

Basic considerations for fracture toughness measurements of MPA CVD diamond to be used in nuclear fusion

G. Aiello, T. Scherer, A. Meier, S. Schreck, D. Strauss

www.kit.edu

Outline

- Context and basic idea
- MPA CVD diamond and properties
- How to measure the diamond fracture toughness
- Experimental setup and samples
- Characterization techniques
- Numerical analyses
- Summary and outlook

- Fundamental <u>safety role</u> of diamond disks in fusion reactors
- Qualification process of disks based on loss tangent only
- However, <u>failure to fracture</u> is the main failure mode for the disks

Basic idea

MPA CVD diamond

Polycrystalline plate

t = n

- Diamond growth by Microwave Plasma Assisted (MPA) Chemical Vapour Deposition (CVD)
- **Unique** solution for MW-class, CW operation
- Growth rate of 0.1 to 10 per hour

5

Disk resonant thickness t = 1.11 mm (ITER)

Fracture toughness (K_{IC}) of diamond - literature

Fracture toughness (MPa m ^{1/2})	Error (MPa m ^{1/2})	Type of diamond	Thickness (μm)	Shape	Dimensions (mm)	# of samples	Test method	Code	Papers no.	Year
6.3	-	MPA CVD diamond	150 to 200	Disk	ø 25	2	Tensile test	E-399	10, 1	1995
5.6	0.4	MPA CVD diamond	150 to 200	-	-	8	Indentation		10	1995
5.3	1.3	MPA CVD diamond	400	-	-	11	Indentation		6	1991
8.7	0.3	MPA CVD diamond	880	Rectangular	13 x 18	-	Double torsion		8	1998
8.3	0.4	MPA CVD optical diamond	1000	Rectangular	13 x 18	5	Double torsion		3	2004
8.5	1	MPA CVD mechanical diamond	1000	Rectangular	13 x 18	2	Double torsion		3	2004
6.5	1.2	Arc-discharge CVD diamond	244 (aver.)	Disk	ø7 to ø16	5	Ball on ring		5	1992
7.6	1.8	Arc-discharge CVD diamond	244 (aver.)	Disk	-	4	Indentation		5	1992
8	-	Arc-discharge CVD diamond	485	Rectangular	2 x 10	9	Three-point	E-399	7	2000
9.2	-	Arc-discharge CVD diamond	485	Rectangular	2 x 10	8	Three-point	E-399	7	2000
4.6	-	Arc plasma jet CVD	300 to 700	Disk	ø8	-	Ball on ring		13	1998
6	-	CVD diamond	300	-	-	-	Indentation		2	1994
6.8	1.1	Arc plasma jet/hot filament CVD	450	Rectangular	2,5 x 12	3	Three-point	E-399	12	2001
3.4	-	Natural diamond type Ia and IIa	-	-	-	9	Indentation		4	1981
13	-	PDC - cobalt phase	700 (aver.)	Rectangular	~15 x 30	5	Double torsion		11	1994

Methods for K_{IC} measurements - literature

Indentation

7

Ball on ring

Tensile (ASTM E399)

3 PB (ASTM E399)

- Some methods are only approximate
- Some methods covered by Standard Codes require specifications that cannot be fulfilled for diamond
- The only suited method in our case is the Double Torsion

Double torsion (DT) method: the choice

- Method applied to a very extensive range of materials
- However, it has not been standardized yet
- Key features:
 - A relatively simple method
 - K_I independent of crack lenght for a certain range
 - Ideal method for opaque materials

A. Shyam et al., J. Mater Sci 41, 2006

DT method: design of the experimental setup

6

Microscopy activity – ITER disks & samples

Olympus BX53M digital light microscope

- Automatic scans across the thickness (25 layers, 10x lens, 200 GB, ~8 hours)
- Global view on cracks distribution
- Local 3D analysis for detailed cracks configurations (3D cellSens software)

Other characterization techniques

Loss tangent measurements

Acceptance criteria for ITER disks: 3.5×10^{-5} for the D50 6.0×10^{-5} for the D90

Raman

Test measurements at ISSP, Riga (LV)

EBSD

Test measurements on going

XRD, Neutron diffraction

To plan yet

Numerical analyses

Summary & outlook

- A deeper mechanical characterization of MPA CVD diamond regarding its main failure mode is required
- The method for fracture toughness measurement was selected and the design of the experimental setup carried out
- Numerical analyses for worst load scenario of the diamond disks were performed
- Generate drawings of the setup and carry out the experiments
- Carry on the microstructural investigations on diamond samples and ITER disks

This work was supported by Fusion for Energy (F4E) under the grant contract No. F4E-GRT-615. The views and opinions expressed herein reflect only the author's views and not necessarily those of F4E and ITER Organisation (IO). F4E and IO are not liable for any use that may be made of the information contained therein.

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Temperature dependent properties in analyses

Design safe limit of 250 °C

- Decreasing of thermal conductivity
- Increasing of loss tangent

A. Pai, ITER_IDM_TMT6EY, 2016