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Abstract 

The design of targeting policies is fundamental to address a variety of practical problems 
across a broad spectrum of domains from e-commerce to politics and medicine. Recently, 
researchers and practitioners have begun to predict individual treatment effects to 
optimize targeting policies. Although different research streams, that is, uplift modeling 
and heterogeneous treatment effect propose numerous methods to predict individual 
treatment effects, current approaches suffer from various practical challenges, such as 
weak model performance and a lack of reliability. In this study, we propose a new, tree-
based, algorithm that combines recent advances from both research streams and 
demonstrate how its use can improve predicting the individual treatment effect. We 
benchmark our method empirically against state-of-the-art strategies and show that the 
proposed algorithm achieves excellent results. We demonstrate that our approach 
performs particularly well when targeting few customers, which is of paramount interest 
when designing targeting policies in a marketing context. 

Keywords:  Causal inference, individual treatment effects, uplift modeling, heterogeneous 
treatment effects, targeting policies 

Introduction 

The design of targeting policies is fundamental to address a variety of practical problems across a broad 
spectrum of domains from e-commerce to politics and medicine (Gupta et al., 2020). For example, online 
platforms send different promotions to different customers; politicians use ads, direct mail, and phone calls 
to push residents to vote for their candidacies; and doctors seek to treat sick patients with the correct 
treatment.  
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Marketing is one domain that has benefited significantly from the design of targeting policies (Simester et 
al., 2019, 2020). Companies such as Spotify (Fernández-Loría et al., 2021), Booking.com (Goldenberg et 
al., 2020), Uber (Z. Zhao & Harinen, 2019), and Microsoft (Research, 2019) are already designing and 
deploying targeting policies to identify large-scale marketing actions it can take to reach customers. For 
example, Booking.com designed a targeting policy that turned an underperforming promotions campaign 
with over 100 million visit instances into a campaign with a viable return on investment and a significant 
increase in completed bookings (Goldenberg et al., 2020). Spotify increased the engagement of customers 
by 28% using a proper targeting policy on a dataset with more than half a billion individuals (Fernández-
Loría et al., 2021). 

Recently, researchers from two different research communities – uplift modeling and heterogeneous 
treatment effects (HTE) – have begun to optimize targeting policies by predicting the causal effect of a 
treatment at the individual or subgroup level, henceforth referred to as the individual treatment effect (ITE) 
(Ascarza, 2018; Athey et al., 2019; Devriendt et al., 2018; Gubela et al., 2019; Hitsch & Misra, 2018; Simester 
et al., 2019). For example, Ascarza (2018) showed targeting customers with the highest sensitivity to a 
treatment in a given marketing campaign to be significantly more effective than targeting customers based 
on churn probability. Similarly, Hitsch and Misra (2018) demonstrated that predicting the causal effect of 
a treatment yields significantly greater profits than ignoring the causal effect. 

Most literature in these two research streams focuses on the development of new approaches (Gubela et al., 
2019). Specifically, researchers have focused on the direct estimation of ITEs, that is, on modifying 
conventional (mostly non-parametric) machine learning algorithms, especially with tree-based algorithms 
(Athey & Imbens, 2016; Radcliffe & Surry, 2011; Rzepakowski & Jaroszewicz, 2010; Sołtys et al., 2015; 
Wager & Athey, 2018). Modifying these tree-based algorithms, researchers from both research streams have 
found promising techniques to increase effectiveness even further (Gubela et al., 2019), such as splitting 
explicitly on the ITE (Athey & Imbens, 2016; Hansotia & Rukstales, 2002), distributing treatment and 
control samples evenly in child nodes (Rzepakowski & Jaroszewicz, 2012; Su et al., 2009), and using 
ensemble learning (e.g., random forest) (Athey et al., 2019; Sołtys et al., 2015). In addition, the uplift 
modeling literature has demonstrated that avoiding small leaves and considering the values of the parent 
node when calculating the split criterion reduces variance and overfitting (Rzepakowski & Jaroszewicz, 
2012). The HTE literature has shown that using different samples for partitioning the covariate space and 
estimating the ITE score can substantially reduce bias (Athey & Imbens, 2016). 

Despite these promising results and recent developments, however, ITE estimation is rarely employed in 
real-world applications because of various practical challenges, including weak model performance, a lack 
of reliability, and high complexity (Fernández & Provost, 2019; Gupta et al., 2020; Hitsch & Misra, 2018). 
Various researchers have demonstrated that most of the methods still suffer from high variance – not only 
across different datasets, but also across different cross-validation folds of the same dataset – and that the 
methods’ performance often depends largely on the data and application contexts (Athey & Imbens, 2015; 
Devriendt et al., 2018; Rößler et al., 2021). 

As researchers have begun to integrate uplift modeling and HTE more recently (Rößler & Schoder, 2022; 
Zhang et al., 2021), one opportunity to overcome the practical challenges that have emerged is to combine 
recent advances from both research streams and develop new methods that employ the best ideas from both 
worlds. To the best of our knowledge, however, no literature has developed any methods by combining 
findings from uplift modeling and HTE. Thus, we ask the following research question (RQ):  

RQ: Can we make the prediction of individual treatment effects more efficient by combining recent 
advances from the uplift modeling and heterogeneous treatment effects literature?  

To address this research question, and motivated by recent advances in uplift modeling and HTE literature, 
we propose a new, tree-based, direct estimation method. Our method has four main characteristics: a 
splitting criterion that optimizes on the ITE explicitly, takes into account the value of the parent node, and 
accounts for the sample sizes of treatment and control group in both child nodes; the honest approach, that 
is, using different samples for partitioning the covariate space and estimating the ITE score; the use of 
ensemble learning rather than a single decision tree; and the definition of termination rules. We compare 
our new method with approaches from both research streams using three empirical datasets. We focus on 
data with a binary treatment indicator (i.e., customers do or do not receive a treatment) and a binary 
response variable (e.g., customers do or do not stay with the company). Further, we assume that the data 



 Using Uplift Modeling and Heterogeneous Treatment Effects 
  

 Forty-Third International Conference on Information Systems, Copenhagen 2022
 3 

are coming from randomized controlled experiments (i.e., A/B tests) or that the data satisfy the 
unconfoundedness assumption and the stable unit treatment value assumption (Athey & Imbens, 2015). 

The remainder of this paper is organized as follows. In the next section, we review the literature on uplift 
modeling and HTE. We then describe our proposed method, which again is motivated by recent advances 
in both research streams. This is followed by the presentation of the experimental setup describing the 
datasets, methods evaluated, and evaluation procedure. We then present our results. Finally, we discuss 
methodological, theoretical, and managerial implications, and conclude our paper with a summary. 

Related Work 

As the breadth of causal inference and machine learning applications has grown, research attention has 
increasingly turned to targeting individuals whose likelihood of response is most positively affected by a 
treatment (Hitsch & Misra, 2018). Rather than predicting customers’ response probability, as is done in 
response modeling (Coussement et al., 2015), the targeting decisions in uplift modeling and HTE are based 
on the ITE (Gubela et al., 2017).  

The ITE is defined as the difference between an individual’s outcome when subject or not subject to a 
treatment (Hitsch & Misra, 2018). The ITE, however, is not directly observable because of the fundamental 
problem of causal inference (Holland, 1986), which states that only one of the potential outcomes is 
observed for each customer. To overcome this issue, researchers use data from a randomized, controlled 
experiment (i.e., A/B test), that is, they split the population into two subpopulations (Ascarza, 2018), a 
treatment group subject to a treatment (e.g., a marketing treatment) and another disjoint control group not 
subject to any treatment. Uplift modeling and HTE utilize data from randomized controlled experiments 
and approximate the ITE by using the conditional average treatment effect (CATE). Following the Rubin 
causal model (Rubin, 1974), the CATE is defined as 

 τ(x) 	= 	Ε[Y!(1)	−	Y!(0)|X! 	= 	x]	 (1) 

where Yi(1) is the outcome of individual i being subject to a treatment,Yi(0) is the outcome of individual i 
not being subject to a treatment, and Xi is a K-component vector of features. Other causal inference 
procedures such as using (deep) instrumental variables (Hartford et al., 2017; Syrgkanis et al., 2019), 
propensity scores (Rosenbaum & Rubin, 1983) or observational data (Nie & Wager, 2021) for ITE 
estimation are fruitful areas for future research, but are beyond the scope of this paper.  

Gutierrez and Gérardy (2017) distinguish between three different classes of ITE methods in uplift modeling 
and HTE: two-model, class transformation, and direct. Two-model methods predict the CATE as the 
difference between the conditional expectation from two independent models; class transformation 
methods estimate the CATE by using a new, modified outcome variable; and direct methods modify an 
existing supervised machine learning algorithm, with tree-based algorithms in particular, to train on the 
CATE directly. While researchers agree that evaluating a single algorithm is not enough to improve a 
targeting policy substantially (Devriendt et al., 2018; Fernández-Loría et al., 2021), recent research shows 
that direct methods typically outperform two-model and class transformation methods (Devriendt et al., 
2018; Guelman et al., 2012; Hitsch & Misra, 2018; Rößler et al., 2021; Sołtys et al., 2015). Thus, our focus 
in this paper is on direct ITE estimation methods. Table 1 presents an overview of different tree-based 
methods, including their characteristics and differences. 

In the HTE literature, researchers in the areas of statistics and econometrics have mainly proposed to 
modify nonparametric statistical methods to calculate the CATE directly. For example, Su et al. (2009) 
proposed the Interaction Tree (IT) to find treatment effects among subgroups of individuals. Their method 
follows the standard CART (Breiman et al., 1984) convention, but with the so-called G statistic as splitting 
criterion. Later, Su et al. (2012) provided another algorithm based on the CART (Breiman et al., 1984) 
convention, the Causal Inference Tree (CIT). The authors proposed to utilize the likelihood ratio test 
statistic as split criterion. More recently, the Causal Tree / Honest Tree (CT) (Athey & Imbens, 2016) and 
its extensions Causal Forest (CF) (Wager & Athey, 2018) and Generalized Random Forest (GRF) (Athey et 
al., 2019) have been proposed to estimate ITEs. All approaches modify the conventional CART (Breiman et 
al., 1984) procedure in two ways. First, the authors use different samples for partitioning the covariate space 
and estimating the CATE scores in the leaves. Before growing a tree, they split the training sample into an 
estimation sample 𝑆#$%, which is used only for CATE score estimation, and a training sample 𝑆%&, which is 
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used only for selecting tree splits. The authors refer to this approach as honesty. Second, the authors modify 
the splitting criterion of a conventional CART (Breiman et al., 1984) algorithm such that it penalizes small 
leaf sizes by incorporating the within-leaf variance. That is, the authors use an estimator for the negative 
expected mean squared error (EMSE) that depends on 𝑆%& and 𝑁#$% (size of the estimation sample 𝑆#$%). 

Method Base Splitting 
Criterion 

Account for 
treatment-
to-control 
ratio 
imbalance 

Penalize 
small 
leaf size 

Account for 
size 
imbalance 
between 
the 
children 

Consider 
the value 
of the 
parent 
node 

Honesty 

IT CART G-statistic No No No No No 

CIT CART Likelihood 
ratio test 
statistic 

No No Yes No No 

CT CART Negative 
expected mean 
squared error 

No Yes Yes No Yes 

CF /  

GRF 

Random 
Forest 

DDP CHAID ∆∆𝑝-criterion  No No No No No 

UT CART Distribution 
divergence 
measures 

Yes Yes Yes Yes No 

 UB Bagging 

URF Random 
Forest 

IDDP (this 
paper) 

Random 
Forest 

IDDP Yes Yes Yes Yes Yes 

Table 1.  Overview of tree-based methods 

 

Similar to the HTE literature, the uplift modeling literature mainly modifies nonparametric models to 
directly optimize on the causal effect. One of the first modifications was proposed by Hansotia and 
Rukstales (2002). The authors suggested using a splitting statistic that maximizes the difference of the 
differences (DDP) between the treatment and control response probability in the left and right child node 
using the CHAID (Kass, 1980) convention. Rzepakowski and Jaroszewicz (2012), changed the CART 
(Breiman et al., 1984) algorithm by incorporating a split criterion that is based on information theory, using 
one of three different distribution divergence measures. These include Kullback-Leibler divergence, 
squared Euclidean distance, and chi-squared divergence. At each split, the goal is to maximize the difference 
in response distribution between the treatment and control group by subtracting the divergence of the 
parent node from the conditional divergence of each child node. This method is referred to as Uplift Tree 
(UT). This splitting statistic was also used with Bagging (UB) (Sołtys et al., 2015) and Random Forest (URF) 
(Guelman et al., 2012; Sołtys et al., 2015). 

Although the direct methods appear to be most promising, various researchers have shown that no method 
significantly outperforms another on all datasets. Instead, most of the methods lack robustness and suffer 
from variance and reliability (Athey & Imbens, 2015; Devriendt et al., 2018; Rößler et al., 2021). For 
example, Devriendt et al. (2018) evaluated ten different methods, including four direct estimation methods, 
on four real-world datasets. The authors found that no method consistently outperformed the others and, 
instead, that methods lacked robustness in terms of performance across different datasets. Rößler et al. 
(2021) compared two-model, class transformation, and direct methods and found that none of them 
outperformed the others on all datasets. The authors proposed instead to combine approaches from all 
three method classes to obtain the best results. Researchers have also noted that ITE estimation is rarely 
employed in real-world applications, not only because of the practical challenges mentioned above but also 
because of the perception that the ITE prediction may be too difficult or that it may not improve traditional 
approaches such as response modeling (Gupta et al., 2020; Hitsch & Misra, 2018).  
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Zhang et al. (2021), most recently, enabled the development of new, potentially more robust methods when 
they began to unify uplift modeling and HTE literature. The authors provided a unified view of these two 
research streams, emphasizing their inherent connection and urging researchers and practitioners to 
consider literature from both communities when optimizing ITE estimation. Further, Rößler and Schoder 
(2022) undertook an extensive comparison of methods from HTE and uplift modeling using synthetic and 
real-world datasets, and argued that using the ITE can substantially improve a targeting policy – but only 
if “academics and practitioners evaluate various methods from both uplift modeling and HTE" (Rößler & 
Schoder, 2022, p. 1). 

Motivated first by the need for more robust solutions and, second, by the recent integration of uplift 
modeling and HTE, we propose another example of a direct estimation algorithm that builds upon recent 
advances from both literatures.  

Algorithm 

In the following, we describe the four main characteristics of our new, tree-based, direct estimation 
algorithm. First, we elaborate on the splitting criterion of the tree-based algorithm, which optimizes on the 
ITE explicitly (Hansotia & Rukstales, 2002), takes into account the value of the parent node (Rzepakowski 
& Jaroszewicz, 2012), and accounts for the sample sizes of treatment and control group in both child nodes 
(Rzepakowski & Jaroszewicz, 2012; Su et al., 2012). We then describe how we use different samples for 
partitioning the covariate space and estimating the ITE score, referred to as honest approach (Athey & 
Imbens, 2016). Third, we explain why we use ensemble learning (i.e., random forest) instead of a single 
decision tree. Finally, we define the termination rules of our tree-based algorithm.   

Splitting Criterion 

Hansotia and Rukstales (2002) propose using the ITE explicitly by splitting a decision node and thus 
maximize the difference of the differences between the treatment and control response probability in the 
left and right child node: 

 ΔΔp	=	|E[Y(1)	–	Y(0)|X∈ΦL]	–	E[Y(1)	–	Y(0)|X∈ΦR]|	 (2) 

where Φ is a subset of the feature space associated with the current decision node, and ΦL and ΦR are the 
left and right child nodes, respectively. We refer to this method as DDP. Note that equations 2–5, and 
figures 1 and 2 represent an arbitrary split that can take place on any level in a decision tree. Figure 1 
provides an example of the DDP splitting criterion, where the criterion takes its maximum value (i.e., 2). 

The problem with the DDP splitting criterion is that it introduces three major issues into the optimization 
of the ITE. First, the splitting criterion maximizes the absolute gain rather than the incremental gain of the 
ITE, which potentially introduces overfitting. Consider, for example a scenario in which we have several 
features to choose from for a specific split to divide the sample into left and right child nodes. Naturally, we 
would choose to split on a specific feature if it maximizes the gain, and we would reject all other features 
with a smaller gain compared to the selected feature. We would stop splitting if any split on all of the 
features resulted in no further improvement. However, the gain achieved with the DDP splitting criterion 
is always positive, potentially leading to a very deep tree.  

Second, directly connected to the first issue, the splitting criterion eventually leads to very small leaves. The 
method will continue splitting even if the split decreases the ITE. Although the intention can be that a split 
decreases the ITE in the first place for a much higher increase in the subsequent splits, this eventually leads 
to leaves of very small sizes (e.g., see the left child node in Figure 1), which in turn results in high variance 
and overfitting. 

Third, the splitting criterion neither takes into account the difference in size of the resulting child nodes nor 
does it consider the treatment-to-control ratio, as other researchers have noted (Devriendt et al., 2018; 
Radcliffe & Surry, 2011; Rzepakowski & Jaroszewicz, 2012). For example, imagine that in the left child node 
in Figure 1, we have only one sample in the treatment group with a positive response. Thus, E[Y(1)	–	Y(0)|X∈ΦL] = 1. However, when a split leads to an uneven distribution of control and treatment 
samples in the child nodes, small populations will be overemphasized (Radcliffe & Surry, 2011) and variance 
will increase (Y. Zhao et al., 2017b). 
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Figure 1.  Example of the DDP splitting criterion 

 

Drawing from ideas present in uplift modeling (Rzepakowski & Jaroszewicz, 2012), we address the first two 
issues by considering the ITE value of the parent node in the splitting criterion to reduce variance and 
overfitting. We eventually want the gain (incremental ITE) to be negative if the split does not exceed the 
absolute ITE value of the parent node. Thus, we take the absolute ITE value of the parent node and subtract 
it from the ΔΔp value yielding a possible range between -1 and 2: 

 ΔΔp*=	ΔΔp	–	|E[Y(1)	–	Y(0)|X	∈	Φ| (3) 

By subtracting the absolute value of the parent node, we limit the frequency of positive ΔΔp* values and 
thus ensure fewer splits. This approach does not perform a split if the difference of the ITE values of the 
child nodes (ΔΔp) is less than the absolute ITE value of the parent node (|E[Y(1)	–	Y(0)|X	∈	Φ|). Thus, the 
higher the ITE value of the parent node, the more difficult it is to find good splits. Thus, we both reduce the 
likelihood of creating a deeper tree and create leaves with few samples. Henceforth, we refer to this direct 
approach as a more invariant version of ΔΔp, that is, invariant DDP (IDDP). 

To address the third issue, we normalized our split by considering the sample sizes of the treatment and 
control groups in both child nodes, as suggested in the uplift modeling (Rzepakowski & Jaroszewicz, 2012) 
and HTE (Su et al., 2009) literature. More specifically, we extended the equation from Rzepakowski & 
Jaroszewicz (2012) such that it has the same range as their divergence functions (i.e., ranging between 0 

and 2) by adding one to the ΔΔp* term, dividing it by three, and multiplying it by two. Let nt(Φ) be the 
number of treatment samples, nc(Φ) the number of control samples, and n(Φ) the number of all samples in 
the current (parent) node. The first term of Eq. 4 penalizes the imbalance of treatment and control samples 
in the current parent node by calculating the entropy (H) of the proportion of treatment samples and control 
samples. The two following terms account for different leaf sizes: 

 

	I(Φ,Φl,Φr)	=	H=nt(Φ)n(Φ) ,
nc(Φ)n(Φ) ? 	2

1+ΔΔp*
3  

+nt(Φ)n(Φ) H=
nt(Φl)n(Φ) ,

nt(Φr)n(Φ) ?+
nc(Φ)n(Φ) H=

nc(𝛷.)n(Φ) ,
nc(𝛷&)n(Φ) ?+

1
2		 

(4) 

Treatment Control

Treatment Control Treatment Control

Positive Response

Negative Response
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where the entropy is defined as H(p,q) = (−𝑝 ∗ log/(𝑝)) + (−𝑞 ∗ log/(𝑞)). Similar to Rzepakowski and 
Jaroszewicz (2012) we added 0.5 to the last term such that the second part of Eq. 4 is always at least 0.5.  
The normalization term J(A) punishes unbalanced splits and favors balanced splits. If, however, we do not 
account for very small values of J(A), we would inflate even a small ΔΔp* value. For example, consider a 
ΔΔp* value of 0.1 and a J(A) value of 0.001. This would result in in an overly inflated IDDP value of 100 
(see Eq. 5). We can prevent this by adding 0.5 to the normalization term; instead, the IDDP value would be 
approximately 2. With Eq. 3 and Eq. 4 taken together, we define our final splitting criterion as: 

 IDDP = ΔΔp∗
I(Φ,Φ1, Φ2)	 (5) 

Similar to Zhao et al. (2017a), we include a regularity term to avoid outliers that would affect the ITE 
estimation. This means that the greater the difference in response rates (i.e., treatment and control response 
rates) between parent and child node, the more the child nodes’ response rates are shifted to the response 
rates of the parent. 

Figure 2 is an example of the IDDP splitting criterion. In contrast to the DDP splitting criterion, the IDDP 
criterion takes into account all the issues mentioned above. Thus, in the example, the IDDP criterion returns 
a much lower value because of the imbalance between treatment and control sample size in the left and 
right child nodes. 

 

Figure 2.  Example of the IDDP splitting criterion 

Treatment Control

Treatment Control Treatment Control

Positive Response

Negative Response

Normalization

Imbalance in parent node with respect to
treatment and control samples:

Imbalance between left and right child node
with respect to the treatment samples:

Imbalance between left and right child node
with respect to the control samples:
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Honesty 

To reduce bias, we follow the honesty approach proposed by Athey and Imbens (2016). The authors write 
“that a model is honest if it does not use the same information for selecting the model structure … as for 
estimation given a model structure” (Athey & Imbens, 2016, p. 7353). To accomplish this, they suggest using 
different samples for partitioning the covariate space and estimating the CATE scores. Before growing a 
tree, they split the training sample into an estimation sample 𝑆#$%, which is used only for CATE score 
estimation in the leaves, and a training sample 𝑆%&, which is used only for selecting tree splits. Although the 
partition in training and estimation samples reduces the sample size for training the tree, the authors argue 
that the reduction in bias offsets this disadvantage.  

Random Forest 

The high probability of overfitting with a single decision tree is an important factor to consider for a tree-
based algorithm (Grimmer et al., 2017; Wager & Athey, 2018). Multiple researchers report excellent 
performance of tree ensembles to overcome the problem of overfitting and improve generalizability. Thus, 
we use random forest for our IDDP approach as suggested in uplift modeling (Guelman et al., 2012; Sołtys 
et al., 2015; Y. Zhao et al., 2017a) and HTE (Grimmer et al., 2017; Wager & Athey, 2018). 

Termination Rules 

Finally, for IDDP we explicitly define the termination rules based on the splitting criterion and additional 
rules based on tree depth and leaf size. The algorithm to build the tree does reach a terminal node and does 
not continue splitting if one of the following criteria is met: 

1. There is no split that results in a positive/ non-negative IDDP value. 

2. The depth of the decision tree is greater than a user-defined parameter max_depth. 

3. The terminal node size is smaller than a user-defined parameter min_samples_leaf. 

4. The number of treatment samples in the terminal node is smaller than a user-defined parameter 
min_samples_treatment. 

Experiment 

In this section, we present the setup for our experiment on three real-world datasets between the proposed 
algorithm and other methods from both research streams. 

Datasets 

We performed the benchmarking on three real-world datasets. The setup was designed to consider different 
characteristics, such as varying sizes and response rates. Table 2 is an overview of the key properties of each 
dataset. 

Hillstrom 

The Hillstrom dataset is an email marketing campaign from MineThatData (Hillstrom, 2008). In line with 
previous research (Devriendt et al., 2018; Kane et al., 2014), we selected visit as the dependent response 
variable and considered only the promotion for women’s merchandise. Overall, the dataset comprises eight 
covariates, including continuous and categorical features covering consumer behavior (e.g., dollar value 
spent in the past year, the channels the customer purchased from in the past year) and geospatial data (e.g., 
zip code) data. Note that we removed duplicates (i.e., identical customers). 

Starbucks  

The Starbucks dataset comes from a promotional campaign conducted by Starbucks via a reward mobile 
app (it was made available via the Udacity Data Scientists Nanodegree). The dataset comprises seven 
covariates, which were all anonymized.   
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Churn 

The Churn dataset compromises private data from a company in Germany with fixed-term contracts, which 
usually last a year, and auto-renewal. The firm is primarily characterized by two customers groups: 
customers who renew their contracts regularly, referred to in uplift modeling as sure things (Rößler et al., 
2021); and customers who do not remain loyal to the company after the minimum contract period but who 
undergo auto-renewal if not reminded of a forthcoming cancelation, referred to in uplift modeling as do-
not-disturbs (Rößler et al., 2021). The company established a targeting policy in order to determine the 
latter from among the remaining customers who can be convinced to stay. The goal was to avoid offering 
treatments to sure things and do-not-disturbs. While treating former customers would result in additional 
costs given that these customers stay with the company regardless of treatment, treating do-not-disturbs 
would result not only in additional costs but could also lead to negative effects, as customers might have 
stayed with the company had they not been reminded of a forthcoming cancelation.  

Over one year, the firm ran several churn prevention campaigns to investigate whether a discount offer for 
the next contract period would prevent customers from churning and reduce customer turnout. In each 
trial, customers were selected whose contracts had not yet been canceled but who had the same contractual 
end date. These customers were divided randomly into control and treatment groups. All customers in the 
treatment group were subject to one of the following treatments: a discount for the next contract period or 
a gift. The cost for each treatment, including expenses for sending the offer via mail and the discount / gift 
itself, was 40€. Customers in the control group received no incentive. After the cancellation date, the 
company tracked who renewed and who canceled the contract. Overall, the company collected 34 features, 
including continuous and categorical features covering socio-demographic information, campaign details, 
and consumer behavior data. The company did not obtain customer relationship information, such as a 
customer life-cycle value.  

Variables Hillstrom Starbucks Churn 

Description Email marketing 
campaign 

Email promotion 
campaign 

Churn prevention 
campaign 

Channel E-mail E-mail Print 

Public or private Public Public Private 

Number of observations 38,231 126,184 17,114 

Number of treatment 
observations 

19,159 63,112 10,193 

Number of control observations 19,072 63,072 6,921 

Treatment-to-control ratio 1:1 1:1 3:2 

Number of covariates (excluding 
treatment and response variable) 

8 7 32 

Treatment response rate 16.02% 1.68% 63.02% 

Control response rate 11.48% 0.73% 63.50% 

Average treatment effect 4.54% 0.95% -0.48% 

Table 2. Overview of datasets used in the experiment 

Methods 

We compared our proposed direct approach (IDDP) with four state-of-the-art, direct estimation methods 
from both research streams: ΔΔp criterion (Hansotia & Rukstales, 2002) with random forest (DDP); uplift 
random forest with Euclidean distance (U-ED) (Sołtys et al., 2015); generalized random forest (GRF) (Athey 
et al., 2019); and Bayesian causal forest (BCF) (Hahn et al., 2020). Note that the DDP approach was 
originally intended for use with a single decision tree. However, as a baseline for comparison, we also use 
random forest for the DDP method. 
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We evaluated the following hyperparameters and their values for all methods: n_estimators [40, 140, 240], 
max_depth [10, 20, 30], min_samples_leaf [20, 40, 60], and min_samples_treatment [20, 40, 60]. The 
methods were implemented using AutoUM (Rößler and Schoder, 2022)1 which is based on causalml (Chen 
et al., 2020), EconML (Research, 2019); and the Accelerated Bayesian Causal Forest package2.  

Evaluation 

We split Hillstrom, Starbucks, and Churn dataset into 80% training and 20% testing while stratifying the 
treatment and response variable. We then used the training samples and 10-fold cross-validation to select 
the best hyperparameter setting for each method – again, using stratification with the treatment and 
response variable. Predictions and qini related metrics – that is, the deciles of the qini curve, the unscaled 
qini coefficient, and the weighted unscaled qini coefficient – were computed for each method, dataset, and 
validation fold. We then chose the best hyperparameter settings based on the average unscaled qini 
coefficient on the validation folds. 

Typically, the performance of predictive algorithms is compared in terms of actual versus predicted 
outcomes (Gubela et al., 2019). However, in ITE estimation, the ground truth is not observed. 
Consequently, most researchers use a decile-based metric to evaluate the performance of a predictive model 
(Gubela et al., 2019). The qini curve and the unscaled qini coefficient, metrics typically used by researchers 
and practitioners (Devriendt et al., 2018; Gubela et al., 2019; Imai & Li, 2021; Rößler et al., 2021), assess 
the performance by comparing groups of customers rather than individual customers. The qini curve plots 
the cumulative difference in response rate between treatment and control samples as a function of the 
number of targeted samples ranked by the method from high to low (Devriendt et al., 2018).  The optimal 
qini curve ranks treatment responder ahead of treatment non-responder in the treatment group and control 
non-responder ahead of control responder in the control group.  

Ideally, the qini curve of an algorithm should achieve increasing, high uplift values in the first quantiles 
(e.g., 50% uplift in 10% decile, 60% uplift in 20% decile etc.) until the uplift saddles and eventually begins 
to decrease until it is equal to the ATE (i.e., the uplift value when targeting all customers). The unscaled qini 
coefficient serves as a single number metric. It is defined as the ratio of the area under the actual qini curve 
to the area under the diagonal – corresponding to random targeting (Radcliffe & Surry, 2011). In general, 
the higher the value, the better the model. More specifically, the unscaled qini coefficient defines how the 
model performs in comparison with random targeting. For example, a value of two means that the model 
is performing twice as well as random targeting, and a value of one implies that the model is performing as 
well as random targeting. As the unscaled qini coefficient does not take into account the importance of the 
first deciles, which is usually of paramount interest in marketing campaigns, we use the following weighted 
unscaled qini coefficient proposed by Gubela et al. (2017): 

 Weighted	Unscaled	Qini = 	 (0.9 ∗ 𝑄3 + 0.8 ∗ 𝑄/ +⋯+ 0.1 ∗ 𝑄4)∑ 𝑄55

	 (6) 

where 𝑖 = (1,… , 9) refers to the decile index and 𝑄5 refers to the uplift value of decile i. 

Finally, we compared and evaluated the models based on the average performance on the test set. That is, 
we used the 10 models from cross-validation with the best hyperparameter settings, estimated their scores 
on the independent test sample, and calculated the average qini curves, average unscaled qini coefficients, 
and weighted unscaled qini coefficients.  

Results 

The empirical results comprise the performance evaluations of five ITE estimation methods on three real-
world datasets. The performance metrics capture how the marketing campaigns improve by using uplift 
modeling strategies in terms of qini curve, unscaled qini coefficient, and weighted unscaled qini coefficient. 
Table 3 illustrates the best hyperparameter settings for each method. 

 
1 https://github.com/jroessler/autoum 

2 https://github.com/socket778/XBCF 
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Dataset Method Hyperparameter 

  max_depth n_estimators min_samples_leaf 

 

min_samples_treatment 

Hillstrom U-ED 10 140 40 20 

DDP 10 240 40 20 

GRF 30 40 40 40 

BCF 10 140 20 20 

IDDP 10 40 40 20 

Starbucks U-ED 10 240 40 40 

DDP 10 240 40 40 

GRF 10 240 40 20 

BCF 10 240 20 40 

IDDP 20 240 60 20 

Churn U-ED 10 140 40 20 

DDP 20 40 40 20 

GRF 10 40 60 20 

BCF 10 140 40 20 

IDDP 10 240 20 20 

Table 3. Best hyperparameter for each method and dataset  

 

Figures 3-5 depict model performance in terms of qini curve per ITE method and dataset. These figures 
show that most of the methods succeeded in outperforming random targeting, which is represented by the 
diagonal lines, on all datasets. However, BCF deviated from this pattern, as its performance on the Churn 
dataset was much weaker than random targeting. In this sense, Figure 5 demonstrates that BCF was not a 
suitable ITE estimation for that specific dataset. Although the performance was better than that of BCF, 
GRF appears to be another method that proves to be inadequate for the Churn dataset. The corresponding 
qini curve never exceeded random targeting with substantial margin – except for the last deciles, which are 
barely relevant for marketing practice (see Figure 5).  

Most of the methods did show consistently good results with respect to the first deciles of the qini curve, 
which is of paramount importance given that it is “common practice in marketing to target only a small 
subset of customers with a campaign” (Gubela et al., 2017, p. 12). Thus, looking at Figures 3–5, we can see 
that companies can achieve high response rates while targeting fewer customers. A positive result shown in 
Figures 3–5 is that the IDDP approach in particular was performing well in the first deciles. In the second 
decile on the Hillstrom dataset, IDDP outperformed the second-best approach, GRF, by 62% and random 
targeting by 205% (see Figure 3). In the second decile on the Starbucks dataset, IDDP outperformed the 
second-best approach, BCF, by 21% and random targeting by 142% (see Figure 4). Finally, in the Churn 
dataset’s first decile, IDDP outperformed the second-best approach, U-ED, by 81% and random targeting 
by 1600% (see Figure 5). 

Figure 5 reveals that targeting the entire customer base on the Churn dataset results in a negative uplift 
value of -0.48%. Recall that targeting in the Churn dataset costs 40€ per individual, and so targeting all 
10,193 individuals totals 407,720€. To turn this underperforming churn prevention campaign into a 
campaign with a viable effect, the company could use IDDP and target only 10% of the customers in the 
treatment group, reducing the number of contacts by 90%, from 10,193 to 1,020, while achieving an 
incremental response rate of 0.85%. Thus, the company can achieve response rates of 64,35% and 63.50% 
in the treatment and control group, respectively. Overall, the company can save 366,920€ and improve the 
incremental response rate by 277% (from -0.48% to +0.85%) compared to targeting all customers in the 
treatment group. Finally, the strategy is in line with the company’s expectations. By targeting only 10% of 
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the customers, the firm can omit sending large amounts of discounts to sure things and do-not-disturbs,  
while reducing the expenses per responder from 37.69€ to 3.72€. 

 

Figure 3.  Qini curves on Hillstrom dataset for each method. 

 

 

Figure 4.  Qini curves on Starbucks dataset for each method. 

 



 Using Uplift Modeling and Heterogeneous Treatment Effects 
  

 Forty-Third International Conference on Information Systems, Copenhagen 2022
 13 

 

Figure 5.  Qini curves on Churn dataset for each method. 

 

To simplify performance comparison of various techniques across the three datasets, Table 4 reports the 
average unscaled qini coefficients and the weighted unscaled qini coefficients for each method and dataset. 
Table 4 reveals that according to the average unscaled qini coefficients, IDDP was the best-performing 
method on Hillstrom and Churn dataset, and the second-best performing method on the Starbucks dataset. 
On the Starbucks dataset, IDDP was outperformed only by BCF. Although the remaining algorithms mostly 
performed worse than the IDDP, they achieved good results on all three datasets. Only on the Churn dataset 
did GRF and BCF perform poorly compared with ED, DDP, and IDDP, highlighting again that neither 
method is suitable for the Churn dataset. 

Method Metric 

 Unscaled Qini Coefficient Weighted Unscaled Qini 
Coefficient 

Hillstrom Starbucks Churn Hillstrom Starbucks Churn 

Uplift random forest 
with Euclidean 
distance (U-ED) 

1.3081 1.5150 3.7832 

 

0.4002 0.4101 0.6164 

ΔΔp criterion with 
random forest (DDP) 

1.3013 1.5148 3.5648 0.3973 0.4134 0.5472 

Generalized random 
forest (GRF) 

1.3635 1.5079 1.1108 0.4076 0.4045 0.4039 

Bayesian causal forest 
(BCF) 

1.3593 1.5518 -1.5068 0.3894 0.4145 0.4934 

Invariant DDP (IDDP) 1.4571 1.5167 3.9256 0.4274 0.4179 0.6691 

Table 4. Results of the experiment with the average unscaled qini coefficient.  
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According to the weighted unscaled qini coefficients, IDDP was the best-performing method on all three 
datasets. It is striking that IDDP is the best-performing method on the Starbucks dataset when using the 
weighted unscaled qini coefficient, but only the second-best performing method on the same dataset when 
using the unscaled qini coefficient. However, as described above, IDDP is outperforming the other methods, 
particularly in the second decile on the Starbucks dataset, resulting in a slightly better weighted unscaled 
qini coefficient. Overall, however, the remaining methods were also performing very well on most datasets. 
GRF and BCF achieved worse values than U-ED, DDP, and IDDP only on the Churn dataset.  

Note that we also conducted analyses on synthetic datasets similar to Rößler and Schoder (2022). However, 
our results showed no differences in performance for all methods. We could not find any conditions (e.g., 
sample size, number of covariates, treatment-to-control-ratio) under which one method was outperforming 
the others. 

Conclusion 

In this study, we developed a new tree-based, direct estimation method based on recent advances in uplift 
modeling and HTE to predict the ITE and optimize targeting policies. Our proposed method has the four 
main characteristics: a splitting criterion that optimizes on the ITE explicitly, takes into account the value 
of the parent node, and accounts for the sample sizes of treatment and control group in both child nodes; 
the honest approach, that is, using different samples for partitioning the covariate space and estimating the 
ITE score; the use of ensemble learning (i.e., random forest) rather than a single decision tree; and the 
definition of termination rules. When tested on three datasets, our approach outperformed other state-of-
the art methods. In the first deciles in particular, which are of paramount interest when designing targeting 
policies in a marketing context (Gubela et al., 2017), our approach increased response rates in our 
campaigns compared to other methods. For example, when targeting only 20% of the customers, our 
method increased response rates by 62%, 21%, and 81% (first, second, and third dataset, respectively) 
compared to other approaches. 

More generally, our proposed method illustrated that by combining findings and ideas from two related 
research streams – uplift modeling and HTE – we could tackle major contemporary, practical challenges 
such as weak model performance and a lack of reliability (Fernández & Provost, 2019; Gupta et al., 2020; 
Hitsch & Misra, 2018). For example, our method performed very well not only across different cross-
validation folds, but also across different datasets. Further, the proposed method is highly relevant for 
practitioners and analysts in charge of marketing campaigns because it performed extremely well when 
targeting few customers – a use case that is especially common in marketing campaigns (Gubela et al., 
2017). Overall, we demonstrated that researchers from both uplift modeling and HTE have to work together 
to estimate ITEs in the best possible way. 

We are aware that our research has some limitations that serve as excellent avenues for future research. 
First, although we used different real-world datasets, we were constrained to three datasets to evaluate our 
approach. Hence, our results might be difficult to generalize. For example, the differences in results between 
the Churn dataset and the other datasets might be due to the unique characteristics of the former, such as 
a negative ATE, more covariates, and a smaller sample size. Also, it is striking that on the Starbucks dataset 
the performance of the IDDP is non-optimal. This may be caused by the specifics of the dataset such as low 
response rates in the treatment and control groups. This imbalance in response rates can pose challenges 
for HTE and uplift modeling algorithms. Additional research is necessary to validate our results and to 
further improve our understanding of the proposed method in different targeting contexts and on different 
datasets. Further, other scholars should evaluate the proposed approach by conducting a simulation-based 
analysis to derive boundary conditions – that is, finding circumstances under which the performance differs 
by, for example, varying response rates in the control and treatment groups or varying number of samples. 

Second, while we proposed a method that is theoretically constrained with respect to the type of input data 
(i.e., binary treatment variable and binary response variable), we invite fellow researchers to extend our 
proposed algorithm to contexts with continuous response variables and multiple treatment variables.  

Third, although we evaluated different methods and various hyperparameter settings, other scholars should 
extend our analysis by taking into account other methods (e.g., two-model approach (Foster et al., 2011) or 
class transformation approach (Jaskowski & Jaroszewicz, 2012)) as well as further hyperparameter settings. 



 Using Uplift Modeling and Heterogeneous Treatment Effects 
  

 Forty-Third International Conference on Information Systems, Copenhagen 2022
 15 

Fourth, we used only random forest to evaluate our method. Other scholars should extend the IDDP 
approach to other ensemble methods, such as bagging and boosting. 

Our study has methodological, theoretical, and managerial implications. From a methodological 
perspective, we have designed a new, effective ITE estimation method, motivated by previous studies on 
ITE estimation and that uses a tree-based algorithm. This enabled us to improve the performance of current 
state-of-the-art methods in ITE estimation. We also demonstrated that our method performs especially well 
when targeting few customers.  

From a theoretical perspective, we have shown the power of combining findings and recent advances from 
two related research streams, uplift modeling and HTE. While both streams have recently been integrated 
(Zhang et al., 2021), we demonstrated that combining methods and findings from both research streams is 
not only feasible but also beneficial to researchers. We highlighted that we targeting policies can be 
optimized by using the inherent symbiotic relationship between uplift modeling and HTE and leveraging 
prior knowledge. Thus, our study complements most recent research into unifying uplift modeling and HTE 
in that we demonstrated that both research streams can benefit from each other. Given the complexity of 
ITE estimation (Gupta et al., 2020), we urge researchers to consider both research streams when designing, 
evaluating, and optimizing ITEs. The results of this study provide new research opportunities not only for 
optimizing targeting policies in the domain of information systems and marketing but also for other 
domains that potentially benefit from optimizing targeting policies, such as political science (e.g., political 
campaigns) and health care (e.g., estimating drug effects).  

From a managerial perspective, our study showed that using the ITE can substantially improve a targeting 
policy with a proper estimation method. For example, while the Bayesian causal forest method was the best-
performing method on one dataset (i.e., Starbucks), it was the worst-performing method on another dataset 
(i.e., Churn). Based on our results, business managers and practitioners should evaluate a variety of 
methods from both research streams when optimizing targeting policies using the ITE.  
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