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“To practice without theory is to sail an uncharted sea; 

theory without practice is not to set sail at all.” 

(Mervyn Susser, 1968) 
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Summary 

Next to diet, tobacco use, and alcohol consumption, physical activity belongs to the major 

modifiable lifestyle factors that influence human health. While insufficient physical activity 

increases the risk for many chronic diseases, regular physical activity is effective in preventing 

cardiovascular diseases or metabolic disorders, such as obesity or type 2 diabetes. However, 

the biological mechanisms involved in the body’s adaptation to acute and chronic physical 

activity are still insufficiently understood. The emerging field of metabolomics represents a 

promising approach to systematically analyze exercise-related changes in human metabolism, 

hinting at metabolic pathways that are associated with the performance- or health-enhancing 

effects of physical activity. Although recent studies have supported the use of metabolomics 

for discovering biomarkers of an individual’s training or fitness status, they show substantial 

heterogeneity in terms of study designs, study populations, sample types, or applied analytical 

techniques. Consequently, direct comparisons between findings and the generalizability of 

results in the young research discipline of exercise metabolomics are currently still impeded. 

Intending to address several research gaps and to extend the current state of knowledge, the 

aim of this cumulative dissertation is to comprehensively investigate the effect of acute and 

chronic physical activity on metabolite profiles in humans. To reach this aim, metabolomics 

data from three exercise- or fitness-related (sub-)studies (termed Study I, IIa/IIb) were 

analyzed. By covering different aspects of physical activity, these studies not only allowed to 

examine alterations in the metabolome in response to high-intensity interval training (Study I) 

or acute incremental exercise (Study IIa), but also to obtain new insights into the relationship 

between metabolite profiles and the cardiorespiratory fitness as a measure of chronic physical 

activity (Study IIa/IIb). Depending on the particular study and available biospecimens, 

different metabolomics and statistical approaches were utilized. The present thesis includes 

the study-specific results that have been published in peer-reviewed journals and additionally 

comprises a functional classification of obtained exercise-/fitness-related metabolite profiles 

based on a manually conducted metabolite categorization and a web-based pathway analysis. 

In the framework of the randomized controlled interventional Study I, the effects of a ten-day 

high-intensity interval training and a subsequent four-day recovery period on the resting 

urinary metabolome of young active men (n=18) were investigated. Fasting spot urine was 
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collected before (-1 day) and after (+1 day; +4 days) the training and 64 urinary metabolites 

were identified by nuclear magnetic resonance spectroscopy and liquid chromatography-mass 

spectrometry. Despite the high intensity of the training protocol, no overall change in the 

resting urinary metabolome was observed in the experimental group (n=10). Yet, a significant 

decrease in urinary hypoxanthine excretion was documented one day after the training. Since 

hypoxanthine is related to purine degradation, its lower urinary levels may indicate a training-

induced adaptation in ‘purine metabolism’. To conclude, Study I provided the first evidence 

for urinary hypoxanthine as a possible marker of training adaptation. More research will be 

needed to examine underlying mechanisms and to prove the utility of hypoxanthine in urine 

to reflect an athlete’s adaptation to training. 

Based on Study IIa, which comprised the experimental exercise part within the cross-sectional 

“Karlsruhe Metabolomics and Nutrition” study, the effect of a standardized exercise toler-

ance test on the urinary metabolome of healthy women and men (n=255) was investigated. 

Moreover, the relationship between the cardiorespiratory fitness and either single urinary 

metabolites or metabolite patterns at rest or post-exercise was analyzed. The fitness status 

was assessed by measuring the peak oxygen uptake during incremental exercise. Spot urine 

was collected pre- and post-exercise and 47 urinary metabolites were identified by nuclear 

magnetic resonance spectroscopy. Although principal component analysis did not show a 

clear separation of the pre- and post-exercise urine samples based on the detected metabolite 

profile, univariate analysis revealed alterations in 35 metabolites (e.g., lactate, pyruvate, 

alanine, and acetate). Many of these metabolites belong to ‘energy metabolism’, ‘carbo-

hydrate metabolism’, or ‘amino acid metabolism’. Thus, Study IIa could confirm the ability of 

urine to capture exercise-induced metabolic alterations and clearly indicated the necessity to 

control for acute physical activity in urine metabolomics studies. Since only weak associations 

between the cardiorespiratory fitness and urinary metabolites were observed after adjusting 

for age, sex, menopausal status, and the lean body mass, Study IIa also pointed out the need 

to control for these confounders in urine metabolomics studies related to physical fitness. 

In Study IIb, the relationship between the cardiorespiratory fitness and the resting plasma 

metabolome of healthy women and men of the “Karlsruhe Metabolomics and Nutrition” study 

(n=252) was systematically examined. Plasma samples were collected in the fasting state and 

analyzed by nuclear magnetic resonance spectroscopy and mass spectrometry coupled to 
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one- or two-dimensional gas chromatography or liquid chromatography. Based on this multi-

platform metabolomics approach, 427 plasma analytes from various metabolic pathways and 

chemical classes were detected. Bi- and multivariate association analyses were conducted 

separately for sexes and adjusted for age and menopausal status (1st step) and further clinical 

or phenotypical variables (2nd step). In general, Study IIb revealed sex-specific associations bet-

ween the cardiorespiratory fitness and mainly ‘lipid metabolism’- or ‘amino acid metabolism’-

linked plasma metabolites, which, however, were partially influenced by the covariates. Inter-

estingly, sex-specific explanation models for the cardiorespiratory fitness could be improved 

by including selected plasma analytes in addition to clinical and phenotypical variables. Briefly 

summarized, Study IIb not only proved well-known relationships between the physical fitness 

and risk factors for cardiometabolic diseases, such as the fat mass, the visceral adipose tissue 

mass, or blood triglycerides, in metabolically healthy individuals, but also provided evidence 

of sex-related differences in fitness-associated plasma metabolite patterns. As some fitness-

associated metabolites have been inversely linked to the development of cardiometabolic 

diseases (e.g., phosphatidylcholines) or have been related to exercise-induced adaptations in 

‘energy metabolism’ (e.g., malic acid, succinic acid), Study IIb supposed those metabolites to 

represent potential mediators or markers of the health- or performance-enhancing effects of 

chronic physical activity. Given the rather exploratory character of Study IIb, more research 

will be required to validate obtained findings and to clarify biological mechanisms underlying 

the sex-specific differences in fitness-associated metabolite patterns. Finally, Study IIb 

indicated that covariates like sex, age, menopausal status, and the body composition have to 

be considered if studying blood metabolic markers related to the cardiorespiratory fitness. 

In conclusion, the present dissertation can be seen as a valuable contribution to the emerging 

field of exercise metabolomics. This thesis not only gains deeper knowledge on the effects of 

acute and chronic physical activity on metabolite profiles in healthy populations, but also 

provides suggestions for improving future metabolomics studies. Particular urinary or blood 

metabolites could be highlighted as potential markers for acute physical exercise, training 

adaptation, or physical fitness and certainly represent a useful starting point for validation 

studies and mechanistic investigations. As one piece of a big puzzle, the findings from this 

thesis – together with results from further exercise metabolomics research – might one day 

be translated into personalized approaches in a sport- or health-related context.  
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Zusammenfassung 

Neben der Ernährung sowie dem Konsum von Tabak und Alkohol gehört körperliche Aktivität 

zu den wichtigsten modifizierbaren Faktoren des Lebensstils, die Einfluss auf die Gesundheit 

des Menschen haben. Während unzureichende körperliche Aktivität das Risiko für viele 

chronische Erkrankungen erhöht, wirkt sich regelmäßige körperliche Aktivität positiv auf die 

Entstehung von kardiovaskulären Krankheiten oder metabolischen Störungen wie Adipositas 

oder Typ-2-Diabetes aus. Jedoch sind die biologischen Mechanismen, die den akuten und 

chronischen Anpassungen des Körpers an Belastung zugrunde liegen, bisher noch nicht hin-

reichend verstanden. Das junge Forschungsfeld Metabolomics stellt einen vielversprechenden 

Ansatz dar, um belastungsinduzierte Veränderungen im menschlichen Stoffwechsel 

systematisch zu erforschen und dabei Hinweise auf Stoffwechselwege zu erhalten, welche mit 

den leistungs- oder gesundheitsfördernden Effekten von körperlicher Aktivität assoziiert sind. 

Obwohl jüngste Studien den Nutzen von Metabolomics für die Entdeckung von Biomarkern 

des Trainings- oder Fitnessstatus belegen, weisen diese bezüglich Studiendesign/-population, 

Probenmaterial oder angewandter analytischer Techniken ein hohes Maß an Heterogenität 

auf. Folglich sind direkte Vergleiche sowie die Generalisierbarkeit der Studienergebnisse in der 

jungen Forschungsdisziplin Exercise Metabolomics gegenwärtig noch erschwert. 

Um mehrere Forschungslücken zu schließen und den bisherigen Kenntnisstand zu erweitern, 

besteht das Ziel dieser kumulativen Dissertation darin, den Einfluss von akuter und 

chronischer körperlicher Aktivität auf Metabolitenprofile beim Menschen umfassend zu 

untersuchen. Hierfür wurden Metabolomics-Daten dreier belastungs- bzw. fitness-bezogener 

(Sub-)Studien (bezeichnet als Studie I, IIa/IIb) analysiert. Da diese Studien verschiedene 

Aspekte der körperlichen Aktivität abdeckten, konnten nicht nur Veränderungen im humanen 

Metabolom als Antwort auf hochintensives Intervalltraining (Studie I) oder akute körperliche 

Belastung mit ansteigender Intensität (Studie IIa) untersucht werden, sondern auch neue 

Erkenntnisse zum Zusammenhang zwischen Metabolitenprofilen und der kardiorespira-

torischen Fitness als Marker für chronische körperliche Aktivität (Studie IIa/IIb) gewonnen 

werden. Je nach Studie sowie zur Verfügung stehender biologischer Proben wurden spezielle 

Metabolomics-Ansätze und statistische Verfahren angewandt. Die vorliegende Thesis 

beinhaltet die studienspezifischen Ergebnisse, welche in Peer-Review-Zeitschriften publiziert 
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wurden, und enthält überdies eine funktionelle Einordnung der belastungs- bzw. fitness-

assoziierten Metabolitenprofile, basierend auf einer manuell durchgeführten Metaboliten-

klassifizierung und einer web-basierten Pathway-Analyse. 

Im Rahmen einer randomisierten kontrollierten Interventionsstudie (Studie I) wurde der 

Einfluss eines zehntägigen hochintensiven Intervalltrainings und einer viertägigen 

Regenerationsphase auf das Ruhe-Urinmetabolom junger, körperlich aktiver Männer (n=18) 

untersucht. Hierfür wurden Spontanurinproben im nüchternen Zustand vor (-1 Tag) und nach 

(+1 Tag; +4 Tage) dem Training gesammelt und 64 Urinmetaboliten mittels Kernspinresonanz-

spektroskopie und Flüssigchromatographie mit Massenspektrometrie-Kopplung identifiziert. 

Trotz der hohen Intensität des Trainingsprotokolls wurden keine generellen Änderungen des 

Ruhe-Urinmetaboloms in der Experimentalgruppe (n=10) beobachtet. Allerdings wurde ein 

Tag nach Beendigung des Trainings eine signifikante Abnahme der Hypoxanthinexkretion im 

Urin dokumentiert. Da Hypoxanthin mit dem Purinabbau in Zusammenhang steht, könnte die 

verringerte Urinexkretion auf eine trainingsinduzierte Anpassung im ‘Purin-Stoffwechsel‘ 

hindeuten. Folglich lieferte Studie I erste Anhaltspunkte für Hypoxanthin im Urin als möglichen 

Marker einer Trainingsadaptation. Weitere Studien sind notwendig, um zugrunde liegende 

Mechanismen aufzuklären und den Nutzen von Hypoxanthin im Urin für die Beurteilung der 

Trainingsanpassung bei Athleten nachzuweisen. 

Basierend auf Studie IIa, welche den experimentellen Belastungspart innerhalb der „Karlsruhe 

Metabolomics and Nutrition”-Querschnittsstudie umfasste, wurde der Einfluss eines 

standardisierten Belastungstoleranztests auf das Urinmetabolom gesunder Frauen und 

Männer (n=255) untersucht. Überdies wurde der Zusammenhang zwischen der kardio-

respiratorischen Fitness und einzelnen Urinmetaboliten oder Urinmetabolitenmustern in 

Ruhe bzw. nach Belastung analysiert. Der Fitnessstatus wurde durch die Messung der maximal 

erreichten Sauerstoffaufnahme während des Belastungstests erfasst. Die Spontanurinproben 

wurden vor und nach Belastung gesammelt und 47 Urinmetaboliten wurden mittels Kernspin-

resonanzspektroskopie identifiziert. Obwohl eine Hauptkomponentenanalyse basierend auf 

dem erfassten Metabolitenprofil keine klare Trennung der Urinproben vor und nach Belastung 

zeigte, ließen univariate Vergleiche Veränderungen in 35 Metaboliten (z.B. Laktat, Pyruvat, 

Alanin und Acetat) erkennen. Viele dieser Metaboliten gehören zum ‘Energiestoffwechsel‘, 

‘Kohlenhydratstoffwechsel‘ bzw. ‘Aminosäurenstoffwechsel‘. Somit konnte Studie IIa 
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bestätigen, dass Urin für die Erfassung belastungsinduzierter metabolischer Veränderungen 

geeignet ist. Zudem wurde auf die Notwendigkeit hingewiesen, in zukünftigen Urin-

Metabolomics-Studien bezüglich akuter körperlicher Aktivität zu kontrollieren. Da zwischen 

der kardiorespiratorischen Fitness und den Urinmetaboliten lediglich schwache Assoziationen 

beobachtet wurden, nachdem bezüglich Alter, Geschlecht, Menopausestatus und der fett-

freien Körpermasse adjustiert wurde, wies Studie IIa zusätzlich darauf hin, dass in zukünftigen 

Urin-Metabolomics-Studien mit Fitnessbezug für diese Kovariaten kontrolliert werden sollte.  

In Studie IIb wurde der Zusammenhang zwischen der kardiorespiratorischen Fitness und dem 

Ruhe-Plasmametabolom gesunder Frauen und Männer (n=252) der “Karlsruhe Metabolomics 

and Nutrition”-Studie systematisch untersucht. Die Blutproben wurden im nüchternen 

Zustand entnommen und mittels Kernspinresonanzspektroskopie und Massenspektrometrie, 

gekoppelt mit ein- oder zweidimensionaler Gaschromatographie bzw. Flüssigchromato-

graphie, analysiert. Basierend auf diesem Multiplattform-Metabolomics-Ansatz wurden 427 

Plasmaanalyten aus verschiedenen Stoffwechselwegen und chemischen Klassen detektiert. 

Bi- und multivariate Assoziationsanalysen wurden geschlechtergetrennt durchgeführt und für 

Alter und Menopausestatus (1. Schritt) sowie weitere klinische oder phänotypische Variablen 

(2. Schritt) adjustiert. Insgesamt zeigte Studie IIb geschlechterspezifische Zusammenhänge 

zwischen der kardiorespiratorischen Fitness und v.a. ‘Fettstoffwechsel‘- bzw. ‘Aminosäuren-

stoffwechsel‘-assoziierten Plasmametaboliten, die jedoch teilweise durch die Kovariaten 

beeinflusst wurden. Interessanterweise konnten geschlechterspezifische Erklärungsmodelle 

für die kardiorespiratorische Fitness verbessert werden, wenn zusätzlich zu klinischen und 

phänotypischen Variablen ausgewählte Plasmaanalyten berücksichtigt wurden. Zusammen-

gefasst bestätigte Studie IIb nicht nur bekannte Zusammenhänge zwischen der körperlichen 

Fitness und Risikofaktoren für kardiometabolische Erkrankungen wie z.B. der Fettmasse, dem 

viszeralen Fettgewebe oder Blut-Triglyceriden in metabolisch gesunden Personen, sondern 

wies überdies geschlechterbezogene Unterschiede in fitness-assoziierten Plasmametaboliten-

mustern nach. Da einige fitness-assoziierte Metaboliten bereits einen inversen Zusammen-

hang mit der Entstehung kardiometabolischer Krankheiten zeigten (z.B. Phosphatidylcholine) 

bzw. mit belastungsinduzierten Anpassungen im ‘Energiestoffwechsel‘ in Verbindung 

gebracht wurden (z.B. Malat, Succinat), lieferte Studie IIb Hinweise darauf, dass diese 

Metaboliten potentielle Mediatoren bzw. Marker der gesundheits- oder leistungsfördernden 
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Effekte von chronischer körperlicher Aktivität darstellen könnten. Angesichts des explorativen 

Charakters von Studie IIb wird zukünftig weitere Forschung benötigt, um die Ergebnisse zu 

validieren sowie biologische Mechanismen aufzuklären, welche den geschlechterspezifischen 

Unterschieden in den fitness-assoziierten Metabolitenmustern zugrunde liegen. Studie IIb 

wies außerdem darauf hin, dass Kovariaten wie z.B. Geschlecht, Alter, Menopausestatus und 

die Körperzusammensetzung berücksichtigt werden sollten, wenn metabolische Marker der 

kardiorespiratorischen Fitness im Blut untersucht werden. 

Zusammenfassend kann die vorliegende Dissertation als wertvoller Beitrag zu dem neuen 

Forschungsgebiet Exercise Metabolomics gesehen werden. Diese Thesis liefert nicht nur 

vertiefte Erkenntnisse zum Einfluss von akuter sowie chronischer körperlicher Aktivität auf 

Metabolitenprofile in gesunden Populationen, sondern stellt zugleich Empfehlungen für die 

Verbesserung zukünftiger Metabolomics-Studien bereit. Bestimmte Metaboliten in Urin bzw. 

Blut konnten als potentielle Marker für akute körperliche Belastung, Trainingsadaptation oder 

körperliche Fitness hervorgehoben werden und stellen sicherlich einen nützlichen Ausgangs-

punkt für Validierungsstudien und mechanistische Untersuchungen dar. Als Teil eines großen 

Puzzles könnten die Ergebnisse dieser Dissertation – zusammen mit Erkenntnissen weiterer 

Exercise Metabolomics-Studien – eines Tages möglicherweise in personalisierte Ansätze im 

Sport- oder Gesundheitskontext übertragen werden.  
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1 General Introduction 

1.1 Preface 

According to the World Health Organization (WHO), insufficient physical activity (PA) 

represents a major risk factor for global mortality and the development of chronic, non-

communicable diseases (NCDs) (WHO, 2009). In fact, approximately 30% of ischemic heart 

disease burden, 27% of diabetes, and 21-25% of breast and colon cancer can be primarily 

attributed to physical inactivity (WHO, 2009). Recent estimates furthermore indicate that 

about 27.5% of the world’s population do not meet the WHO global recommendations for PA 

(Guthold, Stevens, Riley, & Bull, 2018). However, the health benefits of regular PA are well-

established. Regular PA does not only contribute to the prevention of important NCD risk 

factors, such as hypertension, overweight, and obesity (WHO, 2010), it can also delay the 

onset of dementia (Livingston et al., 2017) and has positive effects on mental health and the 

quality of life (Das & Horton, 2012; Mammen & Faulkner, 2013). Engaging in regular PA 

additionally improves the cardiorespiratory fitness (CRF) (McKinney et al., 2016), which has 

emerged as a strong and independent predictor of all-cause and disease-specific mortality 

(Harber et al., 2017). Actually, the CRF is inversely associated with the incidence of both 

cardiovascular and metabolic diseases (Kodama et al., 2009; LaMonte et al., 2005). 

Since modern human society is confronted with a pandemic of chronic diseases and conditions 

characterized by metabolic dysregulation, including obesity, diabetes, or cancer (Newgard, 

2017), NCDs represent a major challenge for public health systems in the 21st century (Alberti, 

2001; WHO, 2020). Thus, primary prevention is needed at the global level. As an effective and 

relatively inexpensive strategy for promoting health, PA has gained relevance (WHO, 2019). 

Regular PA is known to favorably affect the body composition as well as the skeletal muscle 

and whole-body physiology and metabolism (Gabriel & Zierath, 2017). However, cellular and 

molecular mechanisms underlying the exercise-related health improvements have not been 

fully elucidated until now (Zierath & Wallberg-Henriksson, 2015). Therefore, exercise biology 

research currently aims to obtain a better understanding of how the adaptive responses of 

the human organism to physical exercise (PE) are mediated and ultimately linked to the 

prevention of chronic diseases (Neufer et al., 2015). With regard to the future, it can be 
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expected that the knowledge gained will allow scientists and health professionals to develop 

more personalized exercise recommendations and to identify people at risk for cardiovascular 

or metabolic diseases (Sanford et al., 2020; Zierath & Wallberg-Henriksson, 2015).  

In particular, the so-called metabolomics method, i.e., the study of small molecule metabolites 

in a biological sample (Bujak, Struck-Lewicka, Markuszewski, & Kaliszan, 2015), represents a 

promising approach to systematically investigate exercise-related metabolic alterations 

(Heaney, Deighton, & Suzuki, 2017). Due to the continuous advances in analytical techniques 

and computational technologies, metabolomics is nowadays extensively applied in clinical and 

biomedical studies aiming to attain an integrated view on human metabolism, its derange-

ments underlying chronic diseases, or its associations with lifestyle factors, such as diet, 

smoking, or PA (Bujak et al., 2015; German, Hammock, & Watkins, 2005). In the context of PA, 

metabolomics can provide specific metabolite patterns that closely reflect molecular or 

cellular responses to acute and chronic exercise (Heaney et al., 2017). Together with the 

existing knowledge of biochemistry, metabolomics moreover allows to elucidate metabolic 

pathways which are linked to PA-related adaptations and health benefits (German et al., 2005; 

Heaney et al., 2017). According to German et al. (2005), the application of metabolomics is 

therefore a powerful strategy to address current health challenges. 

During the past decade, an increasing number of PA-related metabolomics studies have been 

published. While most experimental studies focused on the effects of acute PE or training 

interventions on human metabolite concentrations, observational studies mainly examined 

the relationship between measures of chronic PA, such as the individual PA behavior or 

physical fitness (PF) status, and metabolite profiles (Daskalaki, Easton, & Watson, 2014; Kelly, 

Kelly, & Kelly, 2020). According to the current state of research, acute exercise interventions 

are commonly associated with quantifiable metabolic changes characteristic for an altered 

lipid, carbohydrate, amino acid (AA), energy, or nucleotide metabolism, whereas higher PA or 

CRF levels are linked to, e.g., lower circulating phosphatidylcholine (PC) or branched-chain 

amino acid (BCAA) concentrations (Kelly et al., 2020). However, despite the growing number 

of PA-related metabolomics studies, their heterogeneity impedes a direct comparison of 

findings. Furthermore, several study limitations exist. With respect to acute PE intervention 

studies, the vast majority have been conducted in small, mainly male populations and focused 

on the analysis of blood metabolites. Thus, more research on the acute metabolic effects of 
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PE in females is needed. Besides, since initial studies have supported the potential of urine as 

a non-invasively accessible biofluid to reflect exercise-induced changes in human metabolism 

(Enea et al., 2010; Muhsen Ali et al., 2016; Mukherjee et al., 2014; Siopi et al., 2017), more 

investigations evaluating the utility of urine in the field of exercise metabolomics are required. 

With regard to observational studies focusing on the PF, most metabolomics examinations 

included rather small sample sizes, were restricted to specific sex or age groups, and only 

analyzed a limited number of blood metabolites (Floegel et al., 2014; Koh et al., 2018; Kujala 

et al., 2019; Wientzek et al., 2014). Consequently, in order to yield results which are more 

applicable to the general population, further cross-sectional studies in larger and more diverse 

populations are needed. Besides, a combination of different analytical techniques is likely to 

provide a more comprehensive investigation of PA-related metabolite profiles. 

The general aim of the present thesis is to comprehensively analyze the effect of acute and 

chronic PA on metabolite profiles in humans, thereby intending to address several research 

gaps and to extend the current state of knowledge in the field of exercise metabolomics. More 

specifically, this dissertation comprises the investigation of metabolomics data generated in 

the framework of three exercise- or fitness-related (sub-)studies, which were conducted at or 

in cooperation with the Max Rubner-Institut (MRI) in Karlsruhe. On the basis of these studies, 

conclusions on metabolic alterations in response to medium-term high-intensity interval 

training (HIIT) (Study I) or acute incremental exercise (Study IIa) shall be drawn. Moreover, the 

relationship between metabolite profiles and the CRF as a measure of chronic PA shall be 

systematically analyzed in a large population consisting of both sexes with a wide age range 

(Study IIa/IIb). Depending on the particular study, available biological specimens, and 

advances in analytical techniques, different metabolomics approaches were applied.  

As a whole, the three considered (sub-)studies covered different aspects of PA, reaching from 

acute exercise and training interventions to the assessment of the CRF status. Thus, the results 

yielded by this dissertation can provide a deeper understanding of acute or chronic metabolic 

adaptations to PA. Besides, by identifying PE- or PF-associated metabolite profiles in blood or 

urine, valuable new insights into metabolic pathways that are possibly linked to the beneficial 

effects of PA are likely to be attained. Finally, findings from this thesis might provide a solid 

basis for the future selection of exercise-responsive, performance- or health-related 

biomarkers that allow to draw conclusions on an individual’s training, fitness, or health status. 
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1.2 Outline of the Dissertation 

The present dissertation comprises nine main chapters. The relevant theoretical background 

is presented in Chapter 2, including a brief introduction into exercise metabolism research, 

the human metabolome, and current metabolomics approaches. Moreover, the application 

of metabolomics in the field of exercise science is addressed, emphasizing potentials and 

perspectives of exercise metabolomics and summarizing the current state of research. While 

Chapter 3 depicts the aims and scope of this thesis, Chapter 4 provides a general description 

of the main methods utilized in the three included (sub-)studies. Building the core of this 

cumulative dissertation, Chapters 5 to 7 comprise the specific study findings that have been 

published in international peer-reviewed journals: 

• Study I (Chapter 5): 

Kistner S., Rist M.J., Krüger R., Döring M., Schlechtweg S., Bub A. (2019). High-Intensity 
Interval Training Decreases Resting Urinary Hypoxanthine Concentration in Young 
Active Men—A Metabolomic Approach. Metabolites, 9(7), 137. doi:10.3390/ 
metabo9070137. 
 

• Study IIa (Chapter 6): 

Kistner, S., Rist, M. J., Döring, M., Dörr, C., Neumann, R., Härtel, S., Bub, A. (2020). An 
NMR-Based Approach to Identify Urinary Metabolites Associated with Acute Physical 
Exercise and Cardiorespiratory Fitness in Healthy Humans—Results of the KarMeN 
Study. Metabolites, 10(5), 212. doi:10.3390/metabo10050212. 
 

• Study IIb (Chapter 7): 

Kistner, S., Döring, M., Krüger, R., Rist, M. J., Weinert, C. H., Bunzel, D., Merz, B., 
Radloff, K., Neumann, R., Härtel, S., Bub, A. (2021). Sex-Specific Relationship between 
the Cardiorespiratory Fitness and Plasma Metabolite Patterns in Healthy Humans—
Results of the KarMeN Study. Metabolites, 11(7), 463. doi:10.3390/metabo11070463. 

 

The three research articles are followed by a section that focuses on a functional classification 

of obtained PE- or PF-related metabolite profiles (Chapter 8). Lastly, Chapter 9 comprises a 

summary and critical discussion of the study results, depicts strengths as well as limitations of 

the applied methods, and provides suggestions for future research. As is common in the field 

of metabolomics, the three publications contain comprehensive supplementary material, e.g., 

additional figures or tables. To facilitate the understanding of the respective study findings, 

relevant supplementary information is also provided in the Appendix of this thesis.   
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2 Theoretical Background 

In this theoretical section, relevant information with respect to human exercise metabolism, 

its principles, and adaptations to chronic PE are given (Chapter 2.1). Then, the concept of the 

human metabolome, its determinants, as well as the metabolic composition of human blood 

and urine are described (Chapter 2.2) and the metabolomics method with a special focus on 

analytical techniques and the consecutive steps of a characteristic metabolomics workflow 

are introduced (Chapter 2.3). Finally, the application of metabolomics in the field of exercise 

science is addressed (Chapter 2.4), thereby not only giving insight into potentials and future 

perspectives of exercise metabolomics research, but also reviewing and summarizing the 

current state of research of PA-related metabolomics studies. 

2.1 Human Exercise Metabolism 

Exercise metabolism research investigates how exercise – in its diverse forms – modifies the 

way the human organism functions at the molecular level, thus intending to understand 

metabolic processes during and after PE (Hawley, Maughan, & Hargreaves, 2015; Mougios, 

2019). Before depicting some inherent principles of exercise metabolism in Chapter 2.1.2, 

established terms and concepts related to both exercise and metabolism will be defined in the 

following sub-section. 

2.1.1 Exercise and Metabolism – Basic Terminology and Concepts 

Physical Activity, Exercise, Training, and Fitness 

PA is generally defined as any bodily movement produced by the contraction of skeletal 

muscles that increases energy expenditure above the resting level (Bouchard, Blair, & Haskell, 

2007). This broad concept comprises occupational and leisure-time PA, with the latter 

describing free time activities such as walking, hiking, or sports (Howley, 2001). Though having 

been used synonymously with PA, PE essentially represents a sub-category of leisure-time PA 

(Dasso, 2019). It denotes planned and structured bodily movements to maintain or improve 

one or more components of the PF (Caspersen, Powell, & Christenson, 1985). When PE is 

performed repetitively, it is termed exercise training (Bouchard et al., 2007). Concepts for both 

PE and exercise training typically refer to specific exercise parameters, including exercise type, 

intensity, duration, and frequency (Howley, 2001). With regard to exercise type, activities can 
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be broadly classified as endurance- or strength-based. While endurance exercise involves 

prolonged continuous or intermittent periods of muscular activity against low resistance, 

resistance exercise is characterized by short bouts of muscular activity against high resistance 

(Coffey & Hawley, 2017). Another established exercise mode is interval exercise, consisting of 

repeated intensive exercise bouts interspersed with short recovery periods, such as HIIT 

(MacInnis & Gibala, 2017). Exercise intensity, in turn, defines the effort associated with PE in 

either absolute or relative terms. When focusing on endurance exercise, the absolute intensity 

usually describes the rate of energy expenditure and can be expressed as oxygen uptake (VO2) 

per minute, kilocalories per minute, or the metabolic equivalent of task (MET), which is a 

multiple of the resting VO2 (Howley, 2001). As opposed, the relative intensity of PE is usually 

adjusted to maximal physiological responses, being indicated as a percentage of, e.g., maximal 

oxygen uptake (VO2max) or maximum heart rate (HRmax). By using qualitative descriptors (e.g., 

low, moderate, vigorous, or maximal), exercise intensities can also be subjected to a more 

general classification. While exercise duration refers to the time spent in an activity, exercise 

frequency is related to the number of exercise sessions in a given time frame. Depending on 

whether PA or PE is performed once or repeated over time, it is termed acute or chronic, 

respectively (Howley, 2001). 

In this dissertation, both acute PE and exercise training are focused. With regard to exercise 

training, a HIIT intervention was conducted (Study I). During the last decades, research interest 

in HIIT as a time-efficient training method has greatly increased (Laursen & Jenkins, 2002) and 

a number of HIIT protocols have been described in the literature (Cassidy, Thoma, Houghton, 

& Trenell, 2017). Most HIIT protocols are performed on stationary bicycles or treadmills, being 

characterized by strenuous exercise intervals, which last between one and four minutes, and 

recovery periods of low activity or rest. In fact, HIIT is usually performed at intensities > 80-

95% of VO2max or > 90% of HRmax (Cassidy et al., 2017). With regard to acute PE, a standardized 

exercise tolerance test was conducted (Study IIa). In the literature, various standard protocols 

for maximal exercise tests on either treadmills or bicycle ergometers exist (Löllgen & Leyk, 

2018). These protocols are generally characterized by increasing workloads until individual 

exhaustion, but can vary with respect to the initial workload, type of workload increases, and 

total duration. In all cases, the presence of qualified personnel for continuous heart rate (HR), 

blood pressure (BP), and electrocardiogram monitoring is mandatory (Löllgen & Leyk, 2018). 
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Whereas PA and PE are behavioral variables, PF can be generally defined as “the ability to 

carry out daily tasks with vigor and alertness, without undue fatigue and with ample energy 

to enjoy leisure-time pursuits and to meet unforeseen emergencies” (Manley, 1996, p. 20). In 

fact, PF depicts a set of attributes including agility, balance, coordination, speed, power, and 

reaction time, as well as CRF, muscular endurance, muscular strength, body composition, and 

flexibility (Caspersen et al., 1985). Since these components are of different importance with 

regard to athletic ability or health, a distinction between performance- and health-related 

fitness has been proposed (Caspersen et al., 1985; Pate, 1983), see Figure 1. 

 
Figure 1. Components of PF. (Own illustration based on Caspersen et al. (1985)). 

In this dissertation, the health-related fitness, and especially the CRF (Study IIa/IIb), is focused 

because its components are (un)favorably affected by habitual PA behavior and moreover 

linked to health outcomes (Bouchard et al., 2007). While the body composition, for instance, 

describes the relative amounts of muscle, fat, or bone in the human organism (Howley, 2001), 

the CRF reflects the ability of the respiratory and circulatory systems to supply oxygen to 

muscles during sustained PE (Corbin & Lindsey, 1994; Hill, Long, & Lupton, 1924). The CRF can 

be assessed by measuring the VO2max during incremental exercise until exhaustion (Löllgen & 

Leyk, 2018). If it is not possible to determine the VO2max, requiring the presence of a plateau 

in the VO2, the peak oxygen uptake (VO2peak) as the highest attained value of VO2 is commonly 

utilized instead (Day, Rossiter, Coats, Skasick, & Whipp, 2003). Being not only an important 

variable that defines the upper limit of endurance performance (Bassett & Howley, 2000) but 

also an independent predictor of cardiovascular and all-cause mortality (Harber et al., 2017), 

the CRF is determined by non-modifiable factors, such as age (Laukkanen et al., 2009), sex (Al-
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Mallah et al., 2016), or heredity (Bouchard, Boulay, Simoneau, Lortie, & Pérusse, 1988), and 

modifiable factors like the lean body mass (LBM) (S. Y. S. Wong et al., 2008) or PA behavior 

(Zeiher et al., 2019). According to McKinney et al. (2016, p. 132), the CRF thus represents an 

“objective surrogate measure of recent PA patterns”. In accordance with this definition, the 

CRF is considered as a measure of chronic PA in this thesis. Figure 2 provides an overview of 

known as well as potential correlates and determinants of the CRF. 

 
Figure 2. Correlates and determinants of CRF. VO2max: maximal oxygen uptake; VO2peak: peak oxygen uptake. (Own illustration 
based on Zeiher et al. (2019)).  
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As depicted in Figure 2, further discussed determinants or correlates of the CRF include 

socioeconomic (e.g., education), environmental (e.g., public green spaces), and interpersonal 

(e.g., social support) factors that can individually affect health-related behaviors like PA, diet, 

alcohol intake, or smoking. Representing important components of the health-related fitness, 

both the body composition and the CRF are linked to traditional clinical risk factors for 

metabolic or cardiovascular diseases, such as high BP, blood glucose, triglycerides (TGs), low-

density lipoprotein (LDL) cholesterol, and obesity (Zeiher et al., 2019). 

Metabolism, Metabolic Pathways, Metabolites 

Having its origin in the Greek word metabolé, meaning transformation or change, the term 

metabolism describes the sum of all chemical reactions occurring in a living organism (Lal, 

2018). While those enzyme-catalyzed reactions are called metabolic reactions and sequences 

of metabolic reactions constitute metabolic pathways, the intermediates formed in metabolic 

pathways are referred to as metabolites (Harris, 2017). In general, metabolism comprises both 

anabolic and catabolic reactions. Anabolism involves energy-consuming biosynthetic 

processes in which complex molecules are produced from small precursors. Catabolism, on 

the contrary, includes degradation processes that convert complex biomolecules into simpler 

molecules, thereby releasing energy (von der Saal, 2020). Adenosine triphosphate (ATP) as a 

high-energy phosphate compound is mainly responsible for mediating energy transitions in 

metabolic pathways (Lal, 2018).  

Since the human organism continuously exchanges mass and energy with the environment, 

levels of metabolites in tissues and biofluids rapidly change (Mougios, 2019). Apart from diet 

or disease, PE represents a major challenge to whole-body and cellular metabolic homeostasis 

(Hawley, Hargreaves, Joyner, & Zierath, 2014; Suárez, Caimari, del Bas, & Arola, 2017). 

2.1.2 Principles of Exercise Metabolism 

Acute PE provokes extensive perturbations in numerous organs, tissues, and cells due to the 

increased metabolic activity of contracting skeletal muscles (Hawley et al., 2014). Actually, the 

rate of ATP hydrolysis, which is principally needed for powering cross-bridge cycles and, thus, 

muscle contraction, can increase by more than 100-fold during PE (Gaitanos, Williams, Boobis, 

& Brooks, 1993). Since the intramuscular stores of ATP are relatively small, several metabolic 

pathways are activated to regenerate ATP (Baker, McCormick, & Robergs, 2010). 
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Table 1. Skeletal muscle metabolism during PE in humans. (Own table based on Hargreaves and Spriet (2020)). 

ADP: adenosine diphosphate; AMP: adenosine monophosphate; ATP: adenosine triphosphate; CO2: carbon dioxide; H+: 
proton; H20: water; O2: dioxygen; Pi: inorganic phosphate. 

As shown in Table 1, pathways for ATP resynthesis during PE comprise (a) the ATP-phosphagen 

system, including the degradation of phosphocreatine to creatine and free phosphate, which 

is transferred to adenosine diphosphate (ADP) to re-form ATP, as well as the adenylate kinase 

reaction for the formation of ATP and adenosine monophosphate from two ADP molecules; 

(b) glycolysis, i.e., the degradation of glycogen or glucose to lactate, thereby producing ATP; 

and (c) processes of complete carbohydrate or fatty acid breakdown coupled to oxidative 

phosphorylation in the electron-transport chain to yield comparatively high amounts of ATP 

(Egan & Zierath, 2013; Hargreaves & Spriet, 2020). While the former, “anaerobic” pathways 

involve substrate-level phosphorylation without any need of oxygen, the latter, “aerobic” 

pathways are critically reliant on a sufficient oxygen supply to skeletal muscles by the 

respiratory and cardiovascular system (Hargreaves & Spriet, 2018). Despite being almost 

concurrently active during PE, the relative contribution of those ATP-generating pathways 

and, consequently, the use of either intra- or extramuscular energy substrates, are principally 

determined by the intensity and duration of PE (Egan & Zierath, 2013). During high-intensive 

and short PE, the major energy-yielding pathways include the degradation of intramuscular 

phosphocreatine and glycogen while oxidative metabolism usually accounts for 25-30% of 

energy provision. At low to moderate intensities, the vast majority of ATP is provided by the 

oxidative breakdown of carbohydrates and lipids, with the latter exhibiting an increased 

energy contribution during prolonged submaximal PE (Hargreaves & Spriet, 2018). In detail, 

major substrates for oxidation are muscle glycogen or blood glucose derived from hepatic 

glycogenolysis, gluconeogenesis, and oral ingestion, as well as fatty acids from either intra-

muscular or adipose tissue TGs breakdown (Baker et al., 2010; Hargreaves & Spriet, 2020). 

Even though several AAs can also be oxidized by contracting skeletal muscles or used for 

ATP Hydrolysis ATP + H20 → ADP + Pi + H+ + energy 

ATP Resynthesis 
Substrate-level phosphorylation 

Phosphocreatine degradation 
Adenylate kinase reaction 

Glycolysis 
Oxidative phosphorylation 

Carbohydrate oxidation 
Fatty acid oxidation 

 
 
ADP + phosphocreatine + H+ → ATP + creatine 

2 ADP → ATP + AMP 

Glucose + 3 ADP → 2 lactate + 2 H+ + 3 ATP 
 
Glucose + 6 O2 + 36 ADP → 6 CO2 + 6 H20 + 36 ATP 
Palmitate + 23 O2 + 130 ADP → 16 CO2 + 16 H20 + 130 ATP 
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gluconeogenesis, proteins generally make a minor contribution to energy metabolism during 

PE (approximately 5-15%), provided that carbohydrate availability is adequate (Baker et al., 

2010; van Loon, Greenhaff, Constantin-Teodosiu, Saris, & Wagenmakers, 2001). 

A further principle of exercise metabolism refers to the fact that the mainly catabolic nature 

of acute PE is followed by a largely anabolic post-exercise recovery period, aiming to re-

synthesize muscular ATP, phosphocreatine, glycogen, as well as mitochondrial or myofibrillar 

proteins, myocellular TGs, or liver glycogen (Egan & Zierath, 2013; Mougios, 2019). 

To conclude, exercise-induced alterations in metabolism are not solely determined by exercise 

intensity and duration but also by environmental factors and characteristics of the exercising 

individuals, such as age, sex, diet, or training status (Hargreaves & Spriet, 2018). How chronic 

PE provokes long-term metabolic adaptations will be focused in the next sub-section. 

2.1.3 Metabolic Adaptations to Chronic PE 

Regularly performed PE of adequate intensity and duration leads to morphological, metabolic, 

as well as functional adaptations that are specific to the exercise mode (Egan & Zierath, 2013). 

Compared to resistance training, which is known to increase muscle hypertrophy and 

strength, but elicits only minor adaptations in skeletal muscle metabolism (Deschenes & 

Kraemer, 2002), both endurance and interval training induce a higher mitochondrial density 

as well as extensive alterations in substrate metabolism and finally contribute to an improved 

aerobic performance, CRF, and health status (Egan & Zierath, 2013; Mougios, 2019).  

In addition to physiological adaptations, such as an increased cardiac output, blood volume, 

hemoglobin (Hb) mass, and capillarization, metabolic adaptations like an enhanced oxidative 

capacity due to a higher muscle mitochondrial content are also concomitant with training-

induced improvements in the CRF (Gabriel & Zierath, 2017). Processes underlying these 

metabolic adaptations usually involve multiple molecular events, including shifts in gene 

transcription, protein translation, and post-translational modifications (Neufer et al., 2015). 

As illustrated in Figure 3, early adaptations to acute PE bouts comprise rapid but transient 

changes in the messenger ribonucleic acid (mRNA) expression of several genes related to 

muscle function or energy metabolism (Y. Yang, Creer, Jemiolo, & Trappe, 2005). Depending 

on the particular PE challenge, the exercise-induced increase in mRNA levels typically returns 

to baseline within 24 hours. Translational processes and elevated protein synthesis rates 
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subsequently lead to a modest change in the content of specific proteins (Egan & Zierath, 

2013). For example, a key regulatory protein of mitochondrial biogenesis, the transcriptional 

co-activator peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α, is 

known to exhibit an increased expression in the post-exercise period (Baar et al., 2002). Even 

if each acute exercise session is a necessary stimulus for adaptive responses, PE has to be 

performed repetitively in order to induce long-term metabolic and functional adaptations. In 

fact, a constantly increased abundance and/or enzymatic activity of proteins involved in, e.g., 

glucose or fatty acids transport, tricarboxylic acid (TCA) cycle, mitochondrial ATP production, 

or glycogen synthesis are reflective of the cumulative effects of acute PE, finally leading to 

altered exercise-induced responses at the level of substrate metabolism and improvements in 

submaximal exercise performance (Egan & Zierath, 2013; Neufer et al., 2015).  

 
Figure 3. Molecular basis of acute and chronic adaptations to PE. Alterations in mRNA expression (lower panel) and protein 
content (middle panel) over time as a result of acute exercise and chronic exercise training are illustrated. Repetitive exercise 
training alters whole-body substrate metabolism, finally leading to an improved exercise performance (upper panel). mRNA: 
messenger ribonucleic acid. (Own illustration based on Egan and Zierath (2013)).  

2.1.4 Current Approaches and Challenges in the Study of Exercise Metabolism 

Researchers have several methods at their disposal when studying the effects of PE on human 

metabolism, including indirect calorimetry, metabolic tracer analysis, and blood or muscle 

tissue sampling (Hargreaves & Spriet, 2018). While most traditional approaches have been 



2 Theoretical Background 

13 

 

focused on assessing single genes, gene-transcripts, proteins, or metabolites of interest, the 

recently emerging field of systems biology integrates large datasets from so-called “omics”-

technologies, allowing to analyze the sum of genes, transcripts, proteins, or metabolites (i.e., 

the genome, transcriptome, proteome, or metabolome) in a range of body fluids or tissues as 

comprehensively as possible (Hawley et al., 2015; N. J. Hoffman, 2017; Nielsen, 2017).  

In fact, the molecular mechanisms and metabolic processes underlying the acute and chronic 

adaptations to PE have not yet been fully elucidated (Neufer et al., 2015). According to Zierath 

and Wallberg-Henriksson (2015), the application of large-scale genomics, transcriptomics, 

proteomics, and metabolomics methods is therefore indispensable to receive a preferably 

global view on how genes, proteins, and metabolism are modulated in response to PE. As 

depicted in Figure 4, current challenges in the field of exercise biology are related to the 

integration of an individual’s genetic background with exercise-induced, tissue-specific gene 

expression and system-wide changes in protein or metabolite profiles. In this context, the 

application of “omics”-methods is likely to enable an unbiased discovery of PE-responsive 

biomarkers and signaling pathways, thus filling gaps in the current knowledge on biological 

processes underlying exercise-related adaptations and health benefits (N. J. Hoffman, 2017; 

Zierath & Wallberg-Henriksson, 2015).  

 
Figure 4. “Omics”-methods for studying the molecular basis of acute and chronic adaptations to PE. (Own illustration based 
on Zierath and Wallberg-Henriksson (2015)).   
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Since this dissertation focuses on the use of metabolomics as one of the presented “omics”-

disciplines for examining how responses to acute and chronic PA in humans are reflected in 

the metabolome, the next sub-section will give a detailed introduction into the definition and 

characteristics of the human metabolome. 

2.2 The Human Metabolome 

In 1998, the term “metabolome” appeared in the literature for the first time (Oliver, Winson, 

Kell, & Baganz, 1998; Sussulini, 2017). According to Nicholson, Lindon, and Holmes (1999), the 

metabolome refers to all metabolites present in a given biological system, such as tissues, 

cells, or fluids. Being defined as small molecules, i.e., < 1,500 Dalton, produced by enzymatic 

reactions (Bujak et al., 2015; Tebani, Afonso, & Bekri, 2018a), metabolites comprise a wide 

range of chemical entities like AAs, peptides, nucleosides, sugars, or fatty acids (Wishart, 

2008). As illustrated in Figure 5, metabolites represent downstream products of interactions 

between the genome, transcriptome, and proteome (Bujak et al., 2015; Newgard, 2017).  

 
Figure 5. Relationship between the genome, transcriptome, proteome, and metabolome. DNA: deoxyribonucleic acid; mRNA: 
messenger ribonucleic acid. (Own illustration based on Sussulini (2017)).  

Due to the fact that the biological information flows from genes to mRNA-transcripts and, 

finally, from proteins to metabolites, the analysis of the metabolome seems to be a holistic 

approach for understanding an organism’s phenotype (Bouatra et al., 2013; Bujak et al., 2015). 

While genes and proteins are subject to epigenetic modifications or post-transcriptional 
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regulations, respectively, metabolites are characterized as direct signatures of cellular 

metabolism, exhibiting essential functions in, e.g., signal transduction or energy production 

(Johnson, Ivansisevic, & Siuzdak, 2016). Accordingly, the metabolome can reveal what actually 

is occurring or has happened in a biological system, whereas the genome, transcriptome, and 

proteome are restricted to provide insight on what might happen (Riekeberg & Powers, 2017). 

The metabolome does not only represent a highly integrated profile of the current biological 

status in humans (Newgard, 2017), it also incorporates external influences through, e.g., diet, 

drugs, or PA (A.-H. Emwas et al., 2015; Walsh, 2008). Hence, the metabolome can give an 

instantaneous snapshot of how human metabolism responds to different physiological 

challenges or processes (Peng, Li, & Peng, 2015; Suárez et al., 2017). 

2.2.1 Influencing Factors and Size of the Human Metabolome 

In fact, the human metabolome shows a high degree of physiological variation (Walsh, 2008). 

As depicted in Figure 6, the metabolome is determined by intrinsic biological factors, such as 

genotype (Shin et al., 2014), sex and age (Rist et al., 2017; Slupsky et al., 2007), the presence 

of diseases (Martín-Blázquez et al., 2019; S. J. Yang, Kwak, Jo, Song, & Shin, 2018), the body 

composition (Bachlechner et al., 2016), a female’s menstrual cycle (Wallace et al., 2010), 

internal circadian rhythms (Grant et al., 2019), or the gut microbiota (Visconti et al., 2019).  
 

 
Figure 6. Intrinsic and extrinsic factors influencing the human metabolome. (Own illustration).  
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On the other hand, the human metabolome is affected by a number of lifestyle and environ-

mental factors (Walsh, 2008). The composition of the metabolome has been shown to vary 

along with dietary habits (Floegel, von Ruesten, et al., 2013), PA behavior (Floegel et al., 2014; 

Xiao et al., 2016), psychological stress (Sood, Priyadarshini, & Aich, 2013), or cigarette smoking 

behavior (Gu et al., 2016), and to respond dynamically to nutritional challenges (Krug et al., 

2012), acute PE (Lewis et al., 2010; Peake et al., 2014), or drug intake (Fannin et al., 2010).  

As a highly variable and dynamic construct, the metabolome comprises not only endogenous 

but also exogenous metabolites. While the former include intermediates of human metabolic 

networks, the latter refer to compounds originating from diet, pharmacotherapy, or further 

environmental exposures (Johnson, Patterson, Idle, & Gonzalez, 2012; Scalbert et al., 2014). 

As the main entry route for exogenous compounds, diet delivers nutrients to the human body, 

which are digested, metabolized, and/or previously transformed by the intestinal microbiota 

(Scalbert et al., 2014; Walsh, 2008). The remaining compounds foreign to the human body are 

termed xenobiotics (Johnson et al., 2012). Irrespective of being harmless or toxic, most 

xenobiotics are also substrates of either gut microbial or human metabolism, before being 

eliminated via urine, bile, or feces (Johnson et al., 2016).  

Due to the presence of both endogenous and exogenous metabolites, the exact number of 

compounds found in the human metabolome is largely unknown (Walsh, 2008). The Human 

Metabolome Database (HMDB) currently lists a total number of 114,100 metabolites possibly 

existing in human biofluids, including almost 22,000 detected metabolites and more than 

90,000 not directly detected, but expected/predicted metabolites (Wishart et al., 2018). 

2.2.2 Composition of the Human Blood and Urine Metabolome 

For the assessment of human metabolite profiles or metabolic signatures, which by definition 

contain sets of various metabolites (Tebani et al., 2018a), the biofluids blood, i.e., plasma or 

serum, and urine represent the most commonly studied biological matrices – particularly due 

to their ease of collection and ability to integrate the metabolic composition of several tissues 

and organs related to multiple biological processes (Dunn & Ellis, 2005; Walsh, 2008). 

Blood carries a wealth of metabolic information owing to its role in transporting not only 

nutrients, electrolytes, dissolved gases, and hormones but also small organic molecules 

secreted by different tissues (Psychogios et al., 2011; Walsh, 2008). Being a key carrier of 



2 Theoretical Background 

17 

 

lipoproteins, fats, and hydrophobic compounds, the human blood metabolome is dominated 

by TGs, phospholipids, fatty acids, steroids, or steroid derivatives, followed by small molecules 

like AAs, glucose, glycerol, or lactate, and several metabolic waste products, such as urea or 

creatinine (Psychogios et al., 2011). Since the composition of human blood is well maintained 

through homeostatic mechanisms, it is a less variable biofluid than, e.g., urine (Walsh, 2008). 

Psychogios et al. (2011) could show that the known, quantifiable human serum metabolome 

contains about 4,229 metabolites. 

Urine is a sterile, non-invasively obtainable biofluid generated by the kidneys, which remove 

waste products from the blood. It is typically free from lipids or proteins, mainly containing 

water, inorganic salts, and a high number of water-soluble metabolites, such as urea, 

creatinine, ammonia, organic acids, or products from the breakdown of xenobiotic substances 

(Bouatra et al., 2013). Consequently, the human urine metabolome provides a valuable and 

rich source of metabolic information (Walsh, 2008). Due to its function in waste removal, the 

metabolic composition of urine is more susceptible to fluctuations and shows a higher 

variation than the blood metabolome (Walsh, 2008). Besides, urine dilution and hence the 

concentration of metabolites can vary to a large extent. Thus, a sample-specific normalization, 

e.g., to urine volume or osmolality, is needed if examining the urine metabolome (Ulaszewska 

et al., 2019). By combining data from experimental studies and a literature survey, Bouatra et 

al. (2013) showed that it is possible to identify and quantify 2,651 metabolite species in human 

urine with the current technology. 

Since the human metabolome is complex, comprising a high number of chemically distinct 

metabolites with large concentration ranges, different analytical strategies and methodo-

logical approaches have been developed in order to allow its systematic investigation (Bujak 

et al., 2015). The so-called “metabolomics” research method will be described in the following 

sub-section. 

2.3 Metabolomics 

As the youngest emerging approach in the systems biology field, metabolomics focuses on the 

“comprehensive and systematic identification and quantification of small molecule 

metabolites […] in biological samples at a given point of time” (Bujak et al., 2015, p.109). 
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2.3.1 Definitions and Current Applications  

During the last decades, numerous terminologies to classify metabolomics investigations have 

appeared in the literature (Sussulini, 2017). While metabolic profiling, for instance, has been 

utilized to describe metabolomics analyses focusing on a limited number of metabolites, 

metabolic fingerprinting was linked to the analysis of a preferably high number of metabolites, 

intending to define a metabolic pattern characteristic for a particular study condition (Bujak 

et al., 2015). However, since there is still no actual consensus regarding this terminology 

(Sussulini, 2017), a more general and simplified classification is commonly applied. Based on 

the fact whether it is a priori known what kind of metabolites shall be assessed, it can be 

distinguished between targeted and untargeted analyses (Tebani et al., 2018a). A targeted 

metabolomics approach is defined as a (semi-)quantitative analysis (i.e., relative intensities or 

absolute concentrations are determined) of a selected group of metabolites, that are possibly 

related to specific metabolic pathways or chemical classes (Sussulini, 2017). Regarding this 

strategy, a hypothesis about changes in metabolite profiles is usually given beforehand (Patti, 

Yanes, & Siuzdak, 2012). In contrast, an untargeted metabolomics approach is characterized 

by a qualitative or semi-quantitative analysis of as many as possible metabolic compounds 

belonging to various chemical or biological classes (Sussulini, 2017). Untargeted analyses are 

mostly not driven by preliminary assumptions (Bujak et al., 2015). 

Until recently, metabolomics has mostly been applied in clinical studies aiming to understand 

pathophysiological mechanisms or to discover disease markers (Bujak et al., 2015; Sussulini, 

2017). Though, as one major challenge in metabolomics studies is to overcome inter-individual 

metabolite variation due to differences in genetics, age, and lifestyle factors, metabolomics is 

also increasingly utilized for studying changes in human metabolism related to genetic factors, 

aging, habitual diet, or PA (Johnson et al., 2016). In all metabolomics investigations, the 

biological complexity of metabolites represents another major challenge. Even though human 

metabolites are fewer in absolute number than mRNA-transcripts or proteins, they show a 

broader range of physicochemical properties (German et al., 2005). Thus, multiple analytical 

techniques have to be combined to assess a preferably high fraction of the metabolome 

(Tebani et al., 2018a). Analytical technologies currently dominating in metabolomics studies 

include nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) (Bujak 

et al., 2015). They will be briefly introduced in the next sub-section. 



2 Theoretical Background 

19 

 

2.3.2 Analytical Techniques 

Advanced NMR spectroscopy- and MS-based analytical techniques typically show the ability 

to detect a wide range of distinct metabolites or metabolite features simultaneously, hence 

providing a “metabolic snapshot” at a given time point (Beckonert et al., 2007). 

NMR spectroscopy 

The principle behind NMR spectroscopy is based on measuring the absorption and re-emission 

of energy by specific atom nuclei owing to variations in an external magnetic field. The mostly 

used type of nuclei is hydrogen-1 (1H), which is naturally abundant in biospecimens (Tebani et 

al., 2018a). Thus, NMR is able to profile magnetic resonances arising from hundreds of small 

molecules within a sample (A.-H. M. Emwas, Salek, Griffin, & Merzaban, 2013). By elucidating 

molecular structures based on atom-centered nuclear interactions and properties, NMR 

generates spectral data that finally allow to identify and quantify metabolites (Beckonert et 

al., 2007). Since the frequency at which 1H absorbs is dependent on its chemical environment 

in a specific compound, each metabolite produces a specific absorption pattern at distinct 

frequencies. In an NMR spectrum, so-called chemical shifts, i.e., differences between the 

resonance frequencies of the compounds of interest and that of a reference substance, are 

indicated on the frequency axis, permitting metabolite identification (Tebani et al., 2018a). 

Additionally, as integrals of the respective resonance peaks are directly linked to the number 

of 1H giving rise to the peak, those areas can be used for the relative or absolute quantification 

of metabolites (Beckonert et al., 2007). In Figure 7, typical 1H-NMR spectra of either blood or 

urine are illustrated. While NMR spectra of blood samples are typically characterized by broad 

bands from high-molecular weight compounds, e.g., lipoproteins, which partly superimpose 

the sharp peaks resulting from small metabolites, those of urine predominantly contain 

numerous sharp lines from mostly low-molecular weight compounds (Beckonert et al., 2007).  

In general, NMR is suitable for detecting uncharged and polar metabolites as well as relatively 

small, volatile compounds in the milli- to micromolar range (A.-H. M. Emwas, 2015). Although 

NMR spectroscopy possesses the advantages of being a relatively reproducible, robust, rapid, 

quantitative, and non-destructive method with minimal sample manipulation, its main 

limitations are the comparatively low sensitivity and the spectral complexity with overlapping 

signals, leading to uncertainties in metabolite assignment (A.-H. M. Emwas, 2015). 



2 Theoretical Background 

20 

 

 
Figure 7. 1H NMR spectra of a) blood and b) urine. (Adapted from Beckonert et al. (2007)). 

Mass Spectrometry 

MS-based platforms have the capability to analyze numerous metabolic compounds according 

to their molecular weights in a single experiment (German et al., 2005). More precisely, MS 

measures ionized molecules based on their mass-to-charge ratio (m/z) (Bujak et al., 2015). In 

a typical MS procedure, a biological sample is introduced into a MS where an ion source causes 

the ionization and/or fragmentation of contained molecules. Then, a mass analyzer separates 

the ions according to their m/z, e.g., by determining their deflection in a magnetic field, and a 

detector records the ions’ abundances (Kermit et al., 2013; Tebani et al., 2018a). Results are 

presented as a mass spectrum, showing a plot of the ions’ signal intensities and their m/z, 

which can be utilized for metabolite identification (Johnson et al., 2016; Tebani et al., 2018a). 

By including internal standards, quantitative metabolite data can also be obtained (German 

et al., 2005). To reduce the complexity of a biological sample, MS-based analysis is usually 

preceded by a separation step using liquid chromatography (LC), gas chromatography (GC), or 

capillary electrophoresis (CE). As metabolites with distinct physicochemical properties spend 

a different time in the separation dimension, the detection sensitivity of MS can thus be 

enhanced (Tebani et al., 2018a).  

Compared to NMR spectroscopy, MS-based techniques generally provide a higher sensitivity 

and versatility (Johnson et al., 2016), allowing to detect a broader range of metabolites even 

at the pico- to femtomolar level (Lei, Huhman, & Sumner, 2011). However, inherent 
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limitations of MS are that it is destructive, requiring the separation and/or ionization of the 

compounds in a sample. MS procedures are also slower, less reproducible, and less 

quantitative than NMR analyses (Bujak et al., 2015; Tebani et al., 2018a). 

In Table 2, the respective (dis)advantages of NMR- and MS-based analyses are summarized. 

Table 2. Advantages and limitations of NMR- and MS-based metabolomics analysis. (Own table). 

 NMR Spectroscopy Mass Spectrometry 

A
d

va
n

ta
ge

s • Non-destructive • Higher sensitivity 

• High-throughput, rapid • Wider detection range 

• Minimal sample manipulation • Use of separation techniques 

• Higher reproducibility  

• More quantitative  

Li
m

it
at

io
n

s • Lower sensitivity • Destructive 

• Signal overlapping • Slow  

• Smaller detection range • Lower reproducibility 

 
• Less quantitative (requires in-

ternal standards/calibration) 
                NMR: nuclear magnetic resonance. 

 

2.3.3 A Typical Metabolomics Workflow 

Since the data obtained by NMR- or MS-based analyses are considerably complex, requiring 

extensive data processing and bioinformatic methods to allow biological interpretation, the 

sequential steps of both targeted and untargeted metabolomics analyses shall be further 

described. As depicted in Figure 8, a metabolomics workflow usually includes the formulation 

of a biological question and selection of an experimental design, sample preparation, data 

acquisition and (pre-)processing, as well as statistical analyses, metabolite identification, and, 

subsequ ently, the functional interpretation of results (Tebani et al., 2018a). 

Biological Question and Experimental Design 

The initial step in any metabolomics workflow comprises the clear formulation of a biological 

problem that should be addressed. Based on the biological question, a suitable metabolomics 

approach (i.e., targeted or untargeted) has to be selected. Moreover, an appropriate study 

design (e.g., observational or interventional) with clear inclusion and exclusion criteria for 

participants (Broadhurst & Kell, 2006) as well as the type of biological samples, their collection 

and storage conditions have to be defined (Sussulini, 2017). 
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Figure 8. Metabolomics workflow comprising the consecutive steps of both targeted and untargeted analyses. CE: capillary 
electrophoresis; GC: gas chromatography; LC: liquid chromatography; MS: mass spectrometry; NMR: nuclear magnetic 
resonance; PCA: principal component analysis; PLS: partial least squares. (Own illustration based on Sussulini (2017); Tebani 
et al. (2018a); Tebani, Afonso, and Bekri (2018b)).   
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Sample Preparation and Data Acquisition 

Once the study has been conducted, pre-analytical sample preparation steps are performed 

(Y. Wu & Li, 2016). While blood samples are often prepared by protein precipitation (Sussulini, 

2017), an established method for urine sample preparation is dilution according to osmolality 

(Chetwynd, Abdul-Sada, Holt, & Hill, 2016). With regard to data acquisition, several analytical 

platforms are frequently combined, taking both the chemical diversity of metabolites and 

their discrepant concentration levels into account (Bowen & Northen, 2010; Sussulini, 2017).  

Data (Pre-)Processing and Statistical Analysis 

The (pre-)processing of metabolomics data differs between targeted and untargeted analyses. 

In targeted approaches, no analytical artefacts are carried through to the downstream 

analysis. Consequently, data processing is primarily focused on the quantification of selected 

metabolites, involving methods for peak detection and peak integration (Tebani et al., 2018b). 

In untargeted analyses, the acquired raw data have to be submitted to several pre-processing 

steps, including spectral deconvolution, dataset creation, grouping, and alignment for MS-

based techniques or phasing, baseline correction, alignment, and binning for NMR (Sussulini, 

2017). While baseline corrections consider systematic baseline distortions, alignment 

procedures correct for peak shifts due to pH, salt concentrations, or temperature. Binning 

reduces the dimension of the spectra by dividing them into segments, so-called “bins”, and 

assigning a respective value to each bin (Tebani et al., 2018b). As a result, computationally 

manageable data matrices are obtained (Tebani et al., 2018b). Finally, a standardization (i.e., 

normalization, transformation, and scaling) of metabolite data is commonly conducted (van 

den Berg, Hoefsloot, Westerhuis, Smilde, & van der Werf, 2006).  

With regard to statistical analyses, it can be distinguished between uni-, bi-, and multivariate 

approaches. Uni- and bivariate analyses usually applied in metabolomics studies include 

parametric (e.g., t-test, Pearson correlation) or non-parametric (e.g., Wilcoxon’s signed rank 

test, Spearman correlation) methods that have the potential to detect how a single metabolite 

is linked to a particular outcome (Antonelli et al., 2019; Tebani et al., 2018b). If the study 

objective is to analyze how sets of multiple metabolites are associated with an outcome of 

interest, multivariate methods are preferable (Antonelli et al., 2019). The principal component   

analysis (PCA) is an example for so-called unsupervised approaches. By reducing the data 

dimensionality, PCA can reveal patterns or clusters which may underpin relationships between 
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the analyzed samples (Tebani et al., 2018b). As opposed, supervised methods like the partial 

least squares (PLS) regression intend to predict a specific outcome based on metabolomics 

data (Worley & Powers, 2013). 

Metabolite Identification, Functional Analysis, and Biological Validation 

After revealing the identity of relevant metabolites emanating from untargeted analyses by 

searching in databases or libraries and confirming it with internal standards (Sussulini, 2017), 

another key step to successfully comprehend metabolomics data is to link those metabolites 

to their biological role, particularly by determining their function in metabolic pathways and 

their interconnectivities (Johnson et al., 2016). Indeed, functional analysis tools like pathway 

enrichment analyses shift the focus from single metabolites to sets of functionally related 

metabolites, thus evaluating which pathways are most likely to be affected by the studied 

conditions. Network topology analyses complete this approach by calculating the impact of 

an altered metabolite according to its location within a pathway (Chong, Wishart, & Xia, 2019). 

Finally, the association of relevant metabolites with metabolic pathways can be utilized for 

providing a rationale to the original biological question (Sussulini, 2017). Also, functional 

analyses are often a starting point for new hypotheses that can direct future mechanistic 

investigations (Johnson et al., 2016). In general, metabolomics results should be proven by 

internal and external validation (Sussulini, 2017). 

Moving closer to the focus of this dissertation, the next sub-section will provide insight into 

the application of metabolomics in the field of exercise science, emphasizing potentials and 

future perspectives of exercise metabolomics as well as the current state of research. 

2.4 The Application of Metabolomics in the Field of Exercise Science 

The earliest records for the use of metabolomics in the field of exercise science were made in 

2007 and related publications have gradually been growing since then (Duft, Castro, Chacon-

Mikahil, & Cavaglieri, 2017). As an emerging research area, exercise metabolomics can provide 

a global view of the metabolism’s response to acute and chronic PA. Hence, its application is 

not only important for evaluating PA as an interfering factor which can influence the outcome 

of metabolomics-based studies (Daskalaki et al., 2015; Enea et al., 2010), but also to extend 

the current knowledge on metabolic adaptations to PE (Zierath & Wallberg-Henriksson, 2015).  
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2.4.1 Potentials and Perspectives of Exercise Metabolomics 

As depicted below and in Figure 9, the possibilities for the application of metabolomics in the 

field of exercise science are continuously growing (Duft, Castro, Chacon-Mikahil, et al., 2017). 

Firstly, given the fact that PE is characterized as an exogenous intervention disturbing the 

metabolic homeostasis by affecting various biochemical pathways (Egan & Zierath, 2013), a 

comprehensive characterization of exercise-induced metabolite changes is warranted. This 

challenge can be met with the use of metabolomics, which allows a systematic investigation 

of the metabolic response to distinct acute PE interventions or training protocols varying with 

regard to exercise mode, intensity, and duration in different populations (Duft, Castro, 

Chacon-Mikahil, et al., 2017). Consequently, a better understanding of metabolic pathways 

involved in the organism’s response to exercise-induced homeostatic disturbances is likely to 

be obtained (Daskalaki et al., 2014). 

Secondly, the application of metabolomics has the potential to investigate to what extent the 

body’s response to PE is reflected in the metabolome of more or less easily collectable 

biological specimens, such as skeletal muscle tissue, blood, urine, saliva, or sweat (Schranner, 

Kastenmüller, Schönfelder, Römisch-Margl, & Wackerhage, 2020). Thus, the utility of different 

matrices for detecting exercise-induced metabolic perturbations can be thoroughly evaluated. 

In this respect, it is of special interest to explore the limits and advantages of non-invasively 

accessible samples like urine or saliva for metabolomics studies in order to find promising 

alternatives to more invasive tissue or blood sampling (Pitti et al., 2019; Sampson, Broadbent, 

Parker, Upton, & Parker, 2014; Siopi et al., 2017).  

Thirdly, metabolomics can facilitate the discovery of PE-responsive biomarkers. As shown by 

recent studies, metabolomics not only has the ability to reveal metabolic signatures indicative 

for an increased metabolic demand during PE, but also allows to detect metabolic markers 

that reflect muscular damage or fatigue, thus providing insight into the pathomechanisms of 

musculoskeletal disorders or the current physiological state of athletes (Heaney et al., 2017; 

Manaf et al., 2018; Sampson et al., 2014; Yan et al., 2009). Besides, preliminary evidence that 

metabolomics might be useful in pinpointing metabolites associated with the training status, 

i.e., training adaptation or overtraining, has been provided (Enea et al., 2010; Neal et al., 

2013). When focusing on elite sports, the detection of metabolic markers reflective of an 
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athlete’s performance ability or trainability could also be facilitated (Schranner et al., 2020; 

Yan et al., 2009). Additionally, metabolomics opens new perspectives if aiming to identify 

metabolic markers or metabolite patterns associated with a low PA behavior or PF (Heaney et 

al., 2017; Xiao et al., 2016), which might also function as early biomarkers of chronic disease 

risk (Bye et al., 2012; Duft, Castro, Chacon-Mikahil, et al., 2017). Considering the fact that it is 

not yet fully elucidated how lifestyle factors like PA or health-related phenotypes like the CRF 

correlate with metabolic pathways (Floegel et al., 2014), metabolomics seems a promising 

way to enhance the understanding of mechanisms and metabolic pathways mediating the 

association of a high PA or PF level with low morbidity and mortality (Heaney et al., 2017; 

Kujala et al., 2019).  

Fourthly, metabolomics also permits to evaluate in how far the metabolic response to PE is 

modulated by characteristics of the exercising individual, including age, sex, health, or the 

nutritional state. As suggested by Neufer et al. (2015), the so-called “exercise responsome” 

might provide a benchmark against which those traits could be compared for similarities and 

specificities. Hence, differences in the metabolic effects of PE between women and men, 

younger and older, or healthy and diseased individuals are likely to be revealed.  

 
Figure 9. Potentials of metabolomics research in an exercise-related context. (Own illustration). 
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Lastly, metabolomics represents a suitable method to examine the impact of dietary 

interventions on metabolic perturbations during PE and recovery (Nieman et al., 2012). 

Furthermore, it has the potential to examine the effectiveness of PE interventions aiming to 

attenuate metabolic disturbances caused by diseases (Duft, Castro, Chacon-Mikahil, et al., 

2017; Grapov et al., 2019). 

Before considering future perspectives for the practical application of metabolomics-based 

findings, it has to be stated that the majority of exercise metabolomics studies still have a 

rather exploratory and thus hypothesis-generating character (Duft, Castro, Chacon-Mikahil, et 

al., 2017). Once further studies will have succeeded in confirming hypotheses regarding 

metabolic processes underlying the health- or performance-enhancing effects of PA and in 

replicating and validating exercise-responsive biomarkers in different study populations, this 

information might one day be translated into a sports or exercise science context (Duft, 

Castro, Chacon-Mikahil, et al., 2017; Heaney et al., 2017). In fact, findings generated by 

metabolomics studies could be utilized by exercise physiologists, clinicians, or health-care 

practitioners (Heaney et al., 2017; Zierath & Wallberg-Henriksson, 2015). As summarized in 

Figure 10, potential applications could reach from the development of more personalized 

exercise prescription concepts or a better assessment of the efficiency of training regimens to 

the prediction of the PF status or future events such as the susceptibility to muscular injury or 

diseases (Bongiovanni et al., 2019; Daskalaki et al., 2014; Heaney et al., 2017).  

More specifically, it is believed that a more comprehensive knowledge on the metabolic 

response to PE might allow clinicians and sport scientists to recommend exercise with greater 

clarity to expected adaptations (Zafeiridis et al., 2016). Furthermore, it has been suggested 

that validated biomarkers could offer a means to facilitate the monitoring of an athlete’s 

physiological state, i.e., physical capacity, fatigue, or overtraining (Heaney et al., 2017; Manaf 

et al., 2018). In this context, there evidently is a growing interest in non-invasively detectable 

biomarkers. As supposed by Sampson et al. (2014), it is more likely that biomarkers of muscle 

injury or fatigue will be implemented in (sub-)elite sports if measurements can be conducted 

non-invasively, for instance in urine, saliva, or sweat samples.  

In addition to that, novel diagnostic or prognostic metabolic indicators might be yielded, 

permitting clinicians to conclude about an individual’s CRF status and to identify people at risk 
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for cardiometabolic diseases (Heaney et al., 2017; Sampson et al., 2014; Zierath & Wallberg-

Henriksson, 2015). A further possibility for the application of PA-related markers has been 

discussed by Daskalaki et al. (2015), who pointed out the difficulty to reveal differences 

between study groups in human metabolomics studies since they often do not consider the 

participants’ PA levels, that are, however, a frequent cause of inter-individual variability in 

metabolomics analyses. Thus, it has been proposed that future metabolomics studies could 

normalize for an individual’s PA level by using single or multiple metabolites that were proven 

to be affected by PA (Daskalaki et al., 2015).  

 
Figure 10. Possible future applications of exercise metabolomics-based findings. (Own illustration). 

To conclude, the scientific endeavor for studying the metabolic effects of PA by using 

metabolomics techniques is still emerging (Sakaguchi, Nieman, Signini, Abreu, & Catai, 2019) 

and especially the practical application of exercise metabolomics-based findings remains to 

be fully discovered and clearly determined (Duft, Castro, Chacon-Mikahil, et al., 2017; Heaney 

et al., 2017). Unfortunately, the required knowledge and high costs for complex metabolomics 

analyses forbid an easy and quick analysis of relevant biomarkers (Heaney et al., 2017). Thus, 

challenges that have to be met in the future refer, amongst others, to the development of 

specific technologies for biochemical analyses which can be directly conducted under field 

conditions, i.e., in a practical sport-related setting (Zielinski & Kusy, 2015a).  
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In the following sub-section, an overview of publications using metabolomics approaches to 

examine the effects of PA on the human metabolome will be provided. 

2.4.2 Current State of Research 

During the past decade, an increasing number of PA-related metabolomics studies have been 

published (Belhaj, Lawler, & Hoffman, 2021; Kelly et al., 2020). While the primary focus of 

most interventional studies lay on the response of the human metabolome to acute bouts of 

different exercise types or, to a lesser extent, medium- (i.e., < 3 months) and long-term (i.e., 

≥ 3 months) training protocols, observational studies predominantly aimed to examine the 

relationship between metabolite profiles and measures of chronic PA, thus revealing 

metabolic differences between physically active and inactive individuals (Daskalaki et al., 

2014; Heaney et al., 2017; Schranner et al., 2020; Tian, Corkum, Moaddel, & Ferrucci, 2021).  

With regard to metabolomics studies focusing on acute PE or training interventions, a high 

percentage was dedicated to the effects of endurance or intermittent exercise. Comparatively 

little research has so far been addressed to other exercise types, such as team sports (Pitti et 

al., 2019; Ra, Maeda, Higashino, Imai, & Miyakawa, 2014; Santone et al., 2014) or resistance 

exercise (Berton et al., 2017; Coelho et al., 2016; Valério et al., 2017; Yde, Ditlev, Reitelseder, 

& Bertram, 2013). The present thesis comprises the analysis of alterations in the human 

metabolome in response to a ten-day training intervention consisting of high-intensive 

interval exercise or a cardiorespiratory endurance test characterized by an acute bout of 

incremental exercise. Therefore, the current state of research on the effects of both HIIT and 

acute endurance exercise will particularly be focused in the following.  

With respect to metabolomics studies evaluating the chronic effects of PA on the human 

metabolome, it can be distinguished between studies aiming to reveal how inter-individual 

differences in metabolite profiles are linked to either habitual PA or PF and studies conducting 

long-term training regimens in order to analyze how improvements in the individual PF status 

are associated with training-induced metabolite alterations. The present thesis includes the 

investigation of the relationship between the resting human metabolome and the CRF as a 

surrogate measure of chronic PA in a cross-sectional study. Thus, previous studies applying 

the former approach are focused when depicting the current state of research in the 

following. 
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Metabolomics Studies Focusing on HIIT 

Considering the current state of research until July 2019 (publication date of Study I) on the 

effects of HIIT on metabolite profiles in humans, it becomes obvious that a rather limited 

number of studies have investigated HIIT-induced alterations in the human metabolome so 

far. An overview of metabolomics studies analyzing metabolite alterations in response to 

acute or medium-term HIIT is provided in Table 3. 

The majority of studies have analyzed the effects of single HIIT or sprint interval bouts on 

metabolite profiles in blood, urine, or muscle tissue, giving insight into the acute response of 

human metabolism to HIIT. Although different study protocols regarding type, intensity, and 

duration of HIIT sessions and distinct metabolomics approaches were used in these acute HIIT 

studies, changes were generally documented for compounds of carbohydrate metabolism 

(e.g., lactate, pyruvate), TCA cycle intermediates (e.g., citrate, succinate), or AAs. However, 

studies analyzing medium- or long-term alterations of the human metabolome in response to 

HIIT are rather scarce. One study investigating the effect of an eight-week sprint interval 

training on 33 serum metabolites in young males showed a training-induced rise in resting and 

post-exercise citrate, taurine, and trimethylamine N-oxide (TMAO), as well as lower levels of 

resting and post-exercise lactate and pyruvate (Pechlivanis et al., 2013). Kuehnbaum, Gillen, 

Gibala, and Britz-McKibbin (2014) provided the first evidence of metabolic adaptations to a 

six-week HIIT being reflected in the blood metabolome. Indeed, they showed a HIIT-induced 

increase in plasma carnitine at rest, hinting at an improved oxidative capacity, and an 

attenuated post-exercise increase in plasma hypoxanthine after HIIT intervention, pointing to 

a lower energetic stress in the trained status. Yet, those studies focusing on medium-term HIIT 

have some limitations. Firstly, results are partly restricted to sedentary, overweight females 

(Kuehnbaum et al., 2014) and HIIT interventions were performed with a rather moderate 

frequency (Kuehnbaum et al., 2014; Pechlivanis et al., 2013). Secondly, metabolomics analyses 

were limited to a comparatively small number of blood metabolites, ranging from 33 

(Pechlivanis et al., 2013) to 41 (Kuehnbaum et al., 2014) analytes. 

Despite the fact that HIIT has drawn much attention in recent years due to its ability to elicit 

endurance-like improvements in skeletal muscle metabolism (Cassidy et al., 2017), the 

application of metabolomics to examine HIIT-induced metabolic alterations has been limited 

to a few studies. Apart from the need to extend the general knowledge on the effects of HIIT 
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Table 3. Overview of metabolomics studies focusing on HIIT. (Own table). 

Nr. 
Author 
(Year) 

Subjects Exercise Intervention Biological 
Specimen 

Sampling Time 
Method 

(Metabolites) 
Main Metabolite Alterations 

n (♂/♀) State Type Duration/Frequency Intensity 

1 
Pechlivanis 

et al. 
(2010)   

12 (12/0) 
Healthy, young, 

trained 

Acute 
(running 

sprint 
intervals) 

3 sets of 2x80m runs 
separated by 10s or 

1min with 20min rest 
between sets 

Maximal Urine 
Pre- and 35min 
post-exercise 

NMR 
(43) 

↑: Lactate, Alanine, Pyruvate, Hypoxanthine, 2-Hydroxyisovalerate, 3-Hydroxyisobutyrate, 
2-Oxoisovalerate, 2-Oxoisocaproate, 3-Methyl-2-Oxovalerate, 2-Hydroxybutyrate, 

2-Oxoglutarate, Fumarate 
 

↓: Citrate, Glycine, Formate, Histidine, Tryptophan, TMAO 

2 
Pechlivanis 

et al. 
(2013)  

14 (14/0) 
Healthy, young, 

trained 

Training 
(running 

sprint 
intervals) 

8wk à 3 sessions with 
2-3 sets of 80m runs 

Maximal Serum 

Pre- and 35min 
post-exercise 
[before/after 

training] 

NMR 
(33) 

↑ (post-exercise): Lactate, Pyruvate, Acetoacetate/Acetone 
↓ (post-exercise): Leucine, Valine, Isoleucine, Arginine/Lysine, Glycine, Methylguanidine 

 

↑ (post-training, pre-exercise): Citrate, Taurine, TMAO, Acetoacetate/Acetone, Valine 
↓ (post-training, pre- and post-exercise): Lactate, Pyruvate 

3 
Peake et al. 

(2014)  
10 (10/0) 

Healthy, young 
athletes 

Acute 
(HIIT, 

bicycle) 

10x4min intervals 
at 80% VO2max with 
2min rest at 50w 

between intervals 

Vigorous Plasma 
Pre- and 0min, 

1h, and 2h 
post-exercise 

GC-MS 
(49) 

↑: Citrate, Succinate, Aconitate, Malonate, Alanine, Glutamate, Tyrosine, 4-Methyl-2-
Oxopentanoate, 3-Methyl-2-Oxopentanoate, Myristate, Dodecanoate, Decanoate, 

Palmitoleate, Heptadecenoate, Myristoleate, Oleate (0min) 

4 
Danaher 

et al. 
(2015)   

7 (7/0) 
Healthy, young, 

active 

Acute 
(HIIT, 

bicycle) 

30x20s intervals 
at 150% VO2max with 
40s rest or 30x10s 
intervals at 300% 

VO2max with 50s rest 

Supra-
maximal 

Plasma 
Pre- and 0min, 

0.5h, and 1h 
post-exercise  

GC-MS 
(55) 

↑: Lactate, Malate, Alanine (150%, 300% VO2max), Citrate (150% VO2max), 
Fructose, Sorbose, Cholesterol (300% VO2max) 

 

↓: Citrate, Asparagine, Lysine, Octadecanoate, Hexadecanoate, Erythronate, Xylitol, Xylose 
(300% VO2max) 

5 
Kuehnbaum 

et al. 
(2015)   

9 (0/9) 
Obese, young, 

untrained 

Training 
(HIIT, 

bicycle) 

6wk à 3 sessions with 
10x1min intervals at 
90% HRmax and 1min 
rest at 50w between 

intervals 

Vigorous Plasma 

Pre- and 0min, 
20min post-

exercise [before
/after training]  

MSI-CE-MS 
(41) 

↑ (post-exercise): Carnitine, Acetylcarnitine, Hypoxanthine 
 

↑ (post-training): Carnitine (pre-exercise), Acetylcarnitine (post-exercise) 
↓ (post-training): Hypoxanthine (post-exercise) 

6 
Pechlivanis 

et al. 
(2015)   

17 (17/0) 
Healthy, young, 

trained 

Acute 
(running 

sprint 
intervals) 

3x80m runs with 10 
min between the 1st 
and 2nd run and 10s 
between the 2nd and 

3rd run 

Maximal Urine 
Pre- and 1h, 
1.5h, and 2h 
post-exercise 

NMR and 
RP-UPLC-MS 

(42) 

↑: Hypoxanthine, Inosine (1h, 1.5h, and 2h), Lactate, Acetate (1h and 1.5h), 
2-Hydroxyisovalerate, 2-Hydroxybutyrate, 2-Oxoisocaproate, 3-Methyl-2-Oxovalerate, 

3-Hydroxyisobutyrate, 2-Oxoisovalerate, 3-Hydroxybutyrate, 2-Hydroxyisobutyrate, Alanine, 
Pyruvate, Fumarate (1h) 

 

↓: Valine, Isoleucine, Succinate, Citrate, Trimethylamine, TMAO, Tyrosine, Formate (1h and/or 
1.5h), Creatinine, Glycine, Hippurate, 4-Aminohippurate (1h, 1.5h, and 2h) 

7 
Zafeiridis 

et al. 
(2016)   

9 (9/0) 
Healthy, young, 

trained 

Acute 
(HIIT, 

treadmill) 

30s intervals at 110% 
MAV with 30s rest or 
3min intervals at 95% 
MAV with 3min rest 

Supra-
maximal/ 
maximal 

Plasma 
Pre- and 0-5min 

post-exercise 
NMR 
(17) 

↑: Glucose, Lactate, Pyruvate, Glycerol, Alanine (higher after 3min intervals), Citrate (higher 
after 3min intervals), Succinate, Citrate/Succinate, Lactate/Pyruvate, Lactate/Citrate 

 

↓: Glutamine, Proline (3min intervals) 

8 
Siopi et al. 

(2017)   
14 (14/0) 

Healthy, 
middle-aged, 

sedentary 

Acute 
(HIIT, 

treadmill) 

4x4min intervals at 
90% HRmax with 4min 

rest at 3km/h 
Vigorous Urine 

Pre- and 2h, 
4h, and 24h 

post-exercise 

UPLC-MS/MS 
(64) 

↑: Alanine, Arginine, Asparagine, Betaine, Citrulline, Glutamate, Glutamine, Glycine, Histidine, 
Homocysteine, Leucine-Isoleucine, Lysine, Methionine, Valine, Phenylalanine, Proline, Serine, 

Threonine, Tyrosine, γ-Aminobutyrate, Mannitol, Lactate, Pyruvate, Adenosine, Cytosine, 
Guanine, Thymine, Uracil, 2-Hydroxyisobutyrate, 4-Hydroxyphenyllactate, Acetylcarnitine, 
Creatine, Hypotaurine, Hypoxanthine, Inosine, Kynurenate, Taurine, TMAO, Xanthine (2h) 

 

↓: Citrate, Thiamine, Methylamine (2h) 
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Table 3 (continued). Overview of metabolomics studies focusing on HIIT. (Own table). 

Nr. 
Author 
(Year) 

Subjects Exercise Intervention Biological 
Specimen 

Sampling Time 
Method 

(Metabolites) 
Main Metabolite Alterations 

n (♂/♀) State Type Duration/Frequency Intensity 

9 
Saoi et al. 

(2019)  
7 (7/0) 

Healthy, young, 
active 

Acute 
(HIIT, 

bicycle) 

10x60s intervals at 
90% HRmax with 60s 

recovery at 50w 
Vigorous 

Plasma, 
muscle 

Pre- and 0min, 
3h post-
exercise 

MSI-CE-MS 
(84) 

↑: Alanine, Lactate, Acetylcarnitine (plasma/muscle, 0min), Malate, Urate (muscle, 0min), 
3-Hydroxybutyrate, Succinate, Glutamate, Tryptophan (plasma, 0min) 

 

↓: Glutamate (muscle, 0min) 

10 
Siopi et al.  

(2019)  
14 (14/0) 

Healthy, 
middle-aged, 

sedentary 

Acute 
(HIIT, 

treadmill) 

4x4min intervals at 
90% HRmax with 4min 

rest at 3km/h 

Vigorous Serum 

Pre- and 0min, 
1h post-
exercise 

UPLC-MS/MS 
(46) 

↑: Alanine, Glutamate, Histidine, γ-Aminobutyrate, Lactate, Pyruvate, Pantothenate, Acetyl-
carnitine, Creatine, Cystine, Dimethylamine, Hypoxanthine, Taurine, Xanthine (1h) 

 

↓: Guanine, Inosine (1h) 

CE: capillary electrophoresis; GC: gas chromatography; h: hour(s); HIIT: high-intensity interval training; HRmax: maximum heart rate; km: kilometer(s); m: meter(s); MAV: maximal aerobic 
velocity (here: speed at which VO2max was first achieved and maintained for at least one minute); min: minute(s); MS: mass spectrometry; MSI: multi-segment injection; MS/MS: tandem 
mass spectrometry; n: sample size; NMR: nuclear magnetic resonance; RP: reversed phase; s: second(s); TMAO: trimethylamine N-oxide; UPLC: ultra-performance liquid chromatography; 
VO2max: maximal oxygen uptake; w: watt; wk: week(s).   
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interventions on the metabolome of sedentary or recreationally active individuals, an 

important research gap is linked to the lack of information on alterations in metabolite profiles 

due to strenuous HIIT programs in already trained persons. Especially in pre-competition 

phases of elite sports, athletes often complete high-intensive exercise blocks, thus provoking 

a higher adaptation in performance and an improved resistance against fatigue (Hawley, 

Myburgh, Noakes, & Dennis, 1997; Laursen & Jenkins, 2002; Tschakert & Hofmann, 2013). In 

fact, the more intense exercise stimuli were performed with a high frequency, the more 

intense adaptations, but also overtraining, can be caused (Rodas, Ventura, Cadefau, Cussó, & 

Parra, 2000). Consequently, a comprehensive assessment of metabolite changes to HIIT 

protocols usually applied in periodized training schedules is required. By measuring HIIT-

induced alterations in the metabolome of individuals with an athletic background, possible 

biomarkers indicative for either training adaptation or training overload could be identified. 

Furthermore, metabolomics investigations have the potential to elucidate which metabolic 

pathways are linked to the phenotypical response of the human organism to strenuous 

intermittent training. Finally, with regard to future studies, it should be especially evaluated 

to what extent easily accessible, non-invasive biological matrices like urine or saliva are able 

to reflect HIIT-related adaptations in human metabolism. 

Metabolomics Studies Focusing on Acute Endurance Exercise 

Regarding the current state of research until May 2020 (publication date of Study IIa) on the 

effects of endurance exercise on metabolite profiles in humans, the majority of conducted 

studies investigated how the metabolome responds to single bouts of cycling or running. In 

contrast, relatively few metabolomics studies have focused on medium- or long-term effects 

of endurance training (Brennan et al., 2018; Duft, Castro, Bonfante, et al., 2017; Felder et al., 

2017; Huffman et al., 2014; Neal et al., 2013; Yan et al., 2009). An overview of those studies 

analyzing metabolic alterations in response to acute endurance exercise is given in Table 4. 

Studies were not listed if exercise interventions lasted longer than one day (Karl et al., 2017; 

Zauber, Mosler, von Hessberg, & Schulze, 2012). 

What differs most between the presented studies is the duration and intensity of acute 

continuous exercise, ranging from 18 minutes to 9 hours or from moderate to maximal, 

respectively. While a high percentage of the studies used continuous PE protocols of shorter 
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Table 4. Overview of metabolomics studies focusing on acute endurance exercise. (Own table). 

Nr. 
Author 
(Year) 

Subjects Exercise Intervention Biological 
Specimen 

Sampling Time 
Method 

(Metabolites) 
Main Metabolite Alterations 

n (♂/♀) State Type Duration Intensity 

1 
Pohjanen 

et al. 
(2007)   

24 (24/0) 
Healthy, young, 

trained 

Acute 
(continuous, 

bicycle) 

9x10min (2min at 
40%, 6min at 60%, 

2min at 85% VO2peak) 

Sub-
maximal, 
varying 

Serum 
Pre- and 0min 
post-exercise 

GC/TOF-MS 
(non-targeted) 

34 altered metabolites (only Glycerol and Asparagine were identified). 

2 
Enea et al. 

(2010)   
22 (0/22) 

Healthy, young, 
untrained 

(n=10)/trained 
(n=12) 

Acute 
(continuous, 

bicycle) 

Until exhaustion  
(26.7 ± 1.8min to 

41.1 ± 4.0min) 
at 75% VOmax  

Vigorous Urine 
Pre- and 30min 
post-exercise 

NMR 
(11) 

Multivariate analysis did not reveal any distinction of the pre- and post-exercise 
urinary metabolite profile. No results of univariate analysis provided. 

3 
Lehmann 

et al. 
(2010)    

21 (21/0) 
Healthy, 
young 

Acute  
(continuous, 

treadmill) 

60min at 75% VO2peak 
(n=13)/120min at 
55% VO2peak (n=8) 

Vigorous/ 
moderate 

Plasma 
Pre- and 0h, 
3h, 24h post-

exercise 

LC-MS 
(non-targeted) 

↑: Medium-chain Acylcarnitines (C6:0, C8:0, C10:0, C10:1, C12:0, C14:2) 

4 
Lewis et al. 

(2010)   

70 (60/10) Middle-aged 
Acute 

(continuous, 
treadmill) 

Until exhaustion  
Incre-

mental 
Plasma 

Pre- and 0h, 1h 
post-exercise  

LC-MS 
(200) 

↑: Lactate, Pyruvate, Alanine, Glycerol, Pantothenate, Methionine, Niacinamide, 
Glutamine, Inosine, Hypoxanthine, Xanthine 

25 (19/6) 
Amateur 
runners 

Acute 
(continuous,  
marathon) 

180-300min Self-paced Plasma 
Pre- and 10min 
post-exercise 

LC-MS 
(200) 

↑: Lactate, Pyruvate, Glycerol, β-Hydroxybutyrate, Allantoin, Kynurenate 
 

↓: Alanine, Threonine, Serine, Proline, Valine, Histidine, Glutamine, Asparagine 

5 
Netzer et al. 

(2011)   
30 (22/8) 

Healthy, 
trained 

Acute 
(continuous, 

bicycle) 
Until exhaustion 

Incre-
mental 

Capillary 
blood 

Pre- and 0min 
post-exercise 

MS/MS 
(60) 

↑: Lactate, Alanine, Short-chain Acylcarnitines (C2, C3) 

6 
Chorell et al. 

(2012)   
27 (27/0) 

Healthy, young, 
trained 

Acute 
(continuous, 

bicycle) 

65min (20min at 
55%, 25min at 70%, 
10min at 55%, 2min 

at 100%, 8min at 
30% VOmax) 

(Sub-) 
maximal, 
varying 

Plasma 
Pre- and post-

exercise 

GC-TOF-MS 
(non-targeted, 
50 identified) 

↑: Hypoxanthine, Taurine, Ribose, β-D-Methylglucopyranoside, Inositol, Citrate, 
β-Alanine, Malate 

 

↓: Tryptophan, Threonine, Threonate, Valine, Isoleucine 

7 
Krug et al. 

(2012)    
15 (15/0) 

Healthy, 
young 

Acute 
(continuous, 

bicycle) 

30min at 
anaerobic threshold 

Vigorous Plasma 
Pre- and 15, 

30, 45, 60min 
post-exercise 

MS/MS, 
NMR 
(163) 

↑: Lactate, Acylcarnitines 
 

↓: Carnitine 

8 
Thysell et al. 

(2012)   
24 (24/0) 

Healthy, young, 
trained 

Acute 
(continuous, 

bicycle) 

9x10min (2min at 
40%, 6min at 60%, 

2min at 85% VO2peak) 

Sub-
maximal, 
varying 

Serum 
Pre- and 0min 
post-exercise 

GC/TOF-MS 
(non-targeted) 

↑: Alanine, Inosine, Fatty Acids 
 

↓: Asparagine, Lysine, Serine, Phenylalanine, Methionine, Arginine, Ornithine, 
Proline, Histidine, Valine, Isoleucine, Allothreonine, Tryptophan 

9 

Mukherjee 
et al. 

(2014)    
17 (17/0) 

Healthy, 
middle-aged, 
trained (n=9)/ 

untrained (n=8) 

Acute 
(continuous, 

bicycle) 

45min at 60% 
WRpeak, followed by 

90% WRpeak until 
exhaustion 

Sub-
maximal 

(moderate 
to 

vigorous) 

Urine 

Pre- and post-
exercise 

(24h-samples) 

NMR 
(32) 

↑: Lactate (trained < untrained), Pyruvate, Acetate (trained < untrained), Malonate 
(trained < untrained), Fumarate (trained > untrained), Hypoxanthine (trained > 

untrained), 2-Hydroxybutyrate, 2-Hydroxyisovalerate, 2-Oxoisocaproate, 
2-Oxoisovalerate, 3-Hydroxyisobutyrate, Alanine, Inosine 

 

↓: 3-Hydroxybutyrate, Citrate, Glycine, Formate, Succinate, Hippurate, TMAO, 
Tryptophan 
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Table 4 (continued). Overview of metabolomics studies focusing on acute endurance exercise. (Own table). 

Nr. 
Author 
(Year) 

Subjects Exercise Intervention Biological 
Specimen 

Sampling Time 
Method 

(Metabolites) 
Main Metabolite Alterations 

n (♂/♀) State Type Duration Intensity 

10 
Nieman et al. 

(2014)    
19 (19/0) 

Healthy, 
trained 

Acute 
(continuous, 

75km cycling) 
2.71 ± 0.07h 

Sub-
maximal, 

self-paced 
Plasma 

Pre- and 0h, 
1.5h, 21h post-

exercise 

UHPLC-MS/MS, 
GC-MS 

(non-targeted, 
423) 

↑: 80 known metabolites with at least a twofold increase, e.g., 13- and 9-Hydroxy-
Octadecadienoate, Linoleate, Linolenate, Arachidonate, Adrenate, Dicarboxylate 

and Long-chain Fatty Acids 

11 
Peake et al. 

(2014)  
10 (10/0) 

Healthy, young 
athletes 

Acute 
(continuous, 

bicycle) 

61min ± 14s at 
65% VO2max 

Moderate Plasma 
Pre- and 0min, 

1h, and 2h 
post-exercise 

GC-MS (49) 

↑: Succinate, Malonate, Myristic acid, Dodecanoic acid, Decanoic acid, 
Palmitoleic acid, Heptadecenoic acid, Linolenic acid 

 

↓: Leucine, Isoleucine, Valine, Methionine, Alanine, Proline 

12 
Breit et al. 

(2015)    
47 (27/20) 

Healthy, 
trained 

Acute 
(continuous, 

bicycle) 
Until exhaustion 

Incre-
mental 

Capillary 
blood 

Pre-, during, 
and post-
exercise 

MS/MS 
(100) 

↑: Acetyl-, Propionyl-, Valeryl-, Butyryl-, Methylmalonyl-, Hydroxyvaleryl-, 
Octadecadienyl-, Octadecanoyl-, Hexadecanoyl-, Octadecenoylcarnitine, Alanine, 
Arginine, Glucose, Ornithine, Tryptophan, Methionine, Histidine, Phenylalanine, 
Citrulline, Glutamate, Tyrosine, Glycine, Lysine, Proline, Serine, Threonine, Valine 

 

↓: Aspartate, Carnitine 

13 
Muhsen-Ali 

et al. 
(2016)   

10 (8/2) 
Healthy, 

active 

Acute 
(continuous, 

bicycle) 

45min (5min at 50w, 
15min at 40%, 15min 

at 50%, 10min at 
60% WRmax) 

Sub-
maximal, 
varying 

Urine 
Pre- and 1h, 
4h, 7h post-

exercise 

LC-MS 
(57) 

↑: Hypoxanthine, Guanine, Urate, 1-Methylurate, Deoxyinosine, Inosine, Xanthosine, 
Oxobutanoate, 4-Aminobutanoate, Hydroxybutyric acid sulfate, Lactate, 4-Hydroxy-

hepantonylglycine, Nonanoyl-, Decanoyl-, Keto-Decanoylcarnitine, Pantothenate, 
Phenylacetylglycine, Dihydroxyphenyllactate (1h) 

 

↓: Glycylproline, Glycylleucine, Xylitol, Rhamnose, Arabinonate, Glucuronate, 
Propanoylcarnitine, Dihydroxyoxocholanate, Cholate, Threonine, Asparagine, Leucine, 

Methionine, N-Acetylleucine, N-Acetylglutamine, N-Acetylcitrulline, Riboflavine (1h) 

14 
Wallner-

Liebmann 
et al. (2016)   

23 (5/18) Healthy 
Acute 

(continuous, 
bicycle) 

45min between the 
aerobic and 

anaerobic threshold 
Moderate Saliva 

Pre- and post-
exercise 

NMR  
(non-targeted) 

Multivariate analysis revealed differences between the saliva samples collected  
before and after exercise. No single metabolite alterations provided. 

15 
Zafeiridis 

et al. 
(2016) 

9 (9/0) 
Healthy, young, 

trained 

Acute 
(continuous, 

treadmill) 
18min at 80% MAV Vigorous Plasma 

Pre- and 0-5min 
post-exercise 

NMR 
(17) 

↑: Glucose, Lactate, Pyruvate, Glycerol, Alanine, Citrate, Succinate, Citrate/Succinate, 
Lactate/Pyruvate, Lactate/Citrate 

 

↓: Glutamine, Proline 

16 
Nieman et al. 

(2017)    
24 (24/0) 

Healthy, 
trained 

Acute 
(continuous, 

treadmill) 

Until exhaustion 
(2.26 ± 0.01 h) 
at 70% VO2max 

 

Vigorous Plasma 
Pre- and 0min 
post-exercise 

UHPLC-MS/MS, 
GC-MS 

(non-targeted, 
380) 

↑: 166 identified metabolites, e.g., Glycerol, Long- and Medium-chain Fatty Acids, 
Fatty Acid Oxidation Products (Dicarboxylate, Monohydroxy Fatty Acids), 
Acylcarnitines, Lactate, Succinate, Malate, Hypoxanthine, Ketone Bodies 

 

↓: 43 identified metabolites, e.g., Cholate, Glycocholate, Alanine, Asparagine, Proline, 
Isoleucine, Hydroxyproline, Leucine, Serine, Choline, Betaine 

17 
Siopi et al. 

(2017) 
14 (14/0) 

Healthy, 
middle-aged, 

sedentary 

Acute 
(continuous, 

treadmill) 
36min at 65% HRmax Moderate Urine 

Pre- and 2h, 
4h, and 24h 

post-exercise 

UPLC-MS/MS 
(64) 

↑: Alanine, Arginine, Asparagine, Citrulline, Glutamate, Glutamine, Glycine, Histidine, 
Homocysteine, Leucine-Isoleucine, Lysine, Methionine, Norvaline-Valine, Phenylalanine, 
Proline, Serine, Threonine, Tyrosine, γ-Aminobutyrate, Mannitol, Pyruvate, Adenosine, 

Cytosine, Guanine, Thymine, Uracil, Uridine, Acetylcarnitine, Creatine, Hypotaurine, 
Hypoxanthine, Inosine, Kynurenate, Taurine, TMAO, Urate, Xanthine (2h) 

 

↓: Citrate, Riboflavin (2h) 
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Table 4 (continued). Overview of metabolomics studies focusing on acute endurance exercise. (Own table). 

Nr. 
Author 
(Year) 

Subjects Exercise Intervention Biological 
Specimen 

Sampling Time 
Method 

(Metabolites) 
Main Metabolite Alterations 

n (♂/♀) State Type Duration Intensity 

18 
Davison et al. 

(2018)   
24 (24/0) 

Healthy, young, 
trained 

Acute 
(continuous, 

treadmill)  
60min at 75% VO2max Vigorous Serum 

Pre- and 0h, 3h 
post-exercise 

LC-MS 
(non-targeted) 

↑: Propionyl-, Butyryl-, Hexanoyl-, Octanoyl-, Decanoyl-, Undecenoyl-, 
4,8-Dimethylnonanoyl-, Dodecenoyl-, Tridecenoyl-, Tetradecadienoyl-, 

Hexadecatetraenoyl-, Hexadecadienoyl-, Palmitoyl-, Elaidiccarnitine, Hippurate, 
Myristate, Palmitate, Linolenate, Linoleate, Arachidonate, Adenine, Adenosine 

19 
Howe et al. 

(2018)   
9 (9/0) 

Healthy, young, 
trained 

Acute 
(continuous, 

80.5km 
treadmill) 

9h 17min ± 1h 18min 

Sub-
maximal, 

self-paced 

Plasma 
Pre- and post-

exercise 

LC-MS 
(non-targeted, 

446) 

↑: e.g., Long-, Medium-, and Short-chain Acylcarnitines, Fatty Acids, Oxidized Fatty 
Acids, Acetylcarnitine, Hypoxanthine, Kynurenate 

 

↓: e.g., Alanine, Glycine, Serine, Leucine, Isoleucine, Proline, Threonine, Valine, 
Betaine, Taurine, Arginine, Citrulline, Glycocholate, Taurocholate, Pseudouridine 

20 
Manaf et al. 

(2018)  
18 (18/0) 

Healthy, young, 
active 

Acute 
(continuous, 

bicycle) 

Until exhaustion 
(80.9 ± 13.6min) at 
an intensity corres-

ponding to 3mmol/L 
blood lactate 

(110.3 ± 23.0w) 

Moderate Plasma 

Pre-exercise, 
after 10 and 

70min of 
cycling, as well 
as 0 and 20min 
post-exercise  

LC-MS 
(80) 

Multivariate analysis revealed alterations in the plasma metabolome during exercise. 
 

↑: e.g., Palmitate, Oleate, Linoleate, Glycerol, Oleoyl-, Palmitoyl-, Acetylcarnitine, 
5-Methoxy-3-Indoleacetate, Indole, Indole-3-Lactate, γ-Aminobutyrate, Creatine 

 

↓: e.g., Tryptophan, Indole-3-Acetate, Carnitine 

21 
Stander et al. 

(2018)  
31 (19/12) 

Healthy, 
trained 

Acute 
(continuous, 
marathon) 

4h 19min ± 49min 
Sub-

maximal, 
self-paced 

Serum  
Pre- and post-

exercise 

GC × GC- 
TOF-MS 

(untargeted, 
838) 

↑: e.g., α-Hydroxybutyrate, β-Hydroxybutyrate, β-Hydroxyisobutyrate, Acetoacetate, 
Citrate, Fumarate, Glycerol, Laurate, Linoleate, Malate, Mannitol, Myristoleate, Oleate, 

Palmitate, Palmitoleate, Pentadecanoate, Pyruvate, Succinate, Threonate 
 

↓: e.g., α-Aminomalonate, Alanine, Aspartate, Glycine, Leucine, Methionine, 
Phenylalanine, Serine, Tyrosine, Valine 

22 
Siopi et al. 

(2019) 
14 (14/0) 

Healthy, 
middle-aged, 

sedentary 

Acute 
(continuous, 

treadmill) 
36min at 65% HRmax Moderate Serum 

Pre- and 0min, 
1h post-
exercise 

UPLC-MS/MS 
(46) 

↑: Glutamate, Histidine, Putrescine, Pantothenate, 3-Methylhistidine, Acetylcarnitine, 
Cystine, Xanthine (0min), γ-Aminobutyrate, Guanine, Pyruvate (1h) 

 

↓: Tyrosine, Pantothenate, 2-Hydroxyisobutyrate, Dimethylamine, Inosine (0min) 

23 
Schader et al. 

(2020)  
76 (76/0) 

Amateur 
runners 

Acute 
(continuous, 
marathon) 

225.1 ± 43.1min 

Sub-
maximal, 

self-paced 

Plasma 

Pre- and 0h, 
1d, 3d post-

exercise 

LC-/FIA- 
MS/MS 
(188) 

↑: Acylcarnitines 
 

↓: Amino Acids, Phospholipids 

24 
Shi et al. 
(2020) 

20 (20/0) 
Experienced 

amateur 
runners 

Acute 
(continuous, 
marathon) 

< 3h 
Sub-

maximal, 
self-paced 

Serum 

1d pre-exercise, 
within 1h post-

exercise 

LC-MS/MS 
(untargeted) 

↑: Pyruvate, Malate, cis-Aconitate, Galacturonic Acid, Methyl-Fumaric Acid, Alanine, 
Tyrosine, Phenylalanine, Glycerol, Glyceric Acid, Octanoic Acid, Quinic Acid, Threonate, 

myo-Inositol, D-Galacturonic Acid, trans-Cinnamate, Vanillin, Ribitol, Hypoxanthine, 
Adenine, Theophylline, Theobromine 

 

↓: Glucosamine, Succinyl-L-Homoserine, Serine, Valine, Asparagine, Inosine 

d: day(s); FIA: flow injection analysis; GC: gas chromatography; GC × GC: two-dimensional gas chromatography; h: hour(s); HRmax: maximum heart rate; kg: kilogram(s); km: kilometer(s); LC: 
liquid chromatography; MAV: maximal aerobic velocity (here: speed at which VO2max was first achieved and maintained for at least one minute); min: minute(s); MS: mass spectrometry; 
MS/MS: tandem mass spectrometry; n: sample size; NMR: nuclear magnetic resonance; Pmax: maximal power; RP: reversed phase; s: second(s); TMAO: trimethylamine N-oxide; TOF: time of 
flight; U(H)PLC: ultra-(high-)performance liquid chromatography; VO2max: maximal oxygen uptake; VO2peak: peak oxygen uptake; w: watt; WRmax: maximal work rate; WRpeak: peak work rate. 
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duration (i.e., 18 to 80 minutes) at moderate or vigorous constant intensity, fewer studies 

investigated the effects of either continuous PE at varying submaximal intensities, maximal 

incremental exercise tests, or strenuous long-duration (i.e., 2 to 9 hours) PE at self-paced 

intensities. The mostly analyzed biofluid was blood, followed by urine and saliva. 

In the summarized studies, many of the metabolites showing a global increase in response to 

endurance exercise were related to lipid metabolism, e.g., glycerol, long-chain fatty acids 

(LCFAs), fatty acids oxidation products, or acylcarnitines. Further exercise-induced alterations 

have been documented for lactate, pyruvate, TCA cycle intermediates including cis-aconitate, 

citrate, malate, and succinate, several AAs, as well as ketone bodies like 3-hydroxybutyrate or 

acetoacetate, reflecting changes in energy-producing metabolic pathways. Since the 

presented studies vary with regard to the performed exercise protocols, included participants, 

collected biospecimens, sampling times, analytical techniques, and number of identified 

metabolites, their results are not directly comparable. However, it can be deduced from the 

current state of research that acute continuous PE of lower duration and intensity induces 

rather modest post-exercise shifts in metabolite concentrations compared to more intensive 

and prolonged continuous PE. 

With regard to metabolic alterations in response to maximal incremental exercise, the current 

state of research is limited to three metabolomics studies. While these studies focused on the 

effects of a standardized exercise tolerance test on the blood metabolome (Breit et al., 2015; 

Lewis et al., 2010; Netzer et al., 2011), the response of the urinary metabolome to a stepwise 

progressive exercise test until exhaustion has not been examined so far. Given that previous 

studies have revealed that acute endurance exercise causes perturbations in both the blood 

and urinary metabolome (Siopi et al., 2017; Siopi et al., 2019), the value of urine in the study 

of human exercise metabolism could be supported. Accordingly, there is a need for further 

exercise metabolomics studies focusing on urine as a non-invasively collectable biospecimen. 

Thus, it could be evaluated whether urine is able to reflect exercise-induced adaptations in 

specific metabolic pathways. 

Finally, most studies focusing on acute endurance exercise have been conducted in small, 

mainly male populations. Hence, more research including larger groups of both women and 

men will be required to clarify if exercise-induced metabolite alterations differ between sexes. 
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Metabolomics Studies Focusing on PF or Habitual PA 

Regarding the current state of research until July 2021 (publication date of Study IIb) on the 

effects of chronic PA on metabolite profiles in humans, previous work can generally be divided 

into studies analyzing the relationship between the metabolome and either direct measures 

of habitual PA, e.g., PA-related energy expenditure, or functional variables like the CRF status, 

which can be seen as an objective surrogate measure for chronic PA (McKinney et al., 2016). 

An overview of these mainly observational studies detecting inter-individual differences in the 

human metabolome related to habitual PA or PF is provided in Table 5. 

Approximately half of the listed studies assessed the VO2max (or VO2peak) as a measure of the 

CRF. Nearly as many studies assessed the PA level of study participants, either objectively by 

using accelerometers or subjectively by using questionnaires. In two studies, both the CRF and 

PA were determined in the same cohort, allowing a direct comparison of investigated 

relationships with the metabolome (Floegel et al., 2014; Wientzek et al., 2014). Further studies 

measured either the resting heart rate (HRrest) (Lewis et al., 2010), finish time in a marathon 

(Høeg, Chmiel, Warrick, Taylor, & Weiss, 2020; Lewis et al., 2010; Shi et al., 2020), or blood 

lactate accumulation (San-Millán et al., 2020) and maximal power output (Castro et al., 2021) 

during a maximal bicycle test for PF assessment. Moreover, three studies compared the 

metabolic response to acute PE between more and less fit individuals (Enea et al., 2010; Lewis 

et al., 2010; Mukherjee et al., 2014). While most of the presented studies focused on blood, 

only minor metabolomics research has been conducted with urine samples.  

Despite different approaches to assess chronic PA, the presented studies provided evidence 

that both habitual PA and the CRF are associated with specific metabolite patterns that are 

possibly linked to a better cardiometabolic health. In particular, it was shown that higher levels 

of PA or PF are associated with higher circulating PC (Bye et al., 2012; Floegel et al., 2014; 

Høeg et al., 2020; Morris et al., 2015; Wientzek et al., 2014) or lower BCAA concentrations 

(Fukai et al., 2016; Kujala et al., 2013; Kujala et al., 2019; Morris et al., 2013; Xiao et al., 2016). 

More ambiguous results were obtained for, e.g., blood lactate, which was either positively 

(Kujala et al., 2013; Palmnäs et al., 2018) or negatively (Kujala et al., 2019) related to measures 

of chronic PA. Discrepancies can be explained by distinct characteristics of study participants 

and the fact that PA or PF measures were either used as continuous variables for correlation 

and/or regression analyses or considered as categorical variables for group comparisons.
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Table 5. Overview of metabolomics studies focusing on PF or habitual PA. (Own table). 

Nr. 
Author 
(Year) 

Subjects Assessment (Classification) of 
PF or habitual PA 

Biological 
Specimen 

Sampling 
Time 

Method 
(Metabolites) 

Main Metabolite Associations 
n (♂/♀) State 

1 
Enea et al. 

(2010) 
22 (0/22) 

Healthy, young, 
(un)trained 

VO2max  
(high-PF group: 48.6 ± 2.3ml min-1 kg-1; 
low-PF group: 33.8 ± 1.8ml min-1 kg-1) 

Urine 
Pre- and 

30min post-
exercise 

NMR 
(11) 

High-PF group: 
lower increase in Acetate in response to a 30s maximal sprint 

2 
Lewis et al. 

(2010) 
 

302 (175/127) 
 

Overweight, 
subcohort of 
the Framing-
ham Heart 

Study 

HRrest  
(continuous variable) 

Plasma At rest 
LC-MS 

(14) 

Positively associated with HRrest: 
Glycerol 

 

Negatively associated with HRrest: 
Glutamine 

 

[before/after adjusting for age, sex, and BMI] 

70 (60/10) 
 

Middle-aged 
VO2peak 

(high-PF group: ≥ median VO2peak; 

low-PF group: < median VO2peak) 
Plasma 

Pre- and 0h 
post-exercise 

LC-MS 
(28) 

High-PF group: 
higher increase in Glycerol and Pantothenate; lower increase in Glutamine and 

Methionine in response to an incremental exercise test 

25 (19/6) 
Amateur 
runners 

Finish time in a marathon 
(fast runners: ≥ median finish time; 
slow runners: < median finish time) 

Plasma 
Pre- and 

10min post-
exercise 

LC-MS 
(28) 

Faster runners: 
higher increase in Fumarate, Succinate, Malate, Arginosuccinate, Niacinamide; 

lower increase in β-Hydroxybutyrate, Allantoin in response to a marathon 

3 
Chorell et al. 

(2012) 
27 (27/0) 

Healthy, young, 
trained 

VO2max  
(high-PF group: VO2max > 60ml min-1 kg-1; 
 low-PF group: VO2max < 48ml min-1 kg-1) 

Plasma At rest 
GC-TOF-MS 

(non-targeted, 
50 identified) 

High-PF group: 
↑ Docosahexaenoate, ↓ Butyrate and γ-Tocopherol; 

no evident PF-related metabolic pattern detected by multivariate approaches. 

4 
Bye et al. 

(2012)    
218 (91/127) 

Healthy, 
middle-aged 

VO2max  
(high-/low-PF group; matched for age, 

fasting time, self-reported PA)  
Serum At rest 

NMR 
(-) 

High-PF group: 
↑ PCs, Unsaturated Fatty Acids, ↓ Free Choline, Glucose 

5 
Kujala et al. 

(2013)   

a) 32 (22/10)/ 
b) 230 (104/126)/ 
c) 600 (292/308)/ 
d) 1244 (660/584) 

Healthy adults 

Leisure-time PA [MET-h/d]; 
questionnaire-based 

(active/inactive groups were matched 
for sex and age) 

Serum At rest 
NMR 

(> 100) 

Active groups: 
↑ HDL Cholesterol (a,b,c,d), Omega-3 Fatty Acids (a), Docosahexaeonate (a), 

Acetoacetate (c), 3-Hydroxybutyrate (d), Acetate (c), Citrate (b,c,d), Lactate (d) 
 

↓ TGs (a,b,c,d), VLDL, LDL, IDL Cholesterol (a,b,c,d), Omega-6 Fatty Acids (c,d), 
Omega-7,9 and Saturated Fatty Acids (a,c,d), Monounsaturated Fatty Acids (a,c,d), 
Glucose (a,b,c), Acetoacetate (a), 3-Hydroxybutyrate (a), Pyruvate (c,d), Isoleucine 
(a,b,c,d), Valine (a), Phenylalanine (d), Tyrosine (b,d), a1-acid-Glycoprotein (a,c,d) 

6 
Morris et al. 

(2013)   
65 (34/31) Healthy adults  

VO2max 

(high-PF group: upper VO2max quartile; 

♂: > 57ml min-1 kg-1/ ♀: > 43ml min-1 kg-1) 
low-PF group: lower VO2max quartile; 

♂: < 42ml min-1 kg-1/ ♀: < 32ml min-1 kg-1) 

Plasma, 
urine 

At rest 
GC-MS 

(plasma: 29; 
urine: 26) 

High-PF group (plasma, females only): 
↑ Glycine, Creatinine, ↓ Alanine, Sarcosine, α-Aminobutyrate, Leucine, Isoleucine, Valine, 

Serine, Proline, Threonine, Methionine, Hydroxyproline, Phenylalanine, Glutamine, 
Ornithine, Lysine, 1-Methylhistidine, 3-Methylhistidine, Histidine, Tyrosine, Tryptophan, 

Cystathionine, Cystine, Asparagine, Aspartate, Cysteine, Citrulline 
 

 [after adjusting for age and BMI] 
 

High-PF group (urine): 
↑ Creatinine, ↓ Cystathionine, Alanine, Sarcosine, Glycine, Ethanolamine, Leucine, 

Isoleucine, γ-Aminobutyrate, Valine, Proline, Hydroxyproline, Serine, Methionine, 
Phenylalanine, Lysine, Ornithine, Histidine, Glutamate 

 

[after adjusting for sex, age, and BMI]  
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Table 5 (continued). Overview of metabolomics studies focusing on PF or habitual PA. (Own table). 

Nr. 
Author 
(Year) 

Subjects Assessment (Classification) of 
PF or habitual PA 

Biological 
Specimen 

Sampling 
Time 

Method 
(Metabolites) 

Main Metabolite Associations 
n (♂/♀) State 

7 

Lustgarten 
et al. 

(2013)   
77 (28/49) 

Healthy, 
young 

VO2max  
(continuous variable) 

Serum At rest 

UHPLC-MS/MS, 
GC-MS 

(non-targeted, 
296) 

Positively associated with VO2max: 
Pyridoxate, 2-Hydroxyisobutyrate, Erythrulose, Tryptophan, Leucylleucine, Glycerate, 

4-Ethylphenylsulfate, Pantothenate, 4-Vinylphenolsulfate, Erythronate, N-Acetylornithine, 
α-Hydroxyisovalerate, Phenyllactate, Phenolsulfate, Indolelactate [after adjusting for sex] 

 

Negatively associated with VO2max: 
γ-Tocopherol, 5α-Pregnan-3β,20α-dioldisulfate, Stearoylsphingomyelin, Pentadecanoate 

[after adjusting for sex] 
 

Stepwise regression analyses for the explanation of VO2max: 
Glutamate Oxaloacetate Aminotransferase, 4-Ethylphenylsulfate, Tryptophan, 

γ-Tocopherol and α-Hydroxyisovalerate [sex-adjusted; R² (adjusted)=0.66].  
Piperine, Pyridoxate, Glycerol, 3-Methoxytyrosine, 2-Hydroxyisobutyrate [in males; 

R² (adjusted)=0.80]. 5-a-Pregnan-3β, 20a-dioldisulfate, Glycerate, Glycerol, N-Acetyl-β-
Alanine, Phenolsulfate, 3-Methyl-2-Oxovalerate [in females; R² (adjusted)=0.58]. 

8 
Floegel et al. 

(2014)    
100 (50/50) 

Middle-aged, 
subcohort of 
the European 
Prospective 

Investigation 
into Cancer and 
Nutrition Study 

a) VO2max 
 

b) PAEE [kJ kg-1/d]; 
accelerometer-measured for 2x4d 

 

(continuous variables) 

Serum At rest 
FIA-MS/MS 

 (127) 

Positively associated with VO2max or PAEE: 
Amino Acids (a,b), Sphingomyelins (a), LysoPCs (a,b), Diacyl-PCs (a) 

 

Negatively associated with VO2max or PAEE: 
C6 sugars (a,b) 

9 
Mukherjee 

et al. 
(2014) 

17 (17/0) 
Healthy, 

middle-aged, 
(un)trained 

VO2peak  
(high-PF group: 59.1±5.2ml min-1 kg-1; 
low-PF group: 35.9±9.7ml min-1 kg-1) 

Urine 
Pre- and 

post-exercise 
24h-samples 

NMR 
(32) 

High-PF group: 
Higher increase in Hypoxanthine, Fumarate; Lower increase in Lactate, Malonate, 

Acetate in response to 45min submaximal exercise 
 

10 
Wientzek 

et al. 
(2014)   

100 (50/50) 

Middle-aged, 
subcohort of 
the European 
Prospective 

Investigation 
into Cancer and 
Nutrition Study 

a) VO2max 
 

b) PAEE [kJ kg-1/d] 
 

c) vigorous time [h/d] 
 

(all continuous variables; b)-c): 
accelerometer-measured for 2x4d) 

Serum At rest 
FIA-MS/MS 

(127) 

Positively associated with VO2max/PAEE/Vigorous Time: 
Acyl-Alkyl-PCs (C38:0, 42:3, C42:2, C36:0, C40:6, C40:1, C40:3, C36:1, C34:0, C38:2, C38:6, 
C44:4, C32:1), Diacyl-PCs (C36:6, C42:1, C36:0, C38:6, C36:5, C32:0, C38:0, C38:5, C40:6, 

C42:6, C30:3, C32:2, C28:1, C34:4, C34:3) (a) 
 

Negatively associated with VO2max/PAEE/Vigorous Time: 
LysoPC C14:0 (b), Diacyl-PCs C34:4, C32:2, C34:3 (b) 

 

[after adjusting for sex, age, measurement occasion, BMI, waist circumference, 
education, alcohol consumption, smoking status, all other PA/PF measures] 

11 
Morris et al. 

(2015)  
40 (20/20) Healthy adults 

VO2max 

(high-PF group: > 43ml min-1 kg-1; 
low-PF group: < 42ml min-1 kg-1) 

Plasma At rest 
ESI-MS/MS 

(240) 

High-PF group: 
↑ PEs C34:3, C36:3, Acyl-Alkyl-PCs C34:2, C34:3, C36:3, C36:4, C36:5, C38:2  

 

[after adjusting for age and BMI] 
 

12 
Fukai et al.  

(2016)   
1193 (1193/0) Healthy adults 

Total PA [MET-h/wk]; 
questionnaire-based 

(classification in 4 levels) 
Plasma At rest 

CE-TOF-MS 
(-) 

Positively associated with total PA: 
Pipecolate, HDL Cholesterol  

 

Negatively associated with total PA: 
Isoleucine, Proline, Alanine, 4-Methyl-2-Oxopentanoate, TGs 

 

[after adjusting for age, BMI, alcohol intake, smoking status, and energy intake] 
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Table 5 (continued). Overview of metabolomics studies focusing on PF or habitual PA. (Own table). 

Nr. 
Author 
(Year) 

Subjects Assessment (Classification) of 
PF or habitual PA 

Biological 
Specimen 

Sampling 
Time 

Method 
(Metabolites) 

Main Metabolite Associations 
n (♂/♀) State 

13 

Muhsen Ali 
et al. 

(2016) 
10 (8/2) Healthy, active 

VO2max 
(continuous variable) 

Urine 

Pre- and 1h, 
4h, 7h post-

exercise 

LC-MS 
(57) 

Positively associated with VO2max: 
Oxo-Aminohexanoate 

(1h after 45min submaximal exercise) 
 

14 
Xiao et al. 

(2016)  
277 (130/147) 

Healthy adults 
from the 
Shanghai 

Physical Activity 
Study 

a) PAEE [MET-h/d] 
 

b) total PA duration [min/d] 
 

c) moderate-to-vigorous PA [min/d] 
 

d) light PA [min/d] 
 

(all continuous variables; 
a)-d): accelerometer-measured for 4x7d) 

Plasma At rest 
UHPLC, GC-MS 
 (non-targeted, 

328) 

Positively associated with PAEE: 
Betaine, Threonate 

 

Negatively associated with PAEE: 
Valine, Isoleucine, Glutamate, 3-Methyloxovalerate, 2-Hydroxybutyrate, 

α-Hydroxyisovalerate, Glucose, Mannose, γ-Glutamylvaline 
 

 [after adjusting for sex, age, BMI, smoking status] 
Total PA duration and time spent in light PA associated with a similar metabolic pattern. 

15 
Koh et al. 

(2018) 
141 (82/59) 

Healthy, older 
adults from the 
Cardiac Aging 

Study 

VO2peak 
(high-PF group: > mean VO2peak, 

♂: > 37ml min-1 kg-1/ ♀: > 29ml min-1 kg-1; 
low-PF group: ≤ mean VO2peak, 

♂: ≤ 37ml min-1 kg-1/ ♂: ≤ 29ml min-1 kg-1) 

Serum At rest 
LC-MS 

(83) 

Negatively associated with VO2peak: 
Wide-spectrum Carnitines including Odd Short-chain Carnitines, Alanine, 

Glutamine/Glutamate 
 

[after adjusting for age, BMI, and diabetes] 

16 
Palmnäs 

et al. 
(2018)  

82 (35/47) 

Adults with 
or without 

symptoms of 
the metabolic 

syndrome 

a) PAEE [kcal/d or kcal kg-1/d] 
 

b) PAL [kcal]  
 

c) moderate and vigorous PA [h/d] 
 

(high-/low-PA groups based on means; 
a)-b): doubly labelled water; 

c): questionnaire-based) 

Serum At rest 
NMR 

(-) 

High-PA group: 
↑ Glycine, Lactate (a,b: in men with symptoms), ↑ Serine, Arginine (a,b: in women 

without symptoms), ↑ Arginine, Betaine (a: in women without symptoms), 
↑ Acetoacetate, Creatinine, Serine (b: in women with symptoms) 

 

Positively associated with PAEE/PAL/moderate or vigorous PA: 
Lactate (a,c: in men with symptoms; c: in men without symptoms), Acetoacetate, 

Arginine, Creatinine, myo-Inositol, Serine (a: in women with symptoms) 

17 
Ding et al. 

(2019)  
5197 (-/-) 

Participants of 
the Nurses’ 

Health Study 
and the Health 
Professionals 

Follow-up Study 

Total PA [MET-h/wk];  
 

questionnaire-based 
(continuous variable) 

Plasma At rest 
LC-MS 
(337) 

Positively associated with total PA: 
3 Amino Acids (Glycine, Citrulline, Asparagine), 5 Cholesterylesters, 9 PCs and 

LysoPCs, 5 PEs and LysoPEs [not adjusted for BMI] 
2 Amino Acids (Citrulline, Glycine), 4 Cholesterylesters (C18:2, C18:1, C16:0, C18:3), 5 PCs 

(C36:4, C34:3, C36:3, C34:2, C36:2), 3 LysoPCs (C18:2, C20:5, C18:1), 2 LysoPEs (C18:2, 
C18:1), and C38:3 PE Plasmalogen [additionally adjusted for BMI] 

 

Negatively associated with total PA: 
Glutamate, 4 TGs, and 5 Diglycerides [not adjusted for BMI] 

 

[after adjusting for age, fasting status, smoking status, body weight, healthy eating index 
score, total energy intake, alcohol intake, and contributing case-control study (± BMI)] 

18 
Pang et al. 

(2019)  
4660 (2330/2330) 

Adults with 
or without 

cardiovascular 
disease 

Total PA [MET-h/d] 
 

questionnaire-based 
(continuous variables) 

Plasma At rest 
NMR 
(225) 

Positively associated with total PA: 
Large HDL Cholesterol, Glutamine, Docosahexaenoic Acid 

 

Negatively associated with total PA: 
VLDL Cholesterol, Alanine, Glucose, Lactate, Acetoacetate, Monounsaturated Fatty Acids 

 

[after adjusting for age, sex, fasting time, region, smoking status, education, income, 
health, intake of fruit, red meat, sedentary time] 
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Table 5 (continued). Overview of metabolomics studies focusing on PF or habitual PA. (Own table). 

Nr. 
Author 
(Year) 

Subjects Assessment (Classification) of 
PF or habitual PA 

Biological 
Specimen 

Sampling 
Time 

Method 
(Metabolites) 

Main Metabolite Associations 
n (♂/♀) State 

19 
Kujala et al. 

(2019)   
580 (580/0) 

Healthy, 
young men 

VO2max 

(high-PF group: 50.7 ± 4.2ml min-1 kg-1; 
low-PF group: 31.8 ± 3.8ml min-1 kg-1) 

 
(continuous variable) 

Serum At rest 
NMR 
(66) 

High-PF group: 
↑ HDL, Glutamine, ↓ VLDL, IDL, LDL, TGs, Total and Saturated Fatty Acids, Poly- and 
Monounsaturated Fatty Acids, ω-6 Fatty Acids, Linoleate, Glycerol, Acetoacetate, 3-

Hydroxybutyrate, Lactate, Pyruvate, Isoleucine, Leucine, Phenylalanine, Tyrosine 
 

[after adjusting for age, education, smoking, alcohol, dietary factors] 
 

Positively associated with VO2max: 
Large HDL Particles, Unsaturated Degree of Fatty Acids 

 

Negatively associated with VO2max: 
TGs, Glycerol, Acetoacetate, 3-Hydroxybutyrate, Glycoproteins 

 

[after adjusting for age and body fat (%)] 

20 
Hoeg et al. 

(2020)  

Phase I: 39 (31/8) 
Phase II: 28 (24/4) 
Controls: 14 (12/2) 

Healthy, 
middle-aged 

runners 

Finish time in a 161-km race 
(10 fastest finishing participants vs. 

10 slowest finishing participants) 
Plasma 

1d pre-
exercise, 
within 1h 

post-exercise 

QTOF-MS/MS 
(427) 

Faster runners: 
higher increase of PCs 40:8, 38:5, 32:0, 40:4, 40:5, 37:4, 38:7, 40:6, 42:5 (post-exercise) 

 

Runners (Phase II) vs. controls: 
41 (4) PCs significantly higher (lower) in runners 

21 
San-Millán 

et al. 
(2020) 

21 (21/0) 
Professional 
male cyclists 

Blood lactate at 5 w/kg of a graded 
maximal bicycle test 

(gold group: > mean blood lactate;  
silver group: < mean blood lactate) 

Blood 
Pre- and 

post-exercise 
UHPLC-MS 

(355) 

Gold group: 
↑ Phenylalanine, Lysine, Asparagine, Serine, Threonine, Valine, Tryptophan, Tyrosine; 
 higher increase in Succinate, Fumarate, Malate and C3-/C4-Carnitine post-exercise; 

higher decrease in Isoleucine, Leucine post-exercise 

22 
Shi et al. 
(2020) 

20 (20/0) 
Experienced 

amateur 
runners 

a) Finish time in a marathon run 
b) VO2max 

 

(continuous variables) 

Serum At rest 
LC-MS/MS 

(untargeted) 

 

Positively associated with finish time, VO2max: 
Theobromine (a), Cytidine 5′-Monophosphate (b) 

 

Negatively associated with finish time, VO2max: 
Beta-Alanine (a), cis-Aconitate, Galactonic Acid, Mesaconic Acid (b) 

 

23 
Castro et al. 

(2021) 
70 (70/0) 

Sedentary, 
young men 

Maximal power output 
(continuous variable) 

Serum At rest 
NMR 
(43) 

Positively associated with maximal power output: 
2-Hydroxyisocaproate, Asparagine, Betaine, Choline, Glutamine, Glycine, Histidine, 

Ornithine, Proline, Succinate, Threonine, Valine 
 

Negatively associated with maximal power output: 
Dimethylamine 

24 
Xu et al. 
(2021)  

3802 (1524/2278) 

Adults from the 
Atherosclerosis 

Risk in 
Communities 

Study 

Leisure-time PA; 
 

questionnaire-based 
(continuous variable) 

Serum At rest 
LC-/GC-MS 

(245) 

Positively associated with leisure-time PA: 
Creatinine, Erythronate, Glycerate, Pyridoxate, Threonate, 2-Aminooctanoate, 

cis-4-Decenoylcarnitine, myo-Inositol, N-Acetylcarnosine, Stachydrine 
 

[after adjusting for age, sex, race, smoking status, BMI, HDL, TGs, total cholesterol, 
glucose, diabetes status, systolic blood pressure, antihypertensive medication] 

BMI: body mass index; CE: capillary electrophoresis; d: day(s); ESI: electrospray ionization; FIA: flow injection analysis; GC: gas chromatography; h: hour(s); HDL: high-density lipoprotein; 
HRrest: resting heart rate; IDL: intermediate-density lipoprotein; kcal: kilocalorie(s); kg: kilogram(s); kJ: kilojoule(s); km: kilometer(s); LC: liquid chromatography; LDL: low-density lipoprotein; 
LysoPC: lyso-phosphatidylcholine; LysoPE: lyso-phosphatidylethanolamine; MET: metabolic equivalent of task; min: minute(s); ml: milliliter(s); MS: mass spectrometry; MS/MS: tandem mass 
spectrometry; n: sample size; NMR: nuclear magnetic resonance; PA: physical activity; PAEE: physical activity energy expenditure; PAL: physical activity level; PC: phosphatidylcholine; PE: 
phosphatidylethanolamine; PF: physical fitness; QTOF: quadrupole time of flight; R² (adjusted): adjusted coefficient of determination; s: second(s); TGs: triglycerides; TOF: time of flight; 
U(H)PLC: ultra-(high-)performance liquid chromatography; VLDL: very low-density lipoprotein; VO2max: maximal oxygen uptake; VO2peak: peak oxygen uptake; w: watt; wk: week(s).  
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Indeed, with respect to VO2max (or VO2peak) as a measure of the CRF, the majority of studies 

analyzed differences in the human metabolome between pre-defined groups of high or low 

CRF (Bye et al., 2012; Chorell et al., 2012; Enea et al., 2010; Lewis et al., 2010; Morris et al., 

2013; Morris et al., 2015; Mukherjee et al., 2014). Comparatively less studies have examined 

the relationship between the VO2max (or VO2peak) and metabolite profiles across a broad range 

of CRF levels so far (Floegel et al., 2014; Koh et al., 2018; Lustgarten et al., 2013; Wientzek et 

al., 2014), with one study having conducted both group comparisons and correlation analyses 

in the same study population (Kujala et al., 2019). However, limitations of these studies are 

that results were restricted to either young, middle-aged, or older individuals and therefore 

not transferable to the general population. Moreover, apart from Kujala et al. (2019), who 

examined 580 men, all other studies had rather small sample sizes, ranging from 77 to 141 

individuals. With regard to metabolomics analyses, only Lustgarten et al. (2013) utilized a 

combination of different MS-based methods, thereby detecting nearly 300 serum analytes. In 

contrast to this, a quite limited number of metabolites were analyzed by using single MS- or 

NMR-based techniques in most remaining studies. 

Considering the fact that many of the CRF-associated metabolites reported in the literature 

have also been linked to other phenotypical variables such as the body composition, it has to 

be clearly determined whether the observed associations between metabolite profiles and 

the CRF merely reflect these other phenotypical features or if they can be specifically 

attributed to the individuals’ CRF status (Kelly et al., 2020). Indeed, Kujala et al. (2019) were 

the first to adjust associations between the CRF and blood metabolites for body fat percentage 

next to age, smoking, dietary factors, and PA, while previous studies considered the body mass 

index (BMI) and waist circumference (Koh et al., 2018; Wientzek et al., 2014) as additional 

confounders. Yet, those studies mainly evaluated associations between the CRF and single 

blood metabolites instead of taking the combination of various metabolites into account. 

Although Lustgarten et al. (2013) applied sex-adjusted multivariable regression procedures to 

identify a set of serum metabolites accounting for the variation inherent in VO2max, they did 

not control for age, diet, PA, or the body composition. 

Taken as a whole, there is a lack of metabolomics research on the relationship between the 

CRF status and a high number of metabolites in large groups of both healthy women and men 

with a broad age spectrum. As metabolomics has the potential to comprehensively examine 
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metabolic signatures related to phenotypical variables like the PF, thus permitting to pinpoint 

metabolic pathways that may mediate the health effects of chronic PA (Heaney et al., 2017), 

particularly cross-sectional studies focusing on larger, well-characterized populations and a 

combination of several analytical techniques should be conducted in the future. One benefit 

of such large-scale metabolomics studies would be that results allow to draw conclusions 

across a broad range of PF levels and are therefore more likely to be applicable to the general 

population. Besides, it could be systematically elucidated to what extent metabolite patterns 

account for the variation in the individuals’ CRF status if simultaneously considering covariates 

like sex, age, the body composition, and further clinical or functional parameters. 

What additionally should be considered is that little research has so far been addressed to the 

relationship between the CRF and the urinary metabolome. While Morris et al. (2013) have 

provided evidence that resting urinary metabolites differ according to the individuals’ VO2max, 

three other studies showed that also exercise-induced excursions of urinary metabolites vary 

between more and less fit individuals (Enea et al., 2010; Muhsen Ali et al., 2016; Mukherjee 

et al., 2014). However, due to the relatively small number of included study participants and 

the fact that mainly group comparisons were conducted, there is a need for further studies 

examining whether urinary metabolites – either in the resting or post-exercise condition – 

can, equally to blood metabolites, be linked to the CRF in heterogeneous populations. 

2.4.3 Synthesis of Research Findings 

Regarding the current state of research on the effects of acute and chronic PA on metabolite 

profiles in humans, it can be summarized that the majority of previously conducted 

interventional studies focused on acute alterations in the human metabolome in response to 

endurance exercise or, to a lesser extent, HIIT. Furthermore, observational studies have 

provided first information on PA- or PF-associated metabolites. However, despite the 

emerging number of publications, their heterogeneity makes it difficult to draw direct 

comparisons between findings. Discrepancies between studies were generally observed with 

respect to included participants (i.e., sex, age, PF, training status, or health status), type of 

performed exercise, methods for PA or PF assessment, collected biological specimens, time 

points of sample taking, applied metabolomics techniques, number of identified metabolites, 

or examination as well as consideration of covariates. As the documented effects of PA on the 
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human metabolome have consequently been rather diverse until now, more metabolomics 

studies are needed in order to systematically evaluate how metabolite patterns in a variety of 

human biomatrices are related to either acute or chronic PA. Based on the current state of 

knowledge, several research gaps could clearly be defined and implications for future research 

were deduced: 

• Firstly, with regard to metabolomics studies focusing on HIIT, there is a lack of 

information on the medium-term effects of HIIT interventions lasting several days or 

weeks on the metabolome of recreationally active individuals or professional athletes. 

Overcoming this research gap, relevant metabolic markers for either training 

adaptation or training overload could possibly be detected. 

 

• Secondly, few information is available concerning the acute effects of a standardized 

incremental exercise test on the human metabolome. Also, it is rather unclear how 

exercise-induced metabolic perturbations are determined by sex or influenced by an 

individual’s fitness status. Hence, more controlled interventional studies are necessary 

to distinguish the metabolic response to acute PE between women and men or fit and 

less fit individuals. Consequently, mechanisms and metabolic pathways underlying the 

acute and chronic adaptations to PE could potentially be elucidated. 

 

• Thirdly, there is a lack of metabolomics studies examining the relationship between 

the CRF as a measure of chronic PA and the metabolome in large, heterogeneous, and 

well-characterized study populations. Thus, more emphasis on cross-sectional studies 

including both sexes with a broad age and PF spectrum is needed to validate previous 

findings and to produce results which are more likely to be applicable to the general 

population. In this respect, an adequate examination and consideration of covariates 

is mandatory in order to determine metabolite patterns that can be specifically linked 

to the CRF. Furthermore, as different analytical techniques have scarcely been 

combined until now, a combination of several metabolomics methods would be 

helpful to provide a more comprehensive investigation of CRF-associated metabolite 

patterns. Hence, a profounder knowledge on metabolic markers or mediators of the 

health- or performance-enhancing effects of chronic PA is likely to be obtained. 
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One aspect which could consistently be observed across all referenced metabolomics studies 

is that comparatively little research has been focused on PA-related changes in the urinary 

metabolome. Nevertheless, initial studies on the acute effects of PE have supported the 

potential of urine as an easily collectable biofluid for metabolomics analyses (Enea et al., 2010; 

Muhsen Ali et al., 2016; Mukherjee et al., 2014; Siopi et al., 2017). Therefore, more research 

evaluating the utility of urine in the field of exercise metabolomics is required. Additionally, 

since there are only few PA-related metabolomics studies that thoroughly examined the 

participation and relevance of identified metabolites in pathways of human metabolism, it will 

be necessary to conduct systematic pathway analyses, thus evaluating which metabolic 

pathways are most likely to be affected by acute or chronic PA.  

A short summary of the findings presented in Chapter 2.4.2 is given in Table 6. 

Table 6. Synthesis of research findings. (Own table). 

 Acute Physical Exercise / Physical Training Chronic Physical Activity 

Sy
n

th
e

si
s 

o
f 

Fi
n

d
in

gs
 

  
• Endurance > HIIT > RE > team sports 

 

• Blood > urine > saliva ≈ muscle 
 

• Males > females 
 

• Lack of studies focusing on the effects of a 
HIIT intervention lasting several days 
(e.g., in already trained individuals) 

 

• Lack of studies focusing on the effects of an 
acute incremental exercise intervention 

 

 

 

• Habitual PA ≈ PF 
 

• Blood > urine  
 

• Males ≈ females 
 

• Lack of cross-sectional studies analyzing the 
relationship between the CRF and the 
metabolome in large, heterogeneous, and 
well-characterized study populations, 
thereby adequately considering covariates 

 

• Lack of studies combining various different 
metabolomics platforms 

 

• Lack of systematically conducted pathway analyses 

>: more focused in the literature than; ≈: nearly equally focused/assessed in the literature. HIIT: high-intensity interval 
training; PA: physical activity; PF: physical fitness; RE: resistance exercise.  
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3 Aims and Scope of the Dissertation 

With the objective of extending the current state of knowledge, the general aim of the present 

thesis is to comprehensively investigate the effect of acute and chronic PA on metabolite 

profiles in humans. To address this aim, metabolomics data from three exercise- or fitness-

related (sub-)studies (indicated as Study I or Study IIa/IIb; described in detail in Chapter 4) 

were analyzed in the framework of this dissertation and the following major purposes were 

defined: 

(1) Investigation of alterations in the human metabolome in response to a 

medium-term high-intensive intermittent exercise training (Study I)  

(2) Investigation of alterations in the human metabolome in response to an 

acute incremental exercise test (Study IIa) 

(3) Analysis of the relationship between the human metabolome and the 

CRF (Study IIa/IIb) 

Based on these three purposes, specific research questions were deduced and separately 

presented for each of the conducted studies, as depicted below. Altogether, Study I, IIa, and 

IIb covered different aspects of PA, reaching from a medium-term training (Study I) and an 

acute exercise intervention (Study IIa) to the assessment of the CRF status as a measure of 

chronic PA (Study IIa/IIb), thus allowing to obtain a comprehensive view of PA-related 

alterations in the human metabolome. In general, different metabolomics approaches were 

used, depending on the particular study, available biological specimens, and advances in 

analytical techniques. With regard to the discussion of all study results, this thesis aimed at a 

systematic biological interpretation of PE- or PF-related metabolite profiles.  

Study I (HIIT): Relevance and Research Questions 

As outlined in Chapter 2.4.2, previous metabolomics studies focused on the acute effects of 

single HIIT sessions rather than on the medium- or long-term effects of HIIT interventions 

lasting several days, weeks, or months. Considering that a non-metabolomics study has shown 

that a HIIT program characterized by high loads and a daily application resulted in an increased 

activity of muscle enzymes related to both aerobic and anaerobic metabolism after just two 

weeks (Rodas et al., 2000), the purpose of Study I was to investigate whether the organism’s 
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adaptation to a ten-day HIIT is reflected in the resting urinary metabolome of young active 

men. Urine as a biological matrix was chosen because it was easily accessible and provided 

from all study participants before the intervention started as well as after a recovery period 

of one or four days, respectively. To address several research gaps depicted in Chapters 2.4.2 

and 2.4.3, two specific research questions were defined for Study I: 

• What are the effects of a ten-day HIIT and a subsequent four-day recovery period on 

the resting urinary metabolome of healthy, young active men? 

• Can urinary metabolites as potential biomarkers for either training adaptation or 

overtraining be identified? 

On the one hand, answering these questions might provide evidence if human metabolism 

was able to regenerate from acute metabolic disturbances due to the daily performed HIIT in 

a given time frame of one or four recovery days, respectively. On the other hand, the research 

questions reveal the rather exploratory character of Study I, aiming to obtain first information 

about metabolic markers detectable in urine which could be indicative for an individual’s 

adaptation to a strenuous HIIT protocol. With regard to future investigations or even practical 

applications intending to facilitate the monitoring of an athlete’s training adaptation or 

overtraining, findings from this study could provide a first informative basis for the selection 

of possibly relevant metabolites. Besides, knowledge on specific metabolic pathways being 

altered in response to HIIT could likely be deduced from the results of Study I. 

Study IIa (Acute Incremental Exercise & CRF): Relevance and Research Questions 

As outlined in Chapters 2.4.2 and 2.4.3, little research has so far been addressed to the 

relationship between the CRF as a measure of chronic PA and the resting or post-exercise 

metabolome in large cross-sectional studies. Especially with regard to the biological matrix 

urine, only few metabolomics studies characterized by small sample sizes have until now 

identified single urinary metabolites differing between more and less fit individuals in either 

the resting state (Morris et al., 2013) or in response to acute PE (Enea et al., 2010; Muhsen Ali 

et al., 2016; Mukherjee et al., 2014). However, if individuals actually demonstrate a different 

metabolic profile at rest or a different metabolic response to PE depending on their CRF status, 

profound knowledge on urinary metabolites reflecting this distinction could provide new 

insights into biochemical pathways that contribute to the beneficial adaptations of human 
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metabolism to PA. Therefore, two objectives were pursued with Study IIa. Firstly, it should be 

evaluated if urinary metabolites were able to reflect acute metabolic alterations due to a 

standardized incremental exercise test, which was performed by 255 healthy women and men 

with a broad age range. Due to the known effect of sex on human metabolite profiles (Rist et 

al., 2017), sex-related differences in the response of the urinary metabolome to acute PE 

should additionally be analyzed. The second aim was to investigate whether either single 

urinary metabolites or a specific urinary metabolite pattern at rest or in response to PE were 

associated with the CRF. The biological matrix urine was used for metabolomics analysis as it 

was provided from all study participants before and after completing the incremental exercise 

tolerance test. To address the depicted objectives, the following research questions were 

specified for Study IIa: 

• What is the effect of a standardized exercise tolerance test until exhaustion on the 

urinary metabolome in a large cohort of healthy females and males? Are there any sex-

related differences in the exercise-induced excursions of urinary metabolites? 

• To what extent do single urinary metabolites (at rest/post-exercise) or the exercise-

induced metabolite excursions correlate with the CRF status? Do correlations persist 

when adjusting for covariates? 

• Do individuals with a similar CRF status show a similar urinary metabolite profile (at 

rest/post-exercise) or similar exercise-induced excursions of the urinary metabolite 

profile? Can a urinary metabolite pattern accounting for the variation in the CRF status 

be identified when simultaneously considering covariates? 

As the metabolomics data were obtained from a comparatively large, heterogeneous, and 

well-characterized study population, addressing these research questions has the potential to 

systematically elucidate in how far urinary metabolites at rest as well as post-exercise could 

help to explain the high variation in the CRF status, when simultaneously considering known 

covariates like age, sex, menopausal status, and the body composition. Thus, potentially 

relevant urinary metabolites, which allow to draw conclusions across a broad range of CRF 

levels in healthy women and men, could be identified. Furthermore, results of Study IIa might 

enable a deeper understanding of metabolic pathways that are associated with both acute PE 

and the CRF status. 
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Study IIb (CRF): Relevance and Research Questions 

In addition to Study IIa, which focused on the relationship between acute PE as well as the 

CRF and the urinary metabolome, Study IIb was addressed to the association between the 

CRF, selected phenotypical and clinical variables, and the resting plasma metabolome in nearly 

the same study population consisting of 252 healthy adults with a wide age and PF spectrum. 

As depicted in Chapter 2.4.2, most previous CRF-related metabolomics studies included rather 

small sample sizes, were limited to specific age or sex groups, or detected a quite limited 

number of blood analytes by using a single metabolomics technique (Floegel et al., 2014; Koh 

et al., 2018; Kujala et al., 2019; Wientzek et al., 2014). Therefore, the purpose of Study IIb was 

to systematically analyze the relationship between the CRF and a comparatively high number 

of plasma metabolites assessed by multiple analytical platforms in both women and men. 

Since previous research has largely been restricted to bivariate correlations between the CRF 

and single blood metabolites, an additional aim of Study IIb was to identify plasma metabolite 

patterns, i.e., sets of plasma analytes that in their relation to each other, are associated with 

the CRF. The applied multi-platform metabolomics approach had been completed and finally 

evaluated with regard to the biomatrix plasma but not yet for urine, which was also collected 

in Study IIb. Thus, metabolomics analyses in fasting plasma samples were considered in the 

framework of this thesis. Since sex, age, and the menopausal status are known determinants 

of the CRF (Mercuro et al., 2006; Zeiher et al., 2019) and have been linked to a discriminatory 

plasma metabolite profile in the considered population (Rist et al., 2017), association analyses 

were conducted in sex-specific sub-groups and adjusted for age and menopausal status. To 

address the depicted aims, the succeeding research questions were defined for Study IIb: 

• To what extent do selected phenotypical and clinical variables show age- and 

menopausal status-adjusted correlations with the CRF in females and males?  

• To what extent do single plasma metabolites show age- and menopausal status-

adjusted bivariate correlations with the CRF in females and males? Do correlations 

persist when additionally adjusting for further phenotypical and clinical variables? 

• Which plasma metabolites significantly contribute to the age- and menopausal status-

adjusted multivariate associations with the CRF? Do multivariate associations persist 

when additionally adjusting for phenotypical and clinical variables?  
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• Can sets of phenotypical, clinical, and plasma metabolite variables be identified that 

account for the variation of the age- and menopausal status-adjusted CRF in females 

and males? Which plasma metabolites are able to improve initial sex-specific CRF 

explanation models solely based on phenotypical and clinical variables? 

Since Study IIb comprised a comparatively large study population consisting of both sexes with 

a broad age spectrum, answering these questions could lead to the identification of plasma 

metabolites or metabolite patterns that allow to draw conclusions across a broad range of 

CRF levels. Indeed, due to the combination of several analytical techniques and a high number 

of assessed plasma analytes, not only confirmatory data could be provided, but also novel PF-

related metabolites might be yielded, possibly leading to new insights on metabolic pathways 

that are linked to the beneficial effects of a high CRF. Besides, as participants were thoroughly 

characterized by anthropometric, functional, and clinical examinations, association analyses 

could be additionally adjusted for parameters related to the body composition, clinical blood 

biochemistry, lung and arterial function, short-term and habitual PA, or diet, thus determining 

whether associations can be specifically attributed to the CRF status. With regard to future 

investigations or even practical applications aiming to conclude about an individual’s PF or 

health status, findings of this systematically conducted study could provide a first informative 

basis for selecting possibly relevant plasma metabolites that, in combination with clinical or 

phenotypical variables, explain a preferably high amount of the variation in the CRF. 

To reach these aims and to address the research questions, this dissertation comprises the 

findings of the three mentioned (sub-)studies (Chapters 5 to 7), preceded by a section 

describing general methods (Chapter 4), and followed by a section focusing on the functional 

classification of obtained PE- and PF-related metabolite profiles (Chapter 8). A comprehensive 

summary and discussion of study results, strengths and limitations, as well as conclusions and 

suggestions for future research will subsequently be provided (Chapter 9). Manuscripts 

containing the particular methods, results, and discussions have already been published in 

international journals after peer-reviewing. A schematic overview of the three scientific 

articles included in this thesis, their main research focuses and classification within the broad 

research field of exercise biology is provided in Figure 11. 
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Figure 11. Classification of Study I, IIa, and IIb within the research field of exercise biology. The complex interactions between physical activity, further individual variables (e.g., sex, age, 
environment, lifestyle), and functional levels in biological systems (i.e., genome, transcriptome, proteome, metabolome) contribute to distinct health- or performance-related phenotypes. 
By covering different aspects of physical activity, the three research articles included in this thesis aim to extend the current knowledge on alterations in the human metabolome in response 
to medium-term HIIT (Study I) and acute incremental exercise (Study IIa), apart from examining the relationship between metabolite profiles and the CRF as a measure of chronic physical 
activity (Study IIa/IIb). CRF: cardiorespiratory fitness; HIIT: high-intensity interval training; PE: physical exercise. (Own illustration based on Belhaj et al. (2021) and Dunn and Ellis (2005)).  
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4 General Methods 

In this methodological section, a general overview of the three exercise- or fitness-related 

(sub-)studies whose metabolomics data were analyzed in the framework of this dissertation 

will be given. Firstly, characteristics of participants and study designs are presented separately 

for each study (Chapter 4.1). Secondly, all relevant examination methods, i.e., anthropometric 

and clinical measurements as well as PF assessment are summarized (Chapter 4.2). While the 

applied metabolomics analyses are described in Chapter 4.3, an overview of data handling and 

statistical analyses is given in Chapter 4.4. Finally, the assignment of metabolites to pathways 

of human metabolism for a subsequent functional classification of PE-/PF-related metabolite 

profiles is depicted (Chapter 4.5). Since the specific methods of the particular studies are 

precisely described in the publications presented in Chapters 5 to 7, this section focuses on a 

more general description and a comparative presentation of the main methods used in 

Study I, IIa, and IIb. 

Both Study I (“HIIT Study”) and Study II (“KarMeN Study”) were carried out under controlled 

laboratory conditions. They have focused on different aspects of PA, namely medium-term 

HIIT (Study I), acute PE (Study IIa), as well as the assessment of the CRF as a measure of chronic 

PA (Study IIa/IIb). Compared to Study I, which had an experimental study design and whose 

intervention was performed by young, healthy, and physically active men, Study II was a large 

cross-sectional study including healthy women and men with a broad age and PF range. 

Although the Karlsruhe Metabolomics and Nutrition (KarMeN) study was mainly addressed to 

the question how the resting metabolome is affected by sex, age, diet, or the PF, it also 

comprised an experimental part consisting of a standardized incremental exercise test. In the 

framework of the present thesis, this experimental part and the subsequent analysis of acute 

exercise-induced changes in the metabolome are considered as a separate part of the KarMeN 

study, being indicated as Study IIa. For the investigation of the relationship between the CRF 

and the metabolome in resting conditions, the denomination Study IIb is used. While the study 

design, characteristics of participants, and general investigation methods are described for 

the whole Study II (Chapters 4.1.2 and 4.2), applied metabolomics and statistical approaches 

are presented separately for Study IIa and Study IIb (Chapters 4.3 and 4.4). 
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Figure 12 gives an overview of the three exercise- or fitness-related (sub-)studies whose 

metabolomics data were generated and/or analyzed in the framework of the present thesis. 

 
Figure 12. Study designs, examinations, and metabolomics analyses of Study I, IIa, and IIb. CG: control group; CRF: cardio-
respiratory fitness; d: day(s); EG: experimental group; GC: gas chromatography; GC × GC: two-dimensional gas chromato-
graphy; HIIT: high-intensity interval training; KarMeN: Karlsruhe Metabolomics and Nutrition; LC: liquid chromatography; MS: 
mass spectrometry; n: sample size; NMR: nuclear magnetic resonance. (Own illustration).  
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4.1 Subjects and Study Designs 

4.1.1 Study I (HIIT Study) 

The randomized controlled interventional study was conducted at the Department of Sport 

and Exercise Science at the University of Stuttgart, Germany. Twenty healthy, active men 

between 20 and 50 years were included in Study I. Detailed inclusion and exclusion criteria are 

listed in Table A-1 (Appendix A1.1). As described in detail in Chapter 5.3.1, two subjects 

dropped out of the study and the final sample size of Study I was n=18. 

After preliminary examinations, the participants were randomly assigned to an experimental 

group (EG) or a control group (CG). For ten days in a row, the EG performed a daily HIIT on a 

bicycle ergometer, consisting of eight sets at the individual maximal power (Pmax), with a 

duration of 60% of the previously determined time to exhaustion at Pmax (Tmax), and a passive 

recovery period until the HR decreased to 65% of the HRmax reached in the preliminary 

incremental exercise test (see Chapter 4.2.2). As described in Chapter 5.3.3, various control 

parameters like the HR, capillary blood lactate, training impulse (TRIMP), rating of perceived 

exertion (RPE), and subjective well-being were assessed during or after the daily HIIT. Apart 

from the pre-testing and the ten study days, the participants of both the EG and CG visited the 

study center one day before the training started (Visit 1, V1), one day after the last training 

session (Visit 2, V2), and after four days of recovery (Visit 3, V3). At all visits, the participants 

provided fasting spot urine samples for subsequent metabolomics analyses.  

An overview of the study design including urine sample collection is provided in Figure 13.  

 
Figure 13. Examination schedule and urine sample collection in Study I. CG: control group; d: day(s); EG: experimental group; 
HIIT: high-intensity interval training; SU: spot urine; V: visit. (Own illustration).  
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4.1.2 Study II (KarMeN Study) 

The cross-sectional KarMeN study was conducted at the Division of Human Studies of the MRI 

in Karlsruhe, Germany. 301 healthy women and men between 18 and 80 years participated in 

Study II. Detailed inclusion and exclusion criteria are listed in Table A-4 (Appendix A2.1). 

Additionally, a flowchart depicting the general recruitment process of Study II as well as the 

inclusion of subjects to metabolomics data analysis conducted in the framework of this thesis 

is provided in Figure A-4 (Appendix A2.2). As described in detail in Chapter 6.3.5, 46 individuals 

were recorded as dropouts in Study IIa and the final sample size was n=255 (148 men, 107 

women). Regarding Study IIb, 49 individuals were excluded from data analysis, resulting in a 

final sample size of n=252 (150 men, 102 women), see Chapter 7.3.7. 

During the study period, all participants visited the study center three times and completed a 

standardized examination schedule. Figure 14 provides a schematic overview of the visits, 

examinations, and sample collections. In general, standard operating procedures (SOPs) were 

applied for all processes related to examinations, measurements, and handling of biological 

samples. All subjects were characterized by various anthropometric and clinical investigations, 

which are further described in Chapter 4.2. 

 
Figure 14. Visits, examinations, and sample collections in Study II. Continuous/dashed bold lines: urine or blood samples 
relevant for metabolomics analyses in Study IIa or IIb, respectively. Doubled line: experimental part consisting of a 
standardized incremental exercise test on a bicycle ergometer for determining the cardiorespiratory fitness, relevant for both 
Study IIa and IIb. DXA: dual-energy X-ray absorptiometry; h: hour(s); IPAQ: International Physical Activity Questionnaire; PA: 
physical activity. (Own illustration based on Bub et al. (2016)).   
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Biological samples for metabolomics analyses were collected on the second (Visit 2, V2) and 

third study day (Visit 3, V3). While fasting blood samples obtained at V2 were used in the 

framework of Study IIb, spot urine samples collected at V3 were relevant for the metabolomics 

investigations in Study IIa. Those spot urine samples were provided in the resting state or after 

a standardized incremental exercise test on a bicycle ergometer until exhaustion, respectively. 

An overview of the examination schedule and spot urine sampling at V3 is given in Figure 15. 

All subjects entered the study center in the morning after an overnight fast and provided a 

spot urine sample. This was about 1.5 hours before the bicycle ergometry started. The exercise 

test, which is described in more detail in Chapter 4.2.2, lasted between 10 and 36 minutes, 

according to the ability of participants to tolerate incremental workloads. Approximately 15 

to 30 minutes post-exercise, the participants provided another spot urine sample. 

 
Figure 15. Examination schedule and urine sample collection at visit 3 in Study II. h: hour(s); IPAQ: International Physical 
Activity Questionnaire; min: minute(s); SU: spot urine. (Own illustration).  

4.2 Methods of Investigation 

4.2.1 Anthropometric, Body Composition, and Clinical Examinations 

Within Study I and Study II, participants were subjected to different baseline investigations, 

including anthropometric, body composition, or clinical measurements. In both studies, body 

weight and height were measured and the BMI was calculated. In Study II, the body 

composition was additionally assessed by dual-energy X-ray absorptiometry (DXA; Lunar iDXA, 

GE Healthcare, München, Germany) and LBM, fat mass (FM), or bone mass were calculated. 

As clinical parameters, the HRrest and BP (Boso Carat Professional, Bosch + Sohn, Jungingen, 

Germany) were assessed and physiological measurements such as the examination of arterial 
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stiffness (ArterioGraph, Medexpert, Budapest, Hungary) or pulmonary function (FlowScreen, 

CareFusion, Hoechberg, Germany) were conducted in Study II. Information on short-term and 

habitual PA as well as regular diet was also obtained from all participants of Study II. Moreover, 

blood samples collected in Study II were used for standard clinical biochemistry. 

4.2.2 PF Assessment and Further Exercise-Related Preliminary Tests 

In Study I and Study II, all subjects performed a standardized incremental exercise protocol on 

a bicycle ergometer in order to assess the CRF by measuring the VO2max (Study I) or the VO2peak 

(Study II). During the tests, the HR was continuously recorded and respiratory gas exchange 

was measured breath-by-breath. An overview of the applied exercise tests is given in Table 7.  

Table 7. Overview of the standardized incremental exercise tests in Study I and II. (Own table). 

 Study I Study II 

 Protocol 
Start: 100 watt 

+ 15 watt every 30 seconds 

Start: 25 watt 
+ 25 watt every two minutes 

 Ergometer 
Excalibur Sport, Lode B.V., 
Groningen, Netherlands 

Ergobike medical, Daum, 
Fürth, Germany 

 Endpoints VO2max, Pmax, HRmax VO2peak 

HRmax: maximum heart rate; Pmax: maximal power; VO2max: maximal oxygen uptake; VO2peak: peak oxygen uptake. 

In Study I, participants started pedaling at 100 watt and workload was then increased by 15 

watt every 30 seconds until volitional fatigue. As described in Chapter 5.3.2, particular 

exhaustion criteria had to be fulfilled to ensure an individual’s maximal effort. Based on the 

presence of a plateau in the VO2, the VO2max was determined and subsequently used as a 

criterion for randomization. A further endpoint of the incremental test was Pmax, which was 

used to define the individual workloads at which HIIT sets were performed. Based on the 

reached HRmax, the duration of the passive recovery period between HIIT sets was determined. 

To define the duration of HIIT sets, the EG additionally conducted a sprint cycling test at the 

predetermined Pmax until exhaustion. Endpoint of this test procedure was Tmax, i.e., the time 

individuals were able to perform at Pmax. In Study II, the standardized exercise tolerance test 

began at 25 watt and workload was then increased by 25 watt every two minutes until 

individual exhaustion. Since the exhaustion criteria of a plateau in the VO2 was not applied in 

Study II, the VO2max could not be determined with certainty. Thus, the VO2peak as the highest 

reached VO2 during the test was utilized instead. As described in Chapters 6.3.2, specific 

termination criteria, such as the appearance of acute hypertension, were applied. 
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4.3 Metabolomics Analyses 

4.3.1 Sample and Quality Control Preparation 

All urine and plasma samples were centrifuged at 1850 g at 4°C for 10 minutes and aliquoted 

into small portions, before being stored at −80°C (Study I) or cryopreserved at −196°C (Study II) 

until metabolomics analyses. Internal quality control (QC) samples were prepared by pooling 

the respective samples from each study. These QC samples were used for all metabolomics 

methods in order to assess their reproducibility and precision and to correct for systematic 

measurement bias.  

4.3.2 Overview of Applied Analytical Methods 

In Study I, IIa, and IIb, different (non-)targeted analytical methods were applied. An overview 

of the particular metabolomics techniques and the number of detected analytes is provided 

in Table 8. Since the specific metabolomics approaches and the respective preparation steps 

are described in detail in the publications presented in Chapters 5 to 7, the next section only 

gives a short summary of all applied analytical methods. 

Table 8. Overview of samples, metabolomics methods, and number of detected analytes in Study I, IIa, and IIb. (Own table). 

 Study I Study IIa Study IIb 

   Biological Samples 

Urine x x  

Plasma   x 

   Applied Analytical Methods 

NMR (targeted) x x  

NMR (non-targeted)   x 

LC-MS (targeted, methylated amines) x  x 

LC-MS (targeted, bile acids)   x 

LC-/FIA-MS (targeted, Absolute IDQ™ p180 kit)   x 

GC-MS (targeted, fatty acids)   x 

GC × GC-MS (non-targeted)   x 

Total Number of Detected Analytes 74 47 659 

FIA: flow injection analysis; GC: gas chromatography; GC × GC: two-dimensional gas chromatography; LC: liquid chromato-

graphy; MS: mass spectrometry; NMR: nuclear magnetic resonance. 
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Targeted NMR Analysis (Study I, IIa): 

Urine samples from Study I and Study IIa were analyzed by 1D-1H-NMR spectroscopy. After 

pre-processing of NMR spectra, metabolite identification was conducted with Chenomx NMR 

Suite 8.1 (Study I) or 8.4 (Study IIa) (Chenomx, Edmonton, AB, Canada). As an internal 

reference for urinary metabolite quantification, the trimethylsilylpropanoic acid (TSP) signal 

was used. By comparing the respective signals in experimental 1H-NMR spectra to a library of 

spectral signatures contained in the Chenomx software, 47 urinary metabolites could be 

identified and quantified with sufficient certainty in both studies. The detected metabolites 

covered various chemical classes, such as organic acids, AAs, amines, or sugar alcohols (see 

Chapters 5.3.5 and 6.3.4). In Figure 16, the identification of the purine base hypoxanthine in 

the urine NMR spectrum of a single participant is exemplified. 

 
Figure 16. Identification of urinary metabolites (here: hypoxanthine) in 1H-NMR spectra by using Chenomx. (Own illustration). 

Non-Targeted NMR Analysis (Study IIb): 

Plasma samples from Study IIb were analyzed by 1D-1H-NMR spectroscopy. Pre-processed 

NMR spectra were bucketed graphically, such that buckets contained only one signal or group 

of signals and no peaks were split between buckets, if possible. Buckets were related to a 

previously known, identified analyte or registered as unknown, i.e., that they contained either 

unspecific signals or overlapped peaks. The identification of metabolites was carried out by 

using Chenomx NMR Suite 8.1 (Chenomx, Edmonton, AB, Canada) (see Chapter 7.3.6). 
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Targeted LC-MS Analysis of Methylated Amino Compounds (Study I, IIb): 

Urine samples from Study I and plasma samples from Study IIb were also analyzed by ultra-

performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS). As 

described in Krüger et al. (2017), the quantification of six methylated amino compounds in 

plasma was established in Study II (see Chapter 7.3.6). In Study I, this method was adapted to 

urine and extended to 27 analytes, including arginine, carnosine, -, and -methylhistidine 

(see Chapter 5.3.5).  

Targeted LC-MS Analysis of Bile Acids (Study IIb): 

In plasma samples from Study IIb, several bile acids were quantified using an LC-MS stable 

isotope dilution assay, as described in Frommherz et al. (2016) (see Chapter 7.3.6). 

Targeted LC-/FIA-MS Metabolite Profiling Using the Absolute IDQ™ p180 kit (Study IIb): 

Plasma samples from Study IIb were also utilized for a targeted metabolite profiling using the 

Absolute IDQ™ p180 kit developed by Biocrates AG (Innsbruck, Austria). With this method, 

several acylcarnitines, AAs, PCs, and sphingomyelins (SMs) were detected (see Chapter 7.3.6). 

Targeted GC-MS Analysis of Fatty Acids (Study IIb): 

In plasma samples from Study IIb, 48 fatty acids were determined in a quantitative manner by 

using a GC-MS method, which has been previously described by Ecker, Scherer, Schmitz, and 

Liebisch (2012) and was applied with minor modifications (see Chapter 7.3.6). 

Non-Targeted GC × GC-MS Analysis (Study IIb): 

Plasma samples from Study IIb were also analyzed by a non-targeted GC × GC-MS-based 

approach, as previously described by Weinert, Egert, and Kulling (2015). With this method, a 

broad range of metabolites, e.g., AAs, amines, organic acids, sugars, sugar alcohols, or polyols, 

but also unknown analytes, were detected (see Chapter 7.3.6). 

Lists of all analytes measured by the described (non-)targeted metabolomics approaches are 

provided in the Appendices A3.1 to A3.7, along with their assignment to the four levels of 

metabolite identification proposed by the Metabolomics Standards Initiative (MSI), namely   

ID level 1: identified compound; ID level 2: putatively annotated compound; ID level 3: 

putatively annotated compound class; ID level 4: unknown compound (Sumner et al., 2007). 
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4.4 Data Handling and Statistical Analyses 

Data handling and statistical analyses differed between the included studies according to the 

particular research questions, examined biospecimens, and applied analytical methods. 

With respect to participants, a final number of n=18 (Study I), n=255 (Study IIa), and n=252 

(Study IIb) were included into data analyses. Since urinary metabolite data were known to be 

affected by differences in urine dilution (Y. Wu & Li, 2016), metabolite concentrations were 

normalized to either urinary creatinine (Study I) or osmolality (Study IIa). Within each study, 

the metabolite data from the different analytical platforms were combined into a common 

data matrix and clearly defined procedures for the elimination of metabolites that were either 

measured by more than one technique or had a low detection frequency were applied. In 

Study I, nine of the 74 detected urinary metabolites were quantified by both targeted NMR- 

and LC-MS-based analysis. Only those values obtained by LC-MS analysis, which is the more 

sensitive of both methods (A.-H. M. Emwas, 2015), were considered for statistical analyses. 

Due to the normalization to NMR-measured creatinine in Study I, 64 urinary metabolites were 

finally included into data analysis. In Study IIa, 47 metabolites were quantified in all urine 

samples and thus included into data analysis. In Study IIb, plasma analytes were considered 

for statistical analysis if they had a detected frequency ≥ 20% in the female and male sub-

group. If identified plasma analytes were assessed by more than one technique, those analytes 

detected by the less quantitative method were excluded. From an initial number of 659 

analytes, 427 were included into data analysis. While no metabolite data transformation was 

applied in Study I, metabolite data were transformed into Van der Waerden (VdW) scores in 

Study IIa and Study IIb. By this rank based inverse normal transformation, the issue of values 

below the limit of detection was taken into account and a uniform scale for all analytes was 

obtained, i.e., they were finally comparable between analytical platforms. 

As listed in Table 9, different uni-, bi-, and multivariate statistical approaches were applied in 

order to analyze the effects of acute and chronic PA on plasma or urinary metabolite profiles. 

They are not depicted further in this section, but are described in detail in the respective 

publications (Chapters 5.3.6, 6.3.5, and 7.3.7). Statistical analyses were conducted with SAS 

JMP 11.0.0 (SAS Institute Inc. 2013, Cary, NC, USA) and the software R (Version 3.4.2 (Study I); 

Version 3.6.0 (Study IIa); Version 4.0.0 (Study IIb); https://www.R-project.org). Figures were 

generated in Excel 2016 or R.  
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Table 9. Overview of data handling and statistical analyses in Study I, IIa, and IIb. (Own table). 

 Study I Study IIa Study IIb 

Data Handling 

Final sample size  
[dropouts] 

n=18 
[exclusion of n=2 due to 

illness or technical 
measurement errors] 

n=255 
[exclusion of n=46 due to 

missing spiroergometry data, 
implausible HRrest data, or 
outlying metabolite data] 

n=252  
[exclusion of n=49 due to 

missing spiroergometry data, 
implausible HRrest data, 

errors during analyses, or 
missing plasma sample] 

Sex-separated analysis - (only males) Partly Yes 

Final number of 
metabolites 

[excluded metabolites] 

64 urinary metabolites 
[exclusion of n=10 due to 

multiple analyses or use for 
normalization purposes] 

47 urinary metabolites 
[-] 

427 plasma analytes 
[exclusion of n=232 due to 
low detection frequency or 

multiple analyses] 

Normalization of 
metabolite 

concentrations 

To urinary creatinine To urinary osmolality - 

Metabolite data 
transformation 

- VdW scores VdW scores 

Univariate Statistical Analysis – Comparison Pre- vs. Post-Exercise Metabolite Concentrations 

Method Mixed effect model 
Wilcoxon’s signed 

rank test 
- 

Correction for 
multiple testing  

Partly FDR - 

Bivariate Statistical Analysis – Relationship Between Single Metabolites and the CRF  

Method - 
(Partial) Pearson 

correlation (ⱽ) 
Partial Pearson 
correlation (ⱽ) 

Considered 
confounding factors 

- 
None (1st) 

Age, sex, menopausal 
status, LBM (2nd) 

Age, menopausal status (1st) 
(+ 21 phenotypical/ 

clinical variables (2nd)) 

Multivariate Statistical Analysis – Comparison Pre- vs. Post-Exercise Metabolite Profiles 

Method - PCA (ⱽ) - 

Multivariate Statistical Analysis – Relationship Between Multiple Metabolites and the CRF 

Method - 
Stepwise multiple linear 

regression (ⱽ) 
Stepwise multiple linear 

regression (ⱽ) 

Considered 
confounding factors 

- 
Age, sex, menopausal 

status, LBM 

Age, menopausal status 
(+ selected pheno-

typical/clinical variables 
included in the model) 

Multivariate Statistical Analysis – Relationship Between All Metabolites and the CRF 

Method - 
Multiple linear 

regression (ⱽ), PCA (ⱽ) 
PLS regression (ⱽ) 

Considered 
confounding factors 

- 
Age, sex, menopausal 

status, LBM 

Age, menopausal status (1st) 
(+ 21 phenotypical/ 

clinical variables (2nd)) 

 Chapter 5 Chapter 6 Chapter 7 

ⱽ: using VdW-transformed data; CRF: cardiorespiratory fitness; FDR: false discovery rate; HRrest: resting heart rate; LBM: lean 
body mass; n: sample size; PCA: principal component analysis; PLS: partial least squares; VdW: Van der Waerden. 
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4.5 Functional Classification of PE- or PF-Related Metabolite Profiles 

4.5.1 Manual Categorization of Identified Metabolites to Metabolic Pathways 

Based on the information contained in the HMDB, Version 4 (https://hmdb.ca) and the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) PATHWAY database (https://www.genome.jp/ 

kegg/pathway.html), all metabolites with the MSI ID levels 1 and 2 in Study I, IIa, and IIb were 

assigned to pathways of human metabolism or chemical classes, thus providing a first basis 

for the functional classification of PE- or PF-related metabolite profiles.  

The HMDB is a database providing information about metabolites found in human organism, 

especially with regard to their origin and biological function, physiological concentrations in 

biological samples, and associated metabolic pathways (Wishart et al., 2018). The KEGG 

PATHWAY database serves as a collection of pathway diagrams, depicting molecular inter-

actions between metabolites in cellular processes (Aoki & Kanehisa, 2005). By using the 

metabolite description contained in the HMDB and the detailed view on metabolites in 

biological networks provided by the KEGG PATHWAY database, the (putatively) identified 

metabolites were manually assigned to 8 major pathways and 38 sub-pathways or chemical 

classes, respectively. An overview of the classification scheme is presented in Table 10. 

While the majority of metabolites (e.g., AAs, fatty acids, lipids) could easily be related to major 

and specific pathways, the grouping of metabolites with various origins or participation in 

different metabolic pathways was comparatively complex. Especially with regard to sugar-

related metabolites, a clear procedure for metabolite classification had to be applied. If sugars 

or sugar derivatives show an exogenous origin and are not known to be produced in human 

metabolism (e.g., mannitol), they were assigned to the major pathway ‘xenobiotics and 

related metabolism’ and the sub-pathway ‘sugars, sugar substitutes and sugar derivatives’. 

Compounds that can be endogenously produced in human metabolism (e.g., acetate) were 

classified to the major pathway ‘carbohydrate metabolism’ and the respective sub-pathway. 

Sugar metabolites were classified to the major pathway ‘carbohydrate metabolism’ and the 

sub-pathway ‘miscellaneous (unclassified sugar acids/polyols)’ if their origin and participation 

in human metabolism was largely unknown (e.g, arabitol). Further, non-sugar metabolites 

showing both an endo- and exogenous origin (e.g., citrate and malate; TCA cycle intermediates 

and food constituents) were equally classified according to their participation in human 
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metabolism and not according to their exogenous origin. If exogenous substances are known 

to be pre-metabolized by the intestinal microbiota (e.g., trimethylamines or polyphenols), 

they were classified to the major pathway ‘mammalian-microbial cometabolism’. 

Table 10. Metabolite classification scheme. (Own table). 

 Major Pathway Sub-Pathway or Chemical Class 

1 Amino acid metabolism 

Alanine and aspartate metabolism 

Arginine and proline metabolism; urea cycle 

Creatine metabolism 

Cysteine, methionine and taurine metabolism 

Glutamate metabolism 

Glycine, serine and threonine metabolism 

Histidine metabolism 

Isoleucine, leucine and valine metabolism 

Lysine metabolism 

Phenylalanine and tyrosine metabolism 

Tryptophan metabolism 

2 Carbohydrate metabolism 

Glucose and pyruvate metabolism 

Inositol phosphate metabolism 

Miscellaneous (unclassified sugar acids/polyols) 

Propanoate metabolism 

3 
Cofactors and vitamins 

metabolism 

Glutathione metabolism 

Nicotinate and nicotinamide metabolism 

4 Energy metabolism TCA cycle intermediates 

5 Lipid metabolism 

Bile acid metabolism 

Carnitine metabolism 

Glycerolipid metabolism 

Glycerophospholipid metabolism 

Ketone body metabolism 

Long-chain fatty acid metabolism 

Medium-chain fatty acid metabolism 

Sphingolipid metabolism 

6 
Mammalian-microbial 

cometabolism 

One carbon metabolism 

Phenylalanine and tyrosine metabolism 

Polyphenolic compounds metabolism 

Trimethylamines metabolism 

Tryptophan metabolism 

7 Nucleotide metabolism 
Purine metabolism 

Pyrimidine metabolism 

8 
Xenobiotics 

and related metabolism 

Chemicals 

Detoxification metabolism 

Food or plant constituents 

Sugars, sugar substitutes and sugar derivatives 

Xanthine metabolism 

                   TCA: tricarboxylic acid.  
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Choline, a metabolite that participates in multiple human pathways, was classified to the 

major pathway ‘AA metabolism’ and the sub-pathway ‘glycine, serine and threonine 

metabolism’ owing to its function as a methyl donor via the formation of betaine (Zeisel & da 

Costa, 2009). Nevertheless, its role as a precursor of PCs or acetylcholine has also to be kept 

in mind when finally interpreting choline-related results. 

Lists of all detected metabolites and their classification to major metabolic pathways, sub-

pathways, or chemical classes as well as their specific HMDB ID and KEGG ID are provided in 

the Appendices A3.1 to A3.7, according to each applied metabolomics method. The specific 

categorization of (putatively) identified metabolites that were analyzed in the framework of 

either Study I, IIa, or IIb is depicted in the following. Pie charts were generated in Excel 2016. 

Study-Specific Categorization of Identified Metabolites to Metabolic Pathways 

In Study I, 64 urinary metabolites were detected by using targeted NMR- and LC-MS-based 

approaches. Their classification to major metabolic pathways is depicted in Figure 17. As 

illustrated, most metabolites belonged to ‘AA metabolism’ (31/64) and ‘xenobiotics-related 

metabolism’ (13/64), followed by ‘mammalian-microbial cometabolism’ (8/64), ‘nucleotide 

metabolism’, ‘energy metabolism’ or ‘carbohydrate metabolism’ (each 3/64), ‘lipid 

metabolism’ (2/64), and ‘cofactors and vitamins metabolism’ (1/64). The grouping of 

metabolites to sub-pathways is provided in Figure A-20 (Appendix A4.1). 

 
Figure 17. Classification of metabolites detected by targeted NMR- and LC-MS-based analyses in Study I. (Own illustration).  
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Energy metabolism; 4.7%
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Xenobiotics and related 
metabolism; 20.3%

Amino acid 
metabolism; 

48.4%

Classification of 64 Urinary Metabolites Identified in Study I
to Major Metabolic Pathways
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In Study IIa, 47 urinary metabolites were identified by targeted NMR-based analysis. The 

classification of those metabolites to major metabolic pathways is shown in Figure 18. While 

the majority of the 47 metabolites were related to ‘AA metabolism’ (19/47), the remaining 

metabolites belonged to ‘xenobiotics-related metabolism’ (10/47), ‘mammalian-microbial 

cometabolism’ (6/47), ‘nucleotide metabolism’, ‘energy metabolism’ or ‘carbohydrate 

metabolism’ (each 3/47), ‘lipid metabolism’ (2/47), and ‘cofactors and vitamins metabolism’ 

(1/47). The further categorization of metabolites to sub-pathways is illustrated in Figure A-21 

(Appendix A4.2).  

 
Figure 18. Classification of metabolites detected by targeted NMR-based analysis in Study IIa. (Own illustration). 

In Study IIb, 427 plasma metabolites were detected by several (un-)targeted MS- and NMR-

based analyses and the identity of 236 metabolites could be determined. The classification of 

the identified metabolites to major metabolic pathways is illustrated in Figure 19. As depicted, 

most metabolites belonged to ‘lipid metabolism’ (164/236) and ‘AA metabolism’ (41/236), 

followed by ‘xenobiotics-related metabolism’ (12/236), ‘mammalian-microbial cometabolism’ 

(7/236), ‘carbohydrate metabolism’ or ‘energy metabolism’ (each 5/236), and ‘nucleotide 

metabolism’ or ‘cofactors and vitamins metabolism’ (each 1/236). The assignment of 

metabolites to sub-pathways is provided in Figure A-22 (Appendix A4.3). 
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Figure 19. Classification of metabolites detected by (un-)targeted MS- or NMR-based analyses in Study IIb. (Own illustration). 

The presented metabolite classification scheme should not only provide information about 

metabolic pathways to which the metabolites identified in the framework of either Study I, 

IIa, or IIb belonged. Based on this manually conducted metabolite categorization, PE- or PF-

related metabolite profiles observed in those studies could furthermore be discussed in a 

biological context, i.e., it could be estimated which major and specific pathways of human 

metabolism were affected by medium-term HIIT (Study I) or acute PE (Study IIa), or associated 

with the CRF (Study IIa/IIb). Apart from the interpretation of PE- or PF-related metabolite 

profiles included in the particular publications (Chapters 5 to 7), an additional overview and 

visualization of the classification of PE- or PF-related metabolites to major and specific 

pathways is provided in Chapter 8. In the respective papers, results from uni-, bi-, or multi-

variate statistical approaches were presented. Yet, to ensure a certain comparability between 

studies and to facilitate interpretation, the classification of PE- or PF-related metabolites to 

metabolic pathways was restricted to the findings from univariate analyses of exercise-

induced metabolite changes or bivariate analyses of PF-correlated metabolites, respectively. 

Despite the fact that some metabolites participate in several metabolic pathways, this manual 

classification scheme only allowed to relate a given metabolite to one specific pathway. 

Consequently, in order to take the belonging of metabolites to various pathways adequately 

into account, a web-based pathway analysis that considers the interconnectivity between 

metabolites and thus the interdependence among pathways was additionally conducted. 
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4.5.2 Pathway Analysis Based on PE- or PF-Related Metabolite Profiles 

So-called pathway analyses do not focus on single metabolites but rather on their interaction, 

revealing metabolic pathways which are most likely to be affected by a specific metabolite 

profile of interest (Chong et al., 2019). By using the pathway analysis module provided by 

MetaboAnalyst, Version 5 (https://www.metaboanalyst.ca), the PE- or PF-related metabolites 

identified in Study I, IIa, or IIb were mapped to biochemical pathways contained in the KEGG 

database (Chong et al., 2019). For all analyses, the KEGG pathway data library from October 

2019 was selected as a background set, containing 84 metabolite sets that belong to human 

metabolic pathways.  

In detail, the pathway analysis represents a combination of pathway enrichment analysis and 

pathway topology analysis. While the enrichment analysis investigates if functionally related 

metabolites are significantly enriched compared to random hits, the topology analysis takes 

the general pathway structure and the centrality of metabolites in related pathways into 

account (Chong et al., 2019). With regard to enrichment analysis, an over-representation 

analysis (ORA) was conducted. Based on a hypergeometric test, ORA evaluates if a particular 

set of metabolites is represented more than expected by change within a given compound list 

(J. Xia & Wishart, 2010b). The compound lists from Study I, IIa, and IIb comprised the particular 

PE- or PF-related metabolites of interest, which have been obtained by study-specific selection 

methods that ranked all analyzed metabolites and selected those scoring above or below a 

certain threshold. Finally, the p-values obtained from ORA indicate the probability of seeing a 

particular number of metabolites from a certain metabolite set, i.e., compounds from a 

specific pathway, in a given compound list (J. Xia & Wishart, 2010b). If specific pathways 

showed p-values < 0.05, metabolites involved in those pathways were significantly enriched 

in the compound lists from Study I, IIa, or IIb. To account for problems related to multiple 

comparisons, false discovery rate (FDR) adjustments were conducted. A schematic overview 

of the ORA approach is provided in Figure 20 (left). 

As it is well-known that changes in more important positions of a metabolic network have a 

stronger impact on a pathway than changes in marginal positions (J. Xia & Wishart, 2010a), 

ORA was combined with a topology analysis. By using two node centrality measures, namely 

the “degree centrality” measure (defined as the number of connections a metabolite node 

has to other metabolite nodes within a pathway) and the “betweenness centrality” measure 
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(defined as the number of shortest paths from different pathways going through a metabolite 

node), the potential importance of a given metabolite was evaluated based on its position 

within a metabolic network (Chong et al., 2019). Finally, to compare the importance of those 

pathways to which the PE- or PF-related metabolites identified in Study I, IIa, or IIb were 

mapped, so-called pathway impact values were determined based on the centrality measures 

of all metabolites assigned to a particular pathway. In detail, the sum of the node importance 

measures of the matched metabolites was normalized by the sum of the importance measures 

of all metabolites in this pathway. While the total importance of each pathway is 1, the 

importance measure of each metabolite node represents a certain percentage. Accordingly, 

pathway impact values obtained by topology analysis refer to the cumulative percentage from 

matched metabolite nodes (J. Xia & Wishart, 2010a). For all analyses, the impact value 

threshold calculated from pathway topology analysis was set at 0.1. A schematic overview of 

the pathway topology approach is provided in Figure 20 (right). 

 
Figure 20. Schematic illustration of ORA and topology analysis. A: compounds covered by the selected background set; B: 
compounds of a specific pathway; C: compounds of interest; D: overlap between the compounds of interest and compounds 
of a specific pathway; blue: high betweenness centrality; red: high degree centrality. (Own illustration based on Chong et al. 
(2019) and MetaboAnalyst 5.0 (https://www.metaboanalyst.ca)).  

Results are presented in overview graphs containing all matched pathways arranged by log-

transformed p-values from ORA on the Y-axis and impact values from topology analysis on the 

X-axis (Chapter 8). Pathways in the top right corner indicate that metabolites involved in those 

pathways are significantly enriched in the respective compound lists, and that they are likely 

to have significant impacts on the pathways based on their positions (Chong et al., 2019).   
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5.1 Abstract 

High-intensity interval training (HIIT) is known to improve performance and skeletal muscle 

energy metabolism. However, whether the body’s adaptation to an exhausting short-term 

HIIT is reflected in the resting human metabolome has not been examined so far. Therefore, 

a randomized controlled intervention study was performed to investigate the effect of a ten-

day HIIT on the resting urinary metabolome of young active men. Fasting spot urine was 

collected before (−1 day) and after (+1 day; +4 days) the training intervention and 65 urinary 

metabolites were identified by liquid chromatography (LC)-mass spectrometry (MS) and 

nuclear magnetic resonance (NMR) spectroscopy. Metabolite concentrations were 

normalized to urinary creatinine and subjected to univariate statistical analysis. One day after 

HIIT, no overall change in the resting urinary metabolome, except a significant difference with 

decreasing means in urinary hypoxanthine concentration, was documented in the 

experimental group (EG). As hypoxanthine is related to purine degradation, lower resting 

urinary hypoxanthine levels may indicate a training-induced adaptation in ‘purine 

metabolism’. 

Keywords: metabolomics; urinary metabolome; hypoxanthine; high-intensity interval 

training; NMR spectroscopy; LC-MS. 
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5.2 Introduction 

Over the past decade, research interest in HIIT as a time-efficient method for inducing health 

benefits has greatly increased (Laursen & Jenkins, 2002). A growing body of evidence supports 

the potential of HIIT to cause similar or even superior improvements in skeletal muscle energy 

metabolism and cardiometabolic health as compared to moderate-intensity continuous 

exercise (Cassidy et al., 2017; Gibala, Little, Macdonald, & Hawley, 2012). In order to allow 

physicians and sports scientists to recommend more specific exercise programs or training 

strategies, it is crucial to know more about the cellular mechanisms and metabolic alterations 

underlying the whole-body and skeletal muscle adaptation to HIIT. On a molecular level, there 

is already strong evidence that higher exercise intensities lead to a stronger expression of 

peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α (Egan et al., 2010; 

Little, Safdar, Bishop, Tarnopolsky, & Gibala, 2011), which is regarded as a major regulator of 

mitochondrial biogenesis in human skeletal muscle (Spiegelman, 2007). Given the positive 

effects that seem to be associated with an increase in muscle PGC-1α, e.g., an increase in 

skeletal muscle oxidative capacity or a greater reliance on fat oxidation (Benton et al., 2008), 

the elevated activity of PGC-1α following HIIT underpins the potential of HIIT to stimulate long-

term metabolic changes that promote widespread health benefits (Gibala et al., 2012; 

MacInnis & Gibala, 2017). However, until recently, the majority of studies have focused on the 

investigation of a small number of key molecules or selected metabolites in order to elucidate 

metabolic adaptations to HIIT (Astorino & Schubert, 2017; Burgomaster et al., 2008; Granata, 

Oliveira, Little, Renner, & Bishop, 2016; Little et al., 2011). Since several biochemical pathways 

are interacting with each other, capturing a broader view of changes in metabolism is 

required. 

The emerging metabolomics method offers a more comprehensive approach to 

simultaneously analyze a wide range of metabolites. Metabolomics facilitates the systematic 

identification and quantification of a large number of metabolites, defined as low-molecular 

weight compounds, by using analytical techniques like NMR spectroscopy, LC-MS, or gas 

chromatography (GC)-MS (Bujak et al., 2015). The complete set of endogenous metabolites 

like sugars, amino acids (AAs), amines, alcohols, steroids, or nucleosides as well as metabolites 

of exogenous origin in a given biological system, e.g., biofluids like blood or urine, represent 

the so-called “metabolome”. It is determined by age and sex (Rist et al., 2017) and can be 
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influenced by external factors like nutrition (Floegel, von Ruesten, et al., 2013) or physical 

activity (PA) (Chorell et al., 2012; Kujala et al., 2013). Assessing the metabolome as 

comprehensively as possible, metabolomics can provide valuable information on human 

metabolism and its response to physiological challenges like PE (Suárez et al., 2017). Thus, 

metabolomics contributes to the identification of exercise-responsive biomarkers, which 

could act as predictors of exercise-specific changes in metabolism. Metabolomics can also give 

insight into exercise-induced alterations in metabolite profiles, which are possibly associated 

with particular physiological processes or metabolic pathways. 

Until now, a few studies have investigated the HIIT-induced modifications of the human 

metabolome by using metabolomics. The majority of studies have analyzed the acute 

metabolic effects of a single HIIT or sprint interval session (Danaher et al., 2015; Peake et al., 

2014; Pechlivanis et al., 2010; Pechlivanis et al., 2013; Pechlivanis et al., 2015; Saoi et al., 2019; 

Siopi et al., 2017; Zafeiridis et al., 2016), documenting higher concentrations of lactate and 

pyruvate, which reflect a higher reliance on anaerobic energy production (Danaher et al., 

2015; Pechlivanis et al., 2010; Pechlivanis et al., 2015; Saoi et al., 2019; Siopi et al., 2017; 

Zafeiridis et al., 2016), and/or hypoxanthine, which is known to indicate a high rate of 

adenosine triphosphate (ATP) turnover (Danaher et al., 2015; Pechlivanis et al., 2010; Siopi et 

al., 2017). However, the medium- and long-term effects of HIIT on the metabolome have 

rarely been examined so far. The limitations of existing studies are that training interventions 

were partly restricted to overweight individuals (Kuehnbaum et al., 2014; Kuehnbaum et al., 

2015) and performed with a moderate frequency (Kuehnbaum et al., 2014; Kuehnbaum et al., 

2015; Pechlivanis et al., 2013). Furthermore, metabolic alterations were only investigated in 

blood by using either NMR (Pechlivanis et al., 2013) or multi-segment injection capillary 

electrophoresis-MS (Kuehnbaum et al., 2014; Kuehnbaum et al., 2015). Nevertheless, these 

studies have provided the first evidence that high-intensity intermittent training is able to 

induce adaptive metabolic responses. Amongst others, this was shown by lower levels of 

lactate and pyruvate in both resting and post-exercise serum samples (Pechlivanis et al., 2013) 

or an attenuated exercise-induced increase in plasma hypoxanthine levels after HIIT 

(Kuehnbaum et al., 2015), hinting at a lower energetic stress in the trained status. 

However, to the best of our knowledge, no other study has investigated to what extent the 

body’s adaptation to an extremely demanding HIIT intervention is reflected in the urinary 
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metabolome. Especially in elite sports, athletes are often confronted with exhausting training 

protocols consisting of high-intensity exercise blocks, provoking a higher adaptation in 

performance and an improved fatigue resistance (Hawley et al., 1997; Laursen & Jenkins, 

2002). Therefore, the purpose of this study was to investigate the effect of a ten-day HIIT, 

which is comparable to a pre-competition preparation phase in a periodized training schedule, 

on the resting urinary metabolome of young active men. This is the first randomized controlled 

intervention study using a combined NMR- and LC-MS-based metabolomic approach to assess 

changes in urinary metabolite profiles, thereby aiming to identify possible biomarkers for 

either training overload or training adaptation. The detected urinary metabolites represent a 

broad spectrum of organic compounds found in the human urine metabolome (Bouatra et al., 

2013), ranging from AAs to alcohols, keto acids to purine derivatives and methylated amines. 

Urine as a biological matrix was chosen as it is easily accessible, stable, and under no 

homeostatic regulation like other biofluids (Bouatra et al., 2013; J. Wu & Gao, 2015). As the 

urinary metabolome was captured in the resting state, i.e., in the morning before and after 

the ten-day HIIT period, this study was particularly suitable to analyze if human metabolism is 

able to restore its disturbed homeostasis, which could be documented in response to acute 

HIIT (Danaher et al., 2015; Peake et al., 2014; Pechlivanis et al., 2010; Pechlivanis et al., 2013; 

Pechlivanis et al., 2015; Siopi et al., 2017; Zafeiridis et al., 2016), and can also be assumed due 

to an exhausting, daily performed HIIT like in this study. 

5.3 Materials and Methods 

5.3.1 Subjects and Study Design 

Twenty healthy men volunteered to take part in this study. All participants were regularly 

active, competition-experienced, and participated in training at least three times a week. 

Further inclusion criteria were age between 20 and 50 years and body mass index (BMI) 

≤ 30 kg/m2. Participants were excluded if they used any medication, or if they suffered from 

musculoskeletal injuries within the preceding twelve months or from chronic diseases. The 

study consisted of a randomized controlled trial in which the participants were firstly 

subjected to standardized preliminary tests. Participants were then randomly assigned to 

either the EG or control group (CG) balanced to their age and training status. Subjects of the 

EG took part in a ten-day HIIT intervention, whereas subjects of the CG were told to refrain 
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from heavy physical exercise (PE) during the intervention period. In total, two subjects of the 

CG dropped out of the study due to illness or technical measurement errors in blood counts, 

respectively. The study was approved by the ethics committee of the State Medical Chamber 

of Baden-Württemberg, Stuttgart, Germany (DRKS-ID: DRKS00010841) and was conducted in 

accordance with the declaration of Helsinki. Written informed consent was obtained from all 

participants prior to entering the study. 

5.3.2 Preliminary Testing 

Before the onset of the study, participants were subjected to a preliminary examination that 

included anthropometric measurements (body weight (in kg), body height (in cm), and length 

of the lower limbs (in cm)) and the completion of a medical history form. BMI was calculated 

by dividing the body weight (in kg) by the height (in meters) squared. 

In order to establish an individual training protocol and as a criterion for the randomization 

process, maximal oxygen uptake (VO2max) was measured using an incremental protocol (see 

Laursen, Shing, Peake, Coombes, and Jenkins (2002)) on a bicycle ergometer (Excalibur Sport 

Ergometer, Lode B.V., Groningen, Netherlands). Briefly, each participant pedaled at a self-

selected speed for five minutes, workload was then augmented to 100 watt and finally 

increased by 15 watt every 30 seconds until volitional exhaustion, i.e., when a pedal frequency 

of 60 revolutions per minute (rpm) could no longer be maintained. Respiratory gas exchange 

was measured breath-by-breath and the heart rate (HR) was recorded. The incremental test 

was considered valid when the following criteria were fulfilled: (1) an initial linear increase 

and a subsequent plateau in oxygen consumption, with an increment of less than 2 mL kg−1 

min−1 between the two final measurements (despite the increase in workload), (2) the 

achievement of 90% of the age-predicted maximum heart rate (HRmax), (3) a respiratory 

exchange ratio >1.10. Endpoints of the incremental test were the VO2max and the maximal 

power (Pmax), which was defined as the lowest power output at maximal oxygen consumption. 

One day after the incremental test, subjects of the EG performed a sprint cycling test (Laursen 

et al., 2002) in order to determine the duration of individual training protocols. Each 

participant pedaled at a self-selected speed for five minutes, before workload was augmented 

to predetermined Pmax until exhaustion, i.e., when pedal frequency fell below 60 rpm. 

Endpoint of this test was Tmax, which was defined as the time to exhaustion at Pmax. Based on 
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the pre-tests, individual training protocols were created (see Table 11), which consisted of 

eight sets at the intensity Pmax, a duration of 60% Tmax, and a relative recovery period defined 

by the time needed until the HR decreased to 65% of HRmax measured in the incremental test.  

Table 11. Training protocol. (Adapted from Kistner et al. (2019)). 

Sets Intensity Duration Rest 

8 Pmax 60% Tmax 65% HRmax 

                                    HRmax: maximum heart rate; Pmax: maximal power, Tmax: time to exhaustion at Pmax. 

 

5.3.3 Experimental Protocol 

The training protocol was completed daily for ten days in a row by the subjects of the EG. After 

a 5-minutes warm-up at 75 watt, participants performed their individual protocol on a bicycle 

ergometer (Excalibur Sport Ergometer, Lode B.V., Groningen, Netherlands). Pre-training (after 

warm-up) and post-training capillary blood was drawn to measure lactate concentrations. To 

assess individual physiological and psychological stress and as a control for the training 

process, several tests were performed by the EG. During each training session, the HR was 

continuously recorded (Polar RS800CX) to calculate the training impulse (TRIMP), following 

the instructions from Banister et al. (1991). The TRIMP is an objective tool to assess physical 

effort, considering the individual HR responses to training and the duration of performed 

exercise. The TRIMP allows the evaluation of the accumulated time in different HR zones 

based on <60%, 60-70%, 70-80%, 80-90%, and >90% of HRmax, as suggested by Edwards et al. 

(1993). Immediately post-training, the rating of perceived exertion (RPE) was asked, following 

the instructions from Foster et al. (2001). The RPE represents a subjective but valid method 

for quantifying exercise intensity. The RPE scale goes from zero to ten, while ten stands for 

maximal exertion (Foster et al., 2001). Additionally, the EG and CG daily answered a multi-

dimensional questionnaire for subjective well-being (MDBF, German: Mehrdimensionaler 

Befindlichkeitsfragebogen), following the instructions from Steyer, Schwenkmezger, Notz and 

Eid (1997). 

All participants were asked to refrain from alcohol, performance enhancing supplements, and 

drugs during the whole intervention. Besides, they were instructed not to change their eating 

habits during the study period. Evening meals the days before urine collection were 

standardized, insofar that participants were asked to consume pasta with tomato sauce. 
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5.3.4 Urine Sample Collection 

Fasting spot urine from all participants was collected into polypropylene collection cups the 

day before the training started (Visit 1, V1), the day after the last training session (Visit 2, V2), 

as well as after four days of recovery (Visit 3, V3). All samples were taken between 9:00 and 

10:00 a.m., centrifuged at 1850 × g at 4 °C for 10 min, separated into aliquots, and stored at 

−80 °C until analysis. In order to minimize the risk of bias through exercise, V1 was scheduled 

at least three days after the pre-tests. Additionally, participants were instructed to refrain 

from PE 48 hours before urine collection (except participants of the EG at V2). 

5.3.5 Metabolomic Analyses 

A combined NMR- and LC-MS-based, targeted metabolomic approach was applied to identify 

and quantify a broad range of metabolites, thus making it possible to assess changes in the 

urinary metabolome following intervention. A short overview of both analytical methods will 

be given in the next section; more details are available in the supplement of Rist et al. (2017). 

NMR: 

All urine samples were analyzed by 1D-1H-NMR spectroscopy, as previously described (Rist et 

al., 2017). Briefly, urine samples were centrifuged, and supernatants mixed with 10% of a 

buffer containing 1.5 M KH2PO4, 2 mM NaN3, and 0.58 mM trimethylsilylpropanoic acid (TSP) 

in D2O at pH 7.4. Samples were measured at 300 K on a Bruker 600 MHz spectrometer 

(AVANCE II with 1H-BBI room temperature probe (Bruker BioSpin GmbH, Rheinstetten, 

Germany)) equipped with a BACS sample changer. Quality control (QC) samples were 

prepared by pooling fasting urine samples from all participants. At least one QC sample was 

analyzed per 24 study samples. The identification and quantitative analysis of 47 urinary 

metabolites, including organic acids, AAs, amines, sugars, sugar alcohols, and others, was 

carried out with Chenomx NMR Suite 8.1 (Chenomx, Edmonton, AB, Canada). Imprecision was 

generally <10% for most analytes, except for succinate. 

LC-MS: 

In addition to NMR analysis, a targeted ultra-performance liquid chromatography (UPLC)-

tandem mass spectrometry (MS/MS) analysis of methylated amino compounds was 

conducted using an Acquity H-Class UPLC coupled to a Xevo TQD triple quadrupole MS (both 

from Waters, Eschborn, Germany). The method was originally developed for the analysis of 
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trimethylamine N-oxide (TMAO) and five related compounds in plasma samples (Krüger et al., 

2017; Rist et al., 2017), but was adapted to urine and extended to 27 analytes in this study. 

Briefly, urine samples were diluted 25 times with eluent A (1:1 acetonitrile/aqueous 50 mM 

ammonium formate) and separated by an inverse acetonitrile gradient on a polar hydrophilic 

interaction liquid chromatography column (Acquity BEH Amide, 100 × 2.1 mm, 1.7 µm, 

Waters, Eschborn, Germany). Analytes were detected by positive electron spray ionization 

and timed multiple reaction monitoring. Matrix-matched calibrators and controls (3 levels), 

dedicated isotope-labelled internal standards, and standard addition were used for 

quantification. Imprecision was generally <15% for most analytes and levels, with few 

exceptions. 13 of the detected metabolites showed concentrations below the lower limit of 

quantification (LLOQ), which was defined by the following criteria: Signal to noise ratio 10:1, 

imprecision and bias <30%. However, all values (including values below LLOQ) were 

considered for statistical calculations, since the occurrence of such values is a property of the 

population. Although it is known that the single values below the LLOQ are more inaccurate, 

such values contain valuable information for the description of the whole sample. The use of 

the values below the LLOQ is, with respect to the statistical properties, better than any 

artificial replacement.  

Nine urinary metabolites (β-aminoisobutyrate, betaine, carnitine, creatine, dimethylamine, 

N,N-dimethylglycine, histidine, trigonelline, and TMAO) were accessible by both NMR and LC-

MS. Analyte concentrations obtained by NMR and LC-MS were compared by linear regression. 

Results are presented in Table A-2 and Figure A-1 (Appendix A1.2). In brief, the correlations 

were strong in all cases with R² > 0.87. Absolute values did also match closely, reflected by 

slopes near 1 and small intercepts. The only exceptions were TMAO and dimethylamine, 

where significant deviations between LC-MS and NMR were observed. The reason remains 

unclear, but is likely related to different standardization and should be considered when 

comparing results from studies using different methods. Overall, we observed a high 

correlation between NMR and LC-MS data in our study. LC-MS analysis generally offers a 

higher sensitivity than NMR (A.-H. M. Emwas, 2015) and peak assignment and integration in 

NMR is sometimes critical and pH-dependent. Therefore, further data handling and statistical 

analysis for the named metabolites were carried out with the values obtained by LC-MS. 



5 Study I 

79 

 

5.3.6 Data Handling and Statistical Analysis 

Metabolite concentrations were normalized to urinary creatinine, thus controlling for 

variations in urine dilution. Urinary creatinine concentrations were obtained through 1H-NMR 

spectroscopy and verified by the creatinine concentrations measured using a photometric 

assay based on the Jaffe reaction (DetectX® Urinary Creatinine Detection Kit, K002-H5, Arbor 

Assays, Ann Arbor, MI, USA). Differences between groups in anthropometric characteristics, 

fitness parameters, and baseline metabolite concentrations were examined by Welch’s t-test. 

In order to investigate differences in urinary concentrations for each metabolite, a mixed 

effect model with treatment (EG, CG), time (V1, V2, V3), and treatment-time interaction as 

fixed factors were applied. To take account of the repeated measurements and varying 

baseline values, the random factors were modelled by a random intercept and a general 

correlation structure of the error terms. Tukey type contrasts were tested for by multiple 

testing adjusted t-tests. As the applied t-tests were considered robust to deviations from 

normality assumption and due to a moderate sample size, parametric statistical analysis was 

used. No kind of multivariate statistical analysis for the consideration of all metabolites 

simultaneously, like false discovery corrections, were performed due to the moderate sample 

size. Data are presented as mean ± standard deviation (SD). The level of statistical significance 

for all analyses was set at α = 0.05. Statistical analysis was performed using SAS JMP 11.0.0 

(SAS Institute Inc., Cary, NC, USA, 2013) and the software R version 3.4.2 (R Core Team, 2017) 

using the packages nlme (Pinheiro, Bates, DebRoy, & Sarkar, 2017) and lsmeans (Lenth, 2016). 

Sample size can partly differ due to missing data, e.g., when technical measurement errors 

occurred or because measured values were excluded due to biological implausibility. 

5.4 Results 

Descriptive characteristics of the participants and training protocols are summarized by means 

and SDs in Table 12. There were no significant differences between the EG and the CG with 

regard to age, anthropometric parameters, and PF at baseline. Parameters used to create 

individual training protocols are only presented for the EG. During daily training sessions, 

subjects of the EG performed eight cycling bursts at an average intensity of 348 watt (=Pmax) 

and for a mean duration of 97 seconds (=60% Tmax), interrupted by a rest period until the HR 

decreased to an average of 124 beats per minute (=65% of HRmax). 



5 Study I 

80 

 

Table 12. Descriptive characteristics of participants and training protocols. (Adapted from Kistner et al. (2019)). 

 Total (n=18) EG (n=10) CG (n=8) 

Age (years) 30.2 ± 7.6 30.0 ± 8.0 30.4 ± 8.0 
Height (cm) 182 ± 7 181 ± 7 184 ± 7 
Weight (kg) 79.7 ± 7.6 77.1 ± 8.3 82.9 ± 5.5 

BMI (kg (m2)-1) 24.0 ± 2.2 23.6 ± 1.6 24.6 ± 2.8 
VO2max (mL kg-1 min-1) 54.1 ± 8.2 53.0 ± 6.1 55.5 ± 10.6 

Pmax (w) 351 ± 30 348 ± 31 355 ± 30 
HRmax (bpm) 182 ± 11 181 ± 13 185 ± 8 

65% HRmax (bpm) − − − 124 ± 5 − − − 
Tmax (s) − − − 162 ± 23 − − − 

60% Tmax (s) − − − 97 ± 14 − − − 

All values in mean ± SD. BMI: body mass index; CG: control group; EG: experimental group; HRmax: maximum heart rate; n: 
sample size; Pmax: maximal power; SD: standard deviation; Tmax: time to exhaustion at Pmax; VO2max: maximal oxygen uptake. 

 

5.4.1 Training Parameters 

Training parameters demonstrated a high intensity of the daily training, see Figure A-2 

(Appendix A1.3). In the EG, an increase in blood lactate concentration was documented after 

each training session and the post-exercise increase in lactate was 14.2 ± 2.7 mmol/L on the 

first training day and 16.3 ± 2.7 mmol/L on the last training day. The average TRIMP, which is 

considered as an objective tool to assess physical effort, increased continuously over the 

intervention period (from 56.2 ± 13.4 (day 1) to 96.6 ± 30.0 (day 10)). The HR zone scaling 

shows that the majority of the EG performed in HR zones 3-5, which means that they largely 

exercised at 70-100% of HRmax. The RPE, which is a subjective tool to evaluate exercise 

intensity, was continuously at a high level in the EG and did not differ between the training 

days (mean ± SD (day 1 to 10): 9.6 ± 0.5; inter-subject mean ± SD: 9.6 ± 0.2, values are scores 

in the RPE scale). Regarding the values of the multidimensional questionnaire for subjective 

well-being, the mean score from the EG immediately decreased after the first training session 

and remained lower than pre-training during the whole training intervention. In the CG, no 

changes in MDBF values were observed during the study period. 

5.4.2 Urinary Metabolites 

A total of 65 urinary metabolites were identified and quantified by NMR spectroscopy and 

LC-MS, including creatinine for standardization purposes. Normalization of urinary metabolite 

concentrations to urinary creatinine was conducted with creatinine values obtained by NMR. 

The NMR signal intensity of creatinine and creatinine concentrations measured with a 

photometric assay were highly correlated (Pearson’s correlation: r = 0.99, p < 0.001), verifying 

the validity of the quantitative NMR data. 
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Spot urine samples were collected one day before intervention started (V1) as well as one and 

four days after intervention (V2 and V3, respectively). The normalized urinary metabolite 

concentrations before and after the 10-day HIIT are presented in Table A-3 (Appendix A1.4) 

and in Figure A-3 (Appendix A1.5), separated for the EG and the CG. Regarding pre-training 

urinary metabolite concentrations, no statistically significant differences between the EG and 

the CG could be documented. At V2, hypoxanthine (p = 0.0210) showed significantly different 

urinary concentrations between the EG and the CG, whereas at V3, urinary concentrations of 

betaine (p = 0.0055), hypoxanthine (p = 0.0006), and isoleucine (p = 0.0285) significantly 

differed between both groups. With respect to metabolite alterations within the EG, three 

metabolites significantly changed over time. Firstly, urinary hypoxanthine concentration 

showed a significant difference with decreasing means between V1 and V2 (p = 0.0270). 

Secondly, urinary taurine concentration significantly differed with decreasing means between 

V1 and V3 (p = 0.0031), as well as urinary asymmetric dimethylarginine (ADMA) concentration 

(p = 0.0380). Within the CG, urinary concentration of hypoxanthine significantly changed with 

increasing means between V1 and V3 (p = 0.0437) and V2 and V3 (p = 0.0442). Furthermore, 

urinary concentrations of citrulline (p = 0.0205), N-methylarginine (p = 0.0134), methyl-

succinate (p = 0.0357), and urea (p = 0.0159) showed a significant difference with increasing 

means between V1 and V3, while no significant changes in urinary metabolites were 

demonstrated between V1 and V2. Boxplots of top-ranked metabolites, i.e., with at least one 

p-value < 0.01, are shown in Figure 21. 

 
Figure 21. Boxplots of top-ranked metabolites. (a) Betaine (EG: n=9, CG: n=7); (b) hypoxanthine (EG: n=10, CG: n=8); (c) 
taurine (EG: n=10, CG: n=7); concentrations in mmol/mol creatinine. *: p-value < 0.05 for within-group comparisons; #: p-
value < 0.05 for between-group comparisons; CG: control group; EG: experimental group; n: sample size; V1: visit 1 (day 
before the training started); V2: visit 2 (day after the the last training session); V3: visit 3 (after four days of recovery). 
Metabolites were chosen as top-ranked if at least one p-value was < 0.01. (Adapted from Kistner et al. (2019)).   
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5.5 Discussion 

The purpose of this study was to investigate the effect of a ten-day HIIT on the resting urinary 

metabolome of young active men, thus analyzing if human metabolism is able to recuperate 

from an extremely demanding exercise intervention. The main finding of this study is that no 

overall change in the resting urinary metabolome was observed in the EG, except for a 

significant difference with decreasing means in urinary hypoxanthine concentration between 

V1 and V2 and a significant difference with decreasing means in urinary taurine and ADMA 

concentrations between V1 and V3. Assuming that acute alterations in urinary metabolite 

concentrations have occurred in response to the daily HIIT sessions – as shown by previous 

studies with similar high-intensity exercise protocols but with immediate sample taking 

(Pechlivanis et al., 2010; Pechlivanis et al., 2013; Pechlivanis et al., 2015; Siopi et al., 2017) – 

the almost unchanged urinary metabolome indicates that metabolism was largely able to 

restore its disturbed homeostasis in the given time frame of one or four recovery days, 

respectively. Although urine as a biological matrix has not been widely used in exercise 

metabolomics studies, the ability of urine to reflect acute exercise-induced metabolic changes 

occurring in muscle was recently demonstrated (Pechlivanis et al., 2010; Pechlivanis et al., 

2015; Siopi et al., 2017). Consequently, the fact that no longer-lasting, overall metabolic 

alterations in urine have been documented in our study leads to the assumption that skeletal 

muscle metabolism had already regenerated from acute disturbances due to HIIT inter-

vention. 

Acute metabolic changes in response to a single HIIT or comparable sprint interval training 

session are particularly characterized by elevations in plasma or urinary lactate (Danaher et 

al., 2015; Gerber, Borg, Hayes, & Stathis, 2014; Pechlivanis et al., 2010; Pechlivanis et al., 2015; 

Zafeiridis et al., 2016), confirming that a high percentage of the energy required in muscle is 

provided by the anaerobic energy system (Gastin, 2001). Furthermore, acute elevations in 

plasma or urinary hypoxanthine were detected (Gerber et al., 2014; Pechlivanis et al., 2010; 

Pechlivanis et al., 2015; Siopi et al., 2017). The purine derivative hypoxanthine represents the 

final ATP breakdown product in muscle and was proposed as a metabolic indicator of exercise-

induced energetic stress (Sahlin, Tonkonogi, & Söderlund, 1999; Zielinski & Kusy, 2015b). If 

during high-intensive exercise the ATP degradation rate in muscle is higher than the ATP 

resynthesis rate, accumulated hypoxanthine can be partly reconverted to inosine 
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monophosphate (IMP) by the purine salvage enzyme hypoxanthine guanine phosphoribosyl-

transferase (HGPRT), thus contributing to ATP restoration, or it leaks out to the blood stream 

where a further degradation to uric acid or a direct elimination from body via urine occurs 

(Manfredi & Holmes, 1985; Sutton, Toews, Ward, & Fox, 1980; Zhao, Snow, Stathis, Febbraio, 

& Carey, 2000; Zielinski & Kusy, 2015b). An elevated urinary elimination of hypoxanthine and 

its downstream metabolite, uric acid, are seen as the endpoint of ‘purine metabolism’, 

representing an indirect marker of the exercise-induced net ATP loss from muscle to plasma 

(Stathis, Carey, & Snow, 2005; Stathis, Zhao, Carey, & Snow, 1999). 

However, despite the high intensity of the training protocol used in our study, we did not 

observe an increase in urinary hypoxanthine concentration one day after the last training 

session. This observation is in line with results of Stathis et al. (1999), who showed that urinary 

hypoxanthine excretion rate was only significantly elevated in the first 2 hours of recovery, 

whereas 2 to 24 hours post-exercise no increased urinary hypoxanthine concentration was 

documented any more. As even lower post-training urinary hypoxanthine levels were 

demonstrated in our study (see Figure 21 (b)), the question arises if adaptations in ‘purine 

metabolism’ as a response to the exhausting HIIT have occurred, resulting in a reduced 

muscular hypoxanthine loss into blood even in resting conditions, finally leading to a 

decreased delivery of hypoxanthine to the kidneys and consequently to a lower hypoxanthine 

excretion via urine. Actually, this is the first study showing a decrease in resting urinary 

hypoxanthine levels after a short-term, but high-intensive interval training. A previous study 

focusing on training-induced alterations in ‘purine metabolism’ observed changes in resting 

as well as post-exercise plasma hypoxanthine concentrations in elite athletes during a one-

year training cycle (Zielinski & Kusy, 2012, 2015a). Indeed, it was shown that resting (and post-

exercise) plasma hypoxanthine decreased from the general to the competition phase, along 

with the increasing contribution of high-intensity anaerobic training loads, whereas in the 

detraining phase, resting (and post-exercise) plasma hypoxanthine concentration rose and 

returned to high levels (Zielinski & Kusy, 2012, 2015a). According to Zielinski and Kusy (2015a), 

plasma hypoxanthine concentrations at rest and after standard exercise can be seen as 

sensitive metabolic indicators of training status, providing valuable information about either 

training adaptation or overtraining. In contrast to this, another study showed that a seven-

day intermittent sprint training on a bicycle ergometer did not change resting urinary 
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hypoxanthine concentration in active men (Stathis, Carey, Hayes, Garnham, & Snow, 2006). 

As compared to our study, subjects were untrained and performed a slightly shorter and less 

intensive training intervention, which could explain the discrepant results. However, several 

studies documented an attenuated exercise-induced accumulation of plasma or urinary 

hypoxanthine when an acute maximal activity was performed after repeated high-intensity 

training compared to pre-training, suggesting a decrease in muscular purine nucleotide loss 

due to an improved balance between the rates of ATP degradation and its resynthesis 

(Hellsten-Westing, Balsom, Norman, & Sjodin, 1993; Hellsten-Westing, Norman, Balsom, & 

Sjodin, 1993; Kuehnbaum et al., 2015; Spencer, Bishop, & Lawrence, 2004; Stathis et al., 2006; 

Stathis, Febbraio, Carey, & Snow, 1994). Hellsten-Westing, Balsom, et al. (1993) demonstrated 

that the attenuation in hypoxanthine efflux after a six-week HIIT in habitually active men was 

associated with a training-induced, elevated activity of the purine salvage enzyme HGPRT in 

muscle. As HGPRT catalyzes the reconversion of hypoxanthine to IMP (Manfredi & Holmes, 

1985), its intensified activity following HIIT was interpreted as a training-induced adaptation 

to enhance the conservation of muscle purine nucleotides (Hellsten-Westing, Balsom, et al., 

1993). Such an adaptation seems advantageous, because a lower loss of purines results in a 

lower reliance on the comparably slow and metabolically expensive replacement of adenine 

nucleotides by the purine de novo synthesis pathway (Stathis et al., 2006). 

Unfortunately, neither muscular HGPRT nor acute post-exercise alterations in hypoxanthine 

concentration have been analyzed in the present study. Therefore, it only can be speculated 

that the decreased resting urinary hypoxanthine levels are evidence of an increased ability of 

the body to conserve or restore the purine nucleotide pool. A previous study has shown a 

decrease in resting muscular adenine nucleotide levels after one week of high-intensity 

intermittent training (Hellsten-Westing, Norman, et al., 1993). Although not analyzed in the 

present study, a depletion of muscular adenine nucleotide content in the course of the 10-day 

HIIT is also presumable due to the high intensity and frequency of training. As one possible 

metabolic adaptation to the short-term HIIT, an elevated HGPRT activity in skeletal muscle 

could be suggested. However, if muscular HGPRT activity actually increased after ten days of 

HIIT, it is still questionable to what extent a more efficient salvage in muscle is likely to explain 

the decrease in urinary hypoxanthine excretion at rest. Indeed, urinary hypoxanthine levels 

not only depend on muscular hypoxanthine release, but also on its uptake by red blood cells 
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(Giacomello & Salerno, 1979) or the liver and its further degradation to uric acid (Sahlin et al., 

1999; Zielinski & Kusy, 2015b). Thus, it cannot be ruled out that an increased hypoxanthine 

uptake by other, non-muscle tissues underlay the observed decrease in resting urinary 

hypoxanthine concentration. As recently shown, not only HGPRT activity in skeletal muscle 

but also HGPRT activity in erythrocytes is exercise- and training-dependent (Dudzinska et al., 

2018; Zielinski, Kusy, & Rychlewski, 2011; Zielinski, Rychlewski, Kusy, Domaszewska, & 

Laurentowska, 2009). Dudzinska et al. (2018) demonstrated that trained subjects had a 

significantly higher HGPRT activity in erythrocytes at rest, which might contribute to the 

reduction of resting plasma as well as urinary hypoxanthine levels by utilizing more 

hypoxanthine for IMP formation. 

Since resting urinary hypoxanthine concentration in the EG was still lower at V3 than pre-

training and not significantly different from V2 (see Figure 21 (b)), the possibility exists that 

the performed training induced an increase in purine salvage efficiency, however, it is still 

unclear in which tissues this adaptation occurred. Providing detailed information about 

underlying molecular mechanisms of adaptation to HIIT is out of the scope of this study. It is 

obvious that subjects of the EG were exposed to a remarkable metabolic and psychological 

stress, as indicated by an increase in post-exercise blood lactate and a decrease in MDBF 

scores during intervention, which reflect subjective well-being (Steyer et al., 1997). 

Nevertheless, adaptations to the exhaustive HIIT intervention were also demonstrated. The 

TRIMP as a marker of training load continuously increased over the 10-day intervention period 

in the EG, see Figure A-2 (b) (Appendix A1.3), showing that participants were able to realize a 

higher physical effort in the course of the intervention. Regarding this and the fact that urinary 

hypoxanthine levels in the EG significantly changed post-training, being significantly different 

from urinary hypoxanthine levels in the CG at V2 and V3, alterations in ‘purine metabolism’ 

could provide one possible mechanism of the body’s adaptation to HIIT. Unfortunately, we 

are not able to explain the significant differences with increasing means in urinary 

hypoxanthine levels in the CG between V1 and V3 or V2 and V3, respectively. It is obvious that 

the CG showed a higher variation in urinary hypoxanthine concentrations at V3 when 

compared with V1 and V2, see Figure 21 (b) and Table A-3 (Appendix A1.4). We assume that 

the documented differences are due to a natural variation, which could not be controlled in 

our study. 
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The biological relevance of the change in resting urinary taurine levels between V1 and V3 in 

the EG, see Figure 21 (c) and Table A-3 (Appendix A1.4), has also to be interpreted with 

caution, since it is known that the urinary excretion of this semi-essential AA varies along with 

dietary taurine intake (Lambert, Kristensen, Holm, & Mortensen, 2015). Although urine 

samples were collected after an overnight fast and after the intake of a standardized evening 

meal, it cannot be excluded that participants consumed different amounts of taurine-

containing food like meat, fish, shellfish, or energy drinks (Lambert et al., 2015; Peacock, 

Martin, & Carr, 2013) the days before urine collection. However, regarding the decrease in 

urinary taurine within the EG, it could be hypothesized that more taurine was utilized during 

HIIT intervention. Taurine is highly concentrated in the muscles (Seidel, Huebbe, & Rimbach, 

2018) and involved in cell volume regulation, calcium homeostasis, membrane stabilization, 

and antioxidant activities (Lambert et al., 2015), all important with respect to PE. In a previous 

study, it was postulated that taurine is released by contracting muscles during exercise due to 

osmoregulatory processes, thus leading to an acute increase in plasma taurine and, when 

individuals were sufficiently hydrated, a higher urinary taurine clearance (Cuisinier et al., 

2002). As taurine cannot be metabolized by humans, it is either excreted via urine or feces 

(Lambert et al., 2015). To our knowledge, there is a lack of studies investigating the effect of 

HIIT on taurine metabolism. A previous study on endurance exercise showed that urinary 

taurine immediately increased post-exercise, whereas after 24 hours, the urinary taurine 

excretion declined to slightly lower levels than baseline (Cuisinier, Ward, Francaux, Sturbois, 

& de Witte, 2001). Assuming that in our study muscular taurine also was acutely released 

during HIIT intervention, it can be speculated that the lower urinary taurine levels at V3 might 

be a result of “restoring” the pre-exercise muscular taurine content. Since the reabsorption of 

taurine in the kidneys is variable, ranging from 40% to 99% (Han, Patters, Jones, Zelikovic, & 

Chesney, 2006), the possibility exists that in the regeneration phase more taurine was retained 

in the body, being reflected in a lower urinary taurine excretion. Unfortunately, physiological 

processes underlying the changes in urinary taurine in the EG remain to be elucidated. 

Similar to urinary taurine levels, a decrease in urinary levels of ADMA between V1 and V3 was 

documented in the EG. ADMA is endogenously produced from the turnover of arginine-

methylated proteins and can either be metabolized to citrulline and dimethylamine or 

excreted via urine (Teerlink, 2005). As ADMA functions as an inhibitor of nitric oxide synthase, 
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high plasma ADMA levels are considered as a cardiovascular risk factor (Schlesinger, Sonntag, 

Lieb, & Maas, 2016) and an increased urinary excretion seems to be one of the main 

mechanisms lowering ADMA plasma levels (Nijveldt et al., 2002). Recently, it was shown that 

PE decreases ADMA levels in plasma (Riccioni et al., 2015). However, the effect of PE on 

urinary ADMA excretion in healthy individuals has rarely been examined so far. Despite the 

statistically significant change in urinary ADMA between V1 and V3 in our study, the absolute 

difference was marginal, see Table A-3 (Appendix A1.4) and Figure A-3 (Appendix A1.5). 

Regarding this and the fact that we did not observe a significant difference between V1 and 

V2 within the EG, we assume that the change in urinary ADMA levels has no biological 

relevance with respect to HIIT intervention. 

The significant differences with increasing means in urinary concentrations of citrulline, N-

methylarginine, methylsuccinate, and urea between V1 and V3 within the CG can hardly be 

explained and might be due to uncontrolled variation. For example, the documented increase 

in urinary urea levels could likely be an effect of diet, e.g., an increased protein intake, as urea 

represents the terminal product of protein catabolism, being eliminated in urine (Wang, Ran, 

& Jiang, 2014). Equally, we hypothesize that the difference between groups in urinary levels 

of isoleucine at V3 can be seen as an evidence of natural variation in the CG, leading to a higher 

isoleucine excretion at V3 when compared with the EG. Differences between groups in urinary 

betaine concentration at V3 could also be due to uncontrolled variation in the CG. However, 

as betaine functions as an organic osmolyte and methyl donor (Lever & Slow, 2010), its 

importance for exercise performance has recently been discussed (J. R. Hoffman, Ratamess, 

Kang, Rashti, & Faigenbaum, 2009). With regard to this and the fact that we could observe a 

slight, but not significant increase of urinary betaine levels in the CG (see Figure 21 (a)), it can 

be speculated that the CG, which had to refrain from their usual daily training during the study 

period, demonstrated a minor use of betaine for exercise-related physiological processes, thus 

leading to a higher urinary betaine excretion in the inactive state. However, as the urinary 

betaine levels already differed slightly at V1 between both groups, it could be also suggested 

that diet might account for the higher urinary betaine excretion in the CG. Differences in 

urinary betaine could be explained by a different dietary intake of betaine-containing food like 

wheat, shellfish, or spinach (Craig, 2004; Garg et al., 2016). 
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A clear limitation of the present study is that the participants of the CG were instructed to 

refrain from heavy exercise, however, their actual PA behavior was not recorded. Similarly, 

the daily diet of study participants was not controlled. This has to be taken into account when 

interpreting the results, as it is known that the urinary excretion of some metabolites can be 

affected by diet. Another limitation of our study is that we conducted a targeted metabolomic 

approach, which was limited to a specific number of known compounds, and the lack of a 

comparative metabolomic analysis in blood, which would have been of great interest in order 

to facilitate the interpretation of documented metabolite alterations. Furthermore, as the 

present study was a follow up investigation of a study focusing on a univariate and less varying 

endpoint, there is a lack of statistical power regarding the analyses of urinary metabolites 

which show a comparatively higher biological variance. Therefore, the obtained results need 

to be evaluated cautiously and can only be interpreted for each single metabolite. As expected 

with respect to the moderate sample size, the observed changes in the metabolite 

concentrations are marginal when considering multiple hypotheses, which take all 

metabolites simultaneously into account. Consequently, the present study has to be 

considered as a pilot study, providing first hints about the possible effects of HIIT on urinary 

metabolites. More studies have to be done to confirm the observed HIIT-induced metabolic 

changes and to extend the obtained results to a broader population, i.e., not only to young, 

trained men but also to untrained individuals and females. With regard to future studies, it 

would be appropriate to investigate the effects of a short-term HIIT not only on resting urinary 

as well as blood metabolite levels but also on acute post-exercise metabolic changes in the 

course of intervention. Thus, more reliable conclusions about HIIT-induced adaptations in 

metabolism could be drawn. 

5.6 Conclusions 

We investigated the effect of a ten-day HIIT on 64 urinary metabolites in young active men. 

To our knowledge, this was the first study using a combined NMR- and LC-MS-based 

metabolomic approach to assess changes in the resting urinary metabolome, which possibly 

are related to the body’s adaptation to a HIIT protocol comparable to pre-competition training 

schedules. Our findings show that no overall change in the resting urinary metabolome, except 

a decrease in the urinary hypoxanthine concentration, was caused in the EG one day after the 

HIIT intervention. This result indicates that the metabolism was able to quickly regenerate 
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from acute metabolic disturbances due to the exhausting HIIT. However, as resting urinary 

hypoxanthine levels were lower and significantly different following HIIT, training-induced 

adaptations in ‘purine metabolism’ can be suggested. To reveal underlying mechanisms, 

further studies are necessary. 
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6.1 Abstract 

Knowledge on metabolites distinguishing the metabolic response to acute physical exercise 

(PE) between fit and less fit individuals could clarify mechanisms and metabolic pathways 

contributing to the beneficial adaptations to exercise. By analyzing data from the cross-

sectional Karlsruhe Metabolomics and Nutrition (KarMeN) study, we characterized the acute 

effects of a standardized exercise tolerance test on urinary metabolites of 255 healthy women 

and men. In a second step, we aimed to detect a urinary metabolite pattern associated with 

the cardiorespiratory fitness (CRF), which was determined by measuring the peak oxygen 

uptake (VO2peak) during incremental exercise. Spot urine samples were collected pre- and post-

exercise and 47 urinary metabolites were identified by nuclear magnetic resonance (NMR) 

spectroscopy. While the univariate analysis of pre- to post-exercise differences revealed 

significant alterations in 37 urinary metabolites, principal component analysis (PCA) did not 

show a clear separation of the pre- and post-exercise urine samples. Moreover, both bivariate 

correlation and multiple linear regression analyses revealed only weak relationships between 

https://doi.org/10.3390/metabo10050212
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the VO2peak and single urinary metabolites or urinary metabolic pattern, when adjusting for 

covariates like age, sex, menopausal status, and lean body mass (LBM). Taken as a whole, our 

results show that several urinary metabolites (e.g., lactate, pyruvate, alanine, and acetate) 

reflect acute exercise-induced alterations in the human metabolism. However, as neither pre- 

and post-exercise levels nor the fold changes (FCs) of urinary metabolites substantially 

accounted for the variation of the covariate-adjusted VO2peak, our results furthermore indicate 

that the urinary metabolites identified in this study do not allow to draw conclusions on the 

individual’s physical fitness (PF) status. Studies investigating the relationship between the 

human metabolome and functional variables like the CRF should adjust for confounders like 

age, sex, menopausal status, and LBM. 

Keywords: metabolomics; urinary metabolome; urinary metabolites; NMR spectroscopy; 

acute physical exercise; cardiorespiratory fitness; VO2peak; exercise metabolomics. 

6.2 Introduction 

Over the past decades, a growing body of evidence has demonstrated the inverse relationship 

between the CRF and all-cause and disease-specific mortality (Blair et al., 1995; Harber et al., 

2017). As one of the most widely investigated physiological parameters (Harber et al., 2017), 

the CRF is assessed by measuring the maximal oxygen uptake (VO2max) during an incremental 

exercise test until exhaustion (Löllgen & Leyk, 2018). If the VO2max cannot be determined with 

certainty, requiring the presence of a plateau in oxygen uptake (VO2), the VO2peak as the 

highest value of VO2 attained during an incremental test is frequently used instead (Day et al., 

2003). Representing an individual’s ability to take up, transport, and utilize oxygen during 

sustained PE (Hill et al., 1924), the CRF is influenced by a variety of factors, such as age 

(Laukkanen et al., 2009; Zeiher et al., 2019), sex (Al-Mallah et al., 2016; Zeiher et al., 2019), 

LBM (S. Y. S. Wong et al., 2008), or heredity (Bouchard et al., 1988). Furthermore, behavioral 

factors like diet, smoking, alcohol intake, and particularly physical activity (PA) are associated 

with the CRF (McKinney et al., 2016; Zeiher et al., 2019). Regular PE is known to induce 

physiological adaptations like an increased cardiac output or skeletal muscle capillarization as 

well as an augmented activity of mitochondrial enzymes, resulting in a higher aerobic capacity 

(Gabriel & Zierath, 2017). These alterations are accompanied by a change in skeletal muscle 

fuel selection during acute exercise, being reflected in an increased ratio of fat to 
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carbohydrate oxidation (Egan & Zierath, 2013). However, the molecular mechanisms and 

metabolic pathways underlying the whole-body and skeletal muscle adaptation to PE still 

remain to be completely elucidated (Zierath & Wallberg-Henriksson, 2015). 

The emerging field of metabolomics has the potential to simultaneously analyze a wide range 

of metabolites (Bujak et al., 2015), thereby facilitating a more comprehensive characterization 

of exercise-induced changes in human metabolism. As the human metabolome reflects the 

end-product of interactions between genes, proteins, and the cellular environment (Bujak et 

al., 2015), investigating the impact of acute or chronic PA on a high number and variety of 

metabolites can provide novel insights into the underlying biochemistry of exercise, possibly 

hinting at specific metabolic pathways related to the phenotypical response of the human 

organism to exercise (Daskalaki et al., 2014; Sakaguchi et al., 2019). Thus, metabolomics might 

contribute to the identification of exercise-responsive biomarkers, which are reflective of an 

individual’s PF status. Particularly with regard to the health benefits associated with a high 

CRF, the investigation of metabolic differences between more and less fit individuals is of  

great interest not only for sport scientists but also for physicians in the context of exercise 

prescription and health examination (Heaney et al., 2017). 

Until now, several studies have examined both the acute (Breit et al., 2015; Enea et al., 2010; 

Lewis et al., 2010; Muhsen Ali et al., 2016; Mukherjee et al., 2014; Netzer et al., 2011; 

Pechlivanis et al., 2010; Pechlivanis et al., 2015; Siopi et al., 2017; Siopi et al., 2019) and chronic 

(Bye et al., 2012; Chorell et al., 2012; Floegel et al., 2014; Koh et al., 2018; Lustgarten et al., 

2013; Morris et al., 2013) effects of PA on the human metabolome by using metabolomics. 

Although blood represents the most widely used biofluid in metabolomics research (Bujak et 

al., 2015), recent publications have demonstrated the ability of urine as a non-invasively 

collectable biological material to reflect acute exercise-induced perturbations in metabolism, 

e.g., after short-term exercise at maximal intensities (Enea et al., 2010; Pechlivanis et al., 2010; 

Pechlivanis et al., 2015) or submaximal endurance exercise (Mukherjee et al., 2014; Siopi et 

al., 2017). However, to the best of our knowledge, no previous study has investigated to what 

extent the urinary metabolome responds to a standard exercise tolerance test, during which 

individuals perform a stepwise progressive exercise program until exhaustion.  

A few metabolomics studies have provided evidence of changes in the blood metabolome due 

to maximal incremental exercise testing on either bicycle ergometer (Breit et al., 2015; Lewis 



6 Study IIa 

93 

 

et al., 2010; Netzer et al., 2011) or treadmill (Lewis et al., 2010). Interestingly, Lewis et al. 

(2010) demonstrated that the exercise-induced excursions of some plasma metabolites 

differentiated between more and less fit individuals, pointing out the possibility that these 

metabolites could represent important mediators of the salutary effects of PE and potential 

biomarkers of PF. With regard to the relationship between acute exercise-related changes in 

urinary metabolites and the PF status, research is rather scarce. Three studies investigating 

the alterations in the urinary metabolome due to submaximal endurance exercise (Muhsen 

Ali et al., 2016; Mukherjee et al., 2014) or short-term intensive exercise (Enea et al., 2010) 

either compared the exercise-induced changes in urinary metabolites between groups of 

different training status (Enea et al., 2010; Mukherjee et al., 2014) or aimed to predict the 

VO2max with the post-exercise urinary metabolite pattern (Muhsen Ali et al., 2016). However, 

limitations of existing studies are the relatively small sample sizes, ranging from 10 (Muhsen 

Ali et al., 2016) to 22 (Enea et al., 2010) participants, and the moderate number of quantified 

analytes (11 (Enea et al., 2010) or 27 (Mukherjee et al., 2014) metabolites, respectively) in two 

of the mentioned studies. Besides, results are partly restricted to young women (Enea et al., 

2010) or middle-aged men (Mukherjee et al., 2014) and therefore hardly transferable to the 

general population. 

Based on the limited data available on exercise-induced excursions of urinary metabolites 

being associated with PF and due to the fact that no previous study has investigated to what 

extent the body’s response to a standardized incremental exercise is reflected in the urinary 

metabolome, we pursued two major objectives with our study. Firstly, we aimed to 

characterize acute alterations in urinary metabolites due to a standardized exercise tolerance 

test on a bicycle ergometer until individual exhaustion, which was performed by 255 healthy 

women and men of the cross-sectional KarMeN study. The second aim was to investigate if 

either the urinary metabolites at rest, post-exercise, or the ratio of post- to pre-exercise 

metabolite concentrations are associated with the CRF, which was determined by measuring 

the VO2peak. As the metabolomics data were obtained from a comparatively large and 

heterogeneous population, this study was particularly suitable to analyze in how far urinary 

metabolite patterns can account for the variation in the VO2peak, when simultaneously 

considering covariates like age, sex, menopausal status, and LBM − all factors determining 

both the PF (Mercuro et al., 2006; Zeiher et al., 2019) and the human metabolome 
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(Armbruster et al., 2018; Jourdan et al., 2012; Korostishevsky et al., 2016; Rist et al., 2017; 

Stretch et al., 2011). A targeted NMR-based approach was applied to quantify the pre- and 

post-exercise urinary levels of 47 metabolites. Ranging from organic acids, keto acids, alcohols 

to purine derivatives and amino acids (AAs), the detected metabolites represent a relatively 

broad spectrum of organic compounds found in the human urine metabolome (Bouatra et al., 

2013). Urine as a biological specimen was chosen because it is easily accessible, stable, and 

under less homeostatic regulation than other biofluids (Bouatra et al., 2013; J. Wu & Gao, 

2015). 

6.3 Materials and Methods  

6.3.1 Subjects and Study Design 

The KarMeN study is a cross-sectional study which was performed between March 2012 and 

July 2013 at the Division of Human Studies of the Max Rubner-Institut (MRI) in Karlsruhe, 

Germany. The main objective of the KarMeN study was to investigate the impact of sex, age, 

body composition, and major lifestyle factors like diet and PA on the metabolome of healthy 

women and men. Detailed information about inclusion and exclusion criteria as well as a 

detailed description of the study design were provided in Bub et al. (2016).  

Briefly, 301 healthy, non-smoking individuals (172 men, 129 women) between 18 and 80 years 

were included. Volunteers were thoroughly characterized by anthropometric and clinical 

examinations. The body composition was assessed by dual-energy X-ray absorptiometry (DXA; 

Lunar iDXA, GE Healthcare, München, Germany) and the LBM and fat mass (FM) were 

calculated with the supplementary software enCOREv16. Blood hemoglobin (Hb) was 

measured by a certified clinical chemistry laboratory (MVZ Labor PD Dr. Volkmann, Karlsruhe, 

Germany). Besides, resting energy expenditure and CRF were assessed and data on regular PA 

and menopausal status in women were collected. As the menstrual cycle is known to influence 

metabolite profiles (Wallace et al., 2010), all premenopausal women were scheduled for 

examinations within their luteal phase. The study was approved by the ethics committee of 

the State Medical Chamber of Baden-Württemberg, Stuttgart, Germany and was conducted 

in accordance with the declaration of Helsinki. The study was registered at the German Clinical 

Trials Register (DRKS00004890). The WHO universal trial number is U1111-1141-7051. 

Written informed consent was obtained from all participants prior to entering the study. 
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6.3.2 Exercise Examination Day and Urine Sample Collection 

On the exercise examination day, participants entered the study center early in the morning. 

Before the bicycle ergometry started, volunteers passed a resting phase for the indirect 

calorimetry measurement (40 min), consumed a standardized breakfast consisting of two 

slices of wheat bread with butter and either cheese, ham, or jam (20 min), and had a second 

resting phase for answering the International Physical Activity Questionnaire (IPAQ) (20 min). 

Immediately after entering the study center, all participants provided fasting spot urine into 

100 mL polypropylene collection cups (Sarstedt, Nümbrecht, Germany). This was 

approximately 90 minutes before the bicycle ergometry started. In addition to that, the first 

available spot urine after the completion of the PE test was obtained from all participants 

approximately 15 to 30 minutes post-exercise. 

Participants performed a standardized exercise test on a bicycle ergometer (Ergobike medical, 

Daum, Fürth, Germany) until individual maximal performance was reached, see Biniaminov et 

al. (2018). Briefly, according to the WHO-loading protocol (Fletcher et al., 2013), each 

participant started pedaling at 25 watt and workload was then augmented by 25 watt every 

two minutes until individual exhaustion. Respiratory gas exchange was measured breath-by-

breath by using a cardiopulmonary exercise testing system (MetaMax 3B, Cortex, Leipzig, 

Germany). As a measure of PF, the VO2peak was determined. The VO2peak was defined as the 

highest achieved VO2 during the test. It is either expressed as an absolute value in L min−1 or 

relative to the body weight in mL kg−1 min−1. Further important endpoints of the incremental 

test were the maximal power (Pmax), maximum heart rate (HRmax), and the power at the 

individual anaerobic threshold (PIAT). The PIAT was determined by the Ergonizer software 

(Ergonizer, Version 4, Freiburg, Germany) after having measured lactate in capillary blood 

samples taken from an individual’s earlobe before, during, and after the test. Throughout the 

entire procedure, the heart rate (HR) was recorded by a HR monitor (T31 coded, Polar Electro 

GmbH Deutschland, Büttelborn, Germany). Additionally, a continuous hemodynamic 

monitoring was conducted by running a 12-channel electrocardiogram (CardioDirect 12, 

DelMar Reynolds GmbH, Feucht, Germany) and by measuring the blood pressure (BP) every 

2-3 minutes on the right upper arm (Boso Carat Professional, Bosch + Sohn, Jungingen, 

Germany). Break-off criteria for the maximal exercise test were predefined according to 

national ergometry standards and listed in the following: ST-segment depression > 3 mm, ST-
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segment elevation > 1 mm, acute hypertension with systolic BP > 230 mmHg or diastolic BP > 

115 mmHg, appearance of angina pectoris symptoms or severe dyspnea. 

6.3.3 Urine Sample Preparation 

After urine sample collections, all urine specimens were centrifuged at 1850 g at 4 °C for 10 

minutes and transferred into prechilled cryovials. They were initially frozen at −20 °C for one 

day and then cryopreserved at −196 °C until analysis. As previously shown, this procedure 

does not affect metabolomics results (Rist et al., 2013). 

6.3.4 1H-NMR Analysis 

In order to identify and quantify a relatively broad range of urinary metabolites before and 

after the cycle ergometry, all urine samples were analyzed by 1D-1H-NMR spectroscopy. As 

previously described (Rist et al., 2017), urine samples were centrifuged and supernatants were 

mixed with 10% of a buffer containing 1.5 M KH2PO4, 2 mM NaN3, and 5.8 mM trimethyl-

silylpropanoic acid (TSP) in D2O at pH 7.4 in 5 mm NMR tubes (Duran, purchased from Roth 

GmbH & Co KG, Karlsruhe, Germany). Samples were measured at 300 K on a Bruker 600 MHz 

spectrometer (either AVANCE III equipped with a 1H,13C,15N-TCI inversely detected cryoprobe 

or AVANCE II with 1H-BBI room temperature probe (Bruker BioSpin GmbH, Rheinstetten, 

Germany)) equipped with either SampleXpress or BACS sample changer using a 1D nuclear 

overhauser enhancement spectroscopy experiment with presaturation for water suppression. 

A prescan delay of 4 seconds was used together with a mixing time of 10 ms. Pulse lengths 

were determined automatically by the Bruker AU program, pulsecal. 64 k complex data points 

corresponding to a sweep width of 20 ppm were recorded. All spectra were treated identically 

using an exponential apodization function, introducing an additional linewidth of 0.3 Hz and 

automated phasing, baseline correction, and referencing using the Bruker macro, apk0.noe. 

Quality control (QC) samples were prepared by pooling urine samples from all participants. 

On each measurement day, at least three QC samples were analyzed along with approximately 

70 urine study samples, ensuring the comparability of the spectra over the time. Since 

alignment of metabolites in urine spectra for non-targeted analysis is still very challenging, a 

targeted NMR-based metabolomics approach was applied. The identification and 

quantification of 47 urinary metabolites, including organic acids, AAs, amines, sugars, sugar 

alcohols, and others was carried out with the Chenomx NMR Suite 8.4 (Chenomx, Edmonton, 
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AB, Canada). Further metabolites could either not be detected in each urine sample or not 

identified and/or quantified with sufficient confidence. Imprecision was generally <15%, with 

few exceptions. No systematic variation between the spectrometers was observed. 

Metabolite concentrations were normalized to osmolality, thus controlling for variations in 

urine dilution (Chetwynd et al., 2016), and results are given in µmol/L per mOsm/kg urine. The 

osmolality of urine samples was determined by freezing point depression using an Advanced 

Instrument Micro-Osmometer model 3MO (Norwood, MA, USA). 

6.3.5 Data Handling and Statistical Analysis 

We excluded 46 individuals due to missing spirometry data (n=40), outlying urinary metabolite 

concentrations (n=5), and implausible data on resting heart rate (HRrest) (n=1). Thus, data from 

255 individuals were included into the following analyses. Descriptive characteristics of the 

study participants are presented as mean and standard deviation (SD) for the total study 

sample and separately for women and men. Sex differences in basic characteristics were 

examined by Welch’s t-test. 

For each of the 47 metabolites, the fold change (FC) between the normalized post- and pre-

exercise concentrations was calculated per participant and data were shown as median and 

percentiles (25th, 75th). Compared to absolute differences in metabolite concentrations, FCs 

are unitless and therefore easier to interpret, allowing the direct comparison of exercise-

induced excursions between different metabolites. As the urinary metabolite concentrations 

did not follow a normal distribution, the data were subjected to nonparametric univariate 

statistical analysis. In order to identify urinary metabolites that were significantly different 

between pre- and post-exercise, Wilcoxon’s signed-rank tests were used. The false discovery 

rate (FDR) was applied to correct the obtained p-values for multiple hypothesis testing, using 

the method of Benjamini and Hochberg with an extension to the corresponding simultaneous 

tests. Adjusted p-values were compared to the level of statistical significance, which was set 

at α = 0.05. Metabolites with FDR-corrected p-values < 0.05 and median FCs ≤ 
1

1.1
 or  1.1 were 

considered as exercise-responsive metabolites. A volcano plot was provided to visualize the 

magnitude (FCs) and significance (FDR-corrected p-values) of differences in urinary 

metabolites. To compare the metabolite FCs between women and men, the Wilcoxon rank-

sum test was used and FDR-corrected p-values were reported.  
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Due to the non-normal data distribution and the occurrence of outliers in the urinary 

metabolite data, all variables were transformed into Van der Waerden (VdW) scores prior to 

the following analyses. In detail, by using this rank based inverse normal transformation, the 

data were converted into ranks, transformed to a scale between 0 and 1 and then, the 

corresponding standard normal quantiles were calculated. To investigate the relationships 

between the FCs of urinary metabolites, Pearson correlation coefficients (r) with 95% 

confidence intervals (CIs) were calculated. Furthermore, PCA was conducted on the 

transformed metabolite data, which were centered and scaled to unit variance, in order to 

visualize the main variability on a reduced dimensionality. Two different approaches were 

applied. The first approach was based on a data matrix of 2 × 255 participants from the pre- 

and post-exercise condition and 47 metabolites. The second approach dealt with a data matrix 

of 255 participants and 2 × 47 metabolites from the pre- and post-exercise condition. 

Relationships between the VO2peak and either pre- and post-exercise urinary metabolite 

concentrations or urinary metabolite FCs were analyzed by Pearson correlation. To remove 

any confounding association, we also performed partial correlation analyses by using the 

residuals from linear regressions, where both the transformed VO2peak and the transformed 

metabolite variables were regressed on age, sex, menopausal status, and LBM. 

In a next step, multiple linear regression procedures were conducted to analyze the 

relationship between the VO2peak and all urinary metabolite variables simultaneously. Three 

different models were calculated with the previously obtained residuals of VO2peak as the 

dependent variable and the residuals of (a) pre-exercise urinary metabolites, (b) post-exercise 

urinary metabolites, and (c) urinary metabolite FCs, respectively, entering as independent 

variables. By this construction, the analyzed relationships were confounder-adjusted and 

hence uncorrelated with known determinants of both the VO2peak and the urinary 

metabolome. In more detail, two stepwise regression models with either forward or backward 

elimination were performed for each (a), (b), and (c) to obtain a ranking of the adjusted 

metabolite variables according to their contribution for explaining the adjusted VO2peak. For 

the selection and elimination processes, the Bayesian information criterion (BIC) was used. 

Finally, based on the results of the stepwise regression procedures, the models with the 

minimum BIC were chosen in order to select those metabolite variables which should enter 

into a suitable final model. The adjusted coefficient of determination (R² (adjusted)) was used 
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to compare the three obtained final models with respect to their potential in explaining the 

variation of the adjusted VO2peak. Statistical analysis was performed using SAS JMP 11.0.0 (SAS 

Institute Inc., Cary, NC, USA, 2013) and the software R Version 3.6.0 (R Core Team, 2019), 

using the packages XLConnect (Mirai Solutions GmbH, 2020), ggplot2 (Wickham, 2016), 

ggpubr (Kassambara, 2019), corrplot (Wei, 2017), and ggrepel (Slowikowski, 2020a). 

6.4 Results 

6.4.1 Basic Characteristics of Study Participants 

Basic characteristics of the KarMeN study participants who were included in the present data 

analysis are summarized by means and SDs in Table 13. Our study sample consisted of 255 

healthy individuals, 148 men (58%) and 107 women (42%) with a mean age of 46.1 years.  

Table 13. Basic characteristics of study participants, total and stratified by sex. (Adapted from Kistner et al. (2020)). 

Characteristics of Participants Total (n=255) Men (n=148) Women (n=107) 1 

Age (years) 46.1  ± 16.9 * 42.8  ± 17.6 50.7  ± 14.7 
Body weight (kg) 72.5  ± 11.6 * 78.5  ± 10.0 64.2  ± 8.1 

Height (cm) 174.6  ± 9.6 * 180.1 ± 7.5 166.9  ± 6.5 
BMI (kg (m²)−1) 23.7 ± 2.8 * 24.2  ± 2.7 23.1  ± 2.9 

LBM (kg) 50.6  ± 10.4 * 58.0  ± 6.6 40.3  ± 3.8 

FM (%) 27.9  ± 8.7 * 23.2  ± 6.5 34.5  ± 6.7 

Hb (g dL−1) 2 14.4 ± 1.1 * 15.0 ± 0.9 13.5 ± 0.8 

BP systolic (mmHg) 123.6  ± 15.4 * 127.2  ± 13.6 118.6  ± 16.4 

BP diasystolic (mmHg) 83.1 ± 10.5 83.9  ± 10.2 82.1  ± 10.9 

HRrest (bpm) 62.4  ± 9.4 * 59.9 ± 9.3 65.8 ± 8.6 

VO2peak, absolute (L min−1) 2.83  ± 1.00 * 3.46  ± 0.81 1.96 ± 0.42 
VO2peak, relative (mL kg−1 min−1) 38.8 ± 11.6 * 44.5 ± 10.7 30.9  ± 7.4 

PIAT (watt) 144.5  ± 46.2 * 170.5  ± 41.1 108.4  ± 22.6 
Pmax (watt) 215.2  ± 69.1 * 257.0  ± 56.0 157.5 ± 36.0 

HRmax (bpm) 170.8 ± 16.8 * 174.1  ± 16.1 166.2  ± 16.8 

All values in mean ± SD; 1 n=49 in the pre- and n=58 in the post-menopausal state on the examination day; 2 n=254 (total), 
n=106 (women); * p < 0.05: significant difference between women and men by Welch’s t-test; BP: blood pressure; BMI: body 
mass index; FM: fat mass; Hb: hemoglobin; HRmax: maximum heart rate; HRrest: resting heart rate; LBM: lean body mass; n: 
sample size; PIAT: power at the individual anaerobic threshold; Pmax: maximal power; SD: standard deviation; VO2peak: peak 
oxygen uptake. 

During the incremental exercise test, participants reached a mean absolute VO2peak of 

2.83 L min−1. As the VO2peak was strongly associated with sex and menopausal status 

(R² = 0.59), age (R² = 0.35), and LBM (R² = 0.69), subsequent correlation and regression 

analyses were adjusted for these factors.  
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6.4.2 Alterations of Urinary Metabolites in Response to a Standardized Exercise Test 

Uni- and Bivariate Analysis 

By using an NMR-based approach, a total of 47 urinary metabolites were quantified in spot 

urine samples collected before and after a standardized incremental exercise test and 

measured concentrations were normalized to the osmolality of urine samples. To describe and 

compare the metabolite excursions, FCs between the normalized post- and pre-exercise 

urinary metabolite concentrations were calculated per participant. In Table 14, alterations in 

the urinary metabolite levels are summarized, with metabolites being ranked according to 

their median FC. The normalized absolute urinary metabolite concentrations before and after 

the bicycle ergometer test are presented as boxplots in Figure A-5 (Appendix A2.3). Boxplots 

of the FCs of urinary metabolites are provided in Figure A-6 (Appendix A2.4). 

Univariate analysis revealed that 37 out of the 47 measured metabolites showed a 

significantly different urinary excretion post-exercise when compared to pre-exercise. While 

six of these metabolites (lactate, mannitol, trans-aconitate, alanine, carnitine, and acetate) 

demonstrated a median FC ≥ 1.5, 17 metabolites showed a median FC between 1.2 and 1.5, 

10 metabolites exhibited a median FC between 1.0 and 1.2, two metabolites demonstrated a 

median FC between 0.8 and 1.0, and two metabolites showed a median FC ≤ 0.8. To facilitate 

the detection of exercise-responsive metabolites, which were defined as metabolites with 

FDR-adjusted p-values < 0.05 and median FCs ≤ 
1

1.1
 or  1.1, respectively, the significance and 

magnitude of the post- to pre-exercise differences are visualized in a volcano plot, see Figure 

A-7 (Appendix A2.5). Due to the relatively high inter-individual variation observed in the 

metabolite FC data and due to the known effect of sex on human metabolite profiles, we also 

investigated if there were any sex-related differences in urinary metabolite FCs. However, 

with the exception of citrate and trans-aconitate, women and men did not show any further 

significant difference in metabolite FCs. Results of the sex-stratified analysis of pre- to post-

exercise urinary metabolite changes are presented in Table A-5 and Table A-6 (Appendix A2.6).  

Especially in the exercise-induced excursions of the urinary lactate excretion, a high variance 

between individuals was detected, see Table 14 and Figure A-6 (Appendix A2.4). When 

analyzing the associations between the FCs of lactate as the main exercise-responsive 

metabolite and the FCs of all other metabolites, it was shown that the exercise-related change 
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in the urinary lactate excretion was most closely linked to alterations in the urinary excretion 

of pyruvate (r = 0.76), alanine (r = 0.62), methylsuccinate (r = 0.57), acetate (r = 0.56), and 

hypoxanthine (r = 0.56). 

Table 14. Changes in urinary metabolites after a standardized exercise test. (Adapted from Kistner et al. (2020)). 

Nr. Metabolite (Abbreviation) 
Median FC 

(25th, 75th percentiles) 
FDR-corrected p-value 

1 Lactate (Lac) 4.70 (1.64, 32.98) <0.0001 
2 Mannitol (Man) 2.34 (1.30, 4.29) <0.0001 
3 trans-Aconitate (t-Aco) 1.96 (1.05, 3.49) <0.0001 
4 Alanine (Ala) 1.74 (1.38, 2.20) <0.0001 
5 Carnitine (Car) 1.68 (1.24, 2.37) <0.0001 
6 Acetate (Acet) 1.55 (1.14, 2.68) <0.0001 
7 Taurine (Tau) 1.49 (1.19, 2.02) <0.0001 
8 Pyruvate (Pyr) 1.48 (0.88, 3.57) <0.0001 
9 Threonine (Thr) 1.40 (1.12, 1.86) <0.0001 

10 Guanidoacetate (Gua)  1.39 (1.14, 1.71) <0.0001 
11 N,N-Dimethylglycine (DMG) 1.38 (1.13, 1.68) <0.0001 
12 Betaine (Bet) 1.32 (1.12, 1.58) <0.0001 
13 Glycine (Gly) 1.32 (1.13, 1.63) <0.0001 
14 Histidine (His) 1.30 (1.07, 1.62) <0.0001 
15 Succinate (Suc) 1.30 (0.92, 1.76) <0.0001 
16 cis-Aconitate (c-Aco) 1.29 (1.08, 1.74) <0.0001 
17 Methylsuccinate (MSuc) 1.28 (1.12, 1.54) <0.0001 
18 Leucine (Leu) 1.28 (1.05, 1.71) <0.0001 
19 Acetone (Ace) 1.28 (0.85, 1.99) <0.0001 
20 Creatine (Cre) 1.26 (0.85, 1.91) <0.0001 
21 Citrate (Cit) 1.24 (1.05, 1.48) <0.0001 
22 2-Hydroxyisobutyrate (2-OH-Isob) 1.24 (1.07, 1.43) <0.0001 
23 Isoleucine (Ile) 1.21 (0.94, 1.49) <0.0001 
24 4-Hydroxyphenylacetate (4-OH-Phe) 1.19 (0.97, 1.69) <0.0001 
25 Formate (For) 1.16 (0.96, 1.36) <0.0001 
26 3-Aminoisobutyrate (BAIBA) 1.15 (0.94, 1.40) <0.0001 
27 Valine (Val) 1.14 (0.97, 1.39) <0.0001 
28 3-Hydroxyisovalerate (3-OH-Isov) 1.13 (1.02, 1.28) <0.0001 
29 Gluconate (Glu) 1.13 (0.92, 1.44) <0.0001 
30 Tyrosine (Tyr) 1.12 (0.97, 1.41) <0.0001 
31 Tartrate (Tar) 1.12 (0.74, 1.51) 0.8643 
32 Methylamine (MA) 1.10 (0.93, 1.41) <0.0001 
33 Dimethylsulfone (DMS) 1.09 (0.87, 1.43) 0.0013 
34 Glycolate (Glyc) 1.07 (0.86, 1.27) 0.0066 
35 Methanol (Met) 1.07 (0.71, 1.72) 0.1777 
36 Urea (Urea) 1.03 (0.87, 1.20) 0.0715 
37 Pseudouridine (Pse)  1.03 (0.88, 1.20) 0.1605 
38 Dimethylamine (DMA) 1.02 (0.86, 1.21) 0.2783 
39 Hypoxanthine (Hyp) 1.00 (0.67, 1.65) 0.4068 
40 Uracil (Ura) 0.98 (0.79, 1.22) 0.2208 
41 Creatinine (Crea) 0.98 (0.84, 1.18) 0.7036 
42 1-Methylnicotinamide (MNA) 0.97 (0.78, 1.24) 0.3221 
43 Trimethylamine N-oxide (TMAO) 0.97 (0.79, 1.19) 0.0778 
44 3-Methylxanthine (3-MXan) 0.90 (0.70, 1.16) <0.0001 
45 3-Indoxylsulfate (3-Ind) 0.87 (0.68, 1.04) <0.0001 
46 Trigonelline (Tri) 0.73 (0.63, 0.89) <0.0001 
47 Hippurate (Hip) 0.70 (0.54, 0.91) <0.0001 

For each metabolite, FCs between normalized post- and pre-exercise concentrations were calculated per participant and 
presented as median, 25th, and 75th percentiles. Significant pre- to post-exercise differences are shown by FDR-corrected 
p-values obtained by Wilcoxon’s signed-rank test. Metabolites are sorted from high to low median FCs. Exercise-responsive 

metabolites (i.e., metabolites with FDR-adjusted p-values < 0.05 and median FCs ≤ 
1

1.1
 or  1.1, respectively) are indicated in 

italics. FC: fold change; FDR: false discovery rate. 
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Multivariate Analysis  

PCA was applied as an unsupervised method to describe the differentiation in the metabolite 

profile between pre- and post-exercise urine samples. Two different approaches were 

conducted to compare either the participants in the pre- and post-exercise condition (based 

on a data matrix of 2 × 255 participants and 47 metabolites) or the pre- and post-exercise 

urinary metabolite profile (based on a data matrix of 2 × 47 metabolites and 255 participants). 

With regard to the first approach, no clear separation of the participants to either the pre- or 

post-exercise state was visible in the score plots of the first, second, and third principal 

component (PC), see Figure 22 and Figure A-8 (Appendix A2.7). However, with respect to the 

second approach, a partial separation between the pre- and post-exercise metabolite profile 

could be observed in the loading plots of the first three PCs. The metabolite with the greatest 

change in correlation to the first PC between the pre- and post-exercise condition was lactate. 

The separation of the other metabolites was mainly detectable in the second and third PC, see 

Figure 23 and Figure A-9 (Appendix A2.7).  

 
Figure 22. PCA score and loading plot of a combined pre- and post-exercise urinary metabolite data matrix containing 2 × 255 
participants and 47 metabolites. The first two principal components are visualized; left: score plot, data points stand for 
participants and are color-coded according to the pre- or post-exercise state; right: loading plot, data points stand for 
metabolites. PC: principal component; PCA: principal component analysis. (Reprinted from Kistner et al. (2020)).  
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Figure 23. PCA score and loading plot of a combined pre- and post-exercise urinary metabolite data matrix containing 255 
participants and 2 × 47 metabolites. The first two principal components are visualized; left: score plot, data points stand for 
participants and are color-coded according to the sex of the participants; right: loading plot, data points stand for metabolites 
and are color-coded according to the pre- or post-exercise state. PC: principal component; PCA: principal component analysis. 
(Reprinted from Kistner et al. (2020)). 

6.4.3 Relationship between the CRF and Urinary Metabolites 

Different exploratory approaches were applied to investigate the relationship between 

urinary metabolite measures and the CRF status. Firstly, we focused on bivariate associations 

between the VO2peak and single metabolite measures, followed by partial associations 

independent of phenotypical variables known to determine both the VO2peak and the 

metabolome. Secondly, multiple linear regression analyses were conducted to examine the 

relationship between the VO2peak and all urinary metabolites simultaneously. To assess which 

of the metabolite measures (pre-exercise, post-exercise, or the post- to pre-exercise ratio, i.e., 

FC) correlates best with the VO2peak, all analyses were performed separately for each of the 

three metabolite parameters.  

Bivariate Analyses 

Pearson correlation coefficients and partial correlations adjusted for age, sex, menopausal 

status, and LBM were calculated for the associations of the VO2peak with urinary metabolite 

measures and are presented in Table A-7 (Appendix A2.8). Correlations were considered 
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statistically significant when the 95% CIs did not include zero. A visual comparison of the 

pairwise associations is additionally provided in correlation heat maps, see Figure 24 for the 

pre-exercise measures, Figure 25 for the post-exercise measures, and Figure 26 for the 

metabolite FCs.  

Results of the unadjusted correlations revealed that 22 pre-exercise urinary metabolites, 24 

post-exercise urinary metabolites, and seven FCs of urinary metabolites showed a correlation 

with the VO2peak which was significantly different from zero. With regard to the pre-exercise 

metabolite measures, the strongest correlations were observed for citrate (r = −0.46), 

guanidoacetate (r = −0.39), lactate (r = −0.38), trigonelline (r = −0.35), and succinate (r = −0.32), 

see Figure 24 (right/up; 1st row). For the post-exercise metabolite measures, guanidoacetate 

(r = −0.41), citrate (r = −0.39), gluconate (r = −0.36), trigonelline (r = −0.36), creatine (r = −0.35), 

hippurate (r = −0.34), and succinate (r = −0.31) were most strongly associated with the VO2peak, 

see Figure 25 (right/up; 1st row). When regarding the FCs of urinary metabolites, correlations 

with the VO2peak were comparatively low with r ≤ 0.3 or  −0.3, respectively, see Figure 26 

(right/up; 1st row). 

 
Figure 24. Heat map of correlations between pre-exercise urinary metabolites, VO2peak, age, and LBM. Right/up: unadjusted 
bivariate associations; left/low: partial associations adjusted for age, sex, menopausal status, and LBM. Pearson correlations 
were performed on VdW-transformed data. LBM: lean body mass; VdW: Van der Waerden; VO2peak: peak oxygen uptake. 
(Reprinted from Kistner et al. (2020)).   
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Figure 25. Heat map of correlations between post-exercise urinary metabolites, VO2peak, age, and LBM. Right/up: unadjusted 
bivariate associations; left/low: partial associations adjusted for age, sex, menopausal status, and LBM. Pearson correlations 
were performed on VdW-transformed data. LBM: lean body mass; VdW: Van der Waerden; VO2peak: peak oxygen uptake. 
(Reprinted from Kistner et al. (2020)).  

 

Figure 26. Heat map of correlations between urinary metabolite FCs, VO2peak, age, and LBM. Right/up: unadjusted bivariate 
associations; left/low: partial associations adjusted for age, sex, menopausal status, and LBM. Pearson correlations were 
performed on VdW-transformed data. FCs: fold changes; LBM: lean body mass; VdW: Van der Waerden; VO2peak: peak oxygen 
uptake. (Reprinted from Kistner et al. (2020)).   
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To examine if the described correlations were dependent on certain influencing factors such 

as age, sex, menopausal status, and LBM, both the VO2peak and the urinary metabolite 

measures were adjusted for these factors and correlation analyses were performed on the 

corresponding residuals. Results of the partial correlation analyses showed that only three 

pre-exercise urinary metabolites, three post-exercise urinary metabolites, and two FCs of 

urinary metabolites exhibited a partial correlation with the VO2peak which was significantly 

different from zero. After adjusting for confounding factors, the most correlated urinary 

metabolite measures included pre-exercise histidine (r = −0.17), tyrosine (r = −0.16), and uracil 

(r = 0.16), post-exercise tyrosine (r = −0.18), 1-methylnicotinamide (r = −0.15), and guanido-

acetate (r = −0.12), as well as the FCs of urinary 1-methylnicotinamide (r = −0.13) and hypo-

xanthine (r = −0.13), see Table A-7 (Appendix A2.8) and Figure 24, Figure 25, or Figure 26, 

respectively (left/down; 1st column). In addition, bivariate correlations of age and LBM with 

the VO2peak and the urinary metabolite measures confirmed that these factors were strongly 

correlated with the VO2peak and weakly to moderately associated with some urinary 

metabolite parameters, see 2nd and 3rd row in Figure 24, Figure 25, or Figure 26, respectively. 

Multivariate Analyses 

To analyze the relationship between the VO2peak and all urinary metabolites at once, several 

multiple linear regression procedures were conducted. By adjusting both the VO2peak as the 

dependent variable and the urinary metabolite measures as the independent variables for 

age, sex, menopausal status, and LBM, the investigated associations were uncorrelated with 

these phenotypical variables. When all 47 urinary metabolite measures were included into a 

multiple linear regression model, the adjusted pre-exercise urinary metabolites explained the 

variation in the adjusted VO2peak to 29.5% (R² = 0.295, R² (adjusted) = 0.135). While the 

adjusted post-exercise urinary metabolites similarly accounted for up to 29.6% (R² = 0.296, R² 

(adjusted) = 0.137) of the variation in the adjusted VO2peak, the inclusion of all 47 adjusted FCs 

of urinary metabolites resulted in a comparatively lower proportion of explained variance in 

the adjusted VO2peak (R² = 0.141, R² (adjusted) = −0.054). In a next step, we aimed to select the 

best set of urinary metabolite variables describing the adjusted VO2peak. Therefore, two 

stepwise regression models with either forward or backward selection were performed for 

each metabolite measure (i.e., pre-exercise, post-exercise and FC). As a criterion for the 

selection of urinary metabolite variables, the BIC was used. For each metabolite measure, the 
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model with the lowest BIC was chosen and the respective metabolite variables were entered 

into a final multiple linear model. The included urinary metabolite variables as well as criteria 

for the evaluation and comparison of the three final models are summarized in Table 15. 

Table 15. Final multiple linear models for the adjusted VO2peak. (Adapted from Kistner et al. (2020)). 

Model R² 
R² 

(adjusted) 
BIC Std.-Beta 

95% CI 
(lower) 

95% CI 
(upper) 

Pre-Exercise 0.176 0.153 300.9    

cis-Aconitate    −0.441 −0.291 −0.106 
3-Aminoisobutyrate      0.232   0.047   0.163 

trans-Aconitate      0.295   0.054   0.212 
Tyrosine    −0.213 −0.157 −0.038 

Guanidoacetate    −0.208 −0.165 −0.038 
Uracil      0.206   0.033   0.156 

Lactate      0.230   0.041   0.218 

Post-Exercise 0.081 0.070 306.6    

Tyrosine    −0.197 −0.145 −0.034 
3-Aminoisobutyrate      0.182   0.028   0.141 

1-Methylnicotinamide    −0.149 −0.126 −0.013 

FCs 0.000 0.000 311.4    

(intercept-only model)       

Metabolite variables were selected based on the results of the stepwise regression analyses. All variables were VdW-
transformed prior to analysis and adjusted for age, sex, menopausal status, and LBM. BIC: Bayesian information criterion; CI: 
confidence interval (of the corresponding regression coefficient in the considered linear model); FCs: fold changes; LBM: lean 
body mass; R² (adjusted): (adjusted) coefficient of determination; Std.-Beta: Standard-Beta (corresponding regression 
coefficient using only standardized variables); VdW: Van der Waerden; VO2peak: peak oxygen uptake. 

With regard to the pre-exercise metabolite measures, seven urinary metabolite variables 

were included into the final model, resulting in an R² (adjusted) of 0.153 and a BIC of 300.9. 

For the post-exercise metabolite measures, three urinary metabolite variables were selected 

for the final model, which showed a comparatively lower R² (adjusted) of 0.070 and a higher 

BIC of 306.6. When regarding the FCs of urinary metabolites, the model with the minimal BIC 

did not contain any metabolite variables. Thus, the intercept-only model was obtained for 

the explanation of the adjusted VO2peak based on the urinary metabolite FCs. 

Apart from the multiple regression analyses, PCA was performed using either the adjusted 

pre- or post-exercise urinary metabolite data or the adjusted data on urinary metabolite FCs, 

in order to detect clusters of participants potentially related to their PF status. The first, 

second, and third PC were visualized in score and loading plots, see Figure A-10, Figure A-11, 

and Figure A-12 (Appendix 2.7). In the score plots, the data points were color-coded 

according to the individual VO2peak of the participants. No evident cluster of participants with 

a similar PF level could be detected based on the pre- or post-exercise urinary metabolite 

profile, respectively. Nor did we observe a grouping of participants with a similar PF level 

when conducting the PCA on urinary metabolite FCs. 
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6.5 Discussion 

The main finding of this study is that 37 out of 47 measured metabolites showed a significantly 

different urinary concentration post-exercise when compared to pre-exercise. While the 

strongest increase was observed for urinary lactate, mannitol, trans-aconitate, alanine, 

carnitine, and acetate (all demonstrating a median FC > 1.5), the strongest decrease was 

observed for urinary hippurate and trigonelline (both demonstrating a median FC < 0.8). 

However, PCA did not permit a clear separation of the pre- and post-exercise urine samples. 

With regard to the investigated relationship between the VO2peak and urinary metabolites, 

both bivariate correlation and multiple linear regression analyses revealed only weak 

associations when adjusting for confounding covariates like age, sex, menopausal status, and 

LBM. In the following sub-sections, the post-exercise alterations in urinary metabolites as well 

as their relation to the CRF status of the KarMeN study participants are discussed. 

6.5.1 Post-Exercise Alterations in Urinary Metabolites Are Partly Reflective of Energy 

Metabolism 

The pre- to post-exercise comparison of urinary metabolite concentrations confirmed some 

well-established exercise-induced changes in pathways related to ‘energy metabolism’. 

However, some novel urinary metabolites being altered in response to PE were also revealed. 

A summary of the origin and pathways of the identified metabolites and the documented 

effect of acute PE on urinary metabolite levels is provided in Figure 27. 

The highest post-exercise increase was observed for urinary lactate (median FC = 4.70), which 

can be explained by an enhanced carbohydrate catabolism in the exercising muscles. During 

an incremental exercise test, individuals continuously utilize an increased amount of 

adenosine triphosphate (ATP). To maintain the muscular ATP resynthesis rate, the required 

energy is initially provided by mainly aerobic processes and then, with augmented intensity, 

to an increased degree by the anaerobic energy system (Bertuzzi, Nascimento, Urso, 

Damasceno, & Lima-Silva, 2013). As the end-product of anaerobic glucose breakdown, lactate 

is released into the blood stream and partly excreted via urine (Adeva-Andany et al., 2014). 

The documented increase in urinary lactate elimination is in accordance with the results of 

other exercise metabolomics studies (Enea et al., 2010; Muhsen Ali et al., 2016; Mukherjee et 

al., 2014; Pechlivanis et al., 2010; Pechlivanis et al., 2015; Siopi et al., 2017), even though the 
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Figure 27. Pathways and origin of identified metabolites. The post-exercise changes of the urinary metabolites are color-coded as follows: red, FC  1.5 and FDR-corrected p < 0.05; orange: 

1.5 > FC  1.1 and FDR-corrected p < 0.05; black: 1.1 > FC > 
𝟏

𝟏.𝟏
 or FDR-corrected p  0.05; blue: FC ≤ 

𝟏

𝟏.𝟏
 and FDR-corrected p < 0.05; grey: undetected metabolites. BCAA: branched-chain amino 

acid; FC: fold change between normalized post- and pre-exercise urinary metabolite concentrations; FDR: false discovery rate; p: p-value obtained by Wilcoxon‘s signed-rank test to analyze 
significant pre- to post-exercise differences. (Reprinted from Kistner et al. (2020)).  
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magnitude of urinary lactate excretion was generally greater in response to maximal exercise 

protocols (Pechlivanis et al., 2010; Pechlivanis et al., 2015; Siopi et al., 2017). When compared 

with other metabolites, we observed a remarkably high inter-individual variation in the post-

exercise urinary lactate concentrations. Unfortunately, we were unable to explain this 

variation by any of the measured physiological parameters and assume it to be a result of the 

heterogeneous study population and further influencing factors (e.g., the maximally reached 

exercise intensity, the anaerobic lactic capacity, or the elimination rate of lactate from muscle 

via blood to urine). However, despite the high variation in the lactate FCs, we noticed that 

those persons with a high increase in urinary lactate also showed a high increase in urinary 

pyruvate, alanine, and acetate – all metabolites resulting from interconnected metabolic 

pathways, see Figure 27. For instance, the post-exercise increase of urinary pyruvate (median 

FC = 1.48) can equally be seen as a result of an increased glycolysis. When the pyruvate 

production rate during exercise is higher than the capacity of the mitochondria to take up 

pyruvate, the skeletal muscle has to remove it from the cytosol (Baker et al., 2010). Thus, 

pyruvate is either directly released into the blood or previously converted to lactate via lactate 

dehydrogenase reaction (Baker et al., 2010) or to alanine via transamination (Adeva-Andany 

et al., 2014), thereby providing substrates for gluconeogenesis in the liver (Adeva-Andany et 

al., 2014; G. Wu, 2009). Our results demonstrated a median 1.74-fold increase in the urinary 

alanine excretion after exercise, which is in line with previous work (Enea et al., 2010; 

Mukherjee et al., 2014; Pechlivanis et al., 2015; Siopi et al., 2017). As the alanine flux into the 

bloodstream during exercise was shown to be higher than the alanine uptake by the liver (Felig 

& Wahren, 1971), it can be assumed that this AA accumulated in blood and was therefore 

excreted via urine after the incremental test. Next to pyruvate and alanine, the post-exercise 

increase in urinary lactate was accompanied by a median 1.55-fold increase in urinary acetate, 

confirming the results of previous studies investigating the effect of acute PE on the urinary 

metabolome (Enea et al., 2010; Mukherjee et al., 2014; Pechlivanis et al., 2015). Two 

mechanisms for explaining this observation are discussed in the literature. Firstly, the rise in 

urinary acetate is likely to be the consequence of an increased hydrolysis of acetyl-CoA, which 

was produced from pyruvate but could not entirely enter into the tricarboxylic acid (TCA) cycle 

and was therefore released into the blood (Knowles, Jarrett, Filsell, & Ballard, 1974; 

Pechlivanis et al., 2015). Secondly, acetate might be directly produced in a radical-removing 
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reaction from pyruvate, which seems able to convert reactive oxygen species into carbon 

dioxide and acetate (Bassenge, Sommer, Schwemmer, & Bünger, 2000; Liu et al., 2018). 

With regard to the remaining AAs (Gly, His, Ile, Leu, Tau, Thr, Tyr, Val), we observed a post-

exercise increase in their urinary excretion, reaching from a median 1.12-fold (Tyr) to a median 

1.49-fold (Tau) rise. This observation points to higher circulating AA concentrations, but it 

remains speculative if this was due to an increased exercise-induced protein degradation or a 

higher AAs availability owing to the breakfast participants consumed after the first spot urine 

collection. Although the rise in urinary alanine was consistent across several exercise-related 

metabolomics studies, this global increase in AAs has not been detected in previous work. 

While Siopi et al. (2017) could confirm a higher urinary excretion of glycine, histidine, taurine, 

tyrosine, and threonine two hours after high-intensity interval and continuous moderate 

exercise, other studies documented an unchanged urinary excretion of taurine (Pechlivanis et 

al., 2010; Pechlivanis et al., 2015), isoleucine, leucine, and valine (Pechlivanis et al., 2010) or a 

decreased level in urinary glycine (Mukherjee et al., 2014; Pechlivanis et al., 2010; Pechlivanis 

et al., 2015), leucine (Muhsen Ali et al., 2016), histidine (Pechlivanis et al., 2010), threonine 

(Muhsen Ali et al., 2016), and tyrosine (Pechlivanis et al., 2015), respectively, in response to 

the different exercise protocols. With respect to the increase in urinary taurine, a semi-

essential AA highly concentrated in human muscles (Seidel et al., 2018), it can be supposed 

that the acute PE resulted in an increased muscular taurine release. Consistent with this 

explanation, previous work has demonstrated an exercise-induced release of taurine from 

contracting muscles due to osmoregulatory processes, leading to a higher taurine level in both 

blood and urine (Cuisinier et al., 2002). However, as the urinary excretion of taurine 

furthermore depends on the dietary taurine intake (Lambert et al., 2015), it cannot be 

completely excluded that the intake of taurine-containing food like cheese at breakfast led to 

the observed increase in urinary taurine excretion. 

Four further metabolites related to ‘AA metabolism’ showed a post-exercise increase in their 

urinary level, namely methylsuccinate (median FC = 1.28) and 3-hydroxyisovalerate (median 

FC = 1.13), both byproducts of the leucine degradation pathway (Dercksen et al., 2013; Duran, 

Walther, Bruinvis, & Wadman, 1983), 4-hydroxyphenylacetate (median FC = 1.19), a 

degradation product of tyrosine, and 3-aminoisobutyrate (median FC = 1.15), a valine 

degradation product and recently discovered myokine (Tanianskii, Jarzebska, Birkenfeld, 
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O’Sullivan, & Rodionov, 2019). The AA derivative N,N-dimethylglycine (median FC = 1.38) and 

guanidoacetate (median FC = 1.39), an intermediate in the metabolic pathway of several AAs, 

were also reported to be elevated in the post-exercise urine samples. To our knowledge, no 

earlier metabolomics studies have reported exercise-related changes in the urinary 

concentration of these metabolites. 

With regard to metabolites of the TCA cycle, i.e., citrate, cis-aconitate, and succinate, a median 

1.24- to 1.30-fold increase in their urinary levels was observed post-exercise. A significant rise 

in urinary succinate has previously been documented in response to a 30 seconds maximal 

sprint (Enea et al., 2010), whereas a decrease in both urinary succinate (Mukherjee et al., 

2014; Pechlivanis et al., 2015) and citrate (Mukherjee et al., 2014; Pechlivanis et al., 2010; 

Pechlivanis et al., 2015; Siopi et al., 2017) was reported after intermittent (Pechlivanis et al., 

2010; Pechlivanis et al., 2015; Siopi et al., 2017) or submaximal exercise (Mukherjee et al., 

2014; Siopi et al., 2017). Compared to this, other studies showed that acute exercise was 

followed by an increase in plasma TCA cycle intermediates, suggesting that these compounds 

spilled over from muscle into the circulation due to an increased TCA cycle flux (Peake et al., 

2014; Zafeiridis et al., 2016). However, whether the increased post-exercise urinary excretion 

of TCA cycle metabolites in our study can also be traced back to this explanation, remains 

unclear. Interestingly, we observed that women had a lower FC of urinary citrate than men 

(median 1.16- vs. 1.29-FC). This might hint at sex-specific differences in exercise-related citrate 

turnover. 

To our knowledge, this is the first study reporting a post-exercise increase in the urinary 

excretion of carnitine (median FC = 1.68). Carnitine, which can either be synthesized from the 

AA lysine or ingested through diet, is largely stored in the skeletal muscle, where it is involved 

in the translocation of long-chain fatty acids (LCFAs) into the mitochondrial matrix for 

subsequent β-oxidation and the buffering of accumulating acetyl-CoA (Stephens, 2018). 

Previous work has shown that acute PE results in a higher muscle and plasma concentration 

of acetylcarnitines (reflecting an enhanced pyruvate and fatty acids oxidation) or long-chain 

acylcarnitines (reflecting an increased mobilization of free fatty acids) (Arenas et al., 1991; 

Breit et al., 2015; Carlin, Reddan, Sanjak, & Hodach, 1986; Lehmann et al., 2010; Zhang et al., 

2017), accompanied by a decrease in muscular (Carlin et al., 1986; Hiatt, Regensteiner, Wolfel, 

Ruff, & Brass, 1989) and blood (Arenas et al., 1991; Carlin et al., 1986) free carnitine. However,
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neither a decreased nor an increased urinary excretion of free carnitine has been noticed so 

far (Hiatt et al., 1989; Pechlivanis et al., 2010; Pechlivanis et al., 2015).  

In addition to carnitine, urinary mannitol and trans-aconitate demonstrated a more than 1.9-

fold increase in response to the incremental exercise test. Mannitol is a polyol found in many 

foods and used as an artificial sweetener. It is produced by microorganisms (Feng et al., 2016) 

and cannot be metabolized by humans (Wisselink, Weusthuis, Eggink, Hugenholtz, & Grobben, 

2002). Although an exercise-related increase of urinary mannitol was also shown by Siopi et 

al. (2017), the reasons for this alteration are currently unclear. As mannitol in urine seems to 

show diurnal variation (Slupsky et al., 2007), an effect of time on the mannitol excretion 

cannot be excluded. Trans-aconitate is an organic acid present in plants like wheat or soybean 

and seems not to be degraded in human metabolism (Yuhara, Yonehara, Hattori, Kobayashi, 

& Kirimura, 2015). Since participants of this study consumed wheat bread before exercising, 

it is presumable that the increase in urinary trans-aconitate was due to its dietary intake and 

not owing to the acute PE. That women demonstrated a higher increase in urinary trans-

aconitate than men (median 2.33- vs. 1.53-FC) could indicate sex-related differences in the 

biokinetics of absorbed trans-aconitate. 

With regard to betaine (median FC = 1.32), an increased urinary excretion has previously been 

documented in response to intermittent and submaximal endurance exercise (Siopi et al., 

2017). Betaine functions as an organic osmolyte and methyl donor; it is endogenously 

produced or ingested through foods like wheat or spinach (Ueland, Holm, & Hustad, 2005). 

However, as the urinary betaine excretion seems to be relatively stable, not being 

considerably affected by food intake or hydration status (Lever & Slow, 2010), we are currently 

unable to explain the observed increase in urinary betaine. Similarly, it is unclear why the level 

of urinary acetone (median FC = 1.28) increased after exercise. The ketone body is produced 

in the liver when there is a shortage of carbohydrates, e.g., during prolonged exercise or in 

the fasting state (Evans, Cogan, & Egan, 2017). Concerning creatine, there is one study 

confirming the post-exercise increase in its urinary excretion (Siopi et al., 2017) and one study 

showing opposite results (Muhsen Ali et al., 2016). Altogether, the observed increases in 

urinary creatine, formate, gluconate, and methylamine can hardly be explained and might be 

due to uncontrolled variation. However, one interesting finding is the post-exercise rise in the 

urinary excretion of 2-hydroxyisobutyrate (median FC = 1.24), which has already been shown 
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in previous exercise metabolomics studies (Pechlivanis et al., 2015; Siopi et al., 2017). Urinary 

2-hydroxyisobutyrate is mainly known as a degradation product of gasoline additives entering 

the body through inhalational exposure (Amberg, Rosner, & Dekant, 1999). Recently, it was 

also suggested to be a gut microbial metabolite (Yap et al., 2010) and an indicator of the 

increased lactate production due to alcohol consumption (Irwin et al., 2018). As the same 

carrier protein seems to be responsible for the (re)absorption of both lactate and 2-hydroxy-

isobutyrate in the kidney, it was assumed that elevated lactate levels inhibit the 2-hydroxy-

isobutyrate reabsorption rate, thus contributing to a rise in its urinary excretion (Irwin et al., 

2018). However, it remains largely speculative if this mechanism also underlay the exercise-

related increase of urinary 2-hydroxyisobutyrate in this study. 

The four metabolites showing a decrease in the post-exercise urine samples were identified 

as either microbial cometabolites, namely 3-indoxylsulfate (Behr et al., 2017) and hippurate 

(Lees, Swann, Wilson, Nicholson, & Holmes, 2013), or diet-related metabolites, namely 3-

methylxanthine (Geraets, Moonen, Wouters, Bast, & Hageman, 2006) and trigonelline 

(Madrid-Gambin et al., 2016); both markers of coffee consumption. As we could not find a 

relevant link between these metabolites and acute exercise, we assume that the observed 

decline in their urinary levels was due to uncontrolled variation. 

Rather unexpectedly, no change was documented in the urinary excretion of hypoxanthine, 

the final ATP degradation product, which is known to be released during PE from muscles to 

blood and excreted via urine (Zielinski & Kusy, 2015b). In agreement with its proposed 

function as an indicator of exercise-related energetic stress (Sahlin et al., 1999; Zielinski & 

Kusy, 2015b), hypoxanthine was increased in the post-exercise urine samples of several 

metabolomics studies (Enea et al., 2010; Muhsen Ali et al., 2016; Mukherjee et al., 2014; 

Pechlivanis et al., 2010; Pechlivanis et al., 2015; Siopi et al., 2017). The discrepant results could 

be explained by a comparatively lower exercise intensity or duration in the KarMeN study or 

a time point of sample taking that was too early to capture the post-exercise rise of 

hypoxanthine in urine.  

With regard to our multivariate approaches, we could not observe a clear distinction between 

the pre- and post-exercise urine samples, see Figure 22 and Figure A-8 (Appendix A2.7), 

suggesting that the incremental exercise test did not cause a substantial variation in the 
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overall urinary metabolite profile. Conversely, the PCA loading plots in Figure 23 and Figure A-

9 (Appendix A2.7) showed a partial separation between the pre- and post-exercise urinary 

metabolites, which was predominantly detectable in the second and third PC. These results 

indicate that there was a variation in the urinary metabolite profile which, however, could not 

primarily and solely be attributed to the performed exercise. Although the results of our 

univariate analysis revealed that 37 out of 47 urinary metabolites significantly changed in 

response to exercise, it was also apparent that the degree of changes in urinary metabolites 

was less profound than in other exercise-related metabolomics studies (Enea et al., 2010; 

Pechlivanis et al., 2010; Pechlivanis et al., 2015; Siopi et al., 2017). Furthermore, we generally 

observed a high inter-individual variability in urinary metabolite concentrations and calculated 

FCs, which was probably due to the heterogeneous study population and the fact that the 

dietary intake on the day before the bicycle ergometry was not standardized. Taken together, 

discrepancies regarding the type, duration, and intensity of exercise as well as the time point 

of sample taking and the selected study population only allowed a limited comparison of our 

results to other studies. What additionally has to be taken into account when interpreting our 

findings is that large sample sizes like in this study can amplify the detection of statistically 

significant metabolite changes, which are, however, not necessarily biologically relevant 

(Faber & Fonseca, 2014). Nevertheless, as we could detect known exercise-related metabolite 

changes being reflected in the urinary metabolome, we conclude that metabolomics studies 

focusing on urine need to control for PA. 

6.5.2 Urinary Metabolites at Rest and after Exercise Are Not Substantially Related to PF 

Despite a high inter-individual variance in both the analyzed urinary metabolites and the 

VO2peak, we revealed only weak to moderate associations between the CRF and the pre- and 

post-exercise urinary metabolite profile or the exercise-related metabolite FCs, respectively. 

When comparing the results of the single and partial correlation analyses, it became obvious 

that the associations between the VO2peak and the urinary metabolite variables were strongly 

influenced by age, sex, menopausal status, and LBM. After adjusting for these covariates, only 

few single urinary metabolites showed weak correlations with the VO2peak which were 

significantly different from zero, namely pre-exercise urinary histidine (r = −0.17), tyrosine 

(r = −0.16), and uracil (r = 0.16), post-exercise urinary 1-methylnicotinamide (r = −0.15), 
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guanidoacetate (r = −0.12), and tyrosine (r = −0.18), and FCs of urinary 1-methylnicotinamide 

(r = −0.13) and hypoxanthine (r = −0.13). Even if no reliable urinary marker for the VO2peak 

could be detected in this study, our results hint at a few potentially interesting urinary 

metabolites that are independently of known covariates linked to the VO2peak. For example, 

the slight negative association between pre-exercise urinary histidine and the VO2peak is in line 

with a previous study documenting a significant lower urinary histidine excretion in a high-PF 

group compared to a low-PF group (Morris et al., 2013). As opposed to this, the weak negative 

association between the FC of urinary hypoxanthine and the VO2peak does not confirm previous 

results from Mukherjee et al. (2014) who showed that more fit individuals demonstrated a 

higher increase in urinary hypoxanthine after a submaximal endurance exercise than less fit 

participants. The discrepant results could be explained by distinct approaches to detect 

differences in post-exercise metabolite alterations or by different study populations. We used 

correlation and regression analyses instead of group comparisons to be able to draw 

conclusions across a broad range of PF levels in healthy women and men. Previous studies 

characterizing the human urinary metabolome in relation to acute PE and the PF status mainly 

observed fitness-associated differences in exercise-induced metabolite changes between pre-

defined groups of either athletes or untrained persons (Enea et al., 2010; Mukherjee et al., 

2014). We suppose that maybe an athletic background with several years of training and 

possibly a distinct genetic background is necessary to substantially alter metabolic pathways.  

Our multivariate approaches, which analyzed the relationship between the adjusted VO2peak 

and all urinary metabolites at once, showed that there was no evident metabolic pattern 

related to the PF status in neither the pre- nor the post-exercise condition. Thus, it can be 

summarized that the 47 analyzed metabolites do not strongly account for the variation in the 

CRF after having adjusted for age, sex, menopausal status, and LBM. When furthermore 

comparing the ability of selected urinary metabolite variables to explain the variation in the 

adjusted VO2peak, we noticed that the adjusted pre-exercise urinary metabolites resulted in a 

comparatively better model in the sense of BIC than the adjusted post-exercise urinary 

metabolites or respective FCs. This observation indicates that acute changes in urinary 

metabolites might primarily be driven by the energy requirements due to the performed 

exercise and less reflective of an individual’s PF status. 
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6.5.3 Strengths and Limitations 

The present study has several strengths and limitations. Firstly, a high number of healthy 

women and men with a wide age range were included in this study, which was characterized 

by highly standardized clinical and physiological examinations and a strictly scheduled 

experimental setting. Thus, we were able to investigate how urinary metabolites are 

associated with both acute PE and the CRF status in a comparatively large population. 

Additionally, owing to the comprehensive characterization of study participants, potential 

confounders like age, sex, LBM, and menopausal status could be considered. To furthermore 

minimize the variability in metabolomics measurements, pre-menopausal women were 

scheduled for the bicycle ergometry within the luteal phase of their menstrual cycle. One 

limitation of this study is that the time point of post-exercise urine sampling was not strictly 

controlled. Participants were told to collect their first available spot urine after having 

completed the incremental test, which was approximately 15 to 30 minutes post-exercise. 

Besides, as the participants collected the pre-exercise spot urine samples before breakfast, it 

has to be taken into account that the urinary metabolite changes could be related to both the 

post-exercise and the post-prandial state. Additionally, no causal relationships between the 

individuals’ PF status and the metabolome can be proven due to the cross-sectional study 

design. Even though our NMR-based analysis had the advantage to allow the absolute 

quantification of urinary metabolites with known identity and of different chemical classes, 

this targeted approach was limited to a comparatively small selection of urinary compounds. 

In future studies, it would be appropriate to analyze the acute and chronic effects of PE on a 

broader spectrum of metabolites in both blood and urine. 

6.6 Conclusions 

We investigated the effect of a standardized exercise tolerance test on 47 urinary metabolites 

of 255 healthy women and men. Besides, we analyzed whether the VO2peak measured in the 

incremental test is associated with exercise-related metabolite excursions and pre- or post-

exercise urinary metabolite patterns. Although PCA did not show a clear separation of the pre- 

and post-exercise urine samples, univariate analysis revealed significant pre- to post-exercise 

alterations in the urinary excretion of 37 metabolites – with the strongest increase being 

observed for lactate, mannitol, trans-aconitate, alanine, carnitine, and acetate. However, only 
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weak relationships between the VO2peak and single urinary metabolites or urinary metabolite 

patterns, respectively, could be revealed after adjusting for covariates like age, sex, 

menopausal status, and LBM. Our findings indicate that the analyzed urinary metabolites 

partly reflect acute exercise-related changes in the human metabolism, but do not allow to 

conclude about the individuals’ PF status. We recommend future urinary metabolomics 

studies to control for acute PE and to consider the mentioned confounders if investigating 

functional variables like the VO2peak. 

  



7 Study IIb 

119 

 

7 Study IIb 

Sex-Specific Relationship Between the Cardiorespiratory Fitness and Plasma 

Metabolite Patterns in Healthy Humans—Results of the KarMeN Study 

Slightly modified version of the published article (17 July 2021). 

 

Kistner, S., Döring, M., Krüger, R., Rist, M. J., Weinert, C. H., Bunzel, D., Merz, B., Radloff, K., 

Neumann, R., Härtel, S., Bub, A. (2021). Sex-Specific Relationship between the 

Cardiorespiratory Fitness and Plasma Metabolite Patterns in Healthy Humans—Results of the 

KarMeN Study. Metabolites, 11(7), 463. doi:10.3390/metabo11070463. 

This article is an open access publication distributed under the terms and conditions of the Creative Commons 

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

For a better comprehensibility of results, the supplementary material of this article is provided in the Appendices 

A2.9 to A2.15. Datasets, R-scripts for calculation of results and figure generation, as well as overview tables with 

computed values are available under the following link: https://doi.org/10.3390/metabo11070463. 

 

7.1 Abstract 

The cardiorespiratory fitness (CRF) represents a strong predictor of all-cause mortality and is 

strongly influenced by regular physical activity (PA). However, the biological mechanisms 

involved in the body’s adaptation to PA remain to be fully elucidated. The aim of this study 

was to systematically examine the relationship between the CRF and plasma metabolite 

patterns in 252 healthy adults from the cross-sectional Karlsruhe Metabolomics and Nutrition 

(KarMeN) study. The CRF was determined by measuring the peak oxygen uptake during 

incremental exercise. Fasting plasma samples were analyzed by nuclear magnetic resonance 

spectroscopy and mass spectrometry coupled to one- or two-dimensional gas chromato-

graphy or liquid chromatography. Based on this multi-platform metabolomics approach, 427 

plasma analytes were detected. Bi- and multivariate association analyses, adjusted for age and 

menopausal status, showed that the CRF was linked to specific sets of metabolites primarily 

indicative of ‘lipid metabolism’. However, CRF-related metabolite patterns largely differed 

between sexes. While several phosphatidylcholines were mainly linked to the CRF in females, 

single lyso-phosphatidylcholines and sphingomyelins were associated with the CRF in males. 

https://doi.org/10.3390/metabo11070463
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When controlling for further assessed clinical and phenotypical parameters, the sex-specific 

CRF tended to be correlated with a smaller number of metabolites linked to ‘lipid metabolism’, 

‘amino acid metabolism’, or ‘xenobiotics-related metabolism’. Interestingly, sex-specific CRF 

explanation models could be improved when including selected plasma analytes in addition 

to clinical and phenotypical variables. In summary, this study revealed sex-related differences 

in CRF-associated plasma metabolite patterns and proved known associations between the 

CRF and risk factors for cardiometabolic diseases such as fat mass, visceral adipose tissue 

mass, or blood triglycerides in metabolically healthy individuals. Our findings indicate that 

covariates like sex and, especially, the body composition have to be considered when studying 

blood metabolic markers related to the CRF. 

Keywords: cardiorespiratory fitness; physical fitness; metabolomics; plasma metabolome; 

plasma metabolite patterns; metabolite profiles. 

7.2 Introduction 

The CRF is a health-related component of physical fitness (PF) (Bouchard et al., 2007), 

reflecting the ability of the circulatory, respiratory, and muscular systems to take up, 

transport, and utilize oxygen during sustained physical exercise (PE) (Hill et al., 1924). It is 

affected by sex (Al-Mallah et al., 2016; Zeiher et al., 2019), age (Laukkanen et al., 2009; Zeiher 

et al., 2019), lean body mass (LBM) (S. Y. S. Wong et al., 2008), heredity (Bouchard et al., 1988), 

and behavioral factors like diet, smoking, or PA (Zeiher et al., 2019). Actually, the CRF is not 

only an objective measure of regular PA (McKinney et al., 2016), but has also emerged as a 

strong predictor of all-cause and disease-specific mortality (Harber et al., 2017). Representing 

the main modifiable determinant of the CRF, regular PA is known to favorably influence body 

composition and glucose-insulin homeostasis, as well as the lipoprotein profile (McKinney et 

al., 2016). At the muscular level, beneficial adaptations to PA comprise an increased 

capillarization, a higher mitochondrial density, and enhanced oxidative metabolism, finally 

leading to an improved endurance capacity (Egan & Zierath, 2013). However, despite 

profound knowledge on the health-promoting benefits of PA, the molecular mechanisms and 

metabolic pathways involved in the whole-body and skeletal muscle adaptation to PA are still 

insufficiently understood (Zierath & Wallberg-Henriksson, 2015). 
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The emerging field of metabolomics is a promising approach to systematically investigating 

exercise-induced changes in human metabolism related to performance and health (Heaney 

et al., 2017). By applying nuclear magnetic resonance (NMR) spectroscopy- or mass 

spectrometry (MS)-based techniques, metabolomics permits the simultaneous analysis of a 

high number and variety of metabolites, i.e., low-molecular weight compounds, that 

represent the end-products of interactions between genes, proteins, and the cellular 

environment (Bujak et al., 2015). Thus, metabolomics can help to identify PA- or PF-associated 

metabolite profiles, possibly hinting at metabolic pathways that are linked to the well-known 

effects of exercise (Heaney et al., 2017). 

Interestingly, recent metabolomics studies have provided the first evidence that higher levels 

of PA or PF are linked to lower circulating branched-chain amino acid (BCAA) (Kujala et al., 

2013; Kujala et al., 2019; Morris et al., 2013; Xiao et al., 2016) and higher circulating 

phosphatidylcholine (PC) concentrations (Bye et al., 2012; Floegel et al., 2014; Morris et al., 

2015; Wientzek et al., 2014). However, research on the relationship between the CRF and the 

blood metabolome in large populations, including both sexes with a broad age spectrum, is 

rather scarce. In fact, only half of the studies that assessed the maximal oxygen uptake 

(VO2max) as the gold standard of aerobic fitness conducted correlation or regression analyses 

(Floegel et al., 2014; Koh et al., 2018; Kujala et al., 2019; Lustgarten et al., 2013; Wientzek et 

al., 2014), while the other half examined differences between groups with a high or low CRF 

(Bye et al., 2012; Chorell et al., 2012; Morris et al., 2013; Morris et al., 2015). Limitations of 

the former studies are that the results were restricted to young (Kujala et al., 2019; Lustgarten 

et al., 2013), middle-aged (Floegel et al., 2014; Wientzek et al., 2014), or older (Koh et al., 

2018) individuals, being thus hardly transferable to the general population. Besides, studies 

either had rather small sample sizes (Koh et al., 2018; Lustgarten et al., 2013) or solely included 

male subjects (Kujala et al., 2019). Apart from Lustgarten et al. (2013), who detected nearly 

300 serum analytes, the remaining studies focused on a limited number of metabolites. Since 

several CRF-associated metabolites that were reported in the literature have also been linked 

to other phenotypical variables such as body composition, adjustments for potential 

confounders are decisive to determine if correlations can be specifically attributed to the CRF 

(Kelly et al., 2020). 
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As a way of overcoming those limitations, we applied a multi-platform metabolomics 

approach and exploratory bi- and multivariate statistical procedures to systematically analyze 

the relationship between the CRF and 427 plasma metabolites in 252 healthy women and men 

from the cross-sectional KarMeN study. Participants had a wide age range and were 

thoroughly characterized by anthropometric, functional, and clinical examinations (Bub et al., 

2016). Therefore, we were able to take a variety of known and potential confounders into 

account. Since it has already been shown that sex, age, and menopausal status are 

determinants of the CRF (Mercuro et al., 2006; Zeiher et al., 2019) and are also linked to a 

discriminatory plasma metabolite profile in the KarMeN population (Rist et al., 2017), all 

analyses were conducted in sex-specific sub-groups and adjusted for age and menopausal 

status. Firstly, both bi- and multivariate associations between the CRF and metabolites were 

calculated, using bivariate correlation or partial least squares (PLS) regression analyses, 

respectively. Secondly, to identify associations that were independent of other phenotypical 

or clinical variables, correlation analyses and PLS models were additionally adjusted for 

parameters related to body composition, clinical blood biochemistry, lung and arterial 

function, short-term and habitual PA, or diet. Thirdly, cross-validated stepwise regression 

procedures were conducted, thus selecting sets of phenotypical, clinical, and plasma 

metabolite variables that contribute to a preferably good explanation of the CRF. 

7.3 Materials and Methods 

7.3.1 Subjects and Study Design 

The cross-sectional KarMeN study was conducted between March 2012 and July 2013 at the 

Division of Human Studies of the Max Rubner-Institut (MRI) in Karlsruhe, Germany. Details on 

inclusion and exclusion criteria, as well as a comprehensive description of the study design 

and examination procedures, have already been published (Bub et al., 2016). Briefly, 301 

healthy, non-smoking individuals (172 men, 129 women) between 18 and 80 years of age were 

included. All subjects visited the study center three times and were thoroughly characterized 

by anthropometric, clinical, and functional examinations. Moreover, data on PA, diet, and the 

menopausal status of female subjects were collected. Since the menstrual cycle is known to 

affect metabolite profiles (Wallace et al., 2010), all premenopausal women were scheduled 

for examinations within their luteal phase. On the morning of the second study day, fasting 



7 Study IIb 

123 

 

plasma samples were collected using 9 mL EDTA plasma tubes (S-Monovette, Sarstedt, 

Nümbrecht, Germany). The plasma samples were immediately centrifuged at 1850 × g at 4 °C, 

aliquoted into small portions, and cryopreserved at −196 °C until metabolomics analyses. 

Serum samples (S-Monovette Z-gel, Sarstedt, Nümbrecht, Germany) were collected for 

standard clinical biochemistry analyses. 

7.3.2 Anthropometry and Body Composition Assessment 

Body weight and height were measured in underwear and without shoes (Seca 285, Hamburg, 

Germany), and the body mass index (BMI) was calculated by dividing the body weight in 

kilograms by the height in meters squared. The body composition was assessed by dual-energy 

X-ray absorptiometry (DXA; Lunar iDXA, GE Healthcare, München, Germany) and the LBM, fat 

mass (FM), visceral adipose tissue mass (VATM), as well as the bone mineral content (BMC) 

were determined with the supplementary software enCOREv16. The FM (%) was calculated 

by dividing the total FM by the total body weight. Approval for DXA measurements was 

received from the Federal Office for Radiation Protection (Z5-22462/2-2011-043). 

7.3.3 PF and PA Assessment 

As a measure of PF, the CRF was assessed by a standardized incremental exercise test on a 

bicycle ergometer (Ergobike medical, Daum, Fürth, Germany). All participants started pedaling 

at 25 watt and the workload was then augmented by 25 watt every 2 minutes until individual 

exhaustion, as previously described (Biniaminov et al., 2018; Kistner et al., 2020). The 

respiratory gas exchange was measured breath-by-breath by using a cardiopulmonary 

exercise testing system (MetaMax 3B, Cortex, Leipzig, Germany). Since the VO2max could not 

be determined with certainty, as it requires the presence of a plateau in oxygen uptake, the 

peak oxygen uptake (VO2peak), i.e., the highest attained oxygen uptake during the test, was 

assessed and expressed relative to the body weight in mL kg−1 min−1. During the entire pro-

cedure, the heart rate (HR) was recorded (T31 coded, Polar Electro GmbH Deutschland, 

Büttelborn, Germany). In addition, continuous hemodynamic monitoring was conducted by 

running a 12-channel electrocardiogram (CardioDirect 12, DelMar Reynolds GmbH, Feucht, 

Germany) and by measuring the blood pressure (BP) every 2-3 minutes on the right upper arm 

(Boso Carat Professional, Bosch + Sohn, Jungingen, Germany). As measures of PA, both short-

term and habitual PA were determined (Biniaminov et al., 2018). Briefly, the level of short-
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term PA was assessed during a period of seven consecutive days by combined accelerometry 

and HR measurements (Actiheart, CamNtech, Cambridge, UK). The average activity energy 

expenditure (AEE) during the study week was finally calculated by the supplied software 

(Version 4.0.103) and given in kcal/day. To obtain the habitual PA for the last three months, 

participants filled out the standardized International Physical Activity Questionnaire (IPAQ). 

The average weekly PA was calculated and expressed in metabolic equivalent of task (MET)-

min/week. 

7.3.4 Dietary Assessment 

Food consumption for the day prior to blood sampling was assessed by conducting a 24-hour 

recall in a personal interview, using the software EPIC-Soft, as described in detail elsewhere 

(Bub et al., 2016; Merz et al., 2018). In order to evaluate the diet quality of participants, a 

modified version of the Healthy Eating Index (HEI) was calculated, which was initially applied 

in the second German National Nutrition Survey (“Nationale Verzehrsstudie (NVS) II”) (Wittig 

et al., 2010) and adapted with minor modifications in the KarMeN study. The so-called HEI-

NVS evaluates the overall diet quality, with scores ranging from 0 (low quality) to 110 (high 

quality). 

7.3.5 Clinical Examinations 

Clinical parameters like the resting heart rate (HRrest), as well as systolic and diastolic BP, were 

measured after a resting period of at least five minutes in a sitting position (Boso Carat 

Professional, Bosch + Sohn, Jungingen, Germany). The pulmonary function was assessed by 

spirometry (FlowScreen, CareFusion, Hoechberg, Germany) and the maximal vital capacity 

(VCmax), as well as the forced expiratory pressure in one second (FEV1), were recorded. 

Moreover, arterial stiffness was determined (ArterioGraph, Medexpert, Budapest, Hungary) 

and the pulse wave velocity (PWV) was calculated. Standard clinical biochemistry analyses in 

fasting serum samples (e.g., hemoglobin (Hb), glucose, HbA1c, triglycerides (TGs), high-density 

lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol) were carried out by the 

certified medical laboratory MVZ Labor PD Dr. Volkmann (Karlsruhe, Germany). Insulin 

concentrations were determined with an enzyme-linked immunosorbent assay (ME E-0900, 

LDN, Nordhorn, Germany). 
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7.3.6 Metabolomics Analyses 

To obtain a broad coverage of the plasma metabolome, a number of complementary (non-) 

targeted analytical techniques were applied. Quality control (QC) samples prepared by pooling 

plasma samples from all KarMeN participants were analyzed along with study samples in all 

applied methods. The following section provides a brief summary of the different methods; 

further details are available in the supplement of Rist et al. (2017). 

Non-targeted two-dimensional gas chromatography (GC × GC)-MS analysis. Plasma samples 

were analyzed by a non-targeted GC × GC-MS-based approach using a Shimadzu GCMS 

QP2010 Ultra instrument equipped with a ZOEX ZX2 modulator (Weinert et al., 2015). The 

GC × GC-MS raw data files were then processed by non-targeted alignment using in-house 

developed R-modules (Egert, Weinert, & Kulling, 2015). By means of regularly injected QC 

samples, signal intensity drift, i.e., intra- and interbatch effects occurring during the 

measurement period, were corrected. With this method, a wide range of metabolites, e.g., 

amino acids (AAs), amines, organic acids, sugars, sugar alcohols, or polyols, could be detected. 

Targeted gas chromatography (GC)-MS analysis of fatty acids. The chromatographic 

separation of plasma fatty acids usually requires the application of specialized polar columns 

and can thus not be conducted adequately by using a standard apolar × medium-polar GC × GC 

column setup. Therefore, a previously described method by Ecker et al. (2012) to detect 

plasma fatty acids as methyl esters was applied with minor modifications. By using a GC single 

quadrupole instrument (Shimadzu GCMS QP2010 Ultra) and a BPX90 column (Trajan 

Scientific), 48 fatty acids were finally determined in a quantitative manner. 

Liquid chromatography (LC)-MS metabolite profiling using the Absolute IDQ™ p180 kit. 

Plasma samples were also utilized for targeted metabolite profiling using the Absolute IDQ™ 

p180 kit developed by Biocrates AG (Innsbruck, Austria). The general preparation and 

quantification procedure has already been described (Römisch-Margl et al., 2012). For the 

chromatographic separation of AAs and biogenic amines, a Zorbax Eclipse XDB-C18 column (3 

× 100 mm, 3.5 μm; Agilent, Waldbronn, Germany) equipped with a SecurityGuard™ column 

(C18, 4.0 × 3.0 mm; Phenomenex, Aschaffenburg, Germany) was used. PC and sphingomyelin 

(SM) species were analyzed by flow injection analysis into the analytical system, comprising a 

Nexera UHPLC system (Shimadzu) coupled to an API QTRAP15500 mass spectrometer (AB 
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Sciex, Darmstadt, Germany). With this method, a variety of acylcarnitines, AAs, biogenic 

amines, SMs, and PCs were detected. While lyso-phosphatidylcholine (lysoPC) species always 

have one acyl-bound fatty acid, other included PC species are characterized by two acyl-

bounds (PC aa) or one acyl- and one alkyl-bound (PC ae) fatty acid, respectively. In general, 

each analyzed PC represents a sum parameter of different PC species with identical residue 

sums (e.g., PC ae C32:1 may consist of PC ae C16:0/C16:1, PC ae C18:0/C14:1, etc.). 

Targeted LC-MS analysis of methylated amino compounds. The quantification of six amino 

compounds in plasma was conducted by ultra-performance liquid chromatography-tandem 

MS, using an Acquity H-Class UPLC coupled to a Xevo TQD triple quadrupole MS (both from 

Waters, Eschborn, Germany), as previously established (Weinert et al., 2017). Plasma samples 

were diluted with acetonitrile after protein precipitation and separated by an inverse 

acetonitrile gradient on a polar hydrophilic interaction liquid chromatography column 

(Acquity BEH Amide, Waters, Eschborn, Germany). Target analytes, as well as deuterated 

internal standards, were monitored by positive electrospray ionization in multiple reaction 

monitoring mode. 

Targeted LC-MS analysis of bile acids. 14 bile acids in plasma samples were quantified using 

a 1200 series HPLC system (Agilent, Waldbronn, Germany) coupled to a Q-Trap 3200 MS (AB 

Sciex, Darmstadt, Germany), as described in Frommherz et al. (2016). 

Non-targeted NMR analysis. Plasma samples were analyzed by 1D-1H-NMR spectroscopy. 

Briefly, they were measured at 310 K on an AVANCE II 600 MHz NMR spectrometer equipped 

with a 1H-BBI probe head and a BACS sample changer (Bruker BioSpin GmbH, Rheinstetten, 

Germany). All obtained plasma spectra were automatically phased with the Bruker AU 

program apk0.noe. Using the program AMIX 3.9.14 (Bruker BioSpin GmbH, Rheinstetten, 

Germany), they were then referenced to the EDTA signal and bucketed graphically, so that 

buckets contained only one signal or group of signals and no peaks were split between 

buckets, whenever possible. Buckets were either annotated to a previously known and 

identified analyte, or registered as unknown. The identification of metabolites was carried out 

with Chenomx NMR Suite 8.1 (Chenomx, Edmonton, Canada). The detected analytes included 

organic acids, AAs, amines, and sugar alcohols. 
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7.3.7 Data Handling and Statistical Analysis 

The data from the different analytical platforms were integrated into a common data matrix, 

consisting of 301 samples and 657 plasma analytes. With respect to the study participants, we 

excluded 49 individuals due to missing spiroergometry data (n=40), technical errors during 

analyses (n=7), implausibly low HRrest data (n=1), and a missing plasma sample (n=1). If 

identified metabolites were measured by more than one of the analytical platforms, those 

metabolites that were detected by the less quantitative method were excluded (n=149). 

Further analytes were deleted if they had a detected frequency lower than 20% in either the 

female or male sub-group (n=81). Thus, the final data matrix contained 252 individuals and 

427 plasma analytes. Prior to statistical analyses, metabolite data were transformed into Van 

der Waerden (VdW) scores. By using this rank-based inverse normal transformation, the data 

were converted into ranks, transformed to a scale between 0 and 1, and then, the 

corresponding standard normal quantiles were calculated. This transformation took the issue 

of values below the limit of detection into account and led to a uniform scale for all analytes, 

i.e., they were finally comparable between analytical platforms. 

Based on sex-specific VO2peak quartiles, the sex-specific VO2peak data were divided into four 

quarters (q), and differences in basic characteristics between the sub-groups of the 

corresponding participants of the quarters were examined by Welch ANOVA (chi-squared test) 

for numeric (categorical) variables. All subsequent statistical analyses were conducted 

separately for sexes and the non-modifiable factors age (and menopausal status in females) 

were treated as confounders. Random forest regression algorithms considering age, 

phenotypical, and clinical variables were applied to impute missing values for AEE and PWV. 

Similar to the metabolite data, both the VO2peak and considered phenotypical and clinical 

parameters were transformed into VdW scores prior to statistical analyses. To examine the 

sex-specific relationship between the VO2peak and selected phenotypical and clinical 

parameters, Pearson correlations adjusted for age (and menopausal status in females) were 

calculated. Correlations were considered statistically significant when the 95% confidence 

intervals (CIs) did not include zero. 

Regarding metabolomics data analysis in the sex-specific sub-groups, three major aims were 

pursued: (i) to investigate the relationship between the VO2peak and single plasma metabolites 
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(bivariate association analyses), (ii) to determine the relationship between the VO2peak and all 

plasma metabolites simultaneously (multivariate association analyses), and (iii) to identify a 

set of plasma metabolites possibly improving the explanation of the VO2peak in the presence 

of phenotypical and clinical data (multiple regression analyses). 

(i) Bivariate association analyses 

To examine the sex-specific relationship between the VO2peak and single plasma metabolites, 

adjusted for age and menopausal status, partial Pearson correlation coefficients (r) with 95% 

CIs were calculated. In a second step, correlations independent of further phenotypical and 

clinical variables were assessed. More specifically, we performed sex-specific correlation 

analyses by adjusting not only for the above-mentioned confounders but also for the following 

phenotypical and clinical parameters: LBM, FM (%), VATM, BMC, height, Hb, glucose, insulin, 

HbA1c, TGs, HDL and LDL cholesterol, HRrest, systolic and diastolic BP, PWV, VCmax, FEV1, AEE, 

total MET, and HEI-NVS. 

(ii) Multivariate association analyses 

To analyze the relationship between the VO2peak and all 427 plasma metabolite variables 

simultaneously, PLS regression analyses using nested cross-validation were conducted 

separately for women and men. The PLS analyses were either applied on confounder-adjusted 

metabolite variables or on metabolite variables additionally adjusted for the above-listed 

phenotypical and clinical parameters. The outer loop contained 20 random splits in a 

calibration dataset (containing 80% of all samples) and a test dataset (containing the 

remaining 20% of all samples). The data were preprocessed, including the formation of VdW 

scores, respective adjustments, and unit variance scaling based on the calibration data. As the 

inner loop, a single random eight-fold cross-validation was used to tune the PLS model, based 

on the root mean square error (RMSE). Thereby, the number of predictive components was 

restricted to being at most ten. A rank for the obtained PLS regression models was assigned 

to each metabolite variable according to the negative absolute value of its regression 

coefficient. By calculating the geometric means of the ranks across the 20 random splits, a 

final rank product for each metabolite variable was obtained. The model performance was 

evaluated by the mean of RMSEs on the test samples across the 20 random splits. Moreover, 

2500 permutations of the VO2peak values were run, and the relative frequency of permutation-
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obtained rank products below the previously calculated rank products was assessed. If the 

relative frequency was < 0.05, the contribution of a metabolite variable to the multivariate 

association with the VO2peak was considered significant. 

(iii) Multiple linear regression analyses 

To assess the relationship between the VO2peak and sets of phenotypical, clinical, and 

metabolite variables, three different exploratory multiple linear regression models were 

calculated for each sex, with the confounder-adjusted VO2peak as the dependent variable, and 

with stepwise forward-selected confounder-adjusted clinical, phenotype, and metabolite 

variables as independent variables. In detail, the following approaches were applied: 

• Approach 1: Only phenotypical/clinical variables (n=21) were stepwise selected. 

• Approach 2: All phenotypical/clinical variables (n=21) were included and only plasma 

metabolite variables (n=427) were stepwise selected. 

• Approach 3: Phenotypical/clinical variables (n=21) as well as plasma metabolite 

variables (n=427) were stepwise selected. 

While in approach 2, all phenotypical/clinical variables entered the model as fixed variables 

before considering the plasma metabolites, in approach 3 all variables entered the model in a 

competing manner. To obtain a ranking of confounder-adjusted phenotypical, clinical, or 

metabolite variables according to their contribution for explaining the adjusted VO2peak, the 

models were built by maximizing the coefficients of determination (R2). 

In addition to the ranking of variables, a single linear multiple regression model was calculated 

for each of the approaches 1 to 3 in order to obtain a manageable number of variables that, 

in combination, explained the CRF. For variable selection, the previously described stepwise 

multiple linear regression analyses were performed on a calibration dataset (containing 80% 

of the samples) and the predictive accuracy of each step was assessed on the test dataset 

(containing the remaining 20% of the samples). The selection was stopped if the predictive 

accuracy decreased for the first time. In total, the analysis was repeated 1000 times with 

random assignments of samples into calibration and test datasets. Finally, the number of 

times each variable was present in those cross-validated stepwise regression models was 

counted (a relative frequency of 1 means that the variable was always considered in stepwise 

variable selection). All variables with a relative frequency ≥ 0.05 were then included in a final 
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model with respect to approaches 1 to 3. The obtained final models were described by the 

adjusted coefficient of determination (R² (adjusted)) and compared within each sub-

population. Statistical analysis was performed by using SAS JMP 11.0.0 (SAS Institute Inc. 2013, 

Cary, NC, USA) and the software R Version 4.0.0 (R Core Team, 2020), using the packages 

named caret (Kuhn, 2020), openxlsx (Schauberger & Walker, 2020), and missForest 

(Stekhoven, 2013). Figures were generated in Excel 2016 or R, using the packages named 

ggplot2 (Wickham, 2016), ggrepel (Slowikowski, 2020b), and ggpubr (Kassambara, 2020). 

7.3.8 Metabolite Classification 

For the biological interpretation of CRF-related metabolite profiles, identified and putatively 

annotated metabolites, i.e., compounds with the Metabolomics Standards Initiative (MSI)- 

level 1 or 2 (Sumner et al., 2007), respectively, were manually assigned to 8 major and 32 

specific pathways of human metabolism based on the information provided by the Human 

Metabolome Database (HMDB), Version 4.0 (Wishart et al., 2018) and the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) PATHWAY database (Aoki & Kanehisa, 2005). 

Annotation of analytes detected using untargeted approaches, showing relevant associations 

with the CRF, was performed as follows: spectra of GC × GC-MS analytes were matched against 

an in-house spectral library as well as against the FiehnLib and the NIST17 libraries. If matching 

was unsuccessful, structural hypotheses were derived depending on the presence of known 

diagnostic fragments (see Table S9.2 in Ulaszewska et al. (2019)) and additionally, especially 

in the case of sugars and sugar-like compounds, based on the compound’s position in the two-

dimensional chromatogram. Unfortunately, the spectra of CRF-related unknown analytes 

were mostly unspecific, which hampered structural elucidation. In the case of NMR, the 

identification of CRF-associated unknown analytes was not possible because the particular 

buckets contained either unspecific signals or overlapped peaks. 

7.4 Results 

7.4.1 Metabolomics Data 

427 plasma analytes were included in the final data analysis. Untargeted methods yielded 234 

analytes, of which 43 (18.4%) could be identified with sufficient certainty. 193 analytes were 

derived from targeted analyses and were thus known a priori. Of the 236 identified 
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metabolites, most belonged to ‘lipid metabolism’ (69.5%) and ‘AA metabolism’ (17.4%), 

followed by ‘xenobiotics-related metabolism’ (5.1%), ‘mammalian-microbial cometabolism’ 

(3.0%), ‘carbohydrate metabolism’ or ‘energy metabolism’ (each 2.1%), and ‘nucleotide 

metabolism’ or ‘cofactors and vitamins metabolism’ (each 0.4%).  

7.4.2 Basic Characteristics of Study Participants 

The study sample consisted of 252 healthy individuals, 150 males (M, 59.5%) and 102 females 

(F, 40.5%), with a mean age of 45.9 ± 17.1 years and a mean VO2peak of 38.9 ± 11.7 mL kg−1 

min−1. The characteristics of participants are presented according to sex-specific VO2peak 

quarters, see Figure 28. In the radar plots, the respective means of the lowest VO2peak quarter 

(1st q) were used as a reference value and the means of the other quarters (2nd q, 3rd q, 4th q) 

were related to the means of the first quarter. The absolute means, standard deviations, and 

respective units are provided in Table A-8 and Table A-9 (Appendix A2.9). 

 
Figure 28. Radar plots visualizing the basic characteristics of KarMeN participants according to sex-specific VO2peak quarters. 
The means of the 1st q were used as reference values to the means of the 2nd, 3rd, and 4th q. *: significant differences between 
quarters according to Welch ANOVA. °: n=23 (1st q), n=25 (2nd q); ⱽ: n=36 (1st q); ⱽⱽ: n=35 (1st q), n=37 (2nd q). AEE: activity 
energy expenditure; BMC: bone mineral content; BMI: body mass index; BP: blood pressure; dia: diastolic; FEV1: forced 
expiratory pressure in one second; FM: fat mass; Hb: hemoglobin; HDL: high-density lipoprotein; HEI-NVS: Healthy Eating 
Index (modified version); HRrest: resting heart rate; LBM: lean body mass; LDL: low-density lipoprotein; MET: metabolic 
equivalent of task; n: sample size; PWV: pulse wave velocity; q: quarter; sys: systolic; TGs: triglycerides; VATM: visceral 
adipose tissue mass; VCmax: maximal vital capacity; VO2peak: peak oxygen uptake. (Reprinted from Kistner et al. (2021)). 

In both females and males, there were statistically significant differences between VO2peak-

related quarters with regard to age, weight, BMI, FM (%), and VATM. Furthermore, differences 

for clinical parameters like fasting blood glucose, HbA1c, TGs, HDL and LDL cholesterol, systolic 

and diastolic BP, PWV, VCmax, and FEV1 were observed across the quarters of the sex-specific 
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VO2peak. In females, additional differences between VO2peak-related quarters could be 

observed for height and total MET, while in males, differences were detected for LBM, HRrest, 

and AEE. The menopausal status in women also significantly differed between VO2peak 

quarters, with increasing ratios of pre- to post-menopausal women from the 1st q to the 4th q, 

see Table A-8 (Appendix A2.9). As the non-modifiable factors age and menopausal status were 

associated with the sex-specific VO2peak, and since they have already been shown to determine 

plasma metabolite patterns in KarMeN subjects (Rist et al., 2017), these variables were 

treated as confounders in all subsequent analyses. 

7.4.3 Sex-Specific Relationship between the CRF and Phenotypical/Clinical Variables 

To examine sex-specific relations between the VO2peak and selected phenotypical as well as 

clinical variables, correlations adjusted for age (and menopausal status in females) were 

calculated. A visual comparison of the pairwise correlations in women and men is provided in 

Figure 29. After adjustments for the above-mentioned confounding factors, the VO2peak in 

females showed positive correlations with HDL cholesterol (r = 0.43) and negative correlations 

with the FM (%) (r = −0.61), VATM (r = −0.44), PWV (r = −0.38), and TGs (r = −0.33), that were  

 
Figure 29. Confounder-adjusted sex-specific correlations between the VO2peak and phenotypical/clinical variables. * Pearson 
correlations were performed on VdW-transformed data adjusted for age (and menopausal status in females) and respective 
correlation coefficients (r; dots) and 95% confidence intervals (CIs; bars) are illustrated. AEE: activity energy expenditure; 
BMC: bone mineral content; BP: blood pressure; FEV1: forced expiratory pressure in one second; FM: fat mass; Hb: 
hemoglobin; HDL: high-density lipoprotein; HEI-NVS: Healthy Eating Index (modified version); HRrest: resting heart rate; LBM: 
lean body mass; LDL: low-density lipoprotein; MET: metabolic equivalent of task; PWV: pulse wave velocity; TGs: triglycerides; 
VATM: visceral adipose tissue mass; VCmax: maximal vital capacity; VdW: Van der Waerden; VO2peak: peak oxygen uptake. 
(Reprinted from Kistner et al. (2021)).  
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all significantly different from zero. In males, not only HDL cholesterol (r = 0.29) but also the 

AEE (r = 0.20) showed positive correlations with the VO2peak. Compared to females, negative 

correlations to the VO2peak that were significantly different from zero were not only detected 

for FM (%) (r = −0.62), VATM (r = −0.57), PWV (r = −0.32), and TGs (r = −0.25) but additionally 

for HRrest (r = −0.30), diastolic BP (r = −0.27), LDL cholesterol (r = −0.22), and insulin (r = −0.18). 

7.4.4 Sex-Specific Relationship between the CRF and Plasma Metabolites 

Bivariate Association Analyses 

Correlation coefficients were calculated for the associations between the VO2peak and plasma 

metabolites, with adjustments for known confounders, i.e., age and menopausal status (*), 

and additionally for phenotypical and clinical variables (**). While a graphical overview of all 

sex-specific bivariate correlations is provided in Figure A-13 (Appendix A2.10), correlation 

coefficients and the upper and lower levels of 95% CIs of significantly correlating metabolites 

are provided in Table A-10 to Table A-13 (Appendix A2.11). In Table 16, the number of 

metabolites with significant correlations to the VO2peak is shown, along with their 

categorization to major metabolic pathways. The classification of VO2peak-correlated plasma 

metabolites to both major and specific metabolic pathways is moreover visualized in pie 

charts, see Figure A-14 to Figure A-17 (Appendix A2.12) for confounder-adjusted findings and 

Figure 36, Figure 37, Figure 39, and Figure 40 (Chapter 8.3) for confounder- and phenotypical/ 

clinical variables-adjusted findings. 

Table 16. Number of detected plasma metabolites, according to major metabolic pathways, and number of metabolites 
significantly correlating with the VO2peak, shown separately by sex. (Adapted from Kistner et al. (2021)). 

Metabolic Pathway 
Total Number 

of Plasma 
Metabolites 

Number of Plasma Metabolites Correlating with the VO2peak 

Females (n=102) Males (n=150) 

* ** * ** 

All 427 125 59 112 24 

Lipid metabolism 164 63 27 36 8 

Amino acid metabolism 41 4 6 8 2 

Xenobiotics and related metabolism 12 2 2 4 1 

Mammalian-microbial cometabolism 7 2 0 1 0 

Carbohydrate metabolism 5 2 1 1 0 

Energy metabolism 5 3 1 2 0 

Cofactors and vitamins metabolism 1 1 0 0 0 

Nucleotide metabolism 1 0 0 0 0 

Unknown 191 48 22 60 13 

* confounder (age/menopausal status)-adjusted; ** additionally adjusted for 21 phenotypical/clinical variables; n: sample 
size; VO2peak: peak oxygen uptake. 
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Confounder-adjusted correlation analyses revealed that 125 metabolites in females and 112 

metabolites in males showed correlations with the VO2peak that were significantly different 

from zero. Overall, only a limited number of common correlations were observed between 

sexes, and generally stronger correlations could be found in the female sub-group. In women, 

79 plasma metabolites were positively correlated with the VO2peak, among them 21 acyl-alkyl-

phosphatidylcholine (PC ae) species (C44:3, C34:3, C42:4, C42:3, C42:2, C34:2, C40:3, C36:2, 

C44:6, C42:5, C36:3, C44:4, C42:1, C44:5, C40:5, C38:2, C40:4, C32:1, C32:2, C30:0, C40:1), 11 

diacyl-phosphatidylcholine (PC aa) species (C42:2, C34:2, C36:2, C40:2, C42:0, C40:3, C42:4, 

C42:1, C28:1, C42:5, C36:3), SM C16:0, lysoPC C18:2, two acylcarnitines (C14:2, C10:2), the 

long-chain fatty acid (LCFA) C24:0, citrate, glyceric acid, acetate, and two unknown analytes, 

all demonstrating an r ≥ 0.25. The majority of the 46 negatively correlated metabolites in 

females were unknown, except for two LCFAs (C16:1 9cis, C18:1 11cis) with an r ≤ −0.25. In 

males, 33 plasma metabolites showed positive correlations with the VO2peak, including three 

lysoPCs (C18:2, C18:1, C17:0) and three unknown analytes with an r ≥ 0.25. Similar to females, 

most of the 79 negatively correlated metabolites in males remained unknown. Only two SMs 

(C18:0, C18:1) and diacyl-PC C40:6 with an r ≤ −0.25 could be identified. Overall, PCs largely 

showed weak to moderate positive correlations in females, whereas most PCs in males were 

either not or slightly negatively linked to the VO2peak. Significant bivariate correlations with the 

same directions in both sexes were observed for lysoPC C18:2 (F: r = 0.30; M: r = 0.34), glyceric 

acid (F: r = 0.29; M: r = 0.21), acetate (F: r = 0.26; M: r = 0.19), succinic acid (F: r = 0.24; M: 

r = 0.20), malic acid (F: r = 0.21; M: r = 0.22), and the LCFA C16:1 9cis (F: r = −0.32; M: r = −0.20), 

in addition to several unknown analytes with mainly negative correlations to the VO2peak in 

both women and men, see Figure A-13 (Appendix A2.10). 

After additionally adjusting for phenotypical and clinical variables, 59 metabolites (0.20 ≤ |r| 

≤ 0.39) in females and 24 metabolites (0.16 ≤ |r| ≤ 0.25) in males still exhibited weak to 

moderate correlations with the VO2peak that were significantly different from zero. The 

majority of the VO2peak-related plasma metabolites in both females and males belonged to 

‘lipid metabolism’, followed by ‘AA metabolism’ and ‘xenobiotics and related metabolism’. 

However, only a few correlations with the same directions in both sexes were detected (e.g., 

U1.156). The top 10 of sex-specific positive and negative partial correlations between the 

VO2peak and plasma metabolites are summarized in Table 17.  
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Table 17. Top 10 of sex-specific partial correlations between the VO2peak and plasma metabolites. (Adapted from Kistner et 
al. (2021)). 

 
Positive Correlations Negative Correlations 

Metabolites r (95% CIs) Metabolites r (95% CIs) 

Females     

1 PC ae C40:3 0.37 (0.19; 0.53) U3.961 −0.39 (−0.55; −0.22) 

2 PC ae C42:4 0.31 (0.13; 0.48) U3.956 −0.32 (−0.49; −0.14) 

3 C5-carnitine 0.31 (0.12; 0.47) U3.950 −0.31 (−0.48; −0.12) 

4 PC ae C38:3 0.28 (0.09; 0.45) U4.252 −0.31 (−0.47; −0.12) 

5 Choline 0.27 (0.08; 0.44) U3.971 −0.31 (−0.47; −0.12) 

6 Glyceric acid 0.27 (0.08; 0.44) U0978 −0.30 (−0.46; −0.11) 

7 U0856 0.27 (0.08; 0.44) U0975 −0.28 (−0.45; −0.09) 

8 PC ae C36:2 0.26 (0.07; 0.44) U2.656 −0.28 (−0.45; −0.09) 

9 Acetylornithine 0.26 (0.07; 0.43) U1.156 −0.28 (−0.45; −0.09) 

10 PC ae C44:3 0.26 (0.07; 0.43) U3.060 −0.26 (−0.43; −0.07) 

Males     

1 U0130 0.19 (0.03; 0.34) U2.250 −0.25 (−0.39; −0.09) 

2 Alanine 0.18 (0.02; 0.33) U2.822 −0.21 (−0.36; −0.05) 

3 C6 (C4:1-DC)-carnitine 0.18 (0.02; 0.33) U(Sugar-like 4) −0.21 (−0.36; −0.05) 

4 U2.910 0.18 (0.02; 0.33) U1331 −0.21 (−0.36; −0.05) 

5 PC aa C36:3 0.18 (0.02; 0.33) Tartaric acid −0.21 (−0.36; −0.05) 

6 U3.385 0.17 (0.01; 0.32) U1.156 −0.20 (−0.35; −0.04) 

7 Glutamate 0.17 (0.01; 0.32) U0.936 −0.19 (−0.34; −0.03) 

8 - - U1.159 −0.19 (−0.34; −0.03) 

9 - - U1.166 −0.19 (−0.34; −0.03) 

10 - - PC ae C38:6 −0.18 (−0.33; −0.02) 

Pearson correlations were performed on VdW-transformed data adjusted for age, menopausal status, and phenotypical/ 
clinical variables. Results of partial correlations are presented as Pearson correlation coefficients (r) and the lower and upper 
limit of the 95% confidence intervals (CIs), rounded to two decimal places. |r| ≥ 0.25 are indicated in bold. PC aa: diacyl-
phosphatidylcholine; PC ae: acyl-alkyl-phosphatidylcholine; U: unknown; VdW: Van der Waerden; VO2peak: peak oxygen 
uptake. For unknown NMR-analytes, the chemical shift of the lower bucket border is indicated in ppm. 

 

In females, the top 10 positively correlated plasma metabolites included five acyl-alkyl-PCs 

(C40:3, C42:4, C38:3, C36:2, C44:3), acylcarnitine C5, choline, glyceric acid, and 

acetylornithine, while the top 10 negatively correlated plasma metabolites were unknown 

analytes. In males, only seven plasma metabolites were positively correlated with the VO2peak, 

namely two AAs (alanine, glutamate), acylcarnitine C6 (C4:1-DC), diacyl-PC C36:3, and three 

unknown analytes. The top 10 negatively correlated plasma metabolites in males comprised 

eight unknown analytes, the xenobiotic tartaric acid, and acyl-alkyl-PC C38:6. Sex-related 

differences in the direction of the relations were obvious for tartaric acid (F: r = 0.23; 

M: r = −0.21), diacyl-PC C42:1 (F: r = 0.23; M: r = −0.18), U2.250 (F: r = 0.11; M: r = −0.25), C5-

carnitine (F: r = 0.31; M: r = −0.05), and alanine (F: r = −0.19; M: r = 0.18). While several PCs 

still showed weak to moderate positive correlations in females, single PCs in males tended to 

be slightly negatively linked to the VO2peak, see Figure A-13 (Appendix A2.10).  
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Multivariate Association Analyses 

The multivariate association between the VO2peak and all 427 plasma analytes was assessed 

based on rank products obtained in cross-validated PLS models. Rank products were 

calculated by the geometric mean of the ranks of the regression coefficients of each 

metabolite in PLS models, across 20 random splits. For each metabolite variable, the 

importance of its contribution to the multivariate association was determined by permutation 

tests. A graphical overview of all sex-specific associations is provided in Figure A-13 (Appendix 

A2.10). Regarding females, PLS analysis showed that metabolites highly contributing to the 

confounder-adjusted multivariate association with the CRF included several diacyl- and acyl-

alkyl-PCs, the LCFA C16:1 9cis, as well as a number of unknowns. In males, metabolites with 

high contributions to the multivariate association comprised specific lysoPCs (C18:2, C18:1, 

C17:0), SMs (C18:0, C18:1), and diacyl-PC C40:6 next to unidentified analytes, when adjusting 

for age. As opposed to confounder-adjusted multivariate association analyses, the mean of 

the RMSEs based on the test samples was not always higher in the permutations than by using 

the original data, if additionally controlling for phenotypical and clinical variables, see Figure 

A-18 (Appendix A2.13). Consequently, the multivariate relationship between the CRF and all 

427 plasma analytes lost importance after applying additional adjustments. 

To visualize the sex-specific association patterns of plasma metabolites, the results of both bi- 

and multivariate association analyses were combined in a volcano plot, see Figure 30 for 

confounder-adjusted findings (*) and Figure A-19 (Appendix 2.14) for confounder- and 

phenotypical/clinical variables-adjusted findings (**)). In the upper right and left corners, 

metabolites with moderate (|r| ≥ 0.25) bivariate correlations and significant contributions to 

multivariate associations are detectable. Metabolites in the upper middle region showed 

weak (|r| ≤ 0.25) bivariate correlations but significant contributions to multivariate 

associations, i.e., their relationship with the VO2peak depended on all other considered 

analytes. In contrast, the lower right and left corners include metabolites with moderate 

bivariate correlations but no relevant contributions to multivariate associations, i.e., their 

relationship with the VO2peak lost relevance if other metabolite variables with possibly 

redundant information were taken into account. For a subsequent metabolic interpretation 

of CRF-related metabolite patterns, plasma metabolites with relevant bivariate correlations 

(|r| ≥ 0.25) or significant contributions to multivariate associations were considered. 
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Figure 30. Volcano plots illustrating sex-specific plasma metabolite patterns associated with the VO2peak. F: females; M: males; 
* confounder (age/menopausal status)-adjusted; Y-axis: significance of contribution of each metabolite variable to the PLS 
model, expressed as the negative logarithm of the relative frequencies of permutation-obtained rank products below 
measured rank products; X-axis: direction and strength of partial correlations between the VO2peak and metabolite variables, 
expressed as Pearson correlation coefficients (r) of VdW-transformed variables. The classification of metabolites to metabolic 
pathways is color-coded as follows: ‘amino acid metabolism’ (dark blue); ‘carbohydrate metabolism’ (yellow); ‘cofactors and 
vitamins metabolism’ (dark green); ‘energy metabolism’ (light blue); ‘lipid metabolism’ (brown); ‘mammalian-microbial 
cometabolism’ (orange); ‘nucleotide metabolism’ (purple); ‘xenobiotics and related metabolism’ (light green); ‘unknown’ 
(black). PLS: partial least squares; VdW: Van der Waerden; VO2peak: peak oxygen uptake. (Adapted from Kistner et al. (2021)).  
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Multiple Regression Analyses 

To additionally investigate the sex-specific relationship between the VO2peak and selected 

metabolite variables in the presence of phenotypical and clinical data, multiple linear 

regression analyses were performed. By adjusting all included variables for age and meno-

pausal status, the examined associations were independent of these non-modifiable variables. 

As described in the methods section, sex-specific models were calculated based on three 

different sets of phenotypical, clinical, and metabolite variables. Results of the cross-validated 

stepwise regression analyses are presented in Table A-14 to Table A-19 (Appendix A2.15). 

Finally, the most suitable combination of phenotypical, clinical, and metabolite variables for a 

preferably good explanation of the VO2peak was selected. The included variables (“approach 

1–3 selection”) and R2 (adjusted) for the evaluation of the sex-specific final models are 

summarized in Table 18. With regard to approach 1 selection, seven phenotypical or clinical 

variables were selected for the final model of females, resulting in an R² (adjusted) of 0.40. 

For the final model of males, six phenotypical or clinical variables were selected, leading to an 

R2 (adjusted) of 0.43. When including all 21 phenotypical and clinical variables, an R2 (adjusted) 

of 0.36 for women and an R2 (adjusted) of 0.39 for men was obtained, see Table A-14 or Table 

A-15 (Appendix A2.15), respectively.  

Table 18. Summary of sex-specific final models for the confounder-adjusted VO2peak. (Adapted from Kistner et al. (2021)). 

Model Females (n=102) Males (n=150) 

Approach 1 
Selection 

R² (adjusted) = 0.40 
FM (%), HDL cholesterol, LBM, PWV, Hb, 
BP systolic, BP diastolic 

R² (adjusted) = 0.43 
FM (%), HDL cholesterol, BMC, AEE, TGs, 
LDL cholesterol 

Approach 2 
Selection 

R² (adjusted) = 0.72 
All phenotypical/clinical variables + 
PC ae C40:3, U3.961, S-Methylcysteine, Tartaric 
acid, U1.148, Serine, C24:0, Kynurenine, U0992 
 

R² (adjusted) = 0.62 
All phenotypical/clinical variables + 
PC aa C36:3, U0130, Tartaric acid, C6 (C4:1-DC)-
Carnitine, C14:1-OH-carnitine, U2.250, Malic acid, 
Glutamate, C24:0, U1.226 

Approach 3 
Selection 

R² (adjusted) = 0.68 
FM (%), PC ae C40:3, myo-Inositol, U0975, 
U3.961, U7.294, Glycine, U2.313, Lysine, 
C18:1-carnitine 

R² (adjusted) = 0.59 
FM (%), Malic acid, Taurocholate, PC aa C36:3, 
U0130, PC aa C36:6, Glutamate, U(Similar to 
Uracil), U1.226 

Variables were selected based on the results of the stepwise regression analyses and included in sex-specific final models. All 
variables were VdW-transformed and adjusted for age (and menopausal status in females). Selected metabolite variables are 
indicated in italics. Approach 1: only phenotypical/clinical variables (n=21) were stepwise selected; approach 2: all 
phenotypical/clinical variables (n=21) were included and only plasma metabolite variables (n=427) were stepwise selected; 
approach 3: phenotypical/clinical variables (n=21) as well as plasma metabolite variables (n=427) were stepwise selected. 
AEE: activity energy expenditure; BMC: bone mineral content; BP: blood pressure; FM: fat mass; Hb: hemoglobin; HDL: high-
density lipoprotein; LBM: lean body mass; LDL: low-density lipoprotein; n: sample size; PC aa: diacyl-phosphatidylcholine; PC 
ae: acyl-alkyl-phosphatidylcholine; PWV: pulse wave velocity; R2 (adjusted): adjusted coefficient of determination; TGs: 
triglycerides; U: unknown; VdW: Van der Waerden; VO2peak: peak oxygen uptake. 
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With approach 2, the added value of plasma metabolites for explaining the confounder-

adjusted VO2peak in the presence of all 21 phenotypical and clinical variables was considered. 

Nine or ten metabolites, respectively, were additionally selected for the final models, leading 

to a comparatively higher performance in both sexes (F: R2 (adjusted) = 0.72; M: R2 (adjusted) 

= 0.62). Contrary to approach 2, phenotypical and clinical parameters as well as metabolite 

variables entered the model in a competing stepwise manner in approach 3. Actually, FM (%) 

was the only phenotypical/clinical variable being included in the final models of both sexes. In 

females, nine plasma analytes were additionally selected, resulting in an R2 (adjusted) of 0.68. 

In males, eight plasma analytes completed the model, which finally showed an R2 (adjusted) 

of 0.59. In summary, approach 2 as well as approach 3 selection demonstrated an improved 

performance in both sexes, compared to the initial models solely based on phenotypical and 

clinical variables. While the acyl-alkyl-PC C40:3 was present in the females’ final models for 

both approaches 2 and 3, diacyl-PC C36:3, malic acid, as well as glutamate, were selected for 

the final models of males. 

7.5 Discussion 

The major finding of our systematic association analyses is that the VO2peak was related to sex-

specific sets of plasma metabolites that primarily belong to ‘lipid metabolism’. However, the 

observed correlations were rather moderate, and, independently of other clinical or 

phenotypical variables considered, only a small number of metabolites were significantly 

correlated with the CRF. Multiple regression analyses revealed that models explaining the sex-

specific VO2peak could be improved when including selected plasma metabolites in addition to 

clinical and phenotypical parameters. For a metabolic interpretation of CRF-related 

metabolite patterns, a graphical overview of identified metabolites with relevant bivariate 

correlations (|r| ≥ 0.25) or significant contributions to multivariate associations with the CRF 

and their pathway classification is provided in Figure 31. 

Apart from detecting bi- and multivariate associations between the CRF and plasma 

metabolites, which are discussed in the following sub-sections, we were also able to prove 

well-known relationships between the CRF and several health-related clinical or phenotypical 

variables (Zeiher et al., 2019) in the KarMeN population. After correcting for age and 

menopausal status, we confirmed previous studies showing that the CRF correlated negatively 



7 Study IIb 

140 

 

with the FM (%) (Tobita, Kusaka, Ohtaki, & Hashizume, 2003), VATM (S. L. Wong et al., 2004), 

PWV (Fernberg, Fernström, & Hurtig-Wennlöf, 2017), and TGs (Carnethon, Gulati, & 

Greenland, 2005; S. Lee et al., 2005) and positively with HDL cholesterol (Carnethon et al., 

2005; S. Lee et al., 2005) in both females and males. Equally consistent with the literature, but 

only present in men, were negative correlations of the age-adjusted VO2peak with the HRrest 

(Laukkanen et al., 2009), diastolic BP (Carnethon et al., 2005; Tobita et al., 2003), LDL 

cholesterol (Lakoski et al., 2011), and insulin (Laukkanen et al., 2009). In summary, our data 

provide evidence that even in a study sample consisting of metabolically healthy individuals 

and independent of age, individuals with a higher CRF generally demonstrated lower values 

of clinical parameters, some of which are recognized as traditional risk factors for chronic 

metabolic or cardiovascular diseases. 

 
Figure 31. Classification of relevant CRF-associated plasma metabolites to major and specific metabolic pathways. Top: 
females; bottom: males. Major metabolic pathways are color-coded as follows: ‘amino acid metabolism’ (dark blue); 
‘carbohydrate metabolism’ (yellow); ‘energy metabolism’ (light blue); ‘lipid metabolism’ (brown). * findings from confounder 
(age/menopausal status)-adjusted bi-/multivariate association analyses; ** findings from bivariate correlation analyses 
additionally adjusted for phenotypical/clinical variables. CRF: cardiorespiratory fitness; PC: phosphatidylcholine; SM: 
sphingomyelin; TCA: tricarboxylic acid. Metabolites with significant bivariate correlations to the CRF in both females and 
males are indicated in bold. (Reprinted from Kistner et al. (2021)).  
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7.5.1 Sex-Specific Plasma Metabolite Patterns Related to the CRF 

Age- and Menopausal Status-Adjusted Findings 

As shown by the results of age- and menopausal status-adjusted (*) correlation and PLS 

regression analyses, the CRF-related plasma metabolite pattern in females mainly comprised 

PCs, all of which were individually positively correlated with the VO2peak. PCs represent the 

most abundant phospholipid component in cellular membranes and plasma lipoproteins, 

being important for cell integrity or the assembly and stability of lipoproteins (Cole, Vance, & 

Vance, 2011). Besides, acyl-alkyl-PCs were proposed as antioxidants preventing lipoprotein 

oxidation (Wallner & Schmitz, 2011). Previous studies reported lower levels of acyl-alkyl-PCs 

in obese or insulin-resistant individuals (Pietiläinen et al., 2007; Wallner & Schmitz, 2011) and 

showed that specific acyl-alkyl-PCs were related to higher HDL cholesterol and a lower risk for 

type 2 diabetes (Floegel, Stefan, et al., 2013). In line with our results, Wientzek et al. (2014) 

demonstrated age- and sex-adjusted positive associations between the CRF and several serum 

PCs in middle-aged adults. Likewise, higher plasma levels of four acyl-alkyl-PCs were observed 

in adults with a high CRF compared to less fit adults, when controlling for age and BMI (Morris 

et al., 2015). While those relationships seemed to be independent of sex, associations bet-

ween the CRF and specific PCs in the KarMeN population were more pronounced in women. 

With regard to men, age-adjusted association analyses revealed that the CRF-related plasma 

metabolite pattern was dominated by three lysoPCs (C18:2, C18:1, C17:0), all of which were 

positively linked to the VO2peak, and two SMs (C18:0, C18:1), which were negatively linked to 

the VO2peak. In fact, lysoPC C18:2 also showed a relevant positive correlation with the CRF in 

females. LysoPCs represent hydrolysis products from PCs, with relevant roles for cell signaling. 

As a major component of oxidized LDL, lysoPCs are also supposed to regulate the 

pathophysiological processes underlying atherosclerosis (Schmitz & Ruebsaamen, 2010). It is 

noteworthy that saturated lysoPCs are assumed to exert pro-inflammatory effects, whereas 

polyunsaturated lysoPCs such as C18:2 do not seem to possess inflammatory properties 

(Hung, Sok, & Kim, 2012). Actually, circulating lysoPCs were found to be reduced in obese 

individuals (Barber et al., 2012) and, especially, lysoPC C18:2 has been linked to a lower risk 

for type 2 diabetes (Floegel, Stefan, et al., 2013) or cardiovascular disease (Y. K. Lee et al., 

2013). As is consistent with our findings, Wientzek et al. (2014) showed positive correlations 
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between the CRF and serum lysoPCs C18:2 and C18:1, after controlling for sex and age. Thus, 

it is possible that lysoPC C18:2, in particular, might provide a potential link between the CRF 

and its protective effects on chronic diseases. Our data moreover suggest a sex-dependent 

regulation of ‘glycerophospholipid metabolism’ in relation to the CRF status. Although PC 

hydrolysis and lysoPC formation have been shown to be generally higher in men than in 

women, possibly due to differences in enzymatic activities, body composition, and/or 

hormonal or lifestyle factors (Beyene et al., 2020), the exact mechanisms underlying sex-

related differences in CRF-associated phospholipids are largely speculative. However, we 

assume sex to be an important factor when studying how PC metabolism is linked to the 

health-beneficial effects of a high CRF. In addition to lysoPCs, SMs are present in cell 

membranes or linked to lipoproteins (Iqbal, Walsh, Hammad, & Hussain, 2017). Higher plasma 

SMs have been proposed as independent risk factors for cardiovascular diseases (Jiang et al., 

2000). In particular, SMs with saturated acyl chains (C18:0 to C24:0) were closely correlated 

with parameters of obesity or insulin resistance (Hanamatsu et al., 2014). As is consistent with 

our results, previous studies reported negative correlations between the CRF and blood SM 

C18:0 (Lustgarten et al., 2013; Saleem et al., 2020) or SM C18:1 (Saleem et al., 2020; Wientzek 

et al., 2014) in young (Lustgarten et al., 2013) and middle-aged (Wientzek et al., 2014) adults 

or patients with coronary artery disease (Saleem et al., 2020). Despite sex-related differences, 

our findings indicate that even in healthy individuals and across a broad age range, a higher 

CRF tends to be associated with lower values of potential novel blood biomarkers of the 

pathophysiological processes underlying cardiometabolic diseases. 

Further relevant CRF-related plasma metabolites in females were two acylcarnitines (C14:2, 

C10:2), the LCFA C24:0, glyceric acid, acetate, and citric acid, all of which were positively linked 

to the VO2peak, and two LCFAs (C16:1 9cis, C18:1 11cis), which showed negative correlations 

with the VO2peak. Palmitoleic acid C16:1 9cis also significantly contributed to the multivariate 

association with the CRF. C16:1 9cis is an abundant fatty acid in human blood and adipose 

tissue. It can be ingested through diet or endogenously produced, and is assumed to act as a 

beneficial lipokine that prevents the negative effects of adiposity on insulin sensitivity (Tricò 

et al., 2020). Since circulating C16:1 9cis has been shown to be proportional to FM (Tricò et 

al., 2020), the negative correlation between the CRF and C16:1 9cis might be explained by the 

generally lower FM (%) in fitter females. Acylcarnitines are intermediates in the transport of 
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LCFAs to mitochondria or byproducts of β-oxidation (McCann, George De la Rosa, Rosania, & 

Stringer, 2021). Although blood acylcarnitines have been identified as markers of insulin 

resistance, mitochondrial overload, and incomplete fat oxidation (Koves et al., 2008), they are 

also physiologically elevated in conditions with high lipolytic rates (Soeters et al., 2009). 

Recently, it has been shown that a training-induced rise in fasting levels of muscular long- and 

medium-chain acylcarnitines (e.g., C14:2 and C10:2) were related to an improved CRF and 

potentially reflective of a more robust carnitine buffering system (Huffman et al., 2014). 

Glyceric acid is a sugar acid that connects several pathways, e.g., ‘glycerolipid metabolism’ 

and ‘glycolysis/gluconeogenesis’. Even if its biological relevance with regard to PE has, to our 

knowledge, not yet been described, Lustgarten et al. (2013) also revealed a positive 

association between the CRF and circulating glyceric acid in healthy females. Equally in line 

with our results, blood acetate was shown to be higher in physically active adults (Kujala et 

al., 2013). Acetate is either directly formed from pyruvate, providing a source for acetyl-

coenzyme A (Liu et al., 2018), or can be produced by the intestinal microbiota, finally entering 

circulation (Frampton, Murphy, Frost, & Chambers, 2020). It has been suggested that a higher 

PF is linked to a greater abundance of gut bacteria with positive health effects, being reflected 

in the release of fermentation metabolites like acetate (Antunes et al., 2020; Bressa et al., 

2017). In addition to its anti-inflammatory and vasodilatory properties (Frampton et al., 2020), 

acetate has been proposed as an important energy substrate during endurance exercise in 

mice (Okamoto et al., 2019). However, the extent to which the microbiome indeed affects the 

PE capacity in humans, and whether resting blood acetate might mirror this association, 

requires further investigation. While the tricarboxylic acid (TCA) cycle intermediate citric acid 

only showed a relevant positive correlation with the VO2peak in females, malic acid and succinic 

acid tended to be positively linked to the CRF in both sexes. Previous studies revealed a rise in 

fasting plasma malic acid after weight loss and PE intervention in obese women (Campbell et 

al., 2014), a training-induced increase in muscular succinic acid in subjects at risk of metabolic 

disease (Huffman et al., 2014), or a slightly positive correlation between the CRF and serum 

succinic acid in healthy young men (Castro et al., 2021). Despite weak bivariate correlations, 

our results support the suggestion that specific TCA cycle intermediates might be possibly 

interesting blood markers of the beneficial effects of chronic PA occurring at a muscular level, 

such as an increased mitochondrial density or TCA cycle capacity. 
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To conclude, we provided evidence of sex-specific CRF-associated plasma metabolite patterns, 

after adjusting for age and menopausal status. Sex-related differences were especially 

observed for ‘lipid metabolism’-related PCs, which generally showed relevant associations 

with the VO2peak in females but not in males. However, weak to moderate correlations 

between the CRF and lysoPC C18:2, LCFA C16:1 9cis, glyceric acid, as well as the ‘energy 

metabolism’- or ‘carbohydrate metabolism’-related succinic acid, malic acid, or acetate, were 

observed in both sexes. Accordingly, our results suggest that CRF-related adaptations in 

‘glycerophospholipid metabolism’ might vary between sexes, whereas the consequences of a 

high CRF on, e.g., the TCA cycle, seem to be present in females and males. 

Age-, Menopausal Status-, and Phenotypical/Clinical Variables-Adjusted Findings 

A higher CRF is generally concomitant with a healthier body composition, adaptations in heart 

and arterial function, or cardiometabolic risk parameters. Hence, we next aimed to identify 

metabolite patterns that were independent of further assessed phenotypical and clinical 

variables associated with the CRF. When adjusting for potential covariates (**), a com-

paratively smaller number of metabolites were correlated with the VO2peak in both sexes. Thus, 

it can be suggested that many of the observed associations cannot be primarily and specifically 

attributed to the CRF. As no relevant CRF-related information seemed to remain in the overall 

plasma metabolite profile, findings from PLS regression analyses are not further discussed. 

After applying additional adjustments, seven acyl-alkyl-PCs, C5-carnitine, choline, glyceric 

acid, acetylornithine, and diacyl-PC C28:1 still showed moderate positive correlations with the 

VO2peak in females. Two of these acyl-alkyl-PCs (C40:3, C44:3) were also present in a cluster of 

19 PCs that were related to the CRF in the study of Wientzek et al. (2014), when controlling 

for sex, age, BMI, and waist circumference, among others. The fact that we adjusted for more 

precise body composition measures and parameters of lipoprotein metabolism, which are 

known to be linked to both the CRF (Parto, Lavie, Swift, & Sui, 2015) and PCs (Cole et al., 2011; 

Floegel, Stefan, et al., 2013), could explain the study-specific results. Choline participates in 

multiple pathways of ‘lipid metabolism’ or ‘AA metabolism’, serving as a precursor for PC 

species, the neurotransmitter acetylcholine, or betaine. Circulating choline can result from 

diet or PC breakdown (Zeisel & da Costa, 2009) and was shown to be either lower (Bye et al., 

2012) or higher (Castro et al., 2021; Høeg et al., 2020) in fitter individuals. Even though a more 
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efficient conversion of PCs to choline in trained individuals was assumed by Høeg et al. (2020), 

it cannot be excluded that female KarMeN subjects with a high CRF were also characterized 

by a higher dietary choline intake. 

In summary, sex-specific differences in CRF-related plasma metabolites were still detectable, 

e.g., for some PCs that remained positively correlated with the female CRF but were not or 

even slightly negatively linked to the male CRF. Moreover, the xenobiotic tartaric acid showed 

sex-specific correlations with the CRF. This might be due to differences in the dietary intake 

of wine, vinegar, or grapes (Regueiro, Vallverdu-Queralt, Simal-Gandara, Estruch, & Lamuela-

Raventos, 2014; T. Xia, Zhang, Duan, Zhang, & Wang, 2020) in more or less fit women or men. 

The AA alanine showed a slightly negative correlation to the female VO2peak but a slightly 

positive correlation to the male VO2peak. In the literature, circulating alanine was mostly 

negatively linked to the CRF status (Koh et al., 2018; Morris et al., 2013). 

7.5.2 Sex-Specific CRF Explanation Models 

Contrary to a previous attempt to explain the variability of the CRF in the KarMeN population 

based on urinary metabolites (Kistner et al., 2020), we were now able to identify sets of 

plasma metabolites that, together with clinical and phenotypical variables, contributed to a 

relatively good explanation of the VO2peak in both sexes, after adjusting for age and 

menopausal status. In all approaches, the FM (%) entered the models as the first variable, 

already explaining 33.5% or 42.3% of the confounder-adjusted VO2peak in females or males, 

respectively. Six (females) or five (males) further phenotypical or clinical parameters slightly 

improved the models (approach 1 selection). However, when phenotypical, clinical as well as 

metabolite variables entered the models in a competing manner, plasma analytes led to a 

fairly improved performance in both sexes, as demonstrated by an R2 (adjusted) of 0.68 for 

females and 0.59 for males (approach 3 selection). Regarding females, acyl-alkyl-PC C40:3 was 

the second most important determinant of the VO2peak. Interestingly, this PC sum parameter 

also showed relevant bi- and multivariate associations with the CRF. As the relationship 

between acyl-alkyl-PC C40:3 and the VO2peak did not appear to be influenced by other assessed 

plasma analytes and as the bivariate correlation persisted independently of adjustments, the 

ability of acyl-alkyl-PC C40:3 to predict the CRF in females should be given special 

consideration in further studies. Regarding males, the TCA cycle intermediate malic acid was 
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the second variable being included in the model after the FM (%) (approach 3 selection). In a 

study by Lustgarten et al. (2013), blood metabolites-based CRF explanation models were also 

sex-dependent. Seven serum metabolites in females and five serum metabolites in males 

explained 58 or 80% of the CRF variability, respectively. However, as regression models were 

not adjusted for age, body composition, diet, or PA, it is uncertain if those metabolites are 

specifically indicative of the CRF. As demonstrated by our stepwise regression models, the 

VO2peak was largely determined by the FM (%) in the KarMeN study, supporting the assumption 

that some associations between the CRF and plasma metabolites might be mechanistically 

linked to clinical or phenotypical traits that were also influenced by chronic PA. In fact, Kujala 

et al. (2019) have shown that comparatively few blood metabolites remained significantly 

associated with the CRF, after adjusting for the body fat content in healthy young men. 

Nevertheless, our findings could emphasize the additional value of metabolomics data for 

explaining the variability inherent in the VO2peak, hinting at some possibly relevant plasma 

metabolites that could help to infer an individual’s CRF status. Further studies will be needed 

to verify if those metabolites are indeed specific for the CRF, and to what extent they are 

influenced by other functional or morphological characteristics of the human organism. 

7.5.3 Strengths and Limitations 

The major strength of this study is that it provides a systematic overview of the relationship 

between the CRF and the plasma metabolome in a relatively large population consisting of 

both women and men with a wide age range. The KarMeN study was characterized by highly 

standardized anthropometric and clinical examinations, as well as a strictly controlled 

procedure for blood collection, CRF assessment, and metabolomics analyses. To minimize the 

variability in metabolomics measurements, plasma samples were collected in the fasting 

state, and pre-menopausal women were examined within the luteal phase of their menstrual 

cycle. As the KarMeN study focused on healthy, non-smoking subjects with a normal to 

moderately high weight, excluding individuals with supplement use or hormonal treatment, 

the metabolic variation related to diseases, medication, or metabolic disorders was also 

markedly reduced. To control for known confounders from the very beginning, we conducted 

sex-specific analyses adjusted for age and menopausal status. Owing to the comprehensive 

characterization of study participants, further potential confounding factors related to body 



7 Study IIb 

147 

 

composition, clinical blood biochemistry, lung and arterial function, short-term and habitual 

PA, as well as diet, could be considered. Another strength of this study is the applied multi-

platform metabolomics approach, allowing the detection of a large number of plasma analytes 

from a broad range of biochemical classes and pathways. Limitations of the study include the 

cross-sectional design, as it does not allow the deriving of causal relationships. Furthermore, 

some of the plasma analytes showing relevant associations with the CRF could not be 

identified with sufficient certainty and thus, regrettably, remained unknown. 

7.6 Conclusions 

In summary, our findings demonstrated sex-dependent relationships between the CRF and 

plasma metabolites in the KarMeN population. Apart from proving well-known associations 

between the CRF and further, partly health-related phenotypical or clinical variables in both 

sexes, we could identify a number of PCs, lysoPCs, and SMs as being associated with the 

VO2peak in either females or males, when controlling for age and menopausal status. However, 

independently of selected clinical or phenotypical variables, the sex-specific CRF tended to be 

correlated with a rather small number of plasma metabolites primarily related to ‘lipid metab-

olism’, ‘AA metabolism’, or ‘xenobiotics-related metabolism’. Hence, many of the observed 

associations between the CRF and metabolites were likely to be mediated by the considered 

clinical or phenotypical parameters. Although the variability of the CRF was largely determined 

by the FM (%) in both sexes, our stepwise regression analyses revealed certain sets of plasma 

metabolites able to improve sex-specific VO2peak explanation models. In particular, acyl-alkyl-

PC C40:3 could be identified as a possibly interesting metabolite parameter for conclusions on 

the CRF status in healthy females. Remarkably, CRF-associated metabolites have already been 

discussed as being reflective of exercise-induced adaptations in muscular ‘energy metabolism’ 

(e.g., malic acid, succinic acid, acylcarnitines) or inversely linked to the development of cardio-

metabolic diseases (e.g., PCs, lysoPCs). Thus, those metabolites might represent potential 

mediators of the performance- or health-enhancing effects of chronic PA. However, more 

research is needed to clarify the mechanisms and metabolic pathways underlying sex-specific 

differences in CRF-associated metabolite profiles. Finally, we recommend future studies on 

blood metabolic markers related to the CRF to conduct sex-separated analyses and to consider 

age, menopausal status, body composition, and other health-related variables as covariates.  
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8 Functional Classification of PE- or PF-Related Metabolite Profiles 

In addition to the detailed interpretation of PE- or PF-related metabolite profiles provided in 

the published articles, this chapter gives a comparative overview of the categorization of 

metabolites associated with medium-term HIIT (Study I), acute incremental PE (Study IIa), or 

the CRF status (Study IIb) to major and specific metabolic pathways based on a manually 

conducted metabolite classification procedure, as described in Chapter 4.5.1. Furthermore, 

the results of a web-based pathway analysis tool depicted in Chapter 4.5.2 are presented. 

Thus, comprehensive information on metabolic pathways which are most likely to be affected 

by PE or related to the PF status shall be provided.  

8.1 Study I 

In Study I, three urinary metabolites with a significantly different excretion either one day or 

four days post-HIIT compared to one day pre-HIIT could be identified, see Chapter 5.4.2. The 

manual classification of those metabolites to major metabolic pathways is visualized in Figure 

32. 

 
Figure 32. Classification of altered metabolites to major metabolic pathways (Study I). Three urinary metabolites changing in 
response to a ten-day HIIT were detected. While hypoxanthine as the only urinary metabolite with a significantly lower 
concentration one day post-HIIT belonged to ‘nucleotide metabolism’, taurine and asymmetric dimethylarginine as the only 
urinary metabolites with a significant decrease four days post-HIIT belonged to ‘amino acid metabolism’. HIIT: high-intensity 
interval training. (Own illustration). 

As only three metabolites were altered in response to HIIT, the categorization to sub-pathways 

is not further illustrated graphically. Briefly, hypoxanthine as the only HIIT-related metabolite 
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associated with ‘nucleotide metabolism' belonged to the sub-pathway ‘purine metabolism’. 

While the AA taurine was related to the sub-pathway ‘cysteine, methionine and taurine 

metabolism’, ADMA was associated with the sub-pathway ‘arginine and proline metabolism; 

urea cycle’. 

By conducting a pathway analysis, two of the three urinary metabolites changing in response 

to HIIT, namely hypoxanthine and taurine, were assigned to three pathways contained in the 

KEGG database. A complete list of those pathways and matched metabolites is given in Table 

A-27 (Appendix A4.4). Since ‘taurine and hypotaurine metabolism’ was the only pathway with 

a p-value < 0.05 and a pathway impact value > 0.1, no graphical overview of the pathway 

analysis results from Study I is provided. In fact, ‘taurine and hypotaurine metabolism’ did not 

remain significantly enriched after FDR-correction. 

8.2 Study IIa 

In Study IIa, 35 metabolites with a significantly different urinary excretion post-exercise and 

median FCs ≤ 
1

1.1
 or ≥ 1.1 could be identified, see Chapter 6.4.2. While the results of the manual 

classification of those exercise-responsive metabolites to major metabolic pathways are 

visualized in Figure 33, the further categorization to sub-pathways is illustrated in Figure 34. 

 
Figure 33. Classification of altered metabolites to major metabolic pathways (Study IIa). 35 urinary metabolites changing in 
response to an incremental exercise test were detected in Study IIa. Most of them belonged to ‘amino acid metabolism’ 
(17/35) and ‘xenobiotics-related metabolism’ (6/35), followed by ‘mammalian-microbial cometabolism’ (4/35), ‘energy 
metabolism’ or ‘carbohydrate metabolism’ (each 3/35), and ‘lipid metabolism’ (2/35). (Own illustration).  
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Figure 34. Classification of altered metabolites to sub-pathways (Study IIa). The 35 exercise-responsive metabolites detected 
in Study IIa were further classified to 19 sub-pathways. (Own illustration). 

Briefly, the classification of the 35 exercise-responsive metabolites to major and specific 

pathways revealed that most of the 17 metabolites belonging to ‘AA metabolism’ were 

associated with ‘isoleucine, leucine and valine metabolism’ (35.3 %), ‘glycine, serine and 

threonine metabolism’ (29.4 %), or ‘phenylalanine and tyrosine metabolism’ (11.8 %), see 

Figure 34. While the six xenobiotics-related metabolites were classified as ‘food or plant 

constituents’ (50.0 %), ‘chemicals’, ‘sugars, sugar substitutes or sugar derivatives’, and 

‘xanthine metabolites’ (each 16.7 %), the four mammalian-microbial cometabolites belonged 

to four sub-pathways, namely ‘trimethylamines metabolism’, ‘tryptophan metabolism’, 

‘polyphenolic compounds metabolism’, and ‘one carbon metabolism’ (each 25.0 %). The three 

metabolites belonging to either ‘energy metabolism’ or ‘carbohydrate metabolism’ were 
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classified to only one sub-pathway, namely ‘TCA cycle intermediates’ or ‘glucose and pyruvate 

metabolism’, respectively. The two ‘lipid metabolism’-related compounds were either linked 

to ‘ketone body metabolism’ (50.0%) or ‘carnitine metabolism’ (50.0%).  

Apart from the manual classification, a pathway analysis was conducted on the 35 exercise-

responsive metabolites. 23 metabolites were assigned to 26 pathways contained in the KEGG 

database. A graphical overview of the results is presented in Figure 35 and a complete list of 

those pathways the metabolites were mapped to is provided in Table A-28 (Appendix A4.5).  

 
Figure 35. Results of pathway analysis on 35 altered metabolites (Study IIa). In the overview graph, the 26 matched pathways 
are arranged by log-transformed p-values from over-representation analysis (Y-axis) and pathway impact values from 
topology analysis (X-axis). While the node color is based on the p-value, the node radius is determined by the pathway impact 
value. The impact value threshold was set at 0.10 (vertical red line) and the significance level at α=0.05 (horizontal red line). 
*: still significant after false discovery rate correction. (Own illustration based on graphs provided by MetaboAnalyst 5.0 
(https://www.metaboanalyst.ca)). 

Briefly, ‘glycine, serine and threonine metabolism’, ‘glyoxylate and dicarboxylate metabolism’, 

‘citrate cycle’, ‘pyruvate metabolism’, and ‘glycolysis/gluconeogenesis’ could be identified as 

those pathways that seemed most affected by the acute exercise test conducted in Study IIa. 

As shown in Figure 35, they all demonstrated p-values < 0.05 and impact values > 0.1. While 

seven metabolites (betaine, creatine, guanidinoacetate, glycine, N,N-dimethylglycine, 

pyruvate, threonine) were related to ‘glycine, serine and threonine metabolism’, six 
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metabolites (acetate, cis-aconitate, citrate, formate, glycine, pyruvate) were assigned to 

‘glyoxylate and dicarboxylate metabolism’. The exercise-related metabolites categorized 

under ‘citrate cycle’ were cis-aconitate, citrate, pyruvate, and succinate and those being 

mapped to both ‘pyruvate metabolism’ and ‘glycolysis/gluconeogenesis’ were acetate, 

lactate, and pyruvate, see Table A-28 (Appendix A4.5). As the most altered pathways share 

several metabolites, a certain interconnectivity between those pathways could be assumed.  

In Study IIa, almost no relevant correlations between urinary metabolites and the CRF could 

be observed, after controlling for covariates. Therefore, the manual classification and pathway 

analysis were restricted to the urinary metabolites being altered in response to acute PE. 

8.3 Study IIb 

In Study IIb, the CRF showed significant correlations with 59 plasma analytes in females and 

24 analytes in males, after adjusting for age, menopausal status, and further phenotypical and 

clinical variables, see Chapter 7.4.4 and Table A-11 or Table A-13 (Appendix A2.11). As a first 

step for the functional interpretation of CRF-related metabolites, all identified plasma 

metabolites with significant bivariate correlations to the CRF were classified to major and 

specific metabolic pathways. While a classification of age- and menopausal status-adjusted 

CRF-correlated metabolites has already been conducted in the framework of the published 

manuscript, see Figure A-14 to Figure A-17 (Appendix 2.12), only those plasma analytes with 

significant bivariate correlations that were independent of further phenotypical and clinical 

variables were considered for a manual classification to metabolic pathways and a web-based 

pathway analysis in this sub-section. Both approaches were conducted separately for sexes: 

Female sub-group 

In females, 37 of 59 CRF-correlated plasma analytes were of known identity and could hence 

be considered for the manual classification to major and specific metabolic pathways. As 

shown in Figure 36, 27 CRF-correlated metabolites belonged to ‘lipid metabolism’. They were 

mainly linked to ‘glycerophospholipid metabolism’ (70.4 %), ‘LCFA metabolism’ (14.8 %), and 

‘carnitine metabolism’ (7.4 %), see Figure 37. Besides, the six metabolites belonging to ‘AA 

metabolism’ were associated with ‘arginine and proline metabolism; urea cycle’ and ‘glycine, 

serine and threonine metabolism’ (each 33.3%) or ‘tryptophan metabolism’ and ‘isoleucine, 

leucine and valine metabolism’ (each 16.7%). While the two xenobiotics-related metabolites 
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were classified as ‘food or plant constituents’, the single metabolites belonging to either 

‘energy metabolism’ or ‘carbohydrate metabolism’ were a ‘TCA cycle’ intermediate or 

associated with ‘inositol phosphate metabolism’, respectively. 

 
Figure 36. Classification of CRF-correlated analytes in females to major metabolic pathways (Study IIb). 59 plasma analytes 
showed significant bivariate correlations with the CRF, after adjusting for age, menopausal status, and 21 phenotypical/ 
clinical variables. Most of them belonged to ‘lipid metabolism’ (27/59) and ‘amino acid metabolism’ (6/59), followed by 
‘xenobiotics and related metabolism’ (2/59), ‘energy metabolism’, or ‘carbohydrate metabolism’ (each 1/59). 22 plasma 
analytes were unknown. CRF: cardiorespiratory fitness. (Own illustration). 
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Figure 37. Classification of CRF-correlated analytes in females to sub-pathways (Study IIb). The 37 CRF-correlated plasma 
metabolites with known identity were further classified to 12 sub-pathways. CRF: cardiorespiratory fitness. (Own illustration). 

Additionally, a pathway analysis was conducted on CRF-correlated plasma metabolites. Since 

22 analytes were of unknown identity and no HMDB IDs were available for two further 

metabolites, only 35 metabolites could be included into analysis. From these metabolites, 10 

were assigned to 20 KEGG pathways. In Figure 38, a graphical overview of the results is 

presented and a complete list of mapped pathways is provided in Table A-29 (Appendix A4.6). 

 
Figure 38. Results of pathway analysis on 35 CRF-correlated, identified analytes in females (Study IIb). In the overview graph, 
the 20 matched pathways are arranged by log-transformed p-values from over-representation analysis (Y-axis) and pathway 
impact values from topology analysis (X-axis). While the node color is based on the p-value, the node radius is determined by 
the pathway impact value. The impact value threshold was set at 0.10 (vertical red line) and the significance level at α=0.05  
(horizontal red line). CRF: cardiorespiratory fitness. (Own illustration based on graphs provided by MetaboAnalyst 5.0 
(https://www.metaboanalyst.ca)).  
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According to the pathway analysis, the most relevant metabolic pathways linked to the CRF of 

females in Study IIb were ‘glycerophospholipid metabolism’ and ‘glyoxylate and dicarboxylate 

metabolism’, both showing p-values < 0.05 and impact values > 0.1. While three CRF-

correlated metabolites (phosphatidylcholine, choline, ethanolamine) were mapped to 

‘glycero-phospholipid metabolism’, two metabolites (citrate, glycerate) were categorized 

under ‘glyoxylate and dicarboxylate metabolism’, see Table A-29 (Appendix A4.6). Further 

relevant pathways included ‘valine, leucine and isoleucine metabolism’ (threonine, valine), 

‘glycine, serine and threonine metabolism’ (choline, threonine, glycerate), and ‘inositol 

phosphate metabolism’ (myo-inositol). Yet, the former two only demonstrated p-values < 0.05 

but pathway impact values < 0.1 and the latter only showed a pathway impact value > 0.1 but 

a p-value > 0.05. Finally, no metabolic pathway remained significant after FDR-correction. 

Male sub-group 

With regard to males, 11 of 24 CRF-correlated plasma analytes were of known identity and 

thus considered for the manual classification to major and specific metabolic pathways. As 

illustrated in Figure 39, eight CRF-correlated metabolites belonged to ‘lipid metabolism’. In 

detail, they were linked to ‘glycerophospholipid metabolism’ (50.0 %), ‘bile acid metabolism’ 

(25.0 %), ‘LCFA metabolism’ and ‘carnitine metabolism’ (each 12.5 %), see Figure 40. 

 
Figure 39. Classification of CRF-correlated analytes in males to major metabolic pathways (Study IIb). 24 plasma analytes 
showed significant bivariate correlations with the CRF, after adjusting for age and 21 phenotypical/clinical variables. Most of 
them belonged to ‘lipid metabolism’ (8/24) and ‘amino acid metabolism’ (2/24), followed by ‘xenobiotics and related 
metabolism’ (1/24). 13 plasma analytes were unknown. CRF: cardiorespiratory fitness. (Own illustration).  
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Figure 40. Classification of CRF-correlated analytes in males to sub-pathways (Study IIb). The 11 CRF-correlated plasma 
metabolites with known identity were further classified to 7 sub-pathways. CRF: cardiorespiratory fitness. (Own illustration). 

The two metabolites belonging to ‘AA metabolism’ were either associated with ‘alanine and 

aspartate metabolism’ or ‘glutamate metabolism’, while the only xenobiotics-related 

metabolite was classified as a ‘food or plant constituent’.  

Moreover, a pathway analysis was conducted on CRF-correlated plasma analytes. Since 13 

analytes were of unknown identity, only 11 metabolites could be included into analysis. Of 

those metabolites, four were assigned to 17 pathways contained in the KEGG database. A 

graphical overview of the results is presented in Figure 41 and a complete list of mapped 

pathways is provided in Table A-30 (Appendix A4.6). The most relevant metabolic pathways 

linked to the CRF of males in Study IIb included ‘alanine, aspartate and glutamate metabolism’ 

and ‘D-glutamine and D-glutamate metabolism’ (p-value < 0.05; impact value > 0.1). While the 

CRF-correlated metabolites categorized under ‘alanine, aspartate and glutamate metabolism’ 

were alanine and glutamate, the only metabolite being mapped to ‘D-glutamine and D-

glutamate metabolism’ was glutamate, see Table A-30 (Appendix A4.6). Further relevant 

metabolic pathways included ‘aminoacyl tRNA biosynthesis’ (alanine, glutamate), ‘linoleic acid 

metabolism’ (phosphatidylcholine), ‘nitrogen metabolism’ (glutamate) and ‘arginine 
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biosynthesis’ (glutamate). However, they either demonstrated a p-value > 0.05 or a pathway 

impact value < 0.1. After FDR-correction, no metabolic pathway remained significant. 

 
Figure 41. Results of pathway analysis on 11 CRF-correlated, identified analytes in males (Study IIb). In the overview graph, 
the 17 matched pathways are arranged by log-transformed p-values from over-representation analysis (Y-axis) and pathway 
impact values from topology analysis (X-axis). While the node color is based on the p-value, the node radius is determined by 
the pathway impact value. The impact value threshold was set at 0.10 (vertical red line) and the significance level at α=0.05  
(horizontal red line). CRF: cardiorespiratory fitness. (Own illustration based on graphs provided by MetaboAnalyst 5.0 
(https://www.metaboanalyst.ca)).  
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9 General Discussion 

Metabolomics is a powerful tool to assess PA-related alterations in human metabolism. By 

allowing a comprehensive investigation of PE- or PF-associated metabolite profiles in easily 

obtainable biofluids like blood or urine, metabolomics can provide valuable new insights into 

metabolic pathways that are linked to the health-beneficial or performance-enhancing effects 

of PA (Kelly et al., 2020). With regard to future applications, metabolomics research can 

facilitate the discovery of novel exercise-responsive biomarkers, which are likely to reflect an 

individual’s training, fitness, or health status (Daskalaki et al., 2014). However, the application 

of metabolomics in the field of exercise science is still in its early stages (Heaney et al., 2017). 

As described in Chapter 3, the general aim of the present thesis was to comprehensively 

analyze the effect of acute and chronic PA on metabolite profiles in humans. Several clearly 

defined research gaps and deficiencies of previous studies should thereby be addressed and 

the current state of knowledge in the field of exercise metabolomics should be extended. To 

reach these purposes, metabolomics data from three exercise- or fitness-related (sub-)studies 

(indicated as Study I or Study IIa/IIb, see Chapter 4) were analyzed. The particular study results, 

all of which have been published in international peer-reviewed journals, were presented in 

Chapters 5 to 7, and a functional classification of obtained PE- or PF-related metabolite 

profiles was provided in Chapter 8. This section summarizes the main findings of the 

respective (sub-)studies and discusses them in a wider and specific context (Chapter 9.1). 

Finally, strengths and limitations of the conducted research are addressed (Chapter 9.2) and 

general conclusions and suggestions for future research are provided (Chapter 9.3). 

9.1 Main Findings 

Summarizing the overall findings from Study I, IIa, and IIb, specific PE- and PF-related human 

metabolite profiles could be detected and finally be associated with particular metabolic 

pathways. The ten-day HIIT intervention was linked to slight alterations in the major pathways 

‘nucleotide metabolism’ and ‘AA metabolism’ (Study I), whereas the acute incremental 

exercise test mainly led to variations in the major pathways ‘AA metabolism’, ‘xenobiotics and 

related metabolism’, ‘mammalian-microbial cometabolism’, ‘energy metabolism’, ‘carbo-

hydrate metabolism’, and ‘lipid metabolism’ (Study IIa). In contrast to this, the CRF as a 

surrogate measure of chronic PA was principally associated with the major pathway ‘lipid 
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metabolism’, followed by ‘AA metabolism’ and ‘xenobiotics and related metabolism’, when 

controlling for age, menopausal status, and further phenotypical and clinical variables 

(Study IIb). Figure 42 provides a compact summary of the three studies, its research focuses, 

and major metabolic pathways that were linked to either PE or PF. A more detailed discussion 

of the study-specific findings will be given in the following sub-sections. 

 
Figure 42. Summary of the main research focuses and major metabolic pathways linked to PE or PF in Study I, IIa, and IIb. >: 
more related to PE or PF than; ≈ equally related to PE or PF. AA: amino acid; CRF: cardiorespiratory fitness; F: females; HIIT: 
high-intensity interval training; KarMeN: Karlsruhe Metabolomics and Nutrition; M: males; PE: physical exercise; PF: physical 
fitness. (Own illustration). 

9.1.1 Study I 

In the framework of the randomized controlled interventional Study I (“HIIT Study”), medium-

term changes in the metabolome in response to high-intensive intermittent exercise training 

were investigated. More specifically, the purpose of this study was to examine the effects of 

a ten-day HIIT and a subsequent four-day recovery period on the resting urinary metabolome 

of ten young active men, who constituted the EG of Study I. Due to the reliable identification 

and quantification of 64 urinary metabolites by NMR-/LC-MS-based metabolomics analyses, 

Study I allowed to obtain first information about urinary metabolic markers which might be 

indicative for an individual’s adaptation to HIIT. Moreover, a deeper knowledge on altered 

metabolic pathways was intended to be deduced from the results of Study I. 
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The main findings from Study I can be summarized as follows: 

1. Despite the high intensity of the ten-day training protocol, there was no overall change 

in the resting urinary metabolome in the EG. 

2. One day after HIIT intervention, a significantly lower resting urinary hypoxanthine 

concentration than pre-training was detected in the EG. 

3. Four days after HIIT intervention, significantly lower resting urinary taurine and ADMA 

concentrations than pre-training were detected in the EG. 

4. Between the EG and CG, differences in single urinary metabolites were only observed 

post-training. One day after HIIT intervention, urinary hypoxanthine was significantly 

lower in the EG. Four days after HIIT intervention, urinary betaine, hypoxanthine, and 

isoleucine significantly differed between both groups. 

Regarding the first finding and the fact that alterations in urinary metabolite concentrations 

were known to occur acutely in response to single high-intensity exercise bouts (Pechlivanis 

et al., 2013; Pechlivanis et al., 2015; Siopi et al., 2017), it can be supposed that the participants’ 

metabolism was able to largely regenerate from acute metabolic disturbances due to the 

exhausting HIIT in a given time frame of one or four recovery days, respectively. However, 

since resting urinary levels of the purine derivative hypoxanthine were significantly lower in 

the EG one day after HIIT intervention, training-induced adaptations in ‘purine metabolism’ 

might be suggested. During high-intensive exercise, hypoxanthine represents the final ATP 

breakdown product in skeletal muscles, from where it can leak out to the blood (Zielinski & 

Kusy, 2015b), see Figure 43. In fact, circulating hypoxanthine has not only been proposed as a 

metabolic indicator of exercise-induced, acute energetic stress (Sahlin et al., 1999), but has 

also emerged as a potential biomarker for an athlete’s training status (Mahanty & Xi, 2020; 

Zielinski & Kusy, 2015a). As recently shown, exercise training can lead to an increased 

enzymatic activity in the purine salvage pathway in skeletal muscles (Hellsten-Westing, 

Balsom, et al., 1993) and erythrocytes (Dudzinska et al., 2018; Pospieszna et al., 2020), being 

partly accompanied by reduced blood hypoxanthine (Pospieszna et al., 2020). Actually, lower 

circulating hypoxanthine at rest and post-exercise is likely to reflect an increased capacity of 

trained individuals to reduce purine loss and to restore the purine nucleotide pool in either 

muscles or erythrocytes (Pospieszna et al., 2020; Zielinski & Kusy, 2015a). 
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Figure 43. Pathways of purine nucleotide degradation during and after exercise. During high-intensive exercise, muscular ATP 
degradation rate is higher than ATP resynthesis rate, being reflected in a higher accumulation of IMP, inosine, and Hx. Hx can 
be reconverted to IMP by the purine salvage enzyme HGPRT, contributing to ATP restoration, or it can leak out to the blood, 
where it is either degraded to uric acid or directly eliminated from the body via urine. HGPRT activity in muscles and 
erythrocytes is likely to increase in response to training. The accompanying reduction in blood Hx seems to indicate an 
increased capacity to reduce purine loss and to recover muscular or erythrocyte purine pools. In Study I, lower resting urinary 
Hx was documented after a ten-day HIIT (green box). Hence, HIIT-induced adaptations in ‘purine metabolism’ might be 
assumed. ADP: adenosine diphosphate; AMP: adenosine monophosphate; ATP: adenosine triphosphate; HGPRT: 
hypoxanthine guanine phosphoribosyltransferase; HIIT: high-intensity interval training; Hx: hypoxanthine; IMP: inosine 
monophosphate; X: xanthine. (Own illustration based on Zielinski and Kusy (2015b)).  

Since Study I was the first to demonstrate a training-related decrease in the urinary excretion 

of hypoxanthine, two assumptions can be stated: Firstly, it might be possible that also lower 

resting urinary hypoxanthine levels are indicative of an increased purine salvage efficiency. 

Secondly, it could be speculated that adaptations in ‘purine metabolism’ already emerged in 

response to the daily conducted, ten-day HIIT. Unfortunately, it was outside the scope of this 

study to provide detailed information about molecular mechanisms underlying the metabolic 

adaptations to HIIT. Likewise, it is still unclear in which tissues the proposed alterations in 

‘purine metabolism’ occurred. As a consequence, further research is necessary to reveal the 

exact mechanisms contributing to the suggested HIIT-induced adaptations in ‘purine 

metabolism’. Besides, the utility of urinary hypoxanthine as a reliable biomarker for an 

athlete’s training adaptation has to be evaluated in future studies.  

To sum up, the present and previous findings suggest the capability of hypoxanthine to 

indicate an athlete’s reaction to training regimens that are typically used in pre-competition 
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preparation phases (Zielinski & Kusy, 2015a). Regarding future applications, the analysis of 

hypoxanthine might possibly help to monitor successful training adaptation (as reflected in a 

lower post-exercise increase in blood (or urinary) hypoxanthine or maybe even lower resting 

hypoxanthine levels). Given the fact that existing studies were mainly restricted to amateur 

or professional male athletes, more research is needed to evaluate whether the obtained 

results can be extended to a broader population consisting of both (un)trained women and 

men. If hypoxanthine can indeed be seen as a metabolic marker reflecting an individual’s 

training status, exercise scientists would perhaps be allowed to develop more specific training 

strategies based on initial hypoxanthine concentrations or to modify exercise programs based 

on training-induced adaptations in ‘purine metabolism’. 

Apart from hypoxanthine, which was classified to the major pathway ‘nucleotide metabolism’ 

(Chapter 8.1), the ‘AA metabolism’-related taurine and ADMA showed significantly lower 

urinary levels in the EG after four days of recovery compared to pre-training. As discussed in 

Chapter 5.5, it might be assumed that muscular taurine was utilized during HIIT intervention 

due to its roles in cell volume regulation, skeletal muscle calcium homeostasis, and membrane 

stabilization (Lambert et al., 2015). Thus, the lower urinary taurine excretion post-training 

could be interpreted as a result of restoring the pre-training muscular taurine content. Yet, as 

the urinary taurine excretion is also known to vary along with dietary taurine intake (Lambert 

et al., 2015), the physiological processes underlying the changes in urinary taurine within the 

EG could hardly be determined. Regarding ADMA, the absolute difference in its urinary 

excretion between pre- and four days post-HIIT was rather marginal. Hence, no biological 

relevance with respect to HIIT intervention could be assumed. Similarly, it was supposed that 

the differences in single urinary metabolites between the EG and CG four days post-HIIT 

largely appeared due to uncontrolled variation. 

In conclusion, the main finding of Study I was that the purine derivative hypoxanthine 

emerged as the only urinary metabolite with a significant change from pre-HIIT to one day 

post-HIIT in the EG, as well as significant differences between the EG and CG one and four 

days post-HIIT. This observation complements other HIIT-related metabolomics studies that 

documented acute elevations in blood or urinary hypoxanthine in response to a single HIIT 

session (Gerber et al., 2014; Siopi et al., 2017; Siopi et al., 2019) or a reduced post-exercise 

increase in plasma hypoxanthine after a six-week HIIT intervention (Kuehnbaum et al., 2015). 
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Broadly speaking, Study I could confirm changes in ‘purine metabolism’ in response to HIIT. 

What is new is that HIIT-induced adaptations seemed to be reflected in resting urinary 

hypoxanthine levels. Providing the first evidence that also urinary hypoxanthine might be a 

possibly interesting marker for concluding about an individual’s training adaptation, the 

results of Study I should definitely serve as a starting point for further research. In the future, 

it would be appropriate to comprehensively analyze the effects of HIIT on not only resting 

urinary and blood levels of hypoxanthine as well as other purine derivatives, but also on acute 

post-exercise metabolite changes in the course of a training intervention. Consequently, more 

reliable conclusions on HIIT-induced alterations in ‘purine metabolism’ could be drawn. 

Aside from examining the effects of specific training interventions on the human metabolome, 

metabolomics generally permits to study the acute metabolic effects of single exercise bouts, 

as well as their dependency on individual factors such as sex or the PF status. However, only 

few and rather small metabolomics studies have until now been focused on the question if 

urine is able to reflect acute exercise-induced alterations in human metabolism and whether 

those changes differ between women and men or more and less fit persons. These research 

gaps were addressed with Study IIa, whose findings will be discussed in the next sub-section. 

9.1.2 Study IIa 

On the basis of Study IIa, which comprised the experimental exercise part within the cross-

sectional KarMeN study, alterations in the human metabolome in response to acute 

incremental exercise were investigated. In more detail, the aim of this study was to examine 

the effect of a standardized exercise tolerance test on the urinary metabolome of 255 healthy 

women and men with a broad age range, thereby evaluating sex-related differences in 

exercise-induced metabolite excursions. Additionally, Study IIa aimed to analyze if single 

urinary metabolites or a specific urinary metabolite pattern at rest or in response to PE were 

linked to the CRF. By applying an NMR-based approach, 47 urinary metabolites were identified 

and quantified. Since the metabolomics data were obtained from a large, well-characterized 

study population, Study IIa permitted to detect urinary metabolites which, independently of 

covariates like age, sex, menopausal status, and body composition, allow to draw conclusions 

across a broad range of CRF levels. Finally, a deeper understanding of metabolic pathways 

linked to both acute PE and PF should be deduced from the results of Study IIa. 
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The main findings from Study IIa can be summarized as follows: 

1. After the standardized incremental exercise test, relevant alterations in the urinary 

excretion of 35 metabolites (31↑; 4↓) were detected. Except for two metabolites 

(citrate; trans-aconitate), no sex-related differences in pre- to post-exercise urinary 

metabolite changes were observed. 

2. Despite a high inter-individual variation in both urinary metabolites and the CRF, only 

weak to moderate correlations between the CRF and the pre- or post-exercise urinary 

metabolites or exercise-related urinary metabolite excursions were revealed. After 

controlling for the covariates age, sex, menopausal status, and the LBM, most of the 

detected bivariate correlations did not persist. 

3. There was no evident urinary metabolite pattern in neither the pre- nor the post-

exercise condition that strongly accounted for the variation of the CRF, after adjusting 

for covariates. 

Based on the first finding, i.e., the detection of 35 exercise-responsive urinary metabolites, 

Study IIa could confirm the ability of the urinary metabolome to mirror acute exercise-related 

changes in human metabolism, which has also been observed in preceding metabolomics 

studies (Enea et al., 2010; Muhsen Ali et al., 2016; Pechlivanis et al., 2010; Siopi et al., 2017). 

While multivariate PCA did not show a clear separation between the pre- and post-exercise 

urine samples in the first three PCs, univariate analysis revealed high post-exercise increases 

for, e.g., lactate, mannitol, trans-aconitate, alanine, carnitine, acetate, taurine, and pyruvate, 

as well as decreases for hippurate and trigonelline. Thus, even if the inter-individual variability 

in the urinary metabolite profile seemed to exceed its systematic variation in response to the 

acute PE, the pre- to post-exercise differences of single urinary metabolites (e.g., lactate, 

pyruvate, acetate, succinate, cis-aconitate, or citrate) were likely to reflect exercise-induced 

alterations in energy-producing pathways (e.g., ‘glycolysis’ or ‘TCA cycle’) in both sexes, as 

shown in Figure 27 (Chapter 6.5.1). Some novel exercise-responsive metabolites with still 

unknown functions (e.g., mannitol, hippurate, or 2-hydroxyisobutyrate) were also detected.  

More specifically, the functional classification of PE-related metabolite profiles revealed that 

the exercise-responsive urinary metabolites primarily belonged to ‘glycine, serine and 

threonine metabolism’, ‘glyoxylate and dicarboxylate metabolism’, ‘citrate cycle’, and 
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‘pyruvate metabolism’. As depicted in Chapter 8.2, a certain interconnectivity between those 

pathways could be observed. Actually, several metabolic pathways were indicative for an 

increased ATP turnover in response to the incremental exercise test. Rather unexpectedly, 

however, no post-exercise increase in the urinary excretion of the final ATP degradation 

product hypoxanthine has been documented. This could be explained by a comparatively 

lower intensity or duration of the acute PE than in previous studies or a urine sample collection 

time point that was too early to capture the post-exercise rise in urinary hypoxanthine.  

As described by the second and third finding, no single urinary metabolite or metabolite sets 

that could help to infer an individual’s CRF status were identified in Study IIa. Until now, 

metabolomics studies have mainly observed differences in urinary metabolites between pre-

defined groups with a different PF status (Enea et al., 2010; Morris et al., 2013; Mukherjee et 

al., 2014) or have identified a potential predictive urinary marker for the CRF (Muhsen Ali et 

al., 2016). However, since those studies focused on rather small sample sizes or specific sub-

groups, e.g., young women (Enea et al., 2010) or middle-aged men (Mukherjee et al., 2014), 

their results were hardly transferable to the general population. By examining the relationship 

between the CRF and urinary metabolites in the large, well-characterized KarMeN cohort, 

Study IIa led to the assumption that the analyzed urinary metabolites were rather neglectable 

if aiming to conclude about the CRF in a heterogeneous population. In fact, based on the 

findings of Study IIa, it could be supposed that many of the observed, weak to moderate 

correlations between the CRF and urinary metabolites were likely to be mediated by the 

covariates sex, age, menopausal status, and LBM. Bearing in mind that sex-related differences 

in CRF-associated plasma metabolite patterns have been documented in the KarMeN 

population within Study IIb (Chapter 7.4.4), which covered a higher number of metabolites 

than Study IIa, also future studies on PF-related urinary metabolites should possibly be 

recommended to conduct statistical analyses separately for women and men instead of using 

sex as a covariate. Whereas the latter approach bears the risk of masking sex-dependent 

biological processes (Barupal et al., 2019), sex-specific analyses could facilitate to identify 

metabolic pathways which might be differentially regulated with regard to the PF status in 

women and men.  

While Study IIa could not detect relevant relations between the PF and post-exercise urinary 

metabolites in a mixed study population, the utility of metabolomics measurements before 
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and after a graded exercise test to reveal metabolic adaptations occurring along with an 

improved endurance capacity has recently been demonstrated by San-Millán et al. (2020). In 

fact, professional cyclists with lower levels of lactate accumulation at a given exercise intensity 

also showed higher increases in circulating TCA cycle metabolites, suggesting a link between 

improved mitochondrial networks and the capacity to sustain higher workloads. With regard 

to future research, standardized incremental exercise protocols to assess the CRF or blood 

lactate in both the general and specific athletic population should be increasingly combined 

with metabolomics analyses. Once further PF-related markers in easily accessible biomatrices 

such as urine or blood have been revealed and validated, they might improve the monitoring 

of the training or fitness status as well as the prediction of physical performance (San-Millán 

et al., 2020). 

Briefly summarized, Study IIa provided evidence of the utility of urine in human metabolomics 

studies to capture exercise-induced metabolic alterations. By reporting quantifiable changes 

in urinary metabolites that could be linked to particular pathways indicative for an increased 

ATP turnover or changes in ‘AA metabolism’, Study IIa completed and validated previous 

research on the acute effects of PE on metabolite profiles in humans (Kelly et al., 2020). Also, 

despite the obvious disadvantage that only a single post-exercise time point for urine sampling 

existed, Study IIa could hint at previously unnoticed but potentially interesting exercise-

responsive metabolites, which should be focused in further studies. Finally, the clear 

recommendation to control for acute PA in future urine metabolomics studies could be 

deduced from the present and existing findings. Although the urinary metabolites were partly 

reflective of acute exercise-induced changes in human metabolism, they were not strongly 

related to the CRF in Study IIa. Undeniably, the conclusions drawn from this study depended 

on the number of analyzed urinary metabolites. Given that the applied NMR-based targeted 

analysis was limited to a rather small selection of metabolic compounds, more research is 

needed in order to extend the current knowledge on a broader variety of urinary metabolites. 

Nevertheless, what could definitively be deduced from the findings of Study IIa is the necessity 

to take the previously mentioned covariates adequately into account when examining the 

relationship between the human metabolome and functional variables like the CRF. Thus, it 

could be proven whether observed associations were indeed specific for the individuals’ CRF 

and furthermore different between sexes. 
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Apart from focusing on a more comprehensive investigation of CRF-related urinary metabolite 

profiles in the future, a better understanding of the relationship between the CRF and blood 

metabolite profiles should also be pursued. In fact, as described for urine, blood metabolomics 

studies have so far been restricted to specific age or sex groups, included a limited number of 

participants, or detected rather few metabolites (Floegel et al., 2014; Koh et al., 2018; Kujala 

et al., 2019; Lustgarten et al., 2013; Wientzek et al., 2014). Those study deficiencies have been 

addressed with Study IIb and obtained results will be discussed in the next sub-section. 

9.1.3 Study IIb 

In the framework of the cross-sectional Study IIb (“KarMeN Study”), the relationship between 

the CRF and the resting plasma metabolome was systematically investigated. More precisely, 

the aim of Study IIb was to analyze how either single plasma metabolites or metabolite 

patterns were associated with the CRF status in 252 healthy adults. In addition to that, 

confirmatory data regarding the relationship between the CRF and several health-related 

phenotypical and clinical parameters should be provided. In total, 427 plasma analytes from 

various biochemical classes and pathways were detected. Since the non-modifiable factors 

sex, age, and menopausal status represent known determinants of the CRF (Mercuro et al., 

2006; Zeiher et al., 2019) and have already been linked to a discriminatory plasma metabolite 

profile in the KarMeN population (Rist et al., 2017), association analyses were conducted 

separately for sexes and adjusted for age and menopausal status. Hence, Study IIb not only 

permitted the detection of plasma metabolites or metabolite patterns that, independently of 

known covariates, allow to draw conclusions across a broad range of CRF levels, but also 

enabled an evaluation of sex-related differences in CRF-associated metabolite profiles. 

Moreover, to determine whether observed relationships can indeed be specifically attributed 

to the CRF status, association analyses were additionally adjusted for further assessed 

parameters related to the body composition, clinical blood biochemistry, lung and arterial 

function, short-term and habitual PA, or diet. As a last purpose, sex-specific sets of 

phenotypical, clinical, and plasma metabolite variables for a preferably good explanation of 

the CRF should be selected. Finally, a profounder knowledge on metabolic pathways that 

might be linked to the beneficial effects of chronic PA was intended to be obtained based on 

the CRF-associated plasma metabolite patterns identified in Study IIb. 
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The main findings from Study IIb can be summarized as follows: 

1. Well-known relationships between the CRF and health-related phenotypical or clinical 

variables, e.g., FM (%), VATM, TGs, and HDL cholesterol, were confirmed in both sexes, 

after adjusting for age and menopausal status. 

2. Based on bi- and multivariate association analyses, CRF-related plasma metabolite 

patterns primarily indicative of ‘lipid metabolism’ were identified in both sexes, after 

adjusting for age and menopausal status. Yet, the specific CRF-related metabolites 

largely differed between sexes. While several PCs were predominantly linked to the 

CRF in females, only single lysoPCs and SMs were associated with the CRF in males. 

However, bivariate correlations between the CRF and succinic acid, malic acid, acetate, 

glyceric acid, lysoPC C18:2, as well as the LCFA C16:1 9cis were similar in both sexes. 

3. After additionally adjusting for further assessed clinical and phenotypical variables, the 

sex-specific multivariate relationship between all 427 plasma metabolites and the CRF 

lost its significance. Besides, the number of plasma metabolites with relevant bivariate 

correlations to the CRF was reduced in both sexes. Even if both the females’ and males’ 

CRF remained correlated with certain plasma metabolites of ‘lipid metabolism’, ‘AA 

metabolism’, and ‘xenobiotics-related metabolism’, sex-related differences were still 

apparent. 

4. Sex-specific CRF explanation models could be improved by including selected plasma 

metabolites in addition to clinical and phenotypical variables. In both sexes, the FM (%) 

was the main determinant of the CRF. If selecting clinical, phenotypical, and metabolite 

variables in a competing manner, acyl-alkyl-PC C40:3 was the second most important 

variable in the females’ model, whereas it was malic acid in the males’ model. 

Based on the first finding, Study IIb could provide evidence that even in a study population 

consisting of metabolically healthy adults, the sex-specific CRF is inversely correlated with 

traditional risk factors for chronic metabolic or cardiovascular diseases (e.g., FM (%), VATM, 

TGs) and positively linked to the cardioprotective HDL cholesterol. Actually, Study IIb was not 

only able to replicate well-known relationships between the CRF as a recognized predictor of 

adverse health outcomes (Zeiher et al., 2020) and several health-related variables, but also to 

show the independency of these observations from the non-modifiable factors sex, age, and 

menopausal status. Despite the cross-sectional design of Study IIb, these results underline the 
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assumption that the health effects of a high CRF might be partly mediated by reduced overall 

and abdominal adiposity (S. L. Wong et al., 2004), lower blood TGs, as well as higher circulating 

HDL cholesterol (Carnethon et al., 2005; D.-C. Lee, Artero, Sui, & Blair, 2010). Equally in line 

with the literature, but only present in men, were slightly negative correlations between the 

CRF and further health-related variables, namely HRrest (Laukkanen et al., 2009), diastolic BP 

(Tobita et al., 2003), LDL cholesterol (Lakoski et al., 2011), and insulin (Laukkanen et al., 2009). 

The reason why these relationships were not detectable in women could not be determined 

with certainty, but might be due to the smaller sample size of the female sub-group. 

Apart from confirming well-known correlations between the CRF and several recognized risk 

factors for cardiometabolic diseases in women and men, Study IIb could demonstrate a sex-

dependent relationship between the CRF and plasma metabolite patterns in the KarMeN 

population, as summarized by the second finding. In fact, both bi- and multivariate association 

analyses showed that numerous ‘lipid metabolism’-related PC species were linked to the 

females’ CRF, whereas only few ‘lipid metabolism’-related lysoPCs and SMs characterized the 

CRF-associated metabolite pattern in males. These observations were independent of age and 

menopausal status, partially confirming results from Wientzek et al. (2014), who showed age- 

and sex-adjusted positive associations between the CRF and serum PCs and lysoPCs in middle-

aged adults. Yet, while those relationships seemed to be unaffected by sex, Study IIb provided 

the first evidence of sex-specific differences in CRF-related plasma metabolite patterns, 

especially with regard to representatives of ‘glycerophospholipid metabolism’. Thus, more 

research is needed to clarify underlying biological mechanisms and molecular pathways. While 

the findings from Study IIb proposed that CRF-related modifications in ‘glycerophospholipid 

metabolism’ might vary between women and men, slightly positive correlations between the 

CRF and ‘energy metabolism’-related succinic acid and malic acid were observable in both 

sexes, potentially hinting at an augmented TCA cycle capacity at rest in persons with a higher 

CRF, which might be independent of sex.  

Remarkably, several CRF-associated metabolites have already been inversely linked to the 

development of cardiometabolic diseases (e.g., PCs, lysoPCs (Floegel, Stefan, et al., 2013)) or 

were discussed as markers of exercise-induced adaptations in muscular ‘energy metabolism’ 

(e.g., succinic acid (Huffman et al., 2014) or malic acid (Campbell et al., 2014)). In particular, 

succinic acid has recently emerged as a “myo-metabokine”, that might play an important role 
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in skeletal muscle adaptation to exercise training (Maurer, Hoene, & Weigert, 2021). Apart 

from its role as a TCA cycle intermediate, succinic acid seems to mediate muscle fiber type 

switch, angiogenesis-related processes, as well as an increased mitochondrial content in mice 

and has been positively linked to improvements in insulin sensitivity in humans (Maurer et al., 

2021). Together with these current findings, Study IIb points out the possibility that the 

mentioned metabolites might reflect, or even underlie, the health- or performance-enhancing 

effects of chronic PA. 

With respect to the third finding, Study IIb led to the suggestion that many of the observed 

associations between the CRF and plasma metabolites are mediated by the considered clinical 

or phenotypical covariates and can thus not be primarily and specifically attributed to the CRF. 

In fact, independently of clinical and phenotypical variables, a rather small number of CRF-

related plasma metabolites remained, and adjusted sex-specific bivariate correlations were 

quite moderate. However, the functional classification of PF-related metabolite profiles 

revealed that the CRF was still linked to ‘glycerophospholipid metabolism’ in both sexes 

(Chapter 8.3), as reflected by a sub-group of acyl-alkyl- and diacyl-PCs in women or single 

diacyl-PCs in men. Rather unexpectedly, Study IIb could not confirm the negative relationship 

between measures of chronic PA and circulating BCAAs, which has previously been described 

in the literature (Fukai et al., 2016; Morris et al., 2013; Xiao et al., 2016). Reasons for the 

discrepant findings could be that the referenced studies referred to questionnaire- or 

accelerometer-based PA measures (Fukai et al., 2016; Xiao et al., 2016) instead of PF 

measures, that they conducted group comparisons (Morris et al., 2013), or that they only 

controlled for age and BMI (Fukai et al., 2016; Morris et al., 2013; Xiao et al., 2016). Actually, 

in the latest publication from Kujala et al. (2019), the negative associations between the PF 

and serum isoleucine and leucine in young men did not persist after adjusting for the FM (%). 

This observation indicates that the relationship between BCAAs and the PF might be 

mechanistically linked to the FM, which is – equally to the CRF – influenced by chronic PA. 

Indeed, as indicated by the first finding and the literature, a better CRF is concomitant with a 

healthier body composition, adaptations in heart function, and changes in cardiometabolic 

risk blood parameters (D.-C. Lee et al., 2010). Due to the inter-relationship of different health-

related clinical or phenotypical variables (Kelly et al., 2020), more large-scale metabolomics 

studies should be conducted to systematically elucidate and disentangle their effects on the 
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human metabolome. Especially well-conducted prospective studies might be helpful to relate 

lifestyle behaviors, such as PA or diet, and phenotypical features like the CRF or the body 

composition to specific metabolite profiles and, subsequently, the incidence of chronic 

diseases. By clarifying which lifestyle and phenotypical factors influence the metabolome in 

such a way that it is consistent with a good health status, recommendations for the prevention 

of chronic diseases could be deduced in the future (German, Watkins, & Fay, 2005). Apart 

from studying the independent effects of several health-related variables on metabolite 

profiles, it might also be helpful to consider the combined effect of, e.g., a high PA or CRF, low 

obesity, low BP, absence of smoking and alcohol intake, as well as a desirable eating behavior, 

on the metabolome in healthy individuals. Consequently, a benchmark for defining a “healthy 

metabolome” could be provided and metabolite profiles associated with single health-related 

lifestyle or phenotypical variables might be compared for similarities and specificities.  

With regard to the fourth finding, Study IIb could demonstrate the ability of selected plasma 

metabolites to improve sex-specific, age- and menopausal status-adjusted CRF explanation 

models based on phenotypical and clinical variables. In contrast to Study IIa, which could 

hardly explain the variability of the CRF in the KarMeN population with urinary metabolites, 

the findings from Study IIb hinted at possibly important plasma metabolites which might help 

to conclude about an individual’s CRF status. As one interesting example, acyl-alkyl-PC C40:3 

should be mentioned. Firstly, this phospholipid parameter showed significant correlations 

with the females’ CRF, which persisted independently of conducted adjustments. Secondly, 

acyl-alkyl-PC C40:3 represented the second most chosen variable after the FM (%) when 

including both phenotypical, clinical, and plasma metabolite variables in explanation models 

for the females’ CRF, resulting in an R² (adjusted) of 0.41, see Table A-18 (Appendix 2.15). In 

contrast, HDL cholesterol was the second most important determinant of the CRF in women 

when only considering phenotypical and clinical variables, leading to a comparatively lower 

R² (adjusted) of 0.35, see Table A-14 (Appendix 2.15). Accordingly, Study IIb led to the 

assumption that acyl-alkyl-PC C40:3 might help to predict the CRF in females together with 

the FM (%) and emphasized the need for validation studies. Although the exact biological role 

of acyl-alkyl-PC C40:3 still remains to be elucidated, the findings from Study IIb could support 

the importance of expanding lipid measurements traditionally limited to TGs or HDL and LDL 

cholesterol to a detailed lipid analysis at the molecular species level, especially in the context 
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of cardiometabolic risk evaluation in clinical research and practice, as suggested by Carrard et 

al. (2021). Considering that different lipid species within the same subclass can be classified 

as either cardiometabolic favorable or deleterious (Chew et al., 2019; Hung et al., 2012), 

associations with health-related variables are most likely to become obvious when focusing 

on lipid species (Carrard et al., 2021). Unfortunately, the biological relevance of most glycero-

phospholipid or sphingolipid species is far from being entirely understood. Nevertheless, by 

proving sex-specific associations between the CRF as a recognized health parameter (Harber 

et al., 2017) and plasma PCs, lysoPCs, or SMs, Study IIb could emphasize the potential 

importance of specific circulating lipid species for performance or health maintenance. 

Briefly summarized, Study IIb could provide evidence of sex-related differences in CRF-related 

plasma metabolite patterns. Apart from confirming some previously detected PF-associated 

blood metabolites in a large and heterogeneous population, Study IIb additionally hinted at 

several novel, partly sex-specific CRF-related plasma metabolites and respective pathways 

with possibly important roles concerning the health- or performance-enhancing effects of 

chronic PA. Though, to what extent (changes in) phenotypical features like the CRF or body 

composition, which are both influenced by chronic PA, causally determine human metabolite 

profiles, has to be elucidated in further, mainly interventional metabolomics studies. Given 

the rather exploratory character of Study IIb, obtained results should be regarded as a starting 

point for future research and mechanistic investigations. Due to the fact that some plasma 

analytes showing associations with the CRF in Study IIb could not be identified with sufficient 

certainty, further attempts for a reliable identification of still unknown CRF-associated 

analytes will be required. Nevertheless, what could undeniably be deduced from Study IIb is 

the necessity to conduct sex-separated analyses and to adjust for further health-related 

variables (e.g., age, body composition, etc.) if examining relationships between the CRF and 

blood metabolites. On the other hand, since correlations between the CRF and certain plasma 

metabolites remained independently of considered covariates, the need to assess and control 

for PF in future blood metabolomics studies could also be deduced from Study IIb. 

In summary, the findings from Study I, IIa, and IIb could provide evidence of metabolites or 

metabolite patterns being associated with acute PE, medium-term HIIT, or the CRF status. 

Based on the particular results, directions for future studies were proposed. Figure 44 gives a 

compact overview of the main study findings and suggestions for future research. 
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Figure 44. Suggestions for future research based on findings from Study I, IIa, and IIb. CRF: cardiorespiratory fitness; HIIT: 
high-intensity interval training; PE: physical exercise; PF: physical fitness. (Own illustration).  
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9.2 Strengths and Limitations 

In general, the considered studies covered different aspects of PA, reaching from a medium-

term HIIT (Study I) and an acute exercise intervention (Study IIa) to the assessment of the CRF 

as a measure of chronic PA (Study IIa/IIb). Therefore, a comprehensive and differentiated view 

on PA-related metabolic alterations could be obtained in the framework of the present thesis. 

Of course, the results from Study I, IIa, and IIb should not be interpreted irrespective of the 

particular study designs, examination methods, as well as applied metabolomics, statistical, 

or metabolic pathway analyses. As described in detail in the specific publications, study 

limitations exist due to constraints on research designs or methodology. In this sub-section, a 

comparative overview of the respective study strengths and limitations is provided. 

9.2.1 Study Designs, Study Populations, and Methods of Investigation 

Strengths 

A clear strength of the three particular (sub-)studies is their study design. Both the randomized 

controlled interventional Study I and the cross-sectional Study II had clearly defined inclusion 

and exclusion criteria. Regarding recruitment processes, only healthy subjects with a normal 

to moderately high weight were included, thus reducing the metabolic variation related to 

diseases or medication. As previous PA-related metabolomics studies principally focused on 

male participants (Kelly et al., 2020), the inclusion of both sexes can be seen as an advantage 

of Study II. To reduce the variability in metabolomics analyses in Study II further, all pre-

menopausal women were examined within the luteal phase of their menstrual cycle.  

Besides, both Study I and Study II were characterized by a strictly scheduled experimental 

setting and highly standardized experimental procedures. More specifically, participants of 

Study I followed an individually standardized training protocol and were told to refrain from 

alcohol and drugs, not to change their dietary habits, and to eat a standardized dinner the 

days before urine collection. With respect to Study II, SOPs were established for all relevant 

steps, including recruitment, examinations, and preanalytical sample handling (Bub et al., 

2016). Owing to the comprehensive characterization of subjects in Study II based on various 

clinical examinations, many potential confounding factors could be considered when studying 

CRF-related metabolite profiles. In particular, the accurate assessment of body composition 

(e.g., LBM, FM, and VATM) by DXA represents a strength of Study II. Compared to other 
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methods like computed tomography or magnetic resonance imaging, DXA has the advantage 

of low X-ray exposure, short scanning times, and minor costs (Kaul et al., 2012; Neeland, 

Grundy, Li, Adams-Huet, & Vega, 2016). Also, it has been shown that DXA measures the VATM 

precisely in both sexes and across a broad BMI range (Kaul et al., 2012). In Study II, it was 

therefore not required to measure the less accurate waist circumference as a surrogate 

marker for abdominal obesity, which has been considered as a covariate in previous PA- or PF-

related metabolomics studies (Floegel et al., 2014; Wientzek et al., 2014). Since diet and short-

term as well as habitual PA behavior were additionally assessed, they could also be included 

as covariates in the systematic analysis of CRF-related metabolite patterns within Study IIb. 

A further strength of both Study I and Study II is that the CRF assessment was based on highly 

standardized incremental exercise protocols until individual exhaustion. In fact, the direct 

measurement of the VO2max by breath gas analysis during maximal exercise represents the 

gold standard for evaluating the CRF status (Tran, 2018). While in Study I all participants met 

the traditional criteria for VO2max, namely a plateau in VO2, the VO2max could not be determined 

with certainty in Study II. Therefore, the VO2peak as the highest attained VO2 during the test 

was utilized instead. However, since VO2max and VO2peak are often the same in healthy subjects 

(Day et al., 2003; Tran, 2018), the direct assessment of the CRF in both studies represents a 

clear advantage over studies using either rough VO2max estimations or subjectively assessed, 

questionnaire-based measures for regular PA (Brandes, 2012; Finger et al., 2013). 

Limitations 

One limitation of the included studies is that their results cannot be transferred to the general 

healthy population. While Study I was restricted to few young active men, Study II comprised 

a large population consisting of both sexes with a broad age range – however, healthy obese 

persons and smokers were not included. Moreover, due to the cross-sectional design of 

Study II, no causal relationships between the CRF and the metabolome could be proven. 

Further weaknesses within the research designs refer to the not completely controlled eating 

behavior (Study I, IIa) or considered dietary intake (Study IIb). In Study I, the daily diet during 

HIIT intervention was not strictly controlled. In Study IIa, the pre-exercise breakfast was only 

semi-standardized, as subjects consumed the same amount of bread with different toppings. 

Hence, an effect of diet on the assessed urinary metabolites could not be entirely excluded. 
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Regarding Study IIb, the HEI-score as a measure of diet quality was calculated based on the 

food consumption on the day before blood sampling. Although the HEI was considered as a 

confounder in the analysis of CRF-associated metabolite patterns, the effects of specific foods 

or nutrients on the relationship between the CRF and the metabolome could not be excluded. 

However, dietary factors have also rarely been adequately considered in other PE- or PF-

related metabolomics studies so far (Kelly et al., 2020; Schranner et al., 2020). Thus, a better 

control and/or consideration of diet should be focused in future investigations. 

With respect to PA or CRF assessment, single limitations are observable. Although the subjects 

of the CG in Study I were instructed to refrain from exercise, their actual PA behavior was not 

recorded. In Study II, the initial sample size decreased due to missing spiroergometry data. 

Unfortunately, 40 subjects had to be excluded from the final analyses because they did not 

reach their maximal effort, either due to a lack of motivation or since predefined break-off 

criteria (e.g., acute hypertension) have been met (n=23), no ergometry was conducted (n=9), 

or technical measurement errors occurred (n=8). Moreover, Study II focused on subjective 

rather than on objective exhaustion criteria for CRF assessment. Hence, the achievement of 

maximal exhaustion could not be determined with absolute certainty. 

9.2.2 Biological Samples, Collection Time Points, and Metabolomics Analyses 

Strengths 

Especially in Study II, SOPs were applied for the participants’ characterization as well as for 

the collection, preparation, and storage of biological samples, i.e., urine (Study IIa) and plasma 

(Study IIb). Due to the identical treatment of the specimens, the non-biological variability in 

subsequent metabolomics analyses could be minimized (Bub et al., 2016). Regarding Study IIb, 

a clear strength is that plasma samples were collected in the fasting state. Hence, the circadian 

and diet-related variation of the metabolome could be kept as low as possible. Moreover, the 

pre-analytical sample handling and metabolomics analyses were conducted under highly 

controlled conditions in both Study I and Study II. By analyzing QC samples along with plasma 

or urine samples in all applied analytical methods, the repeatability and precision of analyses 

could be ensured. An additional strength of Study I is that it demonstrated the comparability 

of the urinary concentrations of nine specific metabolites measured by both targeted NMR 

and LC-MS, thus supporting the validity of these quantitative approaches. 
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While clear advantages of Study I and Study IIa are the absolute quantification of metabolites 

with known identities and thus the possibility to classify them to specific biochemical classes 

or pathways, one major strength of Study IIb is its multi-platform metabolomics approach, 

which allowed to obtain a broader coverage of the human metabolome than it would have 

been possible by one analytical technique alone. In fact, more than 600 (un)known analytes 

were registered in plasma samples from Study IIb with (un)targeted methods. Therefore, the 

multi-platform approach offered the ability to detect novel CRF-related blood metabolites. 

According to Wishart (2019), a central benefit of untargeted analyses is that the importance 

of previously unknown analytes can be recognized. Due to the presence of several still 

unidentified variables, Study IIb will certainly provide a starting point for future research, 

pinpointing those unknown CRF-associated plasma analytes which are worth to be identified. 

Limitations 

Regarding the availability and collection of biological specimens, certain limitations can be 

documented. In both Study I and Study IIa, only spot urine samples were available for targeted 

metabolomics analyses, while the multi-platform metabolomics approach of Study IIb had so 

far been completed and finally evaluated for the biological matrix plasma but not yet for urine. 

Accordingly, the three (sub-)studies were restricted to either urine or plasma. In Study I and 

Study IIa, only two post-training or one post-exercise time point(s) for sample collection 

existed, respectively. With regard to Study IIa, the post-exercise urine sampling was not strictly 

controlled, occurring approximately 15-30 minutes after the acute PE. To facilitate the analysis 

and interpretation of PE-related metabolite changes, future studies should focus on a more 

controlled collection of multiple post-exercise or post-training urine (and blood) samples. 

While a further restriction of Study I and Study IIa refers to the targeted metabolomics 

analyses, which were limited to a comparatively small number of 64 or 47 metabolites, 

respectively, it can be regarded as a disadvantage of Study IIb that not all considered plasma 

analytes could be identified with sufficient certainty. Hence, more attempts to reliably identify 

still unknown CRF-associated plasma analytes will be required. Unfortunately, seven subjects 

were excluded from the final analyses in Study IIb due to technical errors during GC  GC-MS 

analyses. In future studies, such dropouts could be prevented by repeating inaccurate 

measurements. 
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9.2.3 Data Handling and Statistical Approaches 

Strengths 

Regarding metabolomics data handling, clearly defined and thus reproducible procedures for 

eliminating metabolites that were either measured by more than one technique or had a low 

detection frequency were applied in all three (sub-)studies. More precisely, if analytes from 

different platforms could be identified as the same metabolite, those analytes detected by the 

less quantitative method were excluded in Study I and Study IIb. Accordingly, it could be 

ensured that the identical biological information contained in these specific analytes was only 

uniquely considered in subsequent statistical analyses. 

A further strength of the present thesis refers to the combination of descriptive, inferential, 

and exploratory statistical procedures as well as uni-, bi-, and multivariate approaches, 

wherever applicable. As described in Chapter 2.3.3, metabolomics studies characteristically 

combine the advantages of uni- and bivariate procedures, such as the ease of application and 

interpretation, with the benefits of multivariate procedures, such as the capability to consider 

relations between different metabolites and their orchestrated or complementary behavior 

with respect to biological processes (Saccenti, Hoefsloot, Smilde, Westerhuis, & Hendriks, 

2013). Given the mainly exploratory character of Study IIa and Study IIb when examining the 

relationship between the CRF and the metabolome, the applied data analysis strategy was 

composed of different types of association analyses, namely bi- and multivariate association 

analyses as well as multiple linear regression analyses with variable selection. Hence, a 

systematic overview of CRF-associated metabolite profiles could be obtained. 

Since multivariate modelling approaches often have the problem of overfitting, i.e., when a 

model lacks generalizability, a broad consensus on the necessity to properly validate multi-

variate models exists (Broadhurst & Kell, 2006; Gertsman & Barshop, 2018; Saccenti et al., 

2013). Thus, both the cross-validated stepwise multiple linear regression and PLS regression 

using a nested cross-validation in combination with permutation tests can be seen as a 

strength of the data analysis strategy in Study IIb. While internal cross-validation decreases 

the level of overfitting by dividing the data into a training and test set and then calculates the 

predictive ability of the model, permutation tests evaluate the actual model performance by 

comparing it to a model constructed using randomly permuted data (Westerhuis et al., 2008). 
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Additionally, owing to the removal of signal-free regions in NMR spectra and highly correlating 

analytes which have been identified as the same metabolite, multivariate models were less 

likely to be distracted from the noise contained in the respective data (Worley & Powers, 

2013). 

Finally, the sophisticated data analysis strategy applied in Study IIb seems to represent an 

appropriate approach which could be relatively easily transferred to further investigations, 

getting comprehensive insights into the relationship between the human metabolome and 

other lifestyle or phenotypical variables of interest. In the framework of the KarMeN study, it 

might be possible to focus on more PF- or PA-related variables, e.g., the PIAT, the 

accelerometry-assessed AEE, or the questionnaire-assessed MET, as well as on further health-

related variables like the PWV as a measure of arterial stiffness. 

Limitations 

Unfortunately, neither corrections for multiple testing nor multivariate statistical procedures 

were applicable in Study I due to the small sample size (EG: n=10; CG: n=8) in comparison with 

the number of investigated variables (64 urinary metabolites). Hence, the obtained results 

needed to be evaluated cautiously and could only be interpreted for each single metabolite. 

In Study IIb, not all CRF-associated plasma analytes could be precisely identified. Most of the 

relevant GC  GC-MS analytes turned out to be trace analytes with a low detection frequency 

in the study sample and CRF-related NMR buckets contained either unspecific signals or 

overlapped peaks. Also, the presence of multiple variable collinearities, e.g., due to NMR 

signals arising from the same metabolite, could not be excluded. Hence, the question arises 

whether or not it would be useful to disregard the respective data in the future when applying 

multivariate statistical approaches that are likely to be influenced by unidentified features 

from untargeted metabolomics analyses (Gertsman & Barshop, 2018; Saccenti et al., 2013). 

9.2.4 Metabolite Classification and Pathway Analysis 

Strengths 

The biological interpretation represents an essential step in metabolomics studies (Sussulini, 

2017). By combining a manual classification of identified metabolites to metabolic pathways 

with a web-based pathway analysis, a comprehensive examination of PE- or PF-associated 

metabolic pathways could be ensured. Besides, the strengths of one approach were able to 
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compensate the weaknesses related to the other. A clear advantage of the manual approach 

is that each PE- or PF-related metabolite was assigned to one major and one specific pathway, 

thereby also considering metabolites of exogenous origin or metabolite structures which do 

not yet exist in the KEGG database, e.g., specific PCs, LCFAs, or acylcarnitines. In contrast, the 

pathway analysis has the strength to take not only the interaction between metabolites but 

also the centrality of metabolites in respective pathways into account (Chong et al., 2019), 

and allows to map a single metabolite to various sub-pathways. Despite different approaches 

and the fact that obtained results were not directly comparable, the majority of pathways 

with obviously relevant associations to PE- or PF-related metabolite profiles could be detected 

by both methods. 

Limitations 

A limitation of both the manual classification and the web-based pathway analysis is that the 

magnitude of PE-related metabolite changes or metabolite associations with the PF could not 

be directly considered, i.e., metabolites with less relevant observations were treated like 

metabolites with more relevant observations. Additionally, both approaches were dependent 

on the compound coverage of the analytical techniques and required the identification of 

metabolites. Thus, a certain bias was likely to be introduced. Another disadvantage of the 

manual classification is that the participation of metabolites in several sub-pathways could 

not be considered because a given metabolite was only related to one specific pathway. In 

contrast, the pathway analysis has the restriction that not each PE- or PF-linked metabolite 

was actually mapped to one or more specific metabolic pathways. Hence, both approaches 

led to a certain information loss. A main limitation of the web-based tool is that lipids were 

not adequately covered by the KEGG database. Since this database only considers functional 

groups, but does not distinguish between acyl side chains, lipid species such as PCs were only 

included once for pathway analysis. 

In Table 19, a comparative summary of the described strengths and limitations is provided.  
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Table 19. Summary of strengths and limitations of Study I, IIa, and IIb. (Own table). 

 Strengths Limitations 

Study Designs, 
Study Populations, 
Investigation Methods 

• Clearly defined inclusion and exclusion criteria (Study I, II) 

• Inclusion of both sexes (Study II) 

• Strictly scheduled experimental procedures (Study I, II); 
SOPs for the recruitment and all examinations (Study II) 

• Comprehensive clinical examinations, e.g., CRF assessment 
(Study I, II), accurate body composition assessment by DXA 
(Study II), assessment of habitual PA and diet (Study II) 
→ Consideration of many confounding factors (Study II) 

• Limited generalizability (Study I, II) and causality (Study II) of results  

• Incomplete control of PA behavior (Study I) or dietary factors 
(Study I, II)  

• Missing spiroergometry data for forty participants (Study II) 

• Application of subjective rather than objective exhaustion criteria 
for CRF assessment (Study II) 

Biological Samples, 
Collection Time Points, 
Metabolomics Analyses 

• SOPs for the collection, preparation, and storage of samples 
(Study II) 

• Collection of blood samples in the fasting state (Study IIb) 

• Standardized metabolomics analyses with QC samples ensuring the 
precision and repeatability of analyses (Study I, II) 

• Identification and absolute quantification of metabolites (Study I, IIa) 

• Assessment of the validity of targeted NMR and LC-MS data 
regarding nine urinary metabolites (Study I) 

• Comprehensive analysis of metabolic compounds by a multi-
platform metabolomics approach (Study IIb) 

• Restricted availability of biological samples 
→ Focus on either spot urine (Study I, IIa) or plasma (Study IIb) 

• Comparatively few post-training (Study I) or post-exercise (Study IIa) 
sampling time points 

• Comparatively small number of analyzed metabolites (Study I, IIa) 

• Limited identification of CRF-related analytes (Study IIb) 

• Missing GC  GC-MS data for seven participants (Study IIb) 

Data Handling, 
Statistical Approaches 

• Clearly defined procedures for metabolomics data handling 
(Study I, IIa, IIb) 

• Combination of bi- and multivariate methods for a systematic 
analysis of CRF-associated metabolite profiles (Study IIa, IIb) 

• Sophisticated multivariate data analysis strategy with strict variable 
selection and validation procedures (Study IIb) 

• Lack of corrections for multiple testing or the application of 
multivariate methods due to inadequate sample size (Study I) 

• Unidentified variables might influence multivariate approaches due 
to noise or multiple variable collinearities (Study IIb)  

Metabolite 
Classification, 
Pathway Analysis 

• Combination of two different approaches for a comprehensive 
analysis of PE- or PF-related metabolic pathways (Study I, IIa, IIb) 

• No differentiation between more or less relevant PE- or PF-related 
metabolites (Study I, IIa, IIb) 

• Dependency of mapped metabolic pathways on the metabolite 
coverage and a clear metabolite identification (Study I, IIa, IIb) 

CRF: cardiorespiratory fitness; DXA: dual-energy X-ray absorptiometry; GC  GC: two-dimensional gas chromatography; LC: liquid chromatography; MS: mass spectrometry; NMR: nuclear 

magnetic resonance; PA: physical activity; PE: physical exercise; PF: physical fitness; QC: quality control; SOPs: standard operating procedures.
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9.3 Conclusions and Future Research 

Taken together, the present dissertation could add valuable findings on the effects of acute 

and chronic PA on human metabolite profiles to the literature. Apart from substantiating 

several previous findings, the three research articles included in this thesis could extend the 

current state of knowledge on alterations in the human metabolome in response to medium-

term HIIT (Study I) or acute incremental exercise (Study IIa) and provided new insights into the 

relationship between the metabolome and the CRF as a measure of chronic PA (Study IIa/IIb). 

Based on different metabolomics approaches, study-specific statistical procedures, and the 

subsequent functional classification of PE-/PF-related metabolite profiles, the findings yielded 

by this thesis showed that the particular training or exercise interventions as well as the CRF 

status were associated with specific pathways of human metabolism. 

Briefly summarized, Study I demonstrated HIIT-related changes in ‘purine metabolism’ and 

assumed urinary hypoxanthine to be a possibly interesting metabolic marker for training 

adaptation. With regard to future studies, the utility of urinary hypoxanthine as a reliable and 

specific biomarker for an athlete’s adaptation to training has to be validated. Also, the exact 

mechanisms underlying the supposed training-induced modifications in ‘purine metabolism’ 

will deserve further investigation. In Study IIa, the ability of urine to reflect acute exercise-

induced metabolic alterations could be confirmed by registering well-established changes in 

energy-producing pathways, such as ‘glycolysis’ and ‘TCA cycle’, or ‘AA metabolism’. While the 

urinary metabolites identified in Study IIa did not allow to draw conclusions on the CRF status, 

Study IIb could provide evidence of CRF-associated plasma metabolite patterns. In fact, 

Study IIb revealed sex-specific relationships between the CRF and mainly ‘lipid metabolism’- 

or ‘AA metabolism’-linked plasma metabolites which, however, seemed to be partially 

mediated by clinical or phenotypical covariates. Nevertheless, as some CRF-associated 

metabolites have already been inversely linked to the development of cardiometabolic 

diseases (e.g., PCs, lysoPCs) or are likely to reflect exercise-induced adaptations in ‘energy 

metabolism’ (e.g., malic acid, succinic acid), Study IIb supposed those metabolites to represent 

potential mediators or markers of the health- or performance-enhancing effects of chronic 

PA. Given the rather exploratory character of Study IIb, more research will be needed to clarify 

biological mechanisms and pathways underlying the sex-specific differences in CRF-associated 

metabolite profiles.  
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Undeniably, metabolomics is a new innovative technology that opens promising avenues to 

elucidate the complex and interconnected metabolic networks underlying the adaptive 

responses of the human organism to PA (Zierath & Wallberg-Henriksson, 2015). However, as 

also demonstrated by the three studies included in the present thesis, main challenges still 

encountered in human exercise metabolomics research refer to an inadequate metabolite 

identification, an incomplete standardization of experimental procedures, the dependency of 

findings on included study participants, and, hence, a limited ability to directly compare results 

to findings from other studies (Belhaj et al., 2021; Kelly et al., 2020). In addition, the high inter-

individual variability in metabolomics measurements owing to differences in sex, age, body 

composition, lifestyle, nutritional status, or training status represents another major challenge 

in PE- or PF-related investigations. To overcome this challenge and to account for potential 

confounding factors, large-scale human metabolomics studies that screen and control for 

covariates in an experimental setting will be required in the future (Belhaj et al., 2021; 

Broadhurst & Kell, 2006; Sanford et al., 2020).  

Based on the findings from Study IIa and IIb, the importance to statistically adjust for a variety 

of assessed phenotypical and clinical covariates in heterogeneous study populations could be 

deduced. Thus, it can be determined if observed relationships can be specifically attributed to 

the CRF status. Vice versa, Study IIa and IIb also clearly indicated the general need to control 

for acute PE and an individual’s PF status in non-exercise-related metabolomics studies. With 

regard to the acute PE intervention in Study IIa, a high inter-individual variance in post-

exercise urinary metabolite excursions was observed. To attenuate variations in exercise-

related metabolite alterations due to differences in dietary behavior or not strictly controlled 

time points for sample taking, future research should include standardized dietary plans for 

the day before and during the exercise trial as well as more controlled collections of multiple 

biological samples during and after the exercise intervention. In fact, these recommendations 

have already been adequately considered in the framework of the so-called “Myokine Kinetics 

(MyoKin)” study – a randomized crossover human exercise intervention study conducted at 

the MRI in Karlsruhe. As the MyoKin participants followed a prescribed standardized diet and 

provided blood as well as urine samples at strictly scheduled time points before, during, and 

after two PE interventions at either moderate or vigorous intensity, this study will permit to 

advance further in the examination of acute exercise-related changes in the metabolome. 
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To conclude, the present dissertation can be seen as a valuable contribution to the emerging 

research field of exercise metabolomics, not only gaining deeper insights into the effects of 

acute and chronic PA on metabolite profiles in specific healthy populations, but also    

providing conceptual and methodological suggestions for improving future metabolomics 

investigations. Actually, the three included studies were mainly explorative with a hypothesis-

generating character. Therefore, the molecular mechanisms that might explain the observed 

metabolite differences between pre- or post-exercise conditions or between more or less fit 

individuals could not be elucidated in the framework of this thesis. Even though the applied 

(un)targeted approaches led to the discovery of PE- or PF-related changes in the human 

metabolome, which is generally considered as the closest reflection of an organism’s 

phenotype (Bujak et al., 2015), metabolomics alone only provides a snapshot of the occurred 

metabolic processes and will thus not be sufficient to decipher the complex molecular basis 

of exercise biology or metabolic health and disease (Belhaj et al., 2021). Indeed, there are 

several future directions to complement human exercise metabolomics research, such as the 

application of “multi-omics” approaches, “fluxomics” analyses, or animal model systems: 

Firstly, to fully understand the interconnected nature of genetic, transcriptional, and post-

translational networks underlying the metabolic adaptations to PA, the integration of 

metabolomics with other “omics”-technologies will be required in the future (N. J. Hoffman, 

2017; Kelly et al., 2020). Secondly, more mechanistic insights into the dynamics of metabolic 

reactions might be yielded by the application of metabolic flux analyses, i.e., a method that 

combines stable isotope tracing of metabolites with MS or NMR spectroscopy (Johnson et al., 

2016). In so-called “fluxomics” analyses, the flux of metabolites through different metabolic 

pathways can be measured by monitoring heavy atoms from labelled tracer substrates, e.g., 

glucose or AAs, in particular downstream metabolic products (Wilkinson, Brook, Smith, & 

Atherton, 2017). Accordingly, detailed information on intracellular metabolic rates and 

relative pathway activities with respect to particular phenotypes or experimental conditions 

can be attained (Johnson et al., 2016). Thirdly, a complementary approach to identify the 

tissue-specific origin of PA-related metabolite changes might be the implementation of animal 

model systems. In fact, future animal studies could provide access to certain tissues which are 

relatively inaccessible in human exercise studies, such as skeletal muscle, liver, or fat tissue 

(Belhaj et al., 2021).  
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Finally, although it was outside the scope of Study I, IIa, and IIb to clarify the exact molecular 

mechanisms contributing to the observed PE- or PF-related metabolite profiles, the three 

(sub-)studies included in this thesis clearly emphasized the potential for metabolomics to 

detect metabolic alterations related to either acute or chronic PA in easily obtainable human 

biospecimens. Specific urinary or blood metabolites were highlighted as potential markers for 

PE or PF and certainly represent an interesting starting point for future mechanistic 

investigations and validation studies. Obviously, especially observational investigations like 

Study II can help to explore associations between the human metabolome and health- or 

performance-related variables such as the CRF. Yet, they do not allow to prove cause- and 

effect-relationships. Therefore, to determine what actually might have caused changes in 

human metabolite profiles and whether the marker metabolites are merely correlates of the 

PF status or actually causative for an improved aerobic capacity or health status will continue 

to be a major challenge. 

Nevertheless, as one piece of a big puzzle, the findings obtained in the present thesis – 

together with results from further metabolomics research – might one day be translated into 

a sport- or health-related context, serving as a basis for precision medicine strategies, such as 

the assessment of the individual training, fitness, and cardiometabolic health status or the 

development of personalized exercise prescription concepts (Heaney et al., 2017; Trivedi, 

Hollywood, & Goodacre, 2017).  
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Appendix 

A1 Study I – Supplementary Material 

A1.1 Inclusion and Exclusion Criteria (Study I) 

Table A-1. Inclusion and exclusion criteria for participation in Study I. (Own table). 

Inclusion Criteria Exclusion Criteria 

• Healthy men 

• Age between 20 and 50 years 

• Volunteers with at least three years of 

training and competition experience 

• Volunteers willing to conduct all 

examinations and exercise tests 

• Participants giving their written and 

informed consent 

• Volunteers with cardiovascular or 

endocrine diseases 

• Volunteers with acute or chronic 

musculoskeletal injuries 

• Volunteers on regular medication 

• Volunteers with a BMI > 30 

                 BMI: body mass index. 

 

A1.2 Comparison of LC-MS and NMR Metabolite Data (Study I) 

Table A-2. Linear regression analysis for comparing the urinary concentration of nine metabolites measured with both LC-MS 
and NMR. (Adapted from Kistner et al. (2019)). 

 
β-Amino-

isobutyrate 
Betaine Carnitine Creatine 

Dimethyl-
amine 

N,N-
Dimethyl-

glycine 
Histidine TMAO Trigonelline 

r 0.99 0.95 1.00 0.93 0.97 0.98 0.99 1.00 0.99 

R² 0.97 0.90 0.99 0.87 0.94 0.96 0.98 0.99 0.99 

intercept −13.38 −1.07 −1.14 −6.46 21.12 −5.12 50.50 −17.85 −3.21 

slope 0.99 0.94 1.18 0.81 0.64 1.25 1.11 1.46 0.94 

LC: liquid chromatography; MS: mass spectrometry; NMR: nuclear magnetic resonance; r: Pearson correlation coefficient; R²: 
coefficient of determination; TMAO: trimethylamine N-oxide. 
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Figure A-1. Comparison of the urinary concentration of nine metabolites measured with both LC-MS and NMR by linear regression. LC: liquid chromatography; MS: mass spectrometry; NMR: 
nuclear magnetic resonance. (Reprinted from Kistner et al. (2019)). 
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A1.3 Training Parameters (Study I) 

 
Figure A-2. Training parameters. (a) Differences in post- to pre-exercise blood lactate concentrations in the EG on each study 
day (mean ± SD); (b) Mean and single TRIMP score(s) of the EG on each study day; (c) HR zone scaling (% of time which the 
participants of the EG spent in each HR zone); (d) RPE score of the EG on each study day (mean ± SD). EG: experimental group; 
HR: heart rate; RPE: rating of perceived exertion; SD: standard deviation; TRIMP: training impulse. (Reprinted from Kistner et 
al. (2019)). 
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A1.4 Table of Urinary Metabolite Concentrations (Study I) 

Table A-3. Normalized urinary metabolite concentrations at V1, V2, and V3 in the EG and CG. (Adapted from Kistner et al. (2019)). 

Metabolites 
EG (n=10) CG (n=8) 

V1 V2 V3 V1 V2 V3 

β-Aminoisobutyrate 2, c) 13 ± 16 10 ± 11 10 ± 9 3.2 ± 1.1 2.9 ± 1.7 4.6 ± 3.7 

γ-Aminobutyrate 2, c) 0.10 ± 0.04 0.11 ± 0.05 0.10 ± 0.07 0.10 ± 0.07 0.13 ± 0.05 0.09 ± 0.03 

γ-Butyrobetaine 2, c) 0.25 ± 0.22 0.14 ± 0.10 0.22 ± 0.14 0.15 ± 0.12 0.18 ± 0.11 0.22 ± 0.12 

π-Methylhistidine 2, c) 42 ± 40 45 ± 40 39 ± 32 19 ± 27 19 ± 26 10 ± 8 

τ-Methylhistidine 2, c) 18 ± 3 19 ± 2 18 ± 2 21 ± 7 18 ± 4 18 ± 3 

1-Methylnicotinamide 1 3.1 ± 1.1 3.8 ± 1.6 3.9 ± 1.3 5.9 ± 3.9 4.3 ± 2.6 5.7 ± 2.7 

2-Hydroxyisobutyrate 1 4.2 ± 0.7 4.2 ± 0.9 4.2 ± 0.8 4.0 ± 1.0 3.8 ± 0.9 4.3 ± 1.2 

3-Hydroxyisovalerate 1 3.4 ± 1.0 3.4 ± 1.1 2.9 ± 0.6 2.9 ± 0.6 3.0 ± 0.8 3.5 ± 1.3 

3-Indoxylsulfate 1 18 ± 8 21 ± 16 20 ± 11 19 ± 4 20 ± 8 17 ± 6 
3-Methylxanthine 1 5.2 ± 3.5 6.4 ± 3.1 6.3 ± 5.4 4.3 ± 2.6 3.6 ± 1.6 5.5 ± 4.3 

4-Hydroxyphenylacetate 1 8.7 ± 8.5 8.5 ± 4.0 7.9 ± 5.5 6.2 ± 1.6 6.9 ± 2.6 6.3 ± 2.5 

Acetate 1 2.8 ± 1.4 3.2 ± 2.4 2.9 ± 1.9 2.9 ± 1.7 3.5 ± 2.0 3.3 ± 1.0 

Acetone 1, e) 1.1 ± 0.5 1.0 ± 0.6 1.0 ± 0.9 1.2 ± 1.0 1.8 ± 2.4 1.5 ± 0.8 

ADMA 2, c) 3.7 ± 0.4 †b 3.6 ± 0.5 3.4 ± 0.4 †b 3.8 ± 0.7 3.8 ± 0.6 3.7 ± 0.6 

Alanine 1 14 ± 6 15 ± 6 14 ± 6 14 ± 6 16 ± 5 13 ± 5 

Anserine 2, c) 0.18 ± 0.18 0.23 ± 0.23 0.13 ± 0.10 0.29 ± 0.59 0.12 ± 0.12 0.06 ± 0.02 

Arginine 2, c) 2.1 ± 0.9 1.9 ± 0.5 1.7 ± 0.6 1.8 ± 0.5 2.7 ± 2.7 2.1 ± 0.6 

Betaine 2, a) c) 3.9 ± 1.1 4.3 ± 1.8 3.9 ± 1.3 * 6.0 ± 3.0 6.0 ± 1.7 7.0 ± 1.9 * 

Betonicine 2, c) 0.64 ± 1.38 0.28 ± 0.34 0.19 ± 0.21 0.09 ± 0.10 0.10 ± 0.15 0.04 ± 0.03 

Carnitine 2, c) 12 ± 10 10 ± 9 15 ± 11 10 ± 10 10 ± 6 15 ± 5 

Carnosine 2, c) 1.0 ± 0.6 1.3 ± 0.7 1.2 ± 0.5 1.3 ± 0.7 1.4 ± 0.6 1.3 ± 0.7 

Choline 2, c) 2.0 ± 1.1 1.9 ± 0.9 1.6 ± 0.5 1.7 ± 0.7 2.3 ± 1.7 1.8 ± 0.3 

cis-Aconitate 1 10 ± 2 11 ± 2 11 ± 3 11 ± 4 12 ± 4 13 ± 8 

Citrate 1 200 ± 130 200 ± 130 190 ± 100 200 ± 100 200 ± 70 230 ± 70 

Citrulline 2, c) 0.7 ± 0.4 0.6 ± 0.3 0.6 ± 0.3 0.5 ± 0.3 †b 1.3 ± 1.8 1.1 ± 0.7 †b 

Creatine 2, a) c) 2.6 ± 0.8 2.4 ± 0.6 3.2 ± 2.7 4.1 ± 3.4 4.2 ± 3.2 3.1 ± 1.4 

Dimethylamine 2, c) 23 ± 7.8 21 ± 2 20 ± 3 21 ± 2 19 ± 2 22 ± 3 

N,N-Dimethylglycine 2, a) c) 2.3 ± 0.8 2.7 ± 1.3 2.2 ± 0.9 2.5 ± 1.1 2.7 ± 0.7 2.8 ± 0.8 

Dimethylsulfone 1 4.2 ± 3.6 3.9 ± 2.8 3.9 ± 3.1 3.3 ± 1.4 4.5 ± 4.4 4.3 ± 2.2 

Formate 1 11 ± 5 13 ± 9 13 ± 7 13 ± 5 15 ± 9 16 ± 5 

Gluconate 1 24 ± 8 26 ± 6 24 ± 5 24 ± 5 23 ± 7 2 ± 7 
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Glycine 1 80 ± 50 72 ± 40 78 ± 41 60 ± 22 61 ± 16 62 ± 24 

Glycolate 1 29 ± 8 31 ± 8 30 ± 11 37 ± 13 34 ± 9 34 ± 8 

Guanidoacetate 1 13 ± 4 11 ± 4 11 ± 5 13 ± 5 14 ± 6  13 ± 4 

Hippurate 1 140 ± 80 170 ± 110 140 ± 70 250 ± 130 190 ± 80 170 ± 110 

Histidine 2, c) 58 ± 22 59 ± 21 55 ± 25 60 ± 28 60 ± 15 57 ± 12 

Hypoxanthine 1 7.6 ± 3.3 †a 4.8 ± 1.4 * †a 5.8 ± 2.6 * 8.5 ± 2.7 †b 8.2 ± 2.4 * †c 11.4 ± 3.9 * †b †c 

Isoleucine 1 0.72 ± 0.32 0.81 ± 0.22 0.61 ± 0.19 * 0.70 ± 0.20 0.78 ± 0.20 0.95 ± 0.51 * 
Lactate 1 3.6 ± 0.8 3.8 ± 1.2 3.8 ± 1.4 3.6 ± 1.1 4.3 ± 1.9 3.7 ± 0.8 

Leucine 1 2.0 ± 0.5 2.0 ± 0.4 1.9 ± 0.5 1.9 ± 0.2 2.0 ± 0.6 2.0 ± 0.3 

Mannitol 1, c) 8.1 ± 4.8 10.4 ± 4.4 10.5 ± 5.7 5.3 ± 5.1 6.3 ± 2.5 10.2 ± 8.8 

Methanol 1 2.9 ± 2.5 4.4 ± 4.2 3.7 ± 4.5 2.6 ± 2.4 4.5 ± 6.1 3.6 ± 2.5 

Methylamine 1, b) 2.9 ± 1.6 2.4 ± 1.2 2.3 ± 1.0 2.3 ± 0.8 2.4 ± 0.7 2.2 ± 0.7 

N-Methylarginine 2, c) 0.03 ± 0.03 0.02 ± 0.01 0.02 ± 0.02 0.01 ± 0.01 †b 0.04 ± 0.06 0.04 ± 0.03 †b 

N-Methylproline 2, a) c) 0.08 ± 0.07 0.20 ± 0.31 0.09 ± 0.04 0.25 ± 0.34 0.15 ± 0.15 0.19 ± 0.16 

Methylsuccinate 1 5.4 ± 1.4 6.1 ± 2.3 5.7 ± 1.4 6.1 ± 2.4 †b 6.2 ± 1.1 7.4 ± 3.4 †b 

Proline 2, a) c) 0.61 ± 0.28 0.56 ± 0.15 0.53 ± 0.07 0.67 ± 0.46 1.10 ± 1.17 0.91 ± 0.43 

Pseudouridine 1 11 ± 1 11 ± 1 11 ± 1 11 ± 1 11 ± 1 11 ± 1 

Pyruvate 1 2.2 ± 0.8 2.2 ± 0.7 2.0 ± 0.5 2.0 ± 0.6 2.6 ± 1.3 1.8 ± 0.5 

Sarcosine 2, a) c) 0.05 ± 0.02 0.05 ± 0.02 0.06 ± 0.05 0.09 ± 0.06 0.11 ± 0.11 0.07 ± 0.06 

SDMA 2, c) 33 ± 4 35 ± 4 33 ± 3 34 ± 2 31 ± 1 33 ± 6 

Stachydrine 2, c) 15 ± 19 28 ± 30 17 ± 12 17 ± 16 11 ± 11 12 ± 11 

Succinate 1 1.4 ± 0.7 2.1 ± 1.4 2.0 ± 1.1 2.5 ± 1.3 2.3 ± 1.8 2.3 ± 0.8 

Tartrate 1, b) d) 1.8 ± 1.4 2.9 ± 3.0 2.1 ± 1.8 1.6 ± 1.1 1.9 ± 1.4 1.3 ± 0.5 

Taurine 1, c) 44 ± 28 †b 23 ± 25 18 ± 15 †b 36 ± 32 61 ± 68 56 ± 38 

Threonine 1 6.8 ± 2.2 6.8 ± 1.8 7.2 ± 2.9 7.6 ± 2.4 7.6 ± 2.7 7.2 ± 3.4 

trans-Aconitate 1 3.2 ± 0.7 3.9 ± 1.4 3.5 ± 0.7 3.1 ± 0.6 2.9 ± 1.7 3.0 ± 0.8 

Trigonelline 2, c) 15 ± 15 12 ± 10 14 ± 11 12 ± 8 11 ± 7 11 ± 10 

Trimethylamine 2, c) 0.28 ± 0.17 0.25 ± 0.10 0.20 ± 0.07 0.25 ± 0.09 0.31 ± 0.19 0.20 ± 0.06 

TMAO 2, c) 56 ± 55 45 ± 28 37 ± 23 36 ± 17 30 ± 12 58 ± 42 

Tyrosine 1 7.4 ± 2.6 7.5 ± 2.4 7.1 ± 2.5 8.0 ± 2.7 8.6 ± 3.7 8.1 ± 2.6 

Uracil 1 7.2 ± 2.8 6.9 ± 3.7 6.8 ± 3.1 6.0 ± 1.4 5.9 ± 2.5 6.0 ± 1.1 

Urea 1 2400 ± 1100 2700 ± 1100 2300 ± 800 2100 ± 500 †b 2600 ± 1400 2900 ± 700 †b 

Valine 1 2.3 ± 0.7 2.5 ± 0.6 2.4 ± 0.6 2.6 ± 0.4 2.6 ± 0.4 2.6 ± 0.5 

All values in mean ± SD (mmol/mol creatinine). 1 NMR-detected; 2 LC-MS-detected; a) n=9 for EG; b) n=9 for EG only at V2; c) n=7 for CG; d) n=7 for CG only at V2; e) n=7 for CG only at V3; * p ≤ 
0.05: significant difference between groups; †a p ≤ 0.05: significant difference between V1 and V2 within one group; †b p ≤ 0.05: significant difference between V1 and V3 within one group; 
†c p ≤ 0.05: significant difference between V2 and V3 within one group. ADMA: asymmetric dimethylarginine; CG: control group; EG: experimental group; n: sample size; p: p-value based on 
t-test; SDMA: symmetric dimethylarginine; TMAO: trimethylamine N-oxide; V1: Visit 1; V2: Visit 2; V3: Visit 3.
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A1.5 Boxplots of Urinary Metabolite Concentrations (Study I) 

 

 

 

 

 

 



Appendix 

LVIII 

 

 

 



Appendix 

LIX 

 

 

 



Appendix 

LX 

 

 



Appendix 

LXI 

 

 

Figure A-3. Boxplots of urinary metabolite concentrations at V1, V2, and V3. (1): NMR-detected, (2): LC-MS-detected; 
concentrations in mmol/mol creatinine; n=10 (EG) and n=8 (CG), except: a) n=9 (EG); b) n=9 (EG; only at V2); c) n=7 (CG); d) 
n=7 (CG; only at V2); e) n=7 (CG; only at V3). ADMA: asymmetric dimethylarginine; CG: control group; EG: experimental group; 
LC: liquid chromatography; MS: mass spectrometry; n: sample size; NMR: nuclear magnetic resonance; SDMA: symmetric 
dimethylarginine; TMAO: trimethylamine N-oxide; V1: Visit 1; V2: Visit 2; V3: Visit 3. (Reprinted from Kistner et al. (2019)).  
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A2 Study II – Supplementary Material 

A2.1 Inclusion and Exclusion Criteria (Study II) 

Table A-4. Inclusion and exclusion criteria for participation in Study II. (Adapted from Bub et al. (2016)). 

Inclusion Criteria Exclusion Criteria 

• Healthy men and women 

• Age of 18 years or older 

• Non-smokers 

• Volunteers willing to conduct all 

examinations and tests 

• Participants giving their written and 

informed consent 

• Smokers 

• Volunteers on regular medication 

• Volunteers taking supplements 

• Women using hormonal 

contraceptives 

• Pregnant or breastfeeding women 

• Volunteers with diseases of the cardio-

vascular system, gastrointestinal tract, 

metabolism, nervous system, lungs, 

skin, viscera, and infectious or 

immunological diseases in therapeutic 

need 

• Volunteers with tumors, acute or 

chronic infectious diseases 

• Volunteers with known allergy against 

para-aminobenzoic acid or intolerance 

against Finalgon 

• Volunteers with drug or alcohol abuse 

• Volunteers who may not adhere to the 

study protocol 

• Volunteers who gave no written 

consent 

• Institutionalized patients in psychiatric 

hospitals 
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A2.2 Flowchart: From the Recruitment Process to Data Analysis (Study II) 

 
Figure A-4. Flowchart of Study II: From the recruitment process to data analysis. On the right side, reasons for the exclusion 
of participants are presented. BMI: body mass index; n: sample size; NMR: nuclear magnetic resonance. (Own illustration 
based on Bub et al. (2016)). 

Telephone
Screening

(n=450)

• Regular medication (n=48)

• Missing body organ (n=18)

• Abnormal menstrual cycle (n=16)

• Chronic diseases (n=10)

• Incomplete contact details (n=10)

• Smokers (n=6)

• BMI <18,5 or >30 (n=5)

• Questionable compliance (n=4)

• Scheduling difficulties (n=3)

Scheduled for 
Examinations

(n=330)

• Illness or on medication during the course of the study (n=8)

• Voluntary dropouts (n=2)

• Scheduling difficulties (n=2)

• Pregnancy (n=1)

Attended Clinical 
Examinations

(n=317)

• Disease treatment (n=8)

• Cardiac complications (n=3)

• Voluntary dropouts (n=2)

• Cancer history (n=2)

• Acute cold (n=1)

Study Participants
(n=301)

• Missing or questionable spiroergometry data (n=40)

• Implausible data on resting heart rate (n=1)

• Outlying urinary NMR metabolite concentrations (n=5, only Study IIa)

• Technical measurement errors during metabolomics analyses (n=7, only Study IIb)

• No available plasma sample (n=1, only Study IIb)

Final Data Analyses
(n=255/n=252)

• Study IIa (♂: n=148, ♀: n=107)

• Study IIb (♂: n=150, ♀: n=102)
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A2.3 Boxplots of Urinary Metabolite Concentrations Pre- vs. Post-Exercise (Study IIa) 
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Figure A-5. Boxplots of urinary metabolite concentrations pre- vs. post-exercise. ◊: mean. (Reprinted from Kistner et al. (2020)). 
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A2.4 Boxplots of Urinary Metabolite FCs (Study IIa) 
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Figure A-6. Boxplots of urinary metabolite FCs. ◊: mean; FCs: fold changes. (Reprinted from Kistner et al. (2020)).
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A2.5 Volcano Plot of Exercise-Related Changes in Urinary Metabolites (Study IIa) 

 
Figure A-7. Volcano plot of exercise-related changes in urinary metabolites. Y-axis: represents the statistical significance of 
metabolite changes based on p-values obtained from Wilcoxon’s signed-rank tests and subsequent FDR corrections (red line: 

α=0.05); X-axis: represents the magnitude of metabolite changes based on median FCs (blue lines: FC of 1.1 or 
𝟏

𝟏.𝟏
, 

respectively). Metabolites located in the upper left and upper right part were defined as exercise-responsive metabolites in 
this study. FC: fold change; FDR: false discovery rate. (Reprinted from Kistner et al. (2020)).  
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A2.6 Comparison of Urinary Metabolite FCs between Sexes (Study IIa) 

Table A-5. Urinary metabolite FCs, stratified by sex. (Adapted from Kistner et al. (2020)). 

Metabolites Men (n=148) 
Median FC (25th, 75th percentiles) 

Women (n=107) 
Median FC (25th, 75th percentiles) 

p-values 
(FDR-corrected) 

1-Methylnicotinamide  0.94 (0.74, 1.20) 1.02 (0.81, 1.30) 0.4065 
2-Hydroxyisobutyrate  1.23 (1.07, 1.36) 1.25 (1.10, 1.52) 0.5860 
3-Aminoisobutyrate  1.17 (0.92, 1.41) 1.14 (0.94, 1.39) 0.8956 
3-Hydroxyisovalerate 1.13 (1.03, 1.32) 1.13 (0.99, 1.26) 0.8272 
3-Indoxylsulfate 0.90 (0.68, 1.02) 0.84 (0.68, 1.08) 0.8956 
3-Methylxanthine 0.90 (0.70, 1.10) 0.90 (0.70, 1.20) 0.8272 
4-Hydroxyphenylacetate 1.18 (0.96, 1.56) 1.24 (0.97, 1.94) 0.8272 
Acetate  1.56 (1.16, 2.70) 1.51 (1.11, 2.65) 0.8272 
Acetone  1.15 (0.80, 1.80) 1.47 (0.96, 2.38) 0.0504 
Alanine 1.73 (1.40, 2.14) 1.76 (1.36, 2.41) 0.8956 
Betaine  1.31 (1.10, 1.55) 1.32 (1.12, 1.62) 0.8272 
Carnitine  1.67 (1.31, 2.27) 1.69 (1.20, 2.45) 0.9035 
cis-Aconitate 1.25 (1.08, 1.58) 1.37 (1.11, 1.92) 0.4065 
Citrate  1.29 (1.10, 1.54) 1.16 (0.96, 1.34) 0.0129 
Creatine 1.16 (0.74, 1.86) 1.42 (1.00, 2.21) 0.1340 
Creatinine  0.97 (0.84, 1.14) 0.99 (0.85, 1.23) 0.8272 
Dimethylamine  1.02 (0.85, 1.14) 1.04 (0.88, 1.30) 0.4081 
Dimethylsulfone 1.05 (0.88, 1.36) 1.10 (0.85, 1.49) 0.8272 
Formate  1.19 (1.03, 1.38) 1.08 (0.93, 1.31) 0.2582 
Gluconate  1.13 (0.94, 1.38) 1.12 (0.86, 1.55) 0.9035 
Glycine  1.31 (1.15, 1.68) 1.32 (1.07, 1.58) 0.4506 
Glycolate 1.05 (0.86, 1.26) 1.08 (0.91, 1.30) 0.7141 
Guanidoacetate 1.42 (1.13, 1.74) 1.36 (1.16, 1.63) 0.8272 
Hippurate 0.69 (0.55, 0.84) 0.71 (0.53, 0.99) 0.8272 
Histidine 1.25 (1.07, 1.61) 1.36 (1.11, 1.65) 0.8272 
Hypoxanthine  1.03 (0.67, 1.61) 0.96 (0.69, 1.67) 0.8899 
Isoleucine  1.21 (0.95, 1.48) 1.23 (0.94, 1.60) 0.8272 
Lactate  3.54 (1.47, 53.87) 5.94 (1.93, 20.31) 0.8377 
Leucine 1.32 (1.07, 1.67) 1.27 (1.02, 1.77) 0.8272 
Mannitol 2.04 (1.21, 3.76) 2.96 (1.57, 5.63) 0.0610 
Methanol  1.04 (0.71, 1.54) 1.09 (0.67, 1.84) 0.8272 
Methylamine 1.08 (0.89, 1.37) 1.18 (0.97, 1.44) 0.4065 
Methylsuccinate 1.26 (1.11, 1.54) 1.30 (1.12, 1.59) 0.8272 
N,N-Dimethylglycine 1.36 (1.13, 1.68) 1.40 (1.15, 1.64) 0.8956 
Pseudouridine 1.03 (0.88, 1.17) 1.02 (0.90, 1.24) 0.8956 
Pyruvate 1.34 (0.85, 3.43) 1.69 (0.92, 5.87) 0.4508 
Succinate  1.36 (0.97, 1.78) 1.19 (0.87, 1.74) 0.4065 
Tartrate  1.09 (0.74, 1.49) 1.14 (0.72, 1.56) 0.8272 
Taurine  1.44 (1.18, 1.93) 1.68 (1.24, 2.15) 0.4065 
Threonine  1.42 (1.17, 1.85) 1.36 (1.04, 1.90) 0.5011 
trans-Aconitate 1.53 (0.95, 2.82) 2.33 (1.47, 4.44) 0.0097 
Trigonelline 0.74 (0.65, 0.90) 0.73 (0.60, 0.88) 0.8272 
Trimethylamine N-oxide  0.98 (0.77, 1.18) 0.96 (0.80, 1.20) 0.9035 
Tyrosine 1.12 (0.98, 1.37) 1.11 (0.96, 1.45) 0.8956 
Uracil  0.99 (0.84, 1.26) 0.95 (0.74, 1.16) 0.4065 
Urea 1.04 (0.89, 1.19) 1.00 (0.85, 1.23) 0.8272 
Valine 1.17 (0.97, 1.38) 1.13 (0.97, 1.47) 0.8956 

For each metabolite, the FC between normalized post- and pre-exercise concentrations was calculated per participant and 
the data were presented as median and 25th and 75th percentiles, stratified by sex. Sex-differences in metabolite FCs were 
analyzed by Wilcoxon rank-sum test and obtained p-values were FDR-adjusted. Bold: significantly different metabolite FCs 
between men and women. FC: fold change; FDR: false discovery rate; n: sample size. 
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Table A-6. Ranking of metabolite FCs, stratified by sex. (Adapted from Kistner et al. (2020)). 

 

Men (n=148) 
 

 

Women (n=107) 
 

Metabolite  Median FC Metabolite  Median FC 

Lactate  3.54 Lactate  5.94 
Mannitol  2.04 Mannitol  2.96 
Alanine  1.73 trans-Aconitate  2.33 
Carnitine  1.67 Alanine  1.76 
Acetate 1.56 Carnitine  1.69 
trans-Aconitate  1.53 Pyruvate  1.69 
Taurine  1.44 Taurine  1.68 
Threonine  1.42 Acetate  1.51 
Guanidoacetate  1.42 Acetone  1.47 
Succinate  1.36 Creatine  1.42 
N,N-Dimethylglycine 1.36 N,N-Dimethylglycine 1.40 
Pyruvate  1.34 cis-Aconitate  1.37 
Leucine  1.32 Guanidoacetate  1.36 
Glycine  1.31 Histidine  1.36 
Betaine  1.31 Threonine  1.36 
Citrate  1.29 Glycine  1.32 
Methylsuccinate  1.26 Betaine  1.32 
cis-Aconitate  1.25 Methylsuccinate  1.30 
Histidine  1.25 Leucine  1.27 
2-Hydroxyisobutyrate  1.23 2-Hydroxyisobutyrate  1.25 
Isoleucine  1.21 4-Hydroxyphenylacetate  1.24 
Formate  1.19 Isoleucine  1.23 
4-Hydroxyphenylacetate  1.18 Succinate  1.19 
3-Aminoisobutyrate  1.17 Methylamine  1.18 
Valine  1.17 Citrate  1.16 
Creatine  1.16 Tartrate  1.14 
Acetone  1.15 3-Aminoisobutyrate  1.14 
Gluconate  1.13 3-Hydroxyisovalerate  1.13 
3-Hydroxyisovalerate  1.13 Valine  1.13 
Tyrosine  1.12 Gluconate  1.12 
Tartrate  1.09 Tyrosine  1.11 
Methylamine  1.08 Dimethylsulfone  1.10 
Dimethylsulfone  1.05 Methanol  1.09 
Glycolate  1.05 Formate  1.08 
Methanol  1.04 Glycolate  1.08 
Urea  1.04 Dimethylamine  1.04 
Hypoxanthine  1.03 1-Methylnicotinamide  1.02 
Pseudouridine  1.03 Pseudouridine  1.02 
Dimethylamine  1.02 Urea  1.00 
Uracil  0.99 Creatinine  0.99 
Trimethylamine N-oxide  0.98 Hypoxanthine  0.96 
Creatinine  0.97 Trimethylamine N-oxide  0.96 
1-Methylnicotinamide  0.94 Uracil  0.95 
3-Methylxanthine  0.90 3-Methylxanthine  0.90 
3-Indoxylsulfate  0.90 3-Indoxylsulfate  0.84 
Trigonelline  0.74 Trigonelline  0.73 
Hippurate  0.69 Hippurate  0.71 

Metabolites are sorted from high to low median FCs. Bold: significantly different metabolite FCs between sexes. FC: fold 
change; n: sample size. 
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A2.7 Score and Loading Plots of PCA (Study IIa) 

 
Figure A-8. PCA score and loading plots of a combined pre- and post-exercise urinary metabolite data matrix containing 2 × 255 participants and 47 metabolites. The first three principal 
components are visualized; top: score plots, data points stand for participants and are color-coded according to the pre- or post-exercise state; bottom: loading plots, data points stand for 
metabolites. PC: principal component; PCA: principal component analysis. (Reprinted from Kistner et al. (2020)).   
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Figure A-9. PCA score and loading plots of a combined pre- and post-exercise urinary metabolite data matrix containing 255 participants and 2 × 47 metabolites. The first three principal 
components are visualized; top: score plots, data points stand for participants and are color-coded according to sex; bottom: loading plots, data points stand for metabolites and are color-
coded according to the pre- or post-exercise state. PC: principal component; PCA: principal component analysis. (Reprinted from Kistner et al. (2020)).  
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Figure A-10. PCA score and loading plots of the adjusted pre-exercise urinary metabolite data. The first three principal components are visualized; top: score plots, data points stand for 
participants and are color-coded according to the VO2peak; bottom: loading plots, data points stand for metabolites. PC: principal component; PCA: principal component analysis; VO2peak: 
peak oxygen uptake. (Reprinted from Kistner et al. (2020)).   
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Figure A-11. PCA score and loading plots of the adjusted post-exercise urinary metabolite data. The first three principal components are visualized; top: score plots, data points stand for 
participants and are color-coded according to the VO2peak; bottom: loading plots, data points stand for metabolites. PC: principal component; PCA: principal component analysis; VO2peak: 
peak oxygen uptake. (Reprinted from Kistner et al. (2020)).   
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Figure A-12. PCA score and loading plots of the adjusted data on urinary metabolite FCs. The first three principal components are visualized; top: score plots, data points stand for participants 
and are color-coded according to the VO2peak; bottom: loading plots, data points stand for metabolites. FCs: fold changes; PC: principal component; PCA: principal component analysis; 
VO2peak: peak oxygen uptake. (Reprinted from Kistner et al. (2020)).  
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A2.8 Correlation Between the VO2peak and Urinary Metabolites (Study IIa) 

Table A-7. Pearson correlation coefficients for the association between VO2peak and pre- and post-exercise urinary metabolite concentrations as well as exercise-induced metabolite FCs. 
(Adapted from Kistner et al. (2020)). 

Metabolites 
Pre−Exercise 

r (unadjusted)                                r (adjusted*) 
Post−Exercise 

r (unadjusted)                                r (adjusted*) 
FCs 

r (unadjusted)                                r (adjusted*) 
1−Methylnicotinamide  −0.10 −0.06 −0.27 −0.15 −0.25 −0.13 
2−Hydroxyisobutyrate  −0.03   0.05 −0.09   0.03 −0.09 −0.04 
3−Aminoisobutyrate  −0.01   0.12 −0.04   0.12 −0.12 −0.07 
3−Hydroxyisovalerate   0.05   0.01   0.06 −0.05   0.00 −0.04 
3−Indoxylsulfate −0.18 −0.02 −0.22 −0.04 −0.09 −0.04 
3−Methylxanthine −0.06   0.08 −0.10   0.08 −0.08   0.04 
4−Hydroxyphenylacetate −0.17   0.06 −0.16 −0.03 −0.01 −0.05 
Acetate  −0.20   0.02 −0.12 −0.01   0.08 −0.03 
Acetone    0.14   0.01   0.08 −0.01 −0.09 −0.02 
Alanine −0.10 −0.08 −0.07 −0.09   0.05 −0.01 
Betaine  −0.21 −0.06 −0.20 −0.03   0.01   0.04 
Carnitine    0.07 −0.04   0.15 −0.02   0.08   0.04 
cis−Aconitate −0.15 −0.04 −0.29 −0.10 −0.13 −0.05 
Citrate  −0.46   0.03 −0.39   0.06   0.26   0.02 
Creatine −0.24 −0.10 −0.35 −0.11 −0.21 −0.02 
Creatinine    0.13 −0.02   0.02 −0.09 −0.14 −0.06 
Dimethylamine  −0.08 −0.04 −0.25 −0.10 −0.18 −0.04 
Dimethylsulfone −0.23   0.05 −0.22   0.09   0.02   0.01 
Formate  −0.08   0.09   0.02   0.07   0.16   0.01 
Gluconate  −0.30   0.05 −0.36   0.04 −0.06   0.02 
Glycine  −0.23 −0.03 −0.17 −0.03   0.12   0.00 
Glycolate   0.06 −0.10 −0.01 −0.12 −0.09   0.00 
Guanidoacetate −0.39 −0.10 −0.41 −0.12   0.02 −0.01 
Hippurate −0.30 −0.03 −0.34 −0.05 −0.14 −0.05 
Histidine   0.17 −0.17   0.20 −0.11   0.00   0.06 
Hypoxanthine  −0.04   0.07 −0.11 −0.09 −0.06 −0.13 
Isoleucine  −0.12 −0.10 −0.14 −0.05 −0.02   0.05 
Lactate  −0.38   0.04 −0.09   0.04   0.09   0.04 
Leucine   0.08 −0.02   0.08 −0.05   0.00 −0.04 
Mannitol   0.03   0.03 −0.09   0.03 −0.10 −0.01 
Methanol    0.01   0.08   0.04   0.09   0.04   0.00 
Methylamine −0.10 −0.08 −0.19 −0.12 −0.11 −0.02 
Methylsuccinate   0.02 −0.06 −0.02 −0.10 −0.04 −0.05 
N,N−Dimethylglycine −0.01   0.03 −0.01   0.04   0.00   0.02 
Pseudouridine −0.10   0.00 −0.22 −0.05 −0.12 −0.04 
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Pyruvate −0.16 −0.06 −0.12 −0.11 −0.03 −0.05 

Succinate  −0.32 −0.02 −0.31   0.02   0.06   0.05 

Tartrate  −0.13   0.02 −0.20 −0.08 −0.03 −0.05 

Taurine    0.15 −0.12   0.10 −0.09 −0.11   0.04 
Threonine  −0.01 −0.10   0.10 −0.04   0.14   0.03 
trans−Aconitate   0.09   0.11 −0.20   0.07 −0.23 −0.02 
Trigonelline −0.35   0.04 −0.36   0.05 −0.06 −0.01 
Trimethylamine N−oxide  −0.03 −0.03 −0.06 −0.07 −0.05 −0.04 
Tyrosine −0.04 −0.16 −0.06 −0.18 −0.02 −0.04 
Uracil    0.06   0.16   0.06   0.07   0.00 −0.10 
Urea   0.15   0.10   0.23   0.10   0.08 −0.01 
Valine   0.02 −0.05 −0.01 −0.07 −0.03 −0.02 

Correlations were conducted on VdW scores of the analyzed variables. * correlations were adjusted for sex, menopausal status, age, and lean body mass; bold: 95% confidence intervals do 
not include zero; FCs: fold changes; r: Pearson correlation coefficient; VdW: Van der Waerden; VO2peak: peak oxygen uptake. 
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A2.9 Basic Characteristics of KarMeN Subjects According to VO2peak Quarters (Study IIb) 

Table A-8. Characteristics of female KarMeN participants (n=102) according to VO2peak quarters. (Adapted from Kistner et al. 
(2021)). 

Characteristics 
VO2peak Quarters 

p 
1st q (n=25) 2nd q (n=26) 3rd q (n=26) 4th q (n=25) 

VO2peak (mL kg−1 min−1) 21.6 ± 2.1 27.5 ± 1.7 32.9 ± 1.5 40.9 ± 2.9 <.0001 

Age (years) 62.3 ± 9.6 57.1 ± 11.1 50.3 ± 10.9 33.7 ± 9.6 <.0001 

Pre-/Post-Menopausal State∆ 2/23 7/19 15/11 22/3 <.0001 

Weight (kg) 68.9 ± 9.1 66.2 ± 7.2 61.0 ± 6.2 60.9 ± 7.0 0.0008 

Height (cm) 164.2 ± 5.9 166.7 ± 6.6 166.8 ± 5.2 169.6 ± 7.2 0.0484 

BMI (kg/m²) 25.6 ± 3.4 23.8 ± 1.9 21.9 ± 2.0 21.2 ± 1.8 <.0001 

LBM (kg) 39.4 ± 4.3 40.6 ± 3.5 40.2 ± 3.1 41.1 ± 4.5 0.5504 

FM (%) 39.2 ± 5.2 35.1 ± 4.8 30.3 ± 4.9 28.7 ± 4.3 <.0001 

VATM (kg) 0.81 ± 0.48 0.42 ± 0.25 0.25 ± 0.22 0.12 ± 0.10 <.0001 

BMC (kg) 2.24 ± 0.24 2.31 ± 0.38 2.34 ± 0.25 2.46 ± 0.30 0.0567 

Hb (g dL-1) 13.7 ± 0.8 13.5 ± 0.7 13.5 ± 0.6 13.3 ± 0.9 0.408 

Glucose (mg dL-1) 89.6 ± 8.1 85.3 ± 7.6 82.4 ± 6.5 82.0 ± 7.3 0.0034 

Insulin (µlU mL-1) 10.3 ± 4.5 9.0 ± 3.0 8.5 ± 3.4 10.5 ± 4.5 0.2199 

HbA1c (%) 5.47 ± 0.30 5.61 ± 0.37 5.42 ± 0.29 5.19 ± 0.44 0.0065 

TGs (mg dL-1) 102.2 ± 35.4 85.0 ± 32.9 65.0 ± 18.1 62.7 ± 15.0 <.0001 

HDL cholesterol (mg dL-1) 69.7 ± 13.0 79.2 ± 17.2 82.2 ± 18.8 79.4 ± 13.8 0.0198 

LDL cholesterol (mg dL-1) 145.0 ± 30.4 137.4 ± 32.9 123.1 ± 32.0 104.2 ± 27.5 <.0001 

HRrest (1 min−1) 67.6 ± 7.8 66.2 ± 7.6 64.2 ± 10.1 64.8 ± 8.6 0.5298 

BP systolic (mmHg) 128.4 ± 16.6 124.9 ± 16.9 113.5 ± 12.9 106.7 ± 7.2 <.0001 

BP diastolic (mmHg) 88.7 ± 9.2 86.0 ± 8.5 78.7 ± 10.5 74.5 ± 8.2 <.0001 

PWV (m s-1)° 9.73 ± 1.76 9.28 ± 2.20 7.69 ± 1.16 6.64 ± 0.81 <.0001 

VCmax (L) 3.25 ± 0.46 3.61 ± 0.54 3.66 ± 0.42 4.04 ± 0.68 <.0001 

FEV1 (L) 2.47 ± 0.40 2.75 ± 0.40 2.79 ± 0.42 3.36 ± 0.63 <.0001 

AEE (kcal d-1) 639.4 ± 199.7 782.8 ± 296.7 754.4 ± 185.4 777.5 ± 257.4 0.0814 

Total MET (MET-min week-1) 6470 ± 4066 7033 ± 4451 6518 ± 3338 3920 ± 2099 0.0008 

HEI-NVS 73.9 ± 9.6 69.8 ± 10.0 76.2 ± 10.4 73.2 ± 8.4 0.1805 

Based on the VO2peak quartiles in the female sub-group, the VO2peak data were divided into four quarters (q) and basic 
characteristics of the sub-groups of the corresponding females of the quarters are presented. Data are given in mean ± SD; ∆: 
number of female participants in the pre-/post-menopausal state; ° n=23 (1st q), n=25 (2nd q); bold p-value: significant 
differences between quarters according to Welch ANOVA (Chi² test) for numeric (categorical) variables. AEE: activity energy 
expenditure; BMC: bone mineral content; BMI: body mass index; BP: blood pressure; FEV1: forced expiratory pressure in one 
second; FM: fat mass; Hb: hemoglobin; HDL: high-density lipoprotein; HEI-NVS: Healthy Eating Index (modified version); 
HRrest: resting heart rate; KarMeN: Karlsruhe Metabolomics and Nutrition; LBM: lean body mass; LDL: low-density lipoprotein; 
MET: metabolic equivalent of task; n: sample size; PWV: pulse wave velocity; TGs: triglycerides; VATM: visceral adipose tissue 
mass; VCmax: maximal vital capacity; VO2peak: peak oxygen uptake. 
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Table A-9. Characteristics of male KarMeN participants (n=150) according to VO2peak quarters. (Adapted from Kistner et al. 
(2021)). 

Characteristics 
VO2peak Quarters 

p 
1st q (n=37) 2nd q (n=38) 3rd q (n=38) 4th q (n=37) 

VO2peak (mL kg−1 min−1) 30.8 ± 4.0 40.3 ± 2.2 48.5 ± 2.3 58.5 ± 4.7 <.0001 

Age (years) 59.0 ± 14.4 45.1 ± 17.3 38.4 ± 13.7 27.6 ± 7.8 <.0001 

Weight (kg) 83.2 ± 10.4 79.4 ± 10.5 76.6 ± 9.9 75.2 ± 7.6 0.0025 

Height (cm) 177.4 ± 7.2 180.7 ± 6.2 181.5 ± 9.0 180.9 ± 6.3 0.0809 

BMI (kg/m²) 26.4 ± 2.6 24.3 ± 2.6 23.2 ± 2.1 23.0 ± 2.2 <.0001 

LBM (kg) 56.1 ± 6.0 57.7 ± 6.6 57.7 ± 6.9 60.5 ± 6.8 0.0449 

FM (%) 28.8 ± 3.9 23.7 ± 5.2 20.8 ± 4.7 16.1 ± 4.2 <.0001 

VATM (kg) 1.70 ± 0.74 0.77 ± 0.55 0.50 ± 0.44 0.26 ± 0.15 <.0001 

BMC (kg) 3.19 ± 0.41 3.11 ± 0.42 3.27 ± 0.45 3.27 ± 0.44 0.3633 

Hb (g dL-1) 15.1 ± 1.2 15.0 ± 0.8 15.0 ± 0.9 15.1 ± 0.8 0.8748 

Glucose (mg dL-1) 90.6 ± 9.7 86.6 ± 8.0 84.5 ± 6.6 83.4 ± 7.5 0.004 

Insulin (µlU mL-1) 10.9 ± 4.4 11.0 ± 6.5 9.1 ± 3.1 9.5 ± 2.9 0.1293 

HbA1c (%) 5.54 ± 0.34 5.37 ± 0.33 5.26 ± 0.28 5.25 ± 0.32 0.0012 

TGs (mg dL-1) 119.9 ± 45.8 101.0 ± 60.2 82.1 ± 37.5 81.1 ± 29.3 0.0002 

HDL cholesterol (mg dL-1) 58.5 ± 13.5 61.3 ± 13.7 68.6 ± 16.0 62.7 ± 11.4 0.0376 

LDL cholesterol (mg dL-1) 150.7 ± 44.0 117.7 ± 41.0 114.2 ± 33.5 97.7 ± 28.1 <.0001 

HRrest (1 min−1) 64.1 ± 10.4 63.3 ± 7.8 57.2 ± 7.6 56.0 ± 8.2 <.0001 

BP systolic (mmHg) 133.4 ± 14.8 126.3 ± 14.4 126.1 ± 11.2 122.0 ± 11.0 0.0044 

BP diastolic (mmHg) 91.0 ± 9.6 85.2 ± 9.2 82.5 ± 7.2 76.3 ± 8.6 <.0001 

PWV (m s-1)ⱽ 8.39 ± 1.49 7.23 ± 1.30 6.74 ± 0.85 6.17 ± 0.64 <.0001 

VCmax (L) 4.89 ± 0.90 5.35 ± 0.87 5.61 ± 0.85 5.80 ± 0.72 <.0001 

FEV1 (L) 3.63 ± 0.75 4.20 ± 0.80 4.39 ± 0.76 4.68 ± 0.66 <.0001 

AEE (kcal d-1)ⱽⱽ 798.7 ± 499.3 1017.0 ± 562.3 1193.3 ± 483.3 1546.9 ± 625.7 <.0001 

Total MET (MET-min week-1) 6323 ± 5690 5986 ± 5073 4769 ± 3599 5922 ± 3938 0.3929 

HEI-NVS 70.1 ± 11.0 72.2 ± 9.8 69.1 ± 8.8 72.4 ± 10.0 0.3828 

Based on the VO2peak quartiles in the male sub-group, the VO2peak data were divided into four quarters (q) and basic 
characteristics of the sub-groups of the corresponding males of the quarters are presented. Data are given in mean ± SD; ⱽ 

n=36 (1st q); ⱽⱽ n=35 (1st q), n=37 (2nd q); bold p-value: significant differences between quarters according to Welch ANOVA. 
AEE: activity energy expenditure; BMC: bone mineral content; BMI: body mass index; BP: blood pressure; FEV1: forced 
expiratory pressure in one second; FM: fat mass; Hb: hemoglobin; HDL: high-density lipoprotein; HEI-NVS: Healthy Eating 
Index (modified version); HRrest: resting heart rate; KarMeN: Karlsruhe Metabolomics and Nutrition; LBM: lean body mass; 
LDL: low-density lipoprotein; MET: metabolic equivalent of task; n: sample size; PWV: pulse wave velocity; TGs: triglycerides; 
VATM: visceral adipose tissue mass; VCmax: maximal vital capacity; VO2peak: peak oxygen uptake. 
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A2.10 Bi- and Multivariate Associations between the VO2peak and Plasma Analytes (Study IIb) 
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Figure A-13. Graphical overview of bi- and multivariate associations between the VO2peak and plasma metabolites. F: females; 
M: males; * confounder (age/menopausal status)-adjusted; ** additionally adjusted for clinical and phenotypical variables. 
Associations were performed on VdW scores of the analyzed variables. Above: Partial correlations, expressed as Pearson 
correlation coefficients (dots) with 95% confidence intervals (bars). Below: Significance of contribution of each metabolite 
variable to the obtained PLS models for the VO2peak based on rank products measured by permutation tests. The classification 
of metabolites to major metabolic pathways is color-coded as follows: ‘amino acid metabolism’ (dark blue); ‘carbohydrate 
metabolism’ (yellow); ‘cofactors and vitamins metabolism’ (dark green); ‘energy metabolism’ (light blue); ‘lipid metabolism’ 
(brown); ‘mammalian-microbial cometabolism’ (orange); ‘nucleotide metabolism’ (purple); ‘xenobiotics and related 
metabolism’ (light green); ‘unknown’ (black). PLS: partial least squares; VdW: Van der Waerden; VO2peak: peak oxygen uptake. 
(Reprinted from Kistner et al. (2021)). 
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A2.11 Significant Correlations Between the VO2peak and Plasma Analytes (Study IIb) 

Table A-10. Plasma metabolites with significant correlations to the VO2peak in females, after adjusting for age and menopausal 
status. (Adapted from Kistner et al. (2021)). 

Metabolites r 95% CI (lower limit) 95% CI (upper limit) 
Phosphatidylcholine acyl-alkyl C44:3 0.47 0.30 0.61 

Phosphatidylcholine acyl-alkyl C34:3 0.47 0.30 0.61 

Phosphatidylcholine acyl-alkyl C42:4 0.46 0.29 0.60 

Phosphatidylcholine acyl-alkyl C42:3 0.43 0.25 0.57 

Phosphatidylcholine acyl-alkyl C42:2 0.42 0.24 0.56 

Phosphatidylcholine acyl-alkyl C34:2 0.40 0.22 0.55 

Phosphatidylcholine diacyl C42:2 0.40 0.22 0.55 

Phosphatidylcholine diacyl C34:2 0.38 0.20 0.53 

Phosphatidylcholine acyl-alkyl C40:3 0.37 0.19 0.53 

Phosphatidylcholine acyl-alkyl C36:2 0.37 0.19 0.53 

Phosphatidylcholine diacyl C36:2 0.37 0.19 0.52 

Phosphatidylcholine acyl-alkyl C44:6 0.37 0.18 0.52 

Phosphatidylcholine diacyl C40:2 0.36 0.18 0.52 

Phosphatidylcholine acyl-alkyl C42:5 0.36 0.17 0.52 

Phosphatidylcholine acyl-alkyl C36:3 0.36 0.17 0.52 

Phosphatidylcholine diacyl C42:0 0.35 0.17 0.51 

Phosphatidylcholine diacyl C40:3 0.35 0.17 0.51 

Phosphatidylcholine acyl-alkyl C44:4 0.35 0.17 0.51 

Phosphatidylcholine diacyl C42:4 0.35 0.16 0.51 

Phosphatidylcholine acyl-alkyl C42:1 0.34 0.15 0.50 

Phosphatidylcholine acyl-alkyl C44:5 0.33 0.14 0.49 

Phosphatidylcholine diacyl C42:1 0.32 0.14 0.49 

Citric acid 0.32 0.14 0.49 

Unknown 0.878 0.32 0.13 0.48 

Phosphatidylcholine acyl-alkyl C40:5 0.31 0.13 0.48 

Phosphatidylcholine diacyl C28:1 0.31 0.12 0.47 

Sphingomyelin C16:0 0.31 0.12 0.47 

Phosphatidylcholine acyl-alkyl C38:2 0.30 0.11 0.47 

Lyso-phosphatidylcholine acyl C18:2 0.30 0.11 0.46 

Glyceric acid 0.29 0.10 0.46 

Phosphatidylcholine acyl-alkyl C40:4 0.29 0.10 0.46 

Phosphatidylcholine acyl-alkyl C32:1 0.29 0.10 0.46 

Phosphatidylcholine diacyl C42:5 0.27 0.08 0.44 

Phosphatidylcholine acyl-alkyl C32:2 0.27 0.08 0.44 

Phosphatidylcholine acyl-alkyl C30:0 0.27 0.08 0.44 

Tetradecadienylcarnitine 0.27 0.08 0.44 

Acetate 0.26 0.07 0.43 

Phosphatidylcholine acyl-alkyl C40:1 0.26 0.07 0.43 

Unknown 1349 0.26 0.07 0.43 

Decadienylcarnitine 0.25 0.06 0.43 

Tetracosanoic acid 0.25 0.06 0.43 

Phosphatidylcholine diacyl C36:3 0.25 0.06 0.42 

Acetylornithine 0.24 0.05 0.42 

Phosphatidylcholine diacyl C42:6 0.24 0.05 0.41 

Tetradecanoylcarnitine 0.24 0.05 0.41 

Unknown 1091 (Sugar acid) 0.24 0.05 0.41 

all-cis-9.12-Octadecadienoic acid 0.24 0.05 0.41 

Succinic acid 0.24 0.05 0.41 

Phosphatidylcholine acyl-alkyl C34:1 0.24 0.04 0.41 

Unknown 0856 0.24 0.04 0.41 

Hydroxytetradecenoylcarnitine 0.23 0.04 0.41 

Phosphatidylcholine acyl-alkyl C34:0 0.23 0.03 0.40 

Tetradecenoylcarnitine 0.22 0.03 0.40 

Phosphatidylcholine acyl-alkyl C36:0 0.22 0.03 0.40 

Unknown (Similar to Aminomalonic acid) 0.22 0.03 0.40 

Sphingomyelin C26:0 0.22 0.02 0.40 

Phosphatidylcholine diacyl C32:0 0.22 0.02 0.39 

Threonic acid 0.22 0.02 0.39 

Hydroxysphingomyelin C24:1 0.22 0.02 0.39 

Unknown 0596 0.22 0.02 0.39 
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Phosphatidylcholine diacyl C36:0 0.22 0.02 0.39 

Phosphatidylcholine diacyl C32:3 0.21 0.02 0.39 

Malic acid 0.21 0.02 0.39 

cis-10-Heptadecenoic acid 0.21 0.01 0.39 

Tiglylcarnitine 0.21 0.01 0.39 

Phosphatidylcholine acyl-alkyl C40:6 0.21 0.01 0.39 

Phosphatidylcholine acyl-alkyl C42:0 0.21 0.01 0.39 

4-Hydroxyphenyllactic acid 0.21 0.01 0.38 

Hippuric acid 0.20 0.01 0.38 

Phosphatidylcholine diacyl C34:3 0.20 0.01 0.38 

Lyso-phosphatidylcholine acyl C18:0 0.20 0.01 0.38 

Valine 0.20 0.01 0.38 

Phosphatidylcholine diacyl C32:2 0.20 0.01 0.38 

myo-Inositol 0.20 0.01 0.38 

Phosphatidylcholine diacyl C30:2 0.20 0.01 0.38 

Tartaric acid 0.20 0.00 0.38 

Taurocholate 0.20 0.00 0.38 

Phosphatidylcholine diacyl C38:0 0.20 0.00 0.38 

Arginine 0.20 0.00 0.38 

5-Oxoproline −0.20 −0.38 0.00 

Glutamate −0.20 −0.38 −0.01 

Unknown 7.294 −0.21 −0.39 −0.01 

Unknown 4.020 −0.21 −0.39 −0.02 

Unknown (Sugar or sugar-like (C6-C7) 2) −0.22 −0.40 −0.03 

Unknown 3.818 −0.22 −0.40 −0.03 

Unknown 3.993 −0.22 −0.40 −0.03 

Unknown (Sugar or sugar-like 4) −0.23 −0.40 −0.03 

Unknown 0.928 −0.23 −0.41 −0.04 

Unknown 0.731 −0.24 −0.41 −0.04 

Unknown 3.025 −0.24 −0.41 −0.05 

Unknown 1.166 −0.24 −0.42 −0.05 

Unknown 1.311 −0.24 −0.42 −0.05 

Unknown (Sugar or sugar-like (C6-C7) 1) −0.24 −0.42 −0.05 

Unknown 1.156 −0.25 −0.42 −0.06 

Unknown 4.012 −0.26 −0.43 −0.07 

Unknown 1.338 −0.26 −0.43 −0.07 

Unknown 2.319 −0.28 −0.45 −0.09 

Unknown 1.410 −0.28 −0.45 −0.09 

Unknown 1.197 −0.28 −0.45 −0.09 

Unknown 2.295 −0.28 −0.45 −0.09 

Unknown 1.204 −0.29 −0.46 −0.10 

Unknown 2.250 −0.29 −0.46 −0.11 

Unknown 5.246 −0.30 −0.47 −0.11 

Unknown 1.187 −0.30 −0.47 −0.11 

cis-11-Octadecenoic acid −0.31 −0.48 −0.13 

cis-9-Hexadecenoic acid −0.32 −0.48 −0.13 

Unknown 1.639 −0.32 −0.49 −0.14 

Unknown 2.246 −0.32 −0.49 −0.14 

Unknown 4.252 −0.32 −0.49 −0.14 

Unknown 3.831 −0.33 −0.49 −0.14 

Unknown 1.192 −0.33 −0.49 −0.14 

Unknown 3.966 −0.33 −0.49 −0.14 

Unknown 4.025 −0.34 −0.50 −0.15 

Unknown 3.902 −0.34 −0.50 −0.16 

Unknown 3.971 −0.34 −0.50 −0.16 

Unknown 2.289 −0.35 −0.51 −0.16 

Unknown 4.110 −0.35 −0.51 −0.16 

Unknown 3.060 −0.37 −0.52 −0.19 

Unknown 4.291 −0.37 −0.53 −0.19 

Unknown 2.278 −0.38 −0.54 −0.20 

Unknown 3.956 −0.40 −0.55 −0.23 

Unknown 2.082 −0.41 −0.56 −0.24 

Unknown 3.950 −0.42 −0.57 −0.25 

Unknown 3.961 −0.45 -0.59 -0.28 

Correlations were conducted on VdW scores of the analyzed variables. bold: |r| ≥ 0.25. CI: confidence interval; r: Pearson 
correlation coefficient; VdW: Van der Waerden; VO2peak: peak oxygen uptake. 
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Table A-11. Plasma metabolites with significant correlations to the VO2peak in females, after adjusting for age, menopausal 
status, and phenotypical/clinical variables. (Adapted from Kistner et al. (2021)). 

Metabolites r 95% CI (lower limit) 95% CI (upper limit) 
Phosphatidylcholine acyl-alkyl C40:3 0.37 0.19 0.53 

Phosphatidylcholine acyl-alkyl C42:4 0.31 0.13 0.48 

Valerylcarnitine 0.31 0.12 0.47 

Phosphatidylcholine acyl-alkyl C38:3 0.28 0.09 0.45 

Choline 0.27 0.08 0.44 

Glyceric acid 0.27 0.08 0.44 

Unknown 0856 0.27 0.08 0.44 

Phosphatidylcholine acyl-alkyl C36:2 0.26 0.07 0.44 

Acetylornithine 0.26 0.07 0.43 

Phosphatidylcholine acyl-alkyl C44:3 0.26 0.07 0.43 

Phosphatidylcholine acyl-alkyl C40:5 0.25 0.06 0.42 

Phosphatidylcholine diacyl C28:1 0.25 0.06 0.42 

Phosphatidylcholine acyl-alkyl C30:0 0.25 0.06 0.42 

Phosphatidylcholine acyl-alkyl C42:5 0.24 0.05 0.42 

Pentadecanoic acid 0.24 0.04 0.41 

Unknown (Probably Erythronic acid) 0.23 0.04 0.41 

Phosphatidylcholine acyl-alkyl C42:2 0.23 0.04 0.41 

Phosphatidylcholine diacyl C42:1 0.23 0.04 0.41 

Kynurenine 0.23 0.04 0.41 

Unknown 1349 0.23 0.04 0.41 

Tartaric acid 0.23 0.04 0.40 

Heptadecanoic acid 0.23 0.03 0.40 

Phosphatidylcholine acyl-alkyl C44:5 0.22 0.03 0.40 

Phosphatidylcholine acyl-alkyl C44:4 0.22 0.03 0.40 

Valine 0.22 0.02 0.39 

Hydroxysphingomyelin C24:1 0.22 0.02 0.39 

Phosphatidylcholine acyl-alkyl C40:4 0.21 0.02 0.39 

Asymmetric Dimethylarginine 0.21 0.02 0.39 

Lyso-phosphatidylcholine acyl C28:1 0.21 0.02 0.39 

Decadienylcarnitine 0.21 0.02 0.39 

myo-Inositol 0.21 0.01 0.39 

Docosanoic acid 0.21 0.01 0.38 

Phosphatidylcholine acyl-alkyl C34:1 0.21 0.01 0.38 

Citric acid 0.20 0.01 0.38 

Phosphatidylcholine acyl-alkyl C42:3 0.20 0.00 0.38 

Tetracosanoic acid 0.20 0.00 0.38 

Phosphatidylcholine acyl-alkyl C38:4 0.20 0.00 0.38 

U1331 −0.20 −0.38 0.00 

S-Methylcysteine −0.20 −0.38 0.00 

U3.966 −0.20 −0.38 0.00 

U3.818 −0.21 −0.39 −0.01 

U3.693 −0.21 −0.39 −0.02 

U2.681 −0.21 −0.39 −0.02 

Unknown(Glycoside 2) −0.22 −0.39 −0.02 

Ethanolamine −0.23 −0.40 −0.03 

U7.067 −0.24 −0.41 −0.04 

Threonine −0.24 −0.41 −0.04 

Unknown 3.035 −0.25 −0.43 −0.06 

Unknown (Sugar-like (C6-C7) 2) −0.25 −0.43 −0.06 

Unknown 3.060 −0.26 −0.43 −0.07 

Unknown 1.156 −0.28 −0.45 −0.09 

Unknown 2.656 −0.28 −0.45 −0.09 

Unknown 0975 −0.28 −0.45 −0.09 

Unknown 0978 −0.30 −0.46 −0.11 

Unknown 3.971 −0.31 −0.47 −0.12 

Unknown 4.252 −0.31 −0.47 −0.12 

Unknown 3.950 −0.31 −0.48 −0.12 

Unknown 3.956 −0.32 −0.49 −0.14 

Unknown 3.961 −0.39 −0.55 −0.22 

Correlations were conducted on VdW scores of the analyzed variables. bold: |r| ≥ 0.25. CI: confidence interval; r: Pearson 
correlation coefficient; VdW: Van der Waerden; VO2peak: peak oxygen uptake.  
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Table A-12. Plasma metabolites with significant correlations to the VO2peak in males, after adjusting for age. (Adapted from 
Kistner et al. (2021)). 

Metabolites r 95% CI (lower limit) 95% CI (upper limit) 
Lyso-phosphatidylcholine acyl C18:2 0.34 0.19 0.48 

Lyso-phosphatidylcholine acyl C18:1 0.30 0.14 0.44 

Lyso-phosphatidylcholine acyl C17:0 0.26 0.10 0.40 

Unknown 1026 0.26 0.10 0.40 

Unknown 1349 0.25 0.10 0.40 

Unknown 0666 0.25 0.09 0.39 

Unknown 0811 0.24 0.08 0.38 

Formate 0.23 0.08 0.38 

Unknown 2.910 0.22 0.06 0.37 

Unknown A1461 0.22 0.06 0.37 

Malic acid 0.22 0.06 0.37 

Threonic acid 0.21 0.06 0.36 

Glyceric acid 0.21 0.05 0.35 

Unknown 0680 0.20 0.04 0.35 

Acetoacetate derivative 0.20 0.04 0.35 

Succinic acid 0.20 0.04 0.35 

Acetate 0.19 0.03 0.34 

Unknown 0827 0.19 0.03 0.34 

S-Methylcysteine 0.19 0.03 0.34 

Lyso-phosphatidylcholine acyl C18:0 0.19 0.03 0.34 

Unknown 1199 0.18 0.02 0.33 

Phosphatidylcholine acyl-alkyl C42:3 0.18 0.02 0.33 

Phosphatidylcholine acyl-alkyl C34:3 0.18 0.02 0.33 

Unknown 0130 0.18 0.02 0.33 

Decenoylcarnitine 0.17 0.01 0.33 

Unknown 0132 0.17 0.01 0.32 

Unknown 1224 0.17 0.01 0.32 

Sarcosine 0.17 0.01 0.32 

Oxalic acid 0.17 0.01 0.32 

Phosphatidylcholine acyl-alkyl C36:2 0.17 0.01 0.32 

Phenylacetic acid 0.17 0.01 0.32 

Unknown 1782 0.16 0.00 0.31 

Unknown 1202 0.16 0.00 0.31 

Phosphatidylcholine acyl-alkyl C36:4 −0.16 −0.31 0.00 

all-cis-7.10.13.16.19-Docosapentaenoic acid  −0.16 −0.31 0.00 

Phosphatidylcholine diacyl C36:4 −0.16 −0.31 0.00 

Unknown 1.100 −0.16 −0.31 0.00 

Phosphatidylcholine diacyl C38:6 −0.16 −0.31 0.00 

cis-11-Octadecenoic acid −0.16 −0.31 0.00 

Unknown (Sugar or sugar-like (C6-C7) 1) −0.16 −0.32 0.00 

cis-9-Octadecenoic acid −0.16 −0.32 0.00 

Unknown 4.025 −0.16 −0.32 0.00 

Tyrosine −0.17 −0.32 −0.01 

Cysteine −0.17 −0.32 −0.01 

Unknown 2.656 −0.17 −0.32 −0.01 

trans-4-Hydroxyproline −0.17 −0.32 −0.01 

Unknown 1.148 −0.17 −0.32 −0.01 

Tryptophan −0.17 −0.33 −0.01 

Unknown 3.831 −0.18 −0.33 −0.02 

Unknown 2.047 −0.18 −0.33 −0.02 

Unknown (Glycoside 1) −0.18 −0.33 −0.02 

Phosphatidylcholine diacyl C32:1 −0.18 −0.33 −0.02 

Phosphatidylcholine diacyl C34:4 −0.18 −0.33 −0.02 

Unknown 1.803 −0.18 −0.33 −0.02 

Unknown 3.025 −0.18 −0.33 −0.02 

alpha-Aminoadipate −0.18 −0.33 −0.02 

Phosphatidylcholine diacyl C40:4 −0.18 −0.33 −0.02 

Unknown 1.159 −0.19 −0.34 −0.03 

Unknown 5.402 −0.19 −0.34 −0.03 

Octadecanoic acid −0.19 −0.34 −0.03 

Unknown 0.731 −0.19 −0.34 −0.03 

Dodecanoic acid −0.19 −0.34 −0.03 
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Unknown 3.961 −0.19 −0.34 −0.03 

Tartaric acid −0.19 −0.34 −0.03 

cis-9-Tetradecenoic acid −0.20 −0.34 −0.04 

Kynurenine −0.20 −0.35 −0.04 

cis-9-Hexadecenoic acid −0.20 −0.35 −0.04 

Unknown 7.028 −0.20 −0.35 −0.04 

all cis-8.11.14.17-Eicosatetraenoic acid −0.21 −0.36 −0.05 

Unknown 3.405 −0.21 −0.36 −0.05 

Unknown 1.156 −0.21 −0.36 −0.05 

Unknown 3.902 −0.21 −0.36 −0.05 

Unknown 1.166 −0.21 −0.36 −0.05 

all-cis-5.8.11.14-Eicosatetraenoic acid −0.21 −0.36 −0.06 

Unknown 3.966 −0.22 −0.36 −0.06 

Phosphatidylcholine diacyl C40:5 −0.22 −0.36 −0.06 

all cis-4.7.10.13.16.19-Docosahexaenoic acid −0.22 −0.37 −0.06 

Unknown 2.785 −0.22 −0.37 −0.06 

all-cis-8.11.14-Eicosatrienoic acid −0.22 −0.37 −0.06 

Phosphatidylcholine diacyl C38:4 −0.22 −0.37 −0.07 

all-cis-7.10.13.16-Docosatetraenoic acid −0.23 −0.37 −0.07 

Unknown 1.170 −0.23 −0.37 −0.07 

Unknown 1.192 −0.23 −0.37 −0.07 

Tetradecanoic acid −0.23 −0.37 −0.07 

Phosphatidylcholine diacyl C38:3 −0.23 −0.38 −0.07 

Unknown 2.246 −0.23 −0.38 −0.08 

Unknown 1.204 −0.23 −0.38 −0.08 

Hexadecanoic acid −0.24 −0.38 −0.08 

Unknown 1.311 −0.24 −0.38 −0.08 

Unknown 1.197 −0.24 −0.38 −0.08 

Unknown 1.338 −0.24 −0.38 −0.08 

Unknown 0.936 −0.24 −0.38 −0.08 

Unknown 4.291 −0.24 −0.38 −0.08 

Unknown 1.410 −0.24 −0.39 −0.08 

Unknown 3.060 −0.24 −0.39 −0.08 

Unknown 0.928 −0.24 −0.39 −0.09 

Unknown 2.822 −0.25 −0.39 −0.09 

Unknown 3.950 −0.25 −0.39 −0.09 

Unknown 1.639 −0.25 −0.39 −0.09 

Unknown 1.187 −0.25 −0.39 −0.09 

Phosphatidylcholine diacyl C40:6 −0.25 −0.40 −0.10 

Unknown 4.110 −0.25 −0.40 −0.10 

Sphingomyelin C18:1 −0.26 −0.40 −0.10 

Unknown 3.956 −0.26 −0.40 −0.10 

Unknown 2.295 −0.26 −0.40 −0.10 

Unknown 2.289 −0.26 −0.40 −0.10 

Unknown 5.246 −0.26 −0.41 −0.11 

Unknown 2.082 −0.27 −0.41 −0.12 

Unknown 2.319 −0.28 −0.42 −0.12 

Sphingomyelin C18:0 −0.28 −0.42 −0.13 

Unknown 2.278 −0.29 −0.43 −0.13 

Unknown 2.250 −0.29 −0.43 −0.14 

Correlations were conducted on VdW scores of the analyzed variables. bold: |r| ≥ 0.25. CI: confidence interval; r: Pearson 
correlation coefficient; VdW: Van der Waerden; VO2peak: peak oxygen uptake. 
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Table A-13. Plasma metabolites with significant correlations to the VO2peak in males, after adjusting for age and phenotypical/ 
clinical variables. (Adapted from Kistner et al. (2021)). 

Metabolites r 95% CI (lower limit) 95% CI (upper limit) 
Unknown 0130 0.19 0.03 0.34 

Alanine 0.18 0.02 0.33 

Hexanoylcarnitine (Fumaryl-L-carnitine) 0.18 0.02 0.33 

Unknown 2.910 0.18 0.02 0.33 

Phosphatidylcholine diacyl C36:3 0.18 0.02 0.33 

Unknown 3.385 0.17 0.01 0.32 

Glutamate 0.17 0.01 0.32 

Unknown 1.170 −0.16 −0.31 0.00 

all cis-4.7.10.13.16.19-Docosahexaenoic acid −0.16 −0.31 0.00 

Unknown 1426 −0.16 −0.32 0.00 

Glycodeoxycholate −0.16 −0.32 0.00 

Phosphatidylcholine diacyl C42:1 −0.18 −0.33 −0.02 

Taurodeoxycholate −0.18 −0.33 −0.02 

Phosphatidylcholine diacyl C38:0 −0.18 −0.33 −0.02 

Phosphatidylcholine acyl-alkyl C38:6 −0.18 −0.33 −0.02 

Unknown 1.166 −0.19 −0.34 −0.03 

Unknown 1.159 −0.19 −0.34 −0.03 

Unknown 0.936 −0.19 −0.34 −0.03 

Unknown 1.156 −0.20 −0.35 −0.04 

Tartaric acid −0.21 −0.36 −0.05 

Unknown 1331 −0.21 −0.36 −0.05 

Unknown (Sugar or sugar-like 4) −0.21 −0.36 −0.05 

Unknown 2.822 −0.21 −0.36 −0.05 

Unknown 2.250 −0.25 −0.39 −0.09 

Correlations were conducted on VdW scores of the analyzed variables. bold: |r| ≥ 0.25. CI: confidence interval; r: Pearson 
correlation coefficient; VdW: Van der Waerden; VO2peak: peak oxygen uptake. 

  



Appendix 

XCVIII 

 

A2.12 Classification of VO2peak-correlated Plasma Analytes to Metabolic Pathways (Study IIb) 

 
Figure A-14. Classification of CRF-correlated metabolites in females to major metabolic pathways. 125 plasma metabolites 
showed significant bivariate correlations with the CRF in females, after adjusting for age and menopausal status (*). Most of 
them belonged to ‘lipid metabolism’ (63/125) and ‘amino acid metabolism’ (4/125), followed by ‘energy metabolism’ (3/125), 
‘mammalian-microbial cometabolism’, ‘carbohydrate metabolism’ or ‘xenobiotics-related metabolism’ (each 2/125), and 
‘cofactors and vitamins metabolism’ (1/125). 48 plasma analytes were unknown. CRF: cardiorespiratory fitness; F: females. 
(Reprinted from Kistner et al. (2021)). 
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Figure A-15. Classification of CRF-correlated analytes in females to sub-pathways. The 77 CRF-correlated plasma metabolites 
with known identity were further classified to 15 sub-pathways. CRF: cardiorespiratory fitness. (Reprinted from Kistner et al. 
(2021)). 
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Figure A-16. Classification of CRF-correlated metabolites in males to major metabolic pathways. 112 plasma metabolites 
showed significant bivariate correlations with the CRF in males, after adjusting for age (*). Most of them belonged to ‘lipid 
metabolism’ (36/112) and ‘amino acid metabolism’ (8/112), followed by ‘xenobiotics and related metabolism’ (4/112), 
‘energy metabolism’ (2/112), ‘carbohydrate metabolism’ and ‘mammalian-microbial cometabolism’ (each 1/112). 60 plasma 
analytes were unknown. CRF: cardiorespiratory fitness; M: males. (Reprinted from Kistner et al. (2021)). 
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Figure A-17. Classification of CRF-correlated analytes in males to sub-pathways. The 52 CRF-correlated plasma metabolites 
with known identity were further classified to 18 sub-pathways. CRF: cardiorespiratory fitness. (Reprinted from Kistner et al. 
(2021)). 
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A2.13 Evaluation of PLS approaches (Study IIb) 

 
Figure A-18. Mean of the RMSEs on the test samples across the 20 repetitions of the PLS approaches. F: females; M: males; 
*: confounder (age/menopausal status)-adjusted; **: additionally adjusted for clinical and phenotypical variables; blue: 5 
repetitions for each sub-group using the original data; orange: 2500 permutation for each sub-group. Since the mean RMSE 
based on the test samples was not always higher in the permutations for F** and M**, the respective results from 
multivariate association analyses have to be interpreted with caution. PLS: partial least squares; RMSE: root mean square 
error. (Reprinted from Kistner et al. (2021)). 
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A2.14 Volcano Plots of VO2peak-associated plasma metabolite patterns (Study IIb) 

 

Figure A-19. Volcano plots illustrating sex-specific plasma metabolite patterns associated with the VO2peak for each sub-group. 
F: females; M: males; *: confounder (age/menopausal status)-adjusted, **: additionally adjusted for clinical and phenotypical 
variables. Y-axis: significance of contribution of each metabolite variable to the PLS model, expressed as the negative 
logarithm of the relative frequencies of permutation-obtained rank products below measured rank products. X-axis: direction 
and strength of partial correlations between the VO2peak and metabolite variables, expressed as Pearson correlation 
coefficients (r) of VdW-transformed variables. The classification of metabolites to metabolic pathways is color-coded as 
follows: ‘amino acid metabolism’ (dark blue); ‘carbohydrate metabolism’ (yellow); ‘cofactors and vitamins metabolism’ (dark 
green); ‘energy metabolism’ (light blue); ‘lipid metabolism’ (brown); ‘mammalian-microbial cometabolism’ (orange); 
‘nucleotide metabolism’ (purple); ‘xenobiotics and related metabolism’ (light green); ‘unknown’ (black). The mean of the 
RMSEs based on the test samples was not always higher in the permutations when additionally controlling for phenotypical 
and clinical variables. Therefore, the respective results from multivariate association analyses (F**/M**) have to be 
interpreted with caution. PLS: partial least squares; RMSE: root mean square error; VdW: Van der Waerden; VO2peak: peak 
oxygen uptake. (Reprinted from Kistner et al. (2021)). 
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A2.15 Multiple Linear Regression Analyses (Study IIb) 

Table A-14. Stepwise regression analysis for VO2peak explanation (approach 1, females). (Adapted from Kistner et al. (2021)). 

Step Variable R² R² (adjusted) Selection Frequencyⱽ 

1 FM (%) 0.33 0.33 1 

2 HDL cholesterol 0.36 0.35 0.650 

3 LBM 0.39 0.38 0.435 

4 PWV 0.41 0.39 0.309 

5 Hb 0.42 0.39 0.205 

6 BP systolic 0.43 0.39 0.116 

7 BP diasystolic 0.44 0.40 0.059 

8 HRrest 0.45 0.40 0.032 

9 Insulin 0.46 0.41 0.016 

10 Total MET 0.47 0.41 0.005 

11 TGs 0.48 0.41 0.003 

12 LDL cholesterol 0.48 0.41 0.001 

13 HbA1c 0.48 0.41 0 

14 FEV1 0.49 0.40 0 

15 VCmax 0.49 0.40 0 

16 VATM 0.49 0.40 0 

17 HEI-NVS 0.49 0.39 0 

18 AEE 0.49 0.39 0 

19 Height 0.50 0.38 0 

20 BMC 0.50 0.37 0 

21 Glucose 0.50 0.36 0 

Approach 1: Only phenotypical/clinical variables (n=21) were stepwise selected in the female sub-group (n=102). All variables 
were transformed into VdW scores and adjusted for age and menopausal status prior to analysis. ⱽ: relative frequency the 
variable was present in cross-validated stepwise regression models (regarding 1000 iterations). AEE: activity energy expen-
diture; BMC: bone mineral content; BP: blood pressure; FEV1: forced expiratory pressure in one second; FM: fat mass; Hb: 
hemoglobin; HDL: high-density lipoprotein; HEI-NVS: Healthy Eating Index (modified version); HRrest: resting heart rate; LBM: 
lean body mass; LDL: low-density lipoprotein; MET: metabolic equivalent of task; PWV: pulse wave velocity; TGs: triglycerides; 
VATM: visceral adipose tissue mass; VCmax: maximal vital capacity; VdW: Van der Waerden; VO2peak: peak oxygen uptake. 

Table A-15. Stepwise regression analysis for VO2peak explanation (approach 1, males). (Adapted from Kistner et al. (2021)). 

Step Variable R² R² (adjusted) Selection Frequencyⱽ 

1 FM (%) 0.42 0.42 1 

2 HDL cholesterol 0.43 0.42 0.632 

3 BMC 0.44 0.43 0.391 

4 AEE 0.45 0.43 0.212 

5 TGs 0.45 0.43 0.136 

6 LDL cholesterol 0.46 0.43 0.066 

7 HRrest 0.46 0.44 0.038 

8 FEV1 0.46 0.43 0.019 

9 Height 0.47 0.43 0.012 

10 PWV 0.47 0.43 0.006 

11 LBM 0.47 0.43 0.004 

12 VATM 0.47 0.43 0.003 

13 Hb 0.47 0.42 0 

14 VCmax 0.48 0.42 0 

15 Total MET 0.48 0.42 0 

16 HEI-NVS 0.48 0.42 0 

17 BP diasystolic 0.48 0.41 0 

18 Glucose 0.48 0.41 0 

19 Insulin 0.48 0.40 0 

20 HbA1c 0.48 0.40 0 

21 BP systolic 0.48 0.39 0 

Approach 1: Only phenotypical/clinical variables (n=21) were stepwise selected in the male sub-group (n=150). All variables 
were transformed into VdW scores and adjusted for age prior to analysis. ⱽ: relative frequency the variable was present in 
cross-validated stepwise regression models (regarding 1000 iterations). AEE: activity energy expenditure; BMC: bone mineral 
content; BP: blood pressure; FEV1: forced expiratory pressure in one second; FM: fat mass; Hb: hemoglobin; HDL: high-density 
lipoprotein; HEI-NVS: Healthy Eating Index (modified version); HRrest: resting heart rate; LBM: lean body mass; LDL: low-
density lipoprotein; MET: metabolic equivalent of task; PWV: pulse wave velocity; TGs: triglycerides; VATM: visceral adipose 
tissue mass; VCmax: maximal vital capacity; VdW: Van der Waerden; VO2peak: peak oxygen uptake.  
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Table A-16. Stepwise regression analysis for VO2peak explanation (approach 2, females). (Adapted from Kistner et al. (2021)). 

Step Variable R² R² (adjusted) Selection Frequencyⱽ 

1 FM (%) 0.33 0.33 fixed 

2 HDL cholesterol 0.36 0.35 fixed 

3 LBM 0.39 0.38 fixed 

4 PWV 0.41 0.39 fixed 

5 Hb 0.42 0.39 fixed 

6 BP systolic 0.43 0.39 fixed 

7 BP diasystolic 0.44 0.40 fixed 

8 HRrest 0.45 0.40 fixed 

9 Insulin 0.46 0.41 fixed 

10 Total MET 0.47 0.41 fixed 

11 TGs 0.48 0.41 fixed 

12 LDL cholesterol 0.48 0.41 fixed 

13 HbA1c 0.48 0.41 fixed 

14 FEV1 0.49 0.40 fixed 

15 VCmax 0.49 0.40 fixed 

16 VATM 0.49 0.40 fixed 

17 HEI-NVS 0.49 0.39 fixed 

18 AEE 0.49 0.39 fixed 

19 Height 0.50 0.38 fixed 

20 BMC 0.50 0.37 fixed 

21 Glucose 0.50 0.36 fixed 

22 Phosphatidylcholine acyl-alkyl C40:3 0.58 0.46 1 

23 Unknown 3.961 0.62 0.51 0.838 

24 S-Methylcysteine 0.66 0.55 0.606 

25 Tartaric acid 0.70 0.60 0.452 

26 Unknown 1.148 0.73 0.64 0.366 

27 Serine 0.76 0.67 0.226 

28 Tetracosanoic acid 0.78 0.70 0.173 

29 Kynurenine 0.79 0.71 0.108 

30 Unknown 0992 0.81 0.72 0.060 

31 Unknown 1.266 0.82 0.74 0.049 

32 myo-Inositol 0.83 0.75 0.025 

33 Ethanolamine 0.84 0.76 0.011 

34 Unknown 7.700 0.85 0.78 0.008 

35 Unknown 0757 0.86 0.79 0.007 

36 Glucuronic acid derivative 0.87 0.80 0.004 

37 Phosphatidylcholine acyl-alkyl C34:0 0.88 0.82 0.003 

38 Unknown 2.681 0.90 0.83 0.002 

39 trans-11-Octadecenoic acid 0.90 0.84 0.001 

40 Glycine 0.91 0.85 0 

41 Lysine 0.92 0.86 0 

42 Unknown 1043 0.93 0.87 0 

43 Unknown 3.971 0.93 0.88 0 

44 Probably 4-deoxythreonic acid 0.94 0.89 0 

45 Unknown 0978 0.94 0.90 0 

46 Choline 0.95 0.90 0 

47 Unknown (Similar to Uracil) 0.95 0.91 0 

48 Asymmetric Dimethylarginine 0.96 0.92 0 

49 Phosphatidylcholine diacyl C34:3 0.96 0.93 0 

50 Sarcosine 0.97 0.93 0 

Approach 1: All phenotypical/clinical variables (n=21) were included and only plasma metabolite variables (n=427) were 
stepwise selected in the female sub-group (n=102). All variables were transformed into VdW scores and adjusted for age and 
menopausal status prior to analysis. ⱽ: relative frequency the variable was present in cross-validated stepwise regression 
models (regarding 1000 iterations). Metabolite variables are indicated in italics. AEE: activity energy expenditure; BMC: bone 
mineral content; BP: blood pressure; FEV1: forced expiratory pressure in one second; FM: fat mass; Hb: hemoglobin; HDL: 
high-density lipoprotein; HEI-NVS: Healthy Eating Index (modified version); HRrest: resting heart rate; LBM: lean body mass; 
LDL: low-density lipoprotein; MET: metabolic equivalent of task; PWV: pulse wave velocity; TGs: triglycerides; VATM: visceral 
adipose tissue mass; VCmax: maximal vital capacity; VdW: Van der Waerden; VO2peak: peak oxygen uptake. 
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Table A-17. Stepwise regression analysis for VO2peak explanation (approach 2, males). (Adapted from Kistner et al. (2021)). 

Step Variable R² R² (adjusted) Selection Frequencyⱽ 

1 FM (%) 0.42 0.42 fixed 

2 HDL cholesterol 0.43 0.42 fixed 

3 BMC 0.44 0.43 fixed 

4 AEE 0.45 0.43 fixed 

5 TGs 0.45 0.43 fixed 

6 LDL cholesterol 0.46 0.43 fixed 

7 HRrest 0.46 0.44 fixed 

8 FEV1 0.46 0.43 fixed 

9 Height 0.47 0.43 fixed 

10 PWV 0.47 0.43 fixed 

11 LBM 0.47 0.43 fixed 

12 VATM 0.47 0.43 fixed 

13 Hb 0.47 0.42 fixed 

14 VCmax 0.48 0.42 fixed 

15 Total MET 0.48 0.42 fixed 

16 HEI-NVS 0.48 0.42 fixed 

17 BP diasystolic 0.48 0.41 fixed 

18 Glucose 0.48 0.41 fixed 

19 Insulin 0.48 0.40 fixed 

20 HbA1c 0.48 0.40 fixed 

21 BP systolic 0.48 0.39 fixed 

22 Phosphatidylcholine diacyl C36:3 0.51 0.43 1 

23 Unknown 0130 0.54 0.45 0.719 

24 Tartaric acid 0.56 0.48 0.555 

25 Hexanoylcarnitine (Fumaryl-L-carnitine) 0.58 0.50 0.403 

26 Hydroxytetradecenoylcarnitine 0.61 0.52 0.284 

27 Unknown 2.250 0.62 0.54 0.199 

28 Malic acid 0.65 0.56 0.155 

29 Glutamate 0.67 0.59 0.119 

30 Tetracosanoic acid 0.69 0.61 0.080 

31 Unknown 1.226 0.70 0.62 0.059 

32 Unknown 3.993 0.72 0.64 0.036 

33 Unknown 1331 0.73 0.66 0.026 

34 5-Oxoproline 0.75 0.67 0.018 

35 Glycodeoxycholate 0.76 0.69 0.010 

36 cis-9-Octadecenoic acid 0.77 0.70 0.009 

37 Phosphatidylcholine diacyl C28:1 0.78 0.71 0.006 

38 Fumaric acid 0.79 0.72 0.004 

39 Threonic acid 0.80 0.72 0.002 

40 Unknown 1.100 0.80 0.73 0.001 

41 Serine 0.81 0.74 0.001 

42 Hydroxysphingomyelin C22:1 0.82 0.75 0 

43 Unknown 1179 0.82 0.75 0 

44 Unknown 1026 0.83 0.76 0 

45 Phenylalanine 0.84 0.77 0 

46 Valine 0.85 0.78 0 

47 Arabitol 0.85 0.78 0 

48 Unknown 1.187 0.86 0.79 0 

49 Unknown 1258 0.87 0.80 0 

50 Unknown (2.2-Dihydroxyacetic acid or similar) 0.87 0.81 0 

Approach 1: All phenotypical/clinical variables (n=21) were included and only plasma metabolite variables (n=427) were 
stepwise selected in the male sub-group (n=150). All variables were transformed into VdW scores and adjusted for age prior 
to analysis. ⱽ: relative frequency the variable was present in cross-validated stepwise regression models (regarding 1000 
iterations). Metabolite variables are indicated in italics. AEE: activity energy expenditure; BMC: bone mineral content; BP: 
blood pressure; FEV1: forced expiratory pressure in one second; FM: fat mass; Hb: hemoglobin; HDL: high-density lipoprotein; 
HEI-NVS: Healthy Eating Index (modified version); HRrest: resting heart rate; LBM: lean body mass; LDL: low-density 
lipoprotein; MET: metabolic equivalent of task; PWV: pulse wave velocity; TGs: triglycerides; VATM: visceral adipose tissue 
mass; VCmax: maximal vital capacity; VdW: Van der Waerden; VO2peak: peak oxygen uptake. 
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Table A-18. Stepwise regression analysis for VO2peak explanation (approach 3, females). (Adapted from Kistner et al. (2021)). 

Step Variable R² R² (adjusted) Selection Frequencyⱽ 

1 FM (%) 0.33 0.33 1 

2 Phosphatidylcholine acyl-alkyl C40:3 0.42 0.41 0.823 

3 myo-Inositol 0.49 0.48 0.632 

4 Unknown 0975 0.57 0.55 0.493 

5 Unknown 3.961 0.59 0.57 0.316 

6 Unknown 7.294 0.64 0.61 0.242 

7 Glycine 0.66 0.64 0.183 

8 Unknown 2.313 0.69 0.66 0.138 

9 Lysine 0.70 0.67 0.079 

10 Octadecenoylcarnitine 0.71 0.68 0.057 

11 Malic acid 0.73 0.69 0.047 

12 Decanoic acid 0.75 0.72 0.04 

13 Tetracosanoic acid 0.77 0.73 0.035 

14 Unknown 2.681 0.78 0.75 0.028 

15 BP systolic 0.80 0.76 0.018 

16 Unknown 1091 (Sugar acid) 0.81 0.78 0.011 

17 Pseudouridine 0.83 0.79 0.005 

18 Tetradecenoylcarnitine 0.84 0.80 0.004 

19 Unknown 0992 0.85 0.82 0.004 

20 Taurine 0.86 0.83 0.002 

21 Unknown (Similar to Mimosine 1) 0.87 0.83 0.002 

22 Unknown 0971 0.88 0.84 0.002 

23 VATM 0.89 0.85 0.002 

24 Phosphatidylcholine diacyl C28:1 0.90 0.87 0.001 

25 Unknown 7.028 0.91 0.88 0 

26 Glucuronic acid derivative 0.92 0.89 0 

27 Unknown 1224 0.92 0.90 0 

28 Hydroxytetradecenoylcarnitine 0.93 0.90 0 

29 Phosphatidylcholine acyl-alkyl C38:1 0.93 0.91 0 

30 Unknown 1199 0.94 0.91 0 

31 Threitol 0.94 0.92 0 

32 Unknown 1.803 0.95 0.93 0 

33 Unknown A1461 0.95 0.93 0 

34 Unknown 7.067 0.96 0.94 0 

35 Lyso-phosphatidylcholine acyl C20:4 0.96 0.94 0 

36 Unknown (Similar to 2-Ethyl-3-hydroxypropionic acid) 0.97 0.95 0 

37 Unknown 3.956 0.97 0.95 0 

38 Threonic acid 0.97 0.95 0 

39 Unknown 3.035 0.97 0.96 0 

40 all-cis-9.12-Octadecadienoic acid 0.98 0.96 0 

41 Tartaric acid 0.98 0.96 0 

42 Betaine 0.98 0.96 0 

43 Unknown (Similar to 2-Aminoisobutyric acid) 0.98 0.97 0 

44 Unknown (Sugar or sugar-like 2) 0.98 0.97 0 

45 Unknown 1.159 0.99 0.97 0 

46 3-Indoleacetic acid 0.99 0.98 0 

47 Glucose 0.99 0.98 0 

48 Unknown 1239 0.99 0.98 0 

49 Unknown 1.269 0.99 0.98 0 

50 Unknown 0586 0.99 0.99 0 

Approach 3: Phenotypical/clinical variables (n=21) as well as plasma metabolite variables (n=427) were stepwise selected in 
the female sub-group (n=102). All variables were transformed into VdW scores and adjusted for age and menopausal status 
prior to analysis. ⱽ: relative frequency the variable was present in cross-validated stepwise regression models (regarding 1000 
iterations). Metabolite variables are indicated in italics. BP: blood pressure; FM: fat mass; VATM: visceral adipose tissue mass; 
VdW: Van der Waerden; VO2peak: peak oxygen uptake. 
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Table A-19. Stepwise regression analysis for VO2peak explanation (approach 3, males). (Adapted from Kistner et al. (2021)). 

Step Variable R² R² (adjusted) Selection Frequencyⱽ 

1 FM (%) 0.42 0.42 1 

2 Malic acid 0.46 0.45 0.742 

3 Taurocholate 0.48 0.47 0.503 

4 Phosphatidylcholine diacyl C36:3 0.51 0.50 0.366 

5 Unknown 0130 0.54 0.52 0.293 

6 Phosphatidylcholine diacyl C36:6 0.56 0.54 0.223 

7 Glutamate 0.59 0.56 0.150 

8 Unknown (Similar to Uracil) 0.60 0.58 0.088 

9 Unknown 1.226 0.61 0.59 0.055 

10 Unknown 3.693 0.64 0.61 0.042 

11 all cis-5.8.11.14.17-Eicosapentaenoic acid  0.65 0.63 0.029 

12 Phosphatidylcholine diacyl C42:2 0.67 0.64 0.014 

13 cis-9-Octadecenoic acid 0.68 0.65 0.012 

14 Unknown 1331 0.70 0.66 0.008 

15 Arabitol 0.71 0.68 0.006 

16 Unknown 0132 0.72 0.68 0.003 

17 Tetracosanoic acid 0.73 0.70 0.003 

18 Unknown 2.738 0.74 0.71 0.003 

19 Tetradecanoic acid 0.75 0.72 0.003 

20 Unknown 1026 0.76 0.73 0.002 

21 Tartaric acid 0.77 0.74 0.001 

22 Unknown 2.403 0.78 0.75 0.001 

23 Unknown 2.307 0.79 0.76 0 

24 Unknown (Similar to N-Acetylserine) 0.80 0.76 0 

25 Unknown (Glycoside 1) 0.81 0.77 0 

26 Unknown 1.803 0.82 0.78 0 

27 Phosphatidylcholine diacyl C42:4 0.83 0.79 0 

28 Glutamine 0.83 0.80 0 

29 Unknown (Glycerol-1-phosphate or similar) 0.84 0.80 0 

30 Phosphatidylcholine diacyl C34:3 0.85 0.81 0 

31 Height 0.85 0.82 0 

32 Unknown 1258 0.86 0.82 0 

33 Taurine 0.86 0.83 0 

34 cis-9.trans-11-Octadecadienoic acid 0.87 0.83 0 

35 Sphingomyelin C24:0 0.87 0.84 0 

36 Glycolic acid 0.88 0.84 0 

37 Unknown 0.878 0.88 0.85 0 

38 cis-10-Heptadecenoic acid 0.89 0.85 0 

39 AEE 0.90 0.86 0 

40 Erythritol  0.90 0.86 0 

41 Unknown 1117 0.90 0.87 0 

42 Tiglylcarnitine 0.91 0.87 0 

43 Tetradecadienylcarnitine 0.91 0.88 0 

44 Oxalic acid 0.92 0.88 0 

45 Valine 0.92 0.88 0 

46 Methionine 0.92 0.89 0 

47 VCmax 0.93 0.89 0 

48 Unknown 7.028 0.93 0.90 0 

49 Acetoacetate derivative 0.93 0.90 0 

50 Proline 0.94 0.90 0 

Approach 3: Phenotypical/clinical variables (n=21) as well as plasma metabolite variables (n=427) were stepwise selected in 
the male sub-group (n=150). All variables were transformed into VdW scores and adjusted for age prior to analysis. ⱽ: relative 
frequency the variable was present in cross-validated stepwise regression models (regarding 1000 iterations). Metabolite 
variables are indicated in italics. AEE: activity energy expenditure; FM: fat mass; VCmax: maximal vital capacity; VdW: Van der 
Waerden; VO2peak: peak oxygen uptake. 
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A3 Metabolomics Analyses 

A3.1 List of Metabolites Identified by Targeted NMR-Based Analysis (Study I, IIa) 

Table A-20. Metabolites identified by targeted NMR-based analysis and included in Study I and IIa. (Own table). 

Abbreviation Metabolite Name MSI ID Level Unit Major Pathway Sub-Pathway HMDB ID KEGG ID 

BAIBA β-Aminoisobutyrate  2 mmol/L Amino acid metabolism Isoleucine, leucine and valine metabolism HMDB0003911 C05145 

MNA 1-Methylnicotinamide 2 mmol/L Cofactors and vitamins metabolism Nicotinate and nicotinamide metabolism HMDB0000699 C02918 

2-OH-Isob 2-Hydroxyisobutyrate 2 mmol/L Xenobiotics and related metabolism Chemicals HMDB0000729 - 

3-OH-Isov 3-Hydroxyisovalerate 2 mmol/L Amino acid metabolism Isoleucine, leucine and valine metabolism HMDB0000754 C20827 

3-Ind 3-Indoxylsulfate  2 mmol/L Mammalian-microbial cometabolism Tryptophan metabolism HMDB0000682 - 

3-MXan 3-Methylxanthine 2 mmol/L Xenobiotics and related metabolism Xanthine metabolism HMDB0001886 C16357 

4-OH-Phe 4-Hydroxyphenylacetate 2 mmol/L Amino acid metabolism Phenylalanine and tyrosine metabolism HMDB0000020 C00642 

Acet Acetate  2 mmol/L Carbohydrate metabolism Glucose and pyruvate metabolism HMDB0000042 C00033 

Ace Acetone  2 mmol/L Lipid metabolism Ketone body metabolism HMDB0001659 C00207 

Ala Alanine  2 mmol/L Amino acid metabolism Alanine and aspartate metabolism HMDB0000161 C09885 

Bet Betaine  2 mmol/L Amino acid metabolism Glycine, serine and threonine metabolism HMDB0000043 C00719 

Car Carnitine  2 mmol/L Lipid metabolism Carnitine metabolism HMDB0000062 C00318 

c-Aco cis-Aconitate 2 mmol/L Energy metabolism TCA cycle intermediates HMDB0000072 C00417 

Cit Citrate  2 mmol/L Energy metabolism TCA cycle intermediates HMDB0000094 C00158 

Cre Creatine  2 mmol/L Amino acid metabolism Creatine metabolism HMDB0000064 C00300 

Crea Creatinine 2 mmol/L Amino acid metabolism Creatine metabolism HMDB0000562 C00791 

DMA Dimethylamine  2 mmol/L Mammalian-microbial cometabolism Trimethylamines metabolism HMDB0000087 C00543 

DMS Dimethylsulfone 2 mmol/L Xenobiotics and related metabolism Food or plant constituents HMDB0004983 C11142 

For Formate  2 mmol/L Mammalian-microbial cometabolism One carbon metabolism HMDB0000142 C00058 

Glu Gluconate 2 mmol/L Xenobiotics and related metabolism Food or plant constituents HMDB0000625 C00257 

Gly Glycine  2 mmol/L Amino acid metabolism Glycine, serine and threonine metabolism HMDB0000123 C00037 

Glyc Glycolate  2 mmol/L Xenobiotics and related metabolism Food or plant constituents HMDB0000115 C00160 

Gua Guanidoacetate  2 mmol/L Amino acid metabolism Glycine, serine and threonine metabolism HMDB0000128 C00581 

Hip Hippurate  2 mmol/L Mammalian-microbial cometabolism Polyphenolic compounds metabolism HMDB0000714 C01586 

His Histidine  2 mmol/L Amino acid metabolism Histidine metabolism HMDB0000177 C00135 

Hyp Hypoxanthine  2 mmol/L Nucleotide metabolism Purine metabolism HMDB0000157 C00262 

Ile Isoleucine  2 mmol/L Amino acid metabolism Isoleucine, leucine and valine metabolism HMDB0000172 C00407 

Lac Lactate  2 mmol/L Carbohydrate metabolism Glucose and pyruvate metabolism HMDB0000190 C00256 

Leu Leucine  2 mmol/L Amino acid metabolism Isoleucine, leucine and valine metabolism HMDB0000687 C00123 

Man Mannitol  2 mmol/L Xenobiotics and related metabolism Sugars, sugar substitutes and sugar derivatives HMDB0000765 C00392 

Met Methanol  2 mmol/L Xenobiotics and related metabolism Food or plant constituents HMDB0001875 C00132 

MA Methylamine  2 mmol/L Mammalian-microbial cometabolism Trimethylamines metabolism HMDB0000164 C00218 

https://hmdb.ca/metabolite_ontology_terms/3311427
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MSuc Methylsuccinate  2 mmol/L Amino acid metabolism Isoleucine, leucine and valine metabolism HMDB0001844 C08645 

DMG N,N-Dimethylglycine 2 mmol/L Amino acid metabolism Glycine, serine and threonine metabolism HMDB0000092 C01026 

Pse Pseudouridine  2 mmol/L Nucleotide metabolism Pyrimidine metabolism HMDB0000767 C02067 

Pyr Pyruvate 2 mmol/L Carbohydrate metabolism Glucose and pyruvate metabolism HMDB0000243 C00022 

Suc Succinate  2 mmol/L Energy metabolism TCA cycle intermediates HMDB0000254 C00042 

Tar Tartrate 2 mmol/L Xenobiotics and related metabolism Food or plant constituents HMDB0000956 C00898 

Tau Taurine  2 mmol/L Amino acid metabolism Cysteine, methionine and taurine metabolism HMDB0000251 C00245 

Thr Threonine  2 mmol/L Amino acid metabolism Glycine, serine and threonine metabolism HMDB0000167 C00188 

t-Aco trans-Aconitate  2 mmol/L Xenobiotics and related metabolism Food or plant constituents HMDB0000958 C02341 

Tri Trigonelline  2 mmol/L Xenobiotics and related metabolism Food or plant constituents HMDB0000875 C01004 

TMAO Trimethylamine N-oxide 2 mmol/L Mammalian-microbial cometabolism Trimethylamines metabolism HMDB0000925 C01104 

Tyr Tyrosine  2 mmol/L Amino acid metabolism Phenylalanine and tyrosine metabolism HMDB0000158 C00082 

Ura Uracil  2 mmol/L Nucleotide metabolism Pyrimidine metabolism HMDB0000300 C00106 

Urea Urea  2 mmol/L Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0000294 C00086 

Val Valine  2 mmol/L Amino acid metabolism Isoleucine, leucine and valine metabolism HMDB0000883 C00183 

HMDB: Human Metabolome Database; KEGG: Kyoto Encyclopedia of Genes and Genomes; MSI: Metabolomics Standards Initiative; MSI ID: 1=identified compound; TCA: tricarboxylic acid. 

A3.2 List of Analytes Detected by Untargeted NMR-Based Analysis (Study IIb) 

Table A-21. Analytes detected by untargeted NMR-based analysis and included in Study IIb. (Own table). 

Abbreviation Metabolite Name MSI ID Level Unit Major Pathway Sub-Pathway HMDB ID KEGG ID 

P_x0.7314_0.6973 U0.731 4 Bucket Integral - - - - 

P_x0.8785_0.8170 U0.878 4 Bucket Integral - - - - 

P_x0.9285_0.8785 U0.928 4 Bucket Integral - - - - 

P_x0.9360_0.9285 U0.936 4 Bucket Integral - - - - 

P_x1.0885_1.0824 U1.088 4 Bucket Integral - - - - 

P_x1.1003_1.0945 U1.100 4 Bucket Integral - - - - 

P_x1.1114_1.1064 U1.111 4 Bucket Integral - - - - 

P_x1.1488_1.1309 U1.148 4 Bucket Integral - - - - 

P_x1.1560_1.1527 U1.156 4 Bucket Integral - - - - 

P_x1.1595_1.1560 U1.159 4 Bucket Integral - - - - 

P_x1.1667_1.1617 U1.166 4 Bucket Integral - - - - 

P_x1.1701_1.1667 U1.170 4 Bucket Integral - - - - 

P_x1.1875_1.1843 U1.187 4 Bucket Integral - - - - 

P_x1.1927_1.1876 U1.192 4 Bucket Integral - - - - 

P_x1.1979_1.1946 U1.197 4 Bucket Integral - - - - 

P_x1.2043_1.2010 U1.204 4 Bucket Integral - - - - 

P_x1.2260_1.2107 U1.226 4 Bucket Integral - - - - 

P_x1.2660_1.2260 U1.266 4 Bucket Integral - - - - 



Appendix 

CXI 

 

 

P_x1.2695_1.2660 U1.269 4 Bucket Integral - - - - 

P_x1.3110_1.2695 U1.311 4 Bucket Integral - - - - 

P_x1.3383_1.3110 U1.338 4 Bucket Integral - - - - 

P_x1.5481_1.5406 U1.548 4 Bucket Integral - - - - 

P_x1.6396_1.5481 U1.639 4 Bucket Integral - - - - 

P_x1.8038_1.7844 U1.803 4 Bucket Integral - - - - 

P_x1.9400_1.9341 Acetate 2 Bucket Integral Carbohydrate metabolism Glucose and pyruvate metabolism HMDB0000042 C00033 

P_x2.0478_1.9697 U2.047 4 Bucket Integral - - - - 

P_x2.0826_2.0478 U2.082 4 Bucket Integral - - - - 

P_x2.2466_2.2197 U2.246 4 Bucket Integral - - - - 

P_x2.2503_2.2466 U2.250 4 Bucket Integral - - - - 

P_x2.2787_2.2608 U2.278 4 Bucket Integral - - - - 

P_x2.2894_2.2787 U2.289 4 Bucket Integral - - - - 

P_x2.2959_2.2894 U2.295 4 Bucket Integral - - - - 

P_x2.3074_2.2959 U2.307 4 Bucket Integral - - - - 

P_x2.3136_2.3074 U2.313 4 Bucket Integral - - - - 

P_x2.3193_2.3136 U2.319 4 Bucket Integral - - - - 

P_x2.3246_2.3193 U2.324 4 Bucket Integral - - - - 

P_x2.4038_2.3963 U2.403 4 Bucket Integral - - - - 

P_x2.4161_2.4099 U2.416 4 Bucket Integral - - - - 

P_x2.4278_2.4207 U2.427 4 Bucket Integral - - - - 

P_x2.5439_2.5232 U2.543 4 Bucket Integral - - - - 

P_x2.6565_2.6479 U2.656 4 Bucket Integral - - - - 

P_x2.6813_2.6766 U2.681 4 Bucket Integral - - - - 

P_x2.7381_2.7343 U2.738 4 Bucket Integral - - - - 

P_x2.7484_2.7439 U2.748 4 Bucket Integral - - - - 

P_x2.7856_2.7484 U2.785 4 Bucket Integral - - - - 

P_x2.8223_2.7856 U2.822 4 Bucket Integral - - - - 

P_x2.8896_2.8828 U2.889 4 Bucket Integral - - - - 

P_x2.9107_2.9072 U2.910 4 Bucket Integral - - - - 

P_x2.9486_2.9405 U2.948 4 Bucket Integral - - - - 

P_x2.9548_2.9486 U2.954 4 Bucket Integral - - - - 

P_x3.0251_3.0120 U3.025 4 Bucket Integral - - - - 

P_x3.0359_3.0251 U3.035 4 Bucket Integral - - - - 

P_x3.0477_3.0415 U3.047 4 Bucket Integral - - - - 

P_x3.0609_3.0554 U3.060 4 Bucket Integral - - - - 

P_x3.2989_3.2925 U3.298 4 Bucket Integral - - - - 

P_x3.3097_3.3029 U3.309 4 Bucket Integral - - - - 

P_x3.3177_3.3097 U3.317 4 Bucket Integral - - - - 

P_x3.3345_3.3178 U3.334 4 Bucket Integral - - - - 



Appendix 

CXII 

 

 

P_x3.3543_3.3346 U3.354 4 Bucket Integral - - - - 

P_x3.3650_3.3543 U3.365 4 Bucket Integral - - - - 

P_x3.3785_3.3650 U3.378 4 Bucket Integral - - - - 

P_x3.3851_3.3785 U3.385 4 Bucket Integral - - - - 

P_x3.4055_3.3851 U3.405 4 Bucket Integral - - - - 

P_x3.6935_3.6685 U3.693 4 Bucket Integral - - - - 

P_x3.6988_3.6935 U3.698 4 Bucket Integral - - - - 

P_x3.7090_3.6988 U3.709 4 Bucket Integral - - - - 

P_x3.8188_3.8077 U3.818 4 Bucket Integral - - - - 

P_x3.8315_3.8188 U3.831 4 Bucket Integral - - - - 

P_x3.9025_3.8832 U3.902 4 Bucket Integral - - - - 

P_x3.9500_3.9448 U3.950 4 Bucket Integral - - - - 

P_x3.9560_3.9500 U3.956 4 Bucket Integral - - - - 

P_x3.9614_3.9560 U3.961 4 Bucket Integral - - - - 

P_x3.9664_3.9614 U3.966 4 Bucket Integral - - - - 

P_x3.9713_3.9664 U3.971 4 Bucket Integral - - - - 

P_x3.9934_3.9856 U3.993 4 Bucket Integral - - - - 

P_x4.0126_3.9996 U4.012 4 Bucket Integral - - - - 

P_x4.0200_4.0126 U4.020 4 Bucket Integral - - - - 

P_x4.0254_4.0200 U4.025 4 Bucket Integral - - - - 

P_x4.1102_4.0758 U4.110 4 Bucket Integral - - - - 

P_x4.1582_4.1509 U4.158 4 Bucket Integral - - - - 

P_x4.1700_4.1588 U4.170 4 Bucket Integral - - - - 

P_x4.1799_4.1705 U4.179 4 Bucket Integral - - - - 

P_x4.1900_4.1828 U4.190 4 Bucket Integral - - - - 

P_x4.1999_4.1950 U4.199 4 Bucket Integral - - - - 

P_x4.2525_4.2460 U4.252 4 Bucket Integral - - - - 

P_x4.2910_4.2630 U4.291 4 Bucket Integral - - - - 

P_x4.3457_4.3115 U4.345 4 Bucket Integral - - - - 

P_x5.2462_5.1841 U5.246 4 Bucket Integral - - - - 

P_x5.4020_5.2679 U5.402 4 Bucket Integral - - - - 

P_x6.9974_6.9516 U6.997 4 Bucket Integral - - - - 

P_x7.0289_6.9974 U7.028 4 Bucket Integral - - - - 

P_x7.0670_7.0473 U7.067 4 Bucket Integral - - - - 

P_x7.2941_7.2293 U7.294 4 Bucket Integral - - - - 

P_x7.7003_7.6591 U7.700 4 Bucket Integral - - - - 

P_x8.4809_8.4763 Formate 2 Bucket Integral Mammalian-microbial cometabolism One carbon metabolism HMDB0000142 C00058 

HMDB: Human Metabolome Database; KEGG: Kyoto Encyclopedia of Genes and Genomes; MSI: Metabolomics Standards Initiative; MSI ID: 2= putatively annotated compound; 4=unknown 
compound. 
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A3.3 List of Metabolites Identified by Targeted LC-MS-Based Analysis (Study I, IIb) 

Table A- 22. Metabolites identified by targeted LC-MS-based analysis and included in Study I and IIb. (Own table). 

Abbreviation Metabolite Name MSI ID Level Unit Major Pathway Sub-Pathway HMDB ID KEGG ID 

BAIBA β-Aminoisobutyrate 1 µmol/L Amino acid metabolism Isoleucine, leucine and valine metabolism HMDB0003911 C05145 

GABA y-Aminobutyrate 1 µmol/L Amino acid metabolism Glutamate metabolism HMDB0000112 C00334 

GBB y-Butyrobetaine 1 µmol/L Mammalian-microbial cometabolism Trimethylamines metabolism HMDB0001161 C01181 

Ans Anserine 1 µmol/L Amino acid metabolism Histidine metabolism HMDB0000194 C01262 

Arg Arginine 1 µmol/L Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0000517 C00062 

ADMA Asymmetric Dimethylarginine 1 µmol/L Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0001539 C03626 

Bet Betaine a 1 µmol/L Amino acid metabolism Glycine, serine and threonine metabolism HMDB0000043 C00719 

Beto Betonicine 1 µmol/L Xenobiotics and related metabolism Food or plant constituents HMDB0029412 C08269 

Car Carnitine a 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0000062 C00318 

Carn Carnosine 1 µmol/L Amino acid metabolism Histidine metabolism HMDB0000033 C00386 

Cho Choline a 1 µmol/L Amino acid metabolism Glycine, serine and threonine metabolism HMDB0000097 C00114 

Citr Citrulline 1 µmol/L Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0000904 C00327 

Cre Creatine 1 µmol/L Amino acid metabolism Creatine metabolism HMDB0000064 C00300 

DMA Dimethylamine 1 µmol/L Mammalian-microbial cometabolism Trimethylamines metabolism HMDB0000087 C00543 

His Histidine 1 µmol/L Amino acid metabolism Histidine metabolism HMDB0000177 C00135 

OH-Pro Hydroxyproline 1 µmol/L Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0240251 C01015 

DMG N,N-Dimethylglycine a 1 µmol/L Amino acid metabolism Glycine, serine and threonine metabolism HMDB0000092 C01026 

Marg N-Methylarginine 1 µmol/L Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0029416 C03884 

Mpro N-Methylproline 1 µmol/L Xenobiotics and related metabolism Food or plant constituents HMDB0094696 - 

p-Mhis π-Methylhistidine 1 µmol/L Amino acid metabolism Histidine metabolism HMDB0000001 C01152 

Pro Proline 1 µmol/L Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0000162 C00148 

Sar Sarcosine a 1 µmol/L Amino acid metabolism Glycine, serine and threonine metabolism HMDB0000271 C00213 

Sta Stachydrine 1 µmol/L Xenobiotics and related metabolism Food or plant constituents HMDB0004827 C10172 

SDMA Symmetric Dimethylarginine 1 µmol/L Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0003334 - 

t-Mhis τ-Methylhistidine 1 µmol/L Amino acid metabolism Histidine metabolism HMDB0000479 C01152 

Tri Trigonelline 1 µmol/L Xenobiotics and related metabolism Food or plant constituents HMDB0000875 C01004 

TMA Trimethylamine 1 µmol/L Mammalian-microbial cometabolism Trimethylamines metabolism HMDB0000906 C00565 

TMAO Trimethylamine N-oxide a 1 µmol/L Mammalian-microbial cometabolism Trimethylamines metabolism HMDB0000925 C01104 

Metabolites detected in urine samples from Study I (all) or in plasma samples from Study IIb (a). HMDB: Human Metabolome Database; KEGG: Kyoto Encyclopedia of Genes and Genomes; 
MSI: Metabolomics Standards Initiative; MSI ID: 1=identified compound.  
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A3.4 List of Metabolites Identified by Targeted LC-MS-Based Analysis (Study IIb) 

Table A-23. Metabolites identified by targeted LC-MS-based analysis and included in Study IIb. (Own table). 

Abbreviation Metabolite Name MSI ID Level Unit Major Pathway Sub-Pathway HMDB ID KEGG ID 

CA Cholate 1 nmol/L Lipid metabolism Bile acid metabolism HMDB0000619 C00695 

CDCA Chenodeoxycholate 1 nmol/L Lipid metabolism Bile acid metabolism HMDB0000518 C02528 

DCA Deoxycholate 1 nmol/L Lipid metabolism Bile acid metabolism HMDB0000626 C04483 

GCA Glycocholate 1 nmol/L Lipid metabolism Bile acid metabolism HMDB0000138 C01921 

GCDCA Glycochenodeoxycholate 1 nmol/L Lipid metabolism Bile acid metabolism HMDB0000637 C05466 

GDCA Glycodeoxycholate 1 nmol/L Lipid metabolism Bile acid metabolism HMDB0000631 C05464 

GUDCA Glycoursodeoxycholate 1 nmol/L Lipid metabolism Bile acid metabolism HMDB0000708 - 

LCA Lithocholate 1 nmol/L Lipid metabolism Bile acid metabolism HMDB0000761 C03990 

TCA Taurocholate 1 nmol/L Lipid metabolism Bile acid metabolism HMDB0000036 C05122 

TCDCA Taurochenodeoxycholate 1 nmol/L Lipid metabolism Bile acid metabolism HMDB0000951 C05465 

TDCA Taurodeoxycholate 1 nmol/L Lipid metabolism Bile acid metabolism HMDB0000896 C05463 

UDCA Ursodeoxycholate 1 nmol/L Lipid metabolism Bile acid metabolism HMDB0000946 C07880 

HMDB: Human Metabolome Database; KEGG: Kyoto Encyclopedia of Genes and Genomes; MSI: Metabolomics Standards Initiative; MSI ID: 1=identified compound. 

A3.5 List of Metabolites Identified by Targeted LC-/FIA-MS-Based Analysis Using the Biocrates Absolute IDQ™ p180 kit (Study IIb) 

Table A-24. Metabolites identified by targeted LC-/FIA-MS-based analysis using the Biocrates Absolute IDQTM p180 kit and included in Study IIb. (Own table). 

Abbreviation Metabolite Name MSI ID Level Unit Major Pathway Sub-Pathway HMDB ID KEGG ID 

AcOrn Acetylornithine 1 µmol/L Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0003357 C00437 

ADMA Asymmetric Dimethylarginine 1 µmol/L Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0001539 C03626 

Ala Alanine 1 µmol/L Amino acid metabolism Alanine and aspartate metabolism HMDB0000161 C09885 

alpha-AAA alpha-Aminoadipate 1 µmol/L Amino acid metabolism Lysine metabolism HMDB0000510 C00956 

Arg Arginine 1 µmol/L Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0000517 C00062 

Asn Asparagine 1 µmol/L Amino acid metabolism Alanine and aspartate metabolism HMDB0000168 C00152 

Asp Aspartate 1 µmol/L Amino acid metabolism Alanine and aspartate metabolism HMDB0000191 C00049 

C10:1-Car Decenoylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism - - 

C10:2-Car Decadienylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0006469 - 

C10-Car Decanoylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0000651 - 

C12-Car Dodecanoylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0002250 - 

C14:1-Car Tetradecenoylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0013329 - 

C14:1-OH-Car Hydroxytetradecenoylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism - - 

C14:2-Car Tetradecadienylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism - - 

C14:2-OH-Car Hydroxytetradecadienylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism - - 
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C14-Car Tetradecanoylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0005066 - 

C16-Car Hexadecanoylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0000222 C02990 

C18:1-Car Octadecenoylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0094687 - 

C2-Car Acetylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0000201 C02571 

C3-Car Propionylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0000824 C03017 

C4-Car Butyrylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0002013 C02862 

C5:1-Car Tiglylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0002366 - 

C5-Car Valerylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0013128 - 

C6 (C4:1-DC)-Car Hexanoylcarnitine (Fumaryl-L-carnitine) 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0000705 - 

C8-Car Octanoylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0000791 C02838 

C9-Car NoNAylcarnitine 1 µmol/L Lipid metabolism Carnitine metabolism HMDB0013288   

Citru Citrulline 1 µmol/L Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0000904 C00327 

Gln Glutamine 1 µmol/L Amino acid metabolism Glutamate metabolism HMDB0000641 C00064 

Glu Glutamate 1 µmol/L Amino acid metabolism Glutamate metabolism HMDB0000148 C00025 

Gly Glycine 1 µmol/L Amino acid metabolism Glycine, serine and threonine metabolism HMDB0000123 C00037 

His Histidine 1 µmol/L Amino acid metabolism Histidine metabolism HMDB0000177 C00135 

Ile Isoleucine 1 µmol/L Amino acid metabolism Isoleucine, leucine and valine metabolism HMDB0000172 C00407 

Kyr Kynurenine 1 µmol/L Amino acid metabolism Tryptophan metabolism HMDB0000684 C00328 

Leu Leucine 1 µmol/L Amino acid metabolism Isoleucine, leucine and valine metabolism HMDB0000687 C00123 

Lys Lysine 1 µmol/L Amino acid metabolism Lysine metabolism HMDB0000182 C00047 

lysoPC a C16:0 Lyso-phosphatidylcholine acyl C16:0 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0010382 - 

lysoPC a C16:1 Lyso-phosphatidylcholine acyl C16:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0010383 - 

lysoPC a C17:0 Lyso-phosphatidylcholine acyl C17:0 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0012108 - 

lysoPC a C18:0 Lyso-phosphatidylcholine acyl C18:0 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0010384 - 

lysoPC a C18:1 Lyso-phosphatidylcholine acyl C18:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0002815 - 

lysoPC a C18:2 Lyso-phosphatidylcholine acyl C18:2 1 µmol/L Lipid metabolism Glycerophospholipid metabolism - - 

lysoPC a C20:3 Lyso-phosphatidylcholine acyl C20:3 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0010393 - 

lysoPC a C20:4 Lyso-phosphatidylcholine acyl C20:4 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0010395 - 

lysoPC a C28:1 Lyso-phosphatidylcholine acyl C28:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0029221 - 

Met Methionine 1 µmol/L Amino acid metabolism Cysteine, methionine and taurine metabolism HMDB0000696 C00073 

Orn Ornithine 1 µmol/L Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0000214 C00077 

PC aa C28:1 Phosphatidylcholine diacyl C28:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism - - 

PC aa C30:0 Phosphatidylcholine diacyl C30:0 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0011203 - 

PC aa C30:2 Phosphatidylcholine diacyl C30:2 1 µmol/L Lipid metabolism Glycerophospholipid metabolism - - 

PC aa C32:0 Phosphatidylcholine diacyl C32:0 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0000564 - 

PC aa C32:1 Phosphatidylcholine diacyl C32:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0007897 - 

PC aa C32:2 Phosphatidylcholine diacyl C32:2 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008002 - 

PC aa C32:3 Phosphatidylcholine diacyl C32:3 1 µmol/L Lipid metabolism Glycerophospholipid metabolism - - 

PC aa C34:1 Phosphatidylcholine diacyl C34:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0007879 - 

PC aa C34:2 Phosphatidylcholine diacyl C34:2 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0007880 - 
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PC aa C34:3 Phosphatidylcholine diacyl C34:3 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0007882 - 

PC aa C34:4 Phosphatidylcholine diacyl C34:4 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0007884 - 

PC aa C36:0 Phosphatidylcholine diacyl C36:0 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0007886 - 

PC aa C36:1 Phosphatidylcholine diacyl C36:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0007887 - 

PC aa C36:2 Phosphatidylcholine diacyl C36:2 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0000593 - 

PC aa C36:3 Phosphatidylcholine diacyl C36:3 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0007981 - 

PC aa C36:4 Phosphatidylcholine diacyl C36:4 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0007982 - 

PC aa C36:5 Phosphatidylcholine diacyl C36:5 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0007984 - 

PC aa C36:6 Phosphatidylcholine diacyl C36:6 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008657 - 

PC aa C38:0 Phosphatidylcholine diacyl C38:0 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0007985 - 

PC aa C38:1 Phosphatidylcholine diacyl C38:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008269 - 

PC aa C38:3 Phosphatidylcholine diacyl C38:3 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008271 - 

PC aa C38:4 Phosphatidylcholine diacyl C38:4 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008145 - 

PC aa C38:5 Phosphatidylcholine diacyl C38:5 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008306 - 

PC aa C38:6 Phosphatidylcholine diacyl C38:6 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008147 - 

PC aa C40:2 Phosphatidylcholine diacyl C40:2 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008308 - 

PC aa C40:3 Phosphatidylcholine diacyl C40:3 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008119 - 

PC aa C40:4 Phosphatidylcholine diacyl C40:4 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008536 - 

PC aa C40:5 Phosphatidylcholine diacyl C40:5 1 µmol/L Lipid metabolism Glycerophospholipid metabolism - - 

PC aa C40:6 Phosphatidylcholine diacyl C40:6 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008121 - 

PC aa C42:0 Phosphatidylcholine diacyl C42:0 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008537 - 

PC aa C42:1 Phosphatidylcholine diacyl C42:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008091 - 

PC aa C42:2 Phosphatidylcholine diacyl C42:2 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008092 - 

PC aa C42:4 Phosphatidylcholine diacyl C42:4 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008191 - 

PC aa C42:5 Phosphatidylcholine diacyl C42:5 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008415 - 

PC aa C42:6 Phosphatidylcholine diacyl C42:6 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0008607 - 

PC ae C30:0 Phosphatidylcholine acyl-alkyl C30:0 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013341 - 

PC ae C30:1 Phosphatidylcholine acyl-alkyl C30:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013402 - 

PC ae C32:1 Phosphatidylcholine acyl-alkyl C32:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013404 - 

PC ae C32:2 Phosphatidylcholine acyl-alkyl C32:2 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013411 - 

PC ae C34:0 Phosphatidylcholine acyl-alkyl C34:0 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013405 - 

PC ae C34:1 Phosphatidylcholine acyl-alkyl C34:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013412 - 

PC ae C34:2 Phosphatidylcholine acyl-alkyl C34:2 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0011151 - 

PC ae C34:3 Phosphatidylcholine acyl-alkyl C34:3 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013413 - 

PC ae C36:0 Phosphatidylcholine acyl-alkyl C36:0 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013406 - 

PC ae C36:1 Phosphatidylcholine acyl-alkyl C36:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013414 - 

PC ae C36:2 Phosphatidylcholine acyl-alkyl C36:2 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013418 - 

PC ae C36:3 Phosphatidylcholine acyl-alkyl C36:3 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013425 - 

PC ae C36:4 Phosphatidylcholine acyl-alkyl C36:4 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013407 - 

PC ae C36:5 Phosphatidylcholine acyl-alkyl C36:5 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013415 - 
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PC ae C38:0 Phosphatidylcholine acyl-alkyl C38:0 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013408 - 

PC ae C38:1 Phosphatidylcholine acyl-alkyl C38:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013416 - 

PC ae C38:2 Phosphatidylcholine acyl-alkyl C38:2 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013431 - 

PC ae C38:3 Phosphatidylcholine acyl-alkyl C38:3 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013439 - 

PC ae C38:4 Phosphatidylcholine acyl-alkyl C38:4 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013420 - 

PC ae C38:5 Phosphatidylcholine acyl-alkyl C38:5 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013432 - 

PC ae C38:6 Phosphatidylcholine acyl-alkyl C38:6 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013409 - 

PC ae C40:1 Phosphatidylcholine acyl-alkyl C40:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013433 - 

PC ae C40:2 Phosphatidylcholine acyl-alkyl C40:2 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013437 - 

PC ae C40:3 Phosphatidylcholine acyl-alkyl C40:3 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013445 - 

PC ae C40:4 Phosphatidylcholine acyl-alkyl C40:4 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013442 - 

PC ae C40:5 Phosphatidylcholine acyl-alkyl C40:5 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013444 - 

PC ae C40:6 Phosphatidylcholine acyl-alkyl C40:6 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013422 - 

PC ae C42:0 Phosphatidylcholine acyl-alkyl C42:0 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013423 - 

PC ae C42:1 Phosphatidylcholine acyl-alkyl C42:1 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013434 - 

PC ae C42:2 Phosphatidylcholine acyl-alkyl C42:2 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013438 - 

PC ae C42:3 Phosphatidylcholine acyl-alkyl C42:3 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013458 - 

PC ae C42:4 Phosphatidylcholine acyl-alkyl C42:4 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013448 - 

PC ae C42:5 Phosphatidylcholine acyl-alkyl C42:5 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013451 - 

PC ae C44:3 Phosphatidylcholine acyl-alkyl C44:3 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013449 - 

PC ae C44:4 Phosphatidylcholine acyl-alkyl C44:4 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013453 - 

PC ae C44:5 Phosphatidylcholine acyl-alkyl C44:5 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013456 - 

PC ae C44:6 Phosphatidylcholine acyl-alkyl C44:6 1 µmol/L Lipid metabolism Glycerophospholipid metabolism HMDB0013450 - 

Phe Phenylalanine 1 µmol/L Amino acid metabolism Phenylalanine and tyrosine metabolism HMDB0000159 C00079 

Pro Proline 1 µmol/L Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0000162 C00148 

Ser Serine 1 µmol/L Amino acid metabolism Glycine, serine and threonine metabolism HMDB0000187 C00065 

Sero Serotonin 1 µmol/L Amino acid metabolism Tryptophan metabolism HMDB0000259 C00780 

SM (OH) C14:1 Hydroxysphingomyelin C14:1 1 µmol/L Lipid metabolism Sphingolipid metabolism - - 

SM (OH) C16:1 Hydroxysphingomyelin C16:1 1 µmol/L Lipid metabolism Sphingolipid metabolism HMDB0029216 - 

SM (OH) C22:1 Hydroxysphingomyelin C22:1 1 µmol/L Lipid metabolism Sphingolipid metabolism - - 

SM (OH) C22:2 Hydroxysphingomyelin C22:2 1 µmol/L Lipid metabolism Sphingolipid metabolism - - 

SM (OH) C24:1 Hydroxysphingomyelin C24:1 1 µmol/L Lipid metabolism Sphingolipid metabolism - - 

SM C16:0 Sphingomyelin C16:0 1 µmol/L Lipid metabolism Sphingolipid metabolism - - 

SM C16:1 Sphingomyelin C16:1 1 µmol/L Lipid metabolism Sphingolipid metabolism - - 

SM C18:0 Sphingomyelin C18:0 1 µmol/L Lipid metabolism Sphingolipid metabolism - - 

SM C18:1 Sphingomyelin C18:1 1 µmol/L Lipid metabolism Sphingolipid metabolism - - 

SM C20:2 Sphingomyelin C20:2 1 µmol/L Lipid metabolism Sphingolipid metabolism - - 

SM C22:3 Sphingomyelin C22:3 1 µmol/L Lipid metabolism Sphingolipid metabolism - - 

SM C24:0 Sphingomyelin C24:0 1 µmol/L Lipid metabolism Sphingolipid metabolism - - 

SM C24:1 Sphingomyelin C24:1 1 µmol/L Lipid metabolism Sphingolipid metabolism HMDB0012107 - 
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SM C26:0 Sphingomyelin C26:0 1 µmol/L Lipid metabolism Sphingolipid metabolism - - 

SM C26:1 Sphingomyelin C26:1 1 µmol/L Lipid metabolism Sphingolipid metabolism HMDB0013461 - 

Spe Spermidine 1 µmol/L Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0001257 C00315 

Tau Taurine 1 µmol/L Amino acid metabolism Cysteine, methionine and taurine metabolism HMDB0000251 C00245 

Thr Threonine 1 µmol/L Amino acid metabolism Glycine, serine and threonine metabolism HMDB0000167 C00188 

Trp Tryptophan 1 µmol/L Amino acid metabolism Tryptophan metabolism HMDB0000929 C00078 

Tyr Tyrosine 1 µmol/L Amino acid metabolism Phenylalanine and tyrosine metabolism HMDB0000158 C00082 

Val Valine 1 µmol/L Amino acid metabolism Isoleucine, leucine and valine metabolism HMDB0000883 C00183 

HMDB: Human Metabolome Database; KEGG: Kyoto Encyclopedia of Genes and Genomes; MSI: Metabolomics Standards Initiative; MSI ID: 1=identified compound. 

A3.6 List of Metabolites Identified by Targeted GC-MS-Based Analysis (Study IIb) 

Table A-25. Metabolites identified by targeted GC-MS-based analysis and included in Study IIb. (Own table). 

Abbreviation Metabolite Name MSI ID Level Unit Major Pathway Sub-Pathway HMDB ID KEGG ID 

C10:0 Decanoic acid 1 mg/L Lipid metabolism Medium-chain fatty acid metabolism HMDB0000511 C01571 

C12:0 Dodecanoic acid 1 mg/L Lipid metabolism Medium-chain fatty acid metabolism HMDB0000638 C02679 

C14:0 Tetradecanoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0000806 C06424 

C14:1 cis-9-Tetradecenoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0002000 C08322 

C15:0 Pentadecanoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0000826 C16537 

C16:0 Hexadecanoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0000220 C00249 

C16:1 9cis cis-9-Hexadecenoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0003229 C08362 

C17:0 Heptadecanoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0002259 - 

C17:0 anteiso 14-Methylhexadecanoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0031067 - 

C17:1 cis-10-Heptadecenoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0060038 - 

C18:0 Octadecanoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0000827 C01530 

C18:1 11cis cis-11-Octadecenoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0240219 - 

C18:1 11trans trans-11-Octadecenoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0003231 C08367 

C18:1 9cis cis-9-Octadecenoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0000207 C00712 

C18:1 9trans trans-9-Octadecenoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0000573 C01712 

C18:2 9.12cis all-cis-9.12-Octadecadienoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0000673 C01595 

C18:2 9cis.11trans cis-9.trans-11-Octadecadienoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0003797 C04056 

C18:3 6.9.12cis all-cis-6.9.12-Octadecatrienoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0003073 C06426 

C18:3 9.12.15cis all-cis-9.12.15-Octadecatrienoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0001388 C06427 

C20:0 Eicosanoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0002212 C06425 

C20:2 11.14cis cis-11.14-Eicosadienoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0005060 C16525 

C20:3 8.11.14cis all-cis-8.11.14-Eicosatrienoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0002925 C03242 

C20:4 5.8.11.14cis all-cis-5.8.11.14-Eicosatetraenoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0001043 C00219 

C20:4 8.11.14.17cis all cis-8.11.14.17-Eicosatetraenoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0002177 - 

C20:5 5.8.11.14.17cis all cis-5.8.11.14.17-Eicosapentaenoic acid  1 mg/L Lipid metabolism LCFA metabolism HMDB0001999 C06428 
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C22:0 Docosanoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0000944 C08281 

C22:4 7.10.13.16cis all-cis-7.10.13.16-Docosatetraenoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0002226 C16527 

C22:5 4.7.10.13.16.cis all-cis-4.7.10.13.16-Docosapentaenoic acid  1 mg/L Lipid metabolism LCFA metabolism HMDB0001976 - 

C22:5 7.10.13.16.19cis all-cis-7.10.13.16.19-Docosapentaenoic acid  1 mg/L Lipid metabolism LCFA metabolism HMDB0006528 C16513 

C22:6 4.7.10.13.16.19cis All cis-4.7.10.13.16.19-Docosahexaenoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0002183 C06429 

C24:0 Tetracosanoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0002003 C08320 

C24:1 15cis cis-15-Tetracosenoic acid 1 mg/L Lipid metabolism LCFA metabolism HMDB0002368 C08323 

HMDB: Human Metabolome Database; KEGG: Kyoto Encyclopedia of Genes and Genomes; LCFA: long-chain fatty acid; MSI: Metabolomics Standards Initiative; MSI ID: 1=identified 
compound. 

A3.7 List of Analytes Detected by Untargeted GC  GC-MS-Based Analysis (Study IIb) 

Table A-26. Analytes detected by untargeted GC  GC-MS-based analysis and included in Study IIb. (Own table). 

Abbreviation Metabolite Name MSI ID Level Unit Major Pathway Sub-Pathway HMDB ID KEGG ID 

P_A0031 2-Hydroxypyridine 2 Intensity Xenobiotics and related metabolism Chemicals HMDB0013751 C02502 

P_A0044 Lactic acid 1 Intensity Carbohydrate metabolism Glucose and pyruvate metabolism HMDB0000186 C00243 

P_A0052 Glycolic acid 1 Intensity Xenobiotics and related metabolism Food or plant constituents HMDB0000115 C03547 

P_A0088 Acetoacetate derivative 2 Intensity Lipid metabolism Ketone body metabolism - - 

P_A0096 alpha-Hydroxybutyric acid 1 Intensity Carbohydrate metabolism Propanoate metabolism HMDB0000008 C05984 

P_A0099 Oxalic acid 1 Intensity Xenobiotics and related metabolism Food or plant constituents HMDB0002329 C00209 

P_A0114 3-Hydroxypyridine 2 Intensity Xenobiotics and related metabolism Chemicals - - 

P_A0130 Unknown 0130 4 Intensity - - - - 

P_A0132 Unknown 0132 4 Intensity - - - - 

P_A0145 p-Cresol 1 Intensity Mammalian-microbial cometabolism Phenylalanine and tyrosine metabolism HMDB0001858 C01468 

P_A0155 beta-Hydroxybutyric acid 1 Intensity Lipid metabolism Ketone body metabolism HMDB0000357 C01089 

P_A0164 
Unknown (Similar to 2-Aminoisobutyric 
acid) 

3 Intensity 
- - - - 

P_A0169 Unknown 0169 4 Intensity - - - - 

P_A0170 2-Keto-3-methylvaleric acid derivative 1 Intensity Amino acid metabolism Isoleucine, leucine and valine metabolism HMDB0000491 - 

P_A0207 Unknown (Similar to Mimosine 1) 3 Intensity - - - - 

P_A0209 2-Keto-3-methylvaleric acid derivative 2 1 Intensity Amino acid metabolism Isoleucine, leucine and valine metabolism HMDB0000491 C03465 

P_A0220 3-Hydroxy-3-methylbutyric acid 1 Intensity Amino acid metabolism Isoleucine, leucine and valine metabolism HMDB0000754 C20827 

P_A0222 2-Keto-4-methylvaleric acid 1 Intensity Amino acid metabolism Isoleucine, leucine and valine metabolism HMDB0000695 C00233 

P_A0236 Unknown 0236 4 Intensity - - - - 

P_A0248 
Unknown (Similar to 2-Ethyl-3-
hydroxypropionic acid) 

3 Intensity 
- - - - 

P_A0249 Unknown (Similar to Ethanolamine) 3 Intensity - - - - 

P_A0262 Unknown 0262 4 Intensity - - - - 

P_A0273 Unknown 0273 NA Intensity - - - - 
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P_A0277 
Unknown (2.2-Dihydroxyacetic acid or 
similar) 

3 Intensity 
- - - - 

P_A0279 Unknown 0279 4 Intensity - - - - 

P_A0306 Ethanolamine 1 Intensity Lipid metabolism Glycerophospholipid metabolism  HMDB0000149 C00189 

P_A0346 Unknown (Similar to Uracil) 3 Intensity - - - - 

P_A0359 Unknown 0359 4 Intensity - - - - 

P_A0364 Phenylacetic acid 1 Intensity Amino acid metabolism Phenylalanine and tyrosine metabolism HMDB0000209 C07086 

P_A0378 Unknown 0378 4 Intensity - - - - 

P_A0382 Succinic acid 1 Intensity Energy metabolism TCA cycle HMDB0000254 C00042 

P_A0406 Unknown 0406 4 Intensity - - - - 

P_A0412 Glyceric acid 1 Intensity Lipid metabolism Glycerolipid metabolism  HMDB0000139 C00258 

P_A0421 Probably 4-deoxythreonic acid 2 Intensity Amino acid metabolism Glycine, serine and threonine metabolism HMDB0002453 - 

P_A0440 Fumaric acid 1 Intensity Energy metabolism TCA cycle HMDB0000134 C00122 

P_A0478 Unknown (Similar to N-Formylglycine) 3 Intensity - - - - 

P_A0521 Unknown 0521 4 Intensity - - - - 

P_A0560 3-Phenylpropionic acid 1 Intensity Xenobiotics and related metabolism Chemicals HMDB0000764 C05629 

P_A0563 S-Methylcysteine 1 Intensity Xenobiotics and related metabolism Food or plant constituents HMDB0002108 C22040 

P_A0567 
Unknown (Similar to Aminomalonic 
acid) 

3 Intensity 
- - - - 

P_A0586 Unknown 0586 4 Intensity - - - - 

P_A0596 Unknown 0596 NA Intensity - - - - 

P_A0614 Unknown 0614 4 Intensity - - - - 

P_A0622 Unknown (Similar to Mimosine 2) 3 Intensity - - - - 

P_A0635 Unknown 0635 NA Intensity - - - - 

P_A0666 Unknown 0666 4 Intensity - - - - 

P_A0680 Unknown 0680 4 Intensity - - - - 

P_A0684 Malic acid 1 Intensity Energy metabolism TCA cycle HMDB0000156 C00149 

P_A0710 Threitol 1 Intensity Xenobiotics and related metabolism Sugars, sugar substitutes and sugar derivatives HMDB0004136 C16884 

P_A0710b Erythritol  1 Intensity Xenobiotics and related metabolism Sugars, sugar substitutes and sugar derivatives HMDB0002994 C16884 

P_A0730 5-Oxoproline 1 Intensity Cofactors and vitamins metabolism Glutathione metabolism HMDB0000267 C01879 

P_A0735 Unknown 0735 NA Intensity - - - - 

P_A0739 trans-4-Hydroxyproline 1 Intensity Amino acid metabolism Arginine and proline metabolism; urea cycle HMDB0000725 C01157 

P_A0757 Unknown 0757 4 Intensity - - - - 

P_A0766 Unknown (Probably Erythronic acid) 3 Intensity - - - - 

P_A0778 Cysteine 1 Intensity Amino acid metabolism Cysteine, methionine and taurine metabolism HMDB0000574 C00097 

P_A0779 Unknown (Similar to N-Acetylserine) 3 Intensity - - - - 

P_A0798 Threonic acid 1 Intensity Xenobiotics and related metabolism Sugars, sugar substitutes and sugar derivatives HMDB0000943 C01620 

P_A0811 Unknown 0811 NA Intensity - - - - 

P_A0827 Unknown 0827 4 Intensity - - - - 

P_A0856 Unknown 0856 4 Intensity - - - - 
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P_A0882 Unknown 0882 NA Intensity - - - - 

P_A0888 Unknown 0888 4 Intensity - - - - 

P_A0896 Unknown 0896 4 Intensity - - - - 

P_A0899 4-Hydroxyphenylacetic acid 1 Intensity Amino acid metabolism Phenylalanine and tyrosine metabolism HMDB0000020 C00642 

P_A0905 Tartaric acid 1 Intensity Xenobiotics and related metabolism Food or plant constituents HMDB0000956 C00898 

P_A0930 Unknown 0930 NA Intensity - - - - 

P_A0941 Unknown 0941 4 Intensity - - - - 

P_A0943 Unknown 0943 4 Intensity - - - - 

P_A0961 Unknown 0961 4 Intensity - - - - 

P_A0971 Unknown 0971 NA Intensity - - - - 

P_A0975 Unknown 0975 4 Intensity - - - - 

P_A0978 Unknown 0978 4 Intensity - - - - 

P_A0992 Unknown 0992 NA Intensity - - - - 

P_A1013 Arabitol 1 Intensity Carbohydrate metabolism Miscellaneous (unclassified sugar acids/polyols) HMDB0000568 C01904 

P_A1016 Unknown 1016 NA Intensity - - - - 

P_A1025 Unknown (Alloxanic acid or similar) 3 Intensity - - - - 

P_A1026 Unknown 1026 NA Intensity - - - - 

P_A1028 Unknown 1028 4 Intensity - - - - 

P_A1032 Unknown 1032 NA Intensity - - - - 

P_A1033 Unknown 1033 NA Intensity - - - - 

P_A1043 Unknown 1043 NA Intensity - - - - 

P_A1054 Unknown (Sugar or sugar-like 1) 3 Intensity - - - - 

P_A1055 Unknown 1055 NA Intensity - - - - 

P_A1072 
Unknown (Glycerol-1-phosphate or 
similar) 3 Intensity - - - - 

P_A1081 Unknown 1081 4 Intensity - - - - 

P_A1085 Unknown 1085 NA Intensity - - - - 

P_A1086 Unknown 1086 NA Intensity - - - - 

P_A1091 Unknown 1091 (Sugar acid) 3 Intensity - - - - 

P_A1099 Unknown 1099 NA Intensity - - - - 

P_A1117 Unknown 1117 NA Intensity - - - - 

P_A1130 Citric acid 1 Intensity Energy metabolism TCA cycle HMDB0000094 C00158 

P_A1135 Isocitric acid 1 Intensity Energy metabolism TCA cycle HMDB0000193 C00311 

P_A1148 Hippuric acid 1 Intensity Mammalian-microbial cometabolism Polyphenolic compounds metabolism HMDB0000714 C01586 

P_A1170 Unknown 1170 NA Intensity - - - - 

P_A1179 Unknown 1179 NA Intensity - - - - 

P_A1189 Unknown 1189 NA Intensity - - - - 

P_A1193 Unknown 1193 NA Intensity - - - - 

P_A1194 Unknown 1194 NA Intensity - - - - 

P_A1199 Unknown 1199 NA Intensity - - - - 
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P_A1202 Unknown 1202 NA Intensity - - - - 

P_A1215 Unknown 1215 NA Intensity - - - - 

P_A1224 Unknown 1224 NA Intensity - - - - 

P_A1225 4-Hydroxyphenyllactic acid 1 Intensity Mammalian-microbial cometabolism Polyphenolic compounds metabolism HMDB0000755 C03672 

P_A1231 Unknown 1231 NA Intensity - - - - 

P_A1238 Unknown 1238 NA Intensity - - - - 

P_A1239 Unknown 1239 NA Intensity - - - - 

P_A1243 Unknown (Sugar or sugar-like 2) 3 Intensity - - - - 

P_A1258 Unknown 1258 NA Intensity - - - - 

P_A1260 Unknown 1260 4 Intensity - - - - 

P_A1267 C6 sugar alcohol 3 Intensity - - - - 

P_A1268 Glucuronic acid derivative 1 Intensity Xenobiotics and related metabolism Detoxification metabolism HMDB0000127 C00191 

P_A1272 Unknown (Sugar or sugar-like 3) 3 Intensity - - - - 

P_A1285 Unknown 1285 NA Intensity - - - - 

P_A1289 3-Indoleacetic acid 1 Intensity Mammalian-microbial cometabolism Tryptophan metabolism HMDB0000197 C00954 

P_A1300 Unknown (Glycoside 1) 3 Intensity - - - - 

P_A1306 Unknown 1306 NA Intensity - - - - 

P_A1316 Unknown (Glycoside 2) 3 Intensity - - - - 

P_A1328 Unknown 1328 4 Intensity - - - - 

P_A1331 Unknown 1331 4 Intensity - - - - 

P_A1337 Unknown 1337 4 Intensity - - - - 

P_A1349 Unknown 1349 4 Intensity - - - - 

P_A1364 Unknown (Sugar or sugar-like 4) 3 Intensity - - - - 

P_A1412 Unknown 1412 NA Intensity - - - - 

P_A1414 myo-Inositol 1 Intensity Carbohydrate metabolism Inositol phosphate metabolism HMDB0000211 C09654 

P_A1416 Unknown (Sugar or sugar-like 5) 3 Intensity - - - - 

P_A1426 Unknown 1426 NA Intensity - - - - 

P_A1437 Unknown (Sugar or sugar-like 6) NA Intensity - - - - 

P_A1446 Unknown (Amine 1) 3 Intensity - - - - 

P_A1461 Unknown A1461 NA Intensity - - - - 

P_A1483 3-Indolelactic acid 1 Intensity Mammalian-microbial cometabolism Tryptophan metabolism HMDB0000671 C02043 

P_A1498 Unknown (Amine 2) 3 Intensity - - - - 

P_A1568 Unknown 1568 NA Intensity - - - - 

P_A1626 Pseudouridine 2 Intensity Nucleotide metabolism Pyrimidine metabolism HMDB0000767 C02067 

P_A1766 Unknown (Disaccharide-like) NA Intensity - - - - 

P_A1774 Maltose 1 Intensity Xenobiotics and related metabolism Sugars, sugar substitutes and sugar derivatives HMDB0000163 C00208 

P_A1782 Unknown 1782 4 Intensity - - - - 

HMDB: Human Metabolome Database; KEGG: Kyoto Encyclopedia of Genes and Genomes; MSI: Metabolomics Standards Initiative; MSI ID: 1=identified compound; 2=putatively annotated 
compound; 3=putatively annotated compound class; 4=unknown compound. TCA: tricarboxylic acid.  
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A4 Metabolic Pathway Analyses 

A4.1 Classification of Metabolites Identified in Study I to Sub-Pathways 

 

 

 

 
Figure A-20. Classification of the 64 metabolites identified in Study I to sub-pathways. TCA: tricarboxylic acid. (Own 
illustration).  
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A4.2 Classification of Metabolites Identified in Study IIa to Sub-Pathways 

 

 

 

 
Figure A-21. Classification of the 47 metabolites identified in Study IIa to sub-pathways. TCA: tricarboxylic acid. (Own 
illustration). 
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A4.3 Classification of Metabolites Identified in Study IIb to Sub-Pathways 

 

 

 

 
Figure A-22. Classification of the 236 metabolites identified in Study IIb to sub-pathways. TCA: tricarboxylic acid. (Own 
illustration). 
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A4.4 Results of Pathway Analysis (Study I) 

Table A-27. Results of pathway analysis based on three urinary metabolites altered in Study I. (Own table based on data 
provided by MetaboAnalyst 5.0 (https://www.metaboanalyst.ca)). 

Nr. Pathway Name Match Status -log(p) FDR p Impact Matched Metabolites 

1 Taurine and hypotaurine metabolism 1 of 8 1.81E+00 1.00E+00 0.43 Taurine 

2 Primary bile acid biosynthesis 1 of 46 1.06E+00 1.00E+00 0.01 Taurine 

3 Purine metabolism 1 of 65 9.18E-01 1.00E+00 0.02 Hypoxanthine 

-log(p): logarithmic p-value from over-representation analysis; FDR p: false discovery rate-corrected p-value; Impact: pathway 
impact value calculated from pathway topology analysis. bold: p-values < 0.05. 

 

A4.5 Results of Pathway Analysis (Study IIa) 

Table A-28. Results of pathway analysis based on 35 urinary metabolites altered in Study IIa. (Own table based on data 
provided by MetaboAnalyst 5.0 (https://www.metaboanalyst.ca)). 

Nr. Pathway Name Match Status -log(p) FDR p Impact Matched Metabolites 

1 Glycine, serine and threonine 
metabolism 

7 of 33 5.53E+00 1.51E-04 0.39 Betaine; Guanidinoacetate; N,N-
Dimethylglycine; Glycine; L-Threonine; 
Creatine; Pyruvate 

2 Aminoacyl-tRNA biosynthesis 8 of 48 5.44E+00 1.51E-04 0.00 L-Histidine; Glycine; L-Valine; L-
Alanine; L-Isoleucine; L-Leucine; L-
Threonine; L-Tyrosine 

3 Valine, leucine and isoleucine 
biosynthesis 

4 of 8 4.95E+00 3.15E-04 0.00 L-Threonine; L-Leucine; L-Isoleucine; L-
Valine 

4 Glyoxylate and dicarboxylate 
metabolism 

6 of 32 4.45E+00 7.45E-04 0.16 cis-Aconitate; Citrate; Glycine; Acetate; 
Pyruvate; Formate 

5 Citrate cycle (TCA cycle) 4 of 20 3.19E+00 1.09E-02 0.22 Succinate; cis-Aconitate; Citrate; 
Pyruvate 

6 Alanine, aspartate and glutamate 
metabolism 

4 of 28 2.61E+00 3.41E-02 0.00 L-Alanine; Citrate; Pyruvate; Succinate 

7 Pyruvate metabolism 3 of 22 1.99E+00 1.23E-01 0.27 Pyruvate; Lactate; Acetate 

8 Glycolysis / Gluconeogenesis 3 of 26 1.79E+00 1.66E-01 0.13 Pyruvate; Lactate; Acetate  

9 Phenylalanine metabolism 2 of 10 1.75E+00 1.66E-01 0.00 Hippurate; L-Tyrosine 

10 Arginine and proline metabolism 3 of 38 1.35E+00 3.75E-01 0.04 Guanidinoacetate; Creatine; Pyruvate 

11 Valine, leucine and isoleucine 
degradation 

3 of 40 1.29E+00 3.88E-01 0.00 L-Valine; L-Isoleucine; L-Leucine 

12 Tyrosine metabolism 3 of 42 1.24E+00 4.02E-01 0.14 L-Tyrosine; Pyruvate; 4-Hydroxy-
phenylacetate 

13 Phenylalanine, tyrosine and 
tryptophan biosynthesis 

1 of 4 1.08E+00 5.33E-01 0.50 L-Tyrosine 

14 Taurine and hypotaurine metabolism 1 of 8 8.00E-01 9.51E-01 0.43 Taurine 

15 Ubiquinone and other terpenoid-
quinone biosynthesis 

1 of 9 7.53E-01 9.88E-01 0.00 L-Tyrosine 

16 Primary bile acid biosynthesis 2 of 46 5.91E-01 1.00E+00 0.02 Glycine; Taurine 

17 Butanoate metabolism 1 of 15 5.58E-01 1.00E+00 0.00 Succinate 

18 Histidine metabolism 1 of 16 5.34E-01 1.00E+00 0.22 L-Histidine 

19 Pantothenate and CoA biosynthesis 1 of 19 4.72E-01 1.00E+00 0.00 L-Valine 

20 Selenocompound metabolism 1 of 20 4.54E-01 1.00E+00 0.00 L-Alanine 

21 beta-Alanine metabolism 1 of 21 4.37E-01 1.00E+00 0.00 L-Histidine 

22 Pentose phosphate pathway 1 of 22 4.21E-01 1.00E+00 0.05 D-Gluconic acid 

23 Propanoate metabolism 1 of 23 4.06E-01 1.00E+00 0.00 Succinate 

24 Glutathione metabolism 1 of 28 3.41E-01 1.00E+00 0.09 Glycine 

25 Porphyrin and chlorophyll metabolism 1 of 30 3.20E-01 1.00E+00 0.00 Glycine 

26 Cysteine and methionine metabolism 1 of 33 2.91E-01 1.00E+00 0.00 Pyruvate 

-log(p): logarithmic p-value from over-representation analysis; FDR p: false discovery rate-corrected p-value; Impact: pathway 
impact value calculated from pathway topology analysis. bold: p-values < 0.05. TCA: tricarboxylic acid. 
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A4.6 Results of Pathway Analysis (Study IIb) 

Table A-29. Results of pathway analysis based on 35 identified plasma analytes correlating with the CRF in females (after 
adjusting for confounders and phenotypical/clinical variables) in Study IIb. (Own table based on data provided by Metabo-
Analyst 5.0 (https://www.metaboanalyst.ca)). 

Nr. Pathway Name Match Status -log(p) FDR p Impact Matched Metabolites 

1 Valine, leucine and isoleucine metabolism 2 of 8 2.57E+00 1.47E-01 0.00 L-Threonine; L-Valine 

2 Glycine, serine and threonine metabolism 3 of 33 2.39E+00 1.47E-01 0.02 Choline; L-Threonine; D-Glycerate 

3 Glycerophospholipid metabolism 3 of 36 2.28E+00 1.47E-01 0.13 Phosphatidylcholine; Choline; 
Ethanolamine  

4 Glyoxylate and dicarboxylate metabolism 2 of 32 1.38E+00 8.50E-01 0.11 Citrate; D-Glycerate 

5 Linoleic acid metabolism 1 of 5 1.30E+00 8.50E-01 0.00 Phosphatidylcholine 

6 Ascorbate and aldarate metabolism 1 of 8 1.10E+00 1.00E+00 0.00 myo-Inositol 

7 Aminoacyl-tRNA biosynthesis 2 of 48 1.07E+00 1.00E+00 0.00 L-Valine; L-Threonine 

8 alpha-Linolenic acid metabolism 1 of 13 8.97E-01 1.00E+00 0.00 Phosphatidylcholine 

9 Arginine biosynthesis 1 of 14 8.67E-01 1.00E+00 0.00 N-Acetylornithine 

10 Glycerolipid metabolism 1 of 16 8.13E-01 1.00E+00 0.09 D-Glycerate 

11 Pantothenate and CoA biosynthesis 1 of 19 7.45E-01 1.00E+00 0.00 L-Valine 

12 Citrate cycle (TCA cycle) 1 of 20 7.25E-01 1.00E+00 0.09 Citrate 

13 Pentose phosphate pathway 1 of 22 6.88E-01 1.00E+00 0.00 D-Glycerate 

14 Galactose metabolism 1 of 27 6.09E-01 1.00E+00 0.00 myo-Inositol 

15 Alanine, aspartate and glutamate metabolism 1 of 28 5.95E-01 1.00E+00 0.00 Citrate 

16 Phosphatidylinositol signaling system 1 of 28 5.95E-01 1.00E+00 0.04 myo-Inositol 

17 Inositol phosphate metabolism 1 of 30 5.69E-01 1.00E+00 0.13 myo-Inositol 

18 Arachidonic acid metabolism 1 of 36 5.02E-01 1.00E+00 0.00 Phosphatidylcholine 

19 Valine, leucine and isoleucine degradation 1 of 40 4.64E-01 1.00E+00 0.00 L-Valine 

20 Tryptophan metabolism 1 of 41 4.56E-01 1.00E+00 0.09 L-Kynurenine 

-log(p): logarithmic p-value from over-representation analysis; FDR p: false discovery rate-corrected p-value; Impact: pathway 
impact value calculated from pathway topology analysis. bold: p-values < 0.05. TCA: tricarboxylic acid. 

 

Table A-30. Results of pathway analysis based on 11 identified plasma analytes correlating with the CRF in males (after 
adjusting for confounders and phenotypical/clinical variables) in Study IIb. (Own table based on data provided by Metabo-
Analyst 5.0 (https://www.metaboanalyst.ca)). 

Nr. Pathway Name Match Status -log(p) FDR p Impact Matched Metabolites 

1 Alanine, aspartate and glutamate metabolism 2 of 28 2.20E+00 4.51E-01 0.20 L-Alanine; L-Glutamate 

2 Aminoacyl-tRNA biosynthesis 2 of 48 1.75E+00 4.51E-01 0.00 L-Alanine; L-Glutamate 

3 Linoleic acid metabolism 1 of 5 1.65E+00 4.51E-01 0.00 Phosphatidylcholine 

4 Nitrogen metabolism 1 of 6 1.57E+00 4.51E-01 0.00 L-Glutamate 

5 D-Glutamine and D-glutamate metabolism 1 of 6 1.57E+00 4.51E-01 0.50 L-Glutamate 

6 alpha-Linolenic acid metabolism 1 of 13 1.24E+00 6.55E-01 0.00 Phosphatidylcholine 

7 Arginine biosynthesis 1 of 14 1.21E+00 6.55E-01 0.12 L-Glutamate 

8 Butanoate metabolism 1 of 15 1.18E+00 6.55E-01 0.00 L-Glutamate 

9 Histidine metabolism 1 of 16 1.15E+00 6.55E-01 0.00 L-Glutamate 

10 Selenocompound metabolism 1 of 20 1.06E+00 7.31E-01 0.00 L-Alanine 

11 Glutathione metabolism 1 of 28 9.21E-01 7.90E-01 0.02 L-Glutamate 

12 Porphyrin and chlorophyll metabolism 1 of 30 8.92E-01 7.90E-01 0.00 L-Glutamate 

13 Glyoxylate and dicarboxylate metabolism 1 of 32 8.66E-01 7.90E-01 0.00 L-Glutamate 

14 Arachidonic acid metabolism 1 of 36 8.18E-01 7.90E-01 0.00 Phosphatidylcholine 

15 Biosynthesis of unsaturated fatty acids 1 of 36 8.18E-01 7.90E-01 0.00 (4Z,7Z,10Z,13Z,16Z,19Z)-
Docosahexaenoic acid 

16 Glycerophospholipid metabolism 1 of 36 8.18E-01 7.90E-01 0.09 Phosphatidylcholine 

17 Arginine and proline metabolism 1 of 38 7.96E-01 7.90E-01 0.09 L-Glutamate 

-log(p): logarithmic p-value from over-representation analysis; FDR p: false discovery rate-corrected p-value; Impact: pathway 
impact value calculated from pathway topology analysis. bold: p-values < 0.05. 


