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Abstract
In this work we present a unified error analysis for abstract space discretizations of
wave-type equations with nonlinear quasi-monotone operators. This yields an error
bound in terms of discretization and interpolation errors that can be applied to various
equations and space discretizations fitting in the abstract setting. We use the unified
error analysis to prove novel convergence rates for a non-conforming finite element
space discretization of wave equations with nonlinear acoustic boundary conditions
and illustrate the error bound by a numerical experiment.

Mathematics Subject Classification Primary 65M12 · 65M15; Secondary 65M60 ·
65J15

1 Introduction

In this paper we present a unified error analysis for abstract non-conforming space
discretizations of nonlinear wave-type equations with quasi-monotone operators. The
unified error analysiswas introduced in [15, 16] for linearwave equations and extended
in [18] to semilinear problems. It is an abstract framework in which wave equations
as well as a variety of spatial discretizations are considered as evolution equations in
Hilbert spaces. Using such an abstract framework allows to derive an abstract error
bound in terms of approximation properties of the space discretization method. This
error bound can then be used to prove convergence rates for all space discretizations of
wave-type equations which fit into the abstract setting. This was demonstrated in [16]
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for isoparametric finite element discretizations of wave equations with linear acoustic
boundary conditions and a dG discretization of Maxwell equations.

The aim of this paper is to extend the unified error analysis to nonlinear evolution
equations with quasi-monotone operators. As a specific application, we use this theory
to prove error bounds for a non-conforming finite element discretization of the wave
equation with nonlinear acoustic boundary conditions. This is a generalization of the
results in the thesis [20].

Acoustic boundary conditions were first mentioned in [5]. Since then, many papers
studied their properties, wellposedness, and stability, and they are still in the focus of
current research, cf.[4, 10, 11, 21, 23, 26] and references therein.

However, there are only very few numerical papers considering these boundary
conditions. We are aware of [16] and [17]. In these papers space discretizations for
wave equations with linear acoustic boundary conditions were derived and analyzed
in the energy and the L2-norm, respectively. In the present paper, we now consider
the space discretization of nonlinear acoustic boundary conditions as proposed in [13,
14, 28], and extend the results from [16] to this case.

Since acoustic boundary conditions include derivatives on the boundary, they are
usually posed on domains with smooth boundaries. A common choice to discretize
such problems are isoparametric finite elements. Since this involves to approximate the
boundary of the domain, the discretization becomes non-conforming. Unfortunately,
this makes the error analysis much more involved since the exact and the numerical
solution are not defined on the same domain which causes errors in the bilinear form
ot the weak form.

We derive an order p isoparametric finite element discretization of the wave equa-
tion with nonlinear acoustic boundary conditions and show that it fits into the setting
of the unified error analysis. Using the abstract error bound we prove order p conver-
gence of the method in the energy norm, where we tackle the appearing approximation
errors stemming from the domain approximation or interpolation by known error
bounds from [7, 8]. A major difficulty lies in the discretization of the nonlinearities,
since this must be done in such a way that it preserves the quasi-monotonicity to
ensure the stability of the numerical scheme. Furthermore, the discretization errors of
the nonlinearities have to be bounded. While both is straightforward for conforming
discretizations, it turns out to be much more involved in the non-conforming case.

We are not aware of any other results in this direction, neither of such a general error
analysis for non-conforming space discretizations of nonlinear wave-type equations,
nor of results concerning the discretization of wave equations with nonlinear acoustic
boundary conditions. Nevertheless, wemention the following works going in the same
direction. In [9], a full discretization in an abstract framework similar to the one used
in this paper was considered. But only a conforming space discretization was analyzed
and no error bounds but only weak convergence of the discretization was shown. For
quasilinear equations, a related framework was introduced in [19, 22], covering quasi-
linear wave and Maxwell equations. However, the error analysis in this work relies on
properties of quasilinear operators that cannot be used for nonlinear acoustic boundary
conditions and in general for equations with maximal quasi-monotone operators.

This paper is structured as follows. In Sect. 2 we introduce the wave equation with
nonlinear acoustic boundary conditions with a corresponding finite element space

123



A unified error analysis for nonlinear wave-type…

discretization and state an error bound of the spatial discretization. We then present
in Sect. 3 the unified error analysis for nonlinear first-order evolution equations and
use the results in Sect. 4 to analyze nonlinear second-order wave-type equations. As
main results we derive abstract error bounds for the space discretizations. Finally, in
Sect. 5 we use these abstract bounds of the unified error analysis to prove the space
discretization error bound for the wave equations with nonlinear acoustic boundary
conditions and illustrate it with some numerical experiments.

2 The wave equation with nonlinear acoustic boundary conditions

In this sectionwe present the analytical framework for the wave equationwith acoustic
boundary conditions and a suitable finite element space discretization. Additionally,
we present a space discretization error bound which we will prove by application of
the unified error analysis in Sect. 5.

2.1 Problem statement and analytical framework

Let Ω ⊂ R
n, n = 2, 3, be a bounded domain with C2-boundary Γ and outer normal

vector n. We consider the acousitc wave equation with non-local reacting acoustic
boundary conditions in the following form: seek u : [0, T ]×Ω → R, δ : [0, T ]×Γ →
R satisfying

utt + kΩu − cΩΔu = fΩ, t ≥ 0, x ∈ Ω, (1a)

μδt t + dδt + kΓ δ + ρut − cΓ ΔΓ δ = fΓ , t ≥ 0, x ∈ ∂Ω, (1b)

η(δt ) = ∂nu + θ(ut ), t ≥ 0, x ∈ ∂Ω, (1c)

u(0) = u0, ut (0) = v0, δ(0) = δ0, δt (0) = ϑ0. (1d)

Here ΔΓ denotes the Laplace–Beltrami operator an Γ .

Remark 2.1 It is possible to include nonlinear forcing terms FΩ(x, u) and FΓ (x, δ)
at the right-hand side of (1a) and (1b), respectively. This was considered in [20] for
the wave equation with kinetic boundary conditions and such terms can be treated
similarly for the acoustic boundary conditions. We omit this here for the sake of a
clearer presentation.

We make the following assumptions on the coefficients and nonlinearities in (1).

Assumption 2.2 a) The constants satisfy cΩ, cΓ , μ > 0, kΩ, kΓ ≥ 0, d, ρ ∈ R.
b) The function θ ∈ C(R; R) satisfies θ(0) = 0 and is strictly monotonically increas-

ing with

(θ(ξ1) − θ(ξ2)) (ξ1 − ξ2) ≥ θ0 |ξ1 − ξ2|2 , ξ1, ξ2 ∈ R,
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for some θ0 > 0. Further, there exist

1 ≤ ζ

{
< ∞, n = 2,

≤ 3, n = 3,
(2)

and a constant C > 0 such that for all ξ ∈ R

|θ(ξ)| ≤ C(1 + |ξ |ζ ). (3)

c) The function η : R → R is globally Lipschitz continuous and satisfies η(0) = 0.
We then have that η̃ defined via η̃(ξ) = η(ξ) − ρ

cΩ
ξ is also Lipschitz continuous

and denote the Lipschitz constant of η̃ by Lη.
d) The inhomogeneities satisfy fΩ ∈ W 1,1

loc ([0,∞);C(Ω)) and fΓ ∈ W 1,1
loc ([0,∞);

C(Γ )).

Weak formulation To prove wellposedness and derive a finite element discretization,
we now present a weak formulation of the wave equation with acoustic boundary
conditions (1). We make use of the densely embedded Hilbert spaces

V = H
1 ↪→ H = H

0,

where

H
0:=L2(Ω) × L2(Γ ), H

k :=Hk(Ω) × Hk(Γ ), k ≥ 1.

Note that for k ≥ 3, the spaces Hk(Γ ) require more boundary regularity to be well-
defined, e.g., Γ ∈ Ck , which denotes that Γ is a Ck boundary.

By multiplying (1a) and (1b) with test functions defined on Ω and Γ , respectively,
applying integration by parts and inserting the nonlinear coupling (1c), we obtain
the the weak formulation of (1): seek u = [u, δ]ᵀ ∈ C2([0, T ]; H) ∩ C1([0, T ]; V )

satisfying

m
(
u′′,ϕ

) + 〈D(u′),ϕ〉V ∗×V + a
(
u,ϕ

) = m
(
f,ϕ

)
, for t ≥ 0 and all ϕ ∈ V ,

u(0) = u 0, u′(0) = v 0,
(4)

where for v = [v, z]ᵀ ,ϕ = [ϕ,ψ]ᵀ ∈ V we have

m
(
v,ϕ

) =
∫

Ω

vϕ dx + μ

∫
Γ

zψ ds, (5a)

a
(
v,ϕ

) = cΩ

∫
Ω

∇v · ∇ϕ dx + kΩ

∫
Ω

vϕ dx

+ cΓ

∫
Γ

∇Γ z · ∇Γ ψ ds + kΓ

∫
Γ

zψ ds, (5b)

〈D(v),ϕ〉V ∗×V =
∫

Γ

cΩ (θ(v) − η(z)) ϕ + (dz + ρv) ψ ds, (5c)
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f =
[
fΩ, 1

μ
fΓ

]ᵀ
, (5d)

u 0 =
[
u0, δ0

]ᵀ
, v 0 =

[
v0, ϑ0

]ᵀ
. (5e)

Note that m is an inner product on H and ã:=a + m is an inner product on V .

Remark 2.3 Assumption 2.2 ensures that (4) is globally wellposed, we comment on
this in Sect. 4.1, cf.Corollary 4.4, and Sect. 5.

2.2 Finite element space discretization

For the space discretization of (1) we consider the bulk-surface finite element method
from [7]whichwas also used in [16] to discretize thewave equationwith linear acoustic
boundary conditions.We give a brief introduction of the finite element spaces and refer
to [7] for further details on the bulk-surface finite element method.
The bulk-surface finite element method Let Γ ∈ C p+1 for some p ≥ 1 and let TΩ

h
be a consistent and quasi-uniform mesh consisting of isoparametric elements K of
degree p which discretizes Ω . By h we denote the maximal mesh width of TΩ

h . The
discretized domain is then given by

Ωh =
⋃

K∈TΩ
h

K

and its boundary by Γh = ∂Ωh . The bulk and the surface finite element space of order
p are then defined by

VΩ
h,p:=

{
vh ∈ C(Ωh) | vh

∣∣
K

= v̂h ◦ (FK )−1 with v̂h ∈ Pp(K̂ ) for all K ∈ TΩ
h

}
,

V Γ
h,p:=

{
ϑh ∈ C(Γh) | ϑh = vh

∣∣
Γh

with vh ∈ VΩ
h,p

}
,

respectively. Here, K̂ denotes the reference triangle with corresponding polynomial
space Pp(K̂ ) of order p, and FK is the transformation from K̂ to K . Note that by
construction we have vh

∣∣
Γh

∈ V Γ
h,p for all vh ∈ VΩ

h,p.

As approximation space for V we set Vh = VΩ
h,p ×V Γ

h,p. Note that, sinceΩh is only
an approximation of Ω , we have Vh � V , i.e., the discretization is non-conforming.
Hence, to relate functions in Vh with functions in V , in [7], for vh = [vh, ϑh]ᵀ ∈ Vh
and h < h0 sufficiently small, a lifted version

v�
h =

[
v�
h, ϑ

�
h

]ᵀ ∈ V ∩ (C(Ω) × C(Γ )) (6)

was constructed. By Ih,Ω : C(Ω) → VΩ
h,p and Ih,Γ : C(Γ ) → V Γ

h,p we denote the
order p nodal interpolation operators in Ω and on Γ , respectively, and set for v =
[v, ϑ]ᵀ ∈ V

Ihv = [
Ih,Ωv, Ih,Γ ϑ

]ᵀ ∈ Vh .
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The spatially discretized equation We now state the finite element discretization of
(1). For this, let

∑
Γh

·Δs : C(Γh) → R

be an elementwise defined quadrature formula that approximates the integral
∫
Γh

· ds.
We require that the quadrature formula has positive weights and is of order greater
than 2p, s.t.polynomials up to degree 2p are integrated exactly and we have for all
zh, ψh ∈ V Γ

h,p ∫
Γh

zhψh ds =
∑
Γh

zhψhΔs. (7)

For vh = [vh, zh]ᵀ , ’h = [ϕh, ψh]ᵀ ∈ Vh we define

mh
(
vh,ϕh

) =
∫

Ωh

vhϕh dx + μ

∫
Γh

zhψh ds, (8a)

ah
(
vh,ϕh

) = cΩ

∫
Ωh

∇vh · ∇ϕh dx + kΩ

∫
Ωh

vhϕh dx

+ cΓ

∫
Γh

∇Γ zh · ∇Γ ψh ds + kΓ

∫
Γh

zhψh ds, (8b)

mh
(
Dh(vh),ϕh

) =
∑
Γh

cΩ (θ(vh) − η(zh)) ϕh + (dzh + ρvh) ψhΔs, (8c)

mh
(
fh,ϕh

) =
∫

Ωh

Ih,Ω fΩϕh dx + μ

∫
Γh

1
μ
Ih,Γ fΓ ψh ds. (8d)

Then, the spatial discretization of (1) is given by: seek uh : [0, T ] → Vh s.t.

mh
(
u′′
h, ’h

) + mh
(
Dh(u′

h), ’h
) + ah

(
uh, ’h

) = mh
(
fh, ’h

)
, for t ≥ 0, ’h ∈ Vh,

uh(0) = u 0
h , u′

h(0) = v 0
h .

Remark 2.4 The use of the quadrature formulas instead of the interpolation in the
definition of the discretized nonlinearity Dh is required to prove that Dh is quasi-
monotone, cf.Lemma 5.3.

To prove an error bound of the discretization we pose the following assumptions
on the exact solution and the data:

Assumption 2.5 a) Let T > 0. For the inhomogeneities and the nonlinearities in (1)
we assume the additional regularity

fΩ ∈ L∞([0, T ]; Hmax{2,p}(Ω)
)
, fΓ ∈ L∞([0, T ]; Hmax{2,p}(Γ )

)
, (9a)

θ, η ∈ Cmax{2,p}(R; R). (9b)
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Furthermore, we assume that the strong solution u, δ of (1) satisfies on [0, T ]

u ∈ L∞([0, T ]; H p+1(Ω)
)
, u′ ∈ L∞([0, T ]; H p+2(Ω) ∩ W p+1,∞(Ω)

)
,

u′′ ∈ L∞([0, T ]; Hmax{2,p}(Ω)
)
,

δ ∈ L∞([0, T ]; H p+1(Γ )
)
, δ′ ∈ L∞([0, T ]; H p+1(Γ ) ∩ W p,∞(Γ )

)
,

δ′′ ∈ L∞([0, T ]; Hmax{2,p}(Γ )
)
.

b) Let the discrete initial values satisfy

∥∥∥u 0
h − Ihu 0

∥∥∥
H1

+
∥∥∥v 0

h − Ihv 0
∥∥∥
H0

≤ Civh
p

with a constant Civ independent of h.

As main theorem, we state the following error bound for the finite element discretiza-
tion of the wave equation with nonlinear acoustic boundary conditions.

Theorem 2.6 Let Assumption 2.2 be satisfied and u = [u, δ]ᵀ be the solution of (1) on
[0, T ]. Further, let Assumption 2.5 be satisfied and let uh = [uh, δh]ᵀ be the spatial
approximation of u, obtained with the bulk-surface finite element method of order p.
Then, there exists some h0 > 0 s.t. the error bound

∥∥∥u�
h − u

∥∥∥
H1

+
∥∥∥(u′

h)
�(t) − u′(t)

∥∥∥
H0

≤ Ce( 12+c′)t (1 + t)h p

holds true for all h < h0, where c′ = 1
μ

(
L2

ηcΩ
4θ0

− d
)
and C is a constant independent

of h.

In the next two sections we will now present a general theory for the error analysis
of non-conforming space discretizations which we then use to proof Theorem 2.6 in
Sect. 5.

3 Abstract space discretizations of first-order evolution equations
withmonotone operators

In this section we present the unified error analysis for abstract space discretizations
of first-order evolution equations with maximal monotone operators. This generalizes
the results from [16] and [18] for linear and semilinear equations, respectively. The
results of this section are part of the dissertation [20].

We first present the continuous equation and the corresponding abstract space dis-
cretization, before we prove an error bound.
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3.1 Analytical setting

Let X be a Hilbert space with scalar product
(·, ·)X in which we consider the evolution

equation

x ′(t) + S(x(t)) = g(t), t ≥ 0, (10a)

x(0) = x0 ∈ D(S). (10b)

In the following,we omit the t arguments in evolution equations.Wepose the following
classical assumptions to ensure that (10) is wellposed.

Assumption 3.1 a) The nonlinear operator S : D(S) → X is quasi-monotone and
maximal, i.e., there is a cqm > 0 s.t.

(
S(y) − S(z), y − z

)
X ≥ −cqm ‖y − z‖2X for all y, z ∈ D(S),

and there exists some λ > cqm s.t.. range(λ + S) = X .
b) The inhomogeneity satisfies g ∈ W 1,1

loc ([0,∞); X).

The following wellposedness result can, e.g., be found in [25, Corollary IV.4.1].

Theorem 3.2 Let Assumption 3.1 hold true. Then, the evolution equation (10) is glob-
ally wellposed, i.e., (10) has a unique strong solution x ∈ C([0,∞); X)which satisfies
x(t) ∈ D(S) for all t ∈ [0,∞), x(0) = x0, and (10a) is satisfied for almost all
t ∈ [0,∞).

We further state the following stability result which is essential for the latter error
analysis.

Theorem 3.3 Let Assumption 3.1 be satisfied and for T > 0 and i = 1, 2 let xi be the
strong solutions of

x ′
i + S(xi ) = gi , t ∈ [0, T ],

xi (0) = x0i ∈ D(S)

with gi ∈ W 1,1([0, T ]; X). Then for all t ∈ [0, T ]

‖x1(t) − x2(t)‖X ≤ ecqmt
(

‖x01 − x02‖X +
∫ t

0
e−cqms‖g1(s) − g2(s)‖X ds

)
.

Proof The result can be derived with energy estimates similar to [25, Theorem
IV.4.1A]. ��

3.2 Abstract space discretization

We now present an abstract space discretization of the evolution equation (10). Let
(Xh)h be a family of finite dimensional vector spaces with scalar products

(·, ·)Xh
,
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where h is a discretization parameter, e.g., the maximal mesh width of a finite element
discretization. For all Xh ∈ (Xh)h we seek an approximations xh ∈ Xh to the solution
x of (10). Therefore, let Sh and gh be approximations of S and g, respectively, which
satisfy the following assumptions similar to Assumption 3.1.

Assumption 3.4
a) The nonlinear operator Sh : Xh → Xh is quasi-monotone, i.e., there is a ĉqm > 0

independent of h s.t.

(
Sh(yh) − Sh(zh), yh − zh

)
Xh

≥ −ĉqm‖yh − zh‖2X for all yh, zh ∈ Xh .(11)

b) The inhomogeneity satisfies gh ∈ W 1,1
loc ([0;∞); Xh).

The discretized evolution equation is then given by

x ′
h + Sh(xh) = gh, t ≥ 0, (12a)

xh(0) = x0h . (12b)

Since these assumptions are similar to the continuous case, we obtain by Theorem 3.2
that (12) is globally wellposed.

In the following we introduce a framework for the error analysis of the abstract
space discretization that is similar to the linear case presented in [16]. To cover non-
conforming space discretizations where Xh � X , as they appear in Sect. 2, we make
the following assumptions to relate the discrete and the continuous problem.

Assumption 3.5
a) There exists a lift operator Lh ∈ L(Xh, X) which satisfies

‖Lh yh‖X ≤ ĈX‖yh‖Xh for all yh ∈ Xh (13)

for some constant ĈX > 0 independent of h. The adjoint of the lift operator
L∗
h ∈ L(X , Xh) is defined via

(
L∗
h y, yh

)
Xh

= (
y,Lh yh

)
X , for all y ∈ X , yh ∈ Xh .

b) Let Z ↪→ X be a densely embedded subspace of X on which a reference operator
Jh ∈ L(Z; Xh) is defined which satisfies

‖Jh‖Xh←Z ≤ ĈJh

for some constant ĈJh > 0 independent of h.

As the termLh Jh−I appears in the error bound in Theorem 3.7, the reference operator
should be chosen such that the approximation Lh Jhz ≈ z (z ∈ Z ) is of the order of
convergence which one wants to proof for the spatial discretization. It could, e.g., be
an interpolation or a projection operator. One possible example for a lift operator is
the lift defined in (6). We will consider this in Sect. 5.

The space discretization error bound is given in terms of the following terms:
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Definition 3.6 (Remainder and error terms)

a) The remainder of the nonlinear monotone operator is given by

Rh : D(S) ∩ Z → Xh, Rh(z):=L∗
hS(z) − Sh (Jhz) . (14)

b) We define the error term

Eh(t) = ‖x0h − Jh X
0‖xh(+)t

∥∥e−ĉqm·(L∗
h − Jh)x

′∥∥L∞([0,t];Xh)

+ t‖e−ĉqm·Rh(x)‖L∞([0,t];Xh) + t‖e−ĉqm·L∗
hg − gh‖L∞([0,t];Xh).

(15)

We now can state and prove an error bound of the abstract space discretization, cf.[20,
Thm. 2.10].

Theorem 3.7 Let Assumptions 3.1, 3.4, and 3.5 be satisfied and x be the strong solution
of (10) on [0, T ] with x, x ′ ∈ L∞([0, T ]; Z). Furthermore, let xh be the solution of
(12) on [0, T ]. Then, for all t ∈ [0, T ] the lifted discrete solution satisfies the error
bound

‖Lhxh(t) − x(t)‖X ≤ ĈXe
ĉqmt Eh(t) + ‖(I−Lh Jh)x(t)‖X . (16)

Proof We split the error via Lhxh(t) − x(t) = Lheh + (Lh Jh − I)x(t), where

eh(t) = xh(t) − Jhx(t) ∈ Xh

is the discrete error. The full error can thus be bounded by

‖Lhxh(t) − x(t)‖X ≤ ĈX‖eh‖Xh + ‖(Lh Jh − I)x(t)‖X (17)

and we further investigate the discrete error. By applying the adjoint lift to (10a) we
obtain

L∗
hx

′ + L∗
hS(x) = L∗

hg.

Adding Jhx ′, Sh(Jhx), and gh on both sides yields

Jhx
′ + Sh(Jhx) = gh + Δh (18)

where

Δh = (
Jh − L∗

h

)
x ′ + Sh(Jhx) − L∗

hS(x) + L∗
hg − gh . (19)

Under Assumption 3.4, the stability estimate from Theorem 3.3 holds also true in the
discrete case with ĉqm instead of cqm. Hence, we obtain by Theorem 3.3 applied to
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(12) and (18) the following bound for the discrete error

‖eh(t)‖Xh ≤ eĉqmt
(

‖x0h − Jhx
0‖Xh +

∫ t

0
e−ĉqms‖Δh(s)‖ ds

)

≤ eĉqmt
(
‖x0h − Jhx

0‖ + t‖e−ĉqm·Δh‖L∞([0,T ];Xh)

)
≤ eĉqmt Eh(t),

(20)

where we used (19) and (14). Together with (17), we finally obtain (16). ��
In the following section we will use this result to derive error bounds for second-

order nonlinear wave-type equations.

4 Abstract space discretizations of second-order evolution equations
with nonlinear damping

In this section we apply the theory of Sect. 3 to second-order evolution equations. As
in the previous section, we first introduce the continuous problem and then present and
analyze the abstract space discretization. This is a generalization of the linear unified
error analysis introduced in [16] and also an extension of the framework considered
in the dissertation [20] which does not cover the acoustic boundary conditions with
nonlinear coupling from Sect. 2, cf.Remark 4.2 and Sect. 5.

4.1 Analytical setting

Let V , H be Hilbert spaces es and let V be densely embedded in H . We consider the
following variational equation, which is typical for a weak formulation of a second-
order partial differential equation. Seek u ∈ C2([0, T ]; H) ∩ C1([0, T ]; V ) with

m
(
u′′, ϕ

) + 〈D(u′), ϕ〉V ∗×V + a
(
u, ϕ

) = m
(
f , ϕ

)
, for t ≥ 0 and all ϕ ∈ V ,

u(0) = u0, u′(0) = v0,
(21)

To ensure the wellposedness of (21) we pose the following assumptions.

Assumption 4.1

a) The bilinear formm : H ×H → R is a scalar product on H with induced complete
norm ‖·‖m · In the following, we equip H with m.

b) The bilinear form a : V ×V → R is symmetric and there exists a constant cG ≥ 0
s.t.

ã:=a + cGm

is a scalar product on V with induced complete norm ‖·‖ã . From now on, we equip
V with ã.
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c) The nonlinearity D ∈ C(V ; V ∗) satisfies D(0) = 0 and is quasi-monotone, i.e.,
there is a constant βqm ≥ 0 s.t.

〈D(v) − D(w), v − w〉V ∗×V ≥ −βqm‖v − w‖m for all v,w ∈ V .

d) The inhomogeneity satisfies f ∈ W 1,1
loc ([0,∞); H).

We denote by CH ,V the embedding constant of V into H , i.e.,

‖v‖ ≤ CH ,V ‖v‖ã for all v ∈ V . (22)

Formulation as evolution equationWe identify H with its dual space H∗ to obtain the
Gelfand triple

V ↪→ H ∼= H∗ ↪→ V ∗ (23)

with dense embeddings. We thus have for all v ∈ V , w ∈ H

m
(
v,w

) = 〈w, v〉V ∗×V .

To reformulate (21) as an evolution equation, we define the operator A ∈ L(V , V ∗)
associated to a via

〈Av,w〉V ∗×V :=a
(
v,w

)
for all v,w ∈ V . (24)

Then, we can rewrite (21) equivalently as an evolution equation in V ∗: Seek u ∈
C2([0, T ]; H) ∩ C1([0, T ]; V ) satisfying

u′′ + D(u′) + Au = f , t ≥ 0,

u(0) = u0, u′(0) = v0.
(25)

Note that (25) implicitly contains the condition

D(u′) + Au ∈ H

due to u′′, f ∈ H .

Remark 4.2 In [20], the stricter assumption D ∈ C(V ; H) was posed. However, this
does not cover the acoustic boundary conditions with nonlinear coupling (1c) as we
will see in Sect. 5, cf.Remark 5.2.

First-order formulationWe rewrite (25) into a first-order formulation in the framework
of Sect. 3.1. For this let u′ = v and we define

x =
[
u
v

]
, S(x) =

[ −v

Au + D(v)

]
, g =

[
0
f

]
, x0 =

[
u0

v0

]
(26)
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with

X = V × H , D(S) =
{
[u, v]ᵀ ∈ V × V | Au + D(v) ∈ H

}
. (27)

Then, (25) is equivalent to the first-order evolution equation (10).
In the following we show that the assumptions of Sect. 3.1 are satisfied. The sub-

sequent lemma is a slight extension of [20, Lemma 2.14].

Lemma 4.3 The nonlinear operator S is maximal and quasi-monotone with constant

cqm = 1

2
cGCH ,V + βqm

and D(S) is dense in X.

Proof We start by proving the quasi-monotonicity. For x1 = [u1, v1]ᵀ , x2 =
[u2, v2]ᵀ ∈ D(S) we calculate by using Assumption 4.1, (23), and the definitions
of S and A

(
S(x1) − S(x2), x1 − x2

)
X

= −ã
(
v1 − v2, u1 − u2

) + m
(
Au1 + D(v1) − Au2 − D(v2), v1 − v2

)
= −ã

(
v1 − v2, u1 − u2

)+a
(
u1 − u2, v1 − v2

)+〈D(v1) − D(v2), v1 − v2〉V ∗×V

≥ −cGm
(
v1 − v2, u1 − u2

) − βqm‖v1 − v2‖2m
≥ −cG‖v1 − v2‖m‖u1 − u2‖m − βqm‖v1 − v2‖2m
≥ −cGCH ,V ‖u1 − u2‖ã‖v1 − v2‖m − βqm‖v1 − v2‖2m
≥ −1

2
cGCH ,V

(
‖u1 − u2‖ã2 + ‖v1 − v2‖2m

)
− βqm‖v1 − v2‖2m

≥ −
(
1

2
cGCH ,V + βqm

)
‖x1 − x2‖X 2.

In the next step we prove the maximality and proceed similar as in the proof of
[27, Theorem 4.1]. We have to show that there exists a λ > 0 such that for every
h = [h1, h2]ᵀ ∈ X = V × H there exists a solution x = [v,w]ᵀ ∈ D(S) of the
stationary problem (λ + S)x = h or equivalently

λv − w = h1, (28a)

λw + Av + D(w) = h2. (28b)

By solving (28a) for v and plugging it into (28b) we obtain

λw + 1

λ
Aw + D(w) = h2 − 1

λ
Ah1:=h̃ ∈ V ∗. (29)
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We thus investigate the operator T = λ + 1
λ
A + D ∈ C(V ; V ∗) which can be

decomposed via T = T1 + T2 with

T1 = 1

λ

(
λ2

2
+ A

)
, T2 = λ

2
+ D.

For

λ > max{cqm,
√
2cG , 2βqm}

we then have that T is monotone as the sum of monotone operators. Further, we have
for all v ∈ V

〈T (v), v〉V ∗×V = 〈T1(v), v〉V ∗×V + 〈T2(v), v〉V ∗×V

≥ 1

λ
‖v‖ã2 + 〈T2(v) − T2(0), v − 0〉V ∗×V

≥ 1

λ
‖v‖ã2,

where we used that T1 is coercive due to the choice of λ, and T2 is monotone with
T2(0) = 0. Thus, T is coercive, i.e.

〈T (v), v〉V ∗×V

‖v‖ã → ∞ for ‖v‖ã → ∞.

We apply [3, Corollary 2.3] stating that continuous, monotone, and coercive operators
from a reflexive Banach space to its dual space are surjective. This yields the existence
of a solution v ∈ V of (29) and thus also of a solution x = [v,w]ᵀ ∈ V × V of (28).
We further obtain by (28b) x ∈ D(S) since

Av + D(w) = h2 − λw ∈ H .

The density of D(S) in X follows from the maximality and the quasi-monotonicity
of S and S(0) = 0, cf [25, Prop. I.4.2]. ��
Corollary 4.4 Assumption 4.1 implies that the first-order formulation of (25) satisfies
Assumption 3.1.

Proof By Lemma 4.3 we have that Assumption 3.1 a) is satisfied. Assumption 3.1 b)
is directly implied by Assumption 4.1 d). ��

By Theorem 3.2 we then directly obtain the wellposedness of (21).

Corollary 4.5 Let Assumption 4.1 hold true and let
[
u0, v0

]ᵀ ∈ D(S), i.e., u0, v0 ∈ V
with Au0 + D(v0) ∈ H. Then, (21) is globally wellposed, i.e., there exists a unique
strong solution [u, v]ᵀ ∈ C([0,∞); V × H).
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4.2 Space discretization

We consider a family (Vh)h of finite dimensional vector spaces related to a discretiza-
tion parameter h and the following discretized version of (21) in Vh ∈ (Vh)h : seek
uh ∈ C2([0, T ]; Vh) with

mh
(
u′′
h , ϕh

) +mh
(
Dh(u′

h), ϕh
) + ah

(
uh , ϕh

) = mh
(
fh , ϕh

)
, for all ϕh ∈ Vh, t ≥ 0,

uh(0) = u0h , u′
h(0) = v0h . (30)

Here, mh, ah,Dh, and fh are approximations of the corresponding continuous coun-
terparts.

We pose the following assumptions similar to Assumption 4.1.

Assumption 4.6 All constants in the following statements are independent of h.

a) The bilinear form mh is a scalar product on Vh . We denote Vh equipped with this
scalar product mh by Hh and the induced norm by ‖·‖mh .

b) The bilinear form ah : Vh × Vh → R is symmetric and there exists a constant
ĉG ≥ 0 s.t.

ãh :=ah + ĉGmh

is a scalar product on Vh with induced norm ‖·‖ãh . In the following, we equip Vh
with ãh .

c) The nonlinearity Dh ∈ C(Vh; Hh) satisfies Dh(0) = 0 and is continuous and
quasi-monotone with constant β̂qm.

d) The inhomogeneity satisfies fh ∈ W 1,1
loc ([0,∞); Hh).

e) There exists a constant ĈH ,V > 0 s.t.

‖vh‖mh ≤ ĈH ,V ‖vh‖ãh for all vh ∈ Vh . (31)

The operator Ah ∈ L(Vh; Vh) related to ah is defined via

mh
(
Ahvh, wh

):=ah
(
vh, wh

)
for all vh, wh ∈ Vh .

We then can reformulate (30) as an evolution equation in Vh :

u′′
h + Dh(u

′
h) + Ahuh = fh, t ≥ 0,

uh(0) = u0h, u′
h(0) = v0h .

(32)

Analogously to the continuous equation we rewrite (32) in a first-order formulation
and therefore define Xh = Vh × Hh . With

xh =
[
uh
vh

]
, Sh(xh) =

[ −vh
Ahuh + Dh(vh)

]
, gh =

[
0
fh

]
, x0h =

[
u0h
v0h

]
, (33)

(32) is then of the form (12).
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Corollary 4.7 Assumption 4.6 implies that the first-order formulation of (32) satisfies
Assumption 3.4. Furthermore, (11) holds true with ĉqm = 1

2 ĉGĈH ,V + β̂qm.

Proof Since the setting in the discrete case from Assumption 4.6 is similar to the
continuous one from Assumption 4.1 with constants independent of h, the proof of
Lemma 4.3 transfers directly to the discrete case. ��

Similar to the first-order case, we require the existence of suitable operators to relate
continuous and discrete functions of the abstract non-conforming space discretization.

Assumption 4.8

a) There exists a lift operator LV
h ∈ L(Vh; V ) satisfying

‖LV
h vh‖m ≤ ĈH‖vh‖mh , ‖LV

h vh‖ã ≤ ĈV ‖vh‖ãh , (34)

for all vh ∈ Vh with constants ĈH , ĈV > 0 independent of h.
b) There exists an interpolation operator Ih ∈ L(ZV ; Vh), defined on a dense subspace

ZV of V , which satisfies

‖Ih‖Hh←ZV ≤ ĈIh (35)

with a constant ĈIh > 0 independent of h.

To apply the results of Sect. 3.2, we now define the first-order reference and lift oper-
ator.

Definition 4.9

a) The adjoint lift operators LV∗
h : V → Vh and LH∗

h : H → Hh w.r.t. the scalar
products of V and H are defined via

mh
(
LH∗
h v,wh

):=m
(
v,LV

h wh
)

for all v ∈ H , wh ∈ Hh,

ãh
(
LV∗
h v,wh

):=ã
(
v,LV

h wh
)

for all v ∈ V , wh ∈ Vh .
(36)

b) We define the first-order lift operator Lh : Xh → X by

Lh

[
vh
wh

]
:=

[
LV
h vh

LV
h wh

]
.

c) We define the first-order reference operator Jh : Z → Xh by

Jh

[
v

w

]
:=

[
LV∗
h v

Ihw

]
(37)

on Z = V × ZV d
↪→ X .
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Lemma 4.10 The first-order lift and reference operators from Definition 4.9 satisfy
Assumption 3.5 with ĈX = max{ĈV , ĈH } and ĈJh = max{ĈV , ĈIh }.
Proof This is a direct consequence of Assumption 4.8. ��

In the following we now bound the first-order remainder term which is for z =
[v,w]ᵀ ∈ D(S) ∩ Z given by

Rh(z) = L∗
hS(z) − Sh Jh(z) =

[ −(LV∗
h − Ih)w

LH∗
h (Av + D(w)) − (

AhL
V∗
h v + Dh(Ihw)

)] .

(38)

To do so, we use the following error terms in the scalar products, which are for
vh, wh ∈ Vh defined via

Δm
(
vh, wh

):=m
(
LV
h vh,L

V
h wh

) − mh
(
vh, wh

)
,

Δã
(
vh, wh

):=ã
(
LV
h vh,L

V
h wh

) − ãh
(
vh, wh

)
.

(39)

We obtain the following bound for the remainder term, cf.[20, Lem. 2.23]

Lemma 4.11 Let Assumption 4.1 and 4.6 be satisfied. Then, for z = [v,w]ᵀ ∈ D(S)∩
Z, the remainder of the monotone operator can be bounded by

‖Rh(z)‖Xh ≤ C
(

max‖ϕh‖ãh=1

∣∣Δã
(
Ihw, ϕh

)∣∣ + max‖ϕh‖ãh=1

∣∣Δã
(
Ihv, ϕh

)∣∣
+ max‖ψh‖mh=1

∣∣Δm
(
Ihv,ψh

)∣∣ + ‖(I−LV
h Ih)v‖ã + ‖

(
I−LV

h Ih
)

w‖ã

+ max‖ψh‖mh=1

∣∣∣〈D(w),LV
h ψh〉V ∗×V − mh

(
Dh(Ihw),ψh

)∣∣∣ ), (40)

i.e., against errors in the scalar products, interpolation errors, and the discretization
error of the nonlinear operator.

Proof The proof works similar to the proof of [16, Lemma 4.7] and relies on the
identity

‖Rh(z)‖Xh = max‖yh‖Xh=1

(
Rh(z), yh

)
Xh

,

where
(·, ·)Xh

is the scalar product on Xh . Thus, let yh = [ϕh, ψh]ᵀ ∈ Xh with
‖yh‖Xh = 1. By (38) we obtain

(
Rh(z), yh

)
Xh

= −ãh
(
(LV∗

h − Ih)w, ϕh
) + mh

(
LH∗
h (Av + D(w)) − (

AhL
V∗
h v + Dh(Ihw)

)
, ψh

)
= −

(
ã
(
w,LV

h ϕh
) − ãh

(
Ihw, ϕh

)) +
(
a
(
v,LV

h ψh
) − ah

(
LV∗
h v,ψh

))
+ 〈D(w),LV

h ψh〉V ∗×V − mh
(
Dh(Ihw),ψh

)
,
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(41)

and we bound the first two summands separately. To bound the first one, we use (39),
(34), and ‖ϕh‖ãh ≤ 1 to obtain

∣∣∣ã(
w,LV

h ϕh
) − ãh

(
Ihw, ϕh

)∣∣∣ ≤
∣∣∣ã(

w,LV
h ϕh

) − ã
(
LV
h Ihw,LV

h ϕh
)∣∣∣ + ∣∣Δã

(
Ihw, ϕh

)∣∣
≤ ‖

(
I−LV

h Ih
)

w‖ã‖LV
h ϕh‖ã + ∣∣Δã

(
Ihw, ϕh

)∣∣
≤ ĈV ‖

(
I−LV

h Ih
)

w‖ã + max‖ϕh‖ãh=1

∣∣Δã
(
Ihw, ϕh

)∣∣ .
(42)

By using the definitions of ã, ãh , ‖ψh‖mh ≤ 1 and (39), (22), (34), (31), we bound the
second summand in (41) via

a
(
v,LV

h ψh
) − ah

(
LV∗
h v,ψh

)
= ã

(
v,LV

h ψh
) − ãh

(
LV∗
h v,ψh

) −
(
cGm

(
v,LV

h ψh
) − ĉGmh

(
LV∗
h v,ψh

))
≤ max{cG, ĉG}

∣∣∣m(
v,LV

h ψh
) − mh

(
LV∗
h v,ψh

)∣∣∣
≤ max{cG, ĉG}

( ∣∣∣m(
(I−LV

h Ih)v,LV
h ψh

)∣∣∣ + ∣∣Δm
(
Ihv,ψh

)∣∣
+ mh

(
(Ih − LV∗

h )v, ψh
))

≤ max{cG, ĉG}
(
ĈHCH ,V ‖(I−LV

h Ih)v‖ã + max‖ψh‖mh=1

∣∣Δm
(
Ihv,ψh

)∣∣
+ ĈH ,V ‖(Ih − LV∗

h )v‖ãh
)
.

Similar to (42), we further estimate

‖(Ih − LV∗
h )v‖ãh = max‖ϕh‖ãh=1

ãh
(
(Ih − LV∗

h )v, ϕh
)

= max‖ϕh‖ãh=1
ãh

(
Ihv, ϕh

) − ã
(
v,LV

h ϕh
)

≤ ĈV ‖
(
I−LV

h Ih
)

v‖ã + max‖ϕh‖ãh=1

∣∣Δã
(
Ihv, ϕh

)∣∣ .
We finally obtain the assertion by collecting all terms. ��

We are now in the position to prove the following error bound which is a gen-
eralization of [20, Thm. 2.24], cf. Remark 4.2. It is applicable to all equations and
space discretizations fitting in the abstract framework of this section. In the disser-
tation [20], it was used to prove novel convergence rates for the wave equation with
nonlinear kinetic boundary conditions and in this paper, we use it to prove Theorem
2.6.
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Theorem 4.12 Let Assumptions 4.1, 4.6, and 4.8 be satisfied and u be the strong
solution of (25) on [0, T ] with u, u′, u′′ ∈ L∞([0, T ]; ZV ). Further, let uh be the
semidiscrete solution of (32) on [0, T ]. Then, for all t ∈ [0, T ], the lifted semidiscrete
solution satisfies the error bound

‖LV
h uh(t) − u(t)‖ã + ‖LV

h u
′
h(t) − u′(t)‖m ≤ Ceĉqmt (1 + t)

4∑
i=1

Eh,i

(43)

with a constant C that is independent of h and t. The other constants are given by

ĉqm = 1

2
ĉGĈH ,V + β̂qm,

and the abstract space discretization errors

Eh,1 =‖u0h − LV∗
h u0‖ãh + ‖v0h − Ihv

0‖mh + ‖e−ĉqm· (LH∗
h f − fh

)
‖L∞([0,T ];H),

Eh,2 =∥∥e−ĉqm· max‖ψh‖mh=1

∣∣∣〈D(u′),LV
h ψh〉V ∗×V − mh

(
Dh(Ihu

′), ψh
)∣∣∣∥∥L∞(0,T ),

Eh,3 =‖e−ĉqm·(I−LV
h Ih)u‖L∞([0,T ];V ) + ‖e−ĉqm·(I−LV

h Ih)u
′‖L∞([0,T ];V )

+ ‖e−ĉqm·(I−LV
h Ih)u

′′‖L∞([0,T ];H),

Eh,4 =∥∥e−ĉqm· max‖ϕh‖ãh=1
Δã

(
Ihu, ϕh

)∥∥L∞(0,T )

+ ∥∥e−ĉqm· max‖ψh‖mh=1
Δm

(
Ihu, ψh

)∥∥L∞(0,T )

+ ∥∥e−ĉqm· max‖ϕh‖ãh=1
Δã

(
Ihu

′, ϕh
)∥∥L∞(0,T )

+ ∥∥e−ĉqm· max‖ψh‖mh=1
Δm

(
Ihu

′′, ψh
)∥∥L∞(0,T ).

(44)

Proof By Corollaries 4.4, 4.7, and Lemma 4.10, we have that the first-order formula-
tions of (25) and (32) satisfy all assumptions of Theorem 3.7.

By applying Theorem 3.7 and employing the error bound (16), we obtain

‖LV
h uh(t) − u(t)‖ã + ‖LV

h u
′
h(t) − u′(t)‖2m

≤ 2
(
‖LV

h uh(t) − u(t)‖ã2 + ‖LV
h u

′
h(t) − u′(t)‖2m

) 1
2

= 2‖Lhxh(t) − x(t)‖X
≤ 2ĈXe

(
L̂T ,Mh+ĉqm

)
t Eh(t) + 2‖(I−Lh Jh)x(t)‖X

with

Eh(t) = ‖x0h − Jhx
0‖Xh(+)t

∥∥e−ĉqm·(L∗
h − Jh)x

′∥∥L∞([0,T ];Xh)
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+ t‖e−ĉqm·Rh(x)‖L∞([0,T ];Xh) + t‖e−ĉqm·(L∗
hg − gh)‖L∞([0,T ];Xh).

In the remaining proof, we bound the different terms against Eh,i , i = 1, . . . , 4. For
the remainder term we apply the bound (40) and obtain for all t ∈ [0, T ]

‖Rh(x(t))‖Xh(≤)C(Eh,2 + Eh,3 + Eh,4),

By the definitions of Jh and L∗
h we further have for the discretization errors of the

initial values and the inhomogeneity

‖x0h − Jhx
0‖xh(+)‖L∗

hg − gh‖L∞([0,T ];Xh) ≤ CEh,1.

The reference error can be decomposed for all t ∈ [0, T ] via

‖(I−Lh Jh)x(t)‖X ≤ ‖(I−LV
h L

V∗
h )u(t)‖ã + ‖(I−LV

h Ih)u
′(t)‖m(I−LV

h Ih)u
′(t)

≤ ‖(I−LV
h L

V∗
h )u(t)‖ã + eĉqmt Eh,3,

where we have similar to (42)

‖(I−LV
h L

V∗
h )u‖ã ≤ ‖(I−LV

h Ih)u‖ã + ‖LV
h (Ih − LV∗

h )u‖ã
≤ CEh,3 + ĈV max‖ϕh‖ãh=1

(
ãh

(
Ihu, ϕh

) − ã
(
u,LV

h ϕh
))

≤ CEh,3 + Ĉ2
V ‖

(
I−LV

h Ih
)
u‖ã + ĈV max‖ϕh‖ãh=1

∣∣Δã
(
Ihu, ϕh

)∣∣
≤ Ceĉqmt (Eh,3 + Eh,4).

In the same way, we finally bound

‖(L∗
h − Jh)x

′ ‖xh ≤ ‖(LH∗
h − Ih)u

′′‖mh

≤ ĈH‖
(
I−LV

h Ih
)
u′′‖m

(
I−LV

h Ih
)
u′′

+ max‖ψh‖mh=1

∣∣Δm
(
Ihu

′′, ψh
)∣∣

≤ Ceĉqmt (Eh,3 + Eh,4).

��

Having this abstract theory at hand, we can now return to the wave equation with
nonlinear acoustic boundary conditions from Sect. 2 and give the proof of Theorem
2.6 in the next section.
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5 Numerical analysis of wave equations with nonlinear acoustic
boundary conditions

In this section we will use the unified error analysis for second-order equations from
Sect. 4 to prove the error bound from Theorem 2.6. We start by verifying that all
assumptions are satisfied.

Lemma 5.1 Let Assumption 2.2 be satisfied. Then, with the definitions in (5), Assump-

tion 4.1 is satisfied with βqm = 1
μ

(
L2

ηcΩ
4θ0

− d
)
, cG = 1, and CH ,V = 1.

Proof We clearly have that m is a scalar product on H and that ã:=a + m is a scalar
product on V . Further, Assumption 2.2 d) directly implies Assumption 4.1 d).

Thus it remains to prove Assumption 4.1 c). By Assumption 2.2 a), b), c) and (5a),
(5c) we obtain

〈D(v1) − D(v2), v1 − v2〉V ∗×V

=
∫

Γ

cΩ (θ(v1) − θ(v2) − (η(z1) − η(z2))) (v1 − v2)

+ (d(z1 − z2) + ρ(v1 − v2)) (z1 − z2) ds

≥
∫

Γ

cΩθ0 |v1 − v2|2 + d |z1 − z2|2

+ cΩ

(
ρ

cΩ

(z1 − z2) − (η(z1) − η(z2))

)
(v1 − v2) ds

≥
∫

Γ

cΩθ0 |v1 − v2|2 + d |z1 − z2|2 − cΩ Lη |(z1 − z2)(v1 − v2)| ds

≥
∫

Γ

cΩθ0 |v1 − v2|2 + d |z1 − z2|2 − cΩθ0 |v1 − v2|2 − L2
ηcΩ

4θ0
|z1 − z2|2 ds

≥
(
d − L2

ηcΩ

4θ0

)
‖z1 − z2‖2L2(Γ )

≥ −βqm‖v1 − v2‖2m .

This proves the the quasi-monotonicity of D.
In the next step we show D ∈ C(V ; V ∗). We emphasize that the trace inequality

v �→ v
∣∣
Γ

∈ C(H1(Ω); Lq(Γ )) (45)

holds true for q = ζ + 1 with ζ from the growth condition (3), cf.[24, Thms. 2.4.2
and 2.4.6]. For v1 = [v1, z1]ᵀ , v2 = [v2, z2]ᵀ ,ϕ = [ϕ,ψ]ᵀ ∈ V with ‖ϕ‖ã = 1
this yields together with the Hölder and the Minkowski inequalities and the global
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Lipschitz continuity of η

∣∣〈D(v2) − D(v2),ϕ〉V ∗×V
∣∣

=
∣∣∣∣
∫
Γ
cΩ

(
θ(v1) − θ(v2) − (

η(z1) − η(z2)
))

ϕ + (d(z1 − z2) + ρ(v1 − v2)) ψ ds

∣∣∣∣
≤ cΩ

(
‖θ(v1) − θ(v2)‖

L
q

q−1 (Γ )
+ ‖η(z1) − η(z2)‖

L
q

q−1 (Γ )

)
‖ϕ‖Lq (Γ )

+
(
d ‖z1 − z2‖L2(Γ ) + ρ ‖v1 − v2‖L2(Γ )

)
‖ψ‖L2(Γ )

≤ cΩ
(

‖θ(v1) − θ(v2)‖
L

q
q−1 (Γ )

+ C ‖z1 − z2‖L2(Γ )

)
max{1, 1

cΩ
}‖ϕ‖ã

+
(
d ‖z1 − z2‖L2(Γ ) + ρC ‖v1 − v2‖H1(Ω)

) 1

μ
‖ϕ‖ã

≤ max{cΩ, 1}
(

‖θ(v1) − θ(v2)‖
L

q
q−1 (Γ )

+ C ‖z1 − z2‖L2(Γ )

)

+ 1

μ

(
d ‖z1 − z2‖L2(Γ ) + ρC ‖v1 − v2‖H1(Ω)

)
.

(46)

We hence obtain

‖D(v2) − D(v2)‖V ∗

= sup
‖ϕ‖ã=1

∣∣〈D(v2) − D(v2),ϕ〉V ∗×V
∣∣

≤ C

(
‖θ(v1) − θ(v2)‖

L
q

q−1 (Γ )
+ ‖z1 − z2‖L2(Γ ) + ‖v1 − v2‖H1(Ω)

)
.

By the trace inequality (45), the growth condition (3), the relation ζ = q −1, and [12,

Theorem 2] we further have v �→ θ(v) ∈ C(H1(Ω); L q
q−1 (Γ )). This yields

‖D(v2) − D(v2)‖V ∗ → 0 for ‖v1 − v2‖ã → 0

which proves D ∈ C(V , V ∗). ��
Remark 5.2 It is not possible to prove the stronger condition D ∈ C(V , H). This is
due to the fact that the calculation (46) strongly relies on ϕ ∈ H1(Ω) and is not
possible for a test function ϕ ∈ L2(Ω).

Lemma 5.1 ensures that the weak formulation (4) of (1) fits in the setting of Sect. 4.1
and, hence, is locally wellposed by Corollary 4.4.

We now prove, that the bulk-surface finite element space discretization from
Sect. 2.2 fits into the abstract setting of Sect. 4.2.

Lemma 5.3 Let Assumption 2.2 hold true. Then, the bulk-surface finite element space

discretization of (1) satisfies Assumption 4.6 with β̂qm = 1
μ

(
L2

ηcΩ
4θ0

− d
)
, ĉG = 1, and

ĈH ,V = 1.
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Proof Since ah and mh are defined as in continuous case, Assumption 4.6 a) and b)
are satisfied. Assumption 4.6 d) follows from Assumption 2.2 d) and the continuity of
the interpolation operator.

It remains to prove Assumption 4.6 c). To show the quasi-monotonicity, we proceed
analogously to the proof in the continuous case from Lemma 5.1 and obtain by (8c)

mh
(
Dh(v1h) − Dh(v2h), v1h − v2h

) =
∑
Γh

cΩ
(
θ(v1h) − θ(v2h) − (η(z1h) − η(z2h))

)
(v1h − v2h)

+
(
d(z1h − z2h) + ρ(v1h − v2h)

)
(z1h − z2h)Δs

≥
(
d − L2ηcΩ

4θ0

)∑
Γh

∣∣∣z1h − z2h

∣∣∣2 Δs

=
(
d − L2ηcΩ

4θ0

)∥∥∥z1h − z2h

∥∥∥2
L2(Γh)

≥ −β̂qm‖v1h − v2h‖mh ,

where we used that the quadrature formula has positive weights and satisfies (7).
Finally,Dh is continuous, since Vh is a finite dimensional space and, thus, conver-

gence in Vh implies uniform pointwise convergence and especially convergence in all
quadrature nodes. ��

To prove an error bound for the semidiscretization, we apply the theory of Sect. 4.2
and therefore have to specify the operators from Assumption 4.8.

Definition 5.4

a) The lift operator LV
h ∈ L(Vh; V ) is defined via

LV
h [vh, zh]

ᵀ :=
[
v�
h, z

�
h

]ᵀ
for all [vh, zh]

ᵀ ∈ Vh

with v�
h from (6).

b) We set ZV :=H2(Ω) × H2(Γ ) ⊂ C(Ω) × C(Γ ).
c) We define the interpolation operator via Ih [vh, zh]ᵀ := [

Ih,Ωvh, Ih,Γ zh
]ᵀ.

Our error analysis relies on the following properties of the lift and the interpolation
operators.

First of all, there exist element-wise norm equivalences related to the lift, which
were shown in [8, Lemmas 5.3 and 7.3].

Lemma 5.5 There exist CΩ,Ωh > cΩ,Ωh > 0, CΓ ,Γh > cΓ ,Γh > 0 independent of
h < h0 sufficiently small s.t.for all vh ∈ VΩ

h,p, ϑh ∈ V Γ
h,p, k = 0, 1, . . . , p + 1, and

KΩ ∈ Th, KΓ ∈ TΓ
h and for all h < h0 sufficiently small we have

cΩ,Ωh ‖vh‖Hk (KΩ) ≤
∥∥∥v�

h

∥∥∥
Hk (K �

Ω)
≤ CΩ,Ωh ‖vh‖Hk (KΩ) ,

cΓ ,Γh ‖ϑh‖Hk (KΓ ) ≤
∥∥∥ϑ�

h

∥∥∥
Hk (K �

Γ )
≤ CΓ ,Γh ‖ϑh‖Hk (KΓ ) ,

(47)
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where K �
Ω = Gh(KΩ), K �

Γ = Gh(KΓ ). By construction, the lift additionally pre-
serves the L∞ norm, i.e., ∥∥∥v�

h

∥∥∥
L∞(K �

Ω)
= ‖vh‖L∞(KΩ) ,∥∥∥ϑ�

h

∥∥∥
L∞(K �

Γ )
= ‖ϑh‖L∞(KΓ ) .

Further, we have the following bounds of the geometric errors stemming from the
domain approximation (cf.[7, proof of Lemma 6.2]).

Lemma 5.6 For uh, ϕh ∈ VΩ
h,p and ϑh, ψh ∈ V Γ

h,p, the following bounds hold true for
all h < h0 sufficiently small:∣∣∣∣

∫
Ω
u�
hϕ�

h dx −
∫
Ωh

uhϕh dx

∣∣∣∣ ≤ Chp ‖uh‖L2(Ωh)
‖ϕh‖L2(Ωh)

, (48a)∣∣∣∣
∫
Ω

∇u�
h∇ϕ�

h dx −
∫
Ωh

∇uh∇ϕh dx

∣∣∣∣ ≤ Chp ‖∇uh‖L2(Ωh)
‖∇ϕh‖L2(Ωh)

, (48b)∣∣∣∣
∫
Γ

ϑ�
hψ�

h ds −
∫
Γh

ϑhψh ds

∣∣∣∣ ≤ Chp+1 ‖ϑh‖L2(Γh)
‖ψh‖L2(Γh)

, (48c)∣∣∣∣
∫
Γ

∇Γ ϑ�
h∇Γ ψ�

h ds −
∫
Γh

∇Γhϑh∇Γhψh ds

∣∣∣∣ ≤ Chp+1 ∥∥∇Γhϑh
∥∥
L2(Γh)

∥∥∇Γhψh
∥∥
L2(Γh)

.

(48d)

The nodal interpolation satisfy the following error bounds, which follow from [8,
Theorem 4.28, Theorem 5.9] for the bulk and [8, Theorem 6.24, Theorem 7.10] for
the surface interpolation, respectively.

Lemma 5.7 Let 1 ≤ k ≤ p and h < h0 sufficiently small.

a) Globally, the interpolation operators satisfy for all v ∈ Hk+1(Ω), and ϑ ∈
Hk+1(Γ ) the error bounds∥∥∥v − (Ih,Ωv)�

∥∥∥
L2(Ω)

+ h
∥∥∥v − (Ih,Ωv)�

∥∥∥
H1(Ω)

≤ Chk+1 ‖v‖Hk+1(Ω) , (49a)∥∥∥ϑ − (Ih,Γ ϑ)�
∥∥∥
L2(Γ )

+ h
∥∥∥ϑ − (Ih,Γ ϑ)�

∥∥∥
H1(Γ )

≤ Chk+1 ‖ϑ‖Hk+1(Γ ) , (49b)

with a constant C independent of h.
b) Locally, on each element KΩ ∈ TΩ

h , KΓ ∈ TΓ
h , the interpolation operators satisfy

for all 0 ≤ r ≤ k and all v ∈ Hk+1(K �
Ω), ϑ ∈ Hk+1(K �

Γ ), the error bounds

∥∥∥v − (Ih,Ωv)�
∥∥∥
Hr (K �

Ω)
≤ Chk+1−r ‖v‖Hk+1(K �

Ω) , (50a)∥∥∥ϑ − (Ih,Γ ϑ)�
∥∥∥
Hr (K �

Γ )
≤ Chk+1−r ‖ϑ‖Hk+1(K �

Γ ) , (50b)

with a constant C independent of h.
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c) Locally, on each element KΩ ∈ TΩ
h , KΓ ∈ TΓ

h , and for every vh ∈
Hk+1(KΩ), ϑh ∈ Hk+1(KΓ ), the L∞ error bounds

∥∥∥vh − Ih,Ωv�
h

∥∥∥
L∞(KΩ)

≤ Chk+1 ‖vh‖Wk+1,∞(KΩ) , (51a)∥∥∥ϑh − Ih,Γ ϑ�
h

∥∥∥
L∞(KΓ )

≤ Chk+1 ‖ϑh‖Wk+1,∞(KΓ ) (51b)

hold true with a constant C independent of h.

The following lemma is a direct consequence of Lemmas 5.6 and 5.7.

Lemma 5.8 The operators defined in Definition 5.4 satisfy Assumption 4.8 with

ĈV = max{CΩ,Ωh ,CΓ ,Γh },

where CΩ,Ωh and CΓ ,Γh are given in (47).

We are now in the position to prove the error bound of the space discretization. Proof
of Theorem 2.6. We apply Theorem 4.12. By Lemmas 5.1, 5.3, and 5.8 we have that
all assumptions are satisfied and we have to bound the space discretization error terms
Eh,i in (44). In the following we always assume that h < h0 is sufficiently small that
all the bounds we apply are valid.

The terms Eh,1, Eh,3 and Eh,4 also appeared in the linear case and were bounded
under Assumption 2.5 in [16, Proof of Thm 5.3] by order h p.

It thus remains to bound Eh,2. For t ∈ [0, T ] and v = u′(t) = [v, z]ᵀ ∈ V we
calculate

max‖ϕh‖mh=1

∣∣∣〈D(v),LV
h ϕh〉V ∗×V − mh

(
Dh(Ihv),ϕh

)∣∣∣
≤ max

‖[ϕh ,ψh ]ᵀ‖mh=1

∣∣∣∣∣∣cΩ

( ∫
Γ

θ(v)ϕ�
h ds −

∑
Γh

θ(Ih,Ωv)ϕhΔs
)∣∣∣∣∣∣

+
∣∣∣∣∣∣cΩ

( ∫
Γ

η(z)ϕ�
h ds −

∑
Γh

η(Ih,Γ z)ϕhΔs
)∣∣∣∣∣∣

+
∣∣∣∣∣∣ρ

( ∫
Γ

vψ�
h ds −

∑
Γh

Ih,ΩvψhΔs
)∣∣∣∣∣∣ +

∣∣∣∣∣∣d
( ∫

Γ

zψ�
h ds −

∑
Γh

Ih,Γ zψhΔs
)∣∣∣∣∣∣ .

(52)
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We bound the different terms separately. Let ‖ϕh‖mh = ‖[ϕh, ψh]ᵀ‖mh = 1. We then
have

∣∣∣∣∣∣
∫
Γ

θ(v)ϕ�
h ds −

∑
Γh

θ(Ih,Ωv)ϕhΔs

∣∣∣∣∣∣ ≤
∣∣∣∣
∫
Γ

θ(v)ϕ�
h ds −

∫
Γ

(Ih,Γ θ(v))�ϕ�
h ds

∣∣∣∣
+

∣∣∣∣
∫
Γ

(Ih,Γ θ(v))�ϕ�
h ds −

∫
Γh

(Ih,Γ θ(v))ϕh ds

∣∣∣∣
+

∣∣∣∣∣∣
∫
Γh

(Ih,Γ θ(v))ϕh ds −
∑
Γh

θ(Ih,Ωv)ϕhΔs

∣∣∣∣∣∣ .
(53)

For the first summand on the right-hand side of (53) we have by the continuity of the
lift operator and the interpolation error (49b)

∣∣∣∣
∫

Γ

θ(v)ϕ�
h ds −

∫
Γ

(Ih,Γ θ(v))�ϕ�
h ds

∣∣∣∣ ≤
∥∥∥θ(v) − (Ih,Γ θ(v))�

∥∥∥
L2(Γ )

∥∥∥ϕ�
h

∥∥∥
L2(Γ )

≤ Chp ‖θ(v)‖Hmax{2,p}(Γ ) .

The second summand can be bounded using the geometric error estimate (48c) by

∣∣∣∣
∫

Γ

(Ih,Γ θ(v))�ϕ�
h ds −

∫
Γh

(Ih,Γ θ(v))ϕh ds

∣∣∣∣ ≤ Chp+1
∥∥Ih,Γ θ(v)

∥∥
L2(Γh)

‖ϕh‖L2(Γh)

≤ Chp ‖θ(v)‖H2(Γ ) .

To bound the third summand on the right-hand side of (53) we use that for the nodal
interpolation we have Ih,Γ θ(v) = Ih,Γ θ((Ih,Γ v)�) ∈ V Γ

h,p and that the order of
quadrature formula is greater than 2p to obtain

∣∣∣∣∣∣
∫

Γh

(Ih,Γ θ(v))ϕh ds −
∑
Γh

θ(Ih,Γ v)ϕhΔs

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
Γh

(
Ih,Γ θ((Ih,Γ v)�)

)
ϕhΔs −

∑
Γh

θ(Ih,Γ v)ϕhΔs

∣∣∣∣∣∣
≤

(∑
Γh

(
Ih,Γ θ((Ih,Γ v)�) − θ(Ih,Γ v)

)2
Δs

) 1
2
( ∑

Γh

ϕ2
hΔs

) 1
2

≤ σ(Γh)

∥∥∥Ih,Γ θ((Ih,Γ v)�) − θ(Ih,Γ v)

∥∥∥
L∞(Γh)

‖ϕh‖L2(Γh)

≤ Chp
∑
F∈TΓ

h

∥∥θ(Ih,Γ v)
∥∥
W p,∞(F)

,
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where we denote by σ(Γh) the measure of Γh and we used the L∞ interpo-
lation error bound (51b). The terms

∥∥θ(Ih,Γ v)
∥∥
W p,∞(F)

are bounded due since

we have v ∈ W p+1,∞(Ω), v �→ v
∣∣
Γ

∈ C(W p+1,∞(Ω);W p,∞(Γ )), Ih,Γ ∈
C(W p,∞(Γ );W p,∞(Γh)), and θ ∈ C p, cf.(9b). In total we obtain in (53)

∣∣∣∣∣∣
∫

Γ

θ(v)ϕ�
h ds −

∑
Γh

θ(Ih,Ωv)ϕhΔs

∣∣∣∣∣∣ ≤ Chp.

Similarly we obtain

∣∣∣∣∣∣
∫

Γ

η(z)ϕ�
h ds −

∑
Γh

η(Ih,Γ z)ϕhΔs

∣∣∣∣∣∣ ≤ Chp

but since z is defined on Γ we only require the regularity z ∈ W p,∞(Γ ) in contrast
to v ∈ W p+1,∞(Ω).

To bound the third term in (52), we make use of the classical inverse estimate
‖vh‖H1(Ωh)

≤ Ch−1 ‖vh‖L2(Ωh)
(cf.[6, Lem. 4.5.3]), (49b), and the trace inequality

‖v‖H p+1(Γ ) ≤ C ‖v‖H p+2(Ω) to obtain

∣∣∣∣∣∣
( ∫

Γ

vψ�
h ds −

∑
Γh

Ih,ΩvψhΔs
)∣∣∣∣∣∣

=
∣∣∣∣(

∫
Γ

vψ�
h ds −

∫
Γh

Ih,Ωvψh ds
)∣∣∣∣

≤
∣∣∣∣(

∫
Γ

vψ�
h ds −

∫
Γ

(Ih,Ωv)�ψ�
h ds

)∣∣∣∣ +
∣∣∣∣(

∫
Γ

(Ih,Ωv)�ψ�
h ds −

∫
Γh

Ih,Ωvψh ds
)∣∣∣∣

≤
∥∥∥v − (Ih,Ωv)�

∥∥∥
L2(Γ )

∥∥∥ψ�
h

∥∥∥
L2(Γ )

+ Chp+1
∥∥Ih,Ωv

∥∥
L2(Γh)

‖ψh‖L2(Γh)

≤ Chp+1 ‖v‖H p+1(Γ ) ‖ψh‖H1(Ωh)
+ Chp+1

∥∥Ih,Ωv
∥∥
H1(Ωh)

‖ψh‖H1(Ωh)

≤ Chp+1 ‖v‖H p+2(Ω) h
−1 ‖ψh‖L2(Ωh)

+ Chp+1 ‖v‖H2(Ωh)
h−1 ‖ψh‖L2(Ωh)

≤ Chp.

Similarly, we have

∣∣∣∣∣∣
∫

Γ

zψ�
h ds −

∑
Γh

Ih,Γ zψhΔs

∣∣∣∣∣∣ ≤ Chp,

but we do not need the inverse estimate in this case and hence the smoothness z ∈
H p+1(Γ ) is sufficient. In total we obtain Eh,2 ≤ Chp and

Theorem 4.12 gives then the desired result. ��
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6 Numerical experiment

In this section we illustrate Theorem 2.6 with a numerical experiment.
Let Ω = B1(0) ⊂ R

2 be the unit disc and in (1) we set

cΩ = cΓ = ρ = μ = 1, kΩ = kΓ = d = 0,

θ(ξ) = ξ + ξ3, η(ξ) = 4π sin(ξ) + 64π3 sin3(ξ),

fΩ(x) = cos(2π t)
( − 16π2r3 + 24π2r2 − 144r2 + 96r

)
,

fΓ (x) = 2π + 4π sin(2π t),

u0(x) = 4r3 − 6r2, v0(x) = 0, δ0(x) = 0, ϑ0 = 0

where r = r(x) = x21 + x22. Then, Assumption 2.2 is satisfied and the exact solution
of (1) is given by

u(t, x) = cos(2π t)
(
4r3 − 6r2

)
, δ(t, x) = π t2.

We implemented the experiments in the C++ finite element library deal.ii, cf.[1,
2]. The code which was used for the numerical is available at https://doi.org/10.5445/
IR/1000150159. For the time integration we use the implicit midpoint rule with time
step size≈ 2·10−4 and solve the arising nonlinear systemswith the simplifiedNewton
method. For the spatial discretization we use the bulk-surface finite element methods
of orders p = 1, 2, 3.

We consider the error

E(t):=
∥∥∥uh(t) − u(t)

∣∣
Ωh

∥∥∥
H1(Ωh)

+
∥∥∥u′

h(t) − u′(t)
∣∣
Ωh

∥∥∥
L2(Ωh)

+ ∥∥δh(t) − Ih,Γ δ(t)
∥∥
H1(Γh)

+ ∥∥δ′
h(t) − Ih,Γ δ′(t)

∥∥
L2(Γh)

(54)

instead of the error from Theorem 2.6 since the computation of the lift is quite labo-
rious. We evaluated the integrals with a quadrature rule of degree 2p, so that the

Fig. 1 Error from (54) at t = 0.7 for the test example. The dashed plots are straight lines of slope 1, 2 and
3, respectively
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quadrature error is negligible. The restriction of u to Ωh is possible for this example
since we have Ωh ⊂ Ω .

In Fig. 1 the error E(t) is plotted against the maximal mesh width h. We chose t =
0.7 since it keeps distance to the roots of sin(2π t). We observe that the error converges
with order p as predicted by Theorem 2.6 which indicates that our proven convergence
rates are optimal. Note that for order p = 3 and small h, the plot approaches the plateau
of the time discretization error.
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