25], stochastic homogenization results [26,27] have been
established, where an infinitely large domain with a random
microstructure is investigated. One method to evaluate effec-
tive properties based on stochastic homogenization results is
by exploring representative volume elements (RVEs). For
prescribed accuracy and fixed boundary condition type, a
volume element is called representative provided it approx-
imates the effective properties of the infinitely large domain
up to this prescribed accuracy [28]. Since the size of the
RVE is not known a priori and dependent on various factors,
the RVE size is often found via computations on volume
elements of increasing size [29,30] until a desired degree
of representativity is reached. For elliptic PDEs such as
elasticity and conductivity, theoretical results show that for
different boundary conditions applied to cells of finite size,
i.e., periodic, Dirichlet or Neumann boundary conditions,
the effective quantities evaluated on the cells share the same
infinite-volume limit [31–33]. Yet, it is well known that the
boundary conditions may have a strong influence on the nec-
essary size of the RVE, see Kanit et al. [34].

In the field of fracture mechanics, multiscale approaches
face additional difficulties compared to linear elastic or con-
ductivity problems. One necessary ingredient for multiscale
methods is a distinct scale separation, allowing the quan-
tities of interest, displacements, stresses or strains, to be
separable into a large-scale and small-scale component. In
an elastic material without a crack, for instance, this separa-
tion leads to a cell formula on the microscale, from which
effective quantities may be derived. This approach does not
work within a cracked microstructure, since this crack and
the stress singularity resulting from it would be present on

both themicro- and themacroscale. On the other hand, inves-
tigations on volume elements of finite size may be conducted
with phase-field fracture models [35,36]. However, it is well
known [37] that such a procedure will not, in general, lead
to a macroscopic model for softening materials. Thus, spe-
cial care is required.Hossain et al. [38] performed phase-field
simulations on the microscale and defined the effective crack
resistance as the maximum J-integral [39,40] evaluated dur-
ing the crack propagation.

For co-planar crack propagation in a perturbative frame-
work, Lebihain et al. [41,42] define the effective crack
resistance by computing the energy release rate from the
stress intensity factors. They consider three different ways
to evaluate the effective crack resistance by taking either the
maximum or two types of averages of the evaluated energy
release rate along the crack propagation and demonstrate that
these definitions lead to different results, in general. Upon a
large-volume limit, the differences between these approaches
vanish.

A different strategy is based on a periodic homogeniza-
tion result of Braides et al. [43] for the Mumford–Shah
[18] functional and energetic minimization. This result cov-
ers the Francfort–Marigo model of brittle fracture [14]
in the case of anti-plane shear when considering a fixed
quasi-static time discretization and neglecting crack irre-
versibility (for instance in the very first load step on an
un-cracked specimen). Within their result, Braides et al.
[43] show a decoupling of the volumetric part and the sur-
face part of the Mumford–Shah functional. In the context
of the Francfort–Marigo model this implies a decoupling
of the effective stiffness and the effective crack energy in
the anti-plane shear case. Furthermore, they provide spe-
cific formulas for both effective quantities. From their work
the effective crack energy is defined as the area of the
crack resistance-weighted minimal surface cutting through
the microstructure. Numerical approaches to computing the
effective crack energy have been proposed by the authors
[44–46] using FFT-based algorithms and periodic boundary
conditions. Recently,Michel–Suquet addressed the approach
based on Braides et al.’s [43] homogenization result using an
alternative solution strategy by pointing out similarities with
limit load analysis [47]. Additionally, they provide a detailed
discussion on the topic “effective crack resistance” vs. “effec-
tive crack energy” and possible advantages and limitations
of the different approaches. In particular, at the heart of the
question lies the presence of two small scales, i.e., a time
step in the time discretization, and a length scale separating
the microstructure from the macroscopic case. In the frame-
work based on the approach of Braides et al. [43], the time
step is fixed as the spatial scale tends to zero. As a conse-
quence, a propagating crack would pass the microstructural
cell within a single time step. In contrast, Hossain et al. [38]
andLebihain et al. [41,42] fix themicrostructure and simulate
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cracks propagating quasi-statically through the microstruc-
ture. These authors propose definitions of the effective crack
resistancewhich are neither related to normotivated bymath-
ematical homogenization results. To avoid confusion we call
the effective quantity based on the work of Braides et al. [43]
the “effective crack energy”, since the term does not coin-
cide with the definitions provided by Hossain et al. [38] and
Lebihain et al. [41,42].

Recently, the periodic homogenization result of Braides
et al. has been extended by Cagnetti et al. [48] to the case
of stochastic homogenization, i.e., the case of materials with
random (stationary and ergodic) microstructure. Thus, the
homogenization of theMumford–Shah functional holds for a
general randommicrostructurewith distinct scale separation.
Furthermore, they provide a formula for the effective crack
energy on the infinite domain, which has the same form as the
formula Braides et al. [43] established in the periodic setting.
Yet, both results use a specific kind of boundary conditions.
Moreover, their results are mostly quantitative, lacking qual-
itative character.

1.2 Contributions

The aim of this paper is to investigate the effective crack
energy of solids with random microstructures and the influ-
ence of the imposed boundary conditions. We recapitulate
the known periodic and stochastic homogenization results
for the Francfort–Marigo model both in the anti-plane shear
and the general case in Sect. 2.1. For both the periodic and the
stochastic setting, the effective crack energy is expressed in
terms of a multi-cell formula on specifically notched cubes,
which we call Dirichlet boundary conditions. For periodic
homogenization, this multi-cell strategy is overly arduous,
and a single-cell formula is sufficient, provided periodic
boundary conditions are used, as well. Therefore, it makes
sense to investigate periodic boundary conditions for random
materials, as well. Indeed, for periodic boundary conditions,
powerful numerical tools for computing the effective quanti-
ties based on the fast Fourier transform (FFT) are available,
which we summarize in Sect. 2.2. Dirichlet boundary con-
ditions on the other hand are not easily integrated into this
framework.

In a two-dimensional setting the problem of computing
the effective crack energy reduces to finding weighted mini-
mal paths. One prominent algorithm to compute such paths
is the fast marching method introduced by Sethian [49,50]
where fast implementations are publicly available [51]. In the
context of fracture mechanics, the fast marching method has
already been used for fatigue fracture using stress intensity
factors [52] and in combination with the extended finite ele-
ment method [53–55]. We discuss a straightforward way to
compute the effective crack energy with the help of the fast
marching method in Sect. 3. One advantage of this method

is that Dirichlet boundary conditions can easily be applied,
since every point of a domain may be used as a starting or
ending point.

Section 4 comprises the numerical results. We first vali-
date the fast marching method in terms of accuracy of the
discretization and compare the results for periodic bound-
ary conditions with established tools. Finally, we investigate
the influence of the boundary condition on the approximated
effective crack energy for microstructure samples of increas-
ing cell size. We compare Dirichlet and periodic boundary
conditions and study their necessary size of the computa-
tional cell.

This article is based on the Master’s thesis of the second
author [56] supervised at the institute of engineeringmechan-
ics (ITM), Karlsruhe Institute of Technology (KIT) in 2022.

2 The effective crack energy of
heterogeneous randommedia

2.1 Homogenization results for the
Francfort–Marigomodel of brittle fracture

For a body � ⊂ Rd , let C : � → L(Sym(d)) denote a
field of positive definite stiffness tensors where we denote
by L(Sym(d)) the space of linear operators on symmetric
d × d matrices. Furthermore, let γ : � → R>0 be a field of
local crack resistances bounded away from zero. For a fixed
(pseudo-) time discretization, appropriate time-dependent
boundary conditions, and a fixed time step, Francfort and
Marigo [14] considered a crack evolution based on the func-
tional

F(u, S) = 1

2

∫
�\S

∇su : C(x) : ∇su dx +
∫
S
γ (x) d A.

(2.1)

Here, S denotes the current crack surface and u stands for
the accompanying the displacement field which may be dis-
continuous across S. The Francfort–Marigo model of brittle
fracture considers an evolution governed by theminimization
problem

(u∗, S∗) = argmin F(u, S) (2.2)

at each time step, subjected to the irreversibility condition
S∗
i+1 ⊇ S∗

i . With the indices labeling the time steps, the
irreversibility condition encodes the physically plausible fact
that cracks may only grow upon loading.

Let us consider the case of an underlying periodic
microstructure, i.e., the fields C and γ are periodic with
periodicity η. For this periodic case and neglecting the
irreversibility constraint, Braides et al. [43] proved a homog-
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enization result for the Mumford–Shah functional [18],
which corresponds to the Francfort–Marigo model in the
case of anti-plane shear. The work of Braides et al. [43]
includes a �-convergence result of the (anti-plane shear)
Francfort–Marigo functional (2.1) to the spatially homoge-
neous functional

Feff(u, S) = 1

2

∫
�\S

∇su : Ceff : ∇su dx +
∫
S
γeff(n) d A

(2.3)

as η → 0. This expression comprises a (possibly anisotropic)
effective stiffness tensor Ceff as well as an effective crack
energy γeff : Sd−1 → R>0, whose possible anisotropy is
encoded via the dependence on the unit normal n. Braides
et al. [43] provide explicit formulas for both the effective
stiffness and the effective crack resistance. Remarkably, the
elastic material properties do not affect the effective crack
energy and vice versa. In particular, classical computational
strategies for computing the effective linear elastic stiffness
may be used [57]. The effective crack energy emerges by the
following construction. Inside an infinite periodic continua-
tion of ourmaterial with periodicity ηwe place a cube QL(n)

of edge length L with its e1 axis rotated onto the prescribed
normal n. On such a cube, we compute a γ -weighted mini-
mal surface S cutting the cube under the constraint that the
surface cuts the boundary of the cube at x1 = L/2 within
the coordinate system of the cube, see Fig. 1 for a visual rep-
resentation. The effective crack energy is given by the limit
of these computed weighted minimal surfaces as the cube
edge-length L → ∞. In mathematical terms, the effective
crack energy is defined via

γeff(n) = lim
L→∞ inf

S

1

Ld−1

∫
S
γ d A. (2.4)

In a recent extension of the work of Braides et al. [43],
Friedrich et al. [58] lift the restriction to the anti-plane shear
case for their periodic homogenization result.

Let us take a closer look at the cell formula (2.4). From
a computational point of view, the limit of L → ∞ is not
practicable, as we can only deal with finite computational
domains. To overcome this issue, we may restrict to a single
cell QL and employ the boundary conditions used in the
proof byBraides et al. [43], whichwe callDirichlet boundary
conditions. In this case, we fix the surface S on the boundary
∂QL of the cube at x1 = L/2 within the local coordinate
system of the cube. Actually, any cut at x1 ∈ [0, L] could be
chosen. We choose x1 = L/2 for definiteness.

The approach by Braides et al. [59] involves a multi-cell
formula (2.4) although the homogenization problem is peri-
odic. As the integrand in the problem (2.4) is convex, it is
reasonable to hope that a single-cell formula may prove suf-

Fig. 1 Visualization of the computation of the effective crack energy.
The cube QL (n) is placed into the periodic structure. Depending on the
material contrast γ2/γ1 either the green or the red path is favored

ficient for computing the effective crack resistance γeff. This
is indeed true, as shown by Braides et al. [59] and Cham-
bolle and Thouroude [60]. More precisely, they showed that
the effective crack energy γeff(n) in equation (2.4) may be
computed on a single cell Yη with period η and for fields with
periodic boundary conditions

γeff(n) = inf
p:Yη→R, periodic

1

|Yη|
∫
Yη

γ ‖n + ∇ p‖ dx . (2.5)

Manymaterials of industrial relevance show a randomness in
their microstructure composition, and periodic homogeniza-
tion is not sufficient for describing those. Recently, Cagnetti
et al. [48] proved an extension of the result of Braides et al.
[43] to stochastic homogenization for the Francfort–Marigo
model under anti-plane shear. Remarkably, the result pro-
vides a true extension of the periodic case. They show a
�-convergence result to a functional of the form (2.3) and
provide explicit expressions for both the effective stiffness
and the effective crack energy, which—as for the periodic
case—do decouple upon homogenization. These explicit
expressions involve an infinite-volume limit.

The case of effective stiffnesses in stochastic homoge-
nization is well-studied. To render computations on cells of
finite size well posed, it is required to furnish the cells with
appropriate boundary conditions. Upon an infinite-volume
limit, the effects of the boundary conditions vanish [31–33].
However, for cells of finite size, the chosen type of bound-
ary conditions does have an influence on the approximation
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quality of the “true” effective stiffness, see the works [31,34]
among numerous others. It can be shown—both theoreti-
cally and numerically—that optimal convergence rates are
reached when using periodic boundary conditions and peri-
odized ensembles of microstructures, see Schneider et al.
[61] for a thorough discussion. For this reason, we restrict to
periodic microstructures throughout this article.

In contrast to elastic and inelastic materials, very little is
known about the influence of the boundary conditions when
computing the effective1 crack energy evaluated on cells of
finite size. The aim of this work is to provide a first step in this
direction. For the periodic boundary conditions and in three
spatial dimensions, Schneider [44] proposed an algorithm for
computing the effective crack energy on cells on finite size.
The approach relies onStrang’sminimumcut/maximumflow
duality [62].

Due to the tremendous computational effort involved, we
restrict to two-dimensional microstructures. In this case, it is
possible to compute shortest paths with fast marching, see
Sect. 3, which is well-known among experts.

2.2 Computational approach for periodic boundary
conditions—minimum cut/maximum flow

To compute the effective crack energy on a given cell Y with
periodic boundary conditions we consider the minimization
problem

1

|Y |
∫
Y

γ ‖ξ‖ dx → min
ξ∈Kξ̄

with Kξ̄ = {ξ : Y → Rd | ξ = ξ̄ + ∇ p, ξ̄ ∈ Rd , p periodic},
(2.6)

which seeks the periodic minimum cut through the cell Y
with mean normal ξ̄ . If the direction ξ̄ has length unity, the
minimumvalue of this functional is the effective crack energy
for unit normal n = ξ̄ . Solving the problem (2.6) is numer-
ically challenging since the functional to be minimized is
not differentiable as a consequence of the 1-homogeneity of
the integrand. To overcome this issue, Schneider [44] sug-
gested to consider the formal dual problem, which is called
the maximum flow problem. This duality was first described
by Strang [62] who found that minimum cut is dual to max-
imum flow. The maximum flow problem seeks the periodic

1 A part of the mechanics community distinguishes apparent and effec-
tive properties. The former correspond to cells of finite size, whereas
the latter emerge only upon an infinite volume limit (for stationary and
ergodic media). Alternatively, apparent properties may be interpreted
as approximations of the effective properties, in the same way as the
displacement computed in a Galerkin discretization approximates the
displacement of the continuous solution. In this article, we follow the
second paradigm and use the terminology effective crack resistance to
quantities computed on cells of finite size, as well, tacitly assuming
their approximative character.

flow field v : Y → Rd , solving

1

|Y |
∫
Y

ξ̄ · v dx → max
div v=0, ‖v‖≤γ

. (2.7)

This problem may be interpreted as a linear program with
linear and quadratic constraints. To solve this numerically,
suitable discretizations and solvers are required. Schneider
[44] used an FFT-based solution framework with a trigono-
metric collocation discretization [63,64] and a finite element
discretization with reduced integration [65]. He solved the
governing equations with a primal dual hybrid gradient
method [66,67]. However, numerical difficulties arose in
achieving high-accuracy solutions. This can be achieved
using the combinatorial consistent maximum flow (CCMF)
discretization [68], which, for small problems, may be
embedded into classical second-order cone solvers [69,70].
However, these may suffer from “memory limitations” [68].
As a remedy, Ernesti–Schneider [45] proposed an FFT-based
solver for the CCMF discretization. Furthermore, improve-
ments on the solver were introduced exploiting a damped
version of the alternating direction method of multipliers
(ADMM) [71,72] with an adaptive penalty parameter choice.
A similar approach has been proposed by Willot [73] who
investigated the related problem of finding the effective con-
ductivity of resistor networks. Michel–Suquet [74] proposed
a different approach to computing the effective crack energy.
For trigonometric collocation discretization [63,64], they
used classical numerical strategies to compute limit loads
of structures [47].

3 Finding theminimum cut with the fast
marchingmethod

3.1 Fromminimum cut to shortest path problems

To gain some intuition into minimum cut fields in two spatial
dimensions,we consider a periodicmicrostructure of circular
inclusions, shown in Fig. 2a. The structure contains 35 fillers,
i.e., 50% area fraction. We consider tough inclusions, i.e.,
these have a (much) higher crack resistance than the matrix
material. Figure 2b and c show the minimum cut for mean
crack normals ξ̄ = e1 and ξ̄ = (3e1 + e2)/

√
10. In both

cases, the minimum cut field localizes and takes the shape of
a crack path that cuts through the microstructure. However, a
distinct difference is present between the two cases. For the
axis-aligned case, the cut field traverses the microstructure
once, cutting from left to right. For the non-axis aligned case,
the cut field wraps around the microstructure several times
in order to both preserve the mean normal of the cut and to
retain periodicity.
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(a) (b) (c)

Fig. 2 Microstructure and minimum cut field (ξ in Eq. (2.6)) for an axis-aligned and a non-axis-aligned prescribed mean normal

Thus, at least for the axis-aligned case, it appears reason-
able the minimum cut may be computed by an algorithm
which returns a (weighted) shortest path [75–77]. Indeed,
after fixing two corresponding points on opposing edges of
themicrostructure, aminimumweighted path joining the two
points would have to be computed.

Some caution is advised with this kind of strategy, as the
following two examples demonstrate. For a start, we consider
the periodic microstructure shown in Fig. 3a with imposed
crack normal ξ̄ = e1. If the crack resistance in the rectan-
gles (shown in blue) is much higher than in the complement
(shown in white), the minimum cut is forced to navigate
through the white pathways. In this process, more than one
unit cell needs to be crossed. In the example shown, the green
curve crosses the horizontal “boundary” twice. Such a curve
may be represented by a shortest path algorithm if periodic-
ity in y-direction is accounted for. Otherwise the red curve
would arise as the shortest path from left to right.

Unfortunately, taking periodicity in y-direction into
account does not always offer the proper strategy, as the
microstructure in Fig. 3b shows. A straight “obstacle” with
high crack resistance is placed along the diagonal. For pre-
scribed normal ξ̄ = e1, the minimum cut has to cross the
obstacle. The shortest path strategy with periodic boundary
conditions in y-direction, however, would give rise to the
green path. Unfortunately, the shown path does not give rise
to the correct path normal ξ̄ = e1, but to the normaln pointing
in diagonal direction! If, instead, no periodicity in y-direction
is permitted, the correct crack path (in red) is computed.

To summarize, the charming idea of working with short-
est path algorithms to compute the effective crack energy
for axis-aligned crack normals may be unsuited to some
microstructures. Therefore, it is unavoidable to perform a
validation againstminimumcutmethods. For themicrostruc-
ture models considered in this article, such a comparison is
contained in Sect. 4.3.

3.2 Finding shortest paths by the fast marching
method

There is a deep connection between the eikonal equation and
efficient path finding which led Sethian [49,50] to devise
computationally efficient algorithms for the latter. More pre-
cisely, consider a domain � ⊂ Rd and suppose a wave
propagates through our domain, starting from some point
x0 ∈ � at a given velocity v : � → R>0. Then, the time
T : � → R≥0 this wave needs to arrive at point x ∈ �

solves the eikonal equation

‖∇T (x)‖ = 1

v(x)
, x ∈ �, (3.1)

with T (x0) = 0. If the velocity v is spatially homogeneous,
the level sets of the travel time T describe concentric spheres
around the starting point x0. For a heterogeneous velocity,
the wavefront is refracted. Sethian [49,50] introduced the
fast marching method as a fast algorithm for solving the
eikonal equation. The fast marching method is an integrated
strategy where the spatial discretization and the strategy for
solving the eikonal equation are well orchestrated. More pre-
cisely, the solution strategy uses a modification of Dijkstra’s
algorithm [78] well-known in graph theory [79]. The fast
marching method finds application in various fields rang-
ing from shortest path finding [80–82] to simulating wildfire
spreading [83] andwithin the extended finite elementmethod
[54,55].

In d spatial dimensions and on a regular grid with Nd grid
points, the fast marchingmethod has the computational com-
plexity O(Nd log N ). In contrast, iterative procedures for
solving the eikonal equation (3.1) typically have a complex-
ity of O(Nd+1). This complexity reduction is partly caused
by an underlying min-heap data structure [84].

The problem of computing the effective crack energy on a
microstructure involves finding a weighted minimal surface,
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Fig. 3 Periodic microstructures
QL (with a periodic extension in
y-direction), giving rise to
possible problems for shortest
path methods. (Color figure
online)

(a) (b)

Fig. 4 Example for (non-unique) shortests path with Dirichlet (index
“D”, red) and periodic (index “P”, green) boundary conditions

as we pointed out in Sect. 2, Eq. (2.4). For the special case of
two-dimensional structures, this problem simplifies to find-
ing shortest paths in a given two-dimensional microstructure,
for which various methods are available [85,86]. In particu-
lar, the fast marching method may be applied as follows.

1. The crack resistance γ (x) serves as the weight in com-
puting the weighted shortest path playing the role of a
resistance for the crack to propagate. In contrast, for a
propagating wave, the velocity v(x) enables the propa-
gating wave to travel faster at a higher speed. Therefore
we set the right hand side of the eikonal equation (3.1) to
γ (x) instead of 1/v(x) for computing the effective crack
energy with fast marching.2

2. The solutionfield T (x) embodies the γ -weighted distance
from point x to the origin x0. We therefore call it the
distance field throughout this work.

3. Tocompute the effective crack energyof a givenmicrostruc-
ture cell Y = [0, L]2 with crack normal n = e2 and
Dirichlet boundary conditions, we choose a starting point
x0 = (0, L/2)T and evaluate the distance field T in
x∗ = (L, L/2)T . The effective crack energy is given by
T (x∗)/L , see the red path in Fig. 4.

2 The crack resistance γ and the inverse velocity 1/v have different
physical units. However, both the effective crack energy and the travel
time field scale homogeneously under a rescaling of the crack resistance
and the inverse velocity. Thus, upon introducing a conversion factor
between crack resistance and the velocity in the beginning, the same
conversion factor permits to recover the effective crack energy from
the computed distance field. For simplicity of notation, we therefore
suppress mentioning the conversion factor and tacitly assume it to be
chosen appropriately.
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(a) (b) (c)

Fig. 5 Distance field and crack path for different boundary conditions for a single circular inclusion microstructure

4. The solution for periodic boundary conditions with mean
normal n = ey is given by the γ -weighted shortest peri-
odic path from the left hand side to the right hand side. To
find this shortest path with the fast marching approach,
we consider all paths with the starting point x0 = (0, y)
and end point x∗ = (L, y) for some y ∈ [0, L], and select
the starting point which returns the smallest crack energy,
see the green path in Fig. 4. On a computational grid with
N×N pixels, this process includes N fast marching com-
putations, which increases the computational complexity
to O(N 3 log N ).

5. The fast marching method enables computing the min-
imum crack energy in a straightforward way. However,
the involved crack path is not directly accessible. Rather,
different approaches are available to obtain the crack in
postprocessing, see for instance Noyel et al. [77]. Using
the fact that the shortest crack path is perpendicular to
the level sets of the distance field T , we rely on a gradi-
ent descent method to compute the crack path from any
point x to the origin x0. To do so, we compute a spline
interpolation on the numerically evaluated gradient of the
distance field T .

One advantage of the fastmarchingmethod over themaxi-
mumflowapproach fromSect. 2.2 is that additional boundary
conditions can easily be studied, as we can choose any point
of � as our starting or ending point. We consider three dif-
ferent cases, illustrated in Fig. 5, which shows the level sets
of the distance field and the resulting crack path for a struc-
ture containing a single circular inclusion of diameter L/2
positioned at the center of a square with edge length L . The
inclusion has amuch higher crack resistance than the embed-
ding matrix, forcing the crack path to avoid the inclusion
altogether. The distance field and the crack path for Dirichlet
boundary conditions is shown in Fig. 5a. The distance field
describes concentric circles starting from the left hand side
until the inclusion is reached and a refraction occurs. To draw
the crack path, we start on the right hand side at y = L/2

and follow the path perpendicular to the contour lines of the
distance field. Notice that this path does not prescribe the
shortest path from the right hand side of the structure to the
origin on the left hand side. Indeed, Fig. 5b shows this short-
est path originating in x0 to the right-hand side. To draw this
path we select x∗ as the point on the right hand side with
the minimum effective crack energy and draw the path per-
pendicular to the contour lines of the distance field. Since
the mean crack normal may differ from the prescribed mean
normal we do not focus on this case in this paper. For peri-
odic boundary conditions the crack path is not unique for
this example, as both above and below the inclusion straight
paths are possible, see Fig. 5c for one possible option.

4 Numerical investigations

4.1 Setup

The fast marching based algorithm for computing the effec-
tive crack energy was implemented in Python 3 based on
the scikit-fmm module [51], which provides both first-
order and second-order fast marching methods. These differ
in the convergence order of the underlying approximation of
first derivatives. The first-order fast marching method uses
classical forward and backward differences, whereas for the
second-order method a three point stencil approximation of
forward and backward differences is used [87]. The crack
paths were visualized by first computing the gradient of the
resulting distance field byfinite differences, interpolating this
gradient field with bi-cubic splines and finally using gradient
descent starting from the end point of the crack path.

For the computations basedon theminimumcut/maximum
flow approach, we relied on an in-house FFT-based code
[44–46]. The continuous equations were discretized with the
CCMF discretization [68] and solved by a damped version
of the alternating direction method of multipliers (ADMM)
[71,72] with adaptive choice for the penalty parameter, see
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(a) (b) (c)

Fig. 6 Microstructure of a rotated square with anticipated crack path, distance field and crack path for Dirichlet boundary conditions

Ernesti–Schneider [45]. We chose a relative tolerance of
10−4.

All fast marching computations were run on an ARM-
based SoC Apple M1 with 8 GB of RAM using a single
thread. Theminimum cut/maximumflow computations were
performed on a desktop computer with 32 GB of RAM and
six 3.7 GHz cores.

4.2 A single rotated square inclusion

To investigate the accuracy of the fast-marching approach,
we start with a structure containing a single square inclu-
sion of edge length L/2, which is rotated at 45 degrees and
positioned at the center of our computational domain of edge
length L , see Fig. 6a. The crack resistance of the inclusion is
given by γfib = 10 γmat. We consider an initial double notch
crack at y = 0.5 L , i.e., Dirichlet boundary conditions. The
analytical solution, which may be extracted from the struc-
tural measurements, see Fig. 6a, is γeff/γmat = √

3/2 ≈
1.22247, see Fig. 6a.

Figure 6b shows a contour plot of the distance field. Start-
ing from the initial notch on the left hand side, the distance
field initially shows a circular expanding front. Upon hitting
the inclusion, the field is refracted and a new circular front
with the top/bottom edge of the inclusion as origin continues
to the other side. Since the distance field is symmetric with
respect to the x-axis, we slightly perturb the starting point
for our gradient descent method in y-direction to break this
symmetry and enforce a unique crack path. The evaluated
crack path is shown in Fig. 6c. We observe that it matches
the geometrically anticipated path.

Next, we investigate the quality of the solution with
respect to the grid size. We compute the effective crack
energy for different resolutions ranging from 100 to 6400
pixels per side length of our computational domain. Further-
more, we investigate the performance of both first-order and
second-order fast marching methods. The results are shown
in Fig. 7a, where the absolute values of the crack energy

are depicted, as well as in Fig. 7b, which shows the relative
error compared to the analytical solution. Both the first and
the second-order methods converge to the analytical solution
with a linear rate of convergence. However, the second-
order approach leads to a higher accuracy than the first-order
approach, even on a coarser grid. To reach the accuracy of the
second-order fast marching using first-order requires almost
four times more pixels per edge length. Hence, we rely on
the second-order fast marching method for the remainder of
this article.

4.3 Comparison withminimum cut/maximum flow

In our next study, we investigate a periodic structure con-
taining 32 uni-directional fibers and a filler fraction of 50%,
which are represented as circular inclusions, see Fig. 8. The
structure was generated using amechanical contraction algo-
rithm [88]. The inclusion are considered tough, i.e., they
have a higher crack resistance than the matrix and we set
γfib = 10 γmat. We investigate various resolutions ranging
from 128 to 4096 pixels per edge length.

In this section, we would like to investigate whether the
results obtained with the fast-marching method and with the
FFT-based technique give rise to similar results. Indeed, as
discussed in Sect. 3.1, it is necessary to exclude certain patho-
logical situations in order to gain confidence into the results
obtained with the fast marching method. We wish to empha-
size that due to the lack of uniqueness of the solutions to the
minimizationproblem (2.6),wemayonly expect the obtained
effective crack energies to be close. However, similarity of
obtained minimum cracks is certainly sufficient for the latter
to hold.

To enforce periodic boundary conditions in the fast-
marching setting, we iterate over all pixels on the right hand
side of the microstructure, evaluate the distance field at the
same height on the other side and select the minimum. The
distance field is shown in Fig. 8c. From the near center of
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(a) (b)

Fig. 7 Effective crack energy and relative error for the rotated square microstructure

(a) (b) (c)

Fig. 8 Microstructure containing 32 circular inclusions for different resolutions and distance field for periodic boundary conditions

the y-axis we observe a circular expanding front which is
refracted at every inclusion.

For both, the fastmarching and theminimumcut/maximum
flow formulation and the two considered resolutions, the
crack paths are shown in Fig. 9. Notice that the way these
twomethods extract the crack path is very different.Whereas
the crack path of the fast marching method is computed via
gradient descent along the distance field, the crack path of the
minimum cut/maximum flow approach is given by the total
minimum cut through the microstructure with mean normal
ey , which is a field that localizes around the crack attain-
ing large values whose magnitude has no physical meaning.
This results from the fact that the minimum cut is given by
the gradient of the periodic field p in equation(2.6) which
has a jump discontinuity across the crack. Evaluating this
quantity numerically results in large but finite values which
tend to infinity as the pixel length goes to zero. Both meth-
ods find extremely similar crack paths. On a coarser grid of

1282 pixels, the fast marching crack in Fig. 9b exhibits some
small isolation distance to the inclusions, which is not the
case for the minimum cut field. This isolation distance van-
ishes for higher resolutions, see Fig. 9d. These computational
results resolve possible doubts about the expressivity of the
fast marching results for the considered microstructures.

In Fig. 10, the effective crack energy for the two
approaches under consideration is plotted against the reso-
lution, together with the relative error, where we used the
solution on the 40962 grid as the ground truth for each
method. Both approaches show a linear rate of convergence
with respect to the resolution per edge length. Furthermore,
both approaches overestimate the effective crack energy on
a coarser grid. However, in order to reach the accuracy of the
minimum cut, the fast marching method requires between
1.5 and 2 times the resolution of the edge length. Notice
the difference in the complexity of the two methods. The
complexity of the minimum cut/maximum flow is mainly
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(a) (b) (c) (d)

Fig. 9 Periodic crack paths for minimum cut/maximum flow and fast marching method of a microstructure containing 32 circular inclusions for
different grid sizes

(a) (b)

Fig. 10 Effective crack energy and relative error comparing fast marching with minimum cut/maximum flow

driven by the FFT, which has a complexity of O(N 2 log N ),
as well as the number of required iterations, which ranged
between 2000 and 7000 in order to reach the desired accu-
racy of 10−4. The fastmarching approach has a complexity of
O(N 3 log N ) for periodic boundary conditions. As a result
we noticed for resolutions below N = 2048 that the fast
marching method required less computational time than the
minimum cut/maximum flowmethod, each running on a sin-
gle thread. For N = 4096 the fast marching method required
twice the computational time of minimum cut/maximum
flow.

4.4 The influence of boundary conditions

In our next studywe investigate the influence of the boundary
conditions on the effective crack energy for computational
cells of increasing size. We consider two types of bound-
ary conditions, namely Dirichlet boundary conditions and

periodic boundary conditions. For Dirichlet boundary con-
ditions, we consider the crack propagating at y = 0.5 L to
the other side of the domain at the same height. Fully peri-
odic boundary conditions are attained by the minimum value
when iterating over all pixels in y-direction using Dirichlet
boundary conditions starting from each pixel. The material
parameters are chosen as before, i.e., the inclusions are con-
sidered tough with a material contrast of 10.

A comparison of the crack paths for different bound-
ary conditions is shown in Fig. 11, where we consider
a microstructure with 50% circular inclusions, i.e., uni-
directional continuous fibers. The crack path for the periodic
boundary conditions interacts with less inclusions, resulting
in a pathwithmore straight segments compared to theDirich-
let boundary conditions.

To further investigate the boundary conditions, we con-
sider microstructures with 30% and 50% filler fraction and
a varying number of inclusions ranging from 52 to 802. For

123



Computational Mechanics

Fig. 11 Crack paths for
different boundary conditions

(a) (b)

each number of inclusions we consider 100 microstructure
realizationswhichwere generated usingmechanical contrac-
tion [88]. For the Dirichlet boundary conditions we consider
all realizations. To reduce the computational costs for peri-
odic boundary conditionswe only take half of the realizations
into account for a fiber count of 502 and higher.

The results for volume fractions 30% and 50% are shown
in Figs. 12 and 13, respectively. Figures 12a and 13a show
a histogram of the crack energy for 252 inclusions. On the
y-axis, the number (in percent) of microstructures is shown
whose effective crack energy corresponds to the x coordinate.
We notice that the range of the periodic boundary condition is
shifted to the lower values of the effective crack energy rang-
ing, into the lower part of the Dirichlet boundary conditions.
For the Dirichlet boundary conditions we notice some accu-
mulation in the lower range up to γeff = 1.025 γmat for 30%
filler fraction and γeff = 1.06 γmat for 50% filler fraction.
Above these thresholds both histograms show some disper-
sion. These dispersions result from the fact that for some
microstructures, the initial crack in the Dirichlet boundary
conditions starts in an inclusion. Hence, the crack has to exit
the inclusion first which causes an increase of the effective
crack energy.

Figures 12b and 13b show the scatter of the effective crack
energy computed for all 100 microstructure realizations in
the lower fiber count range. For both volume fractions, we
observe that the Dirichlet boundary conditions result in a
muchwider range of possible values for the effective quantity
γeff than the periodic boundary conditions. Furthermore, we
observe a division of this wide range into wide scatter, about
one third of the data for 30% filler fraction and on half of
the data for a filler fraction of 50%. Furthermore, we see an
accumulation of the remaining data around lower effective
values. Additionally, we notice that the range of the outliers

decreases for increasing fiber count since these effects result
from initial cracks inside of inclusions.

To gain additional insight into the influence of the bound-
ary conditions, we investigate the median as well as the
upper and the lower percentile ranges in Figs. 12c and 13c.
We observe that the range of effective crack energies for
the two boundary conditions under consideration overlap for
both volume fractions. Hence, for some microstructures, the
Dirichlet boundary conditions result in the same effective
crack energy as the periodic boundary condition for a pos-
sibly different microstructure realization. Furthermore, we
notice that for both boundary conditions the total range and
the mid percentile range become smaller for an increasing
fiber count. The median lines are approaching each other
as the fiber count increases, however, at a very low rate.
In general, the range of possible values for the effective
crack energy forDirichlet boundary conditions ismuchwider
compared to periodic boundary conditions. Furthermore, the
median for periodic boundary conditions is roughly placed
in the center of the data set. In contrast, for Dirichlet bound-
ary conditions the median and the mid percentile range are
placed in the lower quarter of the data sets, reflecting the
aforementioned outliers.

Last but not least, we investigate the relative standard devi-
ation of the two data sets over the fiber count, see Figs. 12d
and 13d. We observe a decrease of the standard deviation as
the fiber count increases. Furthermore, we notice that the
standard deviation for periodic boundary conditions is more
than onemagnitude lower than for Dirichlet boundary condi-
tions. Specifically, for a volume fraction of 50%,we notice an
increase of the standard deviation for the last microstructure
sample with 802 fillers. A possible explanation for this effect
may be found in Fig. 13c where we notice that the spread of
the standard deviation is caused by some computations with
lower effective crack energy compared to the median/mean
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(a) (b)

(c) (d)

Fig. 12 Comparison of the boundary conditions for 30% filler content

value. These lower outliers are caused by sections of straight
crack paths which are still possible and probable for very
large microstructures.

To sum up, we strongly discourage from using the
Dirichlet boundary conditions. Rather, periodic boundary
conditions should be preferred.

5 Conclusion

In this work we studied the influence of the boundary
conditions on the effective crack energy of heterogeneous
materials. Based on homogenization result [43,48,58] for
the Francfort–Marigo model of brittle fracture [14] in a

quasi-static setting and without crack irreversibility, we
investigated a method for computing the effective crack
energy using the fastmarchingmethod [49].Wevalidated our
approach and compared it to recent FFT-basedmethods using
periodic boundary conditions [44,45]. In addition to peri-
odic boundary conditions, the fastmarchingmethod provides
additional freedom in the boundary condition choice. With
this freedom at hand we compared periodic and Dirichlet
boundary conditions for a continuously reinforced com-
posite with tough inclusions, containing filler fractions of
30% and 50%. We noticed in a study with several realiza-
tions of volume elements of increasing size that the periodic
boundary conditions result in a much lower spreading of the
results compared to Dirichlet boundary conditions. This was
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(a) (b)

(c) (d)

Fig. 13 Comparison of the boundary conditions for 50% filler content

reflected in the standard deviation, which was one magni-
tude lower for the periodic boundary conditions compared to
Dirichlet boundary conditions. For an increasing size of the
computational cell, we noticed that the medians approached
each other. However, periodic boundary conditions should
be preferred over Dirichlet boundary conditions due to the
much lower standard deviation. This lower standard devi-
ation indicates that the necessary computational cell for
periodic boundary conditions is considerably smaller than
for Dirichlet boundary conditions. Thus, we strongly recom-
mend using periodic boundary conditions.

Applying periodic boundary conditions in the context of
the fast marching method relied on an iterative process over
one axis of the domain, i.e., increasing the complexity of the

algorithm on an N × N grid from O(N 2 log N ) for Dirichlet
boundary conditions to O(N 3 log N ). For microstructures
of moderate size, i.e., up to N = 2048, the fast marching
method is still competitive with an FFT-based solver for the
minimum cut/maximum flow problem. However, for larger
structures the higher complexity forms a strong argument
against using fastmarching for periodic boundary conditions.

Classical fast marching algorithms are only applicable to
isotropic crack resistances in the plane. To cover anisotropies
in the crack resistance [46], anisotropic fast marching meth-
ods [89] may be explored.

Last but not least, let us mention that it would be desirable
to havemathematical results at handwhich concern the influ-
ence of boundary conditions on the effective crack energy.
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Indeed, for elastic solids, results [31–33] are available which
provide a list of suitable boundary conditions whose influ-
ence becomes negligible when going to the infinite-volume
limit. Previous work by Bouchitte–Suquet [90,91] for limit-
load problem suggests that Dirichlet boundary conditions
may be used, whereas Neumann boundary conditions give
rise to different results. Further research may be necessary
to clarify this issue for the problem at hand.
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