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In this paper, we study the behavior of feasible rounding 
approaches for mixed-integer optimization problems when in-
tegrated into branch-and-bound methods. Our research ad-
dresses two important aspects. First, we develop insights into 
how an (enlarged) inner parallel set, which is the main com-
ponent for feasible rounding approaches, behaves when we 
move down a search tree. Our theoretical results show that the 
number of feasible points obtainable from the inner parallel 
set is nondecreasing with increasing depth of the search tree. 
Thus, they hint at the potential benefit of integrating fea-
sible rounding approaches into branch-and-bound methods. 
Second, based on those insights, we develop a novel primal 
heuristic for MILPs that fixes variables in a way that pro-
motes large inner parallel sets of child nodes.
Our computational study shows that combining feasible 
rounding approaches with the presented diving ideas yields 
a significant improvement over their application in the root 
node. Moreover, the proposed method is able to deliver best 
solutions for the MIP solver SCIP for a significant share 
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of problems which hints at its potential to support solving 
MILPs.
© 2022 The Authors. Published by Elsevier Ltd on behalf of 

Association of European Operational Research Societies 
(EURO). This is an open access article under the CC 

BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this paper, we study the task of computing good feasible points for mixed-integer 
optimization problems. While our theoretical study covers general mixed-integer nonlin-
ear optimization problems (MINLPs), the main focus of this paper will be on mixed-
integer linear optimization problems (MILPs). Our work is based upon feasible rounding 
ideas from [16,17,19], which aim at quickly computing such points by relaxing the diffi-
culties imposed by integrality constraints. To do so, they make use of a so-called inner 
parallel set of the continuously relaxed feasible set (cf. Section 2) for which any rounding 
of any of its elements is feasible for the original problem. This inner parallel set can be 
explicitly computed in the linear case and approximated in different ways in the nonlin-
ear case. If it is nonempty, then the problem is called granular, and one can minimize the 
original objective function over it and round any of its optimal points to a point which 
is feasible for the original problem.

The task of computing a feasible point for mixed-integer optimization problems is 
known to be an NP-hard problem, even if all constraint functions are linear [20]. This has 
triggered the development of many primal heuristics, among them the feasibility pump 
[1,7,8], undercover [4], relaxation enforced neighborhood search [2], diving strategies [5], 
and many others (see [3] for a comprehensive overview).

What distinguishes feasible rounding approaches from the above methods is the 
underlying geometric notion of granularity, which allows us to better understand the 
circumstances needed for their successful applicability. This concept not only allows us 
to state conditions when the approaches can be used for the computation of feasible 
points, but it also enables the derivation of a priori error bounds for the objective value 
which indicate when they work well [16,18].

Feasible rounding approaches were successfully tested as standalone concepts for 
mixed-integer linear optimization problems [17], mixed-integer nonlinear convex opti-
mization problems [16], and mixed-integer convex and nonconvex quadratically con-
strained quadratic optimization problems [19]. Granularity is often observed and easily 
exploited in problems without equality constraints on integer variables, hence the above 
mentioned as well as the present paper focus on such problems. In [15] it is demonstrated 
that granularity is also possible, but needs more effort and is less likely to occur, under 
the presence of equality constraints on integer variables.

So far it is untested how these approaches work when integrated in branch-and-bound 
methods. In particular, it has not been studied how exploring the search tree affects the 
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inner parallel set. In this paper, we intend to close this gap. Additionally, based on these 
results, we develop a novel method that is specifically tailored to inner parallel sets and 
feasible rounding approaches. The paper is structured as follows.

In Section 2 we briefly introduce the basic concepts of an inner parallel set and of 
granularity. We then provide a theoretical analysis of the behavior of inner parallel sets 
when variables are fixed in Section 3. Thus, we investigate the theoretical potential 
of integrating feasible rounding approaches into branch-and-bound methods. Moreover, 
the results from this section give rise to a new primal heuristic which can improve upon 
standalone feasible rounding approaches. This is the content of Section 4. To arrive at a 
specific algorithm, we formulate a method for MILPs. Finally, in Section 5, we conduct a 
computational study on the MIPLIB 2017 [10] that sheds a light on the effectiveness of 
these diving strategies and also on the potential benefit of integrating feasible rounding 
approaches into the solver SCIP [9]. Section 6 concludes the article and offers directions 
for further research.

2. Preliminaries

We study mixed-integer nonlinear optimization problems of the form

MINLP : min
(x,y)∈Rn×Zm

c�x+d�y s.t. gi(x, y) � 0, i ∈ I, Ax+By � b, y� � y � yu,

with real-valued functions gi, i ∈ I, defined on Rn×Rm, a finite index set I = {1, . . . , q}, 
q ∈ N, a (p, n)-matrix A and a (p, m)-matrix B, p ∈ N, c ∈ Rn, d ∈ Rm, b ∈ Rp and 
box constraints with y�, yu ∈ Zm, y� � yu. Moreover, with M̂ we denote the feasible set 
of the continuous relaxation NLP of MINLP, that is,

M̂ = {(x, y) ∈ Rn ×Rm| gi(x, y) � 0, i ∈ I, Ax + By � b, y� � y � yu},

so that we may write the feasible set of MINLP as M = M̂ ∩ (Rn × Zm).
In this section, we introduce inner parallel sets in a general (geometrical) context, 

which will be the foundation for the rest of this article. We briefly discuss how this 
concept can be used computationally in the special case of MILPs (i.e., I = ∅) for which 
we will develop a novel diving heuristic in Section 4.

2.1. Geometrical idea

Crucial for all feasible rounding approaches is the construction of the inner parallel 
set

M̂− := {(x, y) ∈ Rn ×Rm| {x} ×B∞
(
y, 1

2
)
⊆ M̂} (1)

of the relaxed feasible set M̂ , with the box
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B∞
(
y, 1

2
)

:= {η ∈ Rm| ‖η − y‖∞ � 1
2}.

The decisive characteristic of this set is that it ensures the feasibility for MINLP of 
roundings of its elements. To be more specific, we call (x̂, ̂y) rounding of a point (x, y) ∈
Rn ×Rm, if

x̂ = x, ŷ ∈ Zm, |ŷj − yj | � 1
2 , j = 1, . . . ,m (2)

hold, i.e., each component of y is rounded to a closest point in the integer grid and x
remains unchanged. Then for any (x, y) ∈ M̂− we have (x̂, ̂y) ∈ M , see [17]. This gives 
rise to the following definition of granularity.

Definition 2.1 ([17]). The feasible set M is called granular if its inner parallel set M̂−

is nonempty. A problem MINLP is called granular if its feasible set M is granular.

Notice that granularity is sufficient but not necessary for the consistency of MINLP
and that it depends on the problem formulation due to its dependency on M̂ . In par-
ticular, less tight formulations are beneficial for the consistency of M̂− and thus for the 
applicability of the granularity concept.

Such enlargements may be viewed as a preprocessing step that transforms M̂ to M̃ , 
with

M = M̃ ∩ (Rn × Zm) and M̃ ⊇ M̂, (3)

where enlargement ideas range from small perturbations to the construction of struc-
turally different formulations [19]. To use the granularity concept, one can then work 
with the enlarged inner parallel set M̃−, where the transition from M̃ to M̃− is defined 
as in (1). In Section 2.2, we provide an example of this enlargement procedure for MILPs. 
For more details and motivating examples we refer to [17].

For a set S ⊆ Rn ×Rm we define the set of roundings obtainable from S as

R(S) := {(x̂, ŷ) ∈ Rn × Zm| (x, y) ∈ S and (2)}

and abbreviate R := R(M̂−).
Fig. 1 illustrates the construction of the inner parallel set M̂− for a two dimensional 

purely integer example. The set M consists of four feasible points, but only the filled 
points are obtainable as roundings from M̂−, i.e., R = {(1, 0)�, (2, 0)�}.

2.2. Construction of inner parallel sets for MILPs

Next, we elaborate the algorithmic construction of inner parallel sets for the special 
case I = ∅, where MINLP collapses to an MILP. In this case, the relaxed feasible set 
reads as
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Fig. 1. Construction of the inner parallel set M̂−. The filled points are obtainable as roundings from M̂−

and thus form the set R.

M̂ = {(x, y) ∈ Rn ×Rm| Ax + By � b, y� � y � yu},

and we can use the results from [17] to obtain a functional description of the enlarged 
inner parallel set as follows.

Let α�
i and β�

i denote the rows of A and B, respectively. Moreover, let ωi ∈ N0 stand 
for the greatest common divisor of the entries of βi, if βi ∈ Zm and αi = 0 hold, and 
be zero, otherwise. For a real number a, with �a�ωi

we denote the floor function with 
respect to ωi, that is

�a�ωi
=

{
max{z ∈ ωiZ| z � a}, ωi 	= 0
a, otherwise.

Moreover, for a ∈ Rp and ω ∈ Np
0 , let

�a�ω := (�a1�ω1 , . . . , �ap�ωp
)�.

Then, with an enlargement parameter δ ∈ [0, 1), b̃ := �b�ω + δω and the all-ones vector 
e of dimension m, an explicitly computable enlarged relaxed feasible set is

M̃ = {(x, y) ∈ Rn ×Rm| Ax + By � b̃, y� − δe � y � yu + δe}. (4)

For ease of notation, we omit the δ-dependency of M̃ and the reader may just think of 
δ as being some fixed value close to (but smaller than) one. The geometric idea behind 
this construction is to loosen the description of M , because the inner parallel set of a 
loosened description is more likely to be nonempty than the original description. For 
δ = 1 the loosening would be so coarse that infeasible points became feasible. Instead, 
for δ < 1 the presented enlargement guarantees M̃ ∩(Rn×Zm) = M and, for sufficiently 
large values of δ, M̃ ⊇ M̂ [17].

Moreover, with ‖β‖1 := (‖β1‖1 , . . . , ‖βp‖1)
� the enlarged inner parallel set is

M̃− = {(x, y) ∈ Rn×Rm| Ax+By � b̃− 1 ‖β‖1 , y
�+(1−δ)e � y � yu−(1−δ)e}, (5)
2 2 2
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where, again, we refer the reader to [17] for the derivation. We next illustrate the com-
putation of the enlarged inner parallel set for a binary knapsack example which we shall 
also revisit in Section 3 to demonstrate the usefulness of fixing binary variables. Here, 
we use the abbreviation R̃ := R(M̃−).

Example 2.2. Let us consider the (binary knapsack) feasible set

M = {y ∈ B3| 1 �
3∑

i=1
yi � 2}.

Using (5) with ω = (1, 1)� and ‖β‖1 = (3, 3)� we can compute the enlarged inner parallel 
set

M̃− = {y ∈ R3| 5
2 − δ �

∑3
i=1 yi � 1

2 + δ, (1
2 − δ)e � y � (1

2 + δ)e},

which is empty for any δ ∈ [0, 1). This also implies R̃ = ∅ for this example.

3. Fixing variables and inner parallel sets - a geometrical perspective

In this section, we present a geometrical perspective on the effects that occur when 
we move down a search tree. We investigate the implications of fixing integer variables to 
values � ∈ Z. This covers the important case of branching on a binary variable and is often 
also feasible for an integer variable i when the difference of the bounds yui − y�i is small 
enough. Feasible rounding approaches work especially well for problems with a relatively 
small number of binary variables compared to general integer variables, which was noted 
in the computational study in [17] and further substantiated by the theoretical bounds 
derived in [18]. Therefore, the case of fixing binary variables is of particular interest for 
the present article.

In the following, we make no further distinction between different nodes of a branch-
and-bound tree, but demonstrate the effects only for the root node of MINLP. We stress 
that this is for notational convenience only and that our results are applicable to fixing 
variables in any branch-and-bound node.

As we shall presently demonstrate, fixing integer variables increases the chances for 
finding good feasible points using feasible rounding approaches. To be more specific, 
fixing an integer variable i to a value � ∈ Z ∩ [y�i , yui ] results in the i-�-fixed relaxed 
feasible set

M̂(i)(�) = {(x, ỹ) ∈ Rn ×Rm−1| (x, (ỹ1, . . . , ỹi−1, �, ỹi, . . . , ỹm−1)) ∈ M̂}. (6)

Moreover, with

M̂(i)(�)− = {(x, ỹ) ∈ Rn ×Rm−1| {x} ×B∞(ỹ, 1
2) ⊆ M̂(i)(�)} (7)
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Fig. 2. Construction of the i-�-relaxed feasible set (left) and the i-�-fixed inner parallel sets (right) with i = 2
and � ∈ {0, 1}.

we denote the i-�-fixed inner parallel set. We abbreviate the set of roundings obtainable 
from this set as R(i)(�) := R(M̂(i)(�)−).

Remark 3.1. The analysis in this section makes a connection between inner parallel sets 
and i-�-fixed inner parallel sets that is independent of an enlargement step. Hence, while 
we make this connection only explicit for the sets M̂− and M̂(i)(�)−, all results will be 

equally valid for the connection of enlarged inner parallel sets M̃− and their enlarged 
i-�-fixed inner parallel sets M̃(i)(�)−.

The following notation facilitates a comparison of inner parallel sets with i-�-fixed 
inner parallel sets and thus the investigation of the effects of fixing integer variables. For 
y ∈ Rm and i ∈ {1, . . . , m} let

y−i := (y1, . . . , yi−1, yi+1, . . . , ym)� ∈ Rm−1,

and, correspondingly, for y ∈ Rm−1 and some � ∈ R, let

y+i(�) := (y1, . . . , yi−1, �, yi, . . . , ym−1)� ∈ Rm

denote the vectors where we remove or insert an element at position i, respectively. 
Moreover, for S1 ⊆ R and S2 ⊆ Rm−1, let

S1 ×i S
2 := {s+i(s1) ∈ Rm| s1 ∈ S1, s ∈ S2}.

The construction of i-�-fixed (inner parallel) sets is illustrated in Fig. 2 for i = 2 and 
� ∈ {0, 1}. Remarkably, fixing y2 results in

{0} ×2 R(2)(0) = {(0, 0)�, (1, 0)�, (2, 0)�}, {1} ×2 R(2)(1) = {(1, 1)�}

and thus allows us to obtain all points in M as roundings from i-�-fixed inner parallel 
sets. Recall from Fig. 1 that we were only able to obtain the two points (1, 0)�, (2, 0)� as 
roundings from the inner parallel set M̂−. Hence, this example shows that the number 
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of roundings obtainable with feasible rounding approaches can increase when we move 
down a search tree. We will presently show that there is a crucial theoretical link between 
roundings from inner parallel sets and roundings from i-�-fixed inner parallel sets which 
offers an explanation for this observation.

In fact, this link is already depicted on the right-hand side of Fig. 2: for any point 
y ∈ M̂−, we have a “corresponding point” y−2 ∈ (M̂(2)(0))−, which is illustrated by the 

dashed lines from M̂− to (M̂(2)(0))−. The next lemma proves that this is not a coinci-
dence, but that for any point from the inner parallel set, we always have a corresponding 
point in the i-�-fixed inner parallel set if we choose � to be the rounding of component i
of y.

Lemma 3.2. For any (x, y) ∈ M̂− and any i ∈ {1, . . . , m}, we have (x, y−i) ∈ M̂(i)(ŷi)−.

Proof. Let (x, y) ∈ M̂−. Then by definition of M̂− we have

{x} ×B∞(y, 1
2 ) = {x} × [yi − 1

2 , yi + 1
2 ] ×i B∞(y−i, 1

2 ) ⊆ M̂.

With ŷi ∈ [yi − 1
2 , yi + 1

2 ], this implies

{x} × {ŷi} ×i B∞(y−i, 1
2 ) ⊆ M̂ ∩ (Rn × {y ∈ Rm| yi = ŷi}) = {ŷi} ×n+i M̂(i)(ŷi),

and dropping {ŷi} in the cross product yields

{x} ×B∞(y−i, 1
2 ) ⊆ M̂(i)(ŷi),

which shows the assertion. �
From a geometric point of view the statement of Lemma 3.2 may be interpreted as 

follows. While, for any i ∈ {1, . . . , m} and any � ∈ Z ∩ [y�i , yui ], any point (x, y) ∈ M̂−

possesses the orthogonal projection (x, (y−i)+i(�)) to the set Rn × {�} ×i Rm−1, one 
cannot expect this projection to be related to M̂− in the sense that (x, y−i) lies in 
M̂(i)(�)−. In contrast to the general case, the lemma guarantees this relation for the 
special choice � := ŷi.

The next theorem uses this connection to show that the number of roundings ob-
tainable from the inner parallel set is nondecreasing with increasing depth of the search 
tree.

Theorem 3.3. For any i = 1, . . . , m, we have R ⊆
⋃

�∈Z∩[y�
i ,y

u
i ]
(
{�} ×n+i R(i)(�)

)
.

Proof. Let (x̂, ̂y) ∈ R. For a corresponding point (x, y) ∈ M̂−, Lemma 3.2 implies 
(x, y−i) ∈ M̂(i)(ŷi)−. Note that, although the rounding (x̂, (ŷ−i)) of (x, y−i) is in general 
not unique, it can be chosen such that (ŷ−i) = (ŷ)−i holds.



C. Neumann et al. / EURO Journal on Computational Optimization 10 (2022) 100051 9
This shows (x̂, (ŷ)−i) ∈ R(i)(ŷi) and, with � := ŷi ∈ (Z ∩ [y�i , yui ]), implies

(x̂, ŷ) ∈ {�} ×n+i R(i)(�),

which proves the assertion. �
In summary, Theorem 3.3 together with our considerations from Figs. 1 and 2 imme-

diately yields the following corollary.

Corollary 3.4. The set of feasible points obtainable by feasible rounding approaches is 
nondecreasing and potentially increases with increasing depth of the search tree.

Let us next revisit Example 2.2 to illustrate the explicit construction of i-�-fixed 
enlarged inner parallel sets for MILPs.

Example 3.5. Let us consider the feasible set M from Example 2.2 and fix y3. Again, 
with ω = (1, 1)�, this results in the two 3-�-fixed enlarged sets

M̃(3)(0) = {ỹ ∈ R2| 1 − δ � ỹ1 + ỹ2 � 2 + δ, −δe � ỹ � (1 + δ)e},

M̃(3)(1) = {ỹ ∈ R2| − δ � ỹ1 + ỹ2 � 1 + δ, −δe � ỹ � (1 + δ)e},

and, with ‖β‖1 = (2, 2)�, yields the enlarged inner parallel sets

M̃(3)(0)− = {ỹ ∈ R2| 2 − δ � ỹ1 + ỹ2 � 1 + δ, (1
2 − δ)e � ỹ � (1

2 + δ)e},

M̃(3)(1)− = {ỹ ∈ R2| 1 − δ � ỹ1 + ỹ2 � δ, (1
2 − δ)e � ỹ � (1

2 + δ)e}.

The crucial difference compared to the (unfixed) enlarged inner parallel set is that we no 
longer have to account for possible rounding errors of y3 which results in the fact that 
each value of ‖β‖1 can be reduced from 3 to 2. Thus, while the enlarged inner parallel 
set of the original feasible set is empty for any δ ∈ [0, 1), both i-3-fixed enlarged inner 
parallel sets are nonempty for δ ∈ [ 12 , 1).

With R̃(i)(�) := R(M̃(i)(�)−), we even have ({0} ×3 R̃(3)(0)) ∪({1} ×3 R̃(3)(1)) = M for 
δ ∈ [ 12 , 1), that is, all feasible points may be obtained as roundings from these 3-�-fixed 
inner parallel sets.

Hence, Example 3.5 not only offers a computational perspective on the construction of 
i-�-fixed inner parallel sets, but also further substantiates the potential of fixing integer 
variables for feasible rounding approaches.

Let us conclude this section with some considerations on the enlargement step. In 
Remark 3.1 we highlighted that the transition from M̃− to M̃−

(i)(�) is analogous to that 
from M̂− to M̂−

(i)(�) and that all results derived in this section are hence equally valid 
for this transition. Yet, there is an additional potential that can be harvested: there can 
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be the possibility to enlarge the set M̃(i)(�) even further, once variable i is fixed to �. As 
an example, consider a constraint β�

i y � bi with βi = (1, 3, 3)� and bi = 3. Then, when 
fixing y1 and using the enlargement techniques introduced in Section 2.2, the entry ωi

can be increased from 1 to 3 in the transition from the set M̃ to M̃(i)(�). We will exploit 
this fact in our development of a diving method for MILPs in the following section.

4. A diving heuristic for MILPs

In this section, we elaborate some algorithmic ideas on how the results from the 
previous section can be used for the development of a diving heuristic. We formulate an 
explicit method for mixed-integer linear optimization problems, i.e., I = ∅, and use the 
same notation as in Section 2. In particular, we employ the construction of the enlarged 
inner parallel set from Section 2.2.

Some important considerations of Section 4.2 (the so-called degree of freedom) ex-
plicitly need linearity of the constraint functions, which is one of the main reasons we 
formulate the method for MILPs. We stress, however, that many results of this section 
generalize directly to mixed-integer nonlinear optimization problems (Section 4.1 as well 
as Proposition 4.3) and thus may serve as a foundation for the development of a diving 
method for MINLPs as well. Moreover, many MINLP solvers use LP relaxations in the 
nodes to which our results are also applicable.

We initially elaborate diving approaches for the cases of a nonempty and an empty 
inner parallel set separately, and subsequently bring them together into a general frame-
work. In the first case, we show how to ensure that inner parallel sets of resulting child 
nodes remain nonempty. Our aim is to find a feasible point with improved objective 
value. For empty inner parallel sets we show how certain auxiliary optimization prob-
lems and ways of fixing variables are likely to generate nonempty inner parallel sets of 
child nodes.

4.1. A diving step for a nonempty enlarged inner parallel set

Let us initially elaborate a method for M̃− 	= ∅. Minimizing the objective function 
of MILP over the enlarged inner parallel set yields the objective-based problem

P ob : min
(x,y)∈Rn×Rm

c�x + d�y s.t. (x, y) ∈ M̃−.

Due to our assumption M̃− 	= ∅, the problem P ob is either solvable or unbounded, 
where unboundedness of P ob would imply unboundedness of MILP. As we develop a 
method that generates good feasible points, the latter case is not interesting in our 
context. In this section, we therefore assume that MILP is bounded. This, together with 
M̃− 	= ∅, guarantees the existence of an optimal point (xob, yob) of P ob. We denote any 
rounding of (xob, yob) by (x̂ob

, ̂yob) and the objective value of the rounded optimal point 
by v̂ob = c�x̂

ob + d�ŷ
ob.
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One crucial observation from Lemma 3.2 is that if the enlarged inner parallel set 
of some branch-and-bound node is nonempty and (x, y) is any of its feasible points, we 
immediately obtain m nonempty i-�-fixed (child node) enlarged inner parallel sets, where 
i ∈ {1, . . . , m} and � = ŷi.

Then, as a diving step, we may solve a corresponding i-�-fixed objective-based problem

P ob
(i)(�) : min

(x,ỹ)∈Rn×Rm−1
c�x + (d−i)�ỹ + di� s.t. (x, ỹ) ∈ M̃(i)(�)−,

denote any of its optimal points by (xob, ̃yob) and its optimal value by vob(i)(�). Due to 
the previous considerations on the possibility of an additional enlargement step of the 
i-�-fixed inner parallel set, we suggest to fix variable i to � before determining the vector 
ω in the computation of M̃(i)(�)− in accordance with (5).

Moreover, we abbreviate

(xob, ỹob)(i)(�) := (xob, (ỹob)+i(�)) (8)

so that we can analogously denote the (rounded) MILP-feasible point obtained by solving 
the i-�-fixed objective-based problem, rounding all y components and “re-inserting” value 
� at position i with (x̂ob

, ̂yob)(i)(�). The objective value of (x̂ob
, ̂yob)(i)(�) is denoted by 

v̂
ob
(i)(�).

While this applies to roundings of any feasible point from M̃−, one fruitful idea is to 
(iteratively) use roundings of optimal points of (i-�-fixed) objective-based problems, that 
is, to set � = ŷ

ob
i . The next example elaborates this idea in more detail and shows that, 

even though the fixing value for variable i is given by ŷobi , different orders of selecting 
variables can yield different feasible points.

Example 4.1. Consider the optimization problem

IP : min
y∈Z3

−y1 − 3y3 s.t. y1 + y2 + 2y3 � 3, −2y1 − 2y2 + y3 � −1, 0 � y � 2e.

By using Equation (5) with δ = 0.9, we can formulate the objective-based problem

P ob : min
y∈R3

−y1 − 3y3 s.t. y1 + y2 + 2y3 � 1.9, −2y1 − 2y2 + y3 � −2.6,

−0.4e � y � 2.4e

and compute its optimal point yob = (1.82, −0.4, 0.24)�. Rounding yob yields the IP -
feasible point ŷob = (2, 0, 0)� with objective value v̂ob = −2.

Fixing y2 = 0 and setting ỹ := (y1, y3) yields the 2-0-fixed objective-based problem

P ob
(2)(0) : min

2
−y1 − 3y3 s.t. y1 + 2y3 � 2.4, −2y1 + y3 � −1.6, −0.4e � ỹ � 2.4e
ỹ∈R
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with optimal point (y1, y3)ob = (1.12, 0.64) and thus the IP -feasible point ŷob(2)(0) =
(1, 0, 1)� with improved objective value v̂ob(2)(0) = −4.

After solving the problem P ob, we also had the options to fix y1 = 2 or y3 = 0. Both 
fixings, however, rule out the possibility to obtain the feasible point (1, 0, 1)� on a path 
in the search tree and this point is hence only obtainable if we initially fix y2 = 0.

Example 4.1 shows that fixing components of rounded optimal points from P ob has 
the potential to yield improved points and that the choice of variables actually matters. 
When fixing one component, new options for other components become available - and 
thus new feasible points. In a diving heuristic, this allows the flexibility to select a 
component and thus to choose the order of fixing while ensuring nonempty inner parallel 
sets of child nodes. We will make some remarks on possible strategies for fixing variables 
in Section 4.3.

Remark 4.2. The main reason for our choice of fixing variable i to ŷobi was that it guar-
anteed granularity of child nodes and that this particular choice is promising with regard 
to the objective value. Yet, to have more flexibility may be fertile for developing further 
diving ideas and may offer possibilities to obtain better feasible roundings. In this regard, 
note that if we have two points (x1, y1), (x2, y2) ∈ M̃−, again by Lemma 3.2 we can fix 
any i of these k variables to values � ∈ {ŷ1

i , ̂y
2
i }. In our linear setting, the inner parallel 

set is convex and hence even all values from the interval [min{ŷ1
i , ̂y

2
i }, max{ŷ1

i , ̂y
2
i }] are 

possible.

As a next step, we consider diving possibilities, similar to those developed so far, for 
an empty enlarged inner parallel set.

4.2. A diving step for an empty enlarged inner parallel set

In this section, we develop a diving method for non-granular nodes. To gather infor-
mation about the “degree of non-granularity” and about the impact of fixing variables, 
it will turn out to be beneficial to investigate the (solvable) feasibility problem

P f : min
(x,y,z)∈Rn×Rm×R

z s.t. (x, y, z) ∈ M̃−
L ,

where the feasible set of P f is the lifted enlarged inner parallel set of M̂ ,

M̃−
L = {(x, y, z) ∈ Rn ×Rm ×R|

Ax + By − ze � b̃− 1
2 ‖β‖1 , y� + (1

2 − δ)e � y � yu − (1
2 − δ)e, z � −1}.

Note that the introduced enlargement techniques work only for constraints where contin-
uous variables are absent. Therefore, it is crucial to lift the problem after the application 
of an enlargement step, that is, after the computation of ω.



C. Neumann et al. / EURO Journal on Computational Optimization 10 (2022) 100051 13
We denote an optimal point of P f by (xf , yf , zf ) and its optimal value by vf . As 
already mentioned in [17], granularity is equivalent to vf � 0 which implies (xf , yf ) ∈
M̃− and thus (x̂f

, ̂yf ) ∈ M . Moreover, we may obtain an MILP-feasible point even in 
the case of a non-granular problem where vf > 0 holds. Hence, the “reverse implication” 
(vf > 0) ⇒ (x̂f

, ̂yf ) /∈ M is not true. Of course, this possibility to generate non-granular 
feasible roundings can be used algorithmically to find feasible points for more problems 
from practice.

We next establish a crucial property of diving methods which fix y-components to 
roundings ŷf of yf : this way of fixing entails that the optimal value vf of the auxil-
iary problem P f cannot deteriorate. To state this formally, analogously to the i-�-fixed 
objective-based problem, with

P f
(i)(�) : min

(x,ỹ,z)∈Rn×Rm−1×R
z s.t. (x, ỹ, z) ∈ (M̃L)(i)(�)−

we denote the i-�-fixed feasibility problem, with (xf , ̃yf , zf ) any of its optimal points 
and with vf(i)(�) its optimal value.

Proposition 4.3. Let (xf , yf , zf ) be an optimal point of P f . Then for any i ∈ {1, . . . , m}
the following assertions are true:

(a) (xf , (yf )−i, zf ) is feasible for P f
(i)(ŷi).

(b) the inequality vf(i)(ŷ
f
i ) � vf is valid.

Proof. Part (a) is an immediate consequence of Lemma 3.2. It implies vf(i)(ŷi) � zf = vf

and thus part (b) of the assertion. �
Proposition 4.3b establishes a firm basis for a diving step in the sense that it offers 

possibilities to fix variables which guarantee that the degree of non-granularity cannot 
deteriorate. Of course, we are interested in actually improving upon the value vf > 0, 
which is not ruled out, but also not immediately implied by Proposition 4.3. Therefore, 
we next derive conditions under which actual progress towards feasibility in the i-�-fixed 
feasibility problem (i.e. v(i)(ŷ

f
i ) < vf ) is guaranteed. This will also help us to determine 

components of y whose fixings might be fruitful.
In this regard, let us examine a constraint j from M̃−

L evaluated at (xf , yf , zf ),

α�
j x

f + β�
j yf − zf � b̃j − 1

2 ‖βj‖1 .

With Bji denoting the entry located at row j and column i of B, using the relations

‖βj‖1 =
∥∥β−i

j

∥∥
1 + |Bji|, and β�

j yf = (β−i
j )�(yf )−i + Bjiy

f
i ,

this constraint can be written as
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α�
j x

f + (β−i
j )�(yf )−i − zf � b̃j − 1

2 (
∥∥β−i

j

∥∥
1 + |Bji|) −Bjiy

f
i . (9)

Proposition 4.3a implies that evaluating the corresponding constraint j of (M̃L)(i)(ŷ
f
i )−

at (xf , (yf )−i, zf ) yields the valid inequality

α�
j x

f + (β−i
j )�(yf )−i − zf � b̃j − 1

2
∥∥β−i

j

∥∥
1 −Bjiŷ

f
i . (10)

Moreover, because the left-hand sides of inequalities (9) and (10) coincide, we can now 
compare their right-hand sides to see if constraint j is relaxed in the transition from P f

to P f
(i)(�). Subtracting the right-hand side of (9) from the right-hand side of (10) yields 

the degree of freedom

fji = 1
2 |Bji| + Bji(yfi − ŷ

f
i ) (11)

that becomes available in constraint j of the problem P f
(i)(ŷ

f
i ) due to fixing variable i. 

Note that fji ∈ [0, |Bji|] not only confirms Proposition 4.3a, but also shows that often 
some leverage is possible in constraint j. In fact, we only have fji = 0, if either Bji = 0, 
or |yfi − ŷ

f
i | = 1

2 holds, where in the latter case, additionally yfi − ŷ
f
i needs to have 

the opposite sign as Bji. Phrased differently, if a variable appears in a constraint with 
|yfi − ŷ

f
i | 	= 1

2 , also a strictly positive degree of freedom is possible. Moreover, even if 
|yfi − ŷ

f
i | = 1

2 holds, due to the implied ambiguity of the rounding ŷfi , one might be able 

to choose ŷfi such that fji = |Bji| holds. Thus, if a variable appears in a constraint, apart 
from degenerate cases, we can also expect the possibility of a strictly positive degree of 
freedom.

In the following, let JA ⊆ {1, . . . , p} denote the index set of rows of Ax + By − ze �
b̃− 1

2 ‖β‖1 that are active at (xf , yf , zf ). Moreover, let fi ∈ R|JA| denote the vector with 
entries fji, j ∈ JA, where |JA| � p denotes the cardinality of JA.

The next lemma shows that progress towards feasibility due to fixing variables can 
be guaranteed for each variable i which has a strictly positive degree of freedom in all 
active constraints, that is, fi > 0.

Lemma 4.4. With an optimal point (xf , yf , zf ) of P f and vf > 0, for some i ∈ {1, . . . , m}
let fi > 0. Then we have v(i)(ŷ

f
i ) < vf .

Proof. By Proposition 4.3a, the point (xf , (yf )−i, zf ) is feasible for P f
(i)(ŷi). As its ob-

jective value coincides with vf , it suffices to show that it is not optimal for P f
(i)(ŷi).

Indeed, optimality of (xf , (yf )−i, zf ) requires the activity of at least one constraint 
of (M̃L)(i)(ŷ

f
i )− where zf occurs, that is, due to zf = vf > 0, inequality (10) holds with 

equality for some j ∈ {1, . . . , p}.
For j ∈ JA this is ruled out by our assumption fji > 0. Moreover, for j ∈ {1, . . . , p} \JA

inequality (9) is strictly satisfied. This, with fji � 0, implies that also inequality (10)



C. Neumann et al. / EURO Journal on Computational Optimization 10 (2022) 100051 15
is strictly satisfied. Hence, (xf , (yf )−i, zf ) cannot be optimal and the assertion is 
shown. �

The next example illustrates how the degree of freedom fi may indeed guide us towards 
a successful diving step.

Example 4.5. Let us consider the feasible set

M = {y ∈ B3| y1 + y2 + 2y3 � 2, −y1 − y2 − 2y3 � −1, 2y1 − y2 − y3 � 1}.

Adding the first two constraints of the corresponding feasibility problem

P f : min
(y,z)∈R4

z s.t. y1 + y2 + 2y3 − z � δ,

−y1 − y2 − 2y3 − z � −3 + δ,

2y1 − y2 − y3 − z � −1 + δ,

z � −1

yields the lower bound on the optimal value z � 3
2 − δ > 0 which proves that M is not 

granular. This also shows that the P f -feasible point (yf , zf ) = (1
2 −δ, 12 +δ, 0.25, 32 −δ)�

which realizes this lower bound is optimal for P f .
In the following, let us assume δ > 0 so that the rounding of yf is uniquely defined 

by ŷf = (0, 1, 0)�. Notice that ŷf is a non-granular feasible rounding which is already 
useful if one is interested in computing some feasible point of M . Yet, to be able to 
compute feasible points with improved objective value, e.g. by using objective diving 
steps, a granular node is crucial so that a feasibility diving step still makes sense.

For the selection of a fixing variable, only the first two constraints are active in (yf , zf )
independently of the choice of δ > 0, that is, JA = {1, 2}. Computing the degree of 
freedom thus yields the three positive vectors

f1 =
( 1

2 + 1(1
2 − δ − 0)

1
2 − 1(1

2 − δ − 0)

)
, f2 =

( 1
2 + 1(1

2 + δ − 1)
1
2 − 1(1

2 + δ − 1)

)
, and f3 =

(
1 + 2(1

4 − 0)
1 − 2(1

4 − 0)

)
.

To promote granularity, one usually chooses δ close to one (e.g. 1 −10−4) and hence only 
fixing y3 offers a notable degree of freedom for both constraints.

This positive degree of freedom is sufficient to yield a granular 3-0-child node. Indeed, 
when fixing y3 = 0 we obtain the enlarged inner parallel set

M̃(3)(0)− = {y ∈ R2| y1 + y2 � 1 + δ, −y1 − y2 � −2 + δ, 2y1 − y2 � −1
2 + δ},

which is nonempty for any δ � 1
2 because it contains the feasible point (1

2 , 
1
2 + δ)�.

On the other hand, the 1-0-fixed enlarged inner parallel set contains the two inequal-
ities
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y2 + 2y3 � δ + 1
2 ,

−y2 − 2y3 � δ − 5
2 .

Adding these constraints together with δ < 1 again shows that they are unattainable 
and that we thus have M̃(1)(0)− = ∅. Using the same arguments, one easily sees that 
M̃(2)(1)− = ∅ holds as well so that deciding by the degree of freedom indeed seems to 
be a fruitful possibility for fixing variables.

For practical applications of larger dimensions, the requirement of Lemma 4.4 might 
often be too strict; a necessary condition which will often be violated is that one integer 
variable occurs in every active constraint. The next result shows how this requirement 
can be weakened, if we allow the flexibility to fix multiple variables in one diving step. 
Indeed, we will presently show that then it is sufficient if each active constraint contains 
at least one variable from a group of variables with a positive degree of freedom.

To state this formally, with k � m, an index set Ī = {i1, . . . , ik} ⊆ {1, . . . , m} and 
a set of corresponding integer values L̄ = {�i1 , . . . , �ik}, in the following let the Ī-L̄-
fixed enlarged inner parallel set M̃(Ī)(L̄)− be defined analogously to Equations (6) and 
(7) where, instead of fixing one variable yi to �i, we now fix each yi with i ∈ Ī to 
the corresponding value �i ∈ L̄. Moreover, we extend this notation to the Ī-L̄-objective-
based problem and the Ī-L̄-feasibility problem, as well as to their feasible sets, (rounded) 
optimal points and (optimal) objective values. For this purpose, yĪ ∈ R|Ī| denotes the 
vector with entries yi, i ∈ Ī.

We are again interested in values L̄ that correspond to roundings of components of an 
P f -optimal point, that is L̄ = {ŷfi1 , . . . , ̂y

f
ik
}. Then, a repeated application of Lemma 3.2

shows that (xf , (yf )−Ī , zf ) is feasible for P f

(Ī)(L̄). Moreover, using the arguments from 

Equations (9) - (11), it is straightforward to see that the degree of freedom fjĪ for 
constraint j which is available by fixing variables i ∈ Ī coincides with the sum of degrees 
of freedom of these variables, that is,

fjĪ =
∑
i∈Ī

fji =
∑
i∈Ī

(
1
2 |Bji| + Bji(yfi − ŷ

f
i )
)
. (12)

Again with fĪ ∈ R|JA| defined as the vector with entries fjĪ , j ∈ JA, we can extend 
Lemma 4.4 to the following proposition.

Proposition 4.6. With an optimal point (xf , yf , zf ) of P f , for some Ī ⊆ {1, . . . , m} let 
fĪ > 0. Then we have vf(Ī)(ŷ

f

Ī ) < vf .

For a variable i, let Ji := {j ∈ JA| fji > 0} denote the index set of constraints for 
which variable i has a strictly positive degree of freedom. Then with the set of active 
constraints where a positive degree of freedom is possible JU =

⋃
i∈{1,...,m} Ji, there exists 
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some index set Ī with fĪ > 0, if and only if JU = JA holds. Therefore, by Proposition 4.6, 
JU = JA is sufficient to ensure vf(Ī)(ŷ

f

Ī ) < vf .
If this is the case, a natural task for a diving step is to find the minimum number 

of variables to fix such that progress towards feasibility is guaranteed. This question 
coincides with the set covering problem (cf., e.g., [14]), where JU is the universe and 
{Ji| i ∈ {1, . . . , m}} is the collection of sets. This set covering problem is also of interest 
for JU � JA. In this case, it minimizes the number of fixings which guarantees a positive 
degree of freedom for those active constraints for which a positive degree of freedom is 
possible.

As the set covering problem is NP-hard, solving this problem to optimality just for 
deciding which variables to fix seems to be out of order. Hence we suggest to use a 
greedy method instead, where theoretical results for worst case objective bounds on 
the greedy algorithm for set covering problems [6,11] make it a suitable choice for our 
purpose.

Applied to our context, the greedy algorithm starts with k = 0, Ī0 = ∅ and iteratively 
chooses a variable ik so that Jik contains the largest number of uncovered elements of 
JU , i.e.

ik = arg max
i∈{1,...,m}

|{j ∈ Ji| j ∈ JU \ (
⋃
ī∈Īk

Jī)}|. (13)

It then updates Īk+1 = Īk ∪ ik and k = k + 1.
For obtaining a feasible solution to the set covering problem, this is repeated until 

JU =
⋃

i∈Īk Ji holds. This leads to the fact that in each diving step the number of 
variables to be fixed may differ. If one is interested in specifying the number of variables 
to be fixed in each diving step, the greedy method can run some predefined number 
of iterations, fixing only the corresponding variables. We will specify this idea more 
precisely in our computational study. Let us next use the preceding considerations for 
the development of concrete algorithms.

4.3. An algorithmic framework for inner parallel set diving

In this section, we tie together considerations from the previous sections and illustrate 
how diving ideas can be used to extend and improve feasible rounding approaches. Like 
in the previous sections, we describe these methods as starting from the root node of a 
search tree but stress that this is for notational convenience only and that they can be 
applied in any node of a search tree. To ensure quick convergence, the suggested methods 
won’t use any backtracking strategies but will dive straight to the leaves of the search 
tree.

We may either solve the problem P ob or the problem P f to determine if the enlarged 
inner parallel set of the root node is nonempty. If it is empty, we can apply feasibility 
diving steps as introduced in Section 4.2, until we possibly obtain a nonempty enlarged 
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Algorithm 1: Feasibility-IPS-diving.
Data: a mixed-integer optimization problem MILP
Result: a non-granularity measure vfd with fixed variable-value pairs Ī, L̄, and, if successful, an 

MILP-feasible point (x̂fd, ̂yfd)
1 set k ← 0, Īk ← ∅, L̄k ← ∅, vfd ← ∞
2 while vfd > 0 and Īk � {1, . . . , m} do
3 compute a minimal point (xk, yk, zk) of

P
f

(Īk)(L̄
k) : min

(x,ỹ,z)∈Rn×Rm−|Īk |×R
z s.t. (x, ỹ, z) ∈ (M̃L)(Īk)(L̄

k)−,

with merged rounding (x̂f , ̂yf )(Īk)(L̄
k) and non-granularity measure vf

(Īk)(L̄
k)

4 set vfd ← vf

(Īk)(L̄
k)

5 if (x̂f , ̂yf )(Īk)(L̄
k) ∈ M then

6 (x̂fd, ̂yfd) ← (x̂f , ̂yf )(Īk)(L̄
k)

7 end
8 choose a set of indices Ik ⊆ {1, . . . , m} \ Īk

9 set Īk+1 ← Īk ∪ Ik, L̄k+1 ← L̄k ∪ {ŷk
ik
| ik ∈ Ik}, k ← k + 1

10 end
11 set Ī ← Īk−1, L̄ ← L̄k−1

inner parallel set of some child node. The detailed procedure, feasibility-InnerParallelSet-
diving, is outlined in Algorithm 1 and can be summarized as follows.

In each iteration k, we fix variables to roundings of optimal points of the Īk-L̄k-fixed 
feasibility problem. Recall that we obtain a nonempty Īk-L̄k-fixed enlarged inner parallel 
set, if and only if the optimal value vf(Īk)(L̄

k) of P f

(Īk)(L̄
k) is less or equal than zero, 

and that obtaining an MILP-feasible point is possible even if vf(Īk)(L̄
k) > 0 holds (cf. 

Example 4.5). Hence we check if (x̂f
, ̂yf )(Īk)(L̄k) is feasible for MILP in every iteration 

and, if this is the case, store it (cf. Line 6) so that a feasible point can be returned after 
termination of the method even in the non-granular case.

The method terminates when the optimal value of the Īk-L̄k-fixed feasibility problem 
is nonpositive, or when all variables are fixed. For choosing a set of indices to be fixed 
in Line 8, one possibility is to use the greedy algorithm aiming at impacting as many 
active constraints as possible.

If feasibility-IPS-diving terminates with an index set Ī and a corresponding value set 
L̄ such that vfd � 0 holds, the Ī-L̄-fixed objective-based problem is consistent and we 
can apply objective-based diving steps. Note that the case Ī = L̄ = ∅ corresponds to a 
granular root node.

This is the starting point for Algorithm 2, which outlines a method that takes as 
input a nonempty Ī-L̄-fixed enlarged inner parallel set and aims at obtaining a feasible 
point (x̂obd

, ̂yobd) with improved objective value v̂obd for the bounded problem MILP. We 
remark that the boundedness assumption is only for the sake of readability and our focus 
on computing good feasible points. In fact, Algorithm 2 could be modified to encompass 
unbounded MILPs as well by additionally checking if P ob

(Ī)(L̄) is unbounded and, if this 
is the case, returning a certificate for unboundedness of MILP.
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Algorithm 2: Objective-IPS-diving.
Data: a bounded mixed-integer optimization problem MILP, an index set Ī0 and corresponding 

values L̄0 such that M̃(Ī0)(L̄
0)− 	= ∅

Result: a good MILP-feasible point (x̂obd, ̂yobd) with objective value v̂obd

1 set k ← 0, v̂obd ← +∞
2 while some quality criterion is not met and Īk � {1, . . . , m} do
3 compute an optimal point (xk, yk) of the problem

P
ob
(Īk)(L̄

k) : min
(x,ỹ)∈Rn×Rm−|Īk |

c
�
x + (d−Īk

)�ỹ +
∑
i∈Īk

di�i s.t. (x, ỹ) ∈ M̃(Īk)(L̄
k)−,

with merged rounding (x̂ob, ̂yob)(Īk)(L̄
k) and its objective value v̂ob

(Īk)(L̄
k)

4 if v̂ob
(Īk)(L̄

k) < v̂obd then
5 (x̂obd, ̂yobd) ← (x̂ob, ̂yob)(Īk)(L̄

k)
6 v̂obd ← v̂ob

(Īk)(L̄
k)

7 end
8 choose a set of indices Ik ⊆ {1, . . . , m} \ Īk

9 set Īk+1 ← Īk ∪ Ik, L̄k+1 ← L̄k ∪ {ŷk
ik
| ik ∈ Ik}, k ← k + 1

10 end

Boundedness of MILP implies that every problem P ob
(Īk)(L̄

k) is also bounded. More-
over, consistency of P ob

(Īk)(L̄
k) follows from Lemma 3.2 together with the consistency 

of the initial Ī-L̄-fixed enlarged inner parallel set. Hence we can iteratively compute 
rounded optimal points of Īk-L̄k-fixed objective-based problems. If the objective value 
v̂
ob
(Īk)(L̄k) = c�x̂

k + d�ŷ
k +

∑
i∈Īk di�i of the rounded (and merged) optimal point 

(x̂ob
, ̂yob)(Īk)(L̄k) improves upon that of previously found points, the latter is stored 

in Line 5.
Let us conclude this section with a few remarks on the choice of indices in Line 8. 

We only derived sufficient conditions for progress in the objective value of the fea-
sibility problem in Proposition 4.6, but similar ideas apply to the objective-based 
problem as well. In particular, the sets M̃− and M̃−

L as well as their i-�-fixed coun-
terparts only differ in the appearance of the variable z. Therefore, by using equa-
tions (9) and (10) without the occurrence of z, we see that the degree of freedom 
gained in the transition from M̃− to M̃−

(i)(�) exactly coincides with (11). Yet, no-
tice that while the optimal value vf(Ī)(L̄) is meaningful in the sense that it contains 
information about the degree of non-granularity, this is not the case for the value 
vob(Ī)(L̄). Indeed, within the framework of objective-IPS-diving, we would rather be in-
terested in certifying progress of the objective value of the rounded optimal point 
v̂
ob
(Ī)(L̄). Yet, due to the appearance of the term 

∑
i∈Ī di�i in the objective function 

as well as due to rounding effects, this is more intricate and not easy to predict. 
Still, choosing indices in accordance with equation (13) offers new flexibility in the 
constraints and is thus likely to enable the possibility of obtaining different round-
ings, which might be beneficial for obtaining new (and hopefully improved) values 
vf¯ (L̄).
(I)
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5. Computational study

The main intention of our computational study is to show that feasible rounding ap-
proaches can benefit from applying diving steps as outlined in Algorithms 1 and 2. In 
particular, our results show that the granularity concept can be extended to encompass 
more problems by using feasibility-IPS-diving, and that the objective values of the feasi-
ble points generated in the root node can be improved by applying objective-IPS-diving 
steps.

Corollary 3.4 states that the number of roundings is nondecreasing and potentially 
increasing with increasing depth of the search tree. Our analysis shows that we can 
actually expect to obtain an increasing number of feasible roundings via inner parallel 
sets in branch-and-bound trees for practical problems.

Additionally, we examine the influence of different choices of fixing variables and 
demonstrate that the introduced greedy strategy for feasibility-IPS-diving usually finds 
granular nodes faster than a random strategy. Finally, we address the important question 
whether the generated points can add value to the arsenal of primal heuristics, using the 
example of the solver framework SCIP [9].

The test bed of our computational study stems from the collection set of the MIPLIB 
2017 [10]. We have collected instances without equality constraints on integer variables, 
as the latter need a special treatment when feasible rounding approaches are applied (cf. 
[15]). We further discarded problems with special constraint types (indicator constraints) 
which would also need a special treatment.

We have implemented the feasible rounding approaches with diving strategies outlined 
in Algorithms 1 and 2 in Matlab R2020a and in SCIP 7.0 [9] with SoPlex 5.0.0 using 
the PySCIPOpt interface [13]. The tests of Section 5.2 were run on an Intel i7 processor 
with 4 cores running at 4 GHz Turbo Boost and 16 GB of RAM and those of Section 5.3
were run on an Intel i7 processor with 8 cores with 3.60 GHz and 32 GB of RAM.

Before we report the results of our computational study, we initially clarify the selec-
tion of variables in the diving steps. Subsequently, in the first part of our computational 
study, we evaluate the improvements gained by feasibility- and objective-IPS-diving com-
pared to the root node using our Matlab implementation. We conclude our study with 
evaluating the possible benefit of integrating feasible rounding approaches and diving 
ideas into the solver framework SCIP. In this last part of our study, we focus on objective-
IPS-diving for problems which are root-node granular.

When closely related LPs are solved in sequence, the use of warm-start ideas is com-
mon in the literature and usually very beneficial. In our context, optimal points of 
objective-based problems are feasible for I-L-fixed objective-based problems but usually 
lie in the interior of their feasible sets. Finding a good warm-start basis for the sim-
plex algorithm is therefore nontrivial. As our aim is to demonstrate the potential of the 
method, in our computational study we solved each LP from scratch. We postpone a 
thorough study of warm-start capabilities, which might be able to significantly speed up 
the diving procedure, to future research.
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5.1. Selection of variables

Recall that the flexibility of our diving method introduced in Section 4.3 lies in the 
choice of the variables to fix. We propose and evaluate two methods for this. The first is 
to select fixing variables at random. The second method is to run the greedy algorithm 
in each iteration, choosing the variables to be fixed according to Equation (13). To 
avoid collecting variable constraint pairs (i, j) with trivial degrees of freedom, we set 
Ji := {j ∈ JA| fji > 10−4|Bji|} (cf. Equation (11)).

To ensure comparability, we fix k = �m/30
 variables in each step for the greedy as 
well as for the random method. This guarantees at most 30 rounds of fixing even if all 
child nodes are non-granular.

For the greedy algorithm, this has two effects. First, the number of fixings might not 
be enough to cover all active constraints. Second, we might have covered all active con-
straints with less than k variables so we need a secondary selection criterion. Concerning 
the latter, we decided to use the overall impact on all active constraints, that is, once 
all constraints were covered, we selected remaining variables i according to their overall 
impact

fJAi =
∑
j∈JA

fji =
∑
j∈JA

1
2 |Bji| + Bji(yfi − ŷ

f
i ).

Note that, while fjĪ ∈ R denotes the impact on constraint j of fixing all variables from 
Ī, the value fJAi ∈ R stands for the added up impact on all active constraints of fixing 
variable i.

5.2. Improvement due to IPS-diving steps

In this section, we investigate the effectiveness of IPS-diving ideas. First, we evaluate 
feasibility-IPS-diving steps by comparing the number of (root node) granular problems to 
that of problems where our diving strategies found some granular node. Second, we show 
that applying objective-IPS-diving steps yields feasible points with improved objective 
value compared to the root node and assess the significance of this improvement.

Discarding problems with indicator constraints as well as problems with equality 
constraints on integer variables yielded 288 instances. We ran into memory problems 
with the instance supportcase38 and observed numerical instabilities with the instance 
npmv07 (points obtained from Gurobi did not satisfy several equality constraints with 
the expected feasibility tolerance of 1e-06). Removing these two problems yields a test 
bed of 286 instances for which we found 136 to be granular in the root node.

Using feasibility-IPS-diving with both diving strategies, we were able to find gran-
ular nodes for 167 problems so that the share of problems for which we may compute 
granularity based feasible points increases from 47.6% (root node only) to 58.4% (us-
ing feasibility-IPS-diving). Viewed from another perspective, from the 150 non-granular 
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Fig. 3. Two plots comparing the success of both diving strategies. The left plot visualizes statistics for the 
number of explored nodes until a granular node is found for 25 non-granular instances. The right plot shows 
a cumulative histogram of the remaining optimality gap compared to the optimality gap in the root node 
(14) for 120 granular instances.

instances, feasibility-IPS-diving was successful in 31 cases, which amounts to a success 
rate of 20%. Thus our first finding is that using diving steps increases the applicability 
of the granularity concept. We report detailed results for these 167 problems in Table 2
in the appendix.

As a comparison of the two methods for selecting fixing variables (random and greedy), 
we can state that for 25 non-granular instances both diving methods are able to find 
granular nodes. The random strategy finds a granular node in four additional cases, and 
in two cases only the greedy strategy yields a granular node. This shows that different 
orders of fixing indeed yield different outcomes and points to the fact that different 
strategies can be complementary. Concerning the chances of finding some granular node, 
the greedy strategy does not seem to offer an advantage over randomly fixing variables.

Yet, as the boxplot of the number of iterations of both methods shown on the left-
hand side in Fig. 3 reveals, the greedy method usually finds granular nodes much earlier 
in the search tree. Indeed, for the 25 instances where both methods yield a granular 
node, the median number of iterations is eight for the greedy and 20 for the random 
method and also the 25th and 75th percentiles differ significantly (three vs. 14 and 
21 vs. 28 iterations). Additionally, a direct comparison of the number of iterations for 
each problem individually shows that the greedy method needs (often significantly) less 
iterations than the random method in 16 cases and more iterations in only two cases. 
Hence, if we are interested in quickly finding granular nodes, the greedy strategy seems 
to be the better choice.

For the 136 (root-node) granular problems, we can compute and evaluate the im-
provement yielded by objective-IPS-diving. In this regard, with v� denoting the optimal 
(or best known) value obtained from the MIPLIB 2017 website,1 for each problem with 
v̂
ob 	= v� we compute the value

1 https://miplib2017 .zib .de /tag _collection .html.

https://miplib2017.zib.de/tag_collection.html
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gapclosed = (v̂ob − v̂
obd)/(v̂ob − v�), (14)

which measures the optimality gap closed by IPS-diving steps (recall that v̂ob and v̂obd

stand for the objective values of the points obtained by solving the objective-based 
problem in the root node and by applying objective-IPS-diving, respectively). This ratio 
is one, if and only if objective-IPS-diving finds an optimal point, and zero, if there is no 
improvement in the objective value.

For the instance p500x2988d the rounding of the optimal point of the objective-based 
problem (x̂ob

, ̂yob) was already optimal for MILP and we therefore subsequently analyze 
only the remaining 135 problems. For all these problems, the value of v̂ob−v� was above 
0.25 and the values for gapclosed were hence well-defined.

The right-hand side of Fig. 3 summarizes our results by plotting a cumulative his-
togram of the number of instances over the remaining optimality gap, that is, over 
1 −gapclosed. It includes the gap closed by both strategies individually, as well as a third 
option best, which is the gap closed collectively by both strategies. This can be seen as a 
scenario where we run both diving strategies in the root node and use the best feasible 
point.

We find that for 70 of the 135 problems, more than half of the optimality gap is closed 
by applying both diving strategies. For the random and the greedy method individually, 
this is the case for 57 and 48 problems, respectively. Moreover, in our test bed the 
greedy strategy performed better than the random strategy in closing more than 80% of 
the optimality gap (shown in the first and second set of bars), but the random strategy 
outperformed the greedy method with respect to closing more moderate optimality gaps, 
e.g., the above mentioned 50%. This again demonstrates that it is beneficial to apply 
different fixing strategies from the root node.

Overall we conclude that combining feasible rounding approaches with diving strate-
gies yields a significant improvement over their application in the root node only. The 
greedy fixing method is particularly promising for finding granular nodes early, yet when 
performing objective-IPS-diving steps at granular nodes it does not offer an advantage 
over randomly fixing variables.

5.3. Integration of feasible rounding approaches and diving ideas into a solver 
framework

In a second experiment, we study the potential benefit of integrating feasible rounding 
approaches with and without diving steps into a solver framework. We use SCIP for this 
purpose and initially evaluate the quality of the generated feasible points compared to 
the best solution SCIP obtains with its various heuristics [3] after solving the root node. 
To this end, we test objective-IPS-diving using the PySCIPOpt interface by including it 
as a primal heuristic. The method is executed once, after the processing of the root node 
is finished. After fixing variables in our diving approaches, the variable bound tightening 
techniques implemented in SCIP are applied to further reduce the domain of other 
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Fig. 4. Cumulative histogram of the remaining optimality gap (14) compared to the optimality gap of SCIP’s 
best solution in the root node for 34 instances where five dives yield best solutions.

variables. Thus many variables can be fixed additionally, which indeed led to a significant 
reduction of the number of diving nodes needed to be explored. The python code for 
these experiments is publicly available at https://github .com /schwarze -st /FRA _BB.

We focus our analysis on instances where the root node is granular and apply up to 
five dives using the random strategy with different seeds. As described in Section 5.1, in 
each run we need to solve at most 30 linear optimization problems (of decreasing size).

The test bed again contains granular problems from the MIPLIB 2017. We collected 
all instances without equality constraints on integer variables where SCIP executed fea-
sible rounding approaches within 30 minutes. Discarding 8 instances due to memory 
limitations yielded 320 instances out of which 128 were granular. Thus, we obtained 
128 problems that are granular after SCIP completely processed the root node of the 
branch-and-bound search. Apart from the instances buildingenergy, ramos3, scpj4scip, 
scpk4, and scpl4, we were able to apply five dives within the time limit of 30 minutes. For 
those five problems, we use the best solution found within 30 minutes for our analysis.

We report that in 16 cases the feasible point obtained by solving the root node is 
able to improve upon those previously found by SCIP. By applying one, three and five 
random dives, this number is increased to 25, 32 and 34, respectively. Detailed results for 
the 34 instances where five dives yield better solutions than the ones found by SCIP can 
be found in Table 3 in the appendix. The significant increase in best solutions again high-
lights the potential of applying diving steps when using feasible roundings approaches. 
Moreover, the number of best solutions increases significantly when three dives are ap-
plied (compared to one). With five random dives, we only obtain two additional best 
solutions (compared to three dives) which suggests that three dives might be a good 
compromise between effort and benefit of the method.

This is further substantiated in Fig. 4, which gives an impression of the relative 
improvement compared to SCIP’s best solutions in a cumulative histogram. Once more 
we display the remaining optimality gap 1 − gapclosed, where the v̂ob in Equation (14)
is replaced with the best solution of SCIP. For 17 problems, more than half of the 

https://github.com/schwarze-st/FRA_BB
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optimality gap is closed by the points obtained with three rounds of diving. For one 
diving round, this is the case only for nine problems which again shows that running 
objective-IPS-diving more than one time can be beneficial.

To give a broader impression of the potential of integrating these methods into SCIP, 
we ran a second experiment. Here, we compared the time SCIP needs to compute a 
feasible point of similar quality without integrating feasible rounding approaches with 
diving steps for the 32 problems where three rounds of diving yield best solutions. To 
this end, we executed SCIP with plain settings, and report the run time when SCIP finds 
a feasible point of similar quality for the first time.

We report that SCIP needs additional time to compute such a feasible point in 27 
cases compared to the pure run time of our diving heuristic. To give an impression of the 
potential benefit of the method, we list the 12 instances in Table 1 where SCIP needs 
more than 30 seconds additional time to compute a feasible point of similar quality. Here 
we list the objective value obtained by feasible rounding approaches in the root node 
and after three diving rounds, as well as the optimal (or best known) objective value. 
As a comparison, we list the time for these three diving rounds and that of SCIP for 
computing a feasible point of similar quality. Due to the so-called performance variability 
of global solvers [12], we checked our results for robustness by running SCIP additionally 
with five different LP random seeds and reporting the shortest, median and longest run 
time among these five. For the runs with default LP random seed, we also report the 
time SCIP spends in primal heuristics only, as a lower bound for the time SCIP needs 
for the computation of feasible points of similar quality. Additionally, we report which 
heuristic delivered a point of similar or better quality and list its total run time.

In most instances from Table 1, the additional time SCIP needs to compute a point 
of similar quality is quite significant, even when we investigate the best of five runs and 
the time only spent in heuristics. In five cases, the run time of our diving heuristic is 
even shorter than the run time of the best performing SCIP heuristic, which found a 
point of similar or better quality. This is particularly true for the problem gsvm2rl12, 
where SCIP fails to find such a point within 30 minutes. Interestingly, for this problem 
the objective value is already available without applying diving steps and even applying 
three rounds of diving takes no longer than 30 seconds while SCIP spends 949.4 seconds 
in primal heuristics and does not produce a feasible point of similar quality. Even in the 
best of five case, SCIP needs 729.7 seconds to find such a point so that feasible rounding 
approaches offer a remarkable improvement for that problem.

We can further conclude that there is not one dominant SCIP heuristic, as different 
methods are listed in the best column. We stress that comparing our run time to this 
column is disadvantageous for our method, as it only starts in the root node and does not 
exploit further information. However, for b2c1s1, neos-983171, and both opm2 instances, 
the best heuristic is called exactly once and in the root node which makes their run times 
more comparable. For the instances opm2 we see a remarkable run time improvement 
and, in contrast to the problem gsvm2rl12, here the diving steps are crucial. For both 
instances of the problem sorell diving steps are also crucial and SCIP needs much more 
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te a feasible point with similar quality.

time SCIP heuristics
ian worst all best name best
4.9 35.0 7.9 1.9 feaspump
5.0 45.1 9.9 2.1 feaspump
0.7 40.8 8.4 0.2 oneopt
4.2 64.3 19.7 1.3 oneopt
0.0 1800.0 949.4 – –
3.8 365.2 94.5 4.5 pscostdiv.
2.3 135.4 17.7 2.7 distr.-div.
1.1 283.0 129.0 68.8 rens
7.4 299.1 200.6 199.2 farkasdiv.
0.0 50.0 23.6 23.2 farkasdiv.
0.0 1800.0 39.5 10.9 pscostdiv.
4.1 589.5 7.9 0.6 pscostdiv.
Table 1
Instances selected from root node granular problems, where SCIP needs significantly more time to compu

name objective time time SCIP full
root diving optimal diving one run best med

b1c1s1 72555.0 69071.5 24544.2 0.8 34.87 34.9 3
b2c1s1 73676.5 68701.5 25687.9 1.5 44.91 44.9 4
dg012142 25623489.0 14373382.6 2300867.0 6.8 40.71 40.7 4
gsvm2rl11 42635.3 39792.8 18121.6 15.9 64.28 63.7 6
gsvm2rl12 34.4 34.4 22.1 29.4 1800.00 729.7 180
gsvm2rl9 16382.8 13611.9 7438.2 3.9 365.03 51.3 10
mushroom-best 3613.9 2072.9 0.1 11.4 79.58 5.5 6
neos-983171 50987.0 8747.0 2360.0 84.7 227.77 207.4 23
opm2-z10-s4 −1489.0 −22681.0 −33269.0 18.2 295.14 294.6 29
opm2-z8-s0 −2220.0 −11328.0 −15775.0 6.7 50.00 49.8 5
sorrell7 −45.0 −160.0 −196.0 622.1 1753.36 1290.5 180
sorrell8 −168.0 −324.0 −350.0 11.8 547.90 538.0 56
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total run time. For these problems, the time spent in heuristics and especially in the 
successful diving heuristic (which is called in each case once in a node of depth six 
respectively seven) is quite low so the benefit of using feasible rounding approaches with 
diving steps within SCIP is less clear. Besides pscostdiving, seven other diving procedures 
are called on average 32 times before one is successful for gsvm2rl9, which shows a clear 
benefit for this instance.

Overall, our results show that in some cases feasible rounding approaches combined 
with the introduced diving ideas can be beneficial and help state-of-the-art software 
to compute good feasible points more quickly. While this improvement is possible in 
the root node (e.g. in the case of gsvm2rl12 ), the application of diving steps makes it 
significantly more likely.

6. Conclusion and outlook

In this article we developed new theoretical insights into how inner parallel sets change 
within branch-and-bound methods. This allowed us to show that the number of roundings 
obtainable within a search tree is nondecreasing with increasing depth of the search 
tree. Moreover, we provided examples that demonstrate that this number can actually 
increase.

Based on these results we developed a novel diving method for MILPs with two 
remarkable features. First, applying an objective-based diving step to a granular node 
retains granularity. Second, the measure of non-granularity of a feasibility diving step in a 
non-granular node cannot deteriorate after the application of this step. In the latter case 
we additionally derived sufficient conditions for an actual improvement in the measure 
of non-granularity.

Our computational study on problems from the MIPLIB 2017 shows two main benefits 
of the diving methods. First, a considerable number of 31 out of 150 instances is not 
granular in the root node but becomes granular in some child node explored by our diving 
strategies. Indeed, the share of instances for which we were able to exploit the granularity 
concept increased from 47.6% to 58.4% when diving steps were applied. Second, for 
root-granular instances, our evaluation of the closed optimality gap shows that objective 
diving steps are able to significantly improve the quality of feasible roundings compared 
to the root node. This second effect is further substantiated by a comparison with SCIP, 
where the number of best incumbent solutions provided by feasible rounding approaches 
is significantly increased when objective-IPS-diving steps are applied.

Both benefits not only confirm the effectiveness of the diving method, but also show 
that the number of roundings obtainable with feasible rounding approaches can be ex-
pected to be increasing with the exploration of a branch-and-bound tree. This fact could 
be further exploited by integrating suitable backtracking strategies into the diving pro-
cedure, which we postpone to future research.

We further wish to point out that within the scope of our diving approaches, the 
appearing linear optimization problems solved sequentially are closely related. Therefore, 
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it might be interesting to investigate warm-start possibilities, which we also leave for 
future research.

Moreover, while our theoretical results on the number of roundings hold in the gen-
eral MINLP setting, the diving heuristic is made explicit and studied computationally 
for MILPs only. The transfer of most ideas from the linear to the nonlinear setting is 
straightforward. The only exception is the computation of the degree of freedom where 
the polyhedrality of the feasible set is used explicitly. The derivation of a similar measure 
in the nonlinear setting which potentially includes information of the possibility of using 
smaller Lipschitz constants after variables are fixed is also left to future research.
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ns.

iterations
best known greedy random

4498.0 9.0 0 0
3918.0 3.0 0 0
4169.0 12.0 0 0
7076.9 3311.2 0 0

inf 252.0 4 30
1029.4 11503.4 0 0
0865.3 10889.1 0 0
3127.0 −10420305975.0 0 0
0098.0 −11186253442.0 0 0
1322.0 −11186281442.0 0 0
1410.0 −10420305975.0 0 0
8405.0 −11186620442.0 0 0
9642.4 5751714.3 25 25
9854.3 106.9 30 30
9336.1 24544.2 0 0
6085.5 25687.9 0 0
102.0 85.0 0 0
217.0 144.0 0 0

4710.0 754.0 1 20
1321.0 1044.0 0 0

92.0 62.0 4 15
7769.7 184202.8 0 0
5048.5 −32041010095050.0 0 0
0558.2 −31953010000000.0 0 0
0456.7 −372986719.7 0 0
2888.9 −46416168.3 20 30
9702.0 13655.0 0 0
4197.2 33283.9 0 0
−128.0 −289.0 0 0

−4.0 −12.0 0 0
7101.0 689.0 30 9
4519.8 25148940.6 0 0
−85.0 −116.0 0 0
−36.0 −81.0 0 0
−78.0 −97.0 0 0
−15.0 −42.0 0 0
−27.0 −65.0 0 0

(continued on next page)
Table 2
Instances with some granular node, corresponding objective values and number of feasibility diving iteratio

granular objective
root greedy random root greedy random

30_70_45_05_100 True True True 8985.0 4730.0
30_70_45_095_100 True True True 8870.0 3956.0
30_70_45_095_98 True True True 9158.0 4417.0
50v-10 True True True 199236.7 30232.1 9
CMS750_4 False True False inf 779.0
a1c1s1 True True True 21033.2 21029.4 2
a2c1s1 True True True 20866.1 20865.3 2
ab51-40-100 True True True −1023114612.0 −3757026942.0 −266150
ab67-40-100 True True True −1121661829.0 −5902982915.0 −531540
ab69-40-100 True True True −1078937214.0 −5799631585.0 −534240
ab71-20-100 True True True −1823703279.0 −6233051084.0 −376644
ab72-40-100 True True True −1144435108.0 −3849272486.0 −485191
app3 False False True inf inf 644
australia-abs-cta False True True inf 4562.2
b1c1s1 True True True 69466.5 69376.9 6
b2c1s1 True True True 67451.0 67250.0 6
beasleyC1 True True True 102.0 102.0
beasleyC2 True True True 232.0 232.0
beasleyC3 False True True 6844.0 964.0
berlin True True True 1921.0 1921.0
berlin_5_8_0 False True True inf 95.0
bg512142 True True True 3968845.9 278117.6 26
bmocbd True True True −32041010095048.5 −32041010095048.5 −3204101009
bmocbd2 True True True −31953009810558.2 −31953009810558.2 −3195300981
bmocbd3 True True True 24865940299999.4 49057829841.7 6128892
bmoipr2 False True True 383315500000.0 108118487164.1 16429870
brasil True True True 32720.0 32720.0 1
buildingenergy True True True 34305.7 34196.5 3
cdc7-4-3-2 True True True −1.0 −127.0
cod105 True True True 0.0 −3.0
core2536-691 False False True inf inf
cost266-UUE True True True 42188320.7 42008592.2 4201
cvs08r139-94 True True True −85.0 −85.0
cvs16r106-72 True True True −25.0 −49.0
cvs16r128-89 True True True −78.0 −78.0
cvs16r70-62 True True True −15.0 −17.0
cvs16r89-60 True True True −19.0 −31.0
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Table 2 (continued)

iterations
best known greedy random

584.2 0.0 30 30
45726.7 2300867.0 0 0
4309.0 235.0 0 0

28261.0 174.0 0 0
45614.0 44316.0 0 0
4550.5 −4783.7 0 0
9052.6 −9476.2 0 0
2478.3 2361.5 0 0
4500.0 −4606.7 0 0
7923.5 6841.0 0 0
9191.8 5231.1 0 0

11865.1 8942.6 0 0
57477.4 3969.4 0 0
59576.4 4038.4 0 0
60518.2 7393.3 0 0
66830.0 628490.0 0 0

51.0 23.0 0 0
222.2 202.3 0 0

41964.4 18121.6 0 0
36.7 22.1 0 0
0.6 0.3 0 0

10.0 5.4 0 0
14896.9 7438.2 0 0

50.0 21.0 0 0
50.0 17.0 0 0

1489.0 58.0 9 30
330.3 204.1 25 30

12779.0 11393.0 0 0
43058.0 106940226.0 0 0
13162.0 −13164.0 0 0
28886.9 11801.2 0 0
64247.9 40005.1 0 0
13167.0 11689.0 0 0
4740.0 3417.0 0 0
1865.0 1566.0 0 0

0.0 −49716.0 0 0
0.0 −50768.0 0 0
0.0 −52242.0 0 0
granular objective
root greedy random root greedy random

dale-cta False True True inf 584.2
dg012142 True True True 77158148.1 12143833.8 12
ex1010-pi True True True 8596.0 2832.0
fast0507 True True True 55637.0 2586.0
g200x740 True True True 45614.0 45558.0
gen-ip002 True True True −3543.6 −4573.4
gen-ip016 True True True −7700.6 −8783.1
gen-ip021 True True True 3014.7 2738.2
gen-ip036 True True True −3827.2 −4552.4
gen-ip054 True True True 11138.2 7593.9
ger50-17-ptp-pop-3t True True True 14477.0 13687.2
ger50-17-ptp-pop-6t True True True 17651.4 16456.0
ger50-17-trans-dfn-3t True True True 553623.6 488587.9
ger50-17-trans-pop-3t True True True 553803.5 493766.7
ger50_17_trans True True True 555975.2 499809.5
germany50-UUM True True True 751380.0 689860.0
glass-sc True True True 74.0 46.0
gr4x6 True True True 284.1 252.2
gsvm2rl11 True True True 43040.0 42693.9
gsvm2rl12 True True True 50.0 42.2
gsvm2rl3 True True True 0.6 0.6
gsvm2rl5 True True True 10.0 10.0
gsvm2rl9 True True True 15597.5 15597.5
iis-glass-cov True True True 73.0 45.0
iis-hc-cov True True True 78.0 52.0
in False True True inf 450.0
istanbul-no-cutoff False True True 330.3 330.3
k16x240b True True True 12874.0 12874.0
khb05250 True True True 126786075.5 120511827.0 122
manna81 True True True −12867.0 −13162.0 −
mas74 True True True 736774.2 50264.5
mas76 True True True 782652.6 69745.4
mc11 True True True 13548.0 13548.0
mc7 True True True 5884.0 5875.0
mc8 True True True 1994.0 1977.0
mik-250-20-75-1 True True True 0.0 0.0
mik-250-20-75-2 True True True 0.0 0.0
mik-250-20-75-3 True True True 0.0 0.0
3

−
−

−

2
2
2
6

4
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iterations
best known greedy random

0.0 −52301.0 0 0
0.0 −51532.0 0 0

17325.0 13385.0 0 0
26174.0 1227629.0 0 0
42446.0 1225465.0 0 0
54690.0 1186691.0 0 0
05693.0 1207965.0 0 0
42808.0 1236963.0 0 0
14285.0 8105.0 0 0
21550.0 15175.0 0 0
19325.0 15426.0 0 0
26030.0 14409.0 0 0
94123.9 571844066711.0 0 0
96221.3 564772773667.0 0 0
−34.0 −195.0 25 30

81461.2 31320456.3 0 0
−18.0 −77.0 12 25
−54.0 −181.0 13 27

87980.4 619244367.7 0 0
inf −607702988.3 30 30

23328.0 11807698.0 27 27
12559.0 3017324.0 1 18
10833.0 2612710.0 2 28
3232.0 2362.0 25 23
3476.0 2440.0 22 25

80000.0 −11670000.0 2 6
08126.0 90693.5 1 1
1748.0 30.0 0 0

66620.0 51837.0 0 0
48.8 48.6 0 0

146.0 113.7 0 0
−34.0 −243.0 30 30

44466.7 276.0 0 0
31450.8 318.0 0 0

0.4 0.2 0 0
88643.8 779715.0 29 29

22.0 15.0 0 0
(continued on next page)
Table 2 (continued)

granular objective
root greedy random root greedy random

mik-250-20-75-4 True True True 0.0 0.0
mik-250-20-75-5 True True True 0.0 0.0
n13-3 True True True 20570.0 17275.0
n3700 True True True 1831715.1 1654139.0 14
n3705 True True True 1847346.1 1597719.0 14
n3707 True True True 1788849.3 1625368.0 13
n3709 True True True 1811682.7 1676838.0 14
n370b True True True 1911867.1 1669199.0 14
n5-3 True True True 16325.0 12725.0
n6-3 True True True 25100.0 19400.0
n7-3 True True True 22010.0 17890.0
n9-3 True True True 28825.0 21995.0
neos-1112782 True True True 22500000000000.0 22500000000000.0 10655788
neos-1112787 True True True 20000000000000.0 20000000000000.0 5935257
neos-1171737 False True True inf −63.0
neos-1367061 True True True 31856051.5 31780764.1 317
neos-1430701 False True True 0.0 −42.0
neos-1442119 False True True 0.0 −98.0
neos-1603965 True True True 865504980.4 627172725.2 8642
neos-2987310-joes False True False inf −222862.3
neos-3072252-nete False True True 24183360.0 23371673.0 137
neos-4290317-perth False True True inf 3278581.7 39
neos-4954672-berkel False True True 18517796.0 9962581.0 81
neos-5076235-embley False False True inf inf
neos-5079731-flyers False True True inf 3102.0
neos-5192052-neckar False True True −1100000.0 −9030000.0 −112
neos-565672 False True True 3467700892969.3 649310915748.4 6191394
neos-787933 True True True 1764.0 1764.0
neos-848198 True True True 170974.0 72169.0
neos-872648 True True True 52.6 52.6
neos-873061 True True True 152.4 152.4
neos-885086 False False True inf inf
neos-933638 True True True 5074445.1 136384.0 1
neos-933966 True True True 5074472.1 132378.0 1
neos17 True True True 0.5 0.4
neos22 False True True inf 939684.4 11
neos5 True True True 26.5 17.0
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Table 2 (continued)

iterations
best known greedy random

82.0 66.0 0 0
15864.0 231.0 0 0

58.0 29.0 8 6
739.0 71.0 5 9

29452.0 29314.0 0 0
−2983.0 −33269.0 0 0
−3536.0 −58540.0 0 0
−1510.0 −6202.0 0 0
−2503.0 −11242.0 0 0
−3066.0 −15775.0 0 0

0.0 0.0 7 7
17373.0 15078.0 0 0
72542.0 71836.0 0 0
17538.0 15215.0 0 0

6.0 6.0 0 0
511.7 −132.9 0 0
−15.0 −40.0 0 0
2016.0 1653.0 0 0
486.0 400.0 5 20
630.0 192.0 0 0

4537.0 3664.0 0 0
3940.0 3252.0 0 0
4758.0 3712.0 0 0

485293.0 128.0 0 0
496832.0 321.0 0 0
967349.0 262.0 0 0
447966.0 557.0 0 0
835563.0 516.0 0 0
759789.9 176497.1 0 0
756482.4 185179.0 0 0
701109.2 124886.0 0 0
701421.3 134040.4 0 0
712940.2 159462.6 0 0

555.0 423.0 0 0
435.5 410.8 0 0
164.8 72.3 15 21
−1.0 −16.0 0 0

0.0 −24.0 0 0
granular objective
root greedy random root greedy random

nexp-150-20-1-5 True True True 102.0 89.0
nexp-150-20-8-5 True True True 17880.0 4288.0
nexp-50-20-1-1 False True True inf 68.0
nexp-50-20-4-2 False True True inf 340.0
ns4-pr6 True True True 29550.0 29452.0
opm2-z10-s4 True True True −1489.0 −3122.0
opm2-z12-s8 True True True −1678.0 −7231.0
opm2-z6-s1 True True True −1076.0 −2174.0
opm2-z7-s8 True True True −1654.0 −4881.0
opm2-z8-s0 True True True −2220.0 −5443.0
osorio-cta False True True inf 0.0
p200x1188c True True True 20962.0 20962.0
p500x2988 True True True 72594.0 72561.0
p500x2988c True True True 17538.4 17538.0
p500x2988d True True True 6.0 6.0
qiu True True True 1805.2 347.5
queens-30 True True True 0.0 −3.0
r50x360 True True True 2016.0 2016.0
railway_8_1_0 False True True inf 482.0
ramos3 True True True 1087.0 558.0
ran12x21 True True True 5550.0 4751.0
ran13x13 True True True 4439.0 4122.0
ran14x18-disj-8 True True True 9675.7 5423.0
scpj4scip True True True 1181054.0 57929.0
scpk4 True True True 1193303.0 103775.0
scpl4 True True True 2364401.0 117232.0
scpm1 True True True 5990141.0 251162.0
scpn2 True True True 11936844.0 280763.0
set3-09 True True True 1985526.9 1759784.8
set3-10 True True True 1992089.6 1756477.4
set3-15 True True True 1925867.6 1701104.1
set3-16 True True True 1919621.7 1701416.1
set3-20 True True True 1916274.1 1712935.2
seymour True True True 744.0 489.0
seymour1 True True True 476.6 421.3
snip10x10-35r1budget17 False True True 270.0 223.9
sorrell3 True True True 0.0 −9.0
sorrell4 True True True 0.0 −2.0
2
4
1
1
1
1
1
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iterations
best known greedy random

−65.0 −196.0 0 0
−171.0 −350.0 0 0

70.0 69.0 0 0
151.0 125.0 0 0

7239.6 −7559.5 19 19
82077.7 −1085069.6 0 0

9.0 7.8 0 0
56954.8 7518328.2 0 0
27548.0 10696.0 0 0
4865.0 1224.0 0 0

60985.0 40417.0 0 0
1345.0 610.0 0 0

85722.9 130596.0 7 6
193.0 120.0 4 21
68.0 41.0 0 0

183.5 −149.4 0 0
−756.0 −1187.0 0 0
Table 2 (continued)

granular objective
root greedy random root greedy random

sorrell7 True True True 0.0 −140.0
sorrell8 True True True 0.0 −298.0
sp150x300d True True True 70.0 69.0
stockholm True True True 157.0 154.0
supportcase12 False True True inf −5235.7 −
supportcase39 True True True −1078779.3 −1081370.0 −10
supportcase42 True True True 10.4 9.0
ta1-UUM True True True 510951307.9 289145959.4 2936
tanglegram4 True True True 55202.0 24714.0
tanglegram6 True True True 8856.0 3425.0
thor50dday True True True 204179.0 204179.0
toll-like True True True 2204.0 729.0
tr12-30 False True True inf 196614.0 1
usAbbrv-8-25_70 False True True inf 200.0
v150d30-2hopcds True True True 117.0 55.0
var-smallemery-m6j6 True True True 5153.2 362.1
z26 True True True −123.0 −980.0
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er five dives.

SCIP best known
.13 69333.52 24544.25
.52 71120.52 25687.90
.00 6301928.50 184202.75
.59 42652.34 33283.85
.60 33433439.00 2300867.00
.16 −9241.61 −9476.16
.21 7235.30 6840.97
.60 219.35 202.35
.84 83555.95 18121.64
.35 50.00 22.12
.81 10.00 5.42
.89 31802.40 7438.18
.43 4557402.61 3673280.68
.90 4208.00 0.06
.71 24774435200000.00 571844066711.00
.26 21786753400000.00 564772773667.00
.62 33300456.26 31320456.26
.00 −11109.00 −17905.00
.00 −11513.00 −17783.00
.00 9272.00 2360.00
.00 −20344.00 −33269.00
.00 −38015.00 −58540.00
.00 −3808.00 −6202.00
.00 −5599.00 −11242.00
.00 −9833.00 −15775.00
.68 1805.18 −132.87
.21 1759784.82 176497.15
.15 1756477.36 185179.04
.01 1701104.14 124886.00
.58 1701416.05 134040.41
.81 1712935.20 159462.57
.45 438.08 410.76
.00 −152.00 −196.00
.00 −301.00 −350.00
Table 3
A comparison of objective values for instances where feasible rounding approaches yield best solutions aft

root node one dive three dives five dives
b1c1s1 72555.00 71900.43 69071.53 61920
b2c1s1 73676.52 69221.52 68701.52 68701
bg512142 302107.00 275544.50 273390.00 273390
buildingenergy 34196.59 34196.59 34196.59 34196
dg012142 25623489.00 14981424.74 14373382.60 14373382
gen-ip016 −7700.61 −9132.49 −9312.16 −9312
gen-ip054 10928.19 7875.28 7620.17 7207
gr4x6 332.35 236.50 218.60 218
gsvm2rl11 42635.34 41080.59 39792.84 39792
gsvm2rl12 34.35 34.35 34.35 34
gsvm2rl5 10.00 10.00 9.07 8
gsvm2rl9 16382.76 13611.89 13611.89 13611
haprp 4604106.31 3813762.73 3792385.43 3792385
mushroom-best 3613.90 2285.86 2072.90 2063
neos-1112782 22001768507718.88 2067197222917.62 2062009991394.43 607470121819
neos-1112787 20002990000000.00 1095537656401.14 1070535971510.15 590877191280
neos-1367061 31780762.62 31780762.62 31780762.62 31780762
neos-1445743 −3187.00 −12951.00 −15684.00 −15684
neos-1445765 −2468.00 −13730.00 −13823.00 −14019
neos-983171 50987.00 9431.00 8747.00 8747
opm2-z10-s4 −1489.00 −18032.00 −22681.00 −22871
opm2-z12-s8 −1678.00 −30145.00 −37232.00 −38613
opm2-z6-s1 −1040.00 −3986.00 −4494.00 −4494
opm2-z7-s8 −1654.00 −7243.00 −7638.00 −7681
opm2-z8-s0 −2220.00 −10005.00 −11328.00 −11328
qiu 3173.59 1919.21 603.68 603
set3-09 1122029.59 1042062.59 1030350.59 938802
set3-10 1679684.07 991124.54 961363.41 750274
set3-15 1362877.05 1161545.90 1024364.57 869928
set3-16 1209249.73 913569.70 877326.71 661927
set3-20 1663579.45 1141125.67 863520.06 771482
seymour1 437.31 425.43 421.72 421
sorrell7 −45.00 −153.00 −160.00 −160
sorrell8 −168.00 −324.00 −324.00 −329
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