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Unibertsitatea (UPV/EHU), Aptdo. 644, 48080, Bilbao, Spain; e-mail: luca.fanelli@ehu.es
3Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical

University in Prague, Trojanova 13, 12000 Prague 2, Czechia; e-mail: schianic@fjfi.cvut.cz

26 July 2022

Dedicated to Prof. Tohru Ozawa for his birthday, with deep gratitude for all he has done and

sincere friendship

Abstract

The objective of this survey is to collect and elaborate on different tools, both well-

established and more recent ones, which have been developed in the last decades to in-

vestigate spectral properties of non-self-adjoint operators of the form H = H0 + V . More

specifically, we will show how Hardy-type and Sobolev inequalities, together with Virial

theorems and Birman-Schwinger principles enter into play in the analysis of the spectrum

of these Hamiltonians.
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1 Introduction

In this survey we consider the following Hamiltonian

H := H0 + V.

This can be seen as a perturbation through the operator V of a reference operator H0. Hereafter,

unless explicitly mentioned, H0 will represent a general self-adjoint operator in L2(Rd), whereas

V will denote a potential, i.e. a multiplication operator by a generating function V : Rd → C.

Notice that as V is possibly-complex valued, H does not need to be self-adjoint.1

If one is interested in the spectrum of the perturbed Hamiltonian H, then the following natural

questions arise:

1. Under which perturbations V the spectral properties of the free operator H0 are preserved?

Or, from a different point of view:

2. How and to what extend spectral properties of H deviate from the ones of H0?

In this paper, without attempting to be complete, we collect several techniques that have been

developed in the last decades to give a satisfactory answer to the questions posed above, both

in a self-adjoint and non-self-adjoint context. As we will see in details below, some of the tools

available in the self-adjoint framework do not carry over to the non-self-adjoint setting. This

has required developing entirely new methods suitably adapted to the non-self-adjoint context.

To fix the notation we start recalling the following basic definitions. The spectrum σ(H) of a

closed linear operator H with dense domain in a Hilbert space H is the set of complex numbers

z for which the operator H − z : dom(H) → H is not bijective. The resolvent set is the

complement of the spectrum, namely ρ(H) := C \ σ(H). The set of all eigenvalues z of H of

finite multiplicities which are isolated points of the spectrum and such that the range of H − z
is closed is the discrete spectrum σd(H). The essential spectrum σess(H) of H is the set of

complex numbers z such that H − z is not Fredholm.2 If H is a self-adjoint operator, σess(H)

coincides with the complement set of σd(H), i.e. σess(H) = σ(H) \ σd(H). In general, namely

1In classical quantum mechanics the notion of Hamiltonian is customarily connected to a purely self-adjoint

setting (it is the observable which represents the total energy of the system). Nevertheless, it turned out that

adopting a less fundamental approach one can provide a relaxation of the notion which is meaningful also for

non-self-adjoint operators (see the introduction in [48] and references therein.)
2Actually, this is just one of the many possible definition for the essential spectrum, which are all equivalent

only in the self-adjoint setting. In particular, the one we are using here is σe3 in the monograph [31] by Edmunds

and Evans.
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for non-self-adjoint operators, this property does not need to be true. Nevertheless, as we shall

see, for the non-self-adjoint operators H considered in this paper, this will still be the case.

The set of all eigenvalues is the point spectrum σp(H).

Throughout the paper we make the standing assumption that the spectrum of the free Hamilto-

nian H0 is purely essential and that there are no eigenvalues embedded in the essential spectrum,

namely

σ(H0) = σess(H0), σp(H0) = ∅.

This assumption does not represent any loss of generality, as all the physically relevant examples

we will give below enjoy this properties.

When available, the disjoint decomposition of the spectrum into discrete and essential part

makes it possible to get information on the spectrum as a whole: locating the essential spectrum

as a set excludes regions where the discrete spectrum can be located and vice-versa. This, as

we will see in the first part of our analysis (Sec. 2), allows to find perturbations V such that

the spectrum of the free Hamiltonian does not change: if V is local as dictated by the Weyl

theorem then the essential spectrum remains stable; if, in addition, V is small as suggested by

Hardy-type inequalities (when available) then no eigenvalues are created outside the essential

spectrum and thus one has full spectral stability, i.e. σ(H0) = σ(H0 + V ).

This approach already provides useful information on the spectrum, but, as said, only on the

spectrum in its entirety. However, not investigating the intrinsic nature of the single parts of

the spectrum undermines the possibility of getting a satisfactory understanding of the system

described by our Hamiltonian. For instance, it is a very crucial point in scattering theory

to identify which part of the spectrum corresponds to the so-called bound states (states which

remain localised near a scattering center) and which one corresponds to scattering states (states

which move freely after the interaction with the potential). In atomic physics this distinction is

identified with the separation between discrete and essential spectrum, respectively. However,

according to the definition of the essential spectrum, this is only true if one can exclude a priori

the presence of embedded eigenvalues. This is notoriously a very difficult problem especially

because they have been constructed many examples of Hamiltonians which do admit embedded

eigenvalues even though the physical intuitions behind the quantum mechanical tunnelling

would like to exclude this possibility. Thus, in the second part of our analysis (Sec. 3), we

will show how different, but also intertwined, techniques as Mourre theory, Birman-Schwinger

principle and the method of multipliers can be used for the purpose of excluding embedded

eigenvalues in the essential spectrum. In the case when the perturbation of the free Hamiltonian

does create eigenvalues, it is an interesting problem understanding where these eigenvalues are

located in the complex plane. A very powerful tool to address such a problem is represented

by the Birman-Schwinger principle that we discuss in the third part of this survey.

We emphasise that throughout the paper we decided to keep almost always the reasoning on

a formal level and to avoid all technical details. This to make the reader familiar with the

ideas behind the techniques we will present and that could easily get lost within a too technical

presentation. Nevertheless all the rigorous proofs of the results that we mention can be found

in the related recalled references.
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2 Qualitative spectral stability

As far as stability of the essential spectrum is concerned, it is well known from Weyl’s theorem

(see [58, Thm. XIII.14]) that perturbations V (possibly-complex valued) which decay suffi-

ciently fast at infinity (or, more in general, which are relatively compact with respect to the

free Hamiltonian H0) do not change the essential spectrum, i.e. σess(H0 + V ) = σess(H0). On

the other hand, Weyl’s theorem alone does not exclude the possibility of these perturbations

creating discrete eigenvalues outside the essential spectrum.

This can be explained easily for bounded from below H0 and considering self-adjoint pertur-

bations, namely for real-valued potentials V : Rd → R. In this case, the min/max principle

says that, in principle, if V is an attractive perturbation, i.e. a non-trivial and non-positive

function, then

inf σ(H0 + V ) ≤ inf σ(H0). (2.1)

If the inequality above is strict, then the attractive nature of the potential does affect the

spectrum creating discrete eigenvalues below the essential spectrum. In passing, observe that

if the potential is repulsive, namely V is non-trivial and non-negative, then H0 + V ≥ 0, thus

inf σ(H0 + V ) = inf σ(H0) and no discrete eigenvalues can be created.

Nevertheless, it is a well known fact that the existence of Hardy-type inequalities for the free

Hamiltonian H0 represents a powerful source of sufficient conditions (intrinsically smallness)

on the attractive perturbation to ensure that this strict bound does not occur. We elaborate

more on this consequence of Hardy-inequalities in the next section.

2.1 Hardy-type inequalities

We start this subsection recalling the following definition (see [47]): we say that a self-adjoint

and bounded from below operator H0 on L2(Rd) satisfies an Hardy-type inequality if there

exists a non-trivial, measurable and almost everywhere positive function ρ such that

H0 − inf σ(H0) ≥ ρ. (2.2)

We take V := −ε|W |, ε > 0 and assume, for simplicity, W ∈ C∞0 (Rd). From (2.2) one has

H0 + V = H0 − ε|W | = H0 − ρ+ ρ− ε|W | ≥ inf σ(H0) + ρ− ε|W |.

If ε is sufficiently small, then ρ − ε|W | is non-negative. Thus, from the variational character-

isation of the spectrum and from (2.1), inf σ(H0 + V ) = inf σ(H0) and therefore no discrete

eigenvalues are created. This simple argument shows the relevance of proving Hardy-type in-

equalities and, more importantly, of proving optimality of such inequalities: if inequality (2.2)

is available, the “larger” (i.e. the sharper) is the right-hand-side, the “stronger” can be the

attractive perturbation that still can be proven not affecting the free Hamiltonian. For reader’s

convenience we give below two concrete examples.

Example 2.1 (Schrödinger and Hardy inequality). Let H = −∆ + V be the Schrödinger op-

erator with V : Rd → (−∞, 0]. It is well know that σ(−∆) = σess(−∆) = [0,∞). In particular,

inf σ(−∆) = 0.
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If d ≥ 3, the operator −∆ satisfies the Hardy inequality∫
Rd
|∇ψ(x)|2 dx ≥ (d− 2)2

4

∫
Rd

|ψ(x)|2

|x|2
dx

for any ψ ∈ H1(Rd), which can be alternatively written as

−∆ ≥ (d− 2)2

4

1

|x|2
, (2.3)

(cf. (2.3) with (2.2) above), where (2.3) has to be interpreted in a form sense. From (2.3) and

the general reasoning above one sees that if our attractive potential decays at least as fast as

|x|−2 at infinity and it is sufficiently small, then −∆ +V ≥ 0 which gives σ(−∆ +V ) ≥ 0, thus

no negative eigenvalues can occur.

Example 2.2 (Biharmonic operator and Rellich inequality). Let H = ∆2+V be the perturbed

biharmonic operator with V : Rd → (−∞, 0]. It is well known that σ(∆2) = σess(∆
2) = [0,∞).

In particular, inf σ(∆2) = 0. Moreover, if d ≥ 5, ∆2 satisfies the Rellich inequality∫
Rd
|∆ψ(x)|2 dx ≥ d2(d− 4)2

16

∫
Rd

|ψ(x)|2

|x|4
dx,

for any ψ ∈ H2(Rd), which can be alternatively written as

∆2 ≥ d2(d− 4)2

16

1

|x|4
,

(cf. again (2.2)). Reasoning as above one can see that for suitably small attractive potentials

decaying at infinity at least as |x|−4, the discrete spectrum of the biharmonic operator remains

empty.

If one looks at the general argument presented above, it is clear that, due to the consistent

use of the variational principle, this cannot be generalised to cover complex-valued potentials.

Nevertheless, in specific situations, for instance in the case of Schrödinger operators, it has

been shown that a suitable usage of the method of multipliers allows to still exploit Hardy-type

inequalities to detect smallness/repulsivity conditions which ensure that the discrete spectrum

remains empty (actually with this approach one can even prove that the entire point spectrum

is empty) also in a non-self-adjoint setting. We briefly explain below the method taking the

Schrödinger operator as toy model. Afterwards we will give references to similar results for

other relevant models.

2.2 The method of multipliers: absence of discrete eigenvalues

As anticipated, to explain the method of multipliers we take as toy model the non-self-adjoint

Schrödinger operator

H = −∆ + V, V : Rd → C, d ≥ 3.

Here, for simplicity, we assume V ∈ C∞0 (Rd), nevertheless the method we shall illustrate below

works under weaker assumption on the potential V (we refer to [17,36,37] where the method of
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multipliers for this model is developed in full details). We assume that there exists ψ ∈ H1(Rd)

which satisfies (weakly) the eigenvalue equation associated to H, namely

−∆ψ + V ψ = zψ,

namely, for any v ∈ H1(Rd), ψ satisfies

(v,−∆ψ) + (v, V ψ) = z(v, ψ). (2.4)

In a nutshell, the method is based on producing several integral identities by choosing vari-

ous test functions in (2.4) and later combining them in a way that one can ultimately detect

conditions on V which imply ψ = 0. This would contradict ψ being an eigenfunction corre-

sponding to z and thus σp(H) = ∅. Thus, in principle, the method can be used to totally

exclude eigenvalues (not only discrete).

As a warm-up we start considering the self-adjoint case, namely the case of V being real-valued.

Since we are interested in excluding discrete eigenvalues only, we assume that z ∈ R is negative

(recall that since V ∈ C∞0 (Rd) then σess(−∆ + V ) = σess(−∆) = [0,∞)). In this easy situation

we consider as test function v ∈ H1(Rd) in (2.4) the solution itself, namely v := ψ. Thus one

easily obtains ∫
Rd
|∇ψ|2 dx+

∫
Rd
V |ψ|2 dx = z

∫
Rd
|ψ|2 dx ≤ 0,

where the last inequality follows from z being negative. Now one notices that in the term

involving the potential it is the sign of the potential which gives the sign to the integral. This

fact allows to easily detect repulsivity conditions on V which exclude discrete eigenvalues.

Indeed, if V− = 0 or the Hardy-type smallness condition∫
Rd
V−|ψ|2 dx ≤ a2

∫
Rd
|∇ψ|2 dx, a2 < 1 (2.5)

holds for any ψ ∈ H1(Rd), then in both case one gets
∫
Rd |∇ψ|

2 dx ≤ 0, which entails ψ = 0.

Thus, no discrete (negative) eigenvalues can occur for repulsive (V− = 0) potentials or for

attractive but small (in the sense of (2.5)) potentials.

Now, we see how to handle the non-self-adjoint situation. Our purpose is to exclude discrete

eigenvalues, i.e. we want to show that if z is an eigenvalue of H, then z /∈ C \ [0,∞). For

simplicity, instead of considering this general case, we shall see how to exclude eigenvalues only

outside a fixed “half-cone” containing [0,∞), namely in the set C \ C, where

C := {z ∈ C : |=z| ≤ <z,=z 6= 0}. (2.6)

The general situation will be considered in the next Subsection 3.2. By contradiction we assume

z ∈ C \ C. Without loss of generality we assume also =z ≥ 0, the case =z < 0 can be done

similarly. Using as test function v := ψ and taking the real and the imaginary part of the

resulting identity one has∫
Rd
|∇ψ|2 dx+

∫
Rd
<V |ψ|2 dx = <z

∫
Rd
|ψ|2 dx, (2.7)
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and ∫
Rd
=V |ψ|2 dx = =z

∫
Rd
|ψ|2 dx, (2.8)

respectively. Subtracting (2.8) from (2.7) one gets∫
Rd
|∇ψ|2 dx+

∫
Rd

(<V −=V )|ψ|2 dx = (<z −=z)

∫
Rd
|ψ|2 dx ≤ 0,

where the last inequality follows from =z > <z (cf. (2.6)). Now, if <V is sufficiently repulsive

(i.e. its negative part [<V ]− is sufficiently small) and if =V is sufficiently small, then a similar

argument as in the self-adjoint case applies which entails ψ = 0. More precisely, the conditions

that one assumes are∫
Rd

[<V ]−|ψ|2 dx ≤ b21

∫
Rd
|∇ψ|2 dx,

∫
Rd
|=V ||ψ|2 dx ≤ b22

∫
Rd
|∇ψ|2 dx, (2.9)

for b21 + b22 < 1.

3 Absence of embedded eigenvalues

In the previous section we have seen that the presence of Hardy-type inequalities for the free

Hamiltonian H0 provides sources of sufficient conditions on the potentials V which guarantee

absence of discrete eigenvalues of H. The question of whether H can have eigenvalues embedded

in the essential spectrum is in general more difficult and, as a matter of fact, the results that

do exist require rather subtle tools. In the self-adjoint case, one successful theory is the so-

called Mourre theory or positive commutator theory of Quantum Mechanics whose classical

formulation we shortly recall below.

3.1 The Mourre theory and the Virial theorem

The starting point of the Mourre theory is the Virial theorem for self-adjoint operators. Here,

for simplicity, we give just a formal statement of the result (we disregard domain issues, etc).

We refer to [1, Prop.6.6], [25, Sec.4]) and also [58, Thm XIII.59 and notes on Sec. XIII.13] for

the rigorous statements. See also [57].

Theorem 3.1 (Virial Theorem). Let H and A be self-adjoint operators on a Hilbert space H.
If ψ is an eigenfunction of H then

(ψ, i[H,A]ψ) = 0. (3.1)

Formally, the statement is obtained just expanding the commutator and using self-adjointness

of the Hamiltonian. However, for unbounded operators a rigorous proof requires more care.

The following result is an immediate consequence of the Virial theorem 3.1.
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Theorem 3.2 (Mourre Theorem). Let H and A be self-adjoint operators on on a Hilbert space

H. Assume that the commutator i[H,A] between H and A is positive, i.e. there exists a positive

number a such that

i[H,A] ≥ aI. (3.2)

Then σp(H) = ∅.

Proof. Even though the proof is trivial, we sketch it here for the sake of completeness. If ψ were

an eigenfunction, then from 3.1 in the Virial theorem and from assumption (3.2) one would get

the contradiction

0 = (ψ, i[H,A]ψ) ≥ a > 0.

Then the point spectrum of H is empty.

Remark 3.1. In 1980 Mourre [57] showed that the global positivity hypothesis (3.2) in Thm 3.2

can be relaxed. More precisely, he proved that spectrally localized positive commutator estimates

(known as Mourre’s inequalities) are sufficient to get the finiteness of embedded eigenvalues and

the absence of singular continuous spectrum. In particular, Thm. 3.2 follows from his result.

Remark 3.2. Notice that Thm. 3.2 provides a condition to prove total absence of eigenvalues

(not only embedded).

Applied to particular situations, the abstract positive-commutator condition (3.2) in Theo-

rem 3.2 translates into natural repulsivity conditions on the potential V for Hamiltonians of

the form H = H0 + V. As above, we take as reference model the Schrödinger and perturbed

bharmonic operators on L2(Rd), namely we take H0 = −∆ and H0 = ∆2, respectively.

Example 3.1 (Schrödinger and perturbed biharmonic operators). Let A be the generator of

dilation, namely the self-adjoint operator

A := − i
2

(x · ∇+∇ · x), (3.3)

then the following commutation relations hold:

i[−∆, A] = −2∆, i[∆2, A] = 4∆2, i[V,A] = −x · ∇V.

Assuming the pointwise repulsivity condition x · ∇V ≤ 0 gives

i[−∆ + V,A] ≥ −2∆, i[∆2 + V,A] ≥ 4∆2. (3.4)

Since −∆ and ∆2 are just a non-negative operator, the inequalities above do not imply the

validity of the positive commutator condition as stated in (3.2) and thus the Mourre theo-

rem 3.2 does not directly apply. Nevertheless, since the right-hand-sides in (3.4) do have a

sign, analogous reasoning as in Theorem 3.2 allow to conclude: Indeed, let ψ ∈ H1(Rd) be an

eigenfunction of H = −∆ + V and let φ ∈ H2(Rd) be an eigenfunction of H = ∆2 + V, then

from Theorem 3.1 and from inequalities (3.4) one has

0 = (ψ, i[−∆ + V,A]ψ) ≥ ‖∇ψ‖22, 0 = (φ, i[∆2 + V,A]φ) ≥ 4‖∆φ‖22.
From these and from the decay assumptions on the eigenfunctions, it immediately follows that

ψ = φ = 0.
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Remark 3.3. Notice that the pointwise repulsivity condition x · ∇V ≤ 0 on the potential can

be easily weakened asking the validity of a variational smallness condition (in the spirit of (2.5)

and (2.9)) for the positive part of the radial derivative of the potential, namely

(ψ, [x · ∇V ]+ψ) ≤ c‖H1/2
0 ψ‖22, for all ψ ∈ dom(H

1/2
0 ). (3.5)

If c in (3.5) is sufficiently small, then the absence of point spectrum still follows under the

weaker assumption (3.5).

Notice that, as already mentioned, the possibility to exclude bound states in the previous two

situations worked out only because both −∆ and ∆2 are bounded below (actually non-negative)

operators. For operators that are not bounded below, Mourre-type results still apply but they

allow to exclude embedded eigenvalues only in part of the essential spectrum. As an explanatory

example we consider below the perturbed Dirac operator.

Example 3.2 (Dirac operator). Let H = Dm + V ICN×N , where Dm is the free Dirac operator

Dm := −iα · ∇+mαd+1 = −i
d∑

k=1

αk∂k +mαd+1. (3.6)

Here m ≥ 0 is the mass, N := 2dd/2e and V : Rd → R. The Dirac matrices αk ∈ CN×N , for

k ∈ {1, . . . , d+ 1} satisfy the anti-commutation relations

αjαk + αkαj = 2δkj

where δkj is the Kronecker symbol.

If m > 0 the spectrum of the free Dirac operator Dm is the union of two disjoint semi-axis,

namely

σ(Dm) = σess(Dm) = (−∞,−m] ∪ [m,+∞),

otherwise if m = 0 then its spectrum is the whole real line

σ(D0) = σess(D0) = R.

Computing the commutator with the dilation operator A defined in (3.3) one has

i[D, A] = −iα · ∇, i[V,A] = −x · ∇V.

Differently from the previous case, since the commutator i[D, A] = −iα · ∇ does not have a

sign, the full commutator i[H,A] = −iα · ∇ − x · ∇V ICN×N is also unsigned (even under the

repulsivity condition x · ∇V ≤ 0) and therefore the Mourre theorem does not apply as such.

Nevertheless, a slight modification of the argument above gives the following analogous (but

weaker) implications: if V + x · ∇V ≤ 0, then σp(H) ∩ (m,∞) = ∅ (if V + x · ∇V < 0, then

σp(H) ∩ [m,∞) = ∅). Analogously, if V + x · ∇V ≥ 0, then σp(H) ∩ (−∞,−m) = ∅ (if

V + x · ∇V > 0, then σp(H) ∩ (−∞,m] = ∅). If V + x · ∇V = 0 (as in the case of Coulomb

potential or, more elementary, in the free case V = 0), then σp(H) ∩ [−m,m]c = ∅. Finally, if

M1 ≤ V + x · ∇V ≤ M2, then σp(H) ∩ [−m −M1,m + M2]
c = ∅. These are consequences of

the following modified Virial theorem for the Dirac operator.
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Theorem 3.3 (Virial for Dirac). Let H = Dm + V ICN×N be the perturbed Dirac operator,

with Dm as in (3.6) and V : Rd → R and let A be the dilation operator defined in (3.3). If

ψ ∈ H1(Rd)N is an eigenfunction of H corresponding to the eigenvalue E ∈ R, then

E‖ψ‖22 = (ψ, (V + x · ∇V )ψ) +m(ψ, αd+1ψ). (3.7)

Proof. Formally, the statement is obtained just observing that from Theorem 3.1 one has

0 = (ψ, i[H,A]ψ) = (ψ,−iα · ∇ψ)− (ψ, x · ∇V ψ).

Then (3.7) is obtained just using the eigenvalue equation satisfied by ψ.

Remark 3.4. Observe that the statement of Thm. (3.3) is formal (no hypotheses on the

regularity/integrability of V are given). The rigorous result can be found, for instance, in [3,

Thm. 4.1.1, Thm. 4.1.2].

Now if one chooses for αd+1 the following representation

αd+1 =

(
ICN/2×N/2 0

0 −ICN/2×N/2

)
,

it is easy to see that

−m ≤ 〈αd+1mψ,ψ〉 ≤ m,

and thus the implications above follow easily from (3.7). See [3] and [62] for further details).

To sum up, we have seen that in the case of the Dirac operator the lack of positivity of the

commutator does not entail total absence of eigenvalues, nevertheless the underlying idea of

the virial theorem can be still used to exclude eigenvalues embedded in (part of) the essential

spectrum.

The beauty as well as the power of the Mourre theory relies on the fact that it provides a

completely abstract condition (see (3.2)), i.e. not depending on the specific Hamiltonian of the

system, to obtain information on eigenvalues embedded (and not) in the essential spectrum,

which moreover, as shown in the examples above, is also easy to verify in the particular cases

(at least on a formal level).

Nevertheless, if one considers non-self-adjoint Hamiltonians of the form H = H0 + V, with

V : Rd → C (complex-valued) several difficulties arise. As a matter of fact, already the Virial

theorem 3.1 ceases to be valid: indeed if ψ is an eigenfunction of the non-self-adjoint Hamilto-

nian H = H0 + V, i.e. ψ satisfies Hψ = zψ, with z ∈ C (the spectrum is no more necessarily

real), an easy computation gives

(ψ, i[H,A]ψ) = 2i=z(ψ,Aψ)− 2(=V ψ,Aψ). (3.8)

Thus the mean value of the commutator over the state ψ is no longer zero and, as a matter of

fact, it depends on the imaginary part of the eigenvalue and of the complex potential. Since the

right-hand-side is no longer zero and it is not even defined in sign, finding conditions such that
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i[H,A] > 0 would not lead to any contradiction. In other words, this shows that the standard

Mourre theory does not easily carry over the non-self-adjoint framework.

Leaving aside for now the Mourre theory, it turned out in the last decade that in the non-self-

adjoint case a successful technique to get absence of bound states (both discrete and embedded)

is the method of multipliers which, so far we have seen at work only to show absence of discrete

eigenvalues. In the next section we show how to modify the strategy developed in Sec 2.2 to

obtain absence of embedded eigenvalues as well.

3.2 The method of multipliers: absence of embedded eigenvalues

We recall that the core of the method of multipliers already introduced in Sec 2.2 relies on finding

suitable test functions in the weak formulation of the corresponding eigenvalue equation such

that a consequent manipulation of the resulting identities leads to a contradiction. We consider

again as toy model the Schrödinger operator. In Sec. 2.2 we have seen how to exclude eigenvalues

outside the conical sector C defined in (2.6), i.e. far away from the essential spectrum of −∆.

Now we consider the case of z ∈ C (this in particular covers embedded eigenvalues). Here,

for simplicity, we consider V ∈ C∞0 (Rd). Nevertheless the result presented below holds under

less restrictive hypotheses about V (see [17]). Considering as test function the skew-symmetric

multiplier v := [−∆, |x|2]ψ and taking the real part of the resulting identity, one gets

<(Hψ, [−∆, |x|2]ψ) = <z(ψ, [−∆, |x|2]ψ)

= <z<(ψ, [−∆, |x|2]ψ)−=z=(ψ, [−∆, |x|2]ψ)

= −=z=(ψ, [−∆, |x|2]ψ),

(3.9)

where the last identity follows from (ψ, [−∆, |x|2]ψ) being purely imaginary. Computing ex-

plicitly the L2-products above gives

2

∫
Rd
|∇ψ|2 dx+ d

∫
Rd
<V |ψ|2 dx+ 2<

∫
Rd
x · V ψ∇ψ dx = −2=z=

∫
Rd
x · ψ∇ψ dx. (3.10)

As a warm-up let suppose that V is real-valued, then =z = 0 and an integration by parts gives

2

∫
Rd
|∇ψ|2 dx−

∫
Rd
x · ∇V |ψ|2 dx = 0.

Notice that in the term involving V it is the sign of the radial derivative x · ∇V that gives the

sign to the integral. Thus, one can either assume the repulsivity condition [x ·∇V ]+ = 0 or the

Hardy-type smallness condition∫
Rd

[x · ∇V ]+|ψ|2 dx ≤ a2
∫
Rd
|∇ψ|2 dx, a2 < 2,

valid for all ψ ∈ H1(Rd). From both these conditions one has
∫
Rd |∇ψ|

2 dx ≤ 0, which entails

ψ = 0.

If V is complex-valued one immediately realizes that the sole identity (3.10) is not enough to

obtain the contradiction as in the self-adjoint case. Indeed, the term on the right-hand-side
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which depends on the eigenvalue (or, better, on its imaginary part) does not have a sign and

has to be controlled exploiting some suitable positive quantities. From this one understands

that, in the non-self-adjoint case, more identities are needed to get positivity. More precisely,

given g : Rd → R to be chosen later, one takes as test function v = gψ and then takes the real

and the imaginary parts of the resulting identity. A suitable algebra of these three identities

and suitable choices of g (see [17, 37] for details) give the following identity∫
Rd
|∇ψ−|2 dx+

|=z|√
<z

∫
Rd
|x||∇ψ−|2 dx− d− 1

2

|=z|√
<z

∫
Rd

|ψ|2

|x|
dx

−
∫
Rd
∂r(r<V )|ψ|2 dx− 2=

∫
Rd
x=V ψ∇ψ− dx+

|=z|√
<z

∫
Rd
r<V |ψ|2 dx = 0, (3.11)

where ψ−(x) := e−i
√
<z sgn(=z)|x|ψ(x). The auxiliary function ψ− is related to the Sommerfeld

radiation conditions

lim
r→∞

∫
|x|=r

∣∣∣∇ψ − iλ1/2 x|x|ψ∣∣∣2 dσ(r) = 0

for unique solvability of the Helmholtz equation −∆ψ + V ψ = λψ, λ ≥ 0, once one observes

that |∇ψ−|2 =
∣∣∇ψ − iλ1/2 x

|x|ψ
∣∣2 (see [34] where the auxiliary function ψ− was introduced for

the first time). At this point, from identity (3.11), it is reasonable to believe that if [<V ]−,

[∂r(r<V )]+ and =V are sufficiently small, then a similar argument as in the self-adjoint case

applies which entails ψ = 0. Again, the smallness conditions are of Hardy-type, namely one

asks ∫
Rd
r2[<V ]2−|ψ|2 dx ≤ b21

∫
Rd
|∇ψ|2 dx,

∫
Rd

[∂r(r<V )]+|ψ|2 dx ≤ b22

∫
Rd
|∇ψ|2 dx,

and ∫
Rd
|=V |2|ψ|2 dx ≤ b23

∫
Rd
|∇ψ|2 dx,

for suitably small b1, b2 and b3. As for the negative term in the first line of (3.11), this can be

estimated using the weighted Hardy inequality∫
Rd

|ψ|2

|x|
dx ≤ 4

(d− 1)2

∫
Rd
|x||∇ψ|2 dx, ψ ∈ H1(Rd), d ≥ 2,

and controlled in terms of the second one.

Remark 3.5 (Comparison between Mourre theory and method of multipliers). In the two

sections above we have seen that the abstract Mourre theory does not seem to be immediately

applicable to non-self-adjoint Hamiltonian, instead, the method of multipliers, relying just on

a direct manipulation of the eigenvalue equations does provide results in this more challenging

setting. Nevertheless, one can easily show that when we restrict to the self-adjoint setting,

the two approaches reduce one another. We clarify this fact again taking as toy model the

Schrödinger operator H = −∆ + V , with real potential V : Rd → R.
As an outcome of the method of multipliers we had the following result.
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Theorem 3.4. Let H = H0 + V, with H0 = −∆ and V : Rd → R. If ψ ∈ H1(Rd) is an

eigenfunction of H then

(ψ, [H, [H0, |x|2]]ψ) = 0. (3.12)

Proof. This follows from (3.9) with =z = 0 and using the simple fact

2<(Hψ, [H0, |x|2]ψ) = (Hψ, [H0, |x|2]ψ) + (Hψ, [H0, |x|2]ψ)

= (ψ, [H, [H0, |x|2]]ψ),

where in the last identity we have used that H is self-adjoint and that [H0, |x|2] is skew-

symmetric.

Then, the next step in the method was computing explicitly the double commutator and finding

conditions on the potential such that the double commutator (ψ, [H, [H0, |x|2]]ψ) had a sign.

Looking at the Mourre theory, one notices that there it was crucial instead to give a sign to the

commutator (ψ, [H,A]ψ) of the Hamiltonian with the dilation operator A. On the other hand,

an easy computation shows that

[H0, |x|2] = −4iA.

Thus the two methods are in fact the same method.

The ideas presented above related to the method of multipliers are developed in full details in

a series of papers [15, 17, 18, 36, 37]. See also [8, 9] for some related results on Dirac operators.

Refer to [15] for an adaptation of the method to the Lamé operator of elasticity. Instead for

some recent result which relies on the positive commutator theory we refer to [4].

4 Spectral enclosures

So far we have considered only tools for ensuring spectral stability, in particular we have in-

vestigated only situations where the potentials perturbing the free Hamiltonian do not create

eigenvalues (the point spectrum remains empty). Nevertheless, in the case when the perturba-

tion does create eigenvalues, it is an interesting problem understanding where these eigenvalues

are located in the complex plane. A very powerful tool to address such a problem is represented

by the Birman-Schwinger principle that we discuss in the next section.

4.1 The Birman-Schwinger principle

The principle, originated in the work [5] by Birman and [61] by Schwinger, has become nowadays

a fundamental and widely employed tool in spectral analysis. The easiest statement of this

principle can be given as follows:

Theorem 4.1. Let H be a perturbation of H0 by a factorizable bounded potential V = B∗A,

i.e. H = H0 + B∗A and let z ∈ ρ(H0). Then z ∈ σp(H) if and only if −1 ∈ σp(Kz), where

Kz := A(H0 − z)−1B∗ denotes the so-called Birman-Schwinger operator.
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Proof. Let z ∈ σp(H)∩ρ(H0). Then there exists a non-trivial ψ ∈ dom(H0) such that Hψ = zψ.

Thus

H0ψ + V ψ = zψ ⇐⇒ (H0 − z)ψ = −V ψ ⇐⇒ −ψ = (H0 − z)−1B∗Aψ

and so, denoting φ = Aψ and applying to both side the operator A we get

A(H0 − z)−1B∗φ = −φ,

so −1 ∈ σp(Kz). The “if part” is achieved simply performing the previous few steps in reverse

order.

If −1 is an eigenvalue of Kz, this means that the norm of the Birman-Schwinger operator is

at least 1, and consequently the eigenvalues of the perturbed operator H are confined in the

complex region defined by 1 ≤ ‖Kz‖; if in particular ‖Kz‖ < 1 uniformly with respect to z,

then the point spectrum of H is empty. Thus the Birman-Schwinger principle allows either to

locate the point spectrum in the complex-plane or to show its emptyness.

The advantage of studying the norm of the Birman-Schwinger operator is evident already

from its definition: if we are able to bound the resolvent (H0 − z)−1, it is usually an easy

matter setting A and B in a suitable normed space, and then obtain an estimate for Kz. This

approach reduces to establishing suitable resolvent estimates for the unperturbed operator H0.

Each of them corresponds, via the Birman-Schwinger principle, to a localization estimate for

the eigenvalues of the perturbed operator.

Before moving on to see the Birman-Schwinger principle at work in specific situations, we

emphasise that Theorem 4.1 was stated under the convenient assumption of V = B∗A being

bounded (then H is well defined as operator sum of H0 and V on dom(H0)) and considering

only the case z ∈ ρ(H0) (so that (H0 − z)−1 is well defined). This simplified setting led to

the trivial proof of the result given above. Nevertheless a more general and deeper result than

Theorem 4.1 can be proved and it will be considered in the next sections. We emphasise that

no proofs will be given there, as this would go beyond the scope of this survey, nevertheless all

the detailed references will be provided to the reader.

4.1.1 Birman-Schwinger principle: Kato’s approach

As we have observed before, requiring V = B∗A to be a bounded operator ensured that

H = H0 + B∗A is well-defined as a sum operator on dom(H) = dom(H0). For unbounded

potentials, the Hamiltonian H is still well-defined on dom(H0) ∩ dom(B∗A), but the latter

intersection domain may consist of {0} only. In this section, following the approach that dates

back to Kato [43] and Konno and Kuroda [46], we recall how to rigorously construct an extension

of this operator. Then, with this rigorous definition at hand, we give the general statement of

the Birman-Schwinger principle.

Let H,H′ be Hilbert spaces and consider the densely defined, closed linear operators

H0 : dom(H0) ⊆ H→ H, A : dom(A) ⊆ H→ H′, B : dom(B) ⊆ H→ H′,

such that ρ(H0) 6= ∅ and

dom(H0) ⊆ dom(A), dom(H∗0 ) ⊆ dom(B).
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Assume also, for simplicity, that σ(H0) ⊂ R. By RH0(z) := (H0− z)−1, we denote the resolvent

operator of H0 for any z ∈ ρ(H0).

We assume the following set of assumptions.

Assumption A. For some, and hence for all, z ∈ ρ(H0), the operator ARH0(z)B∗, densely

defined on dom(B∗), has a closed extension Kz in H′,

Kz = ARH0(z)B∗,

which we call the Birman-Schwinger operator, with norm bounded by

‖Kz‖H′→H′ ≤ Λ(z) (4.1)

for some function Λ: ρ(H0)→ R+.

Assumption B. There exists z0 ∈ ρ(H0) such that −1 ∈ ρ(Kz0).

The last assumption is a bit tricky to check in the application, but luckily for us is implied by

the following, easier, one:

Assumption B ′. There exists z0 ∈ ρ(H0) such that Λ(z0) < 1.

Indeed, assuming Assumptions A and B’, we get that ‖Kz0‖H′→H′ < 1. Thus, expanding in a

Neumann series, we see that (1 +Kz0)
−1 exists and hence −1 ∈ ρ(Kz0).

The extension of the perturbed operator H0 +B∗A is then constructed as follow.

Lemma 4.1 (Extension of operators with factorizable potential). Suppose Assumptions A and

B. Let z0 ∈ ρ(H0) such that −1 ∈ ρ(Kz0). Then the operator

RH(z0) = RH0(z0)−RH0(z0)B
∗(1 +Kz0)

−1ARH0(z0) (4.2)

defines a densely defined, closed, linear operator H in H which has RH(z0) as resolvent and

which is an extension of (H0 +B∗A)|dom(H0)∩dom(B∗A).

We can finally formulate the abstract Birman-Schwinger principle.

Lemma 4.2 (Birman-Schwinger principle). Suppose Assumptions A and B. Let z0 ∈ ρ(H0) such

that −1 ∈ ρ(Kz0) and H be the extension of H0 + B∗A given by Lemma 4.1. Fix z ∈ σp(H)

with eigenfunction 0 6= ψ ∈ dom(H), i.e. Hψ = zψ, and set φ := Aψ.

Then φ 6= 0, and in addition

(i) if z ∈ ρ(H0) then

Kzφ = −φ

and in particular

1 ≤ ‖Kz‖H′→H′ ≤ Λ(z);
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(ii) if z ∈ σ(H0) \ σp(H0) and if H0 is self-adjoint, then

lim
ε→0±

(ϕ,Kz+iεφ)H′ = −(ϕ, φ)H′ (4.3)

for every ϕ ∈ H′. In particular

1 ≤ lim inf
ε→0±

‖Kz+iε‖H′→H′ ≤ lim inf
ε→0±

Λ(z + iε). (4.4)

Remark 4.1. Notice that differently from Theorem 4.1, Lemma 4.2 covers also the case of

z /∈ ρ(H0). (The proof of Lemma 4.2 in this case follows adapting the limiting argument

introduced in [40, Thm. 8].)

4.1.2 Birman-Schwinger principle: abstract approach

In this subsection, we recall again the technicalities for the Birman-Schwinger principle and for

properly define an operator perturbed by a factorizable potential, but with a different approach.

This time we completely rely on the abstract analysis carried out by Hansmann and Krejčǐŕık

in [40], to which we refer for more results and background. There, in addition to the point

spectrum, appropriate versions of the principle are stated even for the residual, essential and

continuous spectra.

Here we collect the set of hypotheses we need.

Assumption I. Let H and H′ be complex separable Hilbert spaces, H0 be a self-adjoint operator

in H and |H0| := (H2
0 )1/2 its absolute value. Also, let A : H ⊇ dom(A) → H′ and B : H ⊇

dom(B) → H′ be linear operators such that dom(|H0|1/2) ⊆ dom(A) ∩ dom(B). We assume

that for some (and hence for all) b > 0 the operators A(|H0| + b)−1/2 and B(|H0| + b)−1/2 are

bounded and linear from H to H.

At this point, defining G0 := |H0|+1, we can consider, for any z ∈ ρ(H0), the Birman-Schwinger

operator

Kz := [AG
−1/2
0 ][G0(H0 − z)−1][BG

−1/2
0 ]∗, (4.5)

which is linear and bounded from H′ to H′.

The second assumption we need is stated below.

Assumption II. There exists z0 ∈ ρ(H0) such that −1 6∈ σ(Kz0).

Again, recurring to Neumnn series, we can replace it with the following hypothesis, stronger

but more manageable.

Assumption II ′. There exists z0 ∈ ρ(H0) such that ‖Kz0‖H′→H′ < 1.

Before recalling the Birman-Schwinger principle, we properly define the formal perturbed op-

erator H0 + V with V = B∗A.
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Theorem 4.2. Under Assumptions I and II, there exists a unique closed extension H of H0+V

such that dom(H) ⊆ dom(|H0|1/2) and the following representation formula holds true:

(φ,Hψ)H→H = (G
1/2
0 φ, (H0G

−1
0 + [BG

−1/2
0 ]∗AG

−1/2
0 )G

1/2
0 ψ)H→H

for φ ∈ dom(|H0|1/2), ψ ∈ dom(H).

This result correspond to Theorem 5 in [40], where the operator H is obtained via the pseudo-

Friedrichs extension. Note that following the alternative approach by Kato [43], the extension

of H0 + B∗A is not only closed, but also quasi-selfadjoint ([50]). We refer to the paper of

Hansmann and Krejčǐŕık [40] for a cost-benefit comparison of the two methods, and for a list

of cases when the two extensions coincide.

Finally, we can exhibit the abstract Birman-Schwinger principle, for the proof of which we refer

to Theorem 6, 7, 8 and Corollary 4 of [40].

Theorem 4.3. Under Assumption I and II, we have:

(i) if z ∈ ρ(H0), then z ∈ σp(H) if and only if −1 ∈ σp(Kz);

(ii) if z ∈ σc(H0) ∩ σp(H) and Hψ = zψ for 0 6= ψ ∈ dom(H), then Aψ 6= 0 and

lim
ε→0±

(Kz+iεAψ, φ)H′→H′ = −(Aψ, φ)H′→H′

for all φ ∈ H′.

In particular

(i) if z ∈ σp(H) ∩ ρ(H0), then ‖Kz‖H′→H′ ≥ 1;

(ii) if z ∈ σp(H) ∩ σc(H0), then lim infε→0±‖Kz+iε‖H→H′ ≥ 1.

While from the “in particular” part of the previous theorem one could infer a localization for

the eigenvalues of H, the principle can be employed in a “negative” way to prove their absence

when the norm of the Birman-Schwinger operator is strictly less than 1 uniformly respect to

z ∈ ρ(H0). This is precisely stated in the next concluding result, corresponding to Theorem 3

in [40], which is even richer: it not only gives information on the absence of the eigenvalues,

but also on the invariance of the spectrum of the perturbed operator.

Theorem 4.4. Suppose Assumption I and that supz∈ρ(H0)‖Kz‖H′→H′ < 1. Then we have:

(i) σ(H0) = σ(H);

(ii) σp(H) ∪ σr(H) ⊆ σp(H0) and σc(H0) ⊆ σc(H).

In particular, if σ(H0) = σc(H0), then σ(H) = σc(H) = σc(H0).
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4.2 Case studies

We now specialize the situation from the abstract to more concrete settings.

Suppose that H = H′ = L2(Rd;CN×N), N ∈ N, and V is the multiplication operator generated

in H by a matrix-valued (scalar-valued if N = 1) function V : Rd → CN×N , with initial domain

dom(V ) = C∞0 (Rd;CN). As customary, we consider the factorization of V given by the polar

decomposition V = UW , where W =
√
V ∗V and the unitary matrix U is a partial isometry.

Therefore we may set A =
√
W , B =

√
WU∗ and consider the corresponding multiplication

operators generated by A and B∗ in H with initial domain C∞0 (Rd;CN), denoted by the same

symbols. In the end, we can factorize the potential V in two closed operators A and B∗. Via

the Closed Graph Theorem, Assumption I is verified.

Furthermore, in general the operator Kz defined in (4.5) is a bounded extension of the classical

Birman-Schwinger operator A(H0 − z)−1B∗ defined on dom(B∗). Since in our case the initial

domain of B∗ is C∞0 (Rd;CN), hence dense in H, we get that Kz is exactly the closure of

A(H0 − z)−1B∗.

In conclusion, everything reduces to the study of ‖A(H0−z)−1B∗‖H→H: if there exists z0 ∈ ρ(H0)

such that this norm is strictly less than 1, then Theorem 4.3 holds; if this is true uniformly

respect to z ∈ ρ(H0), then also Theorem 4.4 holds true.

Example 4.1 (Non-self-adjoint Schrödinger operator). Consider the operator H = −∆ + V

with V : Rd → C. For V we use the decomposition

V (x) = sgnV (x)|V (x)| = sgnV (x)|V (x)|1/2|V (x)|1/2

for almost every x ∈ Rd. Here sgn z := z/|z| if z 6= 0 and sgn z := 0 if z = 0. Thus we choose

A(x) := |V (x)|1/2 and B(x) := sgnV (x)|V (x)|1/2. (4.6)

One has the following result on the bound of the norm of the Birman-Schwinger operator.

Lemma 4.3. Let H := −∆ + V, with V : Rd → C. For V we use the decomposition V = B∗A

with A and B as in (4.6). Assume that V ∈ Lγ+d/2(Rd). Then there exists a positive constant

Dγ,d such that

‖A(−∆− z)−1B∗‖γ+d/2L2→L2 ≤ Dγ,d|z|−γ‖V ‖γ+d/2Lγ+d/2
, where


γ = 1/2, if d = 1,

0 < γ ≤ 1/2, if d = 2,

0 ≤ γ ≤ 1/2 if d ≥ 3.

(4.7)

From the bound (4.7) and using the Birman-Schwinger principle (as stated in Theorem 4.3 or

Theorem 4.4) one immediately has the following result on the localisation of the point spectrum

of H.

Theorem 4.5. Let H = −∆ + V, with V : Rd → C. Assume that V ∈ Lγ+d/2(Rd). Then, there

exists a positive constant Dγ,d such that

|z|γ ≤ Dγ,d‖V ‖γ+d/2Lγ+d/2
where

{
γ = 1/2, if d = 1,

0 < γ ≤ 1/2, if d ≥ 2.
(4.8)
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Moreover, when d ≥ 3 there exists a positive constant D0,d such that if

‖V ‖Ld/2 < D0,d

then σp(H) = ∅.

The first contribution to the proof of Theorem 4.5 goes back to the work by Abramov, Aslanyan

and Davies [2] covering the case d = 1, γ = 1/2, where they found the optimal constant

D1/2,1 = 1/2. The higher dimensional framework was first addressed by Frank in his seminal

paper [38]. Later, together with Simon [39], they extended Theorem 4.5 to cover long-range

potentials, namely considering 1/2 < γ < d/2, but under a radial symmetry assumption. Very

recently Bögli and Cuenin [7] (see also [6]) proved that the result in [38] was optimal, thus

ultimately disproving the celebrated conjecture by Laptev and Safronov [51] claiming that the

bound (4.8) had to be true in d ≥ 2 also for 1/2 < γ < d/2.

In order to extend to higher dimensions the result in [2], based on a pointwise bound for the

Green function of − d2

dx2
− z, and clearly highly sensitive of the one dimensional framework,

Frank in [38] introduces a new method which has permeated all the subsequent works on the

topic and which relies on the combination of the Birman-Schwinger principle together with

suitable resolvent estimates. More specifically, he used the Kenig-Ruiz-Sogge estimates on the

conjugate line for the resolvent of the Laplacian from [45], namely

‖(−∆− z)−1‖Lp→Lp′ ≤ C|z|−d/2+d/p−1, 2

d+ 1
≤ 1

p
− 1

p′
≤ 2

d
, (4.9)

where 1/p + 1/p′ = 1 and 2/(d + 1) ≤ 1/p − 1/p′ ≤ 2/d if d ≥ 3 and 2/3 ≤ 1/p − 1/p′ < 1 if

d = 2. With estimate (4.9) at hands, the proof of Lemma 4.3 is immediate.

Proof of Lemma 4.3. Let d ≥ 3. From Hölder inequality and using (4.9) we have

‖A(H0 − z)−1B∗‖L2→L2 ≤ ‖A‖L2p/(2−p)‖(H0 − z)−1‖Lp→Lp′‖B∗‖L2p/(2−p)

≤ C|z|−d/2+d/p−1‖V ‖Lp/(2−p) ;

setting p/(2− p) = γ + d/2 and observing that

2

d+ 1
≤ 1

p
− 1

p′
≤ 2

d
⇐⇒ 2d

d+ 2
≤ p ≤ 2(d+ 1)

d+ 3
⇐⇒ 0 ≤ γ ≤ 1

2
,

then bound (4.7) follows. The lower dimensional setting d = 2 can be shown similarly.

Example 4.2 (Self-adjoint Schrödinger operator). Now we consider the easier case of self-

adjoint Schrödinger operators. Namely we consider H = −∆ + V with V real-valued. In this

setting a much stronger result than Theorem 4.5 holds: this is represented by the so-called

Lieb-Thirring inequalities, a fundamental tool developed to prove stability of matter (see, for

instance, [54]).

Theorem 4.6 (Lieb-Thirring inequalities). Let H = −∆ + V be the Schrödinger operator

where V : Rd → R is a real-valued potential. Assume that the negative part of the potential
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V− := −min{0, V } lies in Lγ+d/2(Rd) for some non-negative γ to be specified below. Let E0 ≤
E1 ≤ · · · ≤ 0 the non-positive eigenvalues of H. Then, there exists a positive constant Lγ,d
such that ∑

j≥0

|Ej|γ ≤ Lγ,d‖V−‖γ+d/2Lγ+d/2
, where


γ ≥ 1/2 if d = 1,

γ > 0 if d = 2,

γ ≥ 0 if d ≥ 3.

(4.10)

The above estimates were proved in the non-endpoint case, namely for γ > 1/2 if d = 1 and

for γ > 0 if d ≥ 2, by Lieb and Thirring in the 1975 work [55]. The extension γ = 1/2 in

the 1-dimensional case was obtained by Weidl [63], whereas the case γ = 0 for d ≥ 3 was

independently reached by Cwikel [24], Lieb [52] and Rozenbljum [59], and it is known as the

CLR bound, which estimates from above the number of eigenvalues.

Remark 4.2. Some comments on this celebrated result follow. First of all the range of γ for

which the inequalities (4.10) hold is optimal. In particular, one sees that γ = 0 is not allowed

in lower dimensions d = 1, 2. This is in agreement with the criticality of H0 = −∆ in lower

dimensions or, what is the same, with the fact that any arbitrarily small non-trivial negative

potential V always creates eigenvalues for the operator H = −∆ +V. In light of this comment,

inequalities (4.10) cannot hold for γ = 0 and d = 1, 2 as this would provide instead a smallness

condition on the potential for excluding eigenvalues.

The main open question about the Lieb-Thirring inequalities regards the optimal constant Lγ,d.

In particular it is still unknown its value in one of the most interesting physical case, namely

when d = 3 and γ = 1. As a matter of fact, inequalities (4.10) for γ = 1 gives a bound for the

sum of negative eigenvalues which was crucial for the proof of the stability of matter.

To conclude we just mention that, as in the non-self-adjoint setting, properties and structure

of the Birman-Schwinger operator play a crucial role also in the proof of these inequalities. In

particular, here the self-adjoint setting permits to employ the following stronger version of the

principle: under suitable integrability conditions on the potential, the number Nz of negative

eigenvalues of −∆ + V− smaller than −|z| equals the number Bz of eigenvalues greater than

1 of the Birman-Schwinger operator Kz =
√
V−(−∆ + |z|)−1

√
V−. In passing, note that in

the self-adjoint framework only the negative part V− of the potential counts indeed, via the

variational min-max principle, a bound for the sum of eigenvalues powers of the full Hamiltonian

H = −∆ + V is obtained from the analogous bound for the Hamiltonian H = −∆ + V−.

From the validity of Theorem 4.6 on has immediately the following bound for the single eigen-

value.

Theorem 4.7. Let H = −∆+V be the Schrödinger operator V : Rd → R a real-valued potential.

Assume that the negative part of the potential V− := −min{0, V } lies in Lγ+d/2(Rd) for some

non-negative γ to be specified below. Then, there exists a positive constant Lγ,d such that any

non-positive eigenvalue E satisfies

|E|γ ≤ Lγ,d‖V−‖γ+d/2Lγ+d/2
, where

{
γ ≥ 1/2 if d = 1,

γ > 0 if d ≥ 2.
(4.11)
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Moreover, when d ≥ 3 there exists a positive constant L0,d such that if

‖V−‖Ld/2 < L0,d

there are no non-positive eigenvalue.

Estimates (4.11) for the single eigenvalue are known as Keller-type estimates as the first ap-

pearance of such bounds goes back to Keller [44] (see also [55] and [10] for more recent results).

Even though inequalities (4.11) are immediate consequence of the Lieb-Thirring inequali-

ties (4.10), one could give an alternative proof of (4.11) which is simply based on Sobolev

inequalities. For the sake of completeness, we give a sketch of this proof below.

Proof of Theorem 4.7. We will see the proof only for d ≥ 3, the lower dimensional case can be

treated similarly. Since we are in the self-adjoint framework, the variational characterisation of

the spectrum states that for any u ∈ H1(Rd)

inf σ(−∆ + V−) = inf
‖u‖L2=1

u∈H1(Rd)

(u, (−∆− V−)u).

Therefore, in order to get (4.11), it is sufficient to prove the following lower bound

(u, (−∆− V−)u) ≥ −L1/γ
γ,d ‖V−‖

1+d/2γ
γ+d/2 (4.12)

for any u ∈ H1(Rd) with ‖u‖2 = 1. Using Hölder and the interpolation inequality we have

(u, V−u) ≤ ‖V−‖γ+d/2‖u‖22(2γ+d)/(2γ+d−2)
≤ ‖V−‖γ+d/2‖u‖4γ/(2γ+d)2 ‖u‖2d/(2γ+d)2d/(d−2)

≤ ε−1−d/2γ 2γ
2γ+d
‖V−‖1+d/2γγ+d/2 + ε1+2γ/d d

2γ+d
‖u‖22d/(d−2)

for some ε to be chosen later. In the last bound we have used the Young inequality ab ≤
ap/p+ bq/q valid for all positive a, b and for 1/p+ 1/q = 1.

As for the kinetic term, using the Sobolev inequality one has

(u,−∆u) ≥ Sd‖u‖22d/(d−2),

where Sd denotes the optimal Sobolev constant (see [53]). Plugging the two estimates together

one has

(u, (−∆− V−)u) ≥ −ε−1−d/2γ 2γ
2γ+d
‖V−‖1+d/2γγ+d/2 +

(
Sd − ε1+2γ/d d

2γ+d

)
‖u‖22d/(d−2),

which gives bound (4.12) after choosing a suitable small ε.

Example 4.3 (Non-self-adjoint Dirac operator). Let us consider now the non-self-adjoint Dirac

operator Dm,V = Dm+V, where Dm is the free Dirac operator defined in (3.6) and V is a matrix-

valued potential V : Rd → CN×N , with N = 2dd/2e. The spectral studies for Dm,V were started
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by Cuenin, Laptev and Tretter in their celebrated work [22], for the 1-dimensional case. There

they proved that if V ∈ C2×2 is a potential such that

‖V ‖L1(R) =

∫
R
|V (x)|dx < 1,

where |V (·)| is the operator norm of V (·) in C2 with the Euclidean norm, then every non-

embedded eigenvalue z ∈ C \ {(−∞,−m] ∪ [m,+∞)} of Dm,V lies in the union

z ∈ BR0(x
−
0 ) ∪BR0(x

+
0 ) (4.13)

of two disjoint closed disks in the complex plane, with centers and radius respectively

x±0 = ±m

√
‖V ‖41 − 2‖V ‖21 + 2

4(1− ‖V ‖21)
+

1

2
, R0 = m

√
‖V ‖41 − 2‖V ‖21 + 2

4(1− ‖V ‖21)
− 1

2
.

In particular, in the massless case the spectrum is σ(D0,V ) = R. Moreover, this inclusion is

shown to be optimal. Again, the proof relies on the combination of the Birman-Schwinger

principle with a resolvent estimate for the free Dirac operator, namely

‖(Dm − z)−1‖L1(R)→L∞(R) ≤

√
1

2
+

1

4

∣∣∣∣z +m

z −m

∣∣∣∣+
1

4

∣∣∣∣z −mz +m

∣∣∣∣.
In some sense, this is the counterpart for the Dirac operator of the above-cited Abramov-

Aslanyan-Davies inequality for the Schrödinger operator in 1-dimension.

One could ask if, in the same fashion of Frank’s argument in [38], one can combine the Birman-

Schwinger principle with Lp − Lp
′

resolvent estimates for the free Dirac operator, to derive

Keller-type inequalities for the perturbed Dirac operator. Unfortunately, these reasoning can

not be straightforwardly applied, since such Kenig-Ruiz-Sogge-type estimates does not exists

in the case of Dirac for dimension d ≥ 2, as observed by Cuenin in [19]. Indeed, due to the

Stein-Thomas restriction theorem and standard estimates for Bessel potentials, the resolvent

(Dm − z)−1 : Lp(Rd)→ Lp
′
(Rd) is bounded uniformly for |z| > 1 if and only if

2

d+ 1
≤ 1

p
+

1

p′
≤ 1

d
,

hence the only possible choice is (d, p, p′) = (1, 1,∞). For the Schrödinger operator the situation

is much better since the right-hand side of the above range is replaced by 2/d, as per the Kenig-

Ruiz-Sogge estimates.

For the higher dimensional case d ≥ 2, we may refer among others to the works [20, 23, 28, 35]

where the eigenvalues are localized in terms of Lp-norm of the potential, but, differently to

the 1-dimensional case, the confinement region is unbounded around the spectrum of the free

operator, namely σ(Dm) = (−∞,−m] ∪ [m,+∞).

Recently, two of the authors of this survey in [30], together with D’Ancona, were able to get

in higher dimension a bounded enclosure region asking smallness of the potential in a suitable

mixed Lebesgue space. More precisely, introducing the functional space

Y ≡ Y (Rd) :=
d⋂
j=1

L1
xj
L∞x̂j(R

d), x̂j := (x1, . . . , xj−1, xj+1, . . . , xd) ∈ Rd−1,

22



they showed that for suitably Y -small V, namely ‖V ‖Y < C0 for suitable positive constant

C0, then any eigenvalue z ∈ σp(Dm,V ) of Dm,V lies again in the union of two closed disks in C
(cf. (4.13)) with centers and radius given by

x±0 := ±mν2 + 1

ν2 − 1
, R0 := m

2ν

ν2 − 1
, ν ≡ ν(V ) :=

[
(d+ 1)C0

‖V ‖Y
− d
]2
> 1.

In the massless case they proved spectral stability under the same smallness condition about

V, namely σ(D0,V ) = R. As above, the proof comes again as a consequence of the machinery

combining the Birman-Schwinger principle with uniform resolvent estimates. In particular, the

following Agmon-Hörmander-type estimates were crucial for proving the result:

‖(Dm − z)−1‖X→X∗ ≤
[
d+

∣∣∣z +m

z −m

∣∣∣sgn(<z)/2] (4.14)

where the functional space X and its dual X∗ are

X ≡ X(Rd) :=
d⋂
j=1

L1
xj
L2
x̂j

(Rd), X∗ ≡ X(Rd) :=
d∑
j=1

L∞xjL
2
x̂j

(Rd).

For previous resolvent estimates in the spirit of (4.14) we refer to [26, 27, 33]. In the direction

of spectral stability result we should also mention the recent work [29] where the authors was

able to prove spectral stability of perturbed Dirac and Klein-Gordon operators under suitable

pointwise smallness/decay at infinity conditions for the potential. Last but not least in [56] the

matricial structure of the Dirac operator was fully exploited to obtain Keller-type estimates

dropping the smallness assumption on the potential. More precisely, the authors required the

potentials to be of the form V = vW, where v : Rd → C is a scalar function with the desired

integrability, whereas W is a constant matrix satisfying suitable rigidity conditions. Other

remarkable results can be found in [14,20,21,60]

This technique presented above is very robust and has produced interesting results also for other

models than Schrödinger and Dirac operators. Among second order operators, we mention the

Lamé operator of elasticity and we refer to [11, 12, 16] for the corresponding results in the

spirit of the ones available for Schrodinger. For higher order operators, we refer to [41] for

the application of the Birman-Schwinger principle to the bilaplacian in lower dimensions, see

also [32]. We also mention that the same technique has been applied successfully to a discrete

setting. In this respect we refer to [13,42] and the recent preprint [49].
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[36] L. Fanelli, D. Krejčǐŕık, and L. Vega. Absence of eigenvalues of two-dimensional magnetic

Schrödinger operators. J. Funct. Anal., 275(9):2453–2472, 2018.
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