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Abstract

In this work we present a unified error analysis for abstract space discretizations of
wave-type equations with nonlinear quasi-monotone operators. This yields an error
bound in terms of discretization and interpolation errors that can be applied to various
equations and space discretizations fitting in the abstract setting. We use the unified
error analysis to prove novel convergence rates for a non-conforming finite element
space discretization of wave equations with nonlinear acoustic boundary conditions
and illustrate the error bound by a numerical experiment.

Mathematics Subject Classification Primary 65M12 - 65M15; Secondary 65M60 -
65J15

1 Introduction

In this paper we present a unified error analysis for abstract non-conforming space
discretizations of nonlinear wave-type equations with quasi-monotone operators. The
unified error analysis was introduced in [ 15, 16] for linear wave equations and extended
in [18] to semilinear problems. It is an abstract framework in which wave equations
as well as a variety of spatial discretizations are considered as evolution equations in
Hilbert spaces. Using such an abstract framework allows to derive an abstract error
bound in terms of approximation properties of the space discretization method. This
error bound can then be used to prove convergence rates for all space discretizations of
wave-type equations which fit into the abstract setting. This was demonstrated in [16]
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for isoparametric finite element discretizations of wave equations with linear acoustic
boundary conditions and a dG discretization of Maxwell equations.

The aim of this paper is to extend the unified error analysis to nonlinear evolution
equations with quasi-monotone operators. As a specific application, we use this theory
to prove error bounds for a non-conforming finite element discretization of the wave
equation with nonlinear acoustic boundary conditions. This is a generalization of the
results in the thesis [20].

Acoustic boundary conditions were first mentioned in [5]. Since then, many papers
studied their properties, wellposedness, and stability, and they are still in the focus of
current research, cf.[4, 10, 11, 21, 23, 26] and references therein.

However, there are only very few numerical papers considering these boundary
conditions. We are aware of [16] and [17]. In these papers space discretizations for
wave equations with linear acoustic boundary conditions were derived and analyzed
in the energy and the L?-norm, respectively. In the present paper, we now consider
the space discretization of nonlinear acoustic boundary conditions as proposed in [13,
14, 28], and extend the results from [16] to this case.

Since acoustic boundary conditions include derivatives on the boundary, they are
usually posed on domains with smooth boundaries. A common choice to discretize
such problems are isoparametric finite elements. Since this involves to approximate the
boundary of the domain, the discretization becomes non-conforming. Unfortunately,
this makes the error analysis much more involved since the exact and the numerical
solution are not defined on the same domain which causes errors in the bilinear form
ot the weak form.

We derive an order p isoparametric finite element discretization of the wave equa-
tion with nonlinear acoustic boundary conditions and show that it fits into the setting
of the unified error analysis. Using the abstract error bound we prove order p conver-
gence of the method in the energy norm, where we tackle the appearing approximation
errors stemming from the domain approximation or interpolation by known error
bounds from [7, 8]. A major difficulty lies in the discretization of the nonlinearities,
since this must be done in such a way that it preserves the quasi-monotonicity to
ensure the stability of the numerical scheme. Furthermore, the discretization errors of
the nonlinearities have to be bounded. While both is straightforward for conforming
discretizations, it turns out to be much more involved in the non-conforming case.

We are not aware of any other results in this direction, neither of such a general error
analysis for non-conforming space discretizations of nonlinear wave-type equations,
nor of results concerning the discretization of wave equations with nonlinear acoustic
boundary conditions. Nevertheless, we mention the following works going in the same
direction. In [9], a full discretization in an abstract framework similar to the one used
in this paper was considered. But only a conforming space discretization was analyzed
and no error bounds but only weak convergence of the discretization was shown. For
quasilinear equations, a related framework was introduced in [19, 22], covering quasi-
linear wave and Maxwell equations. However, the error analysis in this work relies on
properties of quasilinear operators that cannot be used for nonlinear acoustic boundary
conditions and in general for equations with maximal quasi-monotone operators.

This paper is structured as follows. In Sect. 2 we introduce the wave equation with
nonlinear acoustic boundary conditions with a corresponding finite element space
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discretization and state an error bound of the spatial discretization. We then present
in Sect. 3 the unified error analysis for nonlinear first-order evolution equations and
use the results in Sect.4 to analyze nonlinear second-order wave-type equations. As
main results we derive abstract error bounds for the space discretizations. Finally, in
Sect.5 we use these abstract bounds of the unified error analysis to prove the space
discretization error bound for the wave equations with nonlinear acoustic boundary
conditions and illustrate it with some numerical experiments.

2 The wave equation with nonlinear acoustic boundary conditions

In this section we present the analytical framework for the wave equation with acoustic
boundary conditions and a suitable finite element space discretization. Additionally,
we present a space discretization error bound which we will prove by application of
the unified error analysis in Sect. 5.

2.1 Problem statement and analytical framework

Let 2 C R", n = 2, 3, be a bounded domain with C2-boundary I" and outer normal
vector n. We consider the acousitc wave equation with non-local reacting acoustic
boundary conditions in the following form: seeku: [0, T]x 22 — R, §: [0, T]xI" —
R satisfying

Uy +kou —coldu = fo, t>0,xe £, (1a)

Wi +ds; + kpd + puy —cr Apd = fr, t>0,x€d2, (lb)
n(8;) = dnu + 0(uy), 1>0,x€02, (lc)

u@©) =u®, w0 =" 80) =5 60 =" (1d)

Here A denotes the Laplace—Beltrami operator an I”.

Remark 2.1 1t is possible to include nonlinear forcing terms Fg (x, u) and Fr (X, d)
at the right-hand side of (1a) and (1b), respectively. This was considered in [20] for
the wave equation with kinetic boundary conditions and such terms can be treated
similarly for the acoustic boundary conditions. We omit this here for the sake of a
clearer presentation.

We make the following assumptions on the coefficients and nonlinearities in (1).
Assumption 2.2 a) The constants satisfy ce,cr,u >0, ko, kr >0, d,peR.

b) The function & € C(R; R) satisfies 6(0) = 0 and is strictly monotonically increas-
ing with

OE) —0E)) (1 — &) = 6o l&1 — &,  &.&€R,
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for some 6y > 0. Further, there exist

1<~ e )
<3 n—=

=

and a constant C > 0 such that for all £ € R
0E) <Cd+g%). 3

¢) The function n: R — R is globally Lipschitz continuous and satisfies n(0) = 0.
We then have that 7 defined via 7(§) = n(&) — %é is also Lipschitz continuous
and denote the Lipschitz constant of 7 by L.

d) The inhomogeneities satisfy fo € Wllo’cl([O, 00); C(£2)) and fr € Wllo’cl([O, 0);
cn)).

Weak formulation To prove wellposedness and derive a finite element discretization,
we now present a weak formulation of the wave equation with acoustic boundary
conditions (1). We make use of the densely embedded Hilbert spaces

V=H < H=H,
where
H:=L%(Q) x L*(I'), H*=H"2) x H*(I"), k> 1.

Note that for k > 3, the spaces H*(I") require more boundary regularity to be well-
defined, e.g., ' € C k , which denotes that I" is a C¥ boundary.

By multiplying (1a) and (1b) with test functions defined on £2 and I", respectively,
applying integration by parts and inserting the nonlinear coupling (1c), we obtain
the the weak formulation of (1): seek u = [u, §]T € C([0, T]; H) N C'([0, T1; V)
satisfying

m(u”, @) + (D), @)vxy +a(u, @) =m(f,¢), fort>0andallg € V,(4)
u©0) =u’,  W©0) =v

where forv = [v, z]T, ¢ = [¢, ¥]T € V we have

m(v,w):/ vgodx—i—u/ Zy ds, (5a)
fo) r
a(v,go):cg/ VU-Vgodx—i—kg/ v dx
fo) 2
ver [ Vezvrvdsekr [ zvas (sb)
r r
(D), @)y=xv Z/I‘CQ O() —n@) ¢ + (dz + pv) Y ds, (5¢)
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t=[fe 1rr]", (5d)
u’ = [uo, BO]T , vl = [vo, ﬁO]T . (5e)

Note that m is an inner product on H and a:=a + m is an inner product on V.

Remark 2.3 Assumption 2.2 ensures that (4) is globally wellposed, we comment on
this in Sect. 4.1, cf.Corollary 4.4, and Sect. 5.

2.2 Finite element space discretization

For the space discretization of (1) we consider the bulk-surface finite element method
from [7] which was also used in [16] to discretize the wave equation with linear acoustic
boundary conditions. We give a brief introduction of the finite element spaces and refer
to [7] for further details on the bulk-surface finite element method.

The bulk-surface finite element method Let I' € CP*! for some p > 1 and let ‘T;?
be a consistent and quasi-uniform mesh consisting of isoparametric elements K of
degree p which discretizes £2. By & we denote the maximal mesh width of ’.T;? . The
discretized domain is then given by

U «

KeTf

and its boundary by I, = 92;. The bulk and the surface finite element space of order
p are then defined by

V2, ={vn € C(2) | vn, = Dh o (Fx)~" with ¥, € P,(K) forall K € T},
Vi ={on e C(y) | 90 = v |, with vy € vl

respectively. Here, K denotes the reference triangle with corresponding polynomial
space IP’p(K ) of order p, and F K is the transformation from K to K. Note that by
construction we have vy, | L € Vh, » forall vy, € Vh’ -

As approximation space for V we set V;, = Vh“(zp X Vhr > Note that, since £2, is only

an approximation of £2, we have V;, ¢ V, i.e., the discretization is non-conforming.
Hence, to relate functions in V}, with functions in V, in [7], for v, = [vy, 94]T € V},
and h < hg sufficiently small, a lifted version

T

vl = [v,{, ﬁ,f] € VN(CR) x C(IN) 6)
was constructed. By I o: cC(R2) —» Vh{?p and I r: C(I") — Vhljp we denote the
order p nodal interpolation operators in £2 and on I, respectively, and set for v =

[v,2]T eV

Iyv = [Ih‘gv, ]h,rl?].r e V.
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The spatially discretized equation We now state the finite element discretization of
(1). For this, let

> as:CIy) —> R
Iy

be an elementwise defined quadrature formula that approximates the integral | n ds.
We require that the quadrature formula has positive weights and is of order greater
than 2 p, s.t.polynomials up to degree 2p are integrated exactly and we have for all
Zn, Y € Vhljp

/‘r ZpYpds = ZZhl/thS. @)
h

Iy

For vy, = [vp, 2017, ’n = [@n, ¥r]T € V), we define

mp (Vi @p) =/ vh(ﬂhderM/ ZpYn ds, (8a)
Qh Fh
ah(Vh,q)h) =C_Q/ Vvh~V(pth+k_Q/ vp ey dx
2 2
+C[‘/ V[‘Z;erwhdS-Fk[‘/ Zn¥p ds, (8b)
Iy Ty
ma(Dn(va), 94) = Y ca O(wn) — n(z)) @n + (dzn + pvi) Ynds,  (8c)
Iy
mp(En, 91,) 2/9 Ih‘QfQ(Pth‘I'M/ ﬁlh,rfrlﬂh ds. (8d)
h rh

Then, the spatial discretization of (1) is given by: seek uy: [0, T] — V), s.t.

mp(wy,,’n) +mp(Dp(uy), ’n) + an(un,’n) = mu(f,’n),  forz >0,y € Vp,
w,(0) =u?,  u,(0) =v).
Remark 2.4 The use of the quadrature formulas instead of the interpolation in the

definition of the discretized nonlinearity D, is required to prove that Dy is quasi-
monotone, cf.Lemma 5.3.

To prove an error bound of the discretization we pose the following assumptions
on the exact solution and the data:

Assumption 2.5 a) Let T > 0. For the inhomogeneities and the nonlinearities in (1)
we assume the additional regularity

fa € L=(10. T H™CPN (@), fr e L=((0, T]; H™ZPN(I). (9a)
0.n € C™ PR R). (9b)
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Furthermore, we assume that the strong solution u, é of (1) satisfies on [0, T']

uel™
u’ e L™
§eL*®

8" e L™

[0, T1; H'T1(22)), u' € L2([0, T1; HPT2(2) n WP (2)),
[0, TT; H™™2P1(2)),

[0, T1; HPTH(IM), 8 e L=([0, T]; HP (M) n wPeo(I)),
[0, T1; H™2PH()).

~_~

b) Let the discrete initial values satisfy
0 0 0 0
Huh — Inu ”Hl + th — v HHU = Gh?

with a constant Cj, independent of /.

As main theorem, we state the following error bound for the finite element discretiza-
tion of the wave equation with nonlinear acoustic boundary conditions.

Theorem 2.6 Let Assumption 2.2 be satisfied anda = [u, 51T be the solution of (1) on
[0, T'). Further, let Assumption 2.5 be satisfied and let wy, = [up, 5,17 be the spatial
approximation of u, obtained with the bulk-surface finite element method of order p.
Then, there exists some ho > 0 s.t. the error bound

1 ’
ool + s o], =t

L2 .
holds true for all h < hg, where ¢’ = ﬁ( ‘fgog — d) and C is a constant independent

of h.

In the next two sections we will now present a general theory for the error analysis
of non-conforming space discretizations which we then use to proof Theorem 2.6 in
Sect.5.

3 Abstract space discretizations of first-order evolution equations
with monotone operators

In this section we present the unified error analysis for abstract space discretizations
of first-order evolution equations with maximal monotone operators. This generalizes
the results from [16] and [18] for linear and semilinear equations, respectively. The
results of this section are part of the dissertation [20].

We first present the continuous equation and the corresponding abstract space dis-
cretization, before we prove an error bound.
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3.1 Analytical setting

Let X be a Hilbert space with scalar product (-, ) in which we consider the evolution

equation

X

X +8xm) =g, =0, (10a)

x(0) = x% € D(S). (10b)

In the following, we omit the r arguments in evolution equations. We pose the following
classical assumptions to ensure that (10) is wellposed.

Assumption 3.1 a) The nonlinear operator S: D(8) — X is quasi-monotone and

maximal, i.e., there is a cgm > O s.t.

(SO =8,y —2)y = —cqmlly —zl%  forally,z € D(),
and there exists some A > cgn S.t.. range(A + 8) = X.
b) The inhomogeneity satisfies g € Wllo’cl([O, 0); X).
The following wellposedness result can, e.g., be found in [25, Corollary IV.4.1].

Theorem 3.2 Let Assumption 3.1 hold true. Then, the evolution equation (10) is glob-
allywellposed, i.e., (10) has a unique strong solution x € C ([0, 00); X) which satisfies
x(t) € D(S) forallt € [0,00), x(0) = x°, and (10a) is satisfied for almost all
t € [0, 00).

We further state the following stability result which is essential for the latter error
analysis.

Theorem 3.3 Let Assumption 3.1 be satisfied and for T > 0 and i = 1, 2 let x; be the
strong solutions of

x/+8(xi) =g, t€l0,T],
x(0) = x € D(8)

with gi € WH1([0, T1; X). Then for all t € [0, T

t
Ix1() — x2() | x < eCam (Hx? —x3lx + /0 e M| g1 (s) — g2 () x ds) '

Proof The result can be derived with energy estimates similar to [25, Theorem
IV4.1A]. O

3.2 Abstract space discretization

We now present an abstract space discretization of the evolution equation (10). Let

(Xn)p be a family of finite dimensional vector spaces with scalar products (-, ) X,
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where  is a discretization parameter, e.g., the maximal mesh width of a finite element
discretization. For all X}, € (X}), we seek an approximations x;, € X}, to the solution
x of (10). Therefore, let 8, and g;, be approximations of 8 and g, respectively, which
satisfy the following assumptions similar to Assumption 3.1.

Assumption 3.4

a) The nonlinear operator 8y, : X, — X, is quasi-monotone, i.e., there is a?qm >0
independent of 4 s.t.

(8n ) = 8nz)s v — 2n)y, = —Camllyn — zl}  forall yu, z4 € Xp.(11)

b) The inhomogeneity satisfies g € WZL’CI ([0; 00); Xp).

The discretized evolution equation is then given by

xp, +8p(xn) =gn, =0, (12a)
x4 (0) = xj,. (12b)

Since these assumptions are similar to the continuous case, we obtain by Theorem 3.2
that (12) is globally wellposed.

In the following we introduce a framework for the error analysis of the abstract
space discretization that is similar to the linear case presented in [16]. To cover non-
conforming space discretizations where X; ¢ X, as they appear in Sect. 2, we make
the following assumptions to relate the discrete and the continuous problem.

Assumption 3.5
a) There exists a lift operator Ly, € L(Xj,, X) which satisfies

ILhynllx < CxllynllXn  forall y, € Xy, (13)

for some constant Cx > 0 independent of h. The adjoint of the lift operator
L} € L(X, Xp) is defined via

(LZy,yh)Xh = (y. Lnyn)y. forally € X, y, € Xj.

b) Let Z < X be a densely embedded subspace of X on which a reference operator
Jn € L(Z; X},) is defined which satisfies

”J/’l”Xh(—Z =< th

for some constant C J, > 0 independent of /.

As the term L, J;, — [ appears in the error bound in Theorem 3.7, the reference operator
should be chosen such that the approximation L, Jpz =~ z (z € Z) is of the order of
convergence which one wants to proof for the spatial discretization. It could, e.g., be
an interpolation or a projection operator. One possible example for a lift operator is
the lift defined in (6). We will consider this in Sect. 5.

The space discretization error bound is given in terms of the following terms:
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Definition 3.6 (Remainder and error terms)

a) The remainder of the nonlinear monotone operator is given by
R,: DO NZ — X, Ry (2):=L}8(2) — 8i (Jn2) (14)
b) We define the error term

En(®) = |lxg) — I X (-0t e (LF — T || Lo qo.n1: x)

P - (15)
+t]le ™ Ry (x) | oo o,e1: x,) + 2lle ™™ Ly g — gnllLe((0,63: x) -

We now can state and prove an error bound of the abstract space discretization, cf.[20,
Thm. 2.10].

Theorem 3.7 Let Assumptions 3.1, 3.4, and 3.5 be satisfied and x be the strong solution
of (10) on [0, T] with x, x’ € L*°([0, T1; Z). Furthermore, let xj, be the solution of
(12) on [0, T]. Then, for all t € [0, T] the lifted discrete solution satisfies the error
bound

1hxn(0) = x (@)1 x < Cxe™m Ey (1) + | A =LaJ)x (0]l x- (16)
Proof We split the error via Ly xp, () — x(t) = Lpep + (LpJp — Dx(2), where
en(t) = xp(t) — Jpx(t) € Xy
is the discrete error. The full error can thus be bounded by
1Lnxn(t) = x| x < Cxllenl Xn + (CnJn — Dx(®)llx a7

and we further investigate the discrete error. By applying the adjoint lift to (10a) we
obtain

Lpx"+L;8(x) = Ljg.
Adding Jpx', 8,(Jpx), and g5, on both sides yields
Inx' + 8n(Jnx) = gn + An (18)
where
Ap = (Jn — LF) x" + 8n(Jnx) — L38(x) + Lj;g — g (19)

Under Assumption 3.4, the stability estimate from Theorem 3.3 holds also true in the
discrete case with 'Eqm instead of c¢qm. Hence, we obtain by Theorem 3.3 applied to
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(12) and (18) the following bound for the discrete error

t
llen(2) | Xp < eam’ (ux,? — Inx% X, + / eS| Ap ()| ds)
0

& 0 0 G-
< gfam? <||xh — Jpx”|| +t|le”Cm Ah||L°O([0,T];Xh)>

< efan E,,(1),
(20)

where we used (19) and (14). Together with (17), we finally obtain (16). O

In the following section we will use this result to derive error bounds for second-
order nonlinear wave-type equations.

4 Abstract space discretizations of second-order evolution equations
with nonlinear damping

In this section we apply the theory of Sect. 3 to second-order evolution equations. As
in the previous section, we first introduce the continuous problem and then present and
analyze the abstract space discretization. This is a generalization of the linear unified
error analysis introduced in [16] and also an extension of the framework considered
in the dissertation [20] which does not cover the acoustic boundary conditions with
nonlinear coupling from Sect. 2, cf.Remark 4.2 and Sect. 5.

4.1 Analytical setting

Let V, H be Hilbert spaces es and let V be densely embedded in H. We consider the
following variational equation, which is typical for a weak formulation of a second-
order partial differential equation. Seek u € C 2([0, T, HynC 1([0, T1; V) with

m(u”, @) + (D), @)vexy +a(u, ) =m(f,¢), fort>0andallyp e \/(,21)
u(0) = u?, u' (0) =7,

To ensure the wellposedness of (21) we pose the following assumptions.
Assumption 4.1

a) The bilinear formm: H x H — R s ascalar product on H with induced complete
norm ||-||,,- In the following, we equip H with m.

b) The bilinear forma: V x V — R is symmetric and there exists a constant cg > 0
S.t.

a:=a+cgm

is a scalar product on V with induced complete norm ||-||;. From now on, we equip
V with a.
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¢) The nonlinearity D € C(V; V*) satisfies D(0) = 0 and is quasi-monotone, i.e.,
there is a constant Bgm > 0 s.t.

(D) = D(w), v —w)ysxy = —Pgmllv —wll,, forallv,w e V.
d) The inhomogeneity satisfies f € Wllo’cl([O, o0); H).
We denote by Cy v the embedding constant of V into H, i.e.,
vl < Ch.vlvlg forallveV. (22)

Formulation as evolution equation We identify H with its dual space H* to obtain the
Gelfand triple

Ve H=ZH"— V* (23)
with dense embeddings. We thus have forallv e V,w € H
m(v, w) = (w, v)y*xy.

To reformulate (21) as an evolution equation, we define the operator A € L(V, V¥)
associated to a via

(Av, w)v*xv::a(v, w) forallv,w e V. 24)

Then, we can rewrite (21) equivalently as an evolution equation in V*: Seek u €
C%([0, T1; H) N C'([0, T; V) satisfying

' + D)+ Au = f, t >0,

25
u©) =u, u'0) =" (%)

Note that (25) implicitly contains the condition
D'y +Auc H

duetou”, f € H.

Remark 4.2 In [20], the stricter assumption D € C(V; H) was posed. However, this
does not cover the acoustic boundary conditions with nonlinear coupling (1c) as we
will see in Sect. 5, cf.Remark 5.2.

First-order formulation We rewrite (25) into a first-order formulation in the framework
of Sect.3.1. For this let #’ = v and we define

_|u _ —v |0 0_ u
S R P
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with
X=VxH, D(S):{[u,v]TevXV|Au+D(v)eH}. 27)

Then, (25) is equivalent to the first-order evolution equation (10).
In the following we show that the assumptions of Sect.3.1 are satisfied. The sub-
sequent lemma is a slight extension of [20, Lemma 2.14].

Lemma 4.3 The nonlinear operator 8 is maximal and quasi-monotone with constant

1
Cqm = ECGCH,V + ﬂqm

and D(8) is dense in X.

Proof We start by proving the quasi-monotonicity. For x; = [u,v1]T,x2 =
[u2, v2]T € D(8) we calculate by using Assumption 4.1, (23), and the definitions
of 8§ and A

(8(x1) — 8(x2), x1 — x2)
= —Zz(vl — vy, U — u2) —i—m(.ALq + D(vy) — Aup — D(v2), v — vz)

= —a(vy — v, u1 — uz)+a(uy — uz, vy — v2)+(D(w)) — D(V2), v1 — V2)y*xy

2
> —cgm(vi — v2, u1 — uz) — Bgmllvr — v2lly,
2
> —cgllvi —vallmllur — u2llm — Bamllvi — v2ll;,
2
> —cgChvllur —uzllzllvi — v2llm — Bgmllvr — v2ll;,

1
2 2 2
> —5c6Cuy (I = walla® + o1 = v2l3) = Bamller = w2l

1
- <§CGCH,V + ﬁqm> llx1 — x2llx>.

IV

In the next step we prove the maximality and proceed similar as in the proof of
[27, Theorem 4.1]. We have to show that there exists a A > 0 such that for every
h = [h1,h2]T € X = V x H there exists a solution x = [v, w]T € D(8) of the
stationary problem (A + 8)x = h or equivalently

AV —w =hy, (28a)
rw + Av + D(w) = hy. (28b)

By solving (28a) for v and plugging it into (28b) we obtain
1 1 ~ N
)»w—i—X.Aw—i—D(w) =hy — XAhlzzh e V™. 29)

@ Springer



J. Leibold

We thus investigate the operator T = A + %A + D € C(V; V*) which can be
decomposed via T = T + T» with

T =1 )‘2+A =240
=3\2 : 2Ty

For
A > max{cgm, v/2¢G., 2Bgm}

we then have that T is monotone as the sum of monotone operators. Further, we have
forallve V

(T (), v)v*xyv = (T1(V), V)yrxy + (T2(V), V)y*xy

Ivlla? + (T2 (v) — T2(0), v — 0) =y

v

> = > =

2
lvlla”

v

where we used that 7] is coercive due to the choice of A, and 7> is monotone with
T>(0) = 0. Thus, T is coercive, i.e.

(T (v), v)v*xv

— oo for vz = o0.
lvlla

We apply [3, Corollary 2.3] stating that continuous, monotone, and coercive operators
from a reflexive Banach space to its dual space are surjective. This yields the existence
of a solution v € V of (29) and thus also of a solution x = [v, w]T € V x V of (28).
We further obtain by (28b) x € D(S) since

Av+D(w)=hy, —Aw € H.

The density of D(8) in X follows from the maximality and the quasi-monotonicity
of 8§ and §(0) = 0, cf [25, Prop. 1.4.2]. O

Corollary 4.4 Assumption 4.1 implies that the first-order formulation of (25) satisfies
Assumption 3.1.

Proof By Lemma 4.3 we have that Assumption 3.1 a) is satisfied. Assumption 3.1 b)
is directly implied by Assumption 4.1 d). O

By Theorem 3.2 we then directly obtain the wellposedness of (21).

Corollary 4.5 Let Assumption 4.1 hold true and let [uo, UO]T e D(8),ie, u®, 0 eV
with Au® + CD(vO) € H. Then, (21) is globally wellposed, i.e., there exists a unique
strong solution [u, v]T € C([0, 00); V x H).
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4.2 Space discretization

We consider a family (V},), of finite dimensional vector spaces related to a discretiza-
tion parameter s and the following discretized version of (21) in V;, € (Vj);: seek
up € C2([0, T1; Vi) with
mp (). on) +mp (D)), ¢n) + an(un. ¢n) = mp(fi. on). forallgy € Vi, >0,
up(0) =u,  u)(0)=v). 30)
Here, my, a, Dy, and fj, are approximations of the corresponding continuous coun-

terparts.
We pose the following assumptions similar to Assumption 4.1.

Assumption 4.6 All constants in the following statements are independent of /.

a) The bilinear form m;, is a scalar product on V},. We denote Vj}, equipped with this
scalar product my, by Hj, and the induced norm by ||- ||, -

b) The bilinear form a;: V, x V, — R is symmetric and there exists a constant
/C\G > 0 s.t.

ap:=ay +cgmp
is a scalar product on V, with induced norm ||-||z, . In the following, we equip Vj,
with aj,.

¢) The nonlinearity D;, € C(Vjy; Hy) satisfies D;,(0) = 0 and is continuous and
quasi-monotone with constant Bgp.

d) The inhomogeneity satisfies fj € Wllo’g ([0, 0c0); Hy).
e) There exists a constant Cy v > 0 s.t.

lvallm, < Crvlivalla, — forall v, € Vy. (3D
The operator Aj;, € L(Vy; Vy) related to ay, is defined via
mp (Anvn, wp):=ap (v, wp) forall vy, wy € Vj.
We then can reformulate (30) as an evolution equation in Vj:

uy + Dy (uy) + Apup = fr, t>0,

32
up(0) =ul,  u},(0) =Y. 32)

Analogously to the continuous equation we rewrite (32) in a first-order formulation
and therefore define X;, = V;, x Hj,. With

_ | un _ —VUh _|0 0 _ [up
Xh = [Uh] s Sh(-xh) = [Ahuh + gh(vh)il , 8h = |:fh] s Xp = [vé} ’ (33)

(32) is then of the form (12).
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Corollary 4.7 Assumption 4.6 implies that the first-order formulation of (32) satisfies
Assumption 3.4. Furthermore, (11) holds true with Cym = %?G Cu,v + Bym-

Proof Since the setting in the discrete case from Assumption 4.6 is similar to the
continuous one from Assumption 4.1 with constants independent of /4, the proof of
Lemma 4.3 transfers directly to the discrete case. O

Similar to the first-order case, we require the existence of suitable operators to relate

continuous and discrete functions of the abstract non-conforming space discretization.

Assumption 4.8

a) There exists a lift operator L,‘; € L(Vy; V) satisfying
1LY vnllm < Crllvnllm,. 1L} vnlla < Cv llvalla,. (34)

for all vy, € V;, with constants C H, 6\/ > ( independent of A.
b) There exists an interpolation operator I, € L(Z V- V), defined on a dense subspace
ZV of V, which satisfies

nll gy, zv < C, (35)

with a constant C 1, > 0 independent of &.

To apply the results of Sect.3.2, we now define the first-order reference and lift oper-
ator.

Definition 4.9

a) The adjoint lift operators LX*: V — V, and L,’;’*: H — Hj w.ur.t. the scalar
products of V and H are defined via

mh(Lf*v, wh):zm(v, L,Ywh) forallv € H, wy, € Hy, 36)
an (L;’/*v, wh):zd(v, L,‘I/wh) forallv e V,wy € V).

b) We define the first-order lift operator Ly : X, — X by

vp | Lth
o] =[etm)

c) We define the first-order reference operator Jy: Z — Xj by

v [L)*v
[

d
onZ=Vx2zZ"< X,
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Lemma 4.10 The first-order lift and reference operators from Definition 4.9 satisfy
Assumption 3.5 with CX = max{Cv, CH} and C], = max{CV, Clh}

Proof This is a direct consequence of Assumption 4.8. O

In the following we now bound the first-order remainder term which is for z =
[v, w]T € D(8) N Z given by
Ri(@) = L) — $1Jn(2) = ~(Ly I
W)= SO ORI = L Hr Ay 4 D(w)) — (ARL) v + Dy (hyw))
(38)

To do so, we use the following error terms in the scalar products, which are for
vy, wy € Vy, defined via

Am(vh, wh)::m(Lth, L,Ywh) —my (vh, wh), (39)
Aﬁ(vh, wh):zd(Lth, L;‘l/wh) — flh(vh, wh).

We obtain the following bound for the remainder term, cf.[20, Lem. 2.23]

Lemma 4.11 Let Assumption 4.1 and 4.6 be satisfied. Then, for z = [v, w]T € D(8)N
Z, the remainder of the monotone operator can be bounded by

IIRh(Z)IIXh§C< max |Aa([h on)| +  max |Aa(1hv on)|
lonllz, =1 lonllz, =

+ max_[Am (L, yu)| + 1A=L) B)vlla + ||(1 —thlh) wl;
Il‘//h‘lmhzl
jytax ‘< W), Ly Yn)vesy — mp(Da(Tnw), ) ) (40)
4 Wh—

i.e., against errors in the scalar products, interpolation errors, and the discretization
error of the nonlinear operator.

Proof The proof works similar to the proof of [16, Lemma 4.7] and relies on the
identity

R X = R 9’ )
| Rn ()11 X1 T 1( n(2) yh)xh

YrllXp=

where (-, .)Xh is the scalar product on Xj. Thus, let y, = [¢n, ¥5]T € X, with
llyrll X, = 1. By (38) we obtain

(Rn(2), yn)x,
= —ap((Ly* = Iw. gn) +mp (L (Av + D(w)) — (ApLy *v + Dy (Iyw)). Yip)
—(@w. £} n) = an(tnw. on)) + (a(v, £ vn) = an (L) *v, i) )
+ (D). L) Yn)vescy — mp(DpTpw), Yy).
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(41)

and we bound the first two summands separately. To bound the first one, we use (39),
(34), and ||y ||z, < 1 to obtain
a(w, LY on) —an(1 <la(w, L) op) —a(L) nw, LY Aa(l
a(w, Ly on) = an(Inw, on)| < |a(w, Ly on) —a(Ly Inw, Ly on) | + |Aa(lw, en)|
= W(1=2f 1) wlal ) onlla + [ Aa(tyw, )]
56V||(I—L,Ylh)w||a~+l max Jaa(iw. g4)].

lonlla, =

(42)

By using the definitions of @, ay, || Y1 |lm, < 1and (39), (22), (34), (31), we bound the
second summand in (41) via

a(v, L) vn) — an (L) v, ¥)
= (v, &) yn) — an (L) *v. vn) — (ch(v, LY ) — Coma (L) *v, 1/,,1))
< max{cg, ¢G} ‘M(v L)) — mp (L) *v, w)\
< max{eg, T ([m (@A=L 1o £} vi) | + [Am(1v, v)]
oma (I — L), wh))

< max(eq. 26} (CnCay 1AL} hyvla + max_ |Am(lv, vy

Wl =1

+ Cuv | = L *vla, ).

Similar to (42), we further estimate
I = £vlla, = | max @ ((h = L57)v. 01)

hlla, =

= max a, (Ihv, (ph) - Zl(v’ Li‘z/‘ph)

len lz, =1
< 6V||(1—thlh) vla+ max |Aa(lw, gn)|.
llonlla, =1
We finally obtain the assertion by collecting all terms. O

We are now in the position to prove the following error bound which is a gen-
eralization of [20, Thm. 2.24], cf. Remark 4.2. It is applicable to all equations and
space discretizations fitting in the abstract framework of this section. In the disser-
tation [20], it was used to prove novel convergence rates for the wave equation with
nonlinear kinetic boundary conditions and in this paper, we use it to prove Theorem
2.6.
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Theorem 4.12 Let Assumptions 4.1, 4.6, and 4.8 be satisfied and u be the strong
solution of (25) on [0, T with u,u’,u” € L*([0,T1; Z"). Further, let uj, be the
semidiscrete solution of (32) on [0, T). Then, forallt € [0, T, the lifted semidiscrete
solution satisfies the error bound

4
1) (1) = u(@llg + 18} w), (1) = u/ D)l < Ce ™ (1 4+0) Y " Ep g
i=1
(43)

with a constant C that is independent of h and t. The other constants are given by

—~ [N ~
Cqm = ECGCH,V + Bqm,
and the abstract space discretization errors

Eny =luf) — £ ula, + 10§ = 150, + e (L F = fi)leosqo. i

Epp =|e WH‘TaX ' ’(9(1/), L) Yn)vexy — mp(Dp (I, Iﬂh)‘ |0, 7),
h mh=
Eps =lle™ ™ (1 —L) Inull oo qo, 13 vy + le™ ™ A =L) In)u || Lo, 71 v)
+ [le (I _L;‘l/]h)u””Loo([O,T];H)»

Epg zne_alm' max Aa (Ihu, q)h) ||L°°(0,T) (44)
lnlla, =1

+||e_al"" max  Am(Iyu, ¥)|| L0, 1)
1V llmy, =1

+||e_alm' max Aa(lhu/,(ph)”LOO((),T)
lgnllz, =1

+||e_alm' max  Am(Iu”, )| 0, 1)-
1V llm), =1

Proof By Corollaries 4.4, 4.7, and Lemma 4.10, we have that the first-order formula-
tions of (25) and (32) satisfy all assumptions of Theorem 3.7.
By applying Theorem 3.7 and employing the error bound (16), we obtain

L) un(r) — u(@)llz + 1L} u) () —u' ()12,

=2 (1) un @) = wlla® + 181w, ) = ' O3 )
= 2]l () = x(O)llx
< 2CyelErnEm) £y ) 4 20 L1 J)x (0 x

with
En(t) = IIx) — Jpx° | Xn (H)e]le =S (LF — J)x’|| 2o o, 77:x0)
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+tlle™ ™ Ry (x) | L0, 7): x,) + tlle” ™ (L5 8 — gn) Lo (0,7 x,)-

In the remaining proof, we bound the different terms against E ;,i = 1, ..., 4. For
the remainder term we apply the bound (40) and obtain for all ¢ € [0, T']

IRy (x NN Xn(S)C(Ena + Enz+ Ena),

By the definitions of J, and L) we further have for the discretization errors of the
initial values and the inhomogeneity

lx) — TnxOlxn (D 1Lf g — gnlleeqo,r1;x,) < CEp,1.
The reference error can be decomposed for all ¢ € [0, T'] via

IA =Ly d)xOllx < 1A=L) L))z + 1T=L) I @)l (=L} )’ ()
< |A=L) L) u®) |z + o' Ey 3,

where we have similar to (42)

I =LY L) 5 ulla < 1A=L) Iullz + 1£) T — L) Fulla

< CEns+Cy max (an(ln. gn) —a(u, £ gn)
Hh_

<CEp3+ 6‘2/||<I —L;\,/Ih) ullg + 6‘/ | max |Ad(1hu, (ph)|

enlla, =1

< Ce“m' (Ep 3 + Ej4).
In the same way, we finally bound

1CLE = Jx Nl < 18 = D) m,
= Curll (1= ) "l (1= 14 ) "

A I 4
nwmfﬂ‘ m(lu”, )|

< Ce“m' (Ep 3 + Ej4).

O

Having this abstract theory at hand, we can now return to the wave equation with
nonlinear acoustic boundary conditions from Sect.2 and give the proof of Theorem
2.6 in the next section.
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5 Numerical analysis of wave equations with nonlinear acoustic
boundary conditions

In this section we will use the unified error analysis for second-order equations from
Sect.4 to prove the error bound from Theorem 2.6. We start by verifying that all
assumptions are satisfied.

Lemma 5.1 Let Assumption 2.2 be satisfied. Then, with the definitions in (5), Assump-

2,
tion 4.1 is satisfied with Bym = llL(LIggz — d), cg=1,andCpy =1.

Proof We clearly have that m is a scalar product on H and that a:=a + m is a scalar
product on V. Further, Assumption 2.2 d) directly implies Assumption 4.1 d).

Thus it remains to prove Assumption 4.1 ¢). By Assumption 2.2 a), b), ¢) and (5a),
(5¢) we obtain

(D(v1) — D(v2), Vi — V2)y*xy
= /FCQ O (r) —0(2) — (n(z1) — n(z2))) (v — v2)
+(d(z1 — z2) + p(v1 —v2)) (21 — z2)ds

> / cobo vy — v? +dlz1 — 221°
I
+eo (é(m —2) - (1) — 77(22))> (v — ) ds

Z/ ¢ lvi — nl? +dlz1 — 221* — coLy 1(z1 — 22)(v1 — v2)| ds
r

2
LnC_Q

2
— ds
26, lz1 — 22|

2 2 2
Z/ cbo|vr —v2l” +d|z1 — 221" — cby lv1 — v2|” —
r

LZCQ
n 2
(d - 490 ) ”Z] - ZZHLZ([‘)

2
—Bqmllvi — vall;,.

v

This proves the the quasi-monotonicity of D.
In the next step we show D € C(V; V*). We emphasize that the trace inequality

V= v|1_ € C(H'(2); L1(IN)) (45)

holds true for ¢ = ¢ + 1 with ¢ from the growth condition (3), cf.[24, Thms. 2.4.2
and 2.4.6]. For vi = [v1,z1]T,v2 = [v2,22]T, ¢ = [@, ¥]T € V with [¢lz = 1
this yields together with the Holder and the Minkowski inequalities and the global
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Lipschitz continuity of n

[(D(v2) = D(v2), @) y*x v |

/FC.Q (B(w1) —0(2) — (n(z1) — n(z2))) ¢ + d(z1 — 22) + p(v] —v2)) Y ds

=co(I0@D =0l o +ln@) =@l o Vgl
La-T(I) La-T(I)

+(dllzr = 22l 2y + 2 o1 = w22y ) 192y

1 (46)
<co (100D =0l o, +Cllr =22l 2y ) maxtl, el

1
+ (dllz1 = 22l 2y + C llor - vanl(m);nmm

< maxieg, (100D 0@ +Clz1—2ali2r) )

(o)

1
(@l = 2laiy +pC I = vl )-

We hence obtain

D(v2) — D(v2)lly+
= sup [(D(v2) — D(v2), @)v+xv|
lella=1

<c (ue(vl) —0ml, 1 e =22l + v - van.(g)) .

By the trace inequality (45), the growth condition (3), the relation { = ¢ — 1, and [12,
4
Theorem 2] we further have v — 0(v) € C(HY(£2); L7a=1(I")). This yields

ID(v2) = D(v2)llv+ — 0 for [[vi —vallz > 0

which proves D € C(V, V*). O

Remark 5.2 1t is not possible to prove the stronger condition D € C(V, H). This is
due to the fact that the calculation (46) strongly relies on ¢ € H'(£2) and is not
possible for a test function ¢ € L3(£2).

Lemma 5.1 ensures that the weak formulation (4) of (1) fits in the setting of Sect. 4.1
and, hence, is locally wellposed by Corollary 4.4.

We now prove, that the bulk-surface finite element space discretization from
Sect. 2.2 fits into the abstract setting of Sect.4.2.
Lemma 5.3 Let Assumption 2.2 hold true. Then, the bulk-surface finite element space

> 2

discretization of (1) satisfies Assumption 4.6 with Bqm = ﬁ(LX;OQ - d) ,cg =1, and
CH,V =1.
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Proof Since ay and my, are defined as in continuous case, Assumption 4.6 a) and b)
are satisfied. Assumption 4.6 d) follows from Assumption 2.2 d) and the continuity of
the interpolation operator.

It remains to prove Assumption 4.6 c). To show the quasi-monotonicity, we proceed
analogously to the proof in the continuous case from Lemma 5.1 and obtain by (8c)

mh(Dh(v}ll) - Dh(vﬁ), V,ll - Vﬁ) = ZCQ (9(1);1,) - 9(11%) - ('7(2;1,) - U(Z%))) (U;l, - U;%)
Iy
12 12\, _ 2
+ <d(Zh Zh) + )O(Uh Uh)> (Zh Zh)AS
LZC_Q 2
>(g— n 1 _ ,2 A
= ( 490 ) ;h ’Zh Zh‘ S
LZCQ
N 12
= (d 490 ) th Zh‘

N 1 2
> —Bqmllvy, — vy, llmy

2
L2(I)

where we used that the quadrature formula has positive weights and satisfies (7).
Finally, Dy, is continuous, since V}, is a finite dimensional space and, thus, conver-

gence in Vj, implies uniform pointwise convergence and especially convergence in all

quadrature nodes. O

To prove an error bound for the semidiscretization, we apply the theory of Sect.4.2
and therefore have to specify the operators from Assumption 4.8.

Definition 5.4
a) The lift operator L,‘l/ € L(Vy; V) is defined via

]
L) [op. zn]T = [v,‘;,zﬁ] for all [vy, 21T € Vi,

with v}, from (6).
b) Weset ZV:=H?(22) x H*(I') C C(2) x C(I').
c) We define the interpolation operator via I, [vy, z;]T := [Ih,g v, Ih’['Zh]T.

Our error analysis relies on the following properties of the lift and the interpolation
operators.

First of all, there exist element-wise norm equivalences related to the lift, which
were shown in [8, Lemmas 5.3 and 7.3].

Lemma5.5 There exist Co o, > co.@, > 0, Cr.r, > cr,r, > 0 independent of
h < hg sufficiently small s.t.for all v, € Vh“?p, Oy € Vhljp, k=0,1,...,p+ 1, and

Ko eTy, Kr € ‘J'f; and for all h < hg sufficiently small we have

ca.a 1ol iy < | o Hm(m < Coa Ivnllicky)
2
7)

cr,n nllgrkpy < Hﬁ‘/f ”Hk(K‘f) < Cr.n, 19l gk gy »
r
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where Ké = Gy(Kgp), K¢ = G, (Kr). By construction, the lift additionally pre-
serves the L norm, i.e.,

4

v = ||V 00 s
[#5] e e, = Mk
of| = 10l oo k1 -
98] ey = 1P

Further, we have the following bounds of the geometric errors stemming from the
domain approximation (cf.[7, proof of Lemma 6.2]).

Lemma 5.6 Foruj, ¢, € Vh{zp and Oy, Yy, € Vhljp, the following bounds hold true for
all h < hg sufficiently small:

‘/Q uflgaﬁ dx — /;2 upep dx| < Ch? |luy, ||L2(_Qh) lon ”LZ(Qh)s (48a)
h
‘/;2 v“flvﬁoﬁ dx — /;2 Vup Ve dx| < Ch? ||v'4h||L2(_Qh) ||V(/7h||L2(_Qh) ,  (48b)
h

’/Fﬂ,fw,fds—/r O ds| < CRPY 04112 py 1WRll 2, - (48¢)
h

’/F Vl"ﬁﬁvl”//}f ds — ﬁvfhﬂhvfhwh ds| < chP! ”Vl“hﬂh ||L2(F,,) “VF;. Yn ||L2(1"h)'
h
(48d)
The nodal interpolation satisfy the following error bounds, which follow from [8,

Theorem 4.28, Theorem 5.9] for the bulk and [8, Theorem 6.24, Theorem 7.10] for
the surface interpolation, respectively.

Lemmab5.7 Let 1 <k < p and h < hy sufficiently small.

a) Globally, the interpolation operators satisfy for all v € H*T'(2), and © €
H*Y(I) the error bounds

Hv - (Ih,szv)e‘

+hfo—Unewt| < g, @9)

L2(£2) H'(2) ~

[0 = o)’

nlo—anroy| | <cntie . 4%
L2(F)+ Un.r??) Hl(r)—c I ||Hk+1(1") (49b)

with a constant C independent of h.
b) Locally, on each element K ; € ‘T;? , K € T, the interpolation operators satisfy
forall0 <r <kandallv € Hk‘H(Ké), = Hk+1(Kf~), the error bounds

[o=awt| =TT ol e, (50a)

H™(K5)
14 k+1—r
|2 = r] g, = P INripy (0b)
with a constant C independent of h.
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¢) Locally, on each element Ko € ‘J}?, Kr € T and for every v, €
H*(K o), 9, € H*M(K ), the L™ error bounds

lvn = 1.0} HmK = P o lios i (51a)
2

|94 = 1.1} ”Lw(K T LA (51b)
r

hold true with a constant C independent of h.
The following lemma is a direct consequence of Lemmas 5.6 and 5.7.

Lemma 5.8 The operators defined in Definition 5.4 satisfy Assumption 4.8 with
Cv =max{Cq.q,.Cr.r}.

where Cg o, and Cr , are given in (47).

We are now in the position to prove the error bound of the space discretization. Proof
of Theorem 2.6. We apply Theorem 4.12. By Lemmas 5.1, 5.3, and 5.8 we have that
all assumptions are satisfied and we have to bound the space discretization error terms
Ej ;i in (44). In the following we always assume that i < hy is sufficiently small that

all the bounds we apply are valid.
The terms Ej, 1, Ep 3 and Ej, 4 also appeared in the linear case and were bounded

under Assumption 2.5 in [16, Proof of Thm 5.3] by order h?”.
It thus remains to bound Ej . For 7 € [0, T] and v = u/(¢) = [v,z]T € V we
calculate

max_ (D), £} a) vy = mn(Da(nv). 93)|

H‘Ph Hmhzl

< max CQ(/ e(v)wﬁds—ZQ(Ih,gu)cphAs)
r

T en YTy =1 5
(52)
+ C.Q(/ n(2)g), ds — Zn(lh,rz)whAs)

r

Iy

+ ,o(/rvlpfds—ZIh,gwphAs) + d(/rzwfds—ZIh,pzwhAs> .

I Iy
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We bound the different terms separately. Let |9}, lm, = Il[¢n, Y117 lIm, = 1. We then
have

=<

/ 0(v)gf ds — f (.10 ) el ds
I r

I/F G(v)wﬁ ds — 29(1},,9”)%45
Iy

+‘ / (In.r0@) el ds — f (I, 10 )¢y, ds
r I

+

/F (Un. r0@)ends — 3601 o v)g As
h I

(53)

For the first summand on the right-hand side of (53) we have by the continuity of the
lift operator and the interpolation error (49b)

‘ / 0 (v)g}, ds — / (In.r0(v) e ds
r I

= | - dnrowy|

¢
L2(I) H(’oh L2(I)

< Chp ||0(U)||Hmax(2,p)(r) .

The second summand can be bounded using the geometric error estimate (48c) by

‘ /F (In,r6() ¢ ds — /F (In,rO@Den ds| < ChP [ 1n,r8@) | 1o lonll 2y
h

< ChP 10l p2(ry -

To bound the third summand on the right-hand side of (53) we use that for the nodal
interpolation we have I r6(v) = Ih,pe((lh,pv)z) € Vhrp and that the order of
quadrature formula is greater than 2 p to obtain

| rrowngnds = Yot v as
Iy )

> (Inr0(Unrv)))gnds = Y 0. rv)gn As

Iy Iy
1 1
= (D2 (nronrv® = 00 rv) as)* (Y- ot as)’
) )

<o) |1nr6 s ro)) =6 )| el
h

< Ch? Z ||9(Ih,1"v)||wp,00(p)’
Fe‘J’[
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where we denote by o([},) the measure of I, and we used the L interpo-
lation error bound (51b). The terms H@(Ih,pv) || Wroo(p) are bounded due since

we have v € WPTh®(2), v = v|. € CWPTLR(@2); WPo(D), Ir €
C(WP-°(I"); WP-2°(Iy,)), and 6 € CP, cf.(9b). In total we obtain in (53)

‘/ 0 () ds — Y 0(Ih.u)enAs| < ChP.
I
Iy

Similarly we obtain

Iy

|f @y ds — Y n(n.rz)ends| < Ch?
r

but since z is defined on I we only require the regularity z € W#>°°(I") in contrast
tov e WPHhoo(),

To bound the third term in (52), we make use of the classical inverse estimate
lonll g, < Ch= v l22(g,) (cf.[6, Lem. 4.5.3]), (49b), and the trace inequality
lvll greiry < C vl gr+2(g) to obtain

(/ vylds =3 Iy, guwhAs)

I

_ (/Fmpfds—/rh Ih,gmphds)

< (/ vy ds—/(lh,gv)glﬂf; dS) + ‘(/ (In.ov)' ) dS—/ In Qv dS)
r r r I
_ ¢ 4 p+l

< ||v—Ungev) 2 H vy 2 + ChPt | Ih,.fszLz(ph) IVnllL2cn,)

<

ChP* ol oy 1¥nl 1 @y + CHPH 2] g1 g, 1981111 (21

< ChPM ol gz b 1Wmll 2y + CRP T 0 2, 2 101 2202y
< Ch?”.

Similarly, we have

‘f Zyf ds — Zlh rzynds| < Ch?,

but we do not need the inverse estimate in this case and hence the smoothness z €
HPTI(I') is sufficient. In total we obtain E; » < Ch” and
Theorem 4.12 gives then the desired result. O
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6 Numerical experiment

In this section we illustrate Theorem 2.6 with a numerical experiment.
Let 2 = B (0) C R? be the unit disc and in (1) we set

co=cr=p=p=1, ko=kr=d=0,
0(E)=£+&, () =4msin() + 6477 sin’ (&),
fa(x) =cosQrr)( — 167213 + 247277 — 14477 + 96r),
fr(x) =2m + 4 sin(2rwt),
Wx) =4 —6r2, V’x) =0, x) =0, v°=0

where r = r(x) = x% + X% Then, Assumption 2.2 is satisfied and the exact solution
of (1) is given by

u(t, x) = cos2rt)(4r’ —6r?), 8(t,x) = nt’.

We implemented the experiments in the C++ finite element library deal.ii, cf.[1,
2]. The code which was used for the numerical is available at https://doi.org/10.5445/
IR/1000150159. For the time integration we use the implicit midpoint rule with time
step size ~ 2-10~* and solve the arising nonlinear systems with the simplified Newton
method. For the spatial discretization we use the bulk-surface finite element methods
of orders p = 1, 2, 3.

We consider the error

E(1):=

|

wn(® = u |, | () — 0],

H'($2p) L2($2p) (54)
+ Hsh(t) - Ih,F(S(t)”Hl(Fh) + ||8]/1(t) - Ih,Fa/(t)“LZ(Fh)

instead of the error from Theorem 2.6 since the computation of the lift is quite labo-
rious. We evaluated the integrals with a quadrature rule of degree 2p, so that the

10t T
10—1 -

=
S
m 1073

10-5

102

Fig.1 Error from (54) at t = 0.7 for the test example. The dashed plots are straight lines of slope 1, 2 and
3, respectively

@ Springer


https://doi.org/10.5445/IR/1000150159
https://doi.org/10.5445/IR/1000150159

A unified error analysis for nonlinear wave-type...

quadrature error is negligible. The restriction of u to £2; is possible for this example
since we have £2;, C 2.

In Fig. 1 the error E(¢) is plotted against the maximal mesh width /. We chose ¢ =
0.7 since it keeps distance to the roots of sin(27t). We observe that the error converges
with order p as predicted by Theorem 2.6 which indicates that our proven convergence
rates are optimal. Note that for order p = 3 and small %, the plot approaches the plateau
of the time discretization error.
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