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1. Introduction

Massive form factors are important objects in quantum field theory. They constitute the virtual
corrections to many observables and processes like lepton pair production via the Drell-Yan process
or the decay of the Higgs boson into heavy quarks. The more and more precise measurements of
these processes make the inclusion of higher order corrections for the theory predictions necessary.

Up to O(𝛼2
𝑠) the massive form factors are known in analytic form, see Refs. [1–7], and even

higher orders in the dimensional regulator 𝜖 haven been considered in Refs. [8–12]. At O(𝛼3
𝑠) only

partial results are available. At this order the form factors have been considered in the large-𝑁𝐶

limit (with 𝑁𝐶 the number of colors) in Refs. [9, 13–15], the light fermion contributions were
calculated in Ref. [12] and in Ref. [16] all non-singlet contributions involving a closed heavy quark
loop have been considered.

In these proceedings we report on our recent calculation of the massive form factors at O(𝛼3
𝑠)

in Refs. [17, 18], where we employed a semi-numerical method involving series expansions and
numerical matching between them. In Section 2 we will summarize technical details, while in
Section 3 we show some results. In Section 4 we conclude and give an outlook.

2. Massive form factors

To compute the massive form factors we consider the interaction of a massive quark with a
vector, axial-vector, scalar or pseudo-scalar current, which are given by:

𝑗 𝑣𝜇 = �̄�𝛾𝜇𝜓 ,

𝑗𝑎𝜇 = �̄�𝛾𝜇𝛾5𝜓 ,

𝑗 𝑠 = 𝑚 �̄�𝜓 ,

𝑗 𝑝 = i𝑚 �̄�𝛾5𝜓 . (1)

The vertex function can then be expressed through six scalar functions by

Γ𝑣
𝜇 (𝑞1, 𝑞2) = 𝐹𝑣

1 (𝑞
2)𝛾𝜇 − i

2𝑚
𝐹𝑣

2 (𝑞
2)𝜎𝜇𝜈𝑞

𝜈 ,

Γ𝑎
𝜇 (𝑞1, 𝑞2) = 𝐹𝑎

1 (𝑞
2)𝛾𝜇𝛾5−

1
2𝑚

𝐹𝑎
2 (𝑞

2)𝑞𝜇𝛾5 ,

Γ𝑠 (𝑞1, 𝑞2) = 𝑚𝐹𝑠 (𝑞2) ,
Γ𝑝 (𝑞1, 𝑞2) = i𝑚𝐹 𝑝 (𝑞2)𝛾5 . (2)

Here the momentum 𝑞1 (𝑞2) is incoming (outgoing), on-shell (𝑞2
1 = 𝑞2

2 = 𝑚2) and 𝑞 = 𝑞1 − 𝑞2 is
the outgoing momentum at the current 𝑗 𝛿 with 𝑞2 = 𝑠. The form factors have an expansion in the
strong coupling constant 𝛼𝑠

𝐹
𝑗

𝑖
=
∑︁
𝑙

(𝛼𝑠

𝜋

) 𝑙
𝐹

𝑗 , (𝑙)
𝑖

.

We divide the form factor into non-singlet and singlet contributions, where the current couples to
the heavy external quark line or an internal heavy quark loop, respectively. Some sample Feynman
diagrams contributing to the form factors can be found in Fig. 1.
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Figure 1: Sample Feynman diagrams contributing to the massive quark form factors. Solid lines represent
massive quark, while curly lines represent gluons. The vertex with a cross refers to the coupling to one of
the external currents. The diagram on the right is part of the singlet contributions.

The calculation of the form factors proceeds in the following way: We generate the diagrams
with QGRAF [19] and use q2e [20, 21] to transform the output to FORM [22] input, where Dirac-,
Lorenz- and color-algebra (with color [23]) is performed. The diagrams are mapped to predefined
topologies using exp [20, 21]. The scalar integrals are reduced to master integrals with the help of
Kira [24, 25] with Fermat [26] on a family-by-family basis. We make sure to reduce to a basis
where the dependence on 𝑑 and the kinematic variable 𝑠 factorizes utilizing an improved version
of ImproveMasters, first developed in Ref. [27]. Afterwards we symmetrize over all families and
find 422 master integrals for the non-singlet contribution and 316 for the singlet diagrams. In a next
step, we set up a systems of differential equations for the master integrals in the variable 𝑠 = 𝑠/𝑚2

by calculating the derivatives with the help of LiteRed [28, 29] and subsequent reduction with
Kira.

Subsequently, the master integrals need to be solved. This is achieved using the semi-numerical
approach presented in Ref. [30] and explained in more detail for the current problem in Ref. [18].
Let us summarize the main ideas of the approach:

1. We calculate boundary conditions for all master integrals at the special point 𝑠 = 0. At
this special point the master integrals in the non-singlet case reduce to three-loop on-shell
propagators, which are well studied in the literature [31–33]. However, we needed to extend
the depth of the 𝜖 expansion, since we encountered high spurious poles in the amplitude after
reducing to master integrals. The results can be found in Ref. [18]. Since the singlet diagrams
have massless cuts, we need to perform an asymptotic expansion around 𝑠 = 0 to obtain their
boundary conditions.

2. We calculate symbolic expansions around the point 𝑠 = 0 by inserting a suitable ansatz into
the system of differential equations. By comparing powers in 𝜖 , the expansion parameter 𝑠
and possibly logarithms of the expansion parameter, we obtain a system of linear equations
for the coefficients of the ansatz. We solve this system of equations with Kira and FireFly
[34, 35] in terms of a small set of boundary conditions, which can be determined from step 1.

3. We calculate symbolic expansions around a new point 𝑠1 and match the two expansions
numerically at a point where both expansions converge, e.g. 𝑠1/2.
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4. Afterwards, we generate another symbolic expansion at 𝑠2 and match it to the expansion
around 𝑠1 at a point where both expansions converge. This way we can map out the whole
kinematics of the process.
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Figure 2: The UV-renormalized and infrared subtracted form factor 𝐹𝑠, 𝑓 , (3) . Solid lines correspond to the
real part, dashed lines to the imaginary part of the corresponding color factor. Taken from Ref. [18].
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Figure 3: Relative cancellation of the real (left) and imaginary part (right) of the poles for the color factor
𝐶𝐹𝐶

2
𝐴

of 𝐹𝑠, 𝑓 , (3) . Taken from Ref. [18].

3. Results

The main results of our method are overlapping series expansions which can be used to
evaluate the massive form factors at any value of 𝑠. In Fig. 2 we show as an example the non-singlet
contributions to the form factor 𝐹𝑠, where the masses and wave function are renormalized on-shell,
the current in the MS-scheme and the remaining infrared divergencies are subtracted by multiplying
with a suitably defined 𝑍-factor, which can be constructed from the cusp anomalous dimension
[36–39] (see Refs. [9, 18] for the precise definition). The resulting finite form factors are labeled
with an additional superscript 𝑓 . Note, that our expansion around 𝑠 = 0 is analytic, e.g. for 𝐹𝑠, 𝑓 , (3) ,
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i.e. the non-singlet contribution to the scalar form factor, we find:

𝐹𝑠, 𝑓 , (3)
���
𝑠→0

= 𝐶𝐴𝐶
2
𝐹

[
4𝑎4
3

+ 491𝜁3
96

+ 19𝜋2𝜁3
16

− 45𝜁5
16

+ 26117
4608

− 1193𝜋2

576
− 65𝜋4

432
+

𝑙42
18

+ 31
36

𝜋2𝑙22 +
43
18

𝜋2𝑙2

]
+ 𝐶2

𝐴𝐶𝐹

[
− 11𝑎4

3
− 947𝜁3

288
− 51𝜋2𝜁3

64
+ 65𝜁5

32
− 584447

124416
+ 3011𝜋2

3456

+ 179𝜋4

3456
−

11𝑙42
72

− 11
36

𝜋2𝑙22 +
49
72

𝜋2𝑙2

]
+ 𝐶3

𝐹

[
12𝑎4 +

87𝜁3
16

+ 𝜋2𝜁3
16

− 5𝜁5
8

+ 55
96

+ 643𝜋2

192

+ 𝜋4

48
+
𝑙42
2
− 1

2
𝜋2𝑙22 −

15
2
𝜋2𝑙2

]
+ 𝐶2

𝐹𝑇𝐹𝑛ℎ

[
8𝑎4 +

17𝜁3
18

− 2083
432

− 52𝜋2

81
− 𝜋4

720
+
𝑙42
3

− 1
3
𝜋2𝑙22 +

8
9
𝜋2𝑙2

]
+ 𝐶𝐹𝐶𝐴𝑇𝐹𝑛ℎ

[
− 6𝑎4 −

199𝜁3
144

+ 𝜋2𝜁3
8

− 5𝜁5
8

+ 209857
15552

− 4351𝜋2

1296

− 𝜋4

288
−
𝑙42
4
+ 1

4
𝜋2𝑙22 +

32
9
𝜋2𝑙2

]
+ 𝑠

𝑚2

{
𝐶𝐴𝐶

2
𝐹

[
− 8𝑎4

9
+ 2515𝜁3

2304
− 29𝜋2𝜁3

144
− 95𝜁5

48
+ 11191

41472
− 15101𝜋2

62208
+ 37𝜋4

4320
−

𝑙42
27

+
1259𝜋2𝑙22

2160
+ 1409𝜋2𝑙2

1440

]
+ 𝐶2

𝐴𝐶𝐹

[
5𝑎4
4

+ 8675𝜁3
10368

− 73𝜋2𝜁3
1152

+ 125𝜁5
384

− 851465
279936

+ 130417𝜋2

186624
+ 689𝜋4

103680
+

5𝑙42
96

− 1
20

𝜋2𝑙22 −
12253𝜋2𝑙2

8640

]
+ 𝐶3

𝐹

[
− 29𝑎4

9
− 12401𝜁3

3456

− 67𝜋2𝜁3
288

+ 85𝜁5
32

+ 22613
41472

− 69355𝜋2

31104
+ 1727𝜋4

25920
−

29𝑙42
216

−
1043𝜋2𝑙22

1080
+ 4013𝜋2𝑙2

1080

]
+ 𝐶2

𝐹𝑇𝐹𝑛ℎ

[
8𝑎4
9

+ 9889𝜁3
6912

− 8059
5184

− 4261𝜋2

25920
+ 7𝜋4

1620
+ log4(2)

27
− 1

27
𝜋2𝑙22 +

4
27

𝜋2𝑙2

]
+ 𝐶𝐹𝐶𝐴𝑇𝐹𝑛ℎ

[
− 5𝑎4

18
+ 1657𝜁3

1728
+ 𝜋2𝜁3

96
+ 5𝜁5

96
+ 2257

3888
− 13663𝜋2

25920
− 121𝜋4

51840
−

5𝑙42
432

+ 5
432

𝜋2𝑙22 +
55
108

𝜋2𝑙2

]}
+ O

(
𝑠2

𝑚4

)
+ 𝑛𝑙, 𝑛2

𝑙
and 𝑛2

ℎ
terms, (3)

where 𝑙2 = log(2), 𝑎4 = Li4(1/2) and 𝜁𝑛 is Riemann’s zeta function evaluated at 𝑛 and 𝐶𝐹 =

𝑇𝐹 (𝑁2
𝐶
− 1)/𝑁𝐶 , 𝐶𝐴 = 2𝑇𝐹𝑁𝐶 are the quadratic Casimir operators of the SU(𝑁𝐶) gauge group in

the fundamental and adjoint representation, respectively, 𝑛𝑙 is the number of massless quark flavors,
𝑛ℎ is the number of heavy quark flavors with mass 𝑚 and 𝑇𝐹 = 1/2.

There are several checks on our results. For example, the coefficient in front of the gauge
parameter in the final result is smaller than 10−18 and we can reproduce the known analytic
results in the planar limit, the contributions ∼ 𝑛𝑙 and the 𝑛2

ℎ
contributions with at least 12 digits.

Furthermore, the results are precise enough to calculate the leading and sub-leading logarithmic
corrections in the high energy expansion for the first power suppressed contributions analytically.
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These corrections have been obtained in Refs. [40–43] by considering an involved asymptotic
expansion of the Feynman diagrams. We find agreement except of the quartic mass suppressed
corrections to the form factor 𝐹𝑣, (3)

2 . Our results have been confirmed by the authors of Ref. [43].
More details and analytic expressions for several expansion terms can be found in Ref. [18].

The precision of our final results can be estimated from the cancellation of the poles in the
dimensional regulator 𝜖 , since they are known analytically and have to cancel in the final result.
We use the logarithm to the base 10 of the relative pole cancellation (denoted by 𝛿) as a measure
of accurate digits. A plot of this measure for the form factor 𝐹𝑠, 𝑓 , (3) and the color factor 𝐶𝐹𝐶

2
𝐴
,

split into real and imaginary part, can be found in Fig. 3. We see that the precision for 𝑠 < 3 and
𝑠 > 16 is highest and decreases for the regions between the two thresholds at 𝑠 = 4𝑚2 (two particle
threshold) and 𝑠 = 16𝑚2 (three particle threshold), which are not analytic. In total we estimate at
least 7 significant digits over the whole kinematic range for all of our results. The results of the
singlet contributions is significantly higher and estimated to be at least 10 digits.

A Mathematica package to evaluate the form factors in the non-singlet and singlet case nu-
merically over the full kinematic range of 𝑠 can be found at:

https://gitlab.com/formfactors3l/formfactors3l.

4. Conclusions and Outlook

We presented our recent calculation of massive quark form factors at O(𝛼3
𝑠) which uses a semi-

numerical method based on series expansions and numerical matching to obtain results for the form
factors for the whole kinematic range of negative and positive values of the virtuality 𝑠. We obtain
a precision of at least 7 significant digits in the non-singlet and 10 digits in the singlet case over
the whole kinematic range, respectively. However, some kinematic regions are much more precise.
Thus, it is for example possible to extract leading and sub-leading logarithmic contributions to the
leading and first power suppressed terms in the high energy expansion analytically, confirming and
correcting results in the literature. To complete the calculation of massive quark form factors the
singlet diagrams where the external current couples to an internal light quark loop still need to be
completed.
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