KIT | KIT-Bibliothek | Impressum | Datenschutz

Scanning cavity microscopy of a single-crystal diamond membrane

Körber, Jonathan 1; Pallmann, Maximilian ORCID iD icon 1; Heupel, Julia; Stöhr, Rainer; Vasilenko, Evgenij 1,2; Hümmer, Thomas; Kohler, Larissa 1; Popov, Cyril; Hunger, David ORCID iD icon 1,2
1 Physikalisches Institut (PHI), Karlsruher Institut für Technologie (KIT)
2 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)

Abstract:

Spin-bearing color centers in the solid state are promising candidates for the realization of quantum networks and distributed quantum computing. A remaining key challenge is their efficient and reliable interfacing to photons. Incorporating minimally processed membranes into open-access microcavities represents a promising route for Purcellenhanced spin-photon interfaces: it enables significant emission enhancement and efficient photon collection, minimizes deteriorating influence on the quantum emitter, and allows for full spatial and spectral tunability, key for controllably addressing suitable emitters with desired optical and spin properties. Here, we study the properties of a high-finesse fiber Fabry-Pérot microcavity with integrated single-crystal diamond membranes by scanning cavity microscopy. We observe spatially resolved the effects of the diamond-air interface on the cavity mode structure: a strong correlation of the cavity finesse and mode structure with the diamond thickness and surface topography, significant transverse-mode mixing under diamond-like conditions, and mode-character-dependent polarization-mode splitting. ... mehr


Volltext §
DOI: 10.5445/IR/1000152666
Veröffentlicht am 15.11.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für QuantenMaterialien und Technologien (IQMT)
Karlsruhe School of Optics & Photonics (KSOP)
Physikalisches Institut (PHI)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 11.10.2022
Sprache Englisch
Identifikator KITopen-ID: 1000152666
HGF-Programm 47.12.04 (POF IV, LK 01) Quantum Networking
Nachgewiesen in Dimensions
arXiv
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page