
Full-waveform inversion of ground-penetrating radar
data and its indirect joint petrophysical inversion with

shallow-seismic data

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.)

von der KIT-Fakultät für Physik des
Karlsruher Instituts für Technologie (KIT)

angenommene

DISSERTATION

von

M.Sc. Tan Qin

Tag der mündlichen Prüfung: 04.11.2022

Referent: Prof. Dr. Thomas Bohlen

Korreferentin: Prof. Dr. Anja Klotzsche





Abstract

Both full-waveform inversion (FWI) of ground-penetrating radar (GPR) and shallow-seismic data have

received special attention in the past decade because they allow the reconstruction of seismic and elec-

tromagnetic (EM) properties at high resolution. Research on the two FWIs includes: FWI of single

geophysical data and joint FWI of multiple geophysical data. In this dissertation, I focus on GPR FWI

in the former and joint petrophysical inversion (JPI) in the latter.

In GPR FWI, the high computational costs and frequency-independent assumption are two problems

that limit its development. To reduce computational costs, I apply a subset FWI (SFWI) to multi-offset

GPR data. SFWI uses the data simulated on a model subset to approximate the data simulated on an

entire model. Thus it obtains theoretical speedup and memory saving factor equal to the size ratio of

the model and its subset. SFWI has higher or lower than expected speedups when combined with the

source parallelization and model domain parallelization, respectively. The model subset depends on

the illumination of the acquisition geometry used, for which I give rules of thumb by quantifying its

effect on the simulation and inversion. Both 2-D synthetic and field data validate that SFWI provides

results comparable to FWI but requires much lower computational costs than FWI. This study makes

FWI an affordable technique for general users and promotes its application in addressing near-surface

problems.

The second problem means that dielectric permittivity and electrical conductivity are supposed to be

frequency independent in most GPR FWI, which may lead to false estimates if they strongly depend

on frequency. I develop frequency-dependent GPR FWI to solve this problem. Using the τ-method

introduced from the seismic community, I define the permittivity attenuation parameter to quantify the

attenuation resulting from the complex permittivity. The new parameter acts as a low-pass filter, dis-

torting the waveform and decaying the amplitude of the EM waves. The use of permittivity attenuation

reduces the number of reconstructed parameters in frequency-dependent GPR FWI. The 2-D synthetic

examples illustrate that permittivity attenuation is necessary for reconstructing permittivity and conduc-

tivity models in frequency-dependent media. The 2-D field example shows that frequency-dependent

GPR FWI provides a better fit to the observed data and a more robust conductivity reconstruction in a

high permittivity attenuation environment than frequency-independent GPR FWI. This research greatly

expands the application of GPR FWI in more complicated media.

Shallow-seismic and GPR FWI can provide complementary information for each other. Based on the

sensitivity difference of the two data to petrophysical parameters, I propose indirect JPI, where seismic

data are used for porosity reconstruction and GPR data are used for saturation reconstruction. Unlike

conventional JPI, I first update the seismic and GPR parameters using non-petrophysical parametrizations

and then transform the most reliable estimates to petrophysical parameters. The 2-D synthetic tests show
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that indirect JPI can provide more accurate and consistent results than conventional JPI. In addition,

due to the rational use of the sensitivity of geophysical data to parameters, indirect JPI is more robust

when uncertainties exist in petrophysical a priori knowledge. More importantly, indirect JPI is flexible

to integrate different types of seismic and EM waves and acquisition geometries depending on the target

of interest, resulting in the best solution. Indirect JPI has been proven to be a promising approach for

multiparameter reconstructions.

To validate if indirect JPI can solve the real problem, I apply it for the first time to Love-wave and

multi-offset surface GPR field data. It provides consistent imaging of near-surface targets with good

accuracy by estimating seismic, EM, and petrophysical models. The inversion results are validated by

direct-push technology and borehole measurements. This application suggests that indirect JPI can avoid

conflicting geological interpretations that may arise in individual inversions and shows higher efficiency

of information exchange than joint structural inversion. Furthermore, this method is robust with differ-

ent petrophysical initial models and coefficients, for instance, Archie’s coefficients. The study verifies

the feasibility of using indirect JPI to invert multiple geophysical field data and promotes the broader

applicability of petrophysical methods.

In summary, this dissertation (1) reduces the computational costs of GPR FWI and extends GPR FWI to

frequency-dependent media, and (2) proposes a new joint strategy to combine GPR and shallow-seismic

data and validates its performance through 2-D synthetic and field examples.
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1 Introduction

The main content of this dissertation consist of two published journal papers (Chapters 3 and 4) and two

manuscripts prepared for submission (Chapters 2 and 5). Depending on the requirements of journals, I

use different writing styles, such as British and American English. In the following, I briefly describe

the motivations and main goals for these studies, since Section ‘Introduction’ in each chapter already

includes the state of the art.

1.1 Motivation

Ground-penetrating radar (GPR) is a widely used geophysical method for exploring the Earth’s shallow

critical zone. Full-waveform inversion (FWI) of GPR data has received particular attention in the past

decade because it can provide high-resolution subsurface models of dielectric permittivity and electrical

conductivity. Up to now, GPR FWI still faces the following challenges:

• High computational costs: FWI is computationally expensive, mainly due to that several simula-

tions of the full wavefield are required in each inversion iteration. It makes most of GPR FWI to

be performed in a 2-D world and on high-performance computer. If the investigation area is large

or many sources are needed, GPR FWI may become unaffordable for general users.

• High attenuation of electromagnetic (EM) waves: GPR emits and records EM waves propagating

in the subsurface. The signal attenuates rapidly in conductive environments like clay. This limits

the penetration depth of GPR signal and reduce the useful information that can be retrieved from

GPR data.

• Frequency-independent assumption: In most GPR FWI, permittivity and conductivity are treated

as constants over the main GPR bandwidth. In fact, many typical geological materials, especially

in shallow weathered zones, are frequency-dependent. Frequency-independent assumption may

not show the full potential of GPR FWI or may even lead to incorrect estimates if the frequency

dependence is strong.

• Uncertainty of the inverse problem: FWI is a typical inverse problem that highly depends on the

initial model and easily drops to the local minima. This uncertainty poses a significant challenge

to data interpretation, which becomes worse when encountering the inherent limitations of GPR

data.
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1 Introduction

To reduce uncertainty, one can use several geophysical methods to investigate the same targets because

they can provide complementary information for each other. In this study, I focus on GPR and shallow-

seismic method. The GPR signal is sensitive to water content, but the information it carries is limited

by the subsurface environment and antenna frequency; shallow seismic data have a high signal-to-noise

ratio and can detect the hardness of materials, but are difficult to determine changes in water. Independent

inversions of these data may provide inconsistent interpretation due to the non-uniqueness of the inverse

problem and the inherent limitations of these geophysical methods. Hence it is necessary to develop the

joint inversion to make the best use of the information from different geophysical data.

The joint inversion can be mainly divided into two classes: joint structural inversion (JSI) and joint

petrophysical inversion (JPI). They have the following challenges:

• Weak constraints of JSI: JSI exploits the structural similarity of different models. On the one hand,

this is very advantageous for the wide application of JSI, on the other hand, it is a shortcoming

because it uses only structural information and ignores other possible physical connections. For re-

gions where the variation of one model is slight, it is difficult for JSI to improve the reconstruction

of other coupled models.

• High dependence of JPI on a priori information: Compared to JSI, JPI has stronger constraint

because it uses petrophysical relations to connect petrophysical properties and geophysical pa-

rameters. However, if the petrophysical relations or rock matrix parameters are inaccurate, the

inversion results become poor. This makes JPI a site-dependent technique that is hard to apply to

a wide range of areas.

The above challenges limit the development of GPR FWI and joint inversion and need to be solved

urgently. This motivates the study of the dissertation.

1.2 Overview

The dissertation is organized as follows:

• Chapter 2: How to reduce the computational burden of GPR FWI? I use the model-dependent

method to change the disadvantage of high EM wave attenuation to the advantage of speeding up

the inversion and saving memory.

• Chapter 3: How to make GPR FWI more widely applicable and better feasible? I develop

frequency-dependent GPR FWI to account for velocity dispersion and amplitude attenuation

caused by complex permittivity.

• Chapter 4: How to make the best use of GPR and shallow-seismic data in joint inversion? I

evaluate the sensitivities of these data to petrophysical parameters and propose an indirect JPI to

make the joint inversion more robust when uncertainties appear in a priori information.

2



1.2 Overview

• Chapter 5: Is indirect JPI applicable to the real world? To validate this, I provide an example of

using this method to solve a field problem and present its superior performance over individual

inversions and JSI.

• Chapter 6: Conclusions of the full dissertation.
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2 Application of subset full-waveform inversion to
multi-offset ground-penetrating radar field data

Prepared as: Qin, T., Bohlen, T., Allroggen, N., & Klotzsche, A. Application of subset full-waveform

inversion to multi-offset ground-penetrating radar field data. GEOPHYSICS.

Abstract

Ground-penetrating radar (GPR) is a widely used geophysical method for exploring the Earth’s shallow

critical zone. In practice, multi-offset GPR data are usually acquired with either surface or multi-borehole

geometries. The recorded data can be analyzed by computationally expensive full-waveform inversion

(FWI) algorithms. We apply a subset FWI (SFWI) to multi-offset GPR data to reduce computational

costs by using the data simulated on a model subset to approximate the data simulated on an entire

model. Due to the high attenuation characteristics of electromagnetic waves in typical soils, the size of

the model subset can be much smaller than the model. Thus we obtain theoretical speedup and memory

saving factor equal to the size ratio of the model and its subset. The properties of the model subset

depend on the illumination of the chosen acquisition geometry. Our study reveals that, due to memory

savings, SFWI has higher than expected speedups when using the source parallelization alone. When

combined with the source parallelization and model domain parallelization, its performance degrades a

little due to the proportional increase in communication time. Both 2D synthetic and field data validate

that SFWI provides results comparable to FWI, but without the redundant computation present in FWI.

In the field examples, a 45 m long survey line and a 21 m long multi-borehole plane, the SFWI obtain

a speedup greater than eight times and three times, respectively. The former can be further accelerated

by shortening the source-receiver array, but at a slight sacrifice in reconstruction precision. To sum up,

this study makes FWI an affordable technique for general users and promotes its application to address

real-world problems.

2.1 Introduction

Detailed characterization of the near-surface region is essential for engineering, hydrological, and ar-

chaeological applications. As a commonly used geophysical method, ground-penetrating radar (GPR)

plays an important role in near-surface surveys (Jol, 2008). Up to now, most GPR data are still interpreted

based on reflector picking and travel-time tomography, which may introduce artificial errors and the res-

olution may not meet practical needs (Paz et al., 2017). Another interpretation approach is full-waveform

5



2 SFWI of GPR field data

inversion (FWI), which has been shown to have the potential for reconstructing high-resolution subsur-

face models of electromagnetic (EM) material properties (Klotzsche et al., 2019). However, GPR FWI

is computationally expensive compared to other interpretation approaches. Multi-offset GPR data are

usually collected at the surface or in multiple boreholes. FWI of these data may become computation-

ally unaffordable for personal computers when the profile is long and many sources have to be modeled.

Therefore, reducing computational costs is crucial in applying FWI to invert typical GPR data acquired

in field surveys.

The cost of FWI is proportional to the number of sources and the size of the model. Hence, methods

used to accelerate FWI can be divided into two main classes: source-dependent method and model-

dependent method. The source-dependent method reduces the number of sources used in FWI. The

encoded simultaneous-source FWI proposed by Krebs et al. (2009), one of the most popular source-

dependent methods, merges ns gathers into ne
s supergathers, thus reducing the computational cost by a

factor of ns/ne
s , where ns and ne

s are the number of all sources and encoded sources, respectively. Nev-

ertheless, this method requires the fixed-spread geometry for all sources, which is impractical for GPR

data. Furthermore, crosstalk introduced by the encoding operation can interfere with the reconstruction

results. To suppress the crosstalk and adapt the encoded simultaneous-source FWI to marine streamer

seismic data, Choi and Alkhalifah (2012) developed the objective function using the global correlation

norm. This objective function normalizes the trace; hence, it is not favorable to amplitude information,

which is essential for reconstructing the conductivity from GPR data. To eliminate the crosstalk and

acquisition limitation, Huang and Schuster (2012) proposed a frequency-division encoding method and

Zhang et al. (2018) used the phase sensitive detection method. Both of them follow the same idea of

assigning different frequency components to each source in one encoded source so that the wavefield

of each source can be decoded from the wavefield of the encoded source by frequency filtering (Nihei

and Li, 2007). However, the number of sources encoded into a supergather depends on the frequency

band and the time window. Furthermore, each source contains much less information than a full-band

signal. These limitations decrease the performance gain of the source-dependent methods (Bachmann

and Tromp, 2020).

The model-dependent method reduces the model size by a factor of S, thus making the computation S

times faster, where S is the size ratio of the model and the reduced model. One of the advantages of

the model-dependent method compared to the source-dependent method is that it saves memory by S

times. In the studies of Gueting et al. (2015), Gueting et al. (2017), and Zhou et al. (2021a), the survey

plane is divided into nb−1 crosshole planes by nb boreholes where nb is the number of boreholes. GPR

FWI is implemented separately in each crosshole plane with the data acquired in two boreholes. The

final GPR FWI results are obtained by splicing all nb− 1 crosshole planes. We refer to it as spliced

GPR FWI. This method is computationally economical relative to the GPR FWI of an entire survey

plane. However, spliced GPR FWI reconstructs each crosshole plane independently, which may lead to

different convergences of data fitting and different degrees of model update in adjacent planes (Gueting

et al., 2015; Zhou et al., 2021a). Moreover, when nb is large, spliced GPR FWI becomes cumbersome due

to the need to set up the acquisition for nb−1 crosshole models. To apply FWI to land streamer seismic

data more efficiently, for each source, Tran and Sperry (2018) performed forward modeling on a model

subset (referred to as a model segment in their paper) rather than on the entire model. Unlike the spliced
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GPR FWI, the method of Tran and Sperry (2018) is simple to operate as it requires only one acquisition

setup. Hoang (2021) applied a similar approach to the land streamer seismic data acquired along a 1500 m

profile and obtained a 15-fold acceleration with respect to the standard FWI. Unfortunately, neither Tran

and Sperry (2018) nor Hoang (2021) offered an in-depth analysis of the principles for these methods and

the selection of the model subset. On the other hand, in the 3D GPR forward modeling study of Koyan

and Tronicke (2020), the authors examined the effects of the distance between the source-receiver array

and the subset boundary on the simulated data, which is a first approach for quantifying the applicability

and limitations of model-dependent methods to accelerate FWI.

In this paper, we adopt the subset FWI (SFWI) method, a model-dependent method introduced by Tran

and Sperry (2018) in the shallow-seismic study, to process multi-offset GPR field data. Our contribution

consists of two parts. First, we clarify the principles of SFWI and give rules of thumb for selecting the

model subset by quantifying the performance difference between 2D SFWI and FWI. Second, we apply

2D SFWI for the first time to GPR field data acquired from different geometries. Up to now, GPR FWI

has primarily been applied to crosshole radargrams and is rarely used to invert multi-offset surface GPR

data (Klotzsche et al., 2019). The latter is more challenging because of reduced illumination, differences

in sensitivity kernels and higher requirements for initial model building (Lavoué et al., 2014). In practice,

however, surface data acquisition is faster to perform and does not require boreholes. It is therefore

critical for computationally expensive tasks, such as 3D imaging. For these reasons, we evaluate SFWI’s

performance primarily using multi-offset surface GPR data and using crosshole GPR data only at the end

of Section 2.4.

2.2 Methodology

2.2.1 Full-waveform inversion

The objective function Φ that we use in GPR FWI is a sum of the individual objective functions Φi

Φ(m) =
ns

∑
i=1

Φi(m), Φi(m) =
1
2
||dsyn

i (m)−dobs
i ||22, (2.1)

where dsyn
i and dobs

i are the synthetic data and observed data of the ith source, respectively; m is the

model parameters, i.e., dielectric permittivity ε and electric conductivity σ ; ns is the number of sources

and ||.||2 represents the l2 norm. We use the finite-difference time-domain (FDTD) method to simulate

the propagation of the EM wavefields (Yee, 1966) and use the convolutional perfectly matched layer

(CPML) to absorb the outgoing waves (Roden and Gedney, 2000). GPR FWI uses the adjoint-state

method to calculate the derivative of Φi(m) with respect to m and sums it up to form an overall model

gradient ∂Φ(m)/∂m as follows (Plessix, 2006; Meles et al., 2010):

∂Φ(m)

∂m
=

ns

∑
i=1

∂Φi(m)

∂m
. (2.2)
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nsb nsr2 nrb

nsr1

nxi

nx

(a)

(b)

Figure 2.1: (a) The model m (1130×175 grids with grid spacing 0.04 m) and (b) the model subset mi

(250×175 grids with the same grid spacing). The black dashed rectangle in the model out-
lines the extraction area. The red stars are sources, and the white triangles are the receivers
of the ith source. nx and nxi illustrate the widths of the model and its subset, respectively;
nsb and nrb are the source-boundary and receiver-boundary distances, respectively; nsr1 and
nsr2 are the minimum and maximum source-receiver offsets, respectively. The relative per-
mittivity εr of the air is one (depth < 0 m).

The gradient is then applied in the preconditioned conjugate-gradient method to iteratively update the

model parameters m (Qin et al., 2022b). Equation 2.2 demonstrates that ∂Φ(m)/∂m needs to be com-

puted over the entire model space, which results in a high computational cost for GPR FWI if the model

size is large. In the following, we show how to use a model-dependent method, i.e., SFWI, to solve this

computational problem.

2.2.2 Subset full-waveform inversion

We build a model m in Figure 2.1a and use a ‘walk-away’ method to acquire multi-offset surface GPR

data on one side of the source (Domenzain et al., 2021). Given the high attenuation of EM waves

propagating in the subsurface, the reflected waves fall below the noise level when the transmitter-receiver

offset exceeds a certain distance, depending on the signal-to-noise (S/N) ratio. Thus the source-receiver
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array of the ith source illuminates only a fraction of the model (Meles et al., 2011), e.g., the model subset

mi in Figure 2.1b, which we can extract from the model by

mi = Aim, (2.3)

where Ai is an nmi× nm matrix for transformation. nm and nmi are the size (i.e., number of grids) of m
and mi, respectively. Each row of Ai consists of a one corresponding to the coordinate index of one grid

in mi and nm− 1 zeros elsewhere (Hoang, 2021). The matrix has only nmi ones and is therefore highly

sparse.

In SFWI, we simulate the EM wavefields on mi and obtain the data dsyn
i (mi) with the same acquisition

geometry as dsyn
i (m). The corresponding objective function is expressed as below:

Φ(mi) =
ns

∑
i=1

Φi(mi), Φi(mi) =
1
2
||dsyn

i (mi)−dobs
i ||22. (2.4)

We use the adjoint-state method to compute ∂Φi(mi)/∂mi, the gradient of the model subset, and form a

padded gradient ∂Φi(mi)/∂m by transforming the gradient subset back to its position in the entire model

as follows:
∂Φi(mi)

∂m
= AT

i
∂Φi(mi)

∂mi
, (2.5)

where the superscript T is the transpose operator. Equation 2.5 means that ∂Φi(mi)/∂m has the same

size as m and is the result of padding ∂Φi(mi)/∂mi to zero in areas outside the model subset (Tran

and Sperry, 2018). If the padding areas have a negligible impact on the data of the ith source, we can

approximate the data of the ith source simulated on m with that on mi, that is

dsyn
i (m)≈ dsyn

i (mi). (2.6)

Then we get Φi(m) ≈ Φi(mi), Φ(m) ≈ Φ(mi), and ∂Φ(m)/∂m ≈ ∂Φ(mi)/∂m. In such a case, we

approximate the gradient of the entire model ∂Φ(m)/∂m by summing the padded gradients of all model

subsets as follows:
∂Φ(m)

∂m
≈

ns

∑
i=1

∂Φi(mi)

∂m
. (2.7)

We summarize the workflow of SFWI in Figure 2.2. The model m is split into ns model subsets (equa-

tion 2.3), each of which should satisfy the data approximation (equation 2.6). For the convenience of

parallelization, we define all model subsets of the same spatial size. The gradient corresponding to each

source is calculated within the model subset mi (equation 2.5) and then merged to form an approximated

gradient (equation 2.7). We use the approximated gradient in the optimization for iteratively updating m
(Qin et al., 2022b).

Our workflow differs from that of Hoang (2021) whose model subset is updated by its gradient ∂Φi(mi)/∂mi

directly. The workflow of Hoang (2021) violates the requirement of source parallelization, as different

9
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input
m(m1, ...,mns

)

while loop

extract
mi = Aim

merge
∂Φ(m)
∂m ≈∑ns

i=1
∂Φi(mi)

∂m

compute
∂Φi(mi)

∂m = AT
i

∂Φi(mi)
∂mi

update
m

exit
while loop?

output
m(m1, ...,mns

)

no

yes

Figure 2.2: The subset full-waveform inversion (SFWI) workflow for multi-offset ground penetrating
radar (GPR) data. The model m can be split into ns model subsets, i.e., m1, ..., mns , where
ns is the number of sources.

model subsets may overlap each other and cannot be changed simultaneously in the inversion. We over-

come this drawback by using the merged gradient of all sources (equation 2.7) to update the model. In

this way, SFWI has the same compatibility as conventional FWI in terms of source parallelization, which

is an important technique for high-performance computation.

As can be seen from the workflow (Figure 2.2), SFWI is very similar to FWI, except for the extra spatial

transformation operations. Since the transformation matrix Ai is highly sparse, the extraction of model

subset (equation 2.3) and the padding of gradient subset (equation 2.5) impose a negligible burden on

SFWI. Therefore, the computational costs of gradient calculation for the ith source in SFWI depend on

mi not m. The data approximation (equation 2.6) also applies for source-wavelet correction (Ernst et al.,

2007a; Groos et al., 2014) and step length estimation (Meles et al., 2010). As a result, SFWI reduces all

simulation-related tasks which are the most computational expensive part in FWI. Theoretically, in each

iteration, SFWI obtains a speedup and memory saving factor equal to the size ratio of the model and its

subset:

S = nm/nmi. (2.8)
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(a) True (b) Initial (c) FWI (d) SFWI

Figure 2.3: Models of the synthetic example, showing (a) the true models, (b) the initial models, (c) the
reconstructed models of full-waveform inversion (FWI), and (d) the reconstructed models of
SFWI.

In the 2D case (Figure 2.1), since that m and mi have the same length in z direction (Cartesian coordinate

system), we have the speedup factor Sx
2D = nx/nxi, where nx and nxi are the lengths of m and mi in x

direction.

2.3 Synthetic examples

The key point of our approach is that the data approximation (equation 2.6) must be satisfied, depending

on the selection of the model subset, which in the 2D case is the selection of nxi. As shown in Figure 2.1b,

nxi = nsb+nsr2+nrb where nsb, nrb and nsr2 are the source-boundary distance, receiver-boundary distance,

and maximum source-receiver offset, respectively. The amplitude of data recorded at the last receiver

position (offset = nsr2) is much lower than that at the first receiver position (offset = nsr1 where nsr1 is

the minimum source-receiver offset) due to geometry attenuation. Therefore, the influence of nrb on data

approximation is ignorable compared to that of nsb. In the examples of this paper, we fix nsb as one grid

greater than ncpml where ncpml is the width of the CPML and is set to be 10 grids. By doing so, nrb and

nsr2 determine nxi.

We take the mean structural similarity (MSSIM) index to measure the fidelity of the approximated data

with respect to the data simulated on an entire model (Wang et al., 2004). Readers are recommended to

refer to Boniger and Tronicke (2010) for an example of using MSSIM index in GPR data comparisons.

Furthermore, we regard the reconstructed models of FWI as a reference and use MSSIM index to describe

the alikeness of the reconstructed models of SFWI relative to the reference. We adopt the same settings

as Boniger and Tronicke (2010) to compute MSSIM index. The closer the MSSIM index is to one, the

more similar the two comparison objects are. In the following, we analyze the roles of nrb and nsr2 in the

simulation and inversion.
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(a) True model (b) Model subset (c) Residual

AW

GW

RW1

RW2

RRW

GW2

Figure 2.4: Radargrams of the 11th source simulated on (a) the true model shown in Figure 2.3a and (b)
the model subset with nsb = 1.6 m. The extraction area of the model subset is illustrated in
Figure 2.1a. In (c) we show the residual between (a) and (b). The color range in (a–c) is
clipped to 2 per cent of the highest amplitude of the true data in (a) for better visualization.
AW = air wave, GW = ground wave, RW1 = the 1st reflected wave (2-m deep interface),
RW2 = the 2nd reflected wave (4-m deep interface), RRW = reflected-refracted wave, GW2
= the 2nd ground wave.

2.3.1 Effect of the source-boundary distance

We build 2D synthetic models from the 2D field example in the next section. As shown in Figure 2.3a, the

true models of the permittivity and conductivity consist of a three-layer structure and a trench anomaly

embedded below the ground. The magnetic permeability is constant and equal to its value in vacuum.

The acquisition geometry is the same as in Figure 2.1 where we place 18 sources, shifted Ricker wavelets

(100 MHz), on the ground to generate the transversal magnetic waves in which there is only one electric

field component perpendicular to the survey plane. The receivers record multi-offset electric field data

on the right of the source.

Figure 2.4 shows the radargrams of the 11th source. To obtain the approximated data (Figure 2.4b),

we implement forward modeling on the model subset with nsb = 1.6 m. The data simulated on the true

entire models mainly contain the air wave, ground wave, and the waves reflected from the subsurface.

The approximated data are almost the same as the true data, except slight differences in the reflected-

refracted wave (RRW) and the 2nd ground wave (GW2). The reason for these differences is that the

distances from the 11th source to the 2-m deep interface and the left boundary of the trench are the same

(see Figure 2.1b), resulting in the superposition of the 1st reflected wave (RW1) and the lateral reflected

wave from the left boundary of the trench in the source location; the superimposed waves generate RRW

and GW2; hence, RRW and GW2 change with the cut-off of the left boundary of the trench on the 11th

model subset. However, the residuals have amplitude two orders of magnitude smaller than that of the

true data and thus are considered to be ignorable.
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Figure 2.5: Mean structural similarity (MSSIM) index of the approximated data as a function of source-
boundary distance. The six sources are generated on the model subsets extracted from the
true model.

We simulate the wavefields of the 9th–14th sources on the model subset with nsb varying from 0.6 m to

2.2 m, similar to Koyan and Tronicke (2020). The source-receiver spreading of the 9th–14th sources is

across or close to the trench (see Figure 2.1). Figure 2.5 illustrates that the MSSIM index for all data

is greater than 0.995, which means that the approximated data are highly consistent with the true data.

The 11th source has a sharper decrease in the MSSIM index than other sources when nsb decreases. This

is due to the special position of the 11th source we mentioned above. We do not observe any effects of

the cut-off of the model subset on the MSSIM index when nsb = 2 m (the wavelength of the dominant

frequency near the surface). Therefore, we take one wavelength as a rule of thumb for choosing the

source-boundary distance. Note that we still use nsb = 1.6 m in the following inversion in order to study

the extent of its effect on the reconstruction result.

2.3.2 Effect of the maximum source-receiver offset

To investigate the influence of the maximum source-receiver offset nsr2 on the SFWI, we implement a

2D synthetic inversion example using the initial model shown in Figures 2.3b. For the observed data,

we add 20 dB Gaussian noise to the data. We use a multiscale strategy in the inversion to avoid circle

skipping (Bunks et al., 1995). We select five inversion stages to invert data with progressively expanding

bandwidth and decreasing wavelength (Meles et al., 2012; Zhou et al., 2021b). From the first stage

to the fifth stage, the frequency bands vary from 5 to 30, 40, 50, 70, and 100 MHz. We estimate a

wavelet correction filter by a stabilized deconvolution and use it to correct the source time function at the

beginning of each stage (Ernst et al., 2007a; Groos et al., 2014). The maximum number of iterations per

stage is 15, and the abort criterion is that the relative data misfit improvement is less than 1 per cent. We

smooth the gradient with a 1D Gaussian spatial filter in the horizontal direction to suppress the artifacts

smaller than the FWI resolution. As the air layer is known, we multiply the gradient by a taper to zero

out the gradient in the air layer.

Figures 2.3c and 2.3d demonstrate that the reconstructed results of FWI and SFWI are almost consistent.

The permittivity and conductivity models, reconstructed mainly by small angle reflected waves, delin-
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(a) FWI (b) SFWI

Gradient
cut-off

Gradient
blank

Padding
area

Padding
area

Figure 2.6: Permittivity gradient of the synthetic data example calculated by the 11th source in the first
iteration of (a) FWI and (b) SFWI using nsb = 1.6 m and nsr2 = 8 m. The red star presents
the source, and the black triangles are the receivers. The black dashed lines outline the
boundaries of the model subset used in SFWI. The color range in (a) and (b) is clipped to
50 per cent of the maximum value of the gradient in (a) for better visualization of the cut-off
gradient.

eate the upper part of the triangular trench and the interfaces of the three horizontal layers. However, the

values inside these geological bodies are not reliably reconstructed due to lack of long wavelength infor-

mation in the surface multi-offset GPR data (Lavoué et al., 2014). Compared to the permittivity model,

the conductivity model contains more artifacts, e.g., between the ground and the 2-m deep interface,

which shows that conductivity estimation is more difficult and sensitive to noise.

In Figure 2.6 we show the permittivity gradient computed from the 11th source in the first iteration of

FWI and SFWI. The illumination of one source in the FWI (Figure 2.6a) is rather narrow compared to

the entire model space, caused by the high decay of the EM waves propagating in the subsurface and the

focusing effect due to the source specific radiation pattern. This provides the possibility of using SFWI to

save computational time and memory usage. In the gradient of SFWI (Figure 2.6b), the gradient outside

the extraction area is missing because of the selection of nsb. These cut-off errors are relatively small and

do not contribute substantially to the reconstruction in Figure 2.3d.

The blank area on the right part of the model subset in the SFWI gradient (about 2 m width in Fig-

ure 2.6b) suggests that we can further reduce the maximum source-receiver offset nsr2 to obtain even

larger computational savings. In Figure 2.7a we show the MSSIM index calculated by SFWI with dif-

ferent nsr2. For consistency of data misfit in Figure 2.7b, we perform additional forward modeling on all

reconstructed models with nsr2 = 8 m. FWI and SFWI result in the same permittivity reconstruction and

data misfit when using nsr2 = 8 m. Due to the cut-off artifacts and sensitivity differences, the conductivity

MSSIM index is lower than the permittivity MSSIM index. The model fidelity and data fitting become

worse when nsr2 decreases. Nevertheless, the difference between nsr2 = 6 m and nsr2 = 8 m is relatively

small (< 0.01 MSSIM), implying that we can drop nsr2 to 6 m to save computational costs at the expense

of a little reconstruction accuracy.

Thanks to the workflow in Figure 2.2, SFWI is compatible for parallelizations, such as source paral-

lelization and model domain parallelization. In the case of the latter, one can use the model domain

decomposition technique based on the message passing interface (Bohlen, 2002). We run the inversions
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(a) (b)

Figure 2.7: Model fidelity and data fitting comparison in the synthetic example. (a) MSSIM index of
the model parameters reconstructed by SFWI as a function of nsr2. (b) Final data misfit
(equation 2.4) of SFWI as a function of nsr2, normalized by that of FWI using nsr2 = 8 m.
The gray dotted line marks the desired value.

(a) (b)

Figure 2.8: (a) Speedup and (b) memory cost of SFWI as a function of nsr2, compared to FWI. The blue
line indicates the real values observed in the SFWI using both source parallelization and
model domain parallelization, and the red line illustrates those using only source paralleliza-
tion. The dotted line is the theoretical values calculated by equation 2.8. The improvements
in (a) and (b) are observed in the synthetic example and the field example at the Rheinstetten
test site.
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Table 2.1: Acquisition parameters of the multi-offset surface GPR data (200 MHz) at the Rheinstetten
test site and those used within the FWI / SFWI.

Parameters Raw FWI
Number of sources 165 18
Traces per gather 56∼125 100∼175
Transmitter spacing ∼ 0.2 m 2 m
Receiver spacing ∼ 0.1 m 0.04 m
Minimum offset 0.2 m 0.3 m
Maximum offset 17 m 8 m
Sample rate 0.2 ns 0.08 ns
Recording window 200 ns 164 ns

of 18 sources on a central processing unit (CPU) server with an Intel(R) Core(TM) i5-9500 CPU @ 3.00

GHz and evaluate the performance of SFWI in two conditions: source parallelization alone and two par-

allelizations simultaneous. We allocate 18 cores with one core per source for the source parallelization

alone. To perform both source parallelization and model domain parallelization, we allocate 54 cores

with three cores per source, which means 18 source parallelizations and 3 model domain paralleliza-

tions.

Figure 2.8b shows that all parallelizations lead to almost the same theoretical and real memory savings

for SFWI, as the memory usage is dominated by the wavefield storage for calculating the gradient and

is determined by the actual model size used in numerical simulation. In Figure 2.8a we observe that the

speedup of the source parallelization (the red line) is above the theoretical curve for all source-receiver

offsets. It is due to that the memory usage of SFWI (≤ 22 per cent) is much smaller than that of FWI

and not considered in the theoretical speedup. However, when nsr2 is less than 6 m, the combination

of source parallelization and model domain parallelization (the blue line) does not bring the expected

acceleration. The reason is that we decompose the entire volume in x direction, similar to the extraction of

the model subset in Figure 2.1a; FWI and SFWI take the same communication time for the decomposed

subvolumes; the weight of the communication time in the running time increases as nsr2 decreases, which

causes less improvement than the theoretical values when the weight exceeds a certain level (Bohlen,

2002). Note that these improvements are relative to the FWI using the same parallelizations. The real

computational time of the SFWI using these two parallelizations simultaneously (54 cores with three

cores per source) is shorter than the SFWI using source parallelization alone (18 cores with one core per

source), but their ratio is greater than 1/3 for the reasons mentioned above.
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Table 2.2: Multi-offset surface GPR data (200 MHz) preprocessing steps.

(1) Data resampling in the frequency domain
(2) Interpolation of clipped direct-arrival amplitudes
(3) DC-shift removal and dewow
(4) Bandpass filtering (5 – 400 MHz)
(5) Bad traces removal and offset limitation
(6) Data gridding in the time-offset domain
(7) 3D-to-2D transformation

2.4 Field examples

2.4.1 Surface GPR data

Surface data acquisition and preprocessing

We conducted the field measurement at the northeast corner of the gliding airfield Rheinstetten, Germany.

Previous GPR migration imaging (Wegscheider, 2017) and shallow-seismic FWIs (Wittkamp et al., 2019;

Gao et al., 2020; Pan et al., 2021; Irnaka et al., 2022) have validated that there is a V-shaped trench

named Ettlinger Line, embedded in fine fluvial sediments of the Rhine river. The trench was excavated

as a fortification in the early 17th century and has been leveled to the ground and is no longer visible

from surface at the test site. Taking the ‘walk-away’ method (Domenzain et al., 2021), we acquired 165

multi-offset surface radargrams along a survey line perpendicular to the Ettlinger Line. The acquisition

settings for the multi-offset surface GPR data are listed in Table 2.1. We used pulseEKKO Pro transmitter

equipped with a pair of unshielded 200 MHz antennas and mounted a receiver on a sled for smooth

movement. To track the receiver coordinates at the centimeter level accuracy, we adopted real-time

kinematic (RTK) positioning with a self-tracking total station (Boniger and Tronicke, 2010).

We preprocess the field data in order to perform the inversion. Table 2.2 summarizes the main steps for

data preprocessing. We first resample the data for forward modeling requirements (Irving and Knight,

2006) and interpolate the clipped amplitudes of high-energy direct arrivals that exceed the dynamic range

of the acquisition unit (Benedetto et al., 2017). In steps (3) and (4), we eliminate noise at low and high

frequencies. Then we delete the traces of waveform distortions and remove the traces with an offset

larger than 8 m. Due to the uneven walking speed of the worker when moving the sled, the acquired data

have irregular trace spacing. To ensure a balanced illumination in the measurement area, we apply the

data gridding in step (6), i.e., 2D spline interpolation in the time-offset domain at regular trace spacing.

Since our forward engine is 2D, we perform a 3D-to-2D transformation of reflected wave on the data in

the last step (Forbriger et al., 2014). Table 2.1 shows the acquisition parameters used for FWI / SFWI

after data preprocessing. To further save computational cost, we use only 18 sources in the inversions

(see Figure 2.1a for their locations).

17



2 SFWI of GPR field data

Trench

(a) Initial (b) FWI (c) SFWI

Reflector

Figure 2.9: Models of the field example at the Rheinstetten test site, showing (a) the initial models, (b)
the reconstructed models of FWI, and (c) the reconstructed models of SFWI. The dashed
triangle in the initial model outlines the target trench, known as the Ettlinger Line.

Surface data inversion

We use the same inversion settings as for the synthetic examples presented in the previous section.

Additionally, we normalize the gradients of each source before summing in order to eliminate energy

differences in the data that may be due to variations in instrument performance, antenna coupling, or

acquisition arrays. Figure 2.9a shows the initial models where the initial relative permittivity is 9 at the

ground (the velocity of ground wave is 0.1 m ns−1) and gradually increases to 20 at a depth of 6 m. On

the other hand, the initial conductivity is 3 mS m−1 at the ground and decreases gradually to 1 mS m−1

at a depth of 6 m. We estimate the near-ground values of permittivity and conductivity from the ground

wave in the field data (Annan, 2005).

As shown in Figures 2.9b and 2.9c, the reconstructed models of FWI and SFWI are almost identical,

and both illustrate the presence of a triangular anomaly in the permittivity model, which is the expected

location of the Ettlinger Line. SFWI can outline the trench structure at the interface between the refilled

sand and underlying soil due to their dielectric differences. However, the permittivity values inside

the trench are less reliable as the surface GPR data lack low wavenumber information, similar to our

observation in the synthetic examples. On the right of the trench, we observe a strong reflector at 1.1 m

depth that has a large contrast with the overlying materials in the permittivity and conductivity models.

We cannot see the same reflector on the left side of the trench where the original ground surface was

higher than on the right side and removed when leveling the trench (see schematics in Figure 3 in Irnaka

et al. (2022)). It suggests that the reflector is likely to be interpreted as the original ground surface. On

the left side of the trench, there is a near-surface conductive (∼4 mS m−1) layer that probably reveals a

higher water content. Therefore penetration depth of the GPR signal is limited in this area.

Figure 2.10 displays the radargrams and the estimated source signals. As FWI and SFWI have the same

reconstruction ability, we show only the results of SFWI (the red line corresponds to the model recon-

struction in Figure 2.9c). We acquired the first 11 radargrams on the first day and the last 7 radargrams

on the second day. The estimated source signals (Figure 2.10d) of the first 11 gathers differ from the last
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(a) (b)

(c) (d)

Source 1 Source 9

Source 17

Reflection

Day 1 Day 2

Figure 2.10: SFWI data fitting of (a) the 1st, (b) 9th, and (c) 17th sources of the field example at the
Rheinstetten test site, normalized and shown once every 20 traces for better visualization.
Note that the first trace (offset = 0.3 m) does not appear in the SFWI result using the data
of offset 1.0–8.0 m. The rectangular windows highlight local waveforms. (d) Estimated
source signals of 18 radargrams in SFWIs. The green and yellow lines mark the sources
used on different days. A Butterworth bandpass filter (5–100 MHz in the fifth stage) is
applied to the radargrams.
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(a) Offset 0.3–8.0 m (b) Offset 0.5–8.0 m (c) Offset 1.0–8.0 m

Figure 2.11: Reconstructed models of the field example at the Rheinstetten test site. We show SFWI
results using data with offset (a) 0.3–8.0 m, (b) 0.5–8.0 m, and (c) 1.0–8.0 m.

7 gathers, probably due to antenna polarity changes or coupling differences caused by slight near-surface

moisture variations resulting from drying or wetting at night. However, the source signals used on the

same day present similar waveform shapes and travel times, which demonstrates the stability of the

SFWI. Figures 2.10a and 2.10c indicate that the near-surface conductive layer (see Figure 2.9c) causes a

higher attenuation of the ground and reflected waves in the 1st source than in the 17th source. In all data,

the air and ground waves are hard to match because we use a 3D-to-2D transformation of reflected wave,

and our 2D forward solver cannot account for the radiation patterns and appropriate antenna coupling in

the real world. However, reflected waves are in good agreement with the field data for source-receiver

offsets of less than 3 m. When the offset is over 3 m, the performance of SFWI in data fitting degrades.

Effect of the minimum and maximum source-receiver offsets

The mismatch of the first trace at 0.3 m offset in Figures 2.10a–c implies that some low-frequency

components (e.g., near field effects) are not perfectly removed in the preprocessing. It raises the question

of whether we can delete some near-offset traces to obtain a better fit to the data. To evaluate the effect of

the near-offset data on SFWI’s performance, we fix the maximum source-receiver offset nsr2 = 8.0 m and

change the minimum source-receiver offset nsr1 to 0.5 and 1.0 m, respectively. Figure 2.10 presents the

inverted data and estimated source signals when nsr1 = 1.0 m (the blue dashed line), and Figures 2.11b

and 2.11c exhibit the reconstructed models. As expected, when increase nsr1 to 1.0 m, we do observe

an improved data fitting in some traces, such as the zoomed waveforms in Figures 2.10a–c and the

strong reflection event in Figure 2.10c. It should attribute to the shifted arrival times of some source

signals (Figure 2.10d) and the deeper and stronger contrast of the right-hand reflector (1.4 m) in the

permittivity and conductivity models (Figure 2.11c). Nevertheless, the trench boundaries become blurred

in the permittivity model when nsr1 = 1.0 m, making it more difficult for us to identify the target. From

this perspective, using the near-offset data with nsr1 = 0.3 m in SFWI is more favorable for geological

interpretation.
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(a) (b)

Figure 2.12: Model fidelity and data fitting comparison in the field example at the Rheinstetten test site.
(a) MSSIM index of the model parameters reconstructed by SFWI as a function of the
maximum source-receiver offset nsr2. (b) Final data misfit (equation 2.4) of SFWI as a
function of nsr2, normalized by that of FWI using nsr2 = 8 m. The gray dotted line marks
the desired value.

We keep nsr1 = 0.3 m and test the performance of SFWI with different nsr2. The accelerations and

memory savings for SFWI of the field data are the same as those of the synthetic data shown in Figure 2.8.

Figure 2.12 displays the corresponding MSSIM index of the reconstructed models and the corresponding

data misfits. Compared to the synthetic example in Figure 2.7, the field example suffers less from the

reduction in nsr2 because the field data are produced by the source of higher frequency (200 MHz) and

have lower S/N. Consequently, changing nsr2 from 8 m to 5 m in SFWI almost does not cause a change

in the data misfit and model quality but can obtain a real speedup factor Sx
2D of 8.3472 when using source

parallelization alone (see Figure 2.8a). Figure 2.12a shows that the conductivity fidelity is less affected

by nsr2 than the permittivity fidelity, contrary to our observation in the synthetic example in Figure 2.7a.

This may be due to the fact that in the field example, e.g., in Figure 2.11a, the area where the conductivity

is rarely updated (at a depth of more than 1.5 m) is larger than the area where the permittivity is rarely

updated (at a depth of more than 2.0 m), leading to persisting starting model and, thus, to a higher

MSSIM index of conductivity.

Comparison with migration imaging

In Figure 2.13 we compare the SFWI result of multi-offset GPR data with the migration result of

common-offset GPR data along the same profile. After performing a classical GPR processing including

bandpass filter (50–400 MHz), zero-time correction, time depended scaling, we apply a Kirchhoff mi-

gration routine using a constant subsurface velocity of 0.1 m ns−1. The resulting migrated GPR image

(Figure 2.13a) shows the trench in the central location and the dipping high amplitude reflector at the

right side of the trench. The migrated data on the left side of the trench appear more chaotic, with a

lower penetration depth. These interpretations agree well with the FWI and SFWI results in Figure 2.9b

and 2.9c. For a better comparison we also show the difference of the SFWI permittivity result to the

initial model in Figure 2.13b. Within these differences, we observe that the area of the trench has been

updated to higher permittivity values until a depth of ∼2.0 m. The same applies to the left side of the
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2 SFWI of GPR field data

(a) Migration

(b) SFWI

Figure 2.13: Comparison between (a) the migration result of common-offset data (offset = 0.5 m) and
(b) the SFWI result of multi-offset data (offset = 0.3–8.0 m). In (b) we show the cumulative
perturbations added to the initial model, i.e., the residuals between Figures 2.9c and 2.9a.

trench down to depth of ∼1.3 m. The strong reflector data on the right side is imaged by high and low

permittivity update, following the shape of the reflector. These patterns indicate the structure of the

reflector, but the absolute permittivity values (Figures 2.9c) are probably not correct due to the lack of

low frequency information and the resulting insufficient inversion updates (as also observed in the syn-

thetic example). Therefore, we conclude that GPR FWI and SFWI are capable to reconstruct the main

structures in the subsurface.

2.4.2 Crosshole GPR data

The SFWI is also suitable for decreasing the calculation time when inverting crosshole GPR data. In this

section, we show a well known field example of crosshole GPR data acquired at the Krauthausen test

site. Readers are recommended to Gueting et al. (2015), Gueting et al. (2017), and Zhou et al. (2021a)

for more details about the study site and acquisition settings. As shown in Figure 2.14a, the investigation

plane is divided into four crosshole planes (i.e., B32–B38, B38–B31, B31–B62, and B62–B30) between
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B32 B38 B31 B62 B30

(a) Initial (b) FWI (c) SFWI

Figure 2.14: Models (430×180 grids with the grid spacing of 0.05 m) of the field example at the
Krauthausen test site, showing (a) the initial models, (b) the reconstructed models of FWI,
and (c) the reconstructed models of SFWI. In the initial models, the red stars represent the
transmitters located at five boreholes (B32, B38, B31, B62, and B30), and the red dashed
rectangle illustrates the extraction region of a model subset (150×180 grids).

five boreholes for GPR data acquisition. We use 102 radargrams (200 MHz) in the inversion, with

28, 27, 23, and 24 radargrams acquired from the left to the right crosshole planes, respectively. The

preprocessing steps of the crosshole GPR data include data resampling in the frequency domain, DC-

shift removal and dewow, bandpass filtering (5–400 MHz), and 3D-to-2D transformation of transmitted

wave (Bleistein, 1986; Forbriger et al., 2014). After resampling, the data has a sample rate of 0.3 ns and

a recording window of 307.2 ns.

The starting model is homogeneous (εr = 20, σ = 15 mS m−1, see Figure 2.14a), and the inversion

settings are analogous to those used in the field example of the surface data. For crosshole GPR FWI /

SFWI, we adjust the forward solver, frequency bands (from 5 to 30, 50, 70, 100, and 130 MHz), gradient

filter, and gradient taper. We use numerical simulations of transversal electric waves where there is

only one magnetic field component perpendicular to the survey plane. To suppress potential artifacts,

we apply a 2D Gaussian spatial filter to smooth the gradient since each crosshole plane is covered by

more than 20 sources at different angles, and thus the crosshole illumination is bidirectional and more

balanced than the surface illumination. We multiply the gradient by a taper to reject areas outside the

source-receiver plane. For instance, for the sources located in the B32–B38 plane (see Figure 2.14a), the

gradient at distances greater than B38 or less than B32 will be muted. In SFWI, the size of the model

subset is selected to cover the B62–B30 plane that has the maximum crosshole distance (6.16 m, see the

red dashed rectangle in Figure 2.14a).

The results shown in Figures 2.14b and 2.14c indicate that FWI and SFWI have the same performance

in reconstructing the models. The MSSIM index of ε and σ is very close to one. Both FWI and SFWI

reveal a poorly sorted gravel layer (depth shallower than 4 m), a well sorted sand layer (depth between 4

and 6 m), and a sandy gravel layer (depth deeper than 6 m) (Tillmann et al., 2008). Our inversion results

are comparable to previous studies of Gueting et al. (2015), Gueting et al. (2017), and Zhou et al. (2021a)

(note the corrections in Gueting et al. (2020)), although we use a homogeneous initial model.
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(a) (b)

(c) (d)

B32–B38

Source 5

B38–B31Source 31

B31–B62Source 61 B62–B30Source 101

Figure 2.15: Data fitting of (a) the 5th, (b) 31st, (c) 61st, and (d) 101st sources of the field example at the
Krauthausen test site, normalized and shown once every six traces for better visualization.
The rectangular windows highlight local waveforms and the red stars mark the depth of
the sources. A Butterworth bandpass filter (5–130 MHz in the fifth stage) is applied to the
radargrams.

Figure 2.15 shows four radargrams from the four crosshole planes. The synthetic data of FWI and SFWI

are very similar and match the observed data well (the data misfits of the two inversions are identical).

Compared to the other sources, the 5th source has larger data fit errors at 8–10 m depths (see the enlarged

window in Figure 2.15a), indicating that in the B32–B38 plane, the reconstructed permittivity at these

depths could be slightly higher than the actual values. This can be improved by using the ray-based

initial models (Gueting et al., 2015) or constraining the inversion with a priori information (Zhou et al.,

2021a).

As shown in Figure 2.16, source signals estimated by FWI and SFWI have almost the same waveforms

and amplitudes. In Figure 2.16c, the amplitude differences of signals in different crosshole planes may

be due to the borehole spacing (nsr1 in Figure 2.16a) and horizontal variation of the media (Figure 2.14b

and 2.14c), while those in the same crosshole plane may be caused by vertical variation of the media

(Figure 2.14b and 2.14c). These suggest the need for gradient normalization when inverting field data.

In the B32–B38 plane (Figure 2.16a and 2.16b), we find that sources located in the same borehole (source

1–14 in B32 borehole and source 15–28 in B38 borehole) have relatively large phase shifts, which leads
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(a) FWI (b) SFWI (c)

B32–B38
nsr1 =
5.13 m

B38–B314.99 m

B31–B623.83 m

B62–B306.16 m

Figure 2.16: Estimated source signals of 102 radargrams in (a) FWI and (b) SFWI at the Krauthausen
test site. Signals are normalized and their real amplitudes are plotted in (c). The black
dashed lines are used to distinguish the source signals on different crosshole planes.

Table 2.3: Computational costs of FWI and SFWI in the field example at the Krauthausen test site. The
ratio is obtained by dividing FWI by SFWI, and the running time of a inversion of 102 sources
is measured on a CPU server using 34 cores (one core per source, looping three times in one
simulation).

FWI SFWI Ratio
Model size (grid) 430×180 150×180 2.8667
Running time (s) 2760.386 846.2059 3.2621
Memory cost (MB) 922.385 323.907 2.8477

to larger data mismatch in the radargrams (e.g., Figure 2.15a). It implies that the reconstruction of this

crosshole plane is likely to have more uncertainty than the other three crosshole planes.

In Table 2.3 we show the computational costs of FWI and SFWI. Unlike the surface SFWI, where the

maximum source-receiver offset nsr2 can adjust for higher acceleration and more memory savings (see

Figure 2.8), the crosshole SFWI has a limited improvement. It is because nsr2 is fixed in the crosshole

geometry, owning to the constraints of the borehole location. However, we still observe a speedup

(3.2621) higher than the theoretical value (2.8667) when using only source parallelization. The memory

reduction of SFWI approaches the theoretical value for the crosshole data (Table 2.3) and the surface

data (Figure 2.8b). These examples prove that SFWI is applicable to multiple acquisition geometries.

2.5 Discussion

In this study, we use a ‘walk-away’ method to record multi-offset surface GPR data. Our field data

acquisition is slower than Lavoué (2014), which extracted hundreds of multi-offset gathers from 15

common-offset gathers with an offset interval of 0.5 m. However, each trace in the multi-offset GPR

data used in Lavoué (2014) could be produced by a different transmitter-ground coupling. In contrast,

our measurement can be expected to have the same transmitter-ground coupling and denser trace intervals

(∼0.1 m) in a single gather.
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2 SFWI of GPR field data

In the field example of multi-offset surface GPR data (200 MHz), we find that near-offset data play an

important role in delineating the subsurface structure. This observation may be site dependent and differs

from other field applications of surface GPR FWI. For instance, Lavoué (2014) used 250 MHz antennas

with a minimum source-receiver offset of 1.24 m to detect a dipping limestone reservoir starting from the

surface to 8 m depth; Domenzain et al. (2021) used 50 MHz antennas with a minimum source-receiver

offset of 7.5 m to explore coarse fluvial deposits up to 6 m depth. Limestone reservoir and coarse fluvial

deposits allow for deeper penetration of GPR signals and more reflection information, hence the greater

use of far-offset data in FWI. Our test site consists of fine gravel, sand, and clay and lacks the physical

property differences that produce reflections below 2 m depth (see Figure 2.13a). Thus FWI / SFWI uses

mainly the near-offset data to reconstruct the trench and areas to its left. However, the far-offset data

become more important when imaging areas to the right of the trench where strong reflections occur (see

Figure 2.10c).

We repeat the surface GPR SFWI of the first field example but with an initial permittivity model of

homogeneous half-space (εr = 9). To our surprise, the data fitting and cumulative perturbations are very

close to those in Figures 2.10a–c and Figure 2.13b. When we change the initial permittivity model to an

otherwise homogeneous half-space with values far from those derived from the ground wave velocity,

SFWI fails to match the observed data and reconstruct our target. We observe a similar but weaker change

when testing the initial conductivity model in the same way, probably due to the weaker sensitivity of

GPR data to conductivity. These tests demonstrate that, in the initial models, the accuracy of the near-

surface part is more significant for FWI / SFWI than the deeper part. It is good news for surface GPR

FWI / SFWI because the near-surface a priori information is easily available from the ground wave.

Figures 2.3 and 2.13 reveal a limitation of surface GPR FWI /SFWI, i.e., when strong reflection ap-

pears in the observed data, the inversion mainly focuses on outlining the interface not estimating the

real values above and below the interface. This phenomenon rarely occurs in crosshole GPR FWI using

transmitted wave because it comes from the migration kernel of the reflected wave (Xu et al., 2012).

There are two ways to address this problem. One is to implement reflection-waveform inversion involv-

ing a tomographic kernel to reconstruct the background model (Yao et al., 2020). Another is to use the

complementary information of other geophysical data by joint inversion (Domenzain et al., 2020; Qin

et al., 2022b). Since previous shallow-seismic FWIs at the same test site have shown the potential to

provide long-wavelength seismic models (Pan et al., 2021; Irnaka et al., 2022), we will investigate the

joint inversion of shallow-seismic and multi-offset surface GPR data in the future.

In some cases where the long edge of the entire model is not nx but nz, SFWI still works via exchanging

the roles of nxi and nzi in this paper, where nz and nzi are the lengths of the model m and its subset mi

in z direction. For example, for the crosshole GPR data acquired in two 50 m deep boreholes (Pinard

et al., 2016), SFWI has Sz
2D times acceleration and memory savings over FWI, where Sz

2D = nz/nzi. On

the other hand, we can extend SFWI to the 3D case by selecting a model subset (nmi = nxi× nyi× nz)

from an entire model (nm = nx× ny× nz), where ny and nyi are the lengths of m and mi in y direction.

In this case, we obtain the computational improvement Sxy
3D = nxny/(nxinyi) from equation 2.8. It can

be seen that Sxy
3D ≥ Sx

2D because ny ≥ nyi, which suggests that SFWI is more economical in 3D imaging
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than in 2D imaging. This advantage makes 3D SFWI affordable even for personal computers that cannot

perform 3D FWI when the model size is too large.

It is worth to mention that SFWI is compatible with the source-dependent method. Encoded simultaneous-

source FWI (Huang and Schuster, 2012; Zhang et al., 2018) theoretically speeds up ns/ne
s times by

encoding ns gathers into ne
s supergathers (ignoring the time of encoding and decoding process). The

maximum speedup of this method is ns when ne
s = 1. If we combine SFWI with this method, each

encoded source consists of ns/ne
s adjacent sources and is generated on the model subset, the theoretical

speedup becomes Sns/ne
s where S is calculated by equation 2.8. The combined speedup can be greater

than ns if S/ne
s > 1. Such a combination overcomes the acceleration limits of source-dependent and

model-dependent methods and is very promising for the application of 3D GPR imaging.

SFWI is also applicable to land streamer seismic data (Tran and Sperry, 2018; Hoang, 2021) and marine

streamer seismic data (Choi and Alkhalifah, 2012; Huang and Schuster, 2012). Note in the subsurface

and water, seismic waves (1∼100 Hz) attenuate less than EM waves (10∼1000 MHz) for the same

propagation distance. To ensure a good data approximation, the source-boundary and receiver-boundary

distances of the model subset should be wider than those used in GPR SFWI. Therefore, the performance

increase for SFWI can be expected to be larger for GPR data than for seismic data, when considering

an equal profile length. However, due to absence of surface waves and partially limited reflectors, the

reconstruction of GPR parameters might not reach the same quality and has to be interpreted carefully.

2.6 Conclusion

We presented SFWI, a model-dependent method, to reduce the computational costs of inverting multi-

offset GPR data. SFWI makes use of the high attenuation property of EM waves, which in most cases

is regarded as a drawback of GPR, to approximately simulate data on a model subset rather than on an

entire model. The decrease in model space not only saves memory usage for gradient calculation, but

also speeds up the inversion process. These computational improvements can be quantified in theory

by the size ratio of the model and its subset. Nevertheless, the actual improvements are related to the

parallelization approaches used. SFWI performs faster than the theoretical value when combined with the

source parallelization alone, as the lighter memory burden is favorable for more efficient computation.

When both source parallelization and model domain parallelization are used, the performance of SFWI

is slightly poorer than expected if the model subvolume is smaller than a certain size, i.e., when the

communication time between subvolumes takes a greater percentage of the total runtime.

SFWI’s performance depends on the selection of the model subset, which in 2D case is determined by the

source-boundary distance, receiver-boundary distance, and maximum source-receiver offset. To ensure

a good data approximation, we provide rules of thumb for the first two: the source-boundary distance

should be close to one wavelength of the dominant frequency in the subsurface; the receiver-boundary

distance needs to be only one grid width larger than the absorbing boundary. However, choosing the opti-

mal maximum source-receiver offset relies on the subsurface environment and GPR antenna parameters
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2 SFWI of GPR field data

and requires individual testing. A fundamental requirement for the maximum source-receiver offset is to

cover the effective illumination area of the acquisition geometry.

The 2D field examples showed that SFWI has the equivalent ability to FWI in reconstructing the per-

mittivity and conductivity models and matching the observed data. In the field example of a 45 m long

multi-offset surface GPR profile, SFWI obtained an acceleration greater than eight times when using

a maximum source-receiver offset of 5 m. This application also revealed the importance of using the

near-offset traces to image the near-surface targets. In the field example of a 21 m long multi-borehole

plane, SFWI got more than three times speedup with a maximum source-receiver offset of 6.16 m. This

approach has proven to be more economical than conventional FWI for 2D multi-offset GPR data in

a wide range of acquisition geometries, and has greater computational advantages for both seismic and

GPR data in 3D applications. To further improve its performance, our approach can be extended by other

approaches, e.g., the encoded simultaneous source technique. However, the actual performance of SFWI

in these cases requires further studies.
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Abstract

Full-waveform inversion (FWI) of ground-penetrating radar (GPR) data has received particular attention

in the past decade because it can provide high-resolution subsurface models of dielectric permittivity

and electrical conductivity. In most GPR FWIs, these two parameters are regarded as frequency inde-

pendent, which may lead to false estimates if they strongly depend on frequency, such as in shallow

weathered zones. In this study, we develop frequency-dependent GPR FWI to solve this problem. Using

the τ-method introduced in the research of viscoelastic waves, we define the permittivity attenuation pa-

rameter to quantify the attenuation resulting from the complex permittivity and to modify time-domain

Maxwell’s equations. The new equations are self-adjoint so that we can use the same forward engine

to back-propagate the adjoint sources and easily derive model gradients in GPR FWI. Frequency depen-

dence analysis shows that permittivity attenuation acts as a low-pass filter, distorting the waveform and

decaying the amplitude of the electromagnetic waves. The 2-D synthetic examples illustrate that per-

mittivity attenuation has low sensitivity to the surface multioffset GPR data but is necessary for a good

reconstruction of permittivity and conductivity models in frequency-dependent GPR FWI. As a compar-

ison, frequency-independent GPR FWI produces more model artefacts and hardly reconstructs conduc-

tivity models dominated by permittivity attenuation. The 2-D field example shows that both FWIs reveal

a triangle permittivity anomaly which proves to be a refilled trench. However, frequency-dependent

GPR FWI provides a better fit to the observed data and a more robust conductivity reconstruction in

a high permittivity attenuation environment. Our GPR FWI results are consistent with previous GPR

and shallow-seismic measurements. This research greatly expands the application of GPR FWI in more

complicated media.

3.1 Introduction

Ground-penetrating radar (GPR) plays an increasingly important role in near-surface surveys (Jol, 2008).

Full-waveform inversion (FWI) was first proposed by Tarantola (1984) for seismic reflection data, and
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then introduced to crosshole GPR data by Ernst et al. (2007b) and Kuroda et al. (2007). GPR FWI

has been successfully applied to crosshole data (Ernst et al., 2007a; Meles et al., 2010; Oberröhrmann

et al., 2013; Gueting et al., 2015) as well as to surface recordings (El Bouajaji et al., 2011; Busch et al.,

2012; Lavoué et al., 2014; Liu et al., 2018). In the past decade, it has been shown that GPR FWI has

great potential for reconstructing high-resolution subsurface models of electromagnetic (EM) material

properties, namely dielectric permittivity and electrical conductivity (Klotzsche et al., 2019). In most

GPR FWIs, these two parameters are assumed to be frequency independent, i.e. they are constant values

over the main GPR bandwidth. However, many typical geological materials in the shallow subsurface

are frequency-dependent to EM waves (Turner and Siggins, 1994). In this case, GPR FWI may not

reveal its full potential if the forward modelling cannot account for velocity dispersion and permittivity

attenuation.

The time-domain modelling of EM waves requires solving Maxwell’s equations involving convolution

calculations that explain the frequency-dependent electrical properties. For replacing the convolution

with the more efficient multiplication, Carcione (1996) used the Debye model and Kelvin-Voigt model

to approximate the relaxation functions of the dielectric permittivity and electrical conductivity, respec-

tively. Bergmann et al. (1998) further developed Carcione’s approach in the time domain and performed

the numerical modelling by the finite-difference time-domain (FDTD) method. Their Maxwell’s equa-

tions are analogous to the viscoelastic (or viscoacoustic) equations with standard linear solid (SLS)

mechanisms, as shown, for example in Blanch et al. (1995). These equations use similar physical mod-

els to characterize the frequency dependence of electrical parameters and seismic moduli (Carcione and

Cavallini, 1995). It implies that GPR FWI can refer to viscoelastic FWI already developed in the seis-

mic community, such as Fabien-Ouellet et al. (2017) and Jiang (2019). However, Maxwell’s equations

differ from the viscoelastic equations because the complex permittivity and conductivity always occur in

a combined form and both cause attenuation (Turner and Siggins, 1994; Bradford, 2007). In viscoelastic

case, the magnitude of dispersion and attenuation of a single wave (P or S waves) can be described by

a single parameter (τP or τS), which corresponds to the case of considering only permittivity attenuation

or conductivity attenuation in EM waves (Blanch et al., 1995).

In the last decade, most GPR FWIs still used frequency-independent sensitivity kernels when updating

model parameters (Klotzsche et al., 2019). There are two reasons for this. One is that simultaneous

reconstruction of permittivity and conductivity is already a challenging task in frequency-independent

GPR FWI, while studies of frequency-dependent GPR FWI that require estimation of more parameters

take a back seat. Another reason is that frequency-independent GPR FWI, when combined with source

signal estimation, can handle weak permittivity attenuation environments where quality factor (Q) ≥ 20

(Belina et al., 2012). In the study of Belina et al. (2012), since their model gradients were practically

the same as those of the frequency-independent GPR FWI and the static conductivity was ignored, re-

searchers did a permittivity-only inversion with a priori Q model. To better image the realistic materials

with Q < 20 and investigate crosstalk between multiple parameters, frequency-dependent GPR FWI

must be developed.

FWI is also known as an inverse scattering problem in the microwave community. Winters et al. (2006)

proposed the time-domain inverse scattering technique to estimate the frequency-dependent average di-
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electric properties, using a short relaxation time approximation in Debye scatterers. Based on their

work, Papadopoulos and Rekanos (2011) introduced an auxiliary differential equation (ADE) with the

polarization current density, which extended the feasibility of microwave imaging. Deng et al. (2021)

reported the high-performance computation of EM FWI in the single-pole Debye model, using the the-

oretical basis of the inverse scattering technique. These studies suggested that we can similarly develop

frequency-dependent GPR FWI. Nevertheless, they did not give an explicit measure of permittivity at-

tenuation in EM wave propagation, which makes the inversion algorithm less intuitive than viscoelastic

FWI involving seismic attenuation.

In this paper, we use the τ-method, with reference to the viscoelastic waves (Blanch et al., 1995), to

quantify the attenuation of EM waves caused by the complex permittivity. Based on this, we modify the

time-domain Maxwell’s equations proposed by Bergmann et al. (1998) and implement the frequency-

dependent GPR FWI. With a frequency dependence analysis, we show how each model parameter affects

EM wave propagation, including amplitude attenuation and velocity dispersion. Finally, we apply 2-D

GPR FWI in the synthetic examples and field examples and compare the performance of the FWI con-

sidering and not considering permittivity attenuation. Since surface-based GPR plays an important role

for characterizing near-surface targets, we perform a surface-based GPR FWI in this study to investigate

the applicability and limitations of using reflected waves.

3.2 Methodology

3.2.1 Forward problem

The propagation of EM waves in heterogeneous media can be expressed by Maxwell’s equations as

follows:
−∂tB−∇×E = 0,

−∇×H+∂tD+Jc =−Je,
(3.1)

with three generalized constitutive relations:

B =µH,

D =ε ∗E,

Jc =σ ∗E,

(3.2)

where B is the magnetic flux, H is the magnetic field, D is the electric displacement and E is the electric

field. Jc is the conduction current density and Je is the electric current sources. ∇ is the Laplace operator,

× is the curl operator and ∗ is the time convolution. The magnetic permeability µ is essentially frequency

independent, while the dielectric permittivity ε and electrical conductivity σ are described as complex

frequency-dependent quantities (Carcione, 1996; Bergmann et al., 1998). The attenuation and dispersion

processes of EM waves depend on the ε and σ of the media.
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Substituting eq. (3.2) into eq. (3.1), Maxwell’s equations become

−µ∂tH−∇×E = 0,

−∇×H+ ε ∗∂tE+σ ∗E =−Je.
(3.3)

In order to solve eq. (3.3) explicitly in the time domain, we must calculate the convolutions ε ∗∂tE and

σ ∗E. We use the Debye model (eq. 3.4) to approximate the relaxation function of the permittivity in the

time domain (Carcione, 1996), i.e. the frequency-dependent function in the frequency domain.

ε(t) = ∂tΨε(t) with Ψε(t) = εs

[
1− 1

L

L

∑
l=1

(
1− τEl

τDl

)
e−t/τDl

]
H(t), (3.4)

where τEl and τDl are the relaxation times of the electric field and displacement of the lth Debye model,

respectively. τEl < τDl for the lth mechanism. τDl = 1/(2π fl) where fl is the relaxation frequency

of the lth Debye peak and L is the number of relaxation mechanisms. H(t) is the Heaviside function.

εs is the static dielectric permittivity, corresponding to the permittivity in the frequency-independent

media. Following the τ-method proposed by Blanch et al. (1995), we define the permittivity attenuation

τε = 1− τEl/τDl as the attenuation level of the lth Debye model for EM waves. By doing so, Ψε can be

rewritten as

Ψε(t) = εs

(
1− τε

1
L

L

∑
l=1

e−t/τDl

)
H(t). (3.5)

In eq. (3.5), one can see that τε is independent of the lth Debye model, which means the same τε can

be used for different Debye models. The newly defined variable is dimensionless (0≤ τε < 1) and more

straightforward for identifying attenuation and dispersion caused by the complex permittivity. Using the

Debye model, the convolution ε ∗∂tE becomes

ε(t)∗∂tE =∂tΨε(t)∗∂tE = εs (1− τε)∂tE+ εsτε

1
L

L

∑
l=1

1
τDl

E+
L

∑
l=1

rl. (3.6)

Due to space limitations in the main content, we omit the computational process of convolution (readers

can find details of eqs 3.6, 3.7, 3.10, and 3.11 in Appendix A). We introduce an ADE with a memory

variable rl of the lth mechanism corresponding to E:

∂trl =−
εsτε

Lτ2
Dl

E− 1
τDl

rl. (3.7)

Note that the definition of rl is slightly different from the memory variable in Carcione (1996) and

Bergmann et al. (1998). Similar to viscoelastic wave equations described in Bohlen (2002), we incor-

porate εs into rl . By doing so, we can easily develop self-adjoint wave equations for GPR FWI (shown
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in Section 3.2.2). If only one Debye model is used, the memory variable rl is related to the polarization

current density J used in the microwave imaging of Papadopoulos and Rekanos (2011) by

J = rl +
∆ε

τDl
E with ∆ε = εsτε and l = 1. (3.8)

On the other hand, the relaxation function of the conductivity can be described by a Kelvin-Voigt type

model (Pipkin, 2012) as

σ(t) = ∂tΨσ (t) with Ψσ (t) = σs [H(t)+ τσ δ (t)] , (3.9)

where τσ is the relaxation time including the out-of-phase component of conductivity, σs is the static

conductivity, and δ (t) is the Dirac function. Then, the convolution σ ∗E becomes

σ(t)∗E = ∂tΨσ (t)∗E = σs (E+ τσ ∂tE) . (3.10)

Hence, we replace two convolutions with multiplications

ε(t)∗∂tE+σ(t)∗E = ε
e
∞∂tE+σ

e
∞E+

L

∑
l=1

rl, (3.11)

with the effective optical permittivity εe
∞ and effective optical conductivity σ e

∞ as below:

ε
e
∞ = εs (1− τε)+σsτσ , σ

e
∞ = σs + εsτε

1
L

L

∑
l=1

1
τDl

. (3.12)

The real effective permittivity and real effective conductivity with respect to the angular frequency ω are

given by (Bergmann et al., 1998)

ε
e(ω) = εs(1− τε

1
L

L

∑
l=1

ω2τ2
Dl

1+ω2τ2
Dl
)+σsτσ ,

σ
e(ω) = σs + εsτε

1
L

L

∑
l=1

ω2τDl

1+ω2τ2
Dl
.

(3.13)

In fact, the effective optical parameters are the real effective parameters at infinite frequency. The atten-

uation factor α , phase velocity v and quality factor Q are described as (Turner and Siggins, 1994)

α =ω

[
µεe(ω)

2

(√
1+ tan2 δ −1

)]1/2

,

v =
[

µεe(ω)

2

(√
1+ tan2 δ +1

)]−1/2

,

Q = tan−1
δ ,

(3.14)
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3 FWI of GPR data in frequency-dependent media

where the loss tangent tanδ = σ e(ω)/[ωεe(ω)]. With tanδ = 1, we obtain the transition angular fre-

quency ωt = 2π ft =σ e(ωt)/εe(ωt) where ft is the transition frequency. In frequency-independent media

where τε = 0, σ e
∞ can be simplified to σs. Therefore the attenuation is determined by σs alone, which

is called conductivity attenuation. In frequency-dependent media, however, both σs and τε contribute to

attenuation. Based on eqs (3.7) and (3.11), we rewrite eq. (3.3) as

−µ∂tH−∇×E = 0,

−∇×H+ ε
e
∞∂tE+σ

e
∞E+

L

∑
l=1

rl =−Je,

E+
Lτ2

Dl
εsτε

∂trl +
LτDl

εsτε

rl = 0, l = 1, ...,L.

(3.15)

We solve eq. (3.15) using the FDTD method of second order in time and fourth order in space. In the

standard staggered grid of Yee (1966), the memory variable rl locates at the same position of the electric

field E. The electrical parameters εe
∞, εs, σ e

∞ and τε are averaged to the location of E, while the magnetic

parameter µ is averaged to the location of the magnetic field H. The convolutional perfectly matched

layer is included at the model boundary to absorb the outgoing waves (Roden and Gedney, 2000).

Unlike eqs (6)–(8) in Papadopoulos and Rekanos (2011), eq. (3.15) uses the effective optical conduc-

tivity, resulting from different definitions of the polarization current density and memory variable (see

eq. 3.8). Our modification in eq. (3.15) takes three advantages of the τ-method (Blanch et al., 1995).

First, we use one τε for all Debye models and set τDl as a priori, which means less memory usage and

computations in numerical modelling of EM waves than using τDl and τEl for L Debye models. Second,

if σs � σ e
∞, we can simply approximate a constant Q by Q ≈ 2/τε . Thus, the attenuation is similar to

a linear function of frequency and the simulator can account for the waveform distortion of EM waves

(see Section 3.3 for an example). Third, we use only one τε in eqs (3.13) and (3.14) to quantify the mag-

nitude of attenuation and dispersion introduced by complex permittivity, which is intuitive and reduces

the number of parameters reconstructed by frequency-dependent GPR FWI in Section 3.2.2.

For convenience, we express eq. (3.15) in a matrix-vector formalism

M1∂tu+M2u−Au = s, (3.16)
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3.2 Methodology

with

u = (Hx,Hy,Hz,Ex,Ey,Ez,rx1,ry1,rz1, ...,rxL,ryL,rzL)
T ,

s = (0,0,0,−Jex,−Jey,−Jez,0,0,0, ...,0,0,0)
T ,

diag(M1) =

(
−µ,−µ,−µ,εe

∞,ε
e
∞,ε

e
∞,

Lτ2
D1

εsτε

,
Lτ2

D1
εsτε

,
Lτ2

D1
εsτε

, ...,
Lτ2

DL

εsτε

,
Lτ2

DL

εsτε

,
Lτ2

DL

εsτε

)
,

M2 =




03 03 03 . . . 03

03 σ e
∞I3 I3 . . . I3

03 I3
LτD1
εsτε

I3

. . . . . .
. . .

03 I3
LτDL
εsτε

I3




, A =




03 D 03 . . . 03

D 03 03 . . . 03

03 03 03 . . . 03

. . . . . .
. . .

03 03 03




,

D =




0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0




= D1∂x +D2∂y +D3∂z, D∗i = DT
i =−Di,

D1 =




0 0 0

0 0 −1

0 1 0



, D2 =




0 0 1

0 0 0

−1 0 0



, D3 =




0 −1 0

1 0 0

0 0 0



, DT = D,

D∗ = (Di∂i)
∗ =−D∗i ∂i = Di∂i = D ⇒ A∗ = A,

(3.17)

where 03 is the 3×3 zero matrix and I3 the 3×3 unit matrix. The superscript ∗ is the transpose conjugate

operator which is equivalent to transpose operator T for real variables. When deriving the transpose

conjugate of A, we use the zero-valued boundary condition, i.e. eqs (54) and (55) in Yang et al. (2016).

3.2.2 Inverse problem

The objective function Φ that we use in GPR FWI is

Φ(m) = Φ(u) =
1
2
||Ru(m)−dobs||22 =

1
2
||∆d||22, (3.18)

where the synthetic data are extracted from the forward wavefield u at the receiver position by the restric-

tion operator R; ∆d = Ru(m)−dobs is the residual between the synthetic data and observed data dobs.

The FWI seeks to iteratively reconstruct the model parameters m by minimizing Φ as follows:

mk+1 = mk +λ∆mk+1, (3.19)

∆mk+1 =−P
∂Φ

∂m
+ γ∆mk, (3.20)
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3 FWI of GPR data in frequency-dependent media

where the step length λ is calculated by line search (Pica et al., 1990). Considering the different sensitiv-

ities of model parameters to the objective function, we use an individual step length for each parameter

(Ernst et al., 2007b). The model update direction for the (k + 1)th iteration ∆mk+1 is computed by

the conjugate-gradient method, where γ is the scale factor (Polak and Ribiere, 1969) and P is the pre-

conditioner (Plessix and Mulder, 2004). We use a multiscale strategy to avoid cycle skipping in FWI

(Bunks et al., 1995). In the following, we show how to calculate the model gradient ∂Φ/∂m.

Due to that M1, M2 and A are self-adjoint, we obtain the adjoint-state equations as follows (Plessix,

2006):
−M1∂t û+M2û−Aû =−R∗∆d,

û =
(
Ĥx, Ĥy, Ĥz, Êx, Êy, Êz, r̂x1, r̂y1, r̂z1, ..., r̂xL, r̂yL, r̂zL

)T
,

(3.21)

where the waveform residual R∗∆d is used as the adjoint sources for backpropagation and û is the adjoint

wavefield. In contrast to the forward problem, the computation of eq. (3.21) is done backward from the

recording time T to 0. Hence we reverse the time by substituting t
′
= T − t, û′(t ′) = û(T − t) and

∆d′(t ′) = ∆d(T − t) in the above equation and get the self-adjoint-state equations as below:

M1∂t ′ û
′
+M2û

′−Aû
′
=−R∗∆d

′
,

û
′
=
(

Ĥ
′
x, Ĥ

′
y, Ĥ

′
z, Ê

′
x, Ê

′
y, Ê

′
z, r̂

′
x1, r̂

′
y1, r̂

′
z1, ..., r̂

′
xL, r̂

′
yL, r̂

′
zL

)T
.

(3.22)

Then we cross-correlate the forward wavefield u and the back-propagating wavefield û to compute the

model gradient
∂Φ

∂m
=
∫ T

0
û(t)∗

(
∂M1

∂m
∂tu(t)+

∂M2

∂m
u(t)

)
dt

=
∫ T

0
û
′
(T − t)∗

(
∂M1

∂m
∂tu(t)+

∂M2

∂m
u(t)

)
dt.

(3.23)

Equations (3.22) and (3.23) indicate two advantages of our modification in eq. (3.15). One advantage

is that we can use the same forward solver for the forward and back-propagating wavefield simulations

without any additional programming works. Another advantage is that all model parameters are dis-

tributed at the diagonal positions of M1 and M2, which means that the form of model gradients is very

simple (see Appendix B for details).

Theoretically, in eq. (3.23), m can be any model parameter of eq. (3.15). However, we are only interested

in the electrical parameters m = (εe
∞,σ

e
∞,εs,τε) in GPR FWI. According to eq. (3.12) and the chain

rule, we convert the gradient of the objective function from the parameter class m = (εe
∞,σ

e
∞,εs,τε) to

m′
= (ε

′
s,σs,τ

′
ε ,τσ ) where ε

′
s = εs and τ

′
ε = τε (see Appendix B for details):

∂Φ

∂m′ =
∂Φ

∂m
∂m
∂m′ . (3.24)

In this study, we use the real effective permittivity εe and real effective conductivity σ e at the refer-

ence angular frequency ω0 as the input and output parameters of GPR FWI, where ω0 is set as the peak

frequency of the source wavelet. Thus we ensure the physical consistency of the results obtained by

36



3.3 Frequency dependence analysis

Figure 3.1: (a) Radargrams generated by a shifted 50 MHz Ricker source in 1-D homogeneous media
and obtained by the receiver 10 m offset away from the source. The traces are normalized by
their maximum amplitudes. (b) Corresponding amplitude spectra. The spectra are divided
by the maximum amplitude of the thick black line. The translucent grey area represents the
amplitude spectrum of the source wavelet, and the thin dashed line marks the peak frequency.
One relaxation mechanism is used when τε = 0.2 (the blue line).

frequency-dependent GPR FWI and frequency-independent GPR FWI, similar to the correction for the

phase velocity in viscoacoustic FWI (Kurzmann et al., 2013). In the following sections, εe(ω0) and

σ e(ω0) will be referred to as the permittivity ε (or relative permittivity εr) and the conductivity σ for

convenience if not explicitly stated. In frequency-dependent GPR FWI, one can update the static param-

eters (εs and σs) using the gradients calculated by eq. (3.24), or update the effective parameters (ε and

σ ) by applying the chain rule again based on eq. (3.13) (see eq. B.8 for details).

3.3 Frequency dependence analysis

In order to analyse the effect of different model parameters on EM wave propagation, we make a com-

parison experiment using the 1-D analytical solution of EM wave in homogeneous media (Blanch et al.,

1995). As shown in Fig. 3.1, we discuss three kinds of typical media in this section. All media have

the same relative permittivity (εr = 6) so that the signals at the reference frequency propagate with the

same phase velocity. The latter two attenuating media have the same conductivity (σ = 2 mS m−1) in

order to generate the same attenuation level at the reference frequency. We take the wave propagation in

a non-attenuating medium as a reference (the thick black line). One relaxation mechanism is employed

in frequency-dependent medium where τε = 0.2 and σs = 0.1 mS m−1. Thus, according to eq. (3.13), the

permittivity attenuation τε dominates the conductivity (95 per cent) and contributes to the permittivity

slightly (10 per cent) at the reference frequency. We set the relaxation time of the conductivity τσ = 0 s in

this paper so that we can focus more on the effect of τε on the data. The value of τε is chosen to approx-

imate a constant Q (= 10) which has been observed in some geological materials (Turner and Siggins,

1994).
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3 FWI of GPR data in frequency-dependent media

Figure 3.2: Frequency-dependent media characteristics. (a) Quality factor, (b) attenuation factor, (c)
phase velocity, (d) real effective conductivity and (e) real effective permittivity. The translu-
cent grey area represents the amplitude spectrum of the source wavelet, and the thin dashed
line marks the peak frequency. The thin black line in (a) shows the desired Q value (Q = 10).
Note that Q is infinite for the non-attenuating medium (the thick black line) and therefore
not displayed in (a).

Compared to the reference medium, the attenuating media lead to a significant decrease in amplitude in

Fig. 3.1(b). We observe different waveform and amplitude decreases in the frequency-dependent medium

(the blue line) where τε works as a low-pass filter, with more attenuation at frequencies above the peak

frequency and less attenuation in the other frequency ranges. This is presented as a shift of the ampli-

tude spectrum towards lower frequencies in Fig. 3.1(b), corresponding to the waveform deformation in

Fig. 3.1(a). In contrast, the conductivity attenuation medium scales the amplitude of different frequencies

equally, without changing the waveform shape.

To find the reasons of these phenomena, we show the phase velocity v, attenuation factor α and quality

factor Q with respect to frequency in Figs 3.2(a)–(c). Those three characteristics are computed from the

real effective parameters shown in Figs 3.2(d) and (e) through eq. (3.14). The reference medium has

infinite Q value, no attenuation, and a constant velocity. Along with the dominant frequency range of the

source wavelet (25–80 MHz), the conductivity attenuation medium has a linear increase of the quality

factor, almost the constant attenuation level, and similar velocity with the reference medium due to that

the transition frequency (≈ 6 MHz) is much smaller than the peak frequency of the source wavelet

(50 MHz). That results in almost identical travel time and amplitude changes of different frequency

components in Fig. 3.1. Unlike the frequency-independent media, the frequency-dependent medium

causes both phase velocity and attenuation factor to increase with frequency in the dominant frequency
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3.4 Inversion of synthetic data

Table 3.1: Background model parameters.

Layer
Thickness

(m)
εr
(-)

σ
(mS m−1)

τε
(-)

Air 2 1 0 0
Soil 6 6 2 0.1
Rock 2 9 3 0.1

region, which is the reason for distorting the waveform and amplitude spectrum in Fig. 3.1. Although

we use only one relaxation mechanism, the Q approximated is close to the desired value. With more

relaxation mechanisms, the Q approximation can be further improved. As shown in Figs 3.2(d) and (e),

dielectric permittivity and electrical conductivity are frequency-independent in the reference medium

and conductivity attenuation medium and become frequency-dependent in the permittivity attenuation

medium. When the frequency is greater than 25 MHz, the conductivity is proportional to the attenuation

factor, and the permittivity is inversely proportional to the square of phase velocity.

3.4 Inversion of synthetic data

We use several synthetic examples of 2-D models (x− z plane) to analyse the performance of frequency-

dependent GPR FWI. Transverse magnetic (TM) mode waves are used in the simulation and inversion of

GPR surface recordings. In frequency-independent media, there are wavefield components Hx, Hz and Ey

and reconstructed model parameters ε and σ . In frequency-dependent media, additional memory variable

ryl and reconstructed model parameters τσ and τε are added with L = 1. The magnetic permeability µ is

constant and equal to its value of vacuum. We set τσ = 0 s based on the analysis in the previous section.

The EM model space shown in Fig. 3.3 is 10 m × 36 m, and the grid spacing is 0.1 m. The three-layer

background parameters are set according to Table 3.1. As the 2-m-thick air layer above the ground is

not updated during the inversion, we do not show it in the figures of this paper. The true model for the

synthetic examples consists of the background model and triangular perturbations, where the permittivity

perturbations are relatively weak, so that we can better study the reconstruction of the conductivity and

permittivity attenuation models in the inversion. Receivers are placed on the ground at 0.2 m intervals to

record the radargrams of the electric field component with a time sampling of 0.15 ns and a time window

of 300 ns. Eighteen transmitters generate the electric field at 2 m intervals on the ground (see red stars

in Fig. 3.3). The source is a shifted Ricker wavelet with a centre frequency of 50 MHz. For each source,

the receivers record data with an offset of 1–20 m. The observed data are simulated in the true model

and are the same for the frequency-dependent GPR FWI and frequency-independent GPR FWI (τε = 0).

The minimum wavelength of the EM waves observed in the soil layer is about 1 m.

We use the background model (Table 3.1) as the initial model to perform FWI. The model parameters are

updated simultaneously in multiparameter inversion examples. Apart from the pre-conditioner shown in

eq. (3.20), we also multiply the gradient by a user-defined taper to mitigate source and receiver artefacts.

We use a multiscale strategy with five inversion stages and up to 15 iterations per stage. From the first

stage to the fifth stage, we sequentially implement frequency band variations from 5 to 15, 25, 35, 50,
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3 FWI of GPR data in frequency-dependent media

True Frequency-dependent Frequency-independent

Not updated

Figure 3.3: Models of the three-parameter synthetic example where all anomalies are spatially uncor-
related. The three columns are the true models, the frequency-dependent GPR FWI results
and the frequency-independent GPR FWI results (εr and σ ), respectively. The red stars on
the true model are the transmitters.

and 80 MHz in a Butterworth bandpass filter. At the beginning of each stage, we apply the source-time

function (STF) inversion (Groos et al., 2014). If the relative misfit change between the current iteration

and the previous second iteration is less than 1 per cent, the inversion will switch to the next stage or stop

if it is the last stage.

3.4.1 Uncorrelated model

Noise-free data

We build a true model consisting of the background model and several trench anomalies (triangles) spa-

tially uncorrelated on each model. In Fig. 3.3, variations in the static parameters lead to anomalies in

permittivity and conductivity models. To insulate the permittivity and conductivity models from per-

mittivity attenuation anomalies, we adjust these static parameters at locations where τε anomalies exist.

The strong crosstalks between εr, σ , and τε occur in the frequency-dependent GPR FWI results. In

the conductivity model, we observe original conductivity anomaly and severe footprints generated by

the anomalies of permittivity and τε . Frequency-independent GPR FWI suffers even more from the

crosstalks, which makes the original conductivity anomaly indistinguishable. In frequency-independent

GPR FWI, more artefacts appear in the non-anomalous area of the permittivity and conductivity models

because of the absence of permittivity attenuation. Although permittivity attenuation is weakly sensitive

to the data, it is helpful for the correct reconstruction of the conductivity anomaly (the last trench) in the

frequency-dependent GPR FWI.

To further investigate the performance of two FWIs, we compare the observed data and inverted data in

Figs 3.4(a) and (b). In the observed data, the ground wave travels faster in the first source than in the last

40



3.4 Inversion of synthetic data

Reflected wave

Ground wave

Air wave

(a) (b)

(c) (d)

Figure 3.4: Data fitting of the three-parameter synthetic example where all anomalies are spatially un-
correlated. Gaussian noise (SNR = 20 dB) is added to the observed data in (c) and (d).
(a and c) and (b and d) are the radargrams of the first and last sources, shown once every
eight traces. Each trace is divided by the maximum amplitude of each trace of the observed
data. The rectangular windows show the zoomed waveforms. A Butterworth bandpass filter
(5–80 MHz in the fifth stage) is applied to the radargrams.
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3 FWI of GPR data in frequency-dependent media

source due to the permittivity anomaly on the left side. The reflected wave of the first source propagates

along the low permittivity attenuation anomaly (τε = 0) and shows a lower amplitude than that of the last

source at an offset of 10–20 m, similar to the observation in Fig. 3.1(b). In GPR FWI, the STF inversion

can provide an ‘effective’ source wavelet that is low-pass filtered (Belina et al., 2012). Thus it can ac-

count for the frequency-dependent effects of EM waves in weak permittivity attenuation environments

(Q ≥ 20 and τε ≤ 0.1). Nevertheless, after travelling through the high permittivity attenuation regions,

such an ‘effective’ source may generate waveforms different from the observed data, e.g., the reflected

wave with offsets greater than 10 m in Fig. 3.4(b). As a consequence, frequency-independent GPR FWI

attributes the waveform differences to perturbations throughout the model space, resulting in some un-

wanted artefacts in Fig. 3.3. On the contrary, frequency-dependent GPR FWI can reconstruct trench

anomalies in the permittivity and conductivity models and reduce artefacts due to its ability to describe

permittivity attenuation. Frequency-dependent GPR FWI, therefore, agrees highly with the observed

data. This example illustrates that the combination of frequency-independent GPR FWI and STF esti-

mates can only partially explain the waveform distortions caused by permittivity decay. It is necessary

to consider frequency-dependent GPR FWI when reconstructing the conductivity model.

Noise-contaminated data

In the synthetic example above, the observed data are free of noise. It is unrealistic and may lead us to

overestimate the performance of the GPR FWI approaches. Therefore, starting from this section, we add

Gaussian noise with a signal-to-noise ratio (SNR) of 20 dB, with respect to the strongest amplitude, to

the observed data. As a result, the reflected waves in the observed data shown in Figs 3.4(c) and (d) are

heavily disturbed and below the noise level after a 15 m offset. We repeat the synthetic example using

noisy data and present the inversion results in Fig. 3.5.

Compared to Fig. 3.3, we see fewer model updates of the two FWIs in Fig. 3.5. It is reasonable as noise

slows down the convergence of data misfits. On the one hand, the reconstructions of the four trenches

more or less deteriorate. On the other hand, the crosstalks and artefacts are also suppressed. Con-

sequentially, frequency-independent GPR FWI shows clearer results of the conductivity model where

the original conductivity anomaly becomes distinguishable. Fig. 3.4 also indicates that the existence

of noise increases the difficulty of data fitting. In the last radargram, the two FWIs using noisy data

have fewer differences in the waveform than those using noise-free data. To some extent, noise sta-

bilizes frequency-independent GPR FWI and allows it to converge to better results than the noise-free

case. Overall, frequency-dependent GPR FWI still possesses fewer data misfits and model artefacts than

frequency-independent GPR FWI when the observed data are contaminated by noise.

3.4.2 Correlated model

Three-parameter model

In the true model of this example, the perturbations of the permittivity and conductivity models are

located at the same position and have the same values in all trenches. However, the static permittivity and
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True Frequency-dependent Frequency-independent

Not updated

Figure 3.5: Models of the three-parameter synthetic example where all anomalies are spatially uncorre-
lated. Gaussian noise (SNR = 20 dB) is added to the observed data. The three columns are
the true models, the frequency-dependent GPR FWI results and the frequency-independent
GPR FWI results (εr and σ ), respectively.

True Frequency-dependent Frequency-independent

Not updated

Figure 3.6: Models of the three-parameter synthetic example where all anomalies are spatially corre-
lated. Gaussian noise (SNR = 20 dB) is added to the observed data. The three columns are
the true models, the frequency-dependent GPR FWI results and the frequency-independent
GPR FWI results (εr and σ ), respectively.
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True Frequency-dependent Frequency-independent

Not updated

Figure 3.7: Models of the two-parameter synthetic example where all anomalies are caused by the static
permittivity εs and permittivity attenuation τε . Gaussian noise (SNR = 20 dB) is added to
the observed data. The three columns represent the true models, the frequency-dependent
GPR FWI results and the frequency-independent GPR FWI result (εr), respectively.

static conductivity in each trench are different due to the variations of the permittivity attenuation model.

In Fig. 3.6, we see that frequency-dependent GPR FWI and frequency-independent GPR FWI have

similar performance in terms of reconstructing the permittivity model. The estimation of the conductivity

perturbation deteriorates from left to right as permittivity attenuation increases. Besides, frequency-

dependent GPR FWI shows more in-trench reconstructions than frequency-independent GPR FWI. In

the frequency-independent GPR FWI results, the upper boundary of the last conductivity trench becomes

discontinuous and only the two sides can be distinguished. On the contrary, frequency-dependent GPR

FWI still reconstructs the four conductivity trenches with good resolution, although the first two trenches

in the permittivity attenuation model are incorrectly estimated.

Two-parameter model

We perform another two tests to investigate the crosstalk of different parameters in the GPR FWI. Fig. 3.7

shows the same true models of ε and τε as Fig. 3.6. The static conductivity model is adjusted so that

the conductivity model is unchanged. The increasing values of τε from the left to the right trench means

that the percentage of τε in permittivity increases from 0 to 10 per cent. We observe heavy crosstalks

between τε and ε in the results of frequency-dependent GPR FWI. The four permittivity attenuation

trenches are described as high-value anomalies, and the four permittivity trenches are recovered to dif-

ferent degrees. For example, the last trench is reconstructed better than the first one, even though they

have the same value in the true model. This should attribute to the more realistic dispersion and attenu-

ation in the last trench. These differences also occur in the permittivity result of frequency-independent

GPR FWI. Since the small effect of τε on the phase velocity (see Fig. 3.2c), the permittivity results

obtained from frequency-dependent GPR FWI has only a slight improvement compared to that from

frequency-independent GPR FWI (Fig. 3.7).

When it comes to the synthetic example of σ and τε shown in Fig. 3.8, we adapt the static permittivity

to make permittivity the same as the background values. Although four conductivity anomalies look the
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3.5 Inversion of field data

True Frequency-dependent Frequency-independent

Not updated

Figure 3.8: Models of the two-parameter synthetic example where all anomalies are caused by the static
conductivity σs and permittivity attenuation τε . Gaussian noise (SNR = 20 dB) is added to
the observed data. The three columns represent the true models, the frequency-dependent
GPR FWI results and the frequency-independent GPR FWI result (σ ), respectively.

same in the true model, they are combinations of different static conductivity and permittivity attenuation.

The percentage of τε in these conductivity anomalies increase from 0 in the first one to 75 per cent in

the last one. We observe severe interference of conductivity on permittivity attenuation in the results

of frequency-dependent GPR FWI, where all τε anomalies are reconstructed as high values. Similar to

that shown in Fig. 3.6, it is difficult for frequency-independent GPR FWI to recover the conductivity

anomalies dominated by permittivity attenuation. In the permittivity attenuation model reconstructed

by frequency-dependent GPR FWI, the conductivity model introduces crosstalks that become weaker

with depth (Fig. 3.8), while the permittivity model causes crosstalks around the trench boundaries and

soil-rock interface (Fig. 3.7). It is due to different sensitivity kernels of permittivity and conductivity

in FWI (Meles et al., 2011). Therefore, in Fig. 3.6, we observe a superposition of these effects when

reconstructing three parameters simultaneously.

3.5 Inversion of field data

3.5.1 Data acquisition and pre-processing

We conducted field measurements at the northeast corner of the gliding airfield in Rheinstetten, Germany.

This test site is well known from previous GPR and seismic studies (Schaneng, 2017; Wegscheider,

2017; Pan et al., 2018, 2021; Wittkamp et al., 2019; Gao et al., 2020; Irnaka et al., 2022). It is covered by

sediments consisting of gravel and sand from the Rhine river. The ground layer is composed of partially

saturated soil. At the test site, a defensive “V” shaped trench named Ettlinger Line (dashed triangle

in Fig.3.9) was built in the early 17th century and has been refilled and is now completely flattened to

the surface. The existence and shape of the Ettlinger Line have been delineated in detail via 3-D GPR

migration imaging (Wegscheider, 2017), 3-D Rayleigh-wave dispersion inversion (Schaneng, 2017; Pan

et al., 2018), 2-D joint elastic FWI of Rayleigh and Love waves (Wittkamp et al., 2019), 2-D viscoelastic
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3 FWI of GPR data in frequency-dependent media

Table 3.2: Acquisition parameters of the surface GPR data (200 MHz) in the Rheinstetten test site and
those used within the FWI.

Parameters Raw FWI

Number of sources 165 18
Traces per gather 56–125 100–175
Transmitter spacing ∼ 0.2 m 2 m
Receiver spacing ∼ 0.1 m 0.04 m
Minimum offset 0.2 m 0.3 m
Maximum offset 17 m 8 m
Sample rate 0.2 ns 0.08 ns
Recording window 200 ns 164 ns

Table 3.3: Surface GPR data (200 MHz) pre-processing steps.

(1) Data resampling in the frequency domain
(2) Interpolation of clipped direct-arrival amplitudes
(3) DC-shift removal and dewow
(4) Bandpass filtering (5–400 MHz)
(5) Bad traces removal and offset limitation
(6) Data gridding in the time-offset domain
(7) 3-D / 2-D transformation

FWI of Rayleigh waves (Gao et al., 2020), and 3-D viscoelastic FWI of the surface waves (Pan et al.,

2021; Irnaka et al., 2022).

The surface GPR profile is positioned perpendicular to the Ettlinger Line. The two ends of the profile

(from southwest to northeast) are in the same location as ‘C’ and ‘B’ in fig. 1(a) in Pan et al. (2018). The

acquisition settings for the surface GPR data are listed in Table 3.2. Our GPR data were recorded using

a single-channel pulseEKKO Pro GPR system equipped with a pulseEKKO Ultra receiver. The Ultra

receiver stacked the records 256 times to obtain a higher SNR by reducing the random noise. The nominal

centre frequency of the transmitter is 200 MHz. We deployed the transmitter-receiver orientation in HH

mode to acquire TM wave data. The receiver was mounted on a sledge for smooth movement and tracked

at the centimetre level by employing a real-time kinematic (RTK) positioning using a self-tracking total

station as presented by Boniger and Tronicke (2010). To obtain multioffset GPR data for one source, we

fixed the transmitter and moved the receiver towards the transmitter. Then we changed the transmitter

location and moved the receiver away from the transmitter to produce the next gather. It took us two

minutes to record one radargram and six hours for all 165 radargrams. Our measurements were slower

than those of Lavoué (2014) who extracted hundreds of multioffset gathers from 15 common-offset

gathers with an offset interval of 0.5 m. However, each trace in the multioffset GPR data used in Lavoué

(2014) might be generated by a different transmitter-ground coupling. In contrast, our measurement had

the same transmitter-ground coupling in one gather and had denser receiver intervals (∼0.1 m).

In order to apply the FWI, we have to pre-process the GPR data first. The steps for data pre-processing

are listed in Table 3.3, similar to those used in Domenzain et al. (2021). Due to the uneven walking
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3.5 Inversion of field data

Trench

Not updated

Initial Frequency-dependent Frequency-independent

Figure 3.9: Models of the field data example in the Rheinstetten test site. The three columns are the
initial models, the frequency-dependent GPR FWI results and the frequency-independent
GPR FWI results, respectively. The white dashed triangle in the initial model outlines the
target trench, known as the Ettlinger Line. The red stars are the transmitters, and the dense
black triangles are the receivers of the 16th transmitter.

speed of the worker when moving the sledge, the data we acquired has irregular trace spacing. To

ensure a balanced illumination in the measurement area, we apply the data gridding, that is 2-D spline

interpolation in the time-offset domain at regular trace spacing. Finally, we transform the data acquired

in the 3-D world into 2-D line-source data because we use a 2-D forward solver in GPR FWI. We use

the transformation of the reflected waves to correct for phase and amplitude differences between the 3-D

and 2-D data (Forbriger et al., 2014).

3.5.2 Data inversion

We build an initial model (7 m × 45.2 m with a grid spacing of 0.04 m) in Fig. 3.9, which does not show

the air layer of 1 m thickness. The topographical variations along the survey line are minor and therefore

ignored. The initial relative permittivity is 9 at the ground (the velocity of ground wave is 0.1 m ns−1)

and decreases slightly to 8 at a depth of 6 m. On the other hand, the initial conductivity is 6 mS m−1 at

the ground and decreases gradually to 2 mS m−1 at a depth of 6 m. The initial permittivity attenuation

is 0.1. We use similar inversion settings as the synthetic examples presented in the previous section,

except that the frequency bands vary from 5 to 30, 40, 50, 70, and 100 MHz. These bands are chosen

to avoid cycle skipping in GPR FWI since our initial model is relatively simple (Bunks et al., 1995).

In frequency-dependent GPR FWI, the relaxation frequency of the Debye model fl is 50 MHz and the

reference angular frequency ω0 = 2π fl , ensuring that the conclusions we drew in Sections 3.3 and 3.4

are still applicable to the field data example. To save computational time, we select 18 gathers for FWI

with a source interval of 2 m (see Table 3.2).
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3 FWI of GPR data in frequency-dependent media

(a) (b)
Day 1 Day 2

Figure 3.10: (a) Data fitting of the 16th radargram of the field data example in the Rheinstetten test site,
shown once every 20 traces. Each trace is divided by the maximum amplitude of each
trace of the observed data. The rectangular window shows the zoomed waveforms. (b)
Estimated source signals of two FWIs. The green and yellow lines mark the sources used
on different days. A Butterworth bandpass filter (5–100 MHz in the fifth stage) is applied
to the radargrams.

The reconstructed permittivity models of the two FWIs in Fig. 3.9 illustrate the presence of a triangular

anomaly, the Ettlinger Line, which is in high agreement with the 3-D GPR migration results of Wegschei-

der (2017). On the right of the trench, we observe a strong permittivity contrast (a slightly right-tilted

reflector) at 1.1–1.5 m depth, described as a low S-wave anomaly in the 3-D shallow-seismic FWI results

of Pan et al. (2021) and Irnaka et al. (2022). Unlike the shallow-seismic FWI with a resolution of 1 m,

GPR FWI has a much higher resolution (∼0.25 m). Consequently, the reflector appears to be connected

to the trench in the GPR FWI results, whereas their connection is more ambiguous in the shallow-seismic

FWI results. One cannot observe the same reflector on the left side of the trench because the ground sur-

face on this side was higher than on the right side and has been levelled [see schematics in fig. 3 in Irnaka

et al. (2022)]. This implies that the reflector might be the original ground surface. Besides, both FWIs

reveal a conductive layer near the ground and ranging from a thickness of 1.0 m on the left to 1.5 m

on the right. More importantly, frequency-dependent GPR FWI reconstructs a permittivity attenuation

model consistent with the permittivity model, where the Ettlinger Line is also visible.

The main differences between the two FWIs come from the right part of the highly conductive layer.

This part is discontinuous and more similar to the permittivity model in frequency-independent GPR

FWI. To understand these differences, we show the radargrams of the 16th source and the estimated

source signals in Fig. 3.10. For both FWIs, the air and ground waves are difficult to fit because we

use a 3-D / 2-D transformation of the reflected wave, and the line source cannot describe the radiation

patterns and antenna-ground coupling in the real world. In the 16th radargram, the reflected waves
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become dominant at offsets greater than 2 m due to the strong permittivity contrast on the right side of

the trench. Frequency-independent GPR FWI matches well to the reflection events with offsets shorter

than 4 m, beyond 4 m its performance degrades. Frequency-dependent GPR FWI better fits the amplitude

of reflection events at offsets greater than 4 m. It results from the high permittivity attenuation layer on

the right of the trench, similar to the case in Fig. 3.4. The two FWIs have similar final data misfits

(difference less than 1 per cent) due to strong decay characteristics of the surface recordings along the

offset direction. Nevertheless, from the perspective of reflection fitting, frequency-dependent GPR FWI

performs better and thus probably produces a more reliable conductivity model. Note that we acquired

the first 11 radargrams on the first day and the last 7 radargrams on the second day. The estimated

source signals of the first 11 sources are different from the last 7 sources in Fig. 3.10(b), probably due to

coupling differences caused by slight near-surface moisture variations resulting from drying or wetting

at night. However, the source signals used on the same day show similar waveform shapes and travel

times, which indicates the stability of the two FWIs and source wavelet estimation.

3.6 Discussion

In the examples of frequency dependence analysis and inversion, we ignore the relaxation time of conduc-

tivity (τσ = 0 s) and use only one relaxation mechanism (L = 1) for costing purposes. The importance of

considering τσ > 0 s and L> 1 deserves further study. In the field example, the reconstructed permittivity

attenuation model delineates the subsurface targets and provides a meaningful geological interpretation.

Its high heterogeneous distribution also demonstrates the necessity of including it in the inversion. Based

on our observation, we regard it still to be challenging to accurately estimate the permittivity attenuation

model due to its weak sensitivity to the data and the crosstalk between multiple parameters. To better

image the permittivity attenuation, two strategies are available. One strategy is to decouple the radiation

patterns of the reconstructed parameters. It requires choosing a suitable parametrization so that differ-

ent gradients have opposite behaviour with respect to azimuth (Yao et al., 2018). Another strategy is to

use the Hessian operator computed by Newton’s method in optimization (Métivier et al., 2013; Operto

et al., 2013; Gao et al., 2021). Truncated Newton method has been employed in frequency domain GPR

FWI by Pinard et al. (2015). When it is introduced to the time domain GPR FWI, we have to find a

balance between the elimination of crosstalk and the increase in computational cost, which needs further

investigation.

Previous studies have shown the potential of joint inversion because other data can provide some com-

plementary information to the GPR inversion (Linde et al., 2008; Domenzain et al., 2020; Qin et al.,

2022b). For example, the electrical resistivity (ER) data are sensitive to electrical conductivity. There-

fore, the joint inversion of GPR and ER data may help to improve the reconstruction of conductivity

(Domenzain et al., 2021). Note that the estimated conductivity is frequency-dependent in our GPR FWI,

but frequency-independent in the ER inversion. Transformation of the two can be achieved by eq. (3.13),

but depends on the reliability of the permittivity attenuation reconstruction, which requires further im-

provement in the future.
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3 FWI of GPR data in frequency-dependent media

3.7 Conclusion

In this paper, we quantified permittivity attenuation for EM wave propagation simulator using the τ-

method introduced from the seismic community, which not only saves memory and reduces computa-

tions in forward modelling but also simplifies the constant Q approximation and frequency-dependent

GPR FWI. By defining the parameter τε , we proposed a new form of time-domain Maxwell’s equations

to describe the propagation of EM waves in frequency-dependent media. These equations have two

advantages in GPR FWI. The first one is their self-adjoint property, which allows performing frequency-

dependent GPR FWI without changing the backpropagation engine. The second advantage is that the

model gradients derived from these equations are fairly simple, ensuring as few modifications as possi-

ble to the existing frequency-independent GPR FWI code. Frequency dependence analysis revealed that,

in the GPR spectrum range, the attenuation caused by the static conductivity is frequency-independent,

while that caused by τε is frequency-dependent. The permittivity attenuation acts as a low-pass filter and

leads to waveform deformation and less amplitude decay of EM waves.

The 2-D synthetic examples confirmed the effectiveness and limitations of frequency-dependent GPR

FWI. The spatially uncorrelated examples indicated that surface multioffset GPR data are weakly sen-

sitive to permittivity attenuation compared to permittivity and conductivity. They also demonstrated

that both frequency-dependent GPR FWI and frequency-independent GPR FWI suffer heavy crosstalk

of different parameters. The spatially correlated examples showed that frequency-dependent GPR FWI

works well in estimating the permittivity and conductivity models coupled with different permittivity

attenuation levels, and frequency-independent GPR FWI produces comparable permittivity results as the

dispersion effect is weak. Although combined with STF estimation, frequency-independent GPR FWI

cannot handle the reconstruction of conductivity anomalies dominated by permittivity attenuation. In

this case, frequency-dependent GPR FWI can provide more reliable conductivity results even if the per-

mittivity attenuation models fail to be estimated and the observed data contain a degree of noise. These

synthetic examples suggested the need for frequency-dependent GPR FWI in the presence of dispersion

effects and variable attenuation.

When applying to field data acquired at the Rheinstetten test site, both frequency-dependent GPR FWI

and frequency-independent GPR FWI successfully outlined the Ettlinger Line as a triangle permittivity

anomaly. On the right of the trench, we found a slightly right-tilted layer which exhibits strong per-

mittivity attenuation. Frequency-dependent GPR FWI showed better data fitting and more continuous

conductivity structure in this region, and was likely to be more robust than frequency-independent GPR

FWI. Previous GPR migration imaging and shallow-seismic FWIs have verified our GPR FWI results.

Crosstalk mitigation and joint inversion with other geophysical approaches need to be studied in the

future. The use of other models describing relaxation phenomena of permittivity and conductivity also

deserves further investigation.
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A Convolution calculation

The convolution of the dielectric permittivity ε and the electric field E is
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3 FWI of GPR data in frequency-dependent media

Therefore we define the memory variable rl of the lth mechanism corresponding to E as
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The convolution of the conductivity σ and E is

σ(t)∗E =∂tΨσ (t)∗E

=∂t {σs [H(t)+ τσ δ (t)]}∗E

=σs [δ (t)∗E+ τσ δ (t)∗∂tE]

=σs (E+ τσ ∂tE) .

(A.3)

We sum the two convolutions and get
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where
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B Gradient calculation

For consistency with Papadopoulos and Rekanos (2011), we present the gradients as the zero-lag cross-

correlation of forward wavefield u and adjoint wavefield û in the following. Note that we actually

replace û(t) in eq. (3.23) by û′(T − t) which is given by the same forward solver. By doing so, the

cross-correlation of û(t) and u(t) becomes the convolution of û′(t) and u(t).
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Thus, we obtain the gradients of the electrical parameters as follows:
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Eq. (B.2) can be simplified by the following equation, based on eq. (A.2) where τDl(τDl∂trl + rl) =
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Then the gradient of εs and τε are rewritten as:
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According to eq. (A.5) and the chain rule, we convert the gradients of the objective function from the

parameter class m = (εe
∞,σ
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For the reference angular frequency ω0, we have
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Alternatively, we can convert the gradients of the objective function from the parameter class m′
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4 Indirect joint petrophysical inversion of synthetic
shallow-seismic and multi-offset ground-penetrating
radar data

Published as: Qin, T., Bohlen, T., & Pan, Y. (2022). Indirect joint petrophysical inversion of syn-
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Abstract

Both full-waveform inversion (FWI) of shallow-seismic and ground-penetrating radar (GPR) surface

recordings have received particular attention in the past decade since they can reconstruct seismic and

electromagnetic properties at high resolution. For consistent near-surface imaging, seismic and GPR

wavefields can be combined by joint petrophysical inversion (JPI) using classical time-domain FWI. In

conventional JPI of wavefields, both shallow-seismic and multi-offset GPR data contribute to reconstruct-

ing the same petrophysical parameters. In this paper, we show that seismic and GPR wavefields have

different sensitivities to these parameters assuming the widely established petrophysical model combin-

ing the Gassmann fluid substitution model, the complex refractive index model and Archie’s equation.

Based on this observation, we propose a new coupling strategy of petrophysical parameters which we

call indirect JPI. In indirect JPI, seismic data are primarily used for porosity reconstruction, while GPR

data are used only for saturation reconstruction. Unlike conventional JPI, we first update the seismic

and GPR parameters using non-petrophysical parametrizations and then transform the most reliable esti-

mates to petrophysical parameters. 2-D synthetic tests show that indirect JPI can provide more accurate

and consistent results than conventional JPI. In addition, indirect JPI is more robust when uncertainties

exist in petrophysical a priori knowledge. More importantly, indirect JPI has the flexibility to integrate

different types of seismic and electromagnetic waves and acquisition geometries depending on the target

of interest, resulting in the best solution. Indirect JPI has been proven to be a promising approach for

multiparameter reconstructions (seven parameters in this study).

4.1 Introduction

Shallow-seismic surface wave and ground-penetrating radar (GPR) methods play increasingly impor-

tant roles in near-surface investigation. Full-waveform inversion (FWI) was first proposed by Tarantola

(1984) for seismic reflection data, and then introduced to shallow-seismic data (Romdhane et al., 2011;
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4 Indirect JPI of shallow-seismic and GPR data

Tran and McVay, 2012) and crosshole GPR data (Ernst et al., 2007b; Kuroda et al., 2007). In the past

decade, it has been shown that FWI, specifically shallow-seismic FWI and GPR FWI, has great potential

to reconstruct high-resolution multiparameter subsurface models of seismic and electromagnetic (EM)

material properties (Pan et al., 2019; Klotzsche et al., 2019), respectively.

In the shallow subsurface, surface waves (Love wave and Rayleigh wave) usually dominate the seismic

wavefield, which requires elastic rather than acoustic FWI (Romdhane et al., 2011). Love-wave FWI

(Pan et al., 2016; Dokter et al., 2017), Rayleigh-wave FWI (Groos et al., 2017) and the joint FWI of

Rayleigh and Love waves (Wittkamp et al., 2019) were successfully applied to field data. On the other

hand, GPR FWI has so far been applied primarily to crosshole data (Ernst et al., 2007b; Meles et al.,

2010; Oberröhrmann et al., 2013; Gueting et al., 2015). GPR FWI using surface recordings has typically

been used to determine the shallow guided layer (Busch et al., 2012) or isolated targets (El Bouajaji

et al., 2011; Liu et al., 2018). Lavoué et al. (2014) proved that on-ground multi-offset GPR data pos-

sesses higher vertical resolution than crosshole GPR data and deserves more attention. Independent FWI

of shallow-seismic and GPR data, however, may provide inconsistent information because of the non-

uniqueness of the inverse problem and the inherent limitations of these geophysical methods. In general,

the combination of several data may help to reduce uncertainties and avoid conflicting interpretations

(Linde et al., 2008; Rumpf and Tronicke, 2014; Wagner et al., 2019; Domenzain et al., 2020). Hence, it

is important to investigate the feasibility of integrating shallow-seismic and multi-offset GPR data using

joint inversion.

There are two common joint inversion approaches: joint structural inversion (JSI) and joint petrophysical

inversion (JPI). In JSI, it is assumed that the models share consistent interfaces, where the structural

similarity is often achieved by applying a structural similarity measure using, for instance, a cross-

gradient function as an additional constraint (Gallardo and Meju, 2003). JPI is based on empirical or

experimental petrophysical relations that connect different physical parameters through the common

petrophysical properties (porosity and saturation in this study). In JSI and JPI, researchers address the

hypothesis that the joint inversion of seismic and EM wavefields leads to consistent multiparameter

models of seismic and EM material properties, which have higher accuracy than the models obtained

by individual FWI. Feng et al. (2017) investigated the JSI of shallow-seismic reflection and multi-offset

GPR data. Gao et al. (2012) performed the JPI of controlled-source electromagnetic measurements

(CSEM) and acoustic seismic measurements to monitor a reservoir and pointed out that petrophysical

parameters cannot be inferred uniquely by seismic or EM measurements alone. Abubakar et al. (2012)

performed a comparison between JSI and JPI using CSEM and elastic seismic data and demonstrated

that JPI produces better results than JSI if the adopted petrophysical relations are reliable.

In order to implement JPI of shallow-seismic and multi-offset GPR data in a near-surface context (depth

< 10 m), two prerequisites have to be satisfied. The first one is that the results obtained by the two inver-

sions have the comparable spatial resolution, which can be achieved by selecting the central frequency of

the seismic source and GPR transmitter so that both methods produce similar wavelength and depth pen-

etration. The second one is that reliable petrophysical relations must be known. The relations between,

on the one hand, petrophysical parameters and seismic parameters (Gassmann, 1951; Biot, 1955) and,

on the other hand, petrophysical parameters and GPR parameters (Annan, 2005; Altdorff et al., 2019; Yu
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et al., 2020) have been well investigated and applied in many cases. Thus, the existing JPI scheme, for

example, developed by Gao et al. (2012) or Abubakar et al. (2012) can be adopted to combine shallow-

seismic and GPR data. We call it conventional JPI. Nevertheless, the conventional JPI incorporates the

seismic and GPR data to reconstruct the same petrophysical parameters without fully considering the

sensitivity and reliability of the information provided by each method. That may lead to unsatisfactory

results as a petrophysical parameter cannot benefit much from the data set if its sensitivity to the data set

is weak. Besides, the poor reconstructed seismic or GPR parameters may interfere with the estimation

of petrophysical parameters.

In this paper, we conduct a synthetic feasibility study of JPI of shallow-seismic and multi-offset GPR

data by considering the sensitivity of different data to petrophysical parameters. We first introduce the

petrophysical relations used in JPI and analyse the sensitivity of seismic and GPR parameters to petro-

physical parameters. We then propose an indirect petrophysical parametrization to implement JPI, which

is referred to as indirect JPI. A series of 2-D synthetic inversion examples are used to compare the per-

formance of indirect JPI and conventional JPI. Finally, we investigate the robustness of indirect JPI in

the presence of inaccurate petrophysical relations and rock matrix parameters and the applicability of

indirect JPI to different wave types and data acquisition geometries.

4.2 Methodology

The goal of JPI is to estimate petrophysical parameters mP, that is porosity φ and saturation Sw in

our case, based on the relations between petrophysical and seismic parameters on the one hand, and

petrophysical and GPR parameters on the other hand. Therefore, reliable petrophysical relations are

assumed to be known beforehand. We use the conventional least-squares objective function to quantify

the misfit in both data domains:

ΦS (mS) =
1
2
||dsyn

S (mS)−dobs
S ||2, mS = [VP,VS,ρ]

T ,

ΦEM (mEM) =
1
2
||dsyn

EM (mEM)−dobs
EM||2, mEM = [ε,σ ]T ,

s.t. f (mS,mEM,mP) = 0, mP = [φ ,Sw]
T ,

(4.1)

where ΦS and ΦEM are the objective functions of seismic and GPR inversions, respectively; dsyn
S is

the synthetic seismograms and dobs
S the observed seismograms; dsyn

EM is the synthetic radargrams and

dobs
EM the observed radargrams; mS represents seismic parameters including the P-wave velocity VP, S-

wave velocity VS, and density ρ; mEM represents EM parameters including electrical conductivity σ and

dielectric permittivity ε . The function f describes the petrophysical relations. We use separate objective

functions in this study, rather than a combined objective function such as the additive cost functions

in Wagner et al. (2019) and the multiplicative cost functions in Abubakar et al. (2012). By doing so,

we avoid calculating the data weighting matrix and the scaling factor for balancing the contribution of

57



4 Indirect JPI of shallow-seismic and GPR data

seismic and GPR data in JPI (Heincke et al., 2017). JPI seeks to iteratively update the model parameters

m (mS, mEM and mP) by minimizing Φ (ΦS and ΦEM) as follows:

mk+1 = mk +λ∆mk+1 , (4.2)

∆mk+1 =−P
∂Φ

∂m
+ γ∆mk , (4.3)

where the step length λ is calculated by line search and parabolic fitting; The model update direction

at the (k+1)th iteration ∆mk+1 is computed by the preconditioned conjugate-gradient method (eq. 4.3),

where the scale factor γ follows Polak and Ribiere (1969); The pre-conditioner P is given by eq. (23) in

Plessix and Mulder (2004) to suppress source and receiver artefacts.

4.2.1 Petrophysical relations

In order to link the seismic parameters mS to petrophysical parameters mP, we employ the Gassmann

fluid substitution model (Gassmann, 1951). In fluid-saturated rocks, the P-wave velocity VP, S-wave

velocity VS, and density ρ are expressed as follows:

VP =

√
K +4/3 µ

ρ
, VS =

√
µ

ρ
,

ρ = (1−φ)ρma +φ [Swρw +(1−Sw)ρa] ,

(4.4)

with
K = (1−β )Kma +β

2M, µ = (1−β )µma ,

1
M

=
β −φ

Kma
+

φ

Kf
,

1
Kf

=
Sw

Kw
+

1−Sw

Ka
,

β = φ/φc with 0≤ φ < φc ,

(4.5)

where K is the bulk modulus and µ the shear modulus of fluid-saturated rock; Kma = ρmaV 2
Pma−4/3 µma

is the bulk modulus, µma = ρmaV 2
Sma the shear modulus, and ρma the density of the rock matrix where

VPma, VSma, and ρma represent the P-wave velocity, S-wave velocity, and density of the rock matrix,

respectively; Kf is the bulk modulus of pore fluid and M represents the resulting average modulus; Kw

and Ka are the bulk moduli of water and air, respectively; ρw is the density of water and ρa the density

of air; β is the Biot’s coefficient which is a function of porosity. In this study, we choose the critical

porosity φc = 0.4 above which the solid becomes a suspension (Nur, 1992).

The dielectric permittivity ε is expressed as a function of φ and Sw by the complex refractive index model

(CRIM) (Birchak et al., 1974; Garambois et al., 2002), that is

ε = ε0
[
(1−φ)

√
εrma +φ

(
Sw
√

εrw +(1−Sw)
√

εra
)]2

, (4.6)

where εrw, εra and εrma are the relative permittivities of water, air and the rock matrix, respectively. For

convenience, we use the relative permittivity εr = ε/ε0 where ε0 is the free space permittivity.
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4.2 Methodology

Figure 4.1: The seismic model parameters (VP, VS and ρ) and GPR model parameters (εr and σ ) as func-
tions of porosity φ ⊂ [0.01,0.39] and saturation Sw ⊂ [0.01,0.99] using VPma = 600 m s−1,
VSma = 300 m s−1 and ρma = 2000 kg m−3 in Gassmann’s equations, σw = 50 mS m−1 in
Archie’s equation and εrma = 5 in CRIM. The white dashed lines indicate the slices shown in
Fig. 4.2.

The electrical conductivity σ , φ and Sw follow Archie’s equation (Archie et al., 1942):

σ =
1
a

σwφ
mSn

w , (4.7)

where σw is the conductivity of groundwater, a is the tortuosity factor, m is the cementation exponent,

and n is the saturation exponent.

In the above relations, the seismic petrophysical parameters of the rock matrix (VPma, VSma and ρma), the

EM petrophysical parameters of the rock matrix (εrma and σw) and Archie’s coefficients (a, m and n) are

obtained from well logging, core drilling or laboratory measurements. We use a = 2, m = 0.4 and n = 1.13

in this study, where the low values of m and n are chosen for loose clay, a typical near-surface sediment.

These rock matrix parameters and Archie’s coefficients are assumed to be known in the synthetic tests.

4.2.2 Sensitivity analysis

To analyse the sensitivity of the petrophysical parameters to the seismic model parameters (VP, VS and

ρ) and the GPR model parameters (ε and σ ), we plot their variation as a function of φ and Sw within

the range 0 < φ < φc and 0 < Sw < 1 in Fig. 4.1. It can be seen that the seismic parameters are

mainly affected by porosity φ . Saturation Sw has weak influence on seismic velocities and a minor effect

on density. The GPR parameters have a relatively strong sensitivity to both porosity and saturation.

Consequently, for the empirical relations considered, seismic FWI can be used primarily to constrain

porosity, whereas GPR FWI can constrain two petrophysical parameters simultaneously.

In order to emphasize the sensitivity of the petrophysical parameters, we plot the relative changes of

seismic and GPR model parameters in Fig. 4.2. We choose Sw = 0.2 and Sw = 0.8 to represent low and
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4 Indirect JPI of shallow-seismic and GPR data

Figure 4.2: The relative changes of the seismic model parameters (VP, VS and ρ) and the GPR model
parameters (εr and σ ) as functions of porosity φ and saturation Sw around the reference
porosity φ = 0.2 (the left-hand column) and the reference saturation Sw = 0.5 (the right-hand
column). The rock matrix parameters and Archie’s coefficients are the same as in Fig. 4.1.
The relative changes of VP and VS are very similar.

high saturation, and φ = 0.05 and φ = 0.35 to represent low and high porosity, respectively. On the left-

hand column of Fig. 4.2, we observe that seismic velocities and conductivity have opposite trends with

increasing porosity for both saturation cases. The dielectric permittivity ε is only sensitive to porosity

variation in the high saturation case. As can be seen in the right-hand column of Fig. 4.2, the influence of

saturation on the seismic model parameters is relatively weak. Permittivity is more sensitive to saturation

in the high porosity environment. Although conductivity is greatly affected by porosity and saturation,

this might not be a favourable factor for JPI because it is relatively difficult to estimate conductivity in

GPR FWI.

4.2.3 Joint petrophysical inversion

Based on the sensitivity analysis in Section 4.2.2, we observe that, for the assumed petrophysical rela-

tions, the seismic parameters are mainly sensitive to porosity, and the EM parameters are affected by

porosity and saturation. In conventional JPI shown in Fig. 4.3(a), the gradients of the seismic or GPR

objective function with respect to porosity and saturation are given by the chain rule, and then directly

used to update porosity and saturation through eqs (4.2) and (4.3). However, one may not expect shallow-

seismic data to help the reconstruction of saturation because of the low sensitivity of seismic parameters

to saturation (Figs 4.1 and 4.2). Besides, the conductivity gradient with low reliability can be projected

onto the petrophysical gradients, resulting in a poorer reconstruction of petrophysical parameters than

that produced by the individual petrophysical inversion. We have observed these phenomena in many

numerical examples, which are not shown in this paper. To avoid these drawbacks, we can simplify

conventional JPI in each iteration in four steps:
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Input
φ, Sw, VPma, VSma, ρma, εrma and σw
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(1) Compute
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No
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Figure 4.3: The workflows of joint petrophysical inversion (JPI). (a) Conventional JPI. (b) Indirect JPI.
The gradients ∂ΦS/∂φ , ∂ΦS/∂Sw, ∂ΦEM/∂φ and ∂ΦEM/∂Sw in (a) are given by the petro-
physical parametrization, similar to eqs (29) and (30) in Gao et al. (2012). The models
and gradients in white will not be used in the simplified conventional JPI. The gradients
∂ΦS/∂VS and ∂ΦS/∂ρ in (b) are yielded by the seismic velocity parametrization, similar to
eq. (12) in Köhn et al. (2012). The gradient ∂ΦEM/∂ε in (b) is provided by the logarith-
mic parametrization, eq. (38) in Meles et al. (2010). The implementation steps of JPI are
indicated by numbers one to four.
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(1). We calculate the seismic parameters (VP, VS, and ρ) from the φ and Sw models through Gassmann’s

equations (eqs 4.4 and 4.5).

(2). In shallow-seismic FWI, we use the petrophysical parametrization to calculate the φ gradient and

update the φ model only (eqs 4.2 and 4.3).

(3). The φ and Sw models are used to calculate the EM parameters (ε and σ ) via CRIM (eq. 4.6) and

Archie’s equation (eq. 4.7).

(4). In GPR FWI, we employ the petrophysical parametrization to compute the Sw gradient and update

the Sw model only (eqs 4.2 and 4.3).

The simplified conventional JPI is also shown in Fig. 4.3(a) (note the difference between the white

and black variables). Unlike conventional JPI, the simplified conventional JPI does not use seismic

data to calculate the gradient and update the model of saturation in step (2), nor does it use GPR data

to calculate the gradient and update the model of porosity in step (4). This simplification allows one

data set to contribute to only one of the two petrophysical parameters. The simplified conventional JPI

ensures that the results are at least not worse than the individual petrophysical inversion results, which

is a fundamental requirement that conventional JPI must fulfil. However, such a simplification may not

be sufficient because the EM Jacobian matrix of saturation still includes the conductivity and the seismic

Jacobian matrix of porosity consists of the bulk modulus (the P-wave velocity related), similar to eqs

(29) and (30) in Gao et al. (2012). This is a bottleneck of conventional JPI when we estimate multiple

parameters simultaneously.

In shallow-seismic FWI, where the wavefield is dominated by surface waves, the S-wave velocity is the

parameter that can be reconstructed most reliably (Pan et al., 2019). Similarly, the permittivity, which

quantifies the phase velocity of EM waves, can be inverted by GPR FWI with good accuracy (Klotzsche

et al., 2019). We, therefore, propose an indirect petrophysical parametrization that establishes rela-

tions between porosity and S-wave velocity, as well as saturation and permittivity. Indirect petrophysi-

cal parametrization consists of seismic velocity parametrization and logarithmic parametrization which

have proven to be efficient for shallow-seismic and GPR FWIs, respectively. For details of those two

parametrizations, the reader is referred to, for instance, Köhn et al. (2012) and Meles et al. (2010). In

the following, we first introduce two equations necessary for indirect petrophysical parametrization and

then describe the steps to implement this parametrization in JPI.

In indirect petrophysical parametrization, the well recovered seismic model parameters (VS and ρ) are

transformed to φ by using Gassmann’s equations as follows:

φ = φc

(
1− µ

µma

)
, µ = ρV 2

S , with 0 6 φ < φc . (4.8)

62



4.3 Synthetic examples

On the other hand, we estimate Sw by the well reconstructed GPR model parameter (ε) through eq. (4.9),

which is another form of CRIM:

Sw =

[√
ε/ε0− (1−φ)

√
εrma

]
φ−1−√εra

√
εrw−

√
εra

, with 0 6 Sw < 1 . (4.9)

We implement indirect JPI in each iteration through the following four steps:

(1). We calculate the seismic parameters (VP, VS, and ρ) from the φ and Sw models through Gassmann’s

equations (eqs 4.4 and 4.5).

(2). In shallow-seismic FWI, we use the velocity parametrization to compute the gradients and update

the models of VS and ρ (eqs 4.2 and 4.3). The φ model is then calculated from the recovered VS

and ρ by eq. (4.8).

(3). The φ and Sw models are used to calculate the EM parameters (ε and σ ) via CRIM (eq. 4.6) and

Archie’s equation (eq. 4.7).

(4). We employ the logarithmic parametrization to compute the ε gradient and update the ε model in

GPR FWI (eqs 4.2 and 4.3). Eq. (4.9) is then used to estimate Sw model from the reconstructed ε

model.

As shown in Fig. 4.3, the main differences between conventional JPI and indirect JPI are steps (2) and (4).

Unlike conventional JPI, which uses the petrophysical parametrization directly, indirect JPI applies non-

petrophysical parametrizations (i.e. the seismic velocity parametrization and logarithmic parametriza-

tion) to compute the gradients and update the models of seismic and GPR parameters (Fig. 4.3b). It

then transforms the best recovered parameters (the S-wave velocity and density or permittivity) to poros-

ity or saturation. Thus, we improve the reliability of the petrophysical inversion results by indirectly

calculating these less reliable parameters (the P-wave velocity and conductivity) with reliable informa-

tion. Similar to the simplified conventional JPI, indirect JPI also takes into account the sensitivity of

petrophysical parameters to seismic and EM parameters. Furthermore, indirect JPI uses the sensitivity

of shallow-seismic and GPR data to seismic and EM parameters, which stabilizes the multiparameter

reconstruction. Note that the simplified conventional JPI belongs to the conventional JPI family as it

applies the petrophysical parametrization in the same way. Therefore, we still refer to this approach as

conventional JPI throughout this paper.

4.3 Synthetic examples

In this section, we explore the characteristics of indirect JPI of shallow-seismic and multi-offset GPR data

using a controlled environment with synthetic data. We first introduce a 2-D reference model and the

surface data acquisition setup of Rayleigh waves and TM mode waves (i.e. the mode whose magnetic

field components are always in the measurement plane). Then we apply indirect JPI on the forward-

modelled synthetic data to simultaneously reconstruct all seven parameters (φ , Sw, VP, VS, ρ , ε and σ ).

Furthermore, we analyse the robustness of indirect JPI to inaccurate petrophysical relations and rock
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Figure 4.4: The reference petrophysical models used in the synthetic inversion tests. The red stars and
white triangles represent the transmitters and receivers of GPR (0.1 m above the surface).
The seismic data acquisition uses the same number and interval of sources and geophones as
transmitters and receivers used in GPR data acquisition, but the sources and geophones are
placed along the surface. The air layer (depth < 0 m) is known and will not be displayed in
the inversion results.

matrix parameters. The results of (simplified) conventional JPI are compared. In the end of this section,

we investigate the possibility of applying indirect JPI that combines other wave types and acquisition

geometries.

Seismic waves and EM waves are modelled by the 2-D finite-difference time-domain (FDTD) method

(Virieux, 1984, 1986; Yee, 1966). The convolutional perfectly matched layer (CPML) is included at the

model boundaries, except for the free surface of seismic models where an imaging method is applied

(Levander, 1988). We use a multi-scale strategy to avoid cycle skipping in FWI (Bunks et al., 1995). In

the joint inversion approach, inversions can switch to the next stage if the abort criteria of both individual

inversions are satisfied or if the maximum iteration number is reached. The seismic and electric source

time functions are known in the inversion. A depth-dependent weighting scheme is applied to seismic

inversion to enlarge the contribution of the deeper region (Plessix and Mulder, 2008).

4.3.1 Synthetic model and data acquisition

The true petrophysical models, modified from the synthetic study of Pan et al. (2020), exhibit a high

structural similarity between porosity φ and saturation Sw (see Fig. 4.4). We use the same Archie’s

coefficients as we presented in Section 4.2.1. The rock matrix parameters are 1-D so that the values of

background seismic parameters (VP, VS and ρ) and GPR parameters (ε and σ ) increase with depth from

0 to 8 m and they are kept constant in the part deeper than 8 m. The values of the seismic rock matrix

parameters (VPma, VSma and ρma) linearly increase with depth, while the values of the EM rock matrix

parameters (εrma and σw) quadratically increase with depth to approximate a linearly decreasing EM

wave velocity (v ≈ 1/
√

µmε where µm is magnetic permeability). We set VPma = 342.1531 m s−1, VSma

= 207.6540 m s−1, ρma = 1899.8 kg m−3, εrma = 2.4025 and σw = 11.9 mS m−1 at the surface, and VPma

= 721.1296 m s−1, VSma = 437.1345 m s−1, ρma = 3024.8 kg m−3, εrma = 20.0256 and σw = 53.5 mS m−1

at 8 m depth. Correspondingly, the true seismic and GPR models shown in Fig. 4.5 are built by those 1-

D rock matrix models combined with the true petrophysical models through the petrophysical relations
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mentioned in Section 4.2.1. Please note that although the air layer (εr = 1 and σ = 0 mS m−1) is not

displayed in the GPR models, it has to be included in the forward modelling.

Nine vertical particle velocity sources (40 Hz shifted Ricker wavelet) are generated with a source spacing

of 3 m along the surface (almost coincident with the red stars in Fig. 4.4). Sixty geophones are also placed

along the surface from 2 m to 28 m with an interval of 0.4 m to acquire vertical-component seismograms

(almost coincident with the white triangles in Fig. 4.4). The GPR data acquisition uses the same number

and interval of transmitters and receivers as sources and geophones used in the shallow-seismic data

acquisition. The position of GPR antennas is 0.1 m above the surface (the red stars and white triangles

in Fig. 4.4). The transmitters excite a 40 MHz shifted Ricker wavelet in the electric field perpendicular

to the observation plane, and the receivers acquire the same component radargrams. To simulate a more

realistic example, we add Gaussian noise with a signal-to-noise ratio (SNR) of 10 dB, with respect to the

strongest amplitude, to the seismic data. In the radargrams, Gaussian noise of SNR = 25 dB is added. The

different noise levels applied to seismograms and radargrams are determined by the features of shallow-

seismic data and multi-offset GPR data (see Appendix C for details). The dominant wavelength of the

observed surface waves is around 4 m, which is similar to the dominant wavelength of the EM waves

that eliminate the direct waves.

4.3.2 Joint petrophysical inversion of noisy data

The homogeneous background parameters with φ = 0.2 and Sw = 0.4, except for the air layer where φ

= Sw = 0, are used as initial petrophysical models. The initial seismic and GPR models are calculated

from those initial petrophysical models and the 1-D rock matrix parameters mentioned earlier. In the

multiscale strategy, the maximum number of iterations per stage is 15, and the abort criterion is that the

relative data misfit change is less than 1 per cent. We select five inversion stages to sequentially use

data with ever decreasing wavelength. From the first stage to the fifth stage, frequency-band variations

from 5 to 20, 35, 45, 60, and 80 Hz are implemented for seismic inversion. Due to the high-frequency

attenuation of EM waves, we apply frequency-band variations from 5 to 15, 25, 35, 50, and 80 MHz for

GPR inversion. At each stage, the dominant wavelengths of the observed seismic waves and EM waves

(eliminating the direct waves) are comparable.

We show the reconstructed seismic and GPR models in Fig. 4.5. Both conventional JPI and indirect

JPI generate consistent inversion results of seismic velocities and density. This can be attributed to the

internal constraint provided by petrophysical relations on seismic parameters. However, indirect JPI

performs better than conventional JPI since the P-wave velocity model is indirectly calculated from the

S-wave velocity and density models which are reconstructed more reliably in seismic FWI. On the other

hand, conventional JPI provides disappointing results of the permittivity and conductivity models. The

main reason is that conductivity, which is related to amplitude attenuation of radargrams, is relatively

hard to estimate in GPR FWI, while conventional JPI uses this untrustworthy conductivity information in

the gradient calculation of petrophysical parameters. Consequently, even the permittivity model, which

should be well recovered in GPR FWI, is compromised. In this case, the petrophysical link projects the

errors in conductivity onto permittivity. In indirect JPI, this negative effect is eliminated by transforming
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4 Indirect JPI of shallow-seismic and GPR data

Figure 4.5: The seismic models (the upper three rows) and GPR models (the lower two rows) recon-
structed by JPI using noisy data simulated in the reference model. The white dashed lines in
JPI results indicate the outline of the true models.

Figure 4.6: The petrophysical models reconstructed by JPI using noisy data simulated in the reference
model.

a well-recovered permittivity model to a saturation model which is then fed back into the conductivity

model. The conductivity model is therefore indirectly computed from the permittivity model which

carries more accurate information in GPR FWI.

The petrophysical models obtained by JPI are shown in Fig. 4.6. One can find that conventional JPI is

able to recover porosity, but fails to recover saturation. As we stated in Section 4.2.3, the less reliable

conductivity gradient in GPR FWI misleads the saturation gradient to a wrong direction through the chain

rule. To avoid such interference, indirect JPI mutes the contribution of conductivity in reconstructing
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Figure 4.7: The petrophysical model misfits of JPI using noisy data simulated in the reference model.

Figure 4.8: The seismic and GPR model misfits of JPI using noisy data simulated in the reference model.

saturation. Fig. 4.6 demonstrates that indirect JPI can recover porosity and saturation with high accuracy.

In particular, a high-saturation layer and low-saturation anomalies are outlined clearly. Furthermore, the

values in the low-porosity regions are much closer to the true values as the saturation model has been

correctly reconstructed. That explains why we can identify the top layer with higher density and the deep

low-conductive anomalies from the indirect JPI results shown in Fig. 4.5.

In order to evaluate the performance of the two JPIs, we calculate the L2 norm model misfit, a deviation

of the reconstructed model from the true synthetic model, as a function of iteration number. As shown

in Fig. 4.7, conventional JPI reduces the final misfit of porosity and saturation to about 40 and 80 per

cent of the initial model misfits, while indirect JPI can reach lower values, especially for saturation

(40 per cent). In the first few iterations, we observe an increase in porosity misfit which corresponds

to the reconstruction of the high-porosity anomaly in the centre. The subsequent decrease in porosity

misfit implies that the low-porosity anomalies on two sides begin to reconstruct correctly. Compared

to conventional JPI, indirect JPI starts to update the low-porosity region earlier, ultimately yielding a

better porosity estimate. More importantly, indirect JPI performs much better in converging to lower
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4 Indirect JPI of shallow-seismic and GPR data

Figure 4.9: The seismic and GPR data misfits of JPI using noisy data simulated in the reference model.

saturation misfit. Comparing Fig. 4.7 and 4.8, we find similar variations of the model misfit in the seismic

parameters (VP, VS and ρ) and porosity, in both conventional JPI and indirect JPI. It illustrates that the

seismic parameters are strongly sensitive to porosity. On the other hand, we observe that the conductivity

misfit in conventional JPI increases first and then decreases, resulting from the superposition of porosity

and saturation. Permittivity misfit in conventional JPI seems to be more impacted by saturation than

porosity. In indirect JPI, since the misfits of the GPR parameters and saturation converge much better,

the misfits of the seismic parameters and porosity can further decrease.

Finally, we show the convergence curves of the data misfit in Fig. 4.9. The ‘jumps’ of data misfit happen,

when the inversions change to a broader frequency band in the next stage. In the seismic data misfits, the

two convergence curves end up with similar values because the S-wave velocity, which mainly affects

the objective function of shallow-seismic FWI, is recovered to similar levels (30–40 per cent of the initial

model misfit, see Fig. 4.8). The GPR data matching is improved significantly in indirect JPI compared

to conventional JPI. In this synthetic test, indirect JPI is capable of reconstructing more accurate models

and reaching lower levels of model misfit and data misfit at the same time.

4.3.3 Robustness tests

In the above research, the accurate Archie’s coefficients and rock matrix models are exactly known.

However, this is not realistic and might lead us to overestimate the performance of the JPI approach.

Therefore, in this section, we test the robustness of JPI in the presence of errors in a priori information.

The observed data used for JPI are the same noisy data simulated in the reference model. All the final

model misfits are normalized by those obtained by the initial model with accurate Archie’s coefficients

and rock matrix parameters.

We change the value of Archie’s coefficients m and n used in the inversion and compare the corresponding

results of JPI with those using correct Archie’s coefficients (m = 0.4 and n = 1.13). Table 4.1 reveals

that the range of the final porosity misfit is small (41.22–42.85 per cent in conventional JPI and 31.69–

33.81 per cent in indirect JPI) and slightly affected by the variation of m and n. This observation is

reasonable because porosity is reconstructed by seismic data alone in conventional JPI and indirect JPI

(note the simplification of conventional JPI in Section 4.2.3). The changes of m and n in conventional

JPI cannot cause a worse impact on the final saturation misfit that is already quite large (around 80 per
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Table 4.1: The final petrophysical model misfits with respect to different error levels of Archie’s coeffi-
cients (m and n). The accurate Archie’s coefficients and the corresponding misfits are shown
in bold.

m n

Conventional JPI Indirect JPI
φ (per
cent)

Sw (per
cent)

φ (per
cent)

Sw (per
cent)

0.4 1.13 41.22 81.52 32.38 40.01
1.0 1.13 42.65 78.97 33.81 37.92
2.0 1.13 42.85 77.52 32.59 36.97
0.4 1.50 42.59 80.38 33.59 49.67
0.4 2.00 41.48 78.97 32.41 62.57
0.4 3.00 42.46 81.83 31.69 78.12

Figure 4.10: The final petrophysical model misfits as functions of the perturbation of rock matrix pa-
rameters. The grey dash line marks the initial model misfit. The colourful dots indicate the
actual values of the perturbation and model misfit, and the colourful lines across those dots
represent the trend of model misfit along with the perturbation range (≤ 50 per cent). Once
the final model misfit of one parameter is higher than the initial model misfit in certain
perturbations, we no longer display the results of higher perturbation.

cent). In indirect JPI, the saturation misfit does not suffer from an inexact cementation exponent m if

the saturation exponent n is fixed. However, with n increasing, the saturation misfit increases because

the reconstruction of permittivity is influenced by the poorly recovered conductivity and can damage the

saturation. When n increases to 3.00, the recovered saturation deteriorates but remains similar to that

yielded by conventional JPI using accurate Archie’s coefficients.

We apply a constant homogeneous perturbation to the seismic and EM rock matrix parameters. When one

rock matrix parameter is perturbed, the other rock matrix parameters are unaffected. The perturbation

is quantified by the positive relative percentage of the average value of each rock matrix parameter.

We use the perturbed model as an initial model of JPI. As shown in Fig. 4.10, VPma, VSma and ρma

have a great influence on the reconstruction of porosity in both conventional JPI and indirect JPI. In
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Figure 4.11: The results of indirect JPI using different data simulated by different acquisition geometries
in the reference model (the air layer is not displayed). The red stars and white triangles
represent the sources (transmitters) and geophones (receivers) used to obtain crosshole data.
The results of indirect JPI using surface P-SV-wave data and surface TM-wave data are the
same as those of the indirect JPI shown in Fig. 4.6.

particular, the final porosity misfit is higher than the initial model misfit when the perturbation of VSma

> 5 per cent or ρma > 30 per cent in conventional JPI and the perturbation of VSma > 10 per cent in

indirect JPI, which means the inversion fails to reduce the model misfit. The perturbations of εrma and

σw in a range of 50 per cent do not seem to affect a good estimation of porosity. When it comes to

the final saturation misfit, the seismic rock matrix parameters perturbed in the 50 per cent range have a

slight effect on the reconstruction of saturation in conventional JPI and indirect JPI. On the other hand,

increasing perturbation of εrma causes an increase in saturation misfit. In conventional JPI, the saturation

cannot get any improvement when the perturbation of εrma > 10 per cent, while in indirect JPI, even

though εrma perturbs to 30 per cent, the saturation result is still better than that of conventional JPI using

accurate rock matrix parameters. The change of σw in conventional JPI seems not to affect saturation

misfit because saturation reconstruction has been very poor. Although the saturation misfit increase with

σw perturbation in indirect JPI, the highest saturation misfit (the perturbation of σw = 50 per cent) is

comparable with that produced by the conventional JPI without any errors in the rock matrix parameters.

These examples prove that indirect JPI can tolerate more errors in the assumed petrophysical models

compared with the conventional JPI.

4.3.4 Inconsistent acquisition geometries

It is possible to apply indirect JPI on other types of seismic and GPR data simulated by different acquisi-

tion geometries. We show an inversion example of indirect JPI using surface SH-wave data and crosshole

TE-wave data (i.e. the mode whose electric field components are always in the measurement plane) in

Fig. 4.11 and list all of the twelve combinations in 2-D case in Table 4.2. The surface data acquisition

uses the same number and interval of sources (transmitters) and geophones (receivers) as presented in

Section 4.3.1. In the simulated P-SV (Rayleigh-wave) and SH (Love-wave) surface recordings, Gaussian

noise of SNR = 10 dB is added. Similarly, Gaussian noise of SNR = 25 dB is added to the simulated TE

and TM surface recordings. In crosshole data acquisition (Fig. 4.11), twelve sources (transmitters) are
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Table 4.2: The final petrophysical model misfits of indirect JPI with respect to the combination of dif-
ferent wave types and acquisition geometries. The misfits corresponding to the synthetic
example in Section 4.3.2 are shown in bold. It is impossible to obtain a crosshole TM mode
wave in practice due to observation limitations.

Geometries
Wave types

P -SV and TE P -SV and TM SH and TE SH and TM

φ (per cent) Sw

(per cent)
φ (per cent) Sw

(per cent)
φ (per cent) Sw

(per cent)
φ (per cent) Sw

(per cent)
Surface and Surface 37.30 45.35 32.38 40.01 24.66 45.26 23.42 40.03
Surface and Crosshole 33.13 25.90 — — 24.74 25.06 — —
Crosshole and Surface 28.25 40.04 28.63 38.01 24.45 40.69 24.54 38.90
Crosshole and Crosshole 29.72 25.19 — — 27.45 25.49 — —

deployed in three vertical boreholes located at 6, 15 and 24 m distance; Each borehole has four sources

(transmitters) placed from 0.5 to 6.5 m depth; Geophones (receivers) are deployed in the adjacent bore-

holes from 0.4 to 8 m depth with an interval of 0.2 m. For all simulated crosshole recordings, we add

Gaussian noise of SNR = 20 dB. The same inversion configuration as in Section 4.3.2 is used for indirect

JPI.

Indirect JPI using SH-wave data can reconstruct porosity more accurately than indirect JPI using P-SV-

wave data, whether in the surface or crosshole geometries (see Table 4.2 and Fig. 4.11), because SH-wave

FWI has fewer model parameters. On the other hand, compared with that obtained by surface TE-wave

or TM-wave data, the saturation estimated by crosshole TE-wave data is greatly improved due to that

crosshole GPR geometry has better illumination in the area deeper than 3 m (Fig. 4.11). As a result,

indirect JPI of SH surface recordings and TE crosshole data provides the best reconstruction of porosity

and saturation among all of the twelve combinations in Table 4.2. These tests show that indirect JPI is

applicable to various types of waves and acquisition geometries. Therefore, one can make the best use

of indirect JPI by selecting the combination wisely for the target of interest.

4.4 Discussion

We propose to apply indirect petrophysical parametrization iteratively in indirect JPI. We have also tried

to use this parametrization at different points during the inversion process. One can find the implementa-

tion steps and synthetic inversion tests for these attempts in Appendix D. Their results are slightly worse

than those obtained by applying this parametrization iteratively. However, they still show a significant

improvement over the results of conventional JPI.

We have tested indirect JPI in other synthetic models, such as a checkerboard model (Oberröhrmann

et al., 2013), a trench model (Gao et al., 2020) and the models with higher conductivity in the near-surface

zone, and observed similar good performance. The success of indirect JPI demonstrates the importance

of taking into account the sensitivity of data to petrophysical parameters, which can be divided into two

parts: The first is the sensitivity of data to seismic and GPR parameters. For example, the high sensitivity

of shallow-seismic data to the S-wave velocity, or the sensitivity of multi-offset GPR data to the dielectric

permittivity. The second is the sensitivity of seismic and GPR parameters to petrophysical parameters
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as we have discussed in Section 4.2.2. Those two parts are handled by indirect JPI through indirect

petrophysical parametrization.

4.5 Conclusion

In this paper, we proposed indirect JPI of shallow-seismic and multi-offset GPR data for consistent and

accurate imaging. The indirect JPI uses an indirect petrophysical parametrization which is developed

based on the sensitivity of shallow-seismic and GPR data to petrophysical parameters. In indirect JPI,

seismic data primarily contribute to recovering porosity, while GPR data dominate the reconstruction of

saturation. Indirect JPI employs the seismic velocity parametrization and logarithmic parametrization

to update seismic and GPR model parameters, respectively. The best reconstructed parameters are then

transformed to petrophysical parameters. By doing so, we avoid the risk of damaging the inversion

results by some less reliable information.

The 2-D synthetic inversion tests showed that indirect JPI outperforms conventional JPI in reconstruct-

ing more accurate petrophysical, seismic and GPR parameters. In particular, indirect JPI has significant

improvements in estimating saturation and GPR parameters. The robustness tests indicated that, in JPI,

the estimation of porosity rarely depends on Archie’s coefficients and the EM rock matrix parameters,

and the estimation of saturation is slightly affected by the seismic rock matrix parameters. On the other

hand, incorrect seismic rock matrix parameters mainly cause poor porosity reconstruction, and the errors

of Archie saturation component and EM rock matrix parameters only affect the reconstruction of satu-

ration. We also found that indirect JPI suffers less from inaccurate a priori information by linking only

the most reliably estimated seismic and GPR parameters to porosity and saturation, respectively. In addi-

tion, indirect JPI is suitable for different wave types (surface waves, transmitted waves, reflected waves,

etc.) and acquisition geometries (surface observation, crosshole observation, etc.), and the extension of

indirect JPI to include multiple geophysical data is straightforward.

The application and verification of JPI on field data is the next step and needs to be studied in the future.

The use of other petrophysical relations and non-petrophysical parametrizations in JPI also needs to be

further investigated.
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C Data comparison

Figure C.1: The noise-free data versus the noise-contaminated data. (a) The vertical particle velocity
component seismograms, and (b) the electric field component radargrams of the first shot.
Both are trace-by-trace normalized and only every sixth trace is displayed for better visual-
ization. Gaussian noise with a signal-to-noise ratio (SNR) of 10 dB is added to the seismic
data. In the radargrams, Gaussian noise of SNR = 25 dB is added similarly.

Data availability

An open-source software (GPL) package containing the source code, synthetic models and data used in

this paper is provided in the WAVE-Toolbox (https://github.com/WAVE-Toolbox).

C Data comparison

Fig. C.1 shows the impact of Gaussian noise on the seismograms and radargrams of the first shot. It is

observed that the near-offset traces (offset < 10 m) and far-offset traces (offset > 10 m) in the seismic

section are influenced slightly by the noise. However, radargrams are significantly disturbed by the noise

in the far-offset range. For a more straightforward comparison, we plot the SNR as a function of offset in

Fig. C.2. The SNR of seismograms is about 9 dB for the entire section because we eliminate the traces of

offset < 1 m and use the maximum offset of 25 m within which the amplitude decay of Rayleigh waves is

weak. Although we add Gaussian noise with a higher SNR to the GPR data, the SNR of the radargrams

decreases rapidly with offset and is smaller than 0 dB after 10 m offset which means the effective signal

is below noise level in those areas. This strong attenuation results from the geometric propagation of

EM waves and the presence of conductivity in underground space. Unlike crosshole GPR data, in which

transmitted waves are dominant and contribute to the inversion, surface GPR data are dominated by the

direct waves and provides less useful signals (reflected waves) for the inversion.
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4 Indirect JPI of shallow-seismic and GPR data

Figure C.2: The SNR as a function of offset, which is calculated from the corresponding seismograms
and radargrams shown in Fig. C.1. The solid line is the SNR of the seismograms and the
dashed line the SNR of the radargrams. The dotted line marks the reference SNR = 0 dB,
that is noise and signal magnitudes are equal.

Figure D.1: The results of JPI using indirect petrophysical parametrization at different points during the
inversion. The results of iterative JPI are the same as those of the indirect JPI shown in
Fig. 4.6.

D Indirect petrophysical parametrization comparison

There are three options to implement indirect petrophysical parametrization in indirect JPI at different

points during the inversion. The first option, as shown by steps (1–4) in Fig. 4.3(b), iteratively uses this

parametrization. The second option is to execute this parametrization at the end of each inversion stage

in the multi-scale strategy. The third option is to apply seismic inversion and GPR inversion sequentially

and only use steps (2) and (3) once after the seismic inversion. For convenience, we refer to the indirect

JPI using those three options as iterative JPI, staged JPI and sequential JPI. Compared with iterative JPI,

staged JPI and sequential JPI possess several gaps where no petrophysical parameter exchange happens.

We set those gaps to give the inversion a certain degree of freedom and see whether the reconstruction

benefits from it.

We implement staged JPI and sequential JPI with the same inversion configuration as the iterative JPI

shown in Section 4.3.2 and simultaneously reconstruct all seven parameters (φ , Sw, VP, VS, ρ , ε and

σ ). Their results are shown in Fig. D.1. The use times of indirect petrophysical parametrization in

iterative JPI, staged JPI and sequential JPI are 55, 5 and 1, respectively. In the porosity model, staged JPI

and sequential JPI generate more artefacts in the region deeper than 6 m. Iterative JPI is able to produce
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Figure D.2: The saturation inversion results of the time-lapse model and the saturation residuals caused
by water outflow.

better porosity and saturation models due to the more frequent exchange of information between shallow-

seismic and GPR FWI.

Dynamically monitoring the groundwater is one of the potential applications of JPI. To further evaluate

the three options of indirect petrophysical parametrization, we introduce a time-lapse model simulating

a water outflow process. The difference between the reference and time-lapse model is saturation: We

reduce the saturation of the first trapezoid layer from 0.8 in the reference model (Fig. D.1) to 0.1 in time-

lapse model (Fig. D.2). We conduct three JPIs again and display the inversion results of saturation in

Fig. D.2. Iterative JPI, staged JPI and sequential JPI are able to recover a reliable saturation layer at 1–3 m

depth. However, sequential JPI produces more saturation artefacts at 3–5 m depth. Most of them appear

on the interfaces with distinct contrast in porosity. They are caused by the worse reconstructed porosity,

as the seismic FWI is not aided by the GPR FWI in sequential JPI. Those synthetic tests demonstrate

that the timely mutual constraint of the two data sets would help reduce the inversion artefacts. Hence

we adopt an iterative strategy for indirect JPI in the main body of this paper.
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Prepared as: Qin, T., Bohlen, T., Allroggen, N., & Pan Y. Consistent Imaging of Near-Surface Targets

Using Indirect Joint Petrophysical Inversion of Shallow-Seismic and Multi-Offset Ground-Penetrating

Radar Field Data. Geophysical Research Letters.

Abstract

In near-surface surveys, different geophysical methods may yield conflicting geological interpretations

for the same targets. To solve this issue, we have developed an indirect joint petrophysical inversion

(JPI) integrating shallow-seismic and multi-offset ground-penetrating radar (GPR) data. These data are

used to reconstruct different petrophysical parameters depending on their sensitivities to parameters.

Our application to Love-wave and surface GPR field data indicates that indirect JPI accurately reveals

the degree of consolidation and water content in the subsurface. It suggests that indirect JPI can provide

consistent images that are difficult to achieve with individual inversions and has a higher efficiency of

information exchange than joint structural inversion. More importantly, this method is robust when

there are uncertainties in petrophysical a priori information, significantly promoting its applicability in a

broader range of situations.

Plain Language Summary

Shallow seismic and ground-penetrating radar (GPR) data have different sensitivities to near-surface

materials. Separate inversions of these data may produce inconsistent results, causing difficulties in

interpretation. For this reason, we have developed an indirect joint petrophysical inversion (JPI) to

combine these data by considering their sensitivity differences. We apply this method to field data and

find that it works nicely in simultaneously imaging multiple physical properties. It reveals that indirect

JPI can offer a consistent geological interpretation that takes full advantage of each data. Compared to

another joint inversion approach, our approach has greater strengths in information exchange. As a major

contribution of this study, indirect JPI reduces the reliance on site information and empirical relations,

which is a strong evidence that it can be widely used.
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5.1 Introduction

The near-surface area, a few tens of meters underground, are closely related to social development and

life safety. A detailed characterization of this area is essential for urban construction, engineering explo-

ration, environmental assessment, archaeological investigation, hydrological monitoring, polar research

(Everett, 2013). In near-surface surveys, shallow-seismic and ground-penetrating radar (GPR) methods

are widely used geophysical techniques. Shallow-seismic data are sensitive to the mechanical param-

eters in the subsurface but cannot identify the moisture distribution (Gassmann, 1951). GPR data are

highly sensitive to the water content but the penetration depth is limited by the conductivity (Annan,

2005). Separate inversions of these data may provide inconsistent interpretations and not fully use their

advantages. Combining the two data via joint inversion can provide supplementary information for each

inversion, decreasing uncertainty and avoiding ambiguity (Linde et al., 2008).

There are numerous joint inversion methods proposed to integrate multiple geophysical data (Linde et al.,

2008; Wagner et al., 2019). They can be mainly divided into two classes: joint structural inversion (JSI)

and joint petrophysical inversion (JPI). JSI assumes that different geophysical parameters have similar

distributions. The cross-gradient function is one of the most common methods to quantify structural sim-

ilarity (Gallardo and Meju, 2003). On the other hand, JPI supposes that different geophysical parameters

are a function of the petrophysical properties. In practice, JSI has a broader application than JPI since it

does not strictly require that geophysical parameters obey a certain petrophysical relation. However, the

structural constraint is weaker than the petrophysical constraint and has a risk of generating parameter

relations that deviate from the natural geological environment.

JPI is a valuable technique that combines all geophysical parameters through petrophysical relations.

As a double-edged sword, the applicability of JPI is limited by a priori information, including the as-

sumed petrophysical relations and the rock matrix properties. To address this problem, Qin et al. (2022b)

analyzed the sensitivity of seismic and GPR data to petrophysical parameters and proposed an indirect

JPI method. Their method indirectly uses petrophysical parametrization so that seismic and GPR data

contribute to porosity and saturation updates, respectively. Compared to the conventional JPI (Abubakar

et al., 2012), indirect JPI increases the robustness of the inversion under inaccurate a priori information

and thus improves the applicability of the algorithm.

Indirect JPI was developed from full waveform inversion (FWI) of shallow-seismic and GPR data, a

successful imaging technique that provides high-resolution multi-parameter subsurface models with ge-

ological interests (Tarantola, 1984). Shallow-seismic wavefield is dominated by Love or Rayleigh waves,

which are the result of the interference of SH or P-SV waves. Compared to Rayleigh-wave FWI, Love-

wave FWI has fewer model parameters, lower computational costs, and less trade-offs between multiple

parameters (Dokter et al., 2017). Multi-offset surface GPR data are easy to obtain and have higher spatial

resolution than crosshole GPR data of the same frequency (Lavoué et al., 2014). Here, we apply indirect

JPI for the first time to Love-wave and multi-offset surface GPR field data acquired in Rheinstetten, Ger-

many. We compare indirect JPI with individual inversions and JSI and verify our results with borehole

samples and direct-push technology (DPT) measurements. The main goal of this paper is to assess the

applicability of indirect JPI to solve practical problems.
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5.2 Joint Petrophysical Inversion Method

The theoretical parts of indirect JPI, including detailed sensitivity analysis and comparison with con-

ventional JPI, have been described in Qin et al. (2022b). Therefore, we only briefly introduce the main

idea of this method in this paper. In indirect JPI of Love-wave and multi-offset GPR data, we use the

least-squares objective functions to quantify the data misfit:

ΦS (mS) =
1
2 ||d

syn
S (mS)−dobs

S ||2, (5.1)

ΦEM (mEM) = 1
2 ||d

syn
EM (mEM)−dobs

EM||2, (5.2)

subject to

fS(mS,mP) = 0 , (5.3)

fEM(mEM,mP) = 0 , (5.4)

where ΦS and ΦEM are the objective functions of seismic and electromagnetic (EM) data inversions,

respectively; dsyn
S is the synthetic seismograms and dsyn

EM the synthetic radargrams; dobs
S is the observed

seismograms and dobs
EM the observed radargrams; mS represents seismic parameters including the S-wave

velocity VS and density ρ; mEM represents EM parameters including dielectric permittivity ε and electric

conductivity σ . mP is petrophysical parameters, i.e., porosity φ and saturation Sw in our study. The

function fS and fEM are the petrophysical relations used to connect mP with mS and mEM, respectively.

The seismic and EM wave equations are solved respectively by the 2D finite-difference methods (Virieux,

1984; Yee, 1966). We iteratively update the model parameters m (mS, mEM and mP) by using the

conjugate-gradient method to minimize Φ (ΦS and ΦEM) (Gao et al., 2020). A shown in equations (5.1)

and (5.2), we use separate objective functions that already ensure a reasonable contribution of seismic

and GPR data, thus avoiding the need to calculate the data weighting matrix and scale factors in the

traditional joint inversion (Moorkamp et al., 2013).

We implement indirect JPI in each iteration through the following four steps:

(1). We calculate the seismic parameters (VS and ρ) from the φ and Sw models through fS (equa-

tion 5.3).

(2). In Love-wave FWI (equation 5.1), we use the velocity parametrization to compute the gradients

and update the models of VS and ρ . The φ model is then calculated from the recovered VS and ρ

by fS (equation 5.3).

(3). The φ and Sw models are used to calculate the EM parameters (ε and σ ) via fEM (equation 5.4).

(4). We employ the logarithmic parametrization to compute the ε gradient and update the ε model in

GPR FWI (equation 5.2). We then estimate Sw model from the reconstructed ε model by fEM

(equation 5.4).

In this paper, we use fS the Gassmann fluid substitution model without bulk modulus (Gassmann, 1951),

and fEM the complex refractive index model (CRIM) (Birchak et al., 1974) and Archie’s equation (Archie
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et al., 1942). fS used in step (2) and fEM used in step (4) are exactly the same as those used in steps (1)

and (3), but with different expressions for their respective purposes. Readers are recommended to refer

to equations (4–9) in Qin et al. (2022b) for comparison. Steps (2) and (4) include seismic velocity

parametrization (Köhn et al., 2012) and logarithmic parametrization (Meles et al., 2010) which have

proven to be efficient for shallow-seismic and GPR FWIs, respectively.

In contrast to conventional JPI that directly uses the petrophysical parametrization (Abubakar et al.,

2012), indirect JPI applies non-petrophysical parametrizations to compute the gradients and update the

models of seismic and GPR parameters. Step (2) transforms the S-wave velocity to porosity through

shear modulus since shallow-seismic FWI can reconstruct the S-wave velocity in high-quality (Pan et al.,

2019). Likewise, step (4) transforms permittivity to saturation because permittivity is the parameter

that can be most effectively estimated by GPR FWI (Klotzsche et al., 2019). We then derive these

hard-to-recover parameters (density and conductivity) in steps (1) and (3). Thus, we use only the reli-

able information of each geophysical data, reducing the trade-offs of multi-parameter inversions. In the

above implementation steps, we consider the sensitivity of seismic and EM parameters to petrophysical

parameters and the sensitivity of shallow-seismic and GPR data to seismic and EM parameters. Their

combination ensures that the information exchange between the two inversions is efficient and makes the

joint inversion robust.

5.3 Application to Near-Surface Imaging

5.3.1 Inversion Preparation

We acquired the data in Rheinstetten, Germany, where a V-shaped trench, Ettlinger Line, was excavated

on a sedimentary plain covered by gravel and sand from the Rhine river. This trench was refilled with

sand a few decades ago and became invisible from surface at the test site. The current ground layer is

composed of partially saturated soil, and the groundwater table is below 6 m depth (Wittkamp et al.,

2019). We show field data examples in Figure 5.1 and the initial seismic and GPR models in Figure 5.2

where the trench is located between 17 and 27 m in horizontal direction. We conducted a 2D investigation

with seismic and GPR profiles perpendicular to the Ettlinger Line. The profile crosses the previous 3D

shallow-seismic survey area from the southwest corner to the northeast corner (Pan et al., 2021).

To record the Love waves, we laid out 48 geophones (horizontal crossline component) from -3.5 m to

43.5 m in the horizontal direction and used a hammer to blow on a steel beam source in the crossline

direction. We acquired 12 seismograms with a shot spacing of 4 m and a fixed geophone spreading

(see Figure 5.1a). Our GPR data were recorded using a single-channel GPR system with a transmitter

of 200 MHz nominal center frequency. We deployed the transmitter-receiver orientation in HH mode

and acquired 18 radargrams with a source spacing of 2 m. Unlike seismic data acquisition, GPR data

acquisition used a ‘walk-away’ method where we fixed the transmitter and moved the receiver on the

right side of the transmitter with offsets ranging from 0.2 m to 8 m (see Figure 5.1b). The steps for

Love-wave and GPR data preprocessing are similar to those used in Wittkamp et al. (2019) and Qin et al.

(2022a).
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(a) (b)

Figure 5.1: Comparison of the observed (true) data with the synthetic data corresponding to the results
of individual full-waveform inversion (FWI) and indirect joint petrophysical inversion (JPI).
(a) The horizontal velocity seismogram of the 1st shot, shown once every four traces. (b)
The horizontal electric field radargram of the 16th ground-penetrating radar (GPR) source,
shown once every twenty traces. For comparison, each trace is divided by the maximum
amplitude of each trace of the observed data.

We use similar model space but different grid sizes for seismic models (0.12 m×0.12 m) and GPR mod-

els (0.04 m×0.04 m), as shown in Figure 5.2. The petrophysical models shown in Figure 5.3 have the

same grid size as seismic and GPR models in each inversion. In GPR models, the air layer of 1 m

thickness remains constant during the inversion and thus is not displayed. The seismic and GPR initial

models change gradually with depth, where the near-ground values of the S-wave velocity, permittivity

and conductivity are estimated from the data (Xia et al., 2012; Annan, 2005), and the density model is

set empirically. We assume that the porosity initial model decreases with depth and saturation is a ho-

mogeneous half-space (Figure 5.3). We calculate the rock matrix parameters (including the groundwater

conductivity) from the initial models based on the petrophysical relations using the critical porosity φc

= 0.4 in Gassmann’s equations, the tortuosity factor a = 2, the cementation exponent m = 1.4, and the

saturation exponent n = 1.13 in Archie’s equation. To account for the attenuation of S-wave velocity,

we use a viscoelastic solver with one relaxation mechanism of 40 Hz relaxation frequency and set the

attenuation level QS ≈ 13.3 (Gao et al., 2020).

We adopt the inversion setups similar to those of Qin et al. (2022b), except that the frequency bands of

GPR inversion vary from 5 to 30, 40, 50, 70, and 100 MHz, allowing for stable convergence. In addition,

at the beginning of each inversion stage, we estimate the source wavelets by a correction filter (Groos

et al., 2014). We apply a 1D Gaussian filter in the horizontal direction to the gradient to suppress the

components shorter than the dominant wavelength.
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Trench

(a)

(b)

DPT1 DPT2

Figure 5.2: (a) Seismic models (S-wave velocity VS and density ρ) and (b) GPR models (relative per-
mittivity εr and conductivity σ ). The four columns are the initial models, the reconstructed
models of individual FWI, the reconstructed models of joint structural inversion (JSI), and
the reconstructed models of indirect JPI, respectively. In the initial models, the red stars are
the sources and the dashed triangle outlines the cross-section of the Ettlinger Line. The bore-
hole histograms overlaid on the density model are the direct-push technology (DPT) results
(Figures E.1a and E.1b), where the transparent and translucent areas present the unconsoli-
dated and consolidated soil, respectively.

5.3.2 Inversion Results

As shown in Figures 5.2 and 5.3, the seismic, GPR, and petrophysical models reconstructed by indirect

JPI successfully illustrate the presence of the Ettlinger Line. On the on hand, the S-wave velocity result

is comparable to that of the 3D shallow-seismic FWIs of Pan et al. (2021). On the other hand, the

permittivity result is in high agreement with the GPR migration image of Wittkamp et al. (2019). Due

to the constraint of petrophysical relations, the density model also reveals the exact shape of the trench,

which is difficult to see from past investigations of Wittkamp et al. (2019) and Gao et al. (2020). For

the same reason, the conductivity model has a similar structure to the permittivity model. Note that in

the GPR models, the boundaries of the trench become less visible compared to the high permittivity and

high conductivity anomalies in the interior. It is due to two reasons. One is that the high conductivity

environment near the surface degrades the penetration depth of the GPR signal. The other is that the

trench boundaries are the transition zone of porosity (see Figure 5.3), where the low porosity outside

makes saturation less sensitive to GPR data (Qin et al., 2022b).

For comparison, we show individual FWIs and JSI results in Figure 5.2. Individual FWIs use the same

objective functions (equations 5.1 and 5.2) but are not subject to petrophysical relations. JSI is the

same as individual FWIs and is additionally constrained by three cross-gradients, i.e., t(VS,ε), t(VS,ρ)
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and t(ε,σ) where t is the cross product of the spatial gradients (Gallardo and Meju, 2003). The S-wave

velocity models estimated by three inversions are of good quality, while the density models reconstructed

by SH FWI and JSI show a high-density anomaly inside the trench and a low-density anomaly to the left.

These anomalies may be artifacts caused by the crosstalk from S-wave velocity and the low sensitivity of

Love-wave data to density. JSI improves the density model by correcting the trench bottom and reducing

these artifacts. Nevertheless, these improvements are much fewer than those provided by indirect JPI.

Individual GPR FWI outlines the shape of the trench in the permittivity model but not in the conductivity

model due to the weak sensitivity of GPR data to conductivity. JSI provides a valuable conductiv-

ity model by transforming the structure information from the more reliable permittivity model. Since

surface GPR data is dominated by the short-wavelength information (Lavoué et al., 2014), the long-

wavelength background models are difficult to update by GPR FWI alone. To overcome this drawback,

joint inversions attempt to use the complementary information from Love-wave data. Unfortunately, JSI

fails to realize this goal because the long-wavelength seismic background, e.g., the high S-wave veloc-

ity anomaly on the left side of the trench, has low cross-gradient values with the GPR model. Indirect

JPI successfully offers the needed information for GPR FWI through the porosity model, thus allowing

reconstruction of the low permittivity and low conductivity background.

The seismogram fitting of SH FWI and indirect JPI are comparable (ΦS is 71.9759 and 73.3305 m2 s−2

for each), while the radargram fitting of GPR FWI (ΦEM = 2.7767E-4 V2 m−2) is slightly better than that

of indirect JPI (ΦEM = 2.8824E-4 V2 m−2). In Figure 5.1b, the reflected waves dominate in the radargram

at offsets greater than 2 m due to the strong permittivity contrast on the right side of the trench. Indirect

JPI matches well to the reflection events within the first 5 m offsets and becomes worse than GPR FWI

when the offset is over 5 m. The air waves are hard to fit in both inversions as we use the 3D / 2D

transformation of the reflected wave (Forbriger et al., 2014) and our 2D solver cannot well simulate the

radiation patterns and antenna-ground coupling. Overall, the data misfit of indirect JPI is slightly higher

than that of GPR FWI (within 4 per cent) because of the interaction of seismic and GPR data and the

additional petrophysical constraint.

We compare indirect JPI with individual petrophysical inversions (IPIs) in Figure 5.3. SH IPI follows

equations (5.1) and (5.3), and GPR IPI follows equations (5.2) and (5.4). Unlike indirect JPI, IPIs

use petrophysical parametrization to directly update the petrophysical models, which means that weak

sensitivity information, e.g., conductivity gradient, is also included. Consequently, SH IPI and GPR IPI

generate conflicting results at 0.5–1.5 m depth on the right side of the trench. SH IPI describes this region

as having high porosity and high saturation anomalies, while GPR IPI interprets it as a low porosity and

low saturation anomalies. Neither of them can minimize the two data misfits simultaneously. However,

indirect JPI describes this area as a water-poor layer consisting of high porosity and low saturation

anomalies, ensuring that both data are well matched.

5.3.3 Comparison of Inversion Results with Borehole Information

To validate our interpretations of the density model, we compare two independent DPT measurements

(DPT1 and DPT2) with the result obtained from indirect JPI in Figure 5.2a and Figures E.1a and E.1b
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BH1 BH2

Figure 5.3: Petrophysical models (porosity φ and saturation Sw) and volumetric water content model
θv. The four columns are the initial models, the reconstructed models of SH individual
petrophysical inversion (IPI), the reconstructed models of GPR IPI, and the reconstructed
models of indirect JPI, respectively. The borehole histograms overlaid on the water content
model are the gravimetric water content θg given by borehole soil samples (Figures E.1c
and E.1d), where the transparent and translucent areas exhibit high and low water content,
respectively.

in Supporting Information. Our DPT measurements reveal a change from loose topsoil to compacted

subsoil at 1 m depth at the DPT1 position and an interface between refilled sand and underlying soil at

3 m depth at the DPT2 location, which corresponds to the bottom of the trench (see Figure E.1b). These

findings agree with the density model of indirect JPI in Figure 5.2a and prove that indirect JPI provides

a more realistic density model than SH FWI and JSI.

Petrophysical inversions give the volumetric water content θv = φSw. We drilled two boreholes (BH1

and BH2) close to the DPT locations and measure the gravimetric water content θg. Figure 5.3 and Fig-

ures E.1c and E.1d suggest that indirect JPI fits well with the BH1 measurement in both high and low

water content area. For BH2, SH IPI overestimates the water content in the trench and GPR IPI underes-

timates it. Indirect JPI matches the BH2 measurement with minimum error, although the performance at

the trench bottom is not ideal due to the two limitations of the GPR technique mentioned above.

5.3.4 Robustness Tests

It is well known that the performance of petrophysical inversions tends to depend on a priori information,

i.e., the rock matrix parameters and Archie’s coefficients. Instead of giving the rock matrix parameters

explicitly, we compute them from the initial models in this study. If we fix seismic and GPR initial

models, the rock matrix parameters are calculated from petrophysical initial models minitial
P . To evaluate

the inversion robustness, we take the mean structural similarity (MSSIM) index to measure the fidelity

of the reconstructed models of indirect JPI using different minitial
P relative to the reference. We adopt the

same settings as Boniger and Tronicke (2010) to compute the MSSIM index. The closer the MSSIM

index is to one, the more similar the two comparison objects are (Wang et al., 2004).
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Table 5.1: Model MSSIM Index Obtained by Indirect JPI with Different Petrophysical Initial Models.
minitial

P Seismic MSSIM GPR MSSIM
φ Sw VS ρ ε σ

0.2 0.5 0.9915 0.9877 0.9757 0.9000
0.2 0.7 0.9922 0.9851 0.9344 0.8601
0.3 0.5 0.9998 0.9986 0.9992 0.9929
0.3 0.7 0.9990 0.9926 0.9653 0.9276

Note. MSSIM is the mean structural similarity.
minitial

P is the initial model of φ and Sw.

Table 5.1 shows the MSSIM index where indirect JPI using minitial
P shown in Figure 5.3 is the reference

and other four indirect JPIs use homogeneous minitial
P in half-space. Note that we adjust the initial per-

mittivity model to a homogeneous half-space (εr = 9) in this test to fulfill the requirement of CRIM.

Compared to indirect JPI results shown in Figures 5.1–5.3, it leads to a slight change in data fitting (dif-

ference within 1 per cent) and petrophysical model reconstruction (MSSIM > 0.99) in the reference JPI

but does not impact the conclusions we have made (see Figure E.2). Table 5.1 reveals that when using

initial models with high porosity and medium saturation (φ = 0.3 and Sw = 0.5), indirect JPI obtains

reconstruction results almost the same (MSSIM > 0.99) as the reference. This is due to the same ini-

tial saturation model and the higher sensitivity of the seismic and GPR parameters to the petrophysical

parameters in this case and, therefore, the more efficient information exchange in indirect petrophysical

parametrization (Qin et al., 2022b). When we change minitial
P to different values, the seismic model esti-

mates are stable (MSSIM > 0.985) compared to the GPR model estimates since the former are mainly

related to porosity but the latter is governed by porosity and saturation. In the latter, we observe larger

variations in conductivity than permittivity because conductivity is indirectly derived from permittiv-

ity and the seismic models (see implementation steps in Section 5.2) and is susceptible to cumulative

errors. However, even in the inversion with the maximum conductivity difference (MSSIM = 0.8601

when φ = 0.2 and Sw = 0.7) from the reference, the reconstructed seismic and GPR models can delineate

subsurface structures similar to the indirect JPI results shown in Figure 5.2 and provide a meaningful

geological interpretation (see Figure E.2). It indicates that the separate use of seismic and GPR data

promotes the robustness of the petrophysical inversions.

We also test indirect JPI with the same initial conductivity model (Figure 5.2) but different Archie’s

coefficients, corresponding to different groundwater conductivities (see Figure E.3). The range of m be-

tween 0.4 and 2.4 and n between 1.13 and 3.00 gives almost identical results (MSSIM > 0.99). It proves

that Archie’s coefficients in the test range do not pose any problems for indirect JPI, which should be

attributed to the abandonment of weakly sensitive conductivity in indirect petrophysical parametrization

(Qin et al., 2022b). Overall, these examples demonstrate that indirect JPI does not need to know accurate

a priori information. With suitable seismic and GPR initial models, any petrophysical initial models and

Archie’s coefficients in a reasonable range can produce similar results. This strength makes indirect JPI

a promising technique that can be easily applied to many field environments with as few assumptions

about petrophysical relations as possible.
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5.4 Conclusion

In this paper, we applied indirect JPI to Love-wave and multi-offset surface GPR field data for consistent

imaging of the near-surface targets. Indirect JPI takes into account the sensitivity of shallow-seismic

and GPR data to petrophysical parameters. The application at the Rheinstetten test site showed that

this approach not only outperforms individual FWIs and JSI in reconstructing seismic and GPR param-

eters, but also provides more reliable petrophysical models than IPIs. Indirect JPI presented significant

improvements in estimating saturation, density, and conductivity, therefore reducing the ambiguity and

uncertainty of single geophysical techniques and facilitating the final geological interpretations, such as

determining groundwater distribution and facies stratification. This study also suggested that this ap-

proach has a more efficient information communication due to the solid link of petrophysical relations.

Thanks to the separate contributions of seismic and GPR data, indirect JPI reduced the reliance on a priori

information and exhibited great potential for real-world applications. Our observations are in agreement

with the DPT and borehole measurements.
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DPT1 DPT2 BH1 BH2

(a) (b) (c) (d)

Figure E.1: Comparison of indirect joint petrophysical inversion (JPI), direct-push technology (DPT),
and borehole measurements. The black lines in (a) and (b) are the number of hits measured
by DPT, and the black lines in (c) and (d) are the gravimetric water content of borehole
soil samples. The red lines are the results of indirect JPI, i.e., density in (a) and (b) and
gravimetric water content in (c) and (d). The gray dashed lines mark the interfaces between
transparent and translucent areas of the borehole histograms shown in Figures 5.2 and 5.3.

E Supporting Information

Figure E.1 is the results of direct-push technology (DPT) and borehole measurements. In DPT measure-

ment, a metal pile was hit by a free-falling slide hammer (10 kg) and thus pushed into the ground. By

recording the number of hits per 0.1 m depth pushed in, we measured the consolidation degree in the

subsurface. The larger the number, the more compact the soil. Figures E.1a and E.1b show the results

of DPT1 and DPT2, respectively. In borehole measurements, we collected soil samples every 0.5 m

depth and then measured the gravimetric water content of the soil samples by drying operation in the

laboratory. Petrophysical inversions give the gravimetric water content θg = θ/(1−θ) where θ = θv/ρ

(θv is the volumetric water content and ρ is density). Figures E.1c and E.1d show the results of BH1 and

BH2, respectively. Note the uncertainty present in the density of converting θv to θg is another factor

impacting the fitting of two curves.

Figure E.2 is the indirect joint petrophysical inversion (JPI) results with different petrophysical initial

models. The models shown in Figures E.2a and E.2b are used to calculate the mean structural similarity

(MSSIM) index in Table 5.1.

Figure E.3 illustrates the effect of different Archie’s coefficients on the reconstruction of the petrophysi-

cal parameters.
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(a)

(b)

(c)

Figure E.2: (a) Seismic models (S-wave velocity VS and density ρ), (b) ground-penetrating radar (GPR)
models (relative permittivity εr and conductivity σ ), and (c) petrophysical models (porosity
φ and saturation Sw). The five columns are the indirect JPI results with different petrophys-
ical initial models (see the title of each row). The five JPIs have the same seismic and GPR
initial models where the seismic initial models and initial conductivity models are the same
as in Figure 5.2, and the initial permittivity model is a homogeneous half-space (εr = 9). The
referenced petrophysical initial models are the same as in Figure 5.3.

Figure E.3: Petrophysical models (φ and Sw). The five columns are the indirect JPI results with differ-
ent Archie’s coefficients (cementation exponent m and saturation exponent n). The initial
models of five JPIs are the same as referenced initial models used in Figure E.2. m = 1.4
and n = 1.33 in the reference JPI.
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6 Summary

In this dissertation, I presented the results of my research on FWI of GPR data and its joint inversion with

shallow-seismic data. As I have drawn conclusions in Section ‘Conclusion’ and given outlooks in Section

‘Discussion’ of each chapter (except Chapter 5 where discussion is ignored), here I only summary the

main contributions of these studies.

• Chapter 2: I presented SFWI to reduce the computational costs of inverting multi-offset GPR data.

As a model-dependent method, SFWI can get a theoretical speedup and memory saving factor

equal to the size ratio of the model and its subset. The practical improvements of SFWI can be

higher or lower than this factor, depending on the combined parallelizations. Different from the

previous study, I quantified the influence of model subset on simulation and inversion and offer

rules of thumb and some suggestions for selecting model subset.

• Chapter 3: Using the τ-method introduced in the seismic community, I defined the permittiv-

ity attenuation parameter to quantify the attenuation resulting from the complex permittivity and

to modify time-domain Maxwell’s equations. It showed that permittivity attenuation acts as a

low-pass filter, accounting for waveform distortion and amplitude attenuation. The frequency-

dependent GPR FWI developed is not only simple to implement, but also ensures a better fit to

the observed data and a more realistic reconstruction when the material is strongly frequency-

dependent.

• Chapter 4: Based on the sensitivities of GPR and shallow-seismic data to petrophysical parameters,

I proposed an indirect JPI. This technique is robust as it links only the most reliably estimated

seismic and GPR parameters to porosity and saturation, respectively. As a result, indirect JPI can

simultaneously estimate petrophysical, seismic and GPR parameters in high quality and can be

applied in a wide range of environment in the presence of uncertainties in a priori information.

• Chapter 5: I provided a real world example to validate the feasibility of indirect JPI. It demon-

strated that this method has outstanding performance over individual inversions and JSI. On the

one hand, indirect JPI reduces the ambiguity of inverting single geophysical data and promotes

consistent imaging of the near-surface targets. On the other hand, it takes advantage of the strong

constraint from petrophysical relations to robustly reconstruct seismic and GPR parameters with

different petrophysical initial models and the coefficients used in petrophysical relations.

In conclusion, I reduced the computational costs of GPR FWI in Chapter 2 and extended GPR FWI to

frequency-dependent media in Chapter 3. I then developed an indirect JPI to combine GPR and shallow-

seismic data and verify its performance through synthetic examples in Chapter 4 and field examples in
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6 Summary

Chapter 5. Indirect JPI can be performed using the acceleration study in Chapter 2. By replacing the

permittivity and conductivity with the real effective parameters at the reference frequency, indirect JPI

can also be compatible with GPR data obtained in strongly frequency-dependent media (Chapter 3), but

this needs further study.
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