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Abstract

Minimal perfect hash functions (MPHFs) map a static set S of arbitrary keys
bijectively into the first |S| natural numbers, i.e., each hash value is used exactly
once. They are useful in many applications, for example, to implement hash tables
with guaranteed constant access time. MPHFs can be very compact — less than 2
bits per key are possible. On the other hand, MPHFs are not able to decide whether
a given key is in S or not. Currently, the most space-efficient practical MPHF is
RecSplit. It provides various tradeoffs between the space consumption, construction
time, and query time. For example, RecSplit can construct an MPHF with 1.56
bits per key in less than 2 ms per key. This, however, is too slow for large inputs.
In this thesis, we present new implementations of RecSplit that use multithreading,
SIMD, and the power of GPUs to improve the construction time. Paired with our
new bijection rotation technique, we achieve speedups of up to 333 for our SIMD
implementation on an 8-core CPU, and up to 1873 for our GPU implementation
compared to the original, sequential implementation of RecSplit. This enables us to
construct an MPHF with 1.56 bits per key in less than 1.5 µs per key.

Deutsche Zusammenfassung

Minimale perfekte Hashfunktionen (MPHFs) bilden eine statische Menge S von
beliebigen Schlüsseln auf die Menge der ersten |S| natürlichen Zahlen bijektiv ab,
d. h., jeder Hashwert wird exakt einmal verwendet. Sie sind in vielen Anwendungen
hilfreich, zum Beispiel, um Hashtabellen mit garantiert konstanter Zugriffszeit zu
implementieren. MPHFs können sehr kompakt sein — weniger als 2 Bit pro Schlüssel
sind möglich. Andererseits sind MPHFs nicht in der Lage zu entscheiden, ob ein
gegebener Schlüssel zu S gehört. Zurzeit ist RecSplit die speichereffizienteste MPHF.
RecSplit bietet verschiedene Kompromisse zwischen Platzverbrauch, Konstruktions-
zeit und Anfragezeit an. RecSplit kann zum Beispiel eine MPHF mit 1.56 Bits pro
Schlüssel in weniger als 2 ms pro Schlüssel konstruieren. Das ist jedoch zu langsam
für große Eingaben. Diese Arbeit präsentiert neue RecSplit-Implementierungen, die
Multithreading, SIMD und die Leistung von GPUs nutzen, um die Konstruktionszeit
zu verbessern. Gemeinsam mit unserer neuen bijection-rotation-Methode erreichen
wir Beschleunigungen um Faktoren bis zu 333 für unsere SIMD-Implementierung auf
einer 8-Kern CPU und bis zu 1873 für unsere GPU-Implementierung verglichen mit
der originalen, sequenziellen RecSplit-Implementierung. Dadurch können wir MPHFs
mit 1.56 Bits pro Schlüssel in weniger als 1.5 µs pro Schlüssel konstruieren.
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1. Introduction

Given a set S of m arbitrary keys, a minimal perfect hash function (MPHF)
h : S → {0, 1, . . . ,m− 1} maps each key in S to a distinct number between 0 and m− 1,
i.e., h is a bijective function. It can be used to implement a hash table as a simple array
since no conflicts of the hash values can occur. The MPHF h is a static data structure
which is constructed using S. The crux of minimal perfect hash functions is that they can
be made very space efficient. In fact, practical MPHFs only need 1.56 bits per key whereas
the theoretical lower bound is log2(e) ≈ 1.44 bits per key [46, 51].

This advantage comes at a price. The MPHF h cannot be used to check whether a given
key x belongs to S since that would require to store the set S. If x /∈ S, it will just return
an arbitrary number. Therefore, MPHFs are only applicable in situations where it is either
already known whether x ∈ S or it is not a problem if x /∈ S and h is used anyway. The
latter situation might be improved by using an approximate membership query (AMQ)
filter (e.g., a Bloom filter [34]) to filter out most keys not belonging to S. AMQ filters can
be very space efficient as well.

A typical application of MPHFs is to exploit the memory hierarchy. Assume you want to
store a large static hash table of the keys S which does not fit in the main memory. This
may happen for example if the keys in S are long strings. By constructing an MPHF h of
S which fits in main memory, the hash table can be stored on the disk as a simple array A.
At each index i of the array, the key x in S with the hash value h(x) = i is stored alongside
the corresponding information which is meant to be stored in the hash table.

Given an arbitrary key y, h can be used to calculate the correct index j in A before loading
the corresponding information A[j] from the disk. It can then be checked whether y equals
the key stored at A[j]. If not, then y /∈ S. By using an AMQ filter, most disk accesses for
keys not in S can be avoided. Using an MPHF may also be useful for other levels of the
memory hierarchy where h fits in a smaller but faster memory than A. For example, h
might fit in the cache and A in main memory or h fits on the local disk whereas A can
only be accessed over a network.

Using a complicated AMQ filter on top of the MPHF is not necessary. In fact, the MPHF
itself in conjunction with an additional array can be used as an AMQ filter. The hash
value j of the key y can be used as an index into an array B which contains fingerprints of
all keys in S. A fingerprint is just a word with ω bits produced by a random hash function.
The key y is not in S if the fingerprint stored at B[j] is different from the fingerprint of y.
The false positive rate ε is the probability that the two fingerprints match, but y /∈ S. If

1



1. Introduction

each fingerprint contains ω bits and assuming the used hash function is indistinguishable
from a random function, then ε = 2−ω. This is equal to the theoretical lower bound [36].
In conclusion, MPHFs can be used to implement static AMQ filters, and if an MPHF is
required anyway, this is optimal in terms of the tradeoff between ω and ε.

To fulfill the aforementioned purposes efficiently, it is usually required that the MPHF
can be queried in constant time and constructed in linear time. These requirements are
often relaxed to include expected running times. The space requirement, query time and
construction time are the main metrics to evaluate and compare different minimal perfect
hash function techniques.

1.1 Contribution
Currently, the most space-efficient practical MPHF is RecSplit [46]. It can reach 1.56
bits per key while being competitive for query and construction time compared to other
techniques. RecSplit needs less than 2 milliseconds per key to construct such a space-
efficient MPHF. However, this amounts to about 50 hours for 100 million keys which stands
to question the practicability of RecSplit for large inputs if such space efficiency is desired.
Fortunately, the RecSplit construction is an embarrassingly parallel problem. The keys are
first divided into buckets which can be processed independently of each other. This opens
the door for parallelization. A tree is constructed for each bucket. For every node in this
tree, several normal hash functions are tried on the keys in the node to find a hash function
which satisfies a specific property. Trying out the hash functions can be accelerated using
single instruction, multiple data (SIMD).

Nevertheless, there is no public parallel implementation of RecSplit yet. This thesis is
concerned with implementing the RecSplit construction for modern parallel hardware to
fully utilize its processing power. This is achieved by creating two new implementations.
The first uses multithreading and SIMD to speed up the construction on Central Processing
Units (CPUs). We refer to it as the SIMD implementation or SIMDRecSplit. The second
implementation uses the processing power of Graphics Processing Units (GPUs). This
requires the presence of such a device but can speed up the construction significantly. The
second implementation is called GPU implementation or GPURecSplit. Both are compared
to the original implementation which is provided by the Sux library by Vigna [13].

1.2 Outline
In the next chapter, we introduce necessary foundations, including the functionality of
GPUs. Chapter 3 presents important perfect hash function techniques. However, it is not
necessary to understand them to comprehend this thesis. RecSplit, the MPHF technique
this thesis parallelizes, is explained in detail in Chapter 4. We describe the implementation
details of our new RecSplit implementations in Chapter 5. The result of our endeavor is
examined experimentally in Chapter 6. Finally, this thesis is summarized in Chapter 7
along with some hints for future work.

2



2. Preliminaries

We provide the foundation to understand the rest of this thesis in this chapter.

2.1 Notation
This section introduces notions and notation that are used throughout this thesis.

Word RAM

In this thesis, the word random-access machine (word RAM) model is used [52]. Such a
machine operates on words of w bits. Arithmetic and bitwise operations on these words
can be executed in constant time.

General Notation

The notation for the set of natural numbers from including 0 to excluding n is [n] =
{0, . . . , n − 1}. Rounding a up to the next integer is denoted as dae, rounding down is
denoted as bac. The operator ← is used to assign a value to a variable, i.e., a ← a + b
assigns the value a+b to a. The old value of a is used for the addition and then overwritten.
On overflow, values are reduced modulo 2w where w is the number of bits in a word, i.e.,
only the w least significant bits are stored while the remaining most significant bits are
discarded (the value “wraps around”).

Shift Operator

The bits of a word a can be shifted n bits to the left with the syntax a << n and n bits to
the right with a >> n. The empty spots are filled with 0-bits. If no overflow occurs, a left
shift by n bits is equivalent to a multiplication with 2n. Similarly, a >> n is equivalent to⌊
a

2n
⌋
.

Bitwise Operators

There are various bitwise operations that manipulate the bits of words. The bitwise
OR-operator | sets a bit at a given position if and only if at least one of the operands has
a 1-bit at the same position. For example, 3 | 6 = 0112 | 1102 = 1112 = 7, where 2 denotes
binary numbers. Similarly, ⊕ computes the bitwise exclusive OR (XOR) and & computes
the bitwise AND.

3



2. Preliminaries

Rotation Operator

The least significant m bits of a word can be rotated left n bits with the rotation operator
rotnm. By assuming the bits other than the lowerm bits of a are zero, it can be implemented
as

rotnm(a) = ((a << n) | (a >> (m− n))) & ((1<<m)− 1).

Popcount

The popcount operation counts the number of 1-bits in a word. For example, the popcount
of 25 = 110012 is 3. The SSE4.2 instruction set extension of the x86 instruction set contains
a popcount instruction for 64-bit values and is available on most modern x86 CPUs [21, 24].

Find Least Significant 1-Bit / Count Trailing Zeros

The number of trailing zeros of a word is equivalent to the index of the least significant
1-bit. We denote the number of trailing zeros of a as ρ(a). The x86 instruction set contains
instructions to calculate this value in constant time [21].

Delete Least Significant 1-Bit

The operation to set the least significant 1-bit to zero is called clear_rho. The Bit
Manipulation Instruction Set 1 (BMI1), an instruction set extension of x86, contains an
instruction to perform this operation directly [21]. Alternatively, it can be implemented as
clear_rho(a) = a & (a− 1).

Find N-th Least Significant 1-Bit / Selection

The operation to find the n-th least significant 1-bit of a word is called ρn. Note that
ρ0 = ρ. This operation can be implemented by calling clear_rho n times before calling ρ:

ρn(a) = ρ(clear_rhon(a))

However, it can be implemented with just three instructions using a bit shift, the parallel
bits deposit instruction (PDEP) from the Bit Manipulation Instruction Set 2 (BMI2) [21]
and ρ [46]. It is not necessary to understand details of this implementation in the context
of this thesis. Thus, we do not explain it further.

Speedup

An important concept to compare the performance of two algorithms is called speedup. Let
T (A) be the time algorithm A needs and T (B) the time algorithm B needs for the same
task. The speedup S(A,B) of B compared to A is calculated as S(A,B) = T (A)

T (B) . This
means algorithm A needs a factor of S(A,B) longer than B. The speedup can be smaller
than 1, in which case A is faster. Speedups are used especially for parallel algorithms, i.e.,
to compare a parallel algorithm with a given number of threads to a sequential algorithm.

2.2 SIMD
A lot of code operates on scalar values. For example, a piece of code may add the two
integers a and b. Sometimes, the same operation must be done on a set of values, e.g., adding
the values of two arrays pointwise. This can be achieved with a simple loop. However,
the corresponding instructions must be decoded by the hardware for every element and
only one element is processed at a time. This can be improved by using single instruction,
multiple data (SIMD) [48]. A single instruction is used to apply the same operation on

4



2.2. SIMD

several elements. This means instead of adding two scalar values, two vectors containing
multiple integers each are added. This reduces the number of instructions that need to be
decoded and allows the hardware to process the whole vector in parallel. Using SIMD can
yield high speedups in many situations, e.g., when adding two arrays.

SIMD is not restricted to simple operations like addition. It may also provide operations
to permute the elements in the vector, load and store non-contiguous data (gather and
scatter), blending the contents of two vectors or other advanced operations. The exact set
of operations depends on the concrete implementation of the SIMD model.

We refer to a single element within a SIMD vector as a lane. A lane is a word with a
specified number of bits. For example, a vector may contain 32 lanes with 16 bits each,
i.e., the vector contains 512 bits overall. It is advisable to use as many lanes as possible to
maximize throughput. This may include decreasing the size of each lane if it allows for
using more lanes. The act of utilizing SIMD is also called vectorization. There are several
possibilities to vectorize a given piece of code [25]:

• Write it directly in assembly language to utilize SIMD instructions of the given hard-
ware. This is tedious and error prone since many low-level details must be considered.
However, it provides direct control over the hardware. An experienced assembly
programmer may produce faster code than any of the other ways of vectorization
can. The assembly can be used as the input of an assembler or be embedded in a
high-level language as inline assembly.

• Use intrinsics. They act like a function in a high-level programming language but
often compile to a single specific instruction. This frees the programmer of considering
low-level details like register allocation while enabling the use of specific instructions.
Moreover, the compiler can fully optimize a piece of code containing intrinsics which
it cannot do with inline assembly.

• Rely on auto vectorization. An optimizing compiler may be able to vectorize a simple
loop to improve its performance. For example, a compiler may optimize a loop which
adds two arrays pointwise. However, this is not always possible and often results in
suboptimal code. In the example, the compiler may not know the size of the arrays.
It has to generate code to process some elements in a scalar form since the number
of lanes in a SIMD vector may not divide the number of elements in each array. This
can produce a large amount of machine code. On the other hand, the programmer
may know that it divides without a remainder — possibly because a padding was
introduced specifically for this purpose.

• Using a library. This may be an optimized library for a specific purpose which
happens to use SIMD (e.g., for matrix multiplication) or a more general library which
simplifies vectorization with a more readable syntax than intrinsics and by providing
additional functionality (e.g., the Vector Class Library [26]; see below).

2.2.1 Advanced Vector Extensions (AVX)

The Advanced Vector Extension (AVX) [14] are instruction set extensions to the instruction
set architecture x86 which is used by many Intel and AMD processors. These extensions
provide many instructions for vectors containing 256 or 512 bits, depending on the version.
There are several versions of AVX where each version adds more instructions to the last
version or increases the vector size. For most floating-point instructions, 32-bit and 64-bit
lanes can be used. Many integer instructions allow for lanes of size 8, 16, 32 and 64 bits.

The first version of AVX does not contain integer instructions and is therefore not relevant
for our SIMD implementation. Instead, our SIMD implementation is optimized for CPUs
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supporting AVX2 and AVX-512 [15]. AVX2 allows many integer operations on 256-
bit vectors. AVX-512 extends these operations to 512-bit vectors and adds many new
instructions, e.g., for using masks to mask out specific lanes. However, not every CPU
supporting AVX-512 supports all instructions. AVX-512 is divided in many smaller subsets,
where each processor may only support some of them. One of these subsets which is useful
for our implementation is AVX512VPOPCNTDQ which provides popcount on 512-bit
vectors with lanes of size 32 and 64 bits. Without this extension, popcount is not available
for vectors of any bit size.

2.2.2 Vector Class Library

The Vector Class Library (VCL) is a C++ library written primarily by Fog [26, 27]. It
encapsulates SIMD vectors as objects which simplifies the syntax compared to intrinsics
since it avoids the necessity to provide the size of the vector and the lanes for each operation.
Furthermore, it provides an infix notation for many typical operations like addition and
XOR. The Vector Class Library is especially useful for advanced purposes like per-element
branches, finding the first lane which satisfies a specific property or looking up values in a
lookup table.

Perhaps the most compelling feature compared to writing intrinsics is the portability. The
Vector Class Library contains vectors of size 128, 256 and 512 bits and specifies operations
on them. If no instruction set is available which includes vectors of a given size, VCL will
emulate it using smaller vectors. For these reasons, we use the Vector Class Library for our
SIMD implementation. As a minimum, VCL requires the SSE2 instruction set extension
of x86 and can utilize newer x86 extensions, including AVX-512. Unfortunately, other
instruction sets like ARM are not supported.

The Vector Class Library has no mean of querying the native vector size, i.e., 256 bits for
AVX2 and 512 bits for AVX-512. We have implemented such a functionality at compile
time. This is useful in our case since we want to use as large vectors as possible to maximize
throughput but with as little overhead as possible. We have to try out hash functions in
a SIMD manner until a hash function is found which satisfies a specific property. This
discourages us from always using 512-bit vectors and relying on the emulation of VCL if
no AVX-512 is available because a fitting hash function may have already been found in
the first half, but the emulation continues processing the second half. Therefore, we use
512-bit vectors if AVX-512 is available and 256-bit vectors otherwise. If even AVX2 is not
available, we rely on the emulation of VCL.

Not every instruction is supported by the Vector Class Library. This is especially true
for instructions which are only available in newer instruction set extensions and are hard
to emulate on older extensions. Fortunately, the VCL vector objects can be converted to
the intrinsic vector types which are used for the intrinsics, both implicitly and explicitly
without any overhead. This allows for the use of intrinsics directly on VCL objects. We
make use of this technique to use popcount if AVX512VPOPCNTDQ is available and left
bit shift, where the number of bits to shift is different for each lane and provided in a
second vector, if at least AVX2 is available.

2.3 GPUs
Graphics Processing Units (GPUs) are specialized processors initially designed for computer
graphics applications. Many operations in computer graphics need to be done to a large
number of elements, e.g., for every pixel of an image or every vertex of a polygon mesh.
This allows for parallelization using SIMD. Over the last decades, GPUs evolved to general
purpose processors for highly parallelizable tasks. They can be programmed using special
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programming languages and Application Programming Interfaces (APIs). One such API is
CUDA [71, 3]. It is developed by Nvidia and can be used to program Nvidia GPUs. We
use CUDA to implement GPURecSplit and use CUDA terminology throughout this thesis.

The information in this section is based on the CUDA C++ Programming Guide [3] and
the Nvidia Ampere GA102 GPU Architecture white paper [17].

2.3.1 Structure of a GPU

In this section, the structure of a typical modern GPU is explained. The exact structure
may differ between different models. To provide a grasp of the dimensions of a modern
GPU, the exact numbers for many metrics of the Nvidia RTX 3090 [17] are mentioned.
This GPU is used in the experiments in Chapter 6. A GPU consists of several streaming
multiprocessors (SMs) (RTX 3090: 82). Each SM contains many arithmetic logic units
(ALUs) to perform computations. The RTX 3090 has 128 ALUs for 32-bit floating-point
math per SM, but only 64 ALUs for 32-bit integer math per SM. This amounts to a large
number of ALUs compared to a CPU.

Single Instruction, Multiple Threads (SIMT)

GPUs are SIMD machines. More specifically, they are single instruction, multiple threads
(SIMT) machines. The main difference is the notion of a thread. In SIMD terminology,
a thread is a stream of operations which may include SIMD operations that operate on
vectors containing several lanes. In SIMT terminology, there is a single thread for each
SIMD lane without a “superior” thread responsible for a whole vector. To ensure the same
advantages as SIMD, several threads (RTX 3090: 32) operate in lock-step, i.e., they execute
the same instruction at the same time. Such a bundle of threads is called warp.

Masking is used to enable the execution of different instructions for different threads of a
warp, e.g., to implement control flow like the if statement. Masking means every thread of
the warp executes each instruction, but they are inactive (masked out) for instructions they
should not execute, e.g., because the condition in the if was false. It is called divergence
when some threads of a warp are inactive. Divergence should be avoided as often as possible
since it reduces performance. Note that for an if-else where at least one thread in the
warp has a condition which is true and another thread has a condition which is false, each
thread of the warp has to execute both cases and is inactive in the wrong case. Even worse,
in loops each thread in the warp has to iterate as many times as the thread with the largest
number of iterations.

Hardware Multithreading

Since a GPU has many ALUs (RTX 3090: 5248 32-bit integer ALUs), many threads are
necessary to utilize them. But a number of threads matching the number of ALUs is not
sufficient. Each operation has a latency, which is especially high for memory operations.
While a thread waits for the completion of its last operation, it cannot utilize an ALU.
Modern CPUs try to decrease the latencies as much as possible and optimize the time a
single thread needs by using low-latency memory, fast and large caches, deep pipelines,
superscalar techniques, branch prediction and out-of-order architectures. GPUs, on the
other hand, do not have to decrease the time each thread takes. Their goal is to maximize
throughput, i.e., process as many threads as possible in a given amount of time, irrespective
of the time a single thread takes.

So instead of decreasing latencies, GPUs overcome latencies by scheduling another warp
while a warp waits on the previous operation to finish. This is called latency hiding and
means each SM is oversubscribed with many more threads than ALUs. To avoid any
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overheads when switching between different warps, each SM contains many 32-bit registers
(RTX 3090: 65 536) and each thread keeps its values in its allocated registers until it is
finished. In each clock cycle, several (RTX 3090: up to four) warps are scheduled. These
warps must be ready to be scheduled, i.e., their next operation cannot depend on a previous
unfinished operation.

The maximum number of threads per SM can be very high (RTX 3090: 1536, i.e., 12
times the number of 32-bit floating-point ALUs). To hide high memory latencies, the
number of threads should optimally reach this number. Some modern CPUs have a similar
oversubscription of threads as well to better utilize the resources of each CPU core in
a multithreading context. This is often called simultaneous multithreading (SMT) or
hyper-threading. In many cases, only two threads per core are possible.

Global Memory

The global memory is the largest and slowest memory on the GPU. It is usually several
gigabytes large on modern GPUs (RTX 3090: 24 GB). Since GPUs use latency hiding,
global memory is not optimized to minimize latency but to maximize bandwidth instead
(RTX 3090: 936 GB/s bandwidth). This is important to serve the many threads that can
be resident on the GPU at the same time (RTX 3090: 125 952).

To use this bandwidth as efficiently as possible, each memory access should be coalesced.
Consider a warp of 32 threads where each thread accesses a word in global memory. The
hardware will serve these requests with as few memory transactions as possible where each
transaction transfers 32, 64 or 128 bytes (the exact specifics depend on the model). These
transfers are aligned, i.e., the address of the first byte is a multiple of the transaction amount.
To improve performance, the memory access pattern should lead to as few transactions as
possible and these transactions should contain as few unused bytes as possible.

Caches

A GPU may contain several caches to reduce latency and increase bandwidth for frequently
accessed data. The RTX 3090, for example, has a total of 6144 KiB of L2 cache. It also
has a faster L1 cache which is placed on each SM, i.e., the threads resident on the same
SM share an L1 cache. The size of the L1 cache is up to 128 KiB per SM, but a part of it
may be used as shared memory (see below).

Shared Memory

Shared memory is a fast memory usually placed on each SM. A group of threads that
are resident on the same SM can use shared memory as a manually managed cache or to
share data. It can also be used as a mean to store data which should be accessed with an
index (i.e., an array, which is not possible with registers) without using the slow global
memory. A typical application is to load the data on which a group of threads operates on
into shared memory. On the RTX 3090, shared memory is part of a unified data cache
containing 128 KiB. The amount of shared memory is automatically configured as 0, 8, 16,
32, 64, or 100 KiB, and the remainder is used as the L1 cache.

Bank Conflicts

The data in shared memory is partitioned into 32 memory banks. This number may be
different for other GPU models, but it is correct for all CUDA devices of the past 10 years.
The memory is divided into the banks in 32-bit chunks. This means the first 32 bits are
in the first bank, the next 32 bits are in the second bank and so forth. The 33rd 32-bit
chunk is again in the first bank. When n threads of the same warp access different words
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within the same bank in the same instruction, an n-way bank conflict occurs. This means
the accesses must be serialized and the whole warp has to wait. This has an impact on
performance. If several threads read the same word, it is not a bank conflict since the word
can be broadcast to the different threads.

Bank conflicts happen especially for strided memory access. Consider a 32x32 matrix
stored row by row in shared memory. Assume each thread of a warp of 32 threads iterates
over one row, where the first thread iterates over the first row, the second thread over the
second row and so forth. Let each element in the matrix be a 32-bit word. Since the size
of each word equals the size of each word in a bank and the width of the matrix equals the
number of banks, each column of the matrix is stored in one bank. In every iteration, each
thread accesses a different word in the same bank — a 32-way bank conflict! The name
strided comes from the fact that the accesses of each thread in the warp are a specified
number of bytes (here 128) apart which may lead to bank conflicts, especially if the stride
is a power of two.

2.3.2 CUDA

CUDA is an API to program Nvidia GPUs for general-purpose computations. It offers
integration into programming languages like C++ to simplify GPU computations. The
CUDA extension of C++ is called CUDA C++ and is used in our GPU implementation.
The GPU is called device in CUDA and the system containing the GPU (the CPU, main
memory) is referenced as host.

Kernels

Functions which can be executed on the device are named kernels. They are defined and
called similar to normal C++ functions by the host. To call the kernel kernelTest with
the function arguments arg0 and arg1, the syntax kernelTest<<<b, t>>>(arg0, arg1)
can be used. This creates a grid of b thread blocks with t threads per thread block. Every
thread in the grid executes the code in kernelTest. Grids and thread blocks can also be
two- or three-dimensional, but this is not relevant for this thesis.

Every thread has an ID which it can use as a constant, for example as an array index. This
is what allows different threads to operate on different data. A thread block is divided into
warps in the natural order of the threads. Assume a warp size of 32. The first 32 threads
of the thread block belong to the same warp, the next 32 thread to another warp and so
forth. The size of a thread block should be a multiple of the warp size to avoid unused
threads within a warp.

The threads within a thread block are guaranteed to reside on the same SM. This enables
them to cooperate. In particular, they can synchronize, and they have access to the same
shared memory. Synchronizing is achieved by calling a special synchronizing function. After
calling the function, the calling thread can only continue after all threads in its thread
block have called the same function. The function guarantees that all memory operations
to shared or global memory before the synchronization are visible to all threads in the
thread block after synchronization.

Calling a kernel is also called launching and is an asynchronous operation. This means that
after a kernel is launched by the host, the host can immediately continue with its work
without waiting for the kernel to finish. The CUDA runtime takes care of transferring the
code and parameters to the device. To use the results produced by the kernel, the host can
synchronize with the device to wait for the kernel to complete.
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Streams

Similar to kernel launches, transferring data between host and device memory can be done
asynchronously. When launching several kernels and data transfers before synchronizing
with the device, all the operations are done in order. For example, when launching kernel
kernelA before kernelB, kernelB will only start execution after kernelA is completely
finished. This is important to ensure correctness if kernelB depends on the results of
kernelA.

However, sometimes different kernels and data transfers are completely independent and
could be executed at the same time if sufficient resources are available. This can be
achieved using streams in CUDA. The user can create several streams on the host and
launch kernels and data transfers into streams. The operations launched into a specific
stream are executed in order, but operations in different streams can arbitrarily overlap if
no explicit synchronization is done.

Asynchronous Data Copies

As stated previously, data can be transferred asynchronously between host and device
memory. Another possible asynchronous memory copy is between global memory and
shared memory using memcpy_async. The threads of a thread block can cooperate to
kick off an asynchronous transfer to their shared memory. While the data is transferred,
the threads can continue with other computations. The threads have to use a special
synchronization function before using the loaded data. This function blocks until the data
is available. Using memcpy_async can hide the high latency of the data transfer and avoids
using an extra register per thread as an intermediary between global and shared memory.

Compute Capability

Different GPU models support different CUDA compute capabilities. Newer models usually
support higher compute capabilities. Higher compute capabilities provide more advanced
functions and may have larger caches, shared memory, more registers per SM, etc. For
example, the memcpy_async API explained in the last paragraph only has hardware
acceleration for devices with compute capability 8.0 or higher. Other devices emulate the
behavior by loading the data from global memory into registers before storing it in shared
memory. The threads can only continue after all data has been loaded, i.e., the memory
copy is not asynchronous. The RTX 3090 has compute capability 8.6.

2.4 Prefix Sum
Let xi for i ∈ [k] be a sequence of numbers. We define the inclusive prefix sum X̂j as
X̂j = ∑j

i=0 xi and the exclusive prefix sum Xj as Xj = ∑j−1
i=0 xi. This means for each j,

they indicate the sum of all previous elements (the prefix), where xj is only included in the
inclusive prefix sum. Note that X0 = 0. The inclusive prefix sum can be calculated from
the exclusive prefix sum by shifting the values to the left, i.e., X̂j = Xj+1.

Prefix sums are used frequently in algorithms and data structures. We store part of the
data for our MPHF in a prefix-sum form. If the distinction is irrelevant or clear from the
context, we omit whether the prefix sum is inclusive or exclusive.

2.5 Pareto Front
We use the notion of Pareto fronts in our visualizations. To understand the concept,
consider the following definitions. Let A ⊆ Rn be a subset of the n-dimensional Euclidean

10



2.5. Pareto Front

0 20 40 60 80
x

0

20

40

60

80

100

y

A
B

Figure 2.1: This plot shows the Pareto fronts of two sets “A” and “B”. All blue points
which are not on the blue line are dominated by the four points on the blue
line, and the green triangles not on the green line are dominated by the green
line.

space and x, y ∈ A. The point x is said to dominate the point y if xi ≤ yi for all i ∈ [n].
We call x Pareto optimal if no other point in A dominates x. The Pareto front is the set
of all Pareto-optimal points of A. A visualization of Pareto fronts is shown in Figure 2.1.
The Pareto front is basically the bottom-left border of all points belonging to the same set.
We use Pareto fronts to show the tradeoff between two metrics, such as time versus space
consumption.
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This chapter explains several important minimal perfect hash functions. This is meant
as an overview to place RecSplit, the MPHF this thesis is concerned about and which is
explained in the next chapter, in the landscape of minimal perfect hash functions. We also
present some applications of MPHFs in Section 3.6.

3.1 GOV
Like other authors before them [68, 38, 35], Genuzio et al. (referred to as GOV) [54] use
random linear systems to construct minimal perfect hash functions. Let n be the number
of keys in S, m = (1 + ε)n for ε > 0, F2 the finite field with two elements, and hθ : S → Fm2
a hash function from a family of hash functions (indexed with θ) such that hθ(x) contains
exactly r ones and m− r zeros for each x ∈ S. The number r is a constant. Write the hash
values of all keys in S as the rows of a matrix H ∈ Fn×m2 . If ε is large enough, H can be
transformed into row echelon form with high probability, e.g., with Gaussian elimination.
In this case, each row (i.e., key in S) can be assigned a unique column (i.e., value in [m]).
We just have to store which of the r ones in hθ(x) is the correct one. If the transformation
into row echelon form fails, try again with a different θ.

To store these values in a compact form which allows for constant-time access, a similar
idea is used. Generally, to store the static function f : S → [2b], the linear equation

HW = V with H ∈ Fn×m2 ,W ∈ Fm×b2 , V ∈ Fn×b2 ,

where V contains the values f(x) in its rows, is solved for W . The matrix W is stored
directly. To compute f(x), hθ(x) reveals the r rows of W that must be combined with
XOR to get f(x).

To summarize, H is transformed into row echelon form to compute a number j ∈ [r] for
each key x that tells us which 1 in hθ(x) is at the position of the final hash value. The
matrices H and V (which contains j as a row) are used in a linear equation to solve for
W which is stored. It can be used to retrieve j, which then tells us the final hash value.
However, the final hash value is in [m], not [n]. This means that the structure so far is a
perfect hash function, but not a minimal perfect hash function. To make the perfect hash
function minimal, a ranking structure can be used. Given a number k ∈ [m], the ranking
structure can be used to calculate the number of actually used hash values smaller than k
in constant time. This calculated number is then used as the minimal perfect hash value.
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In previous work, ε is chosen such that the linear equation can be solved in linear time
using hypergraph peeling. Genuzio et al. [54] use a smaller ε, but have to deal with the fact
that Gaussian elimination has running time O(n3). The first step is to use a hash function
to distribute the input into smaller sets and compute the MPHF on each set separately.
This reduces the running time to O(n). For practical performance, their contribution is
using broadword programming which is similar to SIMD, but within a single word, and an
improved Gaussian elimination algorithm they call lazy Gaussian elimination.

The GOV MPHF can achieve 2.24 bits per key. As the authors of RecSplit have shown
[46], RecSplit can produce a smaller MPHF with faster query time, at the cost of a longer
construction time. Using the improved implementations of RecSplit proposed in this thesis,
RecSplit can outperform GOV in all three major metrics.

3.2 CHD
The compressed hash-and-displace (CHD) algorithm [31] is based on hash-and-displace by
Pagh [73]. First, the keys are distributed into buckets of small expected size using a hash
function. These buckets are then handled in decreasing order of size. For each bucket, a
family of hash functions is used to brute-force search for a hash function that is injective
on the current bucket and does not use a hash value that is already used by a previous
bucket. The index of the hash function of each bucket is stored in a compressed array
using a technique by Fredriksson and Nikitin [53]. To ensure expected linear construction
time, the codomain of the hash functions is [m] with m = (1 + ε)n and ε > 0. That means
the result is only a perfect hash function, not an MPHF. Similar to GOV, a ranking data
structure is used to obtain an MPHF.

CHD can construct MPHFs with about 2 bits per key in practical construction times and
can theoretically reach the lower bound of 1.44 bits per key. The authors of RecSplit [46]
have shown that RecSplit dominates CHD in the main metrics construction time, query
time, and space consumption with large margins. From a practical point of view, CHD can
be considered obsolete.

3.3 BBHash
The authors of BBHash [66] provide an efficient, parallel implementation of the fingerprinting
idea [69]. Given n0 keys S0, a hash function h0 : S0 → [n0] is used on all keys, and only
those n1 keys that have the same hash value as another key are put into the set S1. The
remaining keys are finished processing. For each finished key, a bit in a bit array of n0 bits
is set to 1. The keys in S1 are then processed in the same way using the hash function
h1 : S1 → [n1], and a bit array of n1 bits. This procedure is continued until all keys are
finished.

To query BBHash with a key x, h0(x) is used to find the bit in the first bit array. If this
bit is 1, then the final hash value is h0(x). Otherwise, h1(x) is used to find the bit in the
second bit array, and if it is 1, then the final hash value is n0 + h1(x), and so forth. Similar
to GOV and CHD, the result is only a perfect hash function, not a minimal perfect hash
function. To get an MPHF, the bit arrays are concatenated, and a ranking data structure
is used on them.

The advantage of BBHash over the other algorithms is that construction and queries
are fast. However, BBHash needs more than 3 bits per key which is significantly more
than the other algorithms considered in this thesis. The authors argue that in many use
cases, the difference between 1.44 and 3 bits per key is insignificant compared to the
space consumption of the actual data that is indexed by the MPHF. RecSplit [46] can
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achieve a smaller MPHF with a similar construction time and slower queries than the most
space-efficient configuration of BBHash. The construction of RecSplit is slightly slower
for n < 108, but faster otherwise. With the improvements in this thesis, especially fixing
a performance bug of the RecSplit query in Section 6.2, we believe that RecSplit can
dominate this configuration of BBHash by choosing the right parameters.

3.4 PTHash

PTHash [76] is based on FCH [50] which can be considered a predecessor of the hash-and-
displace technique mentioned in Section 3.2. As in the other techniques discussed so far,
the keys are first distributed into different buckets using a hash function, but unlike before,
the distribution is not uniform. Specifically, about 60% of the keys are mapped to 30% of
the buckets. First, a seed s is chosen such that there is no hash collision in any bucket
using the pseudorandom hash function hs. The buckets are then processed in order by
decreasing size. For each bucket Bi, an integer ki is searched such that the position

(hs(x)⊕ hs(ki)) mod n

for each x ∈ Bi is yet unused. The found ki is stored in an array indexed by i. This array
is compressed using one (or two, because the buckets are partitioned into two arrays) of
several possible compression schemes [45, 47, 53], giving different tradeoffs of query time
versus space consumption.

The proclaimed goal of PTHash is fast query times. Using an appropriate compression
scheme, only a single memory access is required to find the value ki, and the remaining
operations are simple hash function evaluations and arithmetic. The authors compared
PTHash [76] to FCH [50], CHD [31], GOV [54], BBHash [66], RecSplit [46], and EMPHF,
a technique based on hypergraph peeling [29]. The only technique with comparable query
times is FCH, but PTHash can be constructed significantly faster and can be configured to
require less space. Compared to RecSplit, PTHash consumes 0.5 to 2.5 more bits per key,
but has two to four times faster queries and can be constructed in less time. According to
more recent results [75], PTHash seems to dominate BBHash in all three major metrics.
While RecSplit needs fewer bits per key and can be accelerated a lot using the techniques
in this thesis, it cannot reach the query times of PTHash.

3.5 GPU Techniques

To the best of our knowledge, there is no technique that constructs an MPHF on the GPU
yet. The literature we could find that combine GPUs and perfect hashing are either an
application of MPHFs or provide an MPHF to be queried on GPUs. For example, perfect
spatial hashing [63] is a perfect hashing technique for two- or three-dimensional spatial data.
Points that are close to each other are queried coherently to allow for memory coalescing
and therefore efficient queries on GPUs. The construction, however, is performed on the
CPU.

Weaver and Heule proposed a SAT-based MPHF construction [81] which achieves about
1.83 bits per key with practical construction time. It is dominated by RecSplit [46] in the
three major metrics, but it is still theoretically interesting. By combining the SAT-based
approach with SAT solvers capable of using the GPU [72, 74], it should be possible to
construct an MPHF using the GPU. Nonetheless, we expect that RecSplit would dominate
the SAT-based approach even in this case.
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3.6 Applications
As discussed in Chapter 1, a typical application of MPHFs is to exploit the memory
hierarchy for efficient hash tables by storing the MPHF in a faster but smaller memory
than the actual hash table. We have also seen that approximate membership query filters
can be implemented using perfect hash functions. This has been evaluated in practice by
Graf and Lemire [58]. There are also more specialized applications of perfect hash functions
such as hypergraph algorithms [33], compressed text indexing [32], prefix searching [30],
databases [37, 39], networks [67], machine learning [77], and bioinformatics [40].
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In this chapter, we describe the MPHF RecSplit [46]. The first step of the RecSplit
construction is applying an initial hash function on every element of the input to receive
keys of the same length (see Section 4.1). These keys are distributed into different buckets
of constant expected size using a bucket-assignment function (see Section 4.2). For each
bucket, a splitting tree is constructed (see Section 4.3). Each inner node of this tree is
brute-force searching for a splitting — a hash function which distributes the keys to the
child nodes in a specific manner. Each leaf node only has a few keys. An MPHF on m keys
of a leaf can be computed by brute-force searching for a bijection from the keys into [m].

A RecSplit instance can be queried for the hash value of an element by first applying the
initial hash function to get the corresponding key x. The bucket-assignment function is
used on this key to find the correct bucket. The splitting tree in this bucket is traversed
from the root to the leaf which contains x by applying the splittings stored at each node. In
each step, the number of keys with a smaller hash value are accumulated, i.e., the number
of keys in all buckets with smaller IDs and for each splitting the number of keys in child
nodes which are left from the child node which contains x. This accumulated value is
added to the result of applying the bijection in the leaf on x. The obtained value is the
correct hash value of the given element if the element was in the set which was used to
construct this RecSplit instance.

All the required data for the RecSplit instance must be stored in a compact way which
still allows for fast access. The splittings and bijections are stored in a bit vector called
Rice Bit Vector. Each splitting/bijection is encoded as a Golomb-Rice code [57, 78, 79]
(see Section 4.4). The number of keys in each bucket are stored as a prefix sum. This
is necessary to retrieve the number of keys in buckets with smaller IDs in constant time.
Finally, the bit position where the splitting tree of each bucket begins must be stored since
all splitting trees are stored contiguously in the Rice Bit Vector. Note that this is the same
as the exclusive prefix sum of the number of bits of each bucket. Both, the number of keys
in prefix-sum form and the bit positions, are stored together in a customized Elias-Fano
representation [45, 47, 46]. The RecSplit authors call this customization Double Elias-Fano,
and we describe it in Section 4.5.

4.1 Initial Hash Function
The input elements are completely arbitrary. For example, the elements could be long
strings and in particular, the length may vary between the elements. To obtain more handy
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values, an initial hash function is applied to each element. The resulting keys have a fixed
length. By using an initial hash function with good statistical properties, the keys can be
treated like random values. The original implementation of RecSplit in the Sux library [13]
uses SpookyHash V2 by Jenkins [60] for this purpose. It is fast and has good statistical
properties. The resulting hash values consist of 128 bits. This is important since in a set of
5 billion 64-bit random values the probability of a collision (two equal values) is about 50%
(birthday paradox [65]). This makes it impossible to construct large RecSplit instances if
only 64-bit keys are used.

SpookyHash is not a cryptographic hash function. An adversary could find two different
elements with the same hash value produced by SpookyHash. In this case, RecSplit cannot
produce an MPHF since both keys are indistinguishable. In the original implementation of
RecSplit, this would lead to an endless loop. This is effectively a denial-of-service attack.
Therefore, SpookyHash is not suitable if the input elements are from an untrustworthy
source (at least not without checking for collisions first). An alternative is SipHash [28]. It is
not a cryptographic hash function either, but it uses private keys to prevent attackers from
finding hash collisions. We do not care for adversaries in this thesis and use SpookyHash
regardless of the dangers. But this is important to keep in mind if RecSplit is used in
practice.

For the remainder of this thesis, we only consider the 128-bit keys which are the result of
the hash function and not the original input elements. The keys are treated like random
elements.

4.2 Bucket Assignment

The user specifies an expected bucket size b. The n keys are distributed into
⌈
n
b

⌉
buckets

according to the bucket-assignment function. This function operates on the 64 most
significant bits of the 128-bit keys. Let u be the 64 most significant bits of the key x. The
key x is assigned to the bucket with the ID(

u ·
⌈
n

b

⌉)
>> 64

where 128-bit multiplication is used. This leads to a practically unbiased distribution of the
keys between the buckets since u is considered random. Conceptually, this is an inversion
[44] and has been used in other projects as well [64]. The 64-bit key can be interpreted as
a real number between 0 (inclusive) and 1 (exclusive) by treating it as the decimal part.
Multiplying it with the number of buckets

⌈
n
b

⌉
and rounding down results in a number

between 0 (inclusive) and
⌈
n
b

⌉
(exclusive). Instead of rounding down, the decimal part is

removed here by shifting the result 64 bits to the right.

The expected bucket size b is restricted to the interval [1, 2000]. Experiments show that a
larger b is not useful [46]. Due to the random distribution, bucket sizes can differ. To be
exact, the bucket size of a given bucket follows a binomial distribution with parameters n
and p = 1

dn/be ≈
b
n . For n → ∞, the bucket size is distributed according to the Poisson

distribution with the parameter b [49]. Even for b = 2000 and a large amount of keys, the
probability that 3000 or more keys are assigned to the same bucket is almost zero. This
is taken as a fact in the original implementation [13], and we will use it as well for our
implementations.

For the remainder of the construction, only the 64 least significant bits of the 128-bit keys
are used. This ensures that the 64-bit keys within each bucket are completely independent
of each other.
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4.3. Splitting Trees

4.3 Splitting Trees
For each bucket, an MPHF is constructed independent of the other buckets. This MPHF is
a splitting tree which partitions the keys into smaller and smaller sets until the individual
sets are small enough such that a bijection on them can be found in reasonable time.
The leaf size ` is a user-supplied compile-time parameter of RecSplit and specifies the
maximum number of keys in a leaf. A larger leaf size leads to a longer construction time
since searching for bijections is expensive for large leaves. On the flip side, splitting trees
are more space efficient and can be queried faster for larger leaf sizes. The splitting tree
has a well-defined shape to enable fast queries. This shape is defined only by the leaf size
and the number of keys in the bucket.
A splitting tree comprises several levels. The tree is traversed from top to bottom. The
lowest level is called leaf level and consists of the leaves of the splitting tree. Each leaf,
except for possibly the last, contains ` keys. The level above the leaves is called first
aggregation level. The number of child nodes of an inner node is called fanout. The
maximum fanout s1 in the first aggregation level is s1 = max{2, d0.35`+ 0.5e}. Every node
in the first aggregation level, except for possibly the last, has fanout s1 and in particular
contains s1` keys. The fanout is optimized in such a way that the expected amount of
work to find the splitting is roughly equal to the amount of work in all children combined.
For details, see the original paper [46]. A larger fanout leads to a more shallow tree
and therefore to faster queries and, as we will see later (see Section 4.4.1), to a more
space-efficient MPHF.
Above the first aggregation level follows the second aggregation level which is similar. The
fanout s2 is again optimized such that the expected amount of work is equal to the combined
amount of work of all children. The result is s2 = 2 for ` < 7 and s2 = d0.21`+ 0.9e else.
Again, each node in this level except the last has fanout s2 and contains s2s1` keys.
All remaining nodes are considered part of the higher levels. The fanout in the higher levels
is always 2. A similar optimization as in the aggregation levels is not done since this would
need another branch in the query. This is not really worth it because the amount of nodes
in the higher levels is relatively small and the fanout would be smaller than in the lower
levels anyway since more work is necessary for more keys. For a node in the higher levels,
the number of keys in the left child is chosen as a multiple of s2s1`. As an example, the
splitting tree with 202 keys for leaf size ` = 8 is shown in Figure 4.1.
The corresponding level for a node can be calculated based on the number of keys using
the formula below. A tree may not have every level. For example, the splitting tree of a
bucket with ` or fewer keys consists of only a single node.

level of a node with m keys =


higher level if m > s2s1`

second aggregation level else if m > s1`

first aggregation level else if m > `

leaf level else

The leaf size is restricted to satisfy 2 ≤ ` ≤ 24. Larger leaves are too expensive for practical
purposes since bijections on many keys are hard to find. The restriction to this interval
has advantages for the implementation.

Hash Functions

The brute-force searches for splittings and bijections utilize a family of random and
independent hash functions hmi : [264]→ [m], i ∈ {0, 1, 2, . . . }. The index i (which we also
call hash function identifier) of the first hash function which satisfies the requirements of
the splitting/bijection is stored in the Rice Bit Vector.
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8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 2

32 32 32 32 32 32 10

96 96

192

202

Figure 4.1: The splitting tree with 202 keys for leaf size ` = 8. Each node is labeled with
the number of keys it contains. The red nodes at the bottom are the leaves.
The first aggregation level consists of the blue nodes above. Except for the last,
all nodes in this level have fanout 4. The two yellow nodes above make up the
second aggregation level. They have fanout 3. The two white nodes at the top
constitute the higher levels. As always, the fanout in the higher levels is 2.

4.3.1 Analysis
In the following, we analyze RecSplit mathematically. Not all details and derivations are
shown. See the original RecSplit paper [46] for more information.

Bijections

Let X be a set of m keys and h : X → [m] a random hash function on X. There are
mm possible hash functions of this form. Each of these functions has equal probability
of being h. Out of these functions, m! are bijections because there are m! permutations
of m elements. Consequently, the probability that h is a bijection is m!

mm . The algorithm
is trying out hash functions from the family of random hash functions until a bijection
is found, beginning with the hash function with index 0. The index of the first bijection
is distributed geometrically [49]. Therefore, the expected number of hash functions that
must be tried out is mm

m! . Using Stirling’s approximation, this is approximately em√
2πm . In

particular, the amount of work is exponential in the number of keys.
As a side note, this means finding a single bijection on the complete input of n keys (i.e.,
bucket size and leaf size are both n) is optimal in terms of space consumption of the MPHF.
The hash function identifier that must be stored is on average about en√

2πn which needs

log2

(
en√
2πn

)
= log2(e)n− 1

2 log2(2πn) ≈ 1.44n

bits to be stored, i.e., 1.44 bits per key — the theoretical lower bound [51]. Of course, this
is not practical. The construction time is exponential and the query time is linear in n
since every bit of the MPHF must be used to query the hash value of any key.

Splittings

For a splitting of m keys with fanout s where child i ∈ {0, . . . , s− 1} contains ki keys, the
expected number of hash functions that need to be tried out is√

(2π)s−1∏s−1
i=0 ki

m
.
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This number is maximized if all children are equally large, i.e., balanced splits are more
expensive to find than unbalanced splits.

4.4 Rice Bit Vector
The hash function identifiers are stored in a space-efficient way which still allows for fast
access. Importantly, the shapes of the splitting trees are not stored explicitly. Instead, they
are stored in preorder, i.e., first the root, then the whole subtree of the first child, then
the whole subtree of the second child and so forth. Only the hash function identifiers are
stored. The encodings of all splitting trees are concatenated in a single bit vector named
Rice Bit Vector.

4.4.1 Golomb-Rice Codes

Each hash function identifier is encoded as a Golomb-Rice code [57, 78, 79]. Given a
Golomb parameter τ and the hash function identifier d, the τ least significant bits of d are
stored directly and the remaining most significant bits of d are encoded in unary. The first
part is called fixed part and the second is called unary part. The unary part consists of
(d >> τ) 0-bits and a final 1-bit. For example for τ = 3, d = 10102 has the fixed part 0102
and the unary part 012.

Golomb-Rice codes allow for storing arbitrarily large numbers which is important since the
hash function identifiers can theoretically get arbitrarily large. Furthermore, using Golomb-
Rice codes is useful since the hash function identifiers follow a geometric distribution.
Golomb codes [57] are optimal for geometric distributions, and Golomb-Rice codes [78] are
a faster special case which is almost as space efficient. The optimal Golomb parameter
τ depends on the probability that a given hash function is a valid splitting or bijection,
respectively. For the probability p, the optimal Golomb parameter is

τ(p) = max
{

0,
⌈
log2

(
− log2 ϕ

log2(1− p)

)⌉}
(4.1)

with the golden ratio ϕ =
√

5+1
2 [61].

As was shown in the original paper [46], the space consumption of RecSplit tends to the
optimum for large n, except for about 2 bits which are lost per splitting/bijection. In order
to optimize the space consumption, the overall number of splittings and bijections should
be reduced. This can be achieved by increasing the leaf size `. This leads to a smaller
number of bijections and to a larger fanout in the aggregation levels and therefore to fewer
splittings. Viewed differently, there are more keys per splitting/bijection to amortize the
cost of 2 bits. Larger leaf sizes also lead to faster queries because the splitting trees are
more shallow due to the larger fanouts in the aggregation levels.

4.4.2 Fast Queries

The splitting tree must be traversed fast from the root to a leaf to calculate the hash value
of a key. This is made possible by storing the fixed and unary parts of each splitting tree
separated; first the fixed part and then the unary part of all Golomb-Rice codes of the
splitting tree. Both are stored in preorder. The crucial part is that given a node v of the
splitting tree, the shape of the subtree rooted at v depends only on the number of keys in
v. This includes the number of nodes in the subtree and the number of bits stored in the
fixed part of all nodes in the subtree. Both values, together with the Golomb parameter,
can be stored in a lookup table indexed by the number of keys.
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After evaluating a splitting in a query, it is clear which child node c must be evaluated
next. To find the hash function identifier of c, it may be necessary to skip one or more
subtrees. In the case where c is the first child of the splitting, no subtree must be skipped.
The next values in the fixed and the unary part decode the correct hash function identifier.
Otherwise, the subtrees of all children of the same splitting left from c must be skipped. In
the higher levels, this is only one subtree. In the aggregation levels, it may be more than
one subtree, but all these subtrees have the same number of keys and therefore the same
shape.

To skip a subtree in the fixed part, the number of bits that the fixed part of the subtree
occupies is looked up in the lookup table. If there is more than one left child, the number
of bits to skip is multiplied with the number of left children.

Skipping a subtree in the unary part can be achieved by using a selection operation.
Remember that the unary part of each hash function identifier contains exactly one 1-bit.
The number of nodes in a subtree is therefore equal to the number of 1-bits in its unary
part. Since the number of nodes is stored in a lookup table indexed by the number of keys,
we only have to skip the number of 1-bits specified in the lookup table. Skipping m 1-bits
is equal to finding the m-th 1-bit (zero-indexed). This is implemented by calling popcount
on 64-bit words representing the unary part until at least m 1-bits are found. Then, the
efficient selection operation described in Section 2.1 is used to find the exact bit position of
the m-th 1-bit in the unary part.

As described earlier, the fixed and unary parts of each splitting tree are stored concatenated.
To initially find the start of the unary part of the whole splitting tree without storing it
explicitly, the same idea as skipping a subtree in the fixed part is used. Just look up the
size of the fixed part of the whole splitting tree in the lookup table and add this to the start
of the fixed part (which is stored in the Double Elias-Fano representation, see Section 4.5).

Example

As an example, consider ` = 8 like in Figure 4.1. Assume the current node contains 90
keys. It can be deduced from this number that it is part of the second aggregation level.
The lookup table at index 90 tells us that the Golomb parameter of this node is 6, i.e.,
the next 6 bits in the fixed part of the Rice Bit Vector are the least significant bits of the
hash function identifier, and we need to count the number of 0-bits until the next 1-bit
in the unary part to get the most significant bits. The hash function identifier is used to
calculate the hash value of the input key, a value in [90]. For example, the hash value may
be 72, i.e., the child at index

⌊
72
32

⌋
= 2 contains the input key. The divisor is 32 since this

is the number of keys per node in the first aggregation level.

We have to skip two subtrees. The lookup table at index 32 says that each subtree contains
five nodes. The bit position in the unary part is advanced until 10 1-bits are found, i.e.,
the new position is the bit after the 10th 1-bit. Using the lookup table again, each subtree
contains 39 bits in the fixed part. Thus, the bit position in the fixed part is advanced 78
bits.

4.4.3 Lookup Table

For the construction algorithm and especially for the query algorithm, the Golomb parameter
of a splitting/bijection with a given number of keys must be computed quickly. Moreover,
the query algorithm requires the number of nodes and the number of bits in the fixed part
of any splitting tree given its number of keys. For fast access, all three quantities are stored
in a lookup table. It is important that this lookup table does not consume too much space
since this would counteract the space efficiency of the MPHF.
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All three quantities fit in a single 32-bit word per node size. The Golomb parameter only
needs 5 bits because of the requirement ` ≤ 24 and Equation (4.1). The number of nodes
uses 11 bits and the remaining 16 bits are used for the size of the fixed part. Since we
assumed no bucket has 3000 or more keys, the lookup table only needs 3000 entries. With
32 bits each, the complete lookup table takes 12 kilobytes. For a million keys, this amounts
to about 0.1 bits per key. However, we do not count this towards the required space of the
MPHF as it is not really a part of the MPHF (the lookup table can be calculated again at
any time independent of the keys), but it needs space in the main memory and cache.

4.5 Double Elias-Fano
RecSplit uses a customized Elias-Fano representation [45, 47] to store the prefix sum of the
bucket sizes and the bit position where the splitting tree of each bucket starts in the Rice
Bit Vector. This customization is called Double Elias-Fano. It enables constant-time access
with little space requirements. We first describe the general Elias-Fano representation
before explaining the customization done for RecSplit.

4.5.1 Elias-Fano Representation

An Elias-Fano representation can be used to store a monotonic sequence of integers

0 ≤ x0 ≤ x1 ≤ · · · ≤ xκ

with κ ≥ 0. Similar to Golomb-Rice codes, the least significant bits of each value are stored
directly. To be exact, the µ = max

{
0,
⌊
log2

(
xκ+1
κ+1

)⌋}
least significant bits of each value

are stored contiguously in the lower-bits array and can be accessed directly.

The remaining most significant bits are encoded as unary differentials in the upper-bits
array. This means that the upper-bits array contains a 1-bit for every value in the sequence
and the number of 0-bits between the 1-bits of two values is exactly the difference of the
most significant bits of the two values. For example for 0 ≤ i < j ≤ κ, the number of 0-bits
between the i-th and j-th 1-bit (zero-indexed) in the upper-bits array is (xj>>µ)−(xi>>µ).
Put differently, the corresponding 1-bit of xi is at the position (xi >> µ) + i. A selection
data structure is used to find the position ν of the i-th 1-bit of the upper-bits array in
constant time. Since ν = (xi >> µ) + i, the upper bits of xi can be calculated as ν − i.

4.5.2 Customization

RecSplit stores the prefix sum of the bucket sizes and the bit position of the start of
each splitting tree in a single combined Elias-Fano representation, hence the name Double
Elias-Fano. Let λi be the prefix-sum sequence and σi the bit-position sequence for i ∈ [κ+1]
with the number of buckets κ =

⌈
n
b

⌉
. It is λ0 = σ0 = 0, λκ = n the total number of keys,

and σκ the total number of bits of the Rice Bit Vector. The sequence σi is not stored
directly. Instead, the sequence ψi = σi − βλi is stored where β = σκ

λκ
is the average number

of bits per key the splitting trees require. This utilizes the dependency between both
sequences to compress σi. Note that ψi may not be monotone which is resolved in the
following.

As the next step, both sequences are rescaled by reducing the differences between successive
elements by the minimum difference. This means,

δλ = min
i∈{1,...,κ}

(λi − λi−1) and δψ = min
i∈{1,...,κ}

(ψi − ψi−1)

are calculated and λi is replaced by the sequence φi = λi − iδλ and ψi is replaced by
χi = ψi− iδψ. This reduces the range of λi, especially if b is large. For example if b = 2000,
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the probability that a bucket contains less than 1500 keys is almost zero. Therefore,
δλ ≥ 1500 with high probability, which reduces each value on average by a factor of four
and saves about two bits per bucket. If ψi is not monotone, then δψ is negative and the
rescaled sequence χi is again monotone.

The lower-bits arrays of both sequences are interleaved, i.e., for a given i ∈ [κ + 1], χi
is stored directly after φi in a single lower-bits array. This can potentially save a cache
miss. The upper-bits arrays are stored separately. The authors of RecSplit note that both
sequences are very regular. This allows for a simple selection data structure. This data
structure provides the position of each 214-th 1-bit and each 256th 1-bit in between. The
first position is stored as a 64-bit word, the second position is relative to the first and
only requires 16 bits. As before, the positions for both upper-bits arrays are interleaved to
potentially save a cache miss.

Let ζφ(γ) be the position of the γ-th 1-bit in the upper-bits array of φi, i.e., the 1-bit
corresponding to φγ . Analogously, ζχ(γ) is defined for χi. The array containing the
positions is called jump array. A single entry of this array at index j contains several values.
First, it contains the position ξφ = ζφ(214j), i.e., the position of the 1-bit corresponding
to φ214j in the upper-bits array of φi. It is followed by the position ξχ = ζχ(214j). Both
values are 64-bit words. Finally, the position of every 256th 1-bit is stored relative to the
corresponding 64-bit position as a 16-bit word, alternating between both sequences. These
are the values

ζφ(214j)−ξφ, ζχ(214j)−ξχ, ζφ(214j+256)−ξφ, ζχ(214j+256)−ξχ, ζφ(214j+2 ·256)−ξφ, . . .

where the first two entries are always zero. This concludes the description of the selection
data structure.

We proceed to explain how to compute φi, φi+1 and χi in expected constant time using the
stored data. These three values can then be used to compute λi, λi+1 and σi by reverting
the steps explained in the previous paragraphs. The first value (λi) represents the number
of keys which are in buckets with an index smaller than i. This number must be added to
the hash value computed by the splitting tree to get the correct hash value of the whole
MPHF. The second value (λi+1) is necessary to calculate the size of the bucket λi+1 − λi,
and χi denotes where the encoding of this buckets splitting tree begins in the Rice Bit
Vector.

The least significant bits of all three values can be retrieved directly with a lookup in the
lower-bits array. To calculate the most significant bits of φi and χi, the positions of the
respective 1-bits in the upper-bits arrays need to be found. The selection data structure is
used to find the nearest 1-bit which is represented by the structure, i.e., every 256th 1-bit.
The correct position is finally searched linearly by using popcount and selection on 64-bit
words (see Section 2.1) in both upper-bits arrays. The 1-bit corresponding to φi+1 follows
the 1-bit of φi and can therefore be found fast. The most and least significant bits only
need to be combined to get the correct values.

Analysis

In the following, we analyze the customized Elias-Fano representation in greater detail
than in the original RecSplit paper [46]. Let µφ = max

{
0,
⌊
log2

(
φκ+1
κ+1

)⌋}
and µχ =

max
{

0,
⌊
log2

(
χκ+1
κ+1

)⌋}
. The space consumption of the lower-bits array is (κ+ 1)(µφ +µχ)

bits. The upper-bits arrays need κ+ 1 + (φκ>>µφ) or κ+ 1 + (χκ>>µχ) bits, respectively.
The number of bits of both upper-bits arrays is at most 3κ+ 2. We show this by showing
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φκ >> µφ ≤ 2κ + 1, the other case is analogous. If µφ = 0, then φκ + 1 < 2κ + 2 and
therefore φκ >> µφ = φκ ≤ 2κ. Otherwise, using substitution with Φ = φκ+1

κ+1 ,

φκ >> µφ =
⌊

φκ

2blog2(φκ+1
κ+1 )c

⌋

=
⌊(κ+ 1)Φ− 1

2blog2(Φ)c

⌋
≤
⌊ Φ

2blog2(Φ)c (κ+ 1)
⌋

≤ 2κ+ 1

since Φ
2blog2(Φ)c < 2 for all Φ > 0.

The jump array needs κ
214 · 2(64 + 16 · 214

256) +O(1) = 17
128κ+O(1) bits. The overall space

consumption of the Double Elias-Fano representation is dominated by the lower-bits array.
It needs O(κ log b) = O(n log b

b ) bits. This means we can decrease the amount of space the
Double Elias-Fano representation occupies by increasing b. However, this also increases
construction and query time as we will see in the Evaluation (Chapter 6).

The only part of querying Double Elias-Fano which does not obviously need constant time
is the linear search in the upper-bits arrays after the selection data structure has been used.
The required running time for this step is linear in the distance between the 1-bit which
was found by the selection data structure and the 1-bit representing the queried bucket.
Since both upper-bits arrays contain O(κ) bits and exactly κ+ 1 1-bits each, this distance
is on average O(1). Here it is important that both stored sequences are very regular to
justify the expected constant running time from this fact.
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In this chapter, we describe how the different implementations of RecSplit work in more
detail. Each separate step is first explained generally before discussing details of the
implementations for specific hardware architectures. Finally, an overview is given how the
separate steps are used to construct a RecSplit instance. The GPU implementation uses
CUDA 11 [71]. The SIMD implementation uses the vector class library by Fog [26, 27],
only supports x86 CPUs and is optimized towards AVX2 and AVX-512.

5.1 Sorting
The original RecSplit implementation in the Sux library [13] uses the sorting function of
the C++ standard library to sort the keys according to their bucket numbers. For example,
the libstdc++ standard library used by the GCC compiler implements introsort [70, 56]
which is based on quicksort and has a running time of O(n logn). This means that, strictly
speaking, this implementation of RecSplit does not have expected linear running time.
However, for most useful parameter combinations, the sorting time is negligible compared
to the remainder of the algorithm.

Since we only want to distribute the keys according to their respective bucket numbers
and do not need to sort the keys inside each bucket, a rather natural choice for a faster
algorithm is bucket sort. More specifically, we use a variant known as counting sort [80].
Our custom implementation of this out-of-place algorithm has three phases:

1. Count the number of keys that are hashed to each bucket in an array A.

2. Compute the inclusive prefix sum of the bucket sizes A.

3. Place the keys in the right buckets by iterating over the input, computing the bucket
number for each key, placing it in the output position given by A and decreasing the
position in A. Only the last 64 bits of the keys are placed in the bucket since the
other half is only used to determine the bucket number. After this phase, A contains
the exclusive prefix sum of the bucket sizes.

Counting sort has linear running time for keys with constant size. However, for inputs
exceeding the cache sizes it may have an inferior performance compared to introsort since
counting sort does several random accesses per key. Introsort, contrarily, traverses the
input linearly and can therefore utilize the cache more efficiently [62]. This problem can
be alleviated by using prefetching in phases 1 and 3 to hide the latency of cache misses.

27



5. Implementation

For this, the _mm_prefetch [22] intrinsic from the immintrin.h header is used, which
emits a prefetch instruction on the x86 architecture. In the first phase, the input data is
processed in batches of size 32. First, the addresses of the respective counters are calculated,
prefetched, and subsequently incremented. The third phase is handled similarly, but has
two prefetching loops, one for the indices in A and one for the output.

On top of the better performance, counting sort has another advantage. After counting
sort has finished, the array A contains the exclusive prefix sum of the bucket sizes, i.e.,
the starting index of each bucket. This is required later for the Elias-Fano representation
and had to be calculated extra in the original implementation. Furthermore, knowing
the bucket positions beforehand is necessary for the parallelization of SIMDRecSplit (see
Section 5.8).

A disadvantage of this implementation of counting sort is that it is not in-place and
consumes about 50% additional memory to store the sorted output.

5.2 Starting Seeds
The probabilistic analysis done in the original RecSplit paper [46] is only applicable if all
evaluations of hash functions are independent of each other. For different keys, and in
particular for different buckets, this is ensured since the keys are the result of the initial
hash function and therefore are decorrelated (see Section 4.1). However, the same key
is used on different levels within its bucket. We need to make sure that the used hash
functions are different each time the key is used. The original implementation [13] tracks
the level of the split or bijection that is currently examined and looks up a randomly
generated but fixed starting seed depending on the level. This starting seed is added to the
hash function ID (which is later stored in the Rice Bit Vector) and the key to be hashed.
The level of the highest split is 0.

In the GPU version, all leaves (except possibly the last one if it has another size) are
processed with one kernel call. The same is true for the two aggregation levels above the
leaves. Note that the leaves do not need to have the same level since the level is counted
beginning at the top and the tree is not necessarily perfectly balanced. To avoid passing
the starting seed to each leaf of the kernel, a constant starting seed for all leaves is chosen
randomly, but fixed at compile time. Identically, different starting seeds are generated for
the two aggregation levels above the leaf level. The higher levels still use the same starting
seed lookup table as the original version. Note that this modification does not introduce
any correlation since the splits and bijections that use the same starting seeds use different
keys.

The query function must be changed slightly to incorporate these changes. In the last three
levels, the constant starting seeds are used instead of the lookup table. This should not
be slower than the previous version. In fact, it is expected to be slightly faster since the
constant is known at compile time and does not need to be looked up in a table. Moreover,
two increments of the level can be avoided. For this reason and to ensure both versions
produce the exact same resulting MPHF, the SIMD version also uses this technique.

5.3 32-Bit Hash Function
The original RecSplit implementation [13] uses a 64-bit remix function [8, 41] to implement
the hash functions. This remix function f : [264]→ [264] takes a 64-bit word and returns a
64-bit word by mixing the input bits using shifts, XORs, and multiplications with constants.
It can be viewed as a pseudorandom permutation of all 64-bit words. RecSplit uses it to
implement hash functions of the form h : [264] → [m] with m < 216 by using the remix
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function on the input, setting the 16 most significant bits to zero, multiplying the result
with m and shifting it 48 bits to the right:

h(x) = ((f(x) & ((1<< 48)− 1)) ·m)>> 48

Effectively, this interprets f(x) as a fixed-point decimal number between including zero
and excluding one, where the decimal point is after the 16 most significant bits [46]. By
multiplying with m, the result is a fixed-point decimal number between zero (inclusive)
and m (exclusive). The shift by 48 bits to the right extracts the decimal part before the
decimal point, which is an integer between including 0 and excluding m.

The remix function f uses two 64-bit integer multiplications, i.e., three 64-bit multiplications
are necessary per evaluation of the hash function h. This is a problem for the GPU
implementation since most GPUs are optimized for 32-bit operations (floating-point and
integer). Shifts, XOR, and addition of 64-bit integers can be implemented by using only a
few 32-bit instructions. However, 64-bit multiplications take a lot more instructions and
are therefore very expensive on GPUs [12].

This problem can be solved by using a 32-bit remix function g : [232]→ [232]. Fortunately,
MurmurHash3 — from which the 64-bit remix function originates — also contains a 32-bit
remix function [8]. This function does the same operations as f on 32-bit words with
other constants. The function g can be used to implement h in the same way as above
by replacing the constant 48 by 16 and using 32-bit operations. This way, h can be
implemented without any 64-bit integer multiplications. This does not only profit the GPU
version but also the SIMD version since it can effectively double the throughput of the
remix function. The advantage for the GPU implementation is shown in Section 6.5.1.

However, the input of h is always a 64-bit word and must first be transformed to a 32-bit
word before using g. It is not good to ignore the 32 most significant bits and only use the
32 least significant bits. For example, this would be a problem for ` = 24. Recall that the
probability that a random hash function is a bijection on 24 keys is 24!

2424 ≈
√

2π·24
e24 . Therefore,

the probability that more than 232 hash functions must be tried is
(
1−

√
2π·24
e24

)232

≈ 0.137.
If the 32 most significant bits of the input are ignored, there are effectively only 232 different
hash functions. If more are needed, there is no possible solution. In our implementation,
this problem would result in an endless loop.

A more severe problem is that effectively the 32 most significant bits of the keys are ignored.
Therefore, if two keys with the identical 32 least significant bits end up in the same bucket,
they are always hashed to the exact same hash code. This makes it impossible to find a
solution again since both keys end up in the same leaf and there is no bijection possible.
The probability that there are at least two identical keys in a bucket of 2000 random 32-bit
keys is 1− (232)!

(232−2000)!·(232)2000 ≈ 0.000465. Given ten million keys, i.e., 5000 buckets, the
probability to create this situation is 1−(1−0.000465)5000 ≈ 0.902. This is an unacceptable
risk.

These problems can be solved by using the XOR of the 32 most and the 32 least significant
bits of the input. Note that the input of h in the example is the sum of the hash function
ID d (beginning with 0) and the key to hash y (we ignore the starting seed here). Both,
d and y, are 64-bit words. If the 32 most significant bits of d + y are ignored, d + t232

results in the same hash function for every integer t. This is not the case if the XOR of the
32 most and the 32 least significant bits is used since the addition carries information to
the more significant bits. This carry depends on the key y. Note that it is inevitable that
information is lost on the transition from 64 to 32 bits. However, the crucial part is that
the transformation looks different for different keys y. For this to work it is import that d
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and y are mangled using addition (not XOR or other bitwise operations!) and that the
XOR happens after the addition.

The constants of the 64-bit remix function were optimized by Strafford such that the
result of two consecutive words are as decorrelated as possible [41]. This is useful for
RecSplit since two hash functions that are tried out consecutively use consecutive words
(d is increased by one for each new hash function). Something similar could be done for
the 32-bit hash function. However, it would be more complicated since the words are not
consecutive because of the XOR and the starting seed. Furthermore, the experiments show
no significant difference of the size of the MPHFs between the original version (which uses
the 64-bit remix function) and the SIMD/GPU versions (which use the 32-bit function);
see Section 6.5.1. This does not promise much to gain by optimizing the 32-bit remix
constants.

5.3.1 SIMD Implementation

Let us now discuss the specifics of the remix function for the SIMD implementation. The
SIMD version works on vectors of a fixed number of bits. Consider the x86 instruction set
extension AVX-512. Each vector consists of 512 bits. Therefore, a vector can contain eight
64-bit words or 16 32-bit words. A vector operation performs the same operation on all
words in the vector. Preferably, 32-bit words should be used to increase throughput. To
use the 32-bit hash function, the 64-bit input must first be transformed to 32 bits using
XOR as explained above. This means the input consists of two vectors containing 64-bit
words. There are several possible implementations to transform these two vectors into
one vector containing the proper 32-bit words which can be used as the input of the hash
function.

The first implementation uses the compress function of the Vector Class Library [27]. This
function takes two vectors containing 64-bit words and packs the 32 least significant bits of
each word into one vector containing 32-bit words. Given the input vectors x and y, the
transformation can be implemented as

compress(x >> 32, y >> 32)⊕ compress(x, y).

The shift operation operates on the individual 64-bit words in the vector.

The second implementation uses the blend16 function [27]. It takes two vectors and 16
template parameter indices. The result is the concatenation of the 32-bit words selected by
the indices. An index of 16 or more means the respective word in the second input vector
is meant. This function can be used to pack the 32 least or most significant bits of each
64-bit word into one vector. Let blend16even be the function with all the even indices
from 0 to 30 as template parameters and blend16odd the function with all the odd indices.
The transformation then looks like

blend16even(x, y)⊕ blend16odd(x, y).

According to the experiments (see Section 6.4.1), the second implementation is faster and
is therefore used. If AVX2 is available, but no AVX-512, 256 bit vectors containing four
64-bit words or eight 32-bit words are used. Instead of blend16, blend8 is used. If no
AVX2 is available, 256 bit vectors are simulated by the Vector Class Library utilizing SSE
instruction sets if available.
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5.4 Leaf Level

For each leaf, a bijection on the leaf keys X = {x1, . . . , xm} must be found. Let h : X → [m]
be a hash function. The following algorithm is used to determine whether h is a bijection:

1. Initialize a← 0.

2. For each x ∈ X, set the bit of a at index h(x) to one, i.e., a← a | (1<< h(x)).

3. The function h is a bijection if and only if the m least significant bits of a are all set
to one, i.e., if a = (1<<m)− 1.

5.4.1 Bijection Midstop

For large m, this procedure can be accelerated. After the first p = p(m) (p < m) keys
are processed, there may already be a collision, i.e., two or more keys with the same hash
value. Note that in this case, there are less than p bits set in a. Therefore, collisions can
be detected after processing the first p keys using the popcount instruction. If a collision is
found, the algorithm proceeds with the next hash function. Otherwise, the remaining keys
are hashed and step 3 is done as usual. We call this algorithm bijection midstop.

In the original RecSplit implementation [13], bijection midstop is used for m ≥ 9. The
parameter p = p(m) = d2 ·

√
me is chosen such that the probability that a collision is found

is about 90%.

5.4.2 GPU Implementation

One kernel call per bucket is used to find the bijections of all leaves with the same size.
Each thread block handles exactly one leaf. First, the leaf keys X are loaded into shared
memory using memcpy_async as explained in Section 2.3.2. The threads use the time it
takes the data to arrive for initialization. The memory access is not perfectly coalesced since
proper alignment is not guaranteed because the keys of all leaves are stored contiguously
without padding. Nonetheless, almost every byte loaded from global memory by the kernel
is used by one of the thread blocks which improves caching.

A hash function identifier d in shared memory is initialized to the maximum possible value.
Each thread tries a distinct hash function defined by the thread index inside the block. If
a thread finds a bijection h, it atomically sets d to the minimum of d and the identification
of h. Then, each thread tries the next hash function which is defined as the last plus the
number of threads in the block. After k tries, the threads synchronize, check if a bijection
was found and if it was, load d into global memory. The value k is dependent on m = |X|.
The more keys X contains, the higher is k since more tries are necessary on average to find
a bijection. This reduces the amount of synchronizations for large leaves. For m < 14 or
when using bijection rotation (see Section 5.5), then k = 1.

Since a warp works in lock-step, bijection midstop is only effective if all threads in a warp
detect a conflict. If at least one thread does not detect a conflict, the whole warp has to
continue processing the remaining keys. Therefore, using the same midstop parameter as
in the original version [13] is not advisable. Instead, p = p(m) = d3 ·

√
me is used, which

again provides a probability of about 90% that all threads in the warp find a collision. This
parameter also proved almost optimal in experiments, see Section 6.5.2. Bijection midstop
is only used for m ≥ 14.
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5.4.3 SIMD Implementation

Similar to the GPU implementation, several hash functions are tried out at the same time
by loading consecutive hash function identifiers in a vector of 64-bit words. For each key in
X, the key is first added to the vector. A second vector is produced by adding the number
of 64-bit words in a vector. Both vectors are combined into one vector containing 32-bit
words before applying the hash function as explained in Section 5.3.1. The result for each
SIMD lane is a number in [m]. As in the other implementations, a bit at this number
interpreted as an index must be set to 1.

AVX2 and AVX-512 contain an instruction named VPSLLVD to shift the contents of a
vector by the number of bits specified in another vector [14, 21]. Unfortunately, the Vector
Class Library does not support this instruction and only permits shifting the contents of a
vector by an amount that is the same for all lanes [27]. However, the instruction can still
be used by using the intrinsic _mm256_sllv_epi32 or _mm512_sllv_epi32, respectively
[22]. We use it to shift a 1-bit to the specified index. As a fallback if neither AVX2 nor
AVX-512 is available, a lookup in a table containing the powers of two is used. Note that
shifting the number 1 by x bits to the left is the same as computing 2x.

After all elements are processed, checking for a bijection is done by comparing the contents
of the SIMD lane with the word where the m least significant bits are set to 1. The result
is a boolean vector which contains a boolean for each lane indicating whether a bijection
was found. To check whether a bijection was found in any SIMD lane, the horizontal_or
function of the Vector Class Library is used. It returns true if and only if at least one of
the lanes contains “true”. If it returns true, the horizontal_find_first function is used
to calculate the index of the first lane containing true which is used to compute the first
hash function identifier which results in a bijection.

Bijection Midstop

Bijection midstop works a little different in the SIMD implementation than in the other
implementations. Remember that in the GPU implementation if any thread in a warp does
not find a collision, the whole warp has to continue processing the remainder of the leaf.
This can be avoided in the SIMD implementation by using a backlog. After the midstop,
all words which do not exhibit a collision are stored in a backlog. When there are enough
keys in the backlog to fill a complete vector, then this vector is processed as usual to find
a bijection. This way, no vector operations are wasted on vectors where most lanes are
irrelevant.

There are two different implementations to calculate the popcounts depending on the
instruction set. If the instruction set extension AVX512VPOPCNTDQ is available, we
can use popcount on 512-bit vectors containing 32-bit words [21]. The popcounts are then
compared to the midstop parameter. The function to_bits of the Vector Class Library
is used to obtain a bitmask of 16 bits with a 1-bit at every index where no collision was
found. As long as the bitmask is not zero, we can use ρ (see Section 2.1) to find the index
of the first word without a collision, clear the respective bit with clear_rho, and store the
word in the backlog.

If AVX512VPOPCNTDQ is not available, popcount cannot be used on vectors. Instead,
all words are dumped in an array and then processed sequentially.

5.5 Bijection Rotation
A new and faster approach to speed up the search for bijections than bijection midstop is
called bijection rotation. Essentially, bijection rotation is a method to find an MPHF on
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m keys with m ≤ w (the word size of the machine). The idea is similar to FCH [50] (see
Section 3.4). We distribute the keys randomly into two sets A and B by calculating the
parity of each key. Note that in all other places the key is used in conjunction with a hash
function, therefore we can use the key here directly without causing correlations.

Given a hash function h, we calculate the hash value of all keys in A and set the respective
bits in the word a to 1. Like bijection midstop, h may be ruled out as a valid bijection by
calculating the popcount of a. The set B is processed identically with the bits set in the
word b. For all possible m rotations of b, we test if we have found a bijection. This is the
case if and only if a | rotrm(b) has the m least significant bits all set for a rotation r ∈ [m].
To efficiently store r, only every m-th hash function is tried, which means the number of
the hash function is congruent to zero modulo m. This number plus r is stored in the Rice
Bit Vector. We can restore r later by calculating modulo m and restore the hash function
by subtracting r.

Bijection rotation is only used for full leaves, i.e., if m = `. This leads to an extra branch
in the query but avoids using bijection rotation for small leaves. Furthermore, ` is a
compile-time constant which can accelerate the modulo operations.

5.5.1 Analysis

For a simple analysis, assume that m is even and |A| = |B|. Moreover, assume that after A
is processed, a has m distinct rotations, i.e., for all r ∈ [m] \ {0}, rotrm(a) 6= a. We define
the following events:

• P means “h is a bijection on X”

• Q means “h is a bijection on X = A ∪B using bijection rotation”

• R means “h is injective on A”

• S means “Given a subset T ⊆ [m] with |T | = m
2 , h(B) = T”

Theorem 5.1. P(Q) = mP(P )

Proof. The function h is a bijection on X using bijection rotation if it is injective on A
and fills the remaining holes with B. Therefore,

P(Q) = P(R) ·mP(S | R) = P(R) ·mP(S)

since S and R are independent and there are m possible rotations of b to fill the holes left
in a. To be specific, there are m different events with the form of S where each event has a
different set T . The set T contains one of the m possible rotations of the holes left in a.
Note that rotating b has the same effect as rotating a, hence this view is equivalent. These
m events are disjoint because at most one of them can occur. This is only true because
of the assumption that a has m distinct rotations. The probability that any of these m
events occur is equal to the sum of the probabilities. Each individual probability is P(S),
i.e., the sum is mP(S).

Since there are mm/2 possible functions f : A→ [m] of which m!
(m/2)! are injective functions,

P(R) = m!
(m/2)!mm/2 . Similarly, (m/2)! of the possible functions satisfy the condition in S:

P(S) = (m/2)!
mm/2

. We can conclude that

P(Q) = m!
(m/2)!mm/2 ·

(m/2)!
mm/2 = m! ·m

mm
= mP(P ).
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This means that if the assumptions are satisfied, the expected number of hash functions
that need to be tried is reduced by a factor of m, which can speed up the construction
significantly. In practice, the gains are smaller since |A| and |B| are not guaranteed to be
equal and a may have less than m distinct rotations. For example using binary notation,
rot2

4(10102) = 10102.

5.5.2 Lookup Table

It is possible to avoid trying out all m rotations by using a lookup table t. For all possible
values of a, this table contains a rotation parameter t[a] such that rott[a]

m (a) is minimal. If a
value x can be rotated to get the value y, then rott[x]

m (x) = rott[y]
m (y). Let c = (1<<m)−1

the word where the m least significant bits are set. The value b̂ = b⊕ c is b with the m least
significant bits flipped. Note that b can fill the holes in a if and only if b̂ can be rotated to
match a. The necessary rotation of b can now be calculated with just two lookups. We
have found a bijection if and only if

a | rot((t[b̂]−t[a]) mod m)
m (b) = c.

However, this lookup technique is not used in our implementations. Often, especially for
large leaves, it is not necessary to compute the rotations since h is not injective on A or B,
which can be detected with popcount to stop early. Moreover, the lookup table consists
of 2` bytes and is accessed pseudorandomly. This can cause cache misses, especially for
` ≥ 16 since many processors have an L1 data cache size smaller than 216 B = 64 KiB.
For example, the Intel Core i7-11700 which we use in our experiments has 48 KiB of
L1 data cache per core as reported by the lscpu command [20]. We could not measure
improvements in the sequential and scalar implementation using the lookup table, see
Section 6.3.2

For the GPU and SIMD implementations, the rotations must be computed more often since
the early stopping does not work as well (see below). Nevertheless, the lookup technique
is not promising. In the SIMD case, gather instructions are necessary to load the values
from the lookup table to the vector registers. These instructions are relatively expensive
compared to the simple instructions used to rotate. In the GPU case, global memory
operations are too expensive to justify saving some instructions. Constant memory is
optimized for the use case where all threads in a warp access just a few or only one single
element. Shared memory is a scarce resource and still significantly slower than registers.
Therefore, the lookup technique is not used for the GPU implementation either.

5.5.3 SIMD Implementation

We proceed to explain specifics of bijection rotation for the SIMD implementation. In
the other implementations, popcount is used after processing each set to find collisions
early as explained before. Unfortunately, this is not as straightforward for the SIMD
implementation. After processing the first set, some SIMD lanes may already find a
collision. But if at least one lane does not contain a collision, we need to process the other
set as well. Similarly, there may be lanes which do not contain a collision for the second set.
We can only stop early if for each lane a collision was found for one or both sets. Therefore,
collisions are only checked after processing both sets, but before trying out the rotations.
Since the popcount instruction on vectors are necessary, this optimization is only used if
the AVX512VPOPCNTDQ instruction set is available.

Remember that the number that is stored in the Rice Bit Vector is the hash function
identification plus the rotation. This number should be as small as possible to avoid wasting
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space. To achieve this and to ensure that the resulting MPHF is equal to the one produced
by the GPU implementation, caution must be taken when trying out the rotations. This
goal is not achieved by trying out one rotation after the other and checking if a bijection
was found after each rotation. Another lane with a smaller lane ID might find a bijection
for a higher rotation number, which leads to an overall smaller number. Therefore, all
rotations are tried out and only at the end it is checked whether a bijection was found.

Note that several rotations of the same word can lead to a bijection. For example, consider
` = 4 and the two words a = 01012 and b = 10102. We need to rotate b such that the
1-bits in b match the 0-bits in a. The word b can be rotated either zero or two bits to the
left to find a match. To make sure that always the smallest rotation is found, we start
at the highest rotation. To be exact, a right rotation instead of a left rotation is used to
rotate b by one bit to the right in every iteration. The select function of the Vector Class
Library is used to store the current rotation in the result if a bijection was found. This
function takes a boolean vector and two additional data vectors as input and selects the
value of one of the two data vectors per lane based on the value in the boolean vector.

5.6 Aggregation Levels
Above the leaf level in the splitting tree, there are two so-called aggregation levels. Each
node of the first aggregation level splits a subset of the bucket into the leaves. Each node
in the second aggregation level splits a larger subset into the nodes of the first aggregation
level. The size of the subsets (called unit) is fixed at compile time, except the last one
per level which can be smaller. The same is true for the fanout, i.e., the number of parts
the subset is split into. Consider a node in the aggregation levels with the keys X with
|X| = m, unit u, and fanout s. To check whether a given hash function h : X → [m] is a
valid splitting, the following algorithm is used:

1. Initialize array A with s words that are each equal to zero. The values in A are called
counts.

2. For each x ∈ X, increment A[bh(x)/uc] by one.

3. The function h is a valid splitting if and only if A[i] = u for all i ∈ [s− 1].

The hash function does not produce a value in [s] directly since this would mean the
probability that a key is hashed to a child node is the same for all child nodes. However,
the last child node may be smaller than u which should be reflected by the probabilities to
maximize the probability of a given hash function to be a splitting. This is achieved by
hashing to [m] and then dividing by u in step 2. We do not need to check the last count in
A because the value is determined after checking all other counts.

5.6.1 Integer Division

Usually, integer division is a much slower operation than integer multiplication. However,
it can be accelerated by using shifts, additions and multiplications, especially if the divisor
is known at compile time [59]. The simplest case is if the divisor is a power of two, i.e.,
2j . It can be replaced by a shift of j bits to the right. For other divisors, the formula⌊
x
y

⌋
≈
(
x ·
⌊

2q
y

⌋)
>> q for a suitable q can be used. If y is a compile-time constant, finding

a suitable q, computing
⌊

2q
y

⌋
and finding corrections to circumvent rounding errors can

be done at compile time. At running time, only the multiplication, right shift and the
necessary corrections are executed [27].

Fortunately, the only division needed in our implementations is the division by the unit
u in the algorithm above, which is a compile-time constant. A good optimizing compiler
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will replace this division by such an optimized series of instructions [59]. This is also
true for the GPU implementation as inspecting the assembly revealed. In the SIMD
implementation, the calculations are done by the Vector Class Library [26]. To ensure
that most steps are done at compile time, the divisor must be wrapped by the const_uint
macro. Otherwise, the Vector Class Library will do all steps at running time since the
available vector extension may not contain a division instruction [27].

The Vector Class Library does not support 64-bit integer division, but we only need 32-bit
division. Furthermore, unsigned division is faster than signed division and 16-bit division
is faster than 8- or 32-bit division. In our case, the dividend is a 32-bit unsigned integer.
However, 16-bit division can be utilized since the dividend is bounded by the maximum
bucket size which is 3000. To do this, the result of the hash function is first converted to a
vector containing 16-bit words by cutting off the 16 most significant bits. This vector is used
for the division and must be extended to 32 bits per lane afterward to be processed further.
Using 16-bit division did not clearly improve the construction time (see Section 6.4.5) and
is therefore not used in the final implementation.

5.6.2 SIMD Implementation

Using an array for the counts is problematic in the SIMD version. Each SIMD lane would
need its own array and expensive gather and scatter instructions are necessary to increment
the counts. This problem can be alleviated by storing the counts in vector registers. To
use this technique efficiently, we first show that a single byte per count is sufficient.

Theorem 5.2. Given u < 256, 8 bits per count are sufficient to correctly verify whether h
is a valid splitting.

Proof. If h is a valid splitting, the first s− 1 counts are correctly u since no overflow occurs.

Let A[i] = u for all i ∈ [s − 1] where each word in A has 8 bits. We need to show that
the number of keys that are hashed to each of the first s− 1 child nodes is really u. The
only way how each count is u but the real numbers are different is if a value overflowed.
Assume there is an overflow in count j ∈ [s− 1]. Since values wrap around on overflow and
A[j] = u, the real number of count j is u+ 256z for an integer z ≥ 1. These 256z extra
keys cannot contribute to the other counts. This means another count has fewer keys than
a valid splitting should have. However, each of the first s − 1 counts is u, i.e., the real
number is at least u. The only child node which could potentially miss some keys is the
last count since it is never checked. However, its number of keys in a valid splitting is at
most u which is smaller than 256.

The fanout s (2 ≤ s ≤ 9) depends on the leaf size, the aggregation level and the size of the
node. Remember that we use 32 bits for the hash function. Since one byte is sufficient
for each count, we can store four counts per lane in a single vector by packing them in a
32-bit word. We do not need the last count, therefore a single vector is sufficient for s ≤ 5,
otherwise two vectors are sufficient. Given j ∈ [s], we need to be able to increment the
count A[j]. For this, we use the array

B = [0, 0, 0, 0, 1, 28, 216, 224, 0, 0, 0, 0, 0].

Each value in B is a 32-bit word. If s ≤ 5, the count A[j] is incremented by adding B[4 + j]
to the packed counts. As usual, this happens in parallel for all SIMD lanes and j can be
different for each lane. Note that B[4 + j] has a single bit set at the position where the
count j begins. If s = 5 and j = 4, no count is incremented since the last count is irrelevant.

36



5.6. Aggregation Levels

If s > 5, we need two vectors for the counts. The first vector contains the first four counts,
the second vector the remaining counts. For j ∈ [s], the first vector is treated as before by
adding B[4 + j]. If j ≥ 4, nothing changes. The value B[j] is added to the second vector.
For j < 4 or j = 8, nothing changes. Otherwise, the correct count is incremented.

Note that Theorem 5.2 is not enough to prove the correctness of this approach. If a count
j overflows (i.e., reaches the value 256), the 256 increments are not lost completely. If the
overflowing count is not the fourth count of the lane in one of the vectors (i.e., j /∈ {3, 7}),
a single bit is carried to the next count. However, this means 256 increments are lost for j
and one extra increment is added to the count j+ 1. Using the slightly stricter requirement
u < 255, it is clear that the same proof can be applied to this situation since 255 increments
are lost. Fortunately, we require ` ≤ 24, and from this requirement and the formulas to
calculate the fanout given the leaf size we can conclude s ≤ 9. Therefore, u ≤ 24 for the
first aggregation level and u ≤ 9 · 24 = 216 for the second aggregation level.

For the lookup in the array B, the lookup function of the Vector Class Library is used.
Since j ≤ 8, the values of B are stored in one or two vectors for faster lookup than in an
array.

After all keys are processed, we need to check whether all counts (except the last) are u.
For this, the value(s) of the 32-bit word(s) in the vector(s) that signify a valid splitting are
calculated beforehand. Then, only one or two equality checks and a horizontal_or are
necessary to decide whether at least one of the lanes has found a valid splitting.

Key Redistribution

After a valid splitting h is found, the keys must be sorted such that the first u keys are
hashed to the first child node by h, the next u keys are hashed to the second child node and
so forth. This is a form of bucket sort where the size of each bucket (child node) is known
beforehand. First, the array C which indicates the position for the next key in each child
node is initialized with the values 0, u, 2u, . . . , (s− 1)u. Afterward, two vectors are loaded
with the next keys to redistribute. These vectors are treated as in Section 5.3.1 to calculate
the corresponding child nodes. Note that while we use the same function to handle the
vector, something different happens conceptually than when searching for splittings. Here,
the same hash function is applied to several keys at the same time whereas different hash
functions are applied to the same key at the same time when searching for splittings.

The resulting hash values are stored in an array to be processed further sequentially. Each
key is stored in a temporary array at the position C[i] where i is the hash value of the
key. The position C[i] is incremented before the next key is processed. This process is
sequential since several keys in the vector may be hashed to the same child node. In this
case, the same position is incremented several times and the keys need to be stored at
different positions. This is not easy to achieve with SIMD.

When loading keys into the two vectors, both vectors are filled completely even if there
are not enough keys remaining. In this case, keys from other nodes or a padding is loaded.
This is not a problem, the process is aborted after the last real key is processed. The
temporary array is then copied into the bucket.

5.6.3 GPU Implementation

Like on the leaf level, the aggregation levels on the GPU use one thread block per splitting.
Finding a valid splitting works similar to the SIMD implementation. A word c is initialized
to zero, where each thread has its own c. If the fanout s is at most five, c contains 32 bits,
otherwise 64 bits. All counts are packed in c, one byte per count. Other than in the SIMD
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implementation, no lookup table is used since memory is too slow for this use. Instead,
count j (j ∈ [s]) is incremented by multiplying it first with eight before shifting a 1-bit by
this value to the left and adding it to c:

c← c+ (1<< (j << 3)).

If s = 5 and j = 4 or s = 9 and j = 8, the shift amount is 32 or 64 bits, respectively.
In this case, the computed value that is added to c should be zero. However, this is not
guaranteed by the CUDA specification. To achieve this behavior, the cases s = 5 and s = 9
are treated slightly different than each other and the other cases. If s = 5, a funnel shift is
used, in particular the intrinsic __funnelshift_lc [4]. It takes three 32-bit arguments.
The first two are concatenated to form a 64-bit word, where the first argument are the least
significant bits and the second argument the most significant bits. The third argument
describes the number of bits this 64-bit value is shifted to the left. The result are the 32
most significant bits of the shifted value. A shift by 32 bits or more is well-defined to be
equal to a shift by 32 bits, i.e., the first argument is returned. Therefore, the desired result
can be achieved in the following way:

c← c+ __funnelshift_lc(0, 1, j << 3).

For s = 9, there is an extra branch to check if the shift amount equals 64 bits.

Alternative Implementation using Shared Memory

A different approach is to store the counts in shared memory. Each thread gets a portion
of shared memory it can use as the array A containing the counts. Using Theorem 5.2, one
byte per count is used. Remember that shared memory is partitioned into 32 banks. Each
bank slot contains 32 bits. We include padding between the counts of different threads
such that the first count of each thread begins at the start of a bank. Therefore, if s ≤ 4,
all counts of a given thread are within one bank. This means no bank conflicts are possible.

If 5 ≤ s ≤ 8, each thread uses two banks to store the counts. This can cause bank conflicts
on several occasions. First, each time the counts are initialized to zero there are s two-way
bank conflicts. Note that the thread with index i within the warp (i < 16) and the thread
with index i+ 16 use the same two banks and therefore cause a bank conflict each time
a count is set to zero. The number of bank conflicts and overall work can be reduced by
treating each bank slot as a 32-bit integer to set it to zero instead of setting each byte to
zero individually. This reduces the number of bank conflicts to two per initialization.

Another conflict occurs when checking if a valid splitting is found. Similarly to the
initialization, s two-way bank conflicts occur each time. Again, the number of bank
conflicts and overall work can be reduced by treating each bank as a 32-bit integer and
computing the values of the banks which represent a valid splitting beforehand. The
remaining number of bank conflicts is again two.

The last conflict occurs each time a counter is incremented. This is not guaranteed to
cause a bank conflict every time. However, the probability that there are two threads i
and i + 16 of a warp such that both access the first or both access the second bank is
quite high. For example, if s = 8, the chance is equal for both banks. Remember that
it is pseudorandom for each thread which count is accessed. Therefore, the probability
of a given thread pair i and i + 16 to cause a bank conflict is 50%. Since there are 16
such pairs per warp, the probability that a warp causes a bank conflict when loading or
storing a count is more than 99.99%. To increment a counter, it must first be loaded from
shared memory, incremented and then stored to shared memory. This means there are two
two-way bank conflicts (almost) each time a counter is incremented.
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(a) Two banks per thread with the padding in red.
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(b) Three banks per thread.

Figure 5.1: Shows the assignment of the counts to the banks. The left figure depicts the
situation if two banks per thread are used, the right figure if three banks per
thread are used. For illustration purposes, only 8 threads per warp and 8 banks
are assumed. Each column is a bank with the bank number at the top. Every
bank slot is labeled with the thread ID followed by the bank number of this
thread, i.e., 2-1 is the bank slot of the second bank of thread 2 (zero-indexed).
There is no bank conflict if each thread accesses its first (or second or third)
bank at the same time since the second number in each column is different
from the other numbers in the same column.

Fortunately, bank conflicts can be avoided completely for the first two occasions by using a
padding after the first 16 threads per warp. The padding consists of a single unused bank.
This has the effect that the first bank of a thread in the first half of a warp is the same
bank as the second bank of a thread in the second half and vice versa. When each thread
accesses its first bank, every thread accesses a different bank of the 32 total banks. For
example, thread 0 accesses bank 0, thread 16 accesses bank 1, thread 1 accesses bank 2
and so forth. Therefore, no bank conflicts occur at initialization and when checking if a
splitting was found. See Figure 5.1a for a visualization.

The padding can also decrease the likelihood of a bank conflict when incrementing a count.
For example, consider s = 5. We perform an analysis similar to two paragraphs above. If
no padding is used, the probability that a given thread pair (i, i+ 16) within a warp cause
a bank conflict is 4

5
2 + 1

5
2 = 0.68. The reason is that each thread accesses its first bank with

a probability of 4
5 and its second bank with a probability of 1

5 . Therefore, the probability
that any of the 16 thread pairs in a warp cause a bank conflict is more than 99.99999%.

With padding, the odds are changed. The probability that a given thread accesses its first
bank is still 4

5 , but for the other thread that uses the same bank, this is its second bank
and is therefore accessed with a probability of 1

5 . The probability that a given thread i
with i < 16 experiences a bank conflict is therefore 2

(
4
5 ·

1
5

)
= 0.32. Consequently, the

probability of a warp causing a bank conflict is 1 − (1 − 0.32)16 ≈ 0.998. Arguably, the
difference to the version without padding is negligible. However, it shows that the padding
at least does not worsen the situation.

If s = 9, each thread uses three banks to store the counts. No padding (apart from the
padding which ensures that the first count of each thread begins at the start of a bank) is
necessary to avoid bank conflicts. This has to do with the fact that 32 (the total number
of banks) and 3 (the number of banks used by each thread) are relatively prime. See
Figure 5.1b for a visualization. The only situation where bank conflicts can occur is when
incrementing a counter. This, however, cannot be avoided. Unfortunately, even three-way
bank conflicts are possible in this situation, but using no padding is the best we can do
since it ensures that for each of the 32 banks there is exactly one of the 32 threads whose
third bank it is.
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Overall, after applying all aforementioned optimizations, the only place in the whole
construction where bank conflicts can occur are when incrementing a counter in the
aggregation levels (if s > 4), atomically storing the hash function identification in the
result if a valid splitting or bijection was found (which rarely happens) and when accessing
positions atomically to redistribute the keys after a valid splitting or bijection was found
(see next paragraph). Nonetheless, the experiments show that storing the counts in shared
memory is slower than using a single 32- or 64-bit word which contains all counts in a
packed form; see Section 6.5.3. This is due to the unavoidable bank conflicts and the fact
that shared memory is generally slower than registers. Therefore, the counts are not stored
in shared memory in our final implementation.

Key Redistribution

After a valid splitting h is found, the keys are written back to global memory sorted by their
child node number. For this, an array C ← [0, u, 2u, . . . , (s − 1)u] of size s is initialized.
Each thread loads the key at the position of the bucket indicated by its thread index (if
available) from shared memory, calculates the child node number, reads and increments the
according counter in C atomically and writes the key to the global memory at the position
indicated by the counter. This process is repeated for the next keys by adding the number
of threads in a thread block to the last index until the end of the bucket is reached.

Since all threads of a thread block access the same s counters in C concurrently, there is
a lot of contention expected. The problem can be alleviated by using warp-aggregated
atomics [10]. Using this technique, the threads of a warp calculate how many of the threads
increment each counter. Then, only one of the threads per counter atomically increases the
counter by the calculated number. This decreases the number of atomic operations needed
significantly. The correct position for each thread is then computed by broadcasting the
old value to each thread corresponding to the counter and adding the index of the thread
within the group of threads corresponding to the counter.

This technique can be implemented quite easily using cooperative groups [9]. Each thread
iterates over the values from 0 to s− 1 and checks if the value is equal to the child node
number of the current key. In the iteration where this is the case, all threads in the same
warp with the same child node number are coalesced, i.e., are active while all other threads
in the warp are inactive.1

However, warp-aggregated atomics do not improve the construction time; see Section 6.5.4.
The reason is that, as noted in the Nvidia developer blog [10], current versions of the NVCC
compiler automatically apply warp-aggregated atomics in some cases if applicable. The code
generated by NVCC is faster than the hand-written code. Therefore, the warp-aggregated
atomics technique is not used explicitly in our implementation. As a side note, testing
showed that the hand-written code seems to be faster if the counters are 64-bit words
instead of 32 bits. But this is not relevant for our implementation.

5.7 Higher Levels
The higher levels, i.e., the splittings above the two aggregation levels, are relatively simple.
The fanout is always two. Therefore, no array is necessary to store the counts. Nonetheless,
the original RecSplit implementation [13] uses an array of size two. Given the keys X with
|X| = m, the unit u (the number of keys which should be hashed to the first child node)
and a hash function h : X → [m], the following algorithm is used to check whether h is a
valid splitting:

1Strictly speaking, not all threads with the same child node number must be active. They could be
divergent, such that the same atomic is increased several times by the same warp within one iteration
[11].
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1. Initialize array A with two words that are each equal to zero. The values in A are
called counts.

2. For each x ∈ X, increment A[h(x) ≥ u] by one, where h(x) ≥ u is one if h(x) is
greater than or equal to u and zero otherwise.

3. The function h is a valid splitting if and only if A[0] = u.

Instead of using an array for the two counts, the SIMD and GPU implementation use a
single counter c which is incremented if and only if h(x) is smaller than u.

5.7.1 SIMD Implementation

Usually, the boolean value “true” is encoded as a one, whereas the boolean value “false”
is encoded as a zero. This is used to conditionally increment the counter c based on the
result of the comparison of h(x) and u without using a branch. In the Vector Class Library,
however, the boolean value “true” is encoded as the word containing only 1-bits. This
represents a −1 in two’s complement. Therefore, the hash function h is a valid splitting if
and only if c = −u after processing all keys in the node.

To avoid confusions, the addition of a negative value instead of the usual one is made
explicit by using the if_add function of the Vector Class Library [27]. It takes the condition
as first argument and adds the third argument to the second if the condition is true and
returns the second argument unaltered otherwise. It is used to increment the counter as
follows:

c← if_add(h(x) < u, c,−1).

The resulting machine code is identical to adding the condition directly to c. Other
implementations, like using if_sub to subtract one or using if_add to add a one and later
comparing with u resulted in more complicated machine code.

The key redistribution works similar to the aggregation levels. However, after applying
the hash function and comparing the value to u, the result is not zero or one, but zero or
minus one. This must be considered when using this value to store the key at the correct
position in the temporary array. Instead of storing the complete result of the comparison
in an array to be further processed, the values are reduced to a single bit per lane using
the function to_bits of the Vector Class Library. This is necessary because the Vector
Class Library does not permit storing a boolean vector in an array. The result is a word d
containing a bit for every lane which is one if and only if the condition is true. We iterate
over the bits of this word to get a zero or one for each key in the currently processed vector,
which indicates whether it is hashed to the first or the second child node. In iteration j,
the bit is calculated as (d >> j) & 1.

5.7.2 Balanced Splittings

Section 4.3 describes the shape of a splitting tree and provides Figure 4.1 as an example,
which is depicted again in Figure 5.2a. Looking closely, it is revealed that the tree is not as
balanced as possible. The right child of the root splitting could receive 96 additional keys
without violating any properties. The result is shown in Figure 5.2b. Neither the number
of splittings nor anything in the lower levels has changed. The only thing that has changed
are the two splittings in the higher levels. In the following, we analyze this particular
example to show why balanced splittings are useful, which makes sense intuitively.

We begin with the space consumption. As discussed in Section 4.4.1, the space consumption
of splitting trees is optimal apart from about two bits which are lost per splitting/bijection.
Since the number of splittings and bijections has not changed, the expected number of
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(a) The original splitting tree as used by the original RecSplit implementation [13]. This is the
same illustration as Figure 4.1.
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(b) The balanced splitting tree as used by the GPU and SIMD implementation.

Figure 5.2: The unbalanced (top) and balanced (bottom) splitting tree with 202 keys for
leaf size ` = 8. Each node is labeled with the number of keys it contains.

used bits should not change significantly. Indeed, using the formulas in Section 4.3.1, the
expected number of hash functions that must be tried to find a valid splitting for the root
is 7.728 for the original splitting tree and 17.791 for the balanced tree, whereas the other
splitting in the higher level requires on average 17.366 or 7.544 trials, respectively. This
means the balanced tree needs about 2.302 times as many trials for the root splitting, but
the original tree needs about 2.302 times as many trials for the other splitting. Since the
number of trials dictate the space consumption, the balanced tree should need about the
same space.

When looking at construction time, the balanced tree is better. We use the expected
number of hash function evaluations as the cost metric. The original tree needs about
202·7.728+192·17.366 ≈ 4895 evaluations, the balanced tree 202·17.791+106·7.544 ≈ 4393.
Therefore, the balanced tree can be constructed faster. However, this difference is practically
negligible. A single full leaf of this tree needs about 8 · 88

8 ≈ 3329 hash function evaluations
and there are 25 such leaves.
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The largest improvement is the query time. The balanced splitting can reduce the average
number of splittings that must be evaluated. Consider a random key from a bucket
containing such a splitting tree. For the original tree, there are on average 192·4+10·2

202 ≈ 3.90
splittings that must be evaluated to compute the hash value. Contrarily, the balanced tree
only requires 96·4+106·3

202 ≈ 3.48 splitting evaluations. This means we can save on average 0.4
hash function evaluations for this particular splitting tree. Of course, the concrete numbers
depend on the splitting tree, i.e., on the number of keys and `. The experiments confirm
the analysis, see Section 6.3.3.

Balanced splittings in the higher levels can be implemented without any additional compu-
tations. Consider a splitting in the higher levels with m keys. Let η be the number of keys
of a full node in the second aggregation level, i.e., 96 in the example before. In the original
implementation of RecSplit [13], the number of keys of the left child is calculated as

η

⌈⌊
m
2
⌋

η

⌉
= η

⌊(m>> 1) + η − 1
η

⌋

where rounding down is achieved by using regular integer division. Essentially,
⌊
m
2
⌋
is

rounded up to the next multiple of η. If
⌊
m
2
⌋
is just slightly larger than a multiple of η,

the splitting is rather unbalanced. A balanced splitting can be achieved by rounding to the
next multiple of η, be it down or up. This is possible with the formula

η

⌊(m>> 1) + (η >> 1)
η

⌋
.

Note that η is a compile-time constant, therefore the exact same operations are done as in
the original formula, just another constant is added to m>> 1.

5.8 CPU Parallelization
We have seen all the required steps to find the splittings and bijections of a splitting
tree, which is usually the most time-consuming part of the construction. The original
RecSplit implementation [13] only uses a single thread. This leaves a lot of processing
power unused since most modern processors contain several processing cores. As stated in
the original RecSplit paper, parallelizing RecSplit is fairly easy because the construction of
splitting trees is completely independent of each other for different buckets. We parallelize
SIMDRecSplit by spawning several threads and assigning a consecutive portion of the
buckets to each thread. Each thread needs to know the beginning of its first bucket in
the input which is fortunately provided after sorting the input with counting sort (see
Section 5.1).

Until they are finished processing their buckets, all threads work completely independent of
each other; no synchronization is required. However, after a splitting or bijection is found
it must be stored in the Rice Bit Vector. To avoid synchronization, each thread uses its
own local Rice Bit Vector and treats its input as it was the complete input. This means it
also stores the prefix of the number of bits of each of its buckets in the corresponding array
P . The values in P must be fixed before computing the Double Elias-Fano representation.

After a thread has processed all of its buckets, it tries to enter a critical section. Only
one thread is allowed in the critical section at the same time. Furthermore, it is ensured
that the threads enter the critical section in the order of their thread ID. The first thread
only stores its local Rice Bit Vector in the global Rice Bit Vector by setting the respective
pointers correctly. The other threads append their local Rice Bit Vector to the global Rice
Bit Vector in the critical section. After leaving the critical section, they fix their values in
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P by adding the last value of the previous thread (which can be retrieved from the Double
Elias-Fano representation) to all their values.
The critical section is implemented by using a mutex and a condition variable. To enter the
critical section, the mutex is locked using a std::lock_guard [18] of the C++ Standard
Library. This operation blocks the calling thread until no other thread is in the critical
section, locks the mutex and automatically unlocks the mutex after the std::lock_guard
goes out of scope. Apart from the first thread, all threads use the condition variable after
locking the mutex to check whether it is their turn, i.e., whether all previous threads have
already finished the critical section. This is simply implemented as a check whether a
shared integer o contains the own thread ID. If it is not the threads turn yet, it gets blocked
by the condition variable until it gets notified. After the Rice Bit Vector is stored/appended
in the critical section, each thread increments o and notifies the waiting threads using the
condition variable.
The GPU implementation uses this form of CPU parallelization as well. This is useful
if the bottleneck is mostly on the CPU side. The CPU is responsible for preparing the
data, launching the kernels and encoding the results in the Rice Bit Vector. The CPU
may be the bottleneck for small leaf size, small bucket size or the combination of several
powerful GPUs with a slow CPU. However, the overall effect on performance seems small.
The GPU implementation is mainly useful for relatively high leaf and bucket sizes; see
Section 6.6.1. Therefore, the effect of CPU parallelization on the construction time of the
GPU implementation is not formally evaluated using experiments.

5.9 Double Elias-Fano
After all buckets are finished, the Double Elias-Fano representation [45, 47, 46] is constructed
(see Section 4.5). It contains the prefix of the number of keys in each bucket and the bit
position where each bucket begins in the Rice Bit Vector. It contains four loops, all of which
can be significantly improved. The first loop computes the minimum of the differences
between two consecutive values in the sequences (δλ and δψ). It can be accelerated using
SIMD.
The second loop stores the values in three different bit arrays, the lower-bits array and
the two upper-bits arrays. Using SIMD for this loop is a lot more complicated since
for each value only a part of a word must be manipulated. Therefore, the same word
may be accessed for consecutive values. By vectorizing the loop in a straightforward way,
information could be lost. However, the loop does contain other operations which can
profit from SIMD (shifts, applying masks, calculating indices, etc.). Only the parts which
cannot be vectorized are serialized.
The third loop computes the jump array for the prefix sum of the number of keys. This
array is used as the selection data structure to accelerate access to the upper-bits arrays.
Let κ be the number of buckets. The loop iterates over each bit of the upper-bits array for
the prefix sum. This array contains about 2κ to 3κ bits, empirically and using the formulas
derived in Section 4.5.2. Exactly κ bits are set to 1. If a bit is not set, nothing needs to be
done. This can cause a lot of branch mispredictions. Moreover, only for every 256th 1-bit
any real work (apart from checking the bit and increasing a counter) must be done.
The unnecessary work of checking every bit can be avoided by using popcount on 64-bit
values until 256 1-bits are found. Then, the exact position of the 256th bit must be
computed. The selection algorithm (see Section 2.1) can be used for this by applying it
on the 64-bit word that contains the 256th 1-bit. The computed value can be used to set
the jump array. The fourth loop has exactly the same structure and computes the jump
array for the bit positions. It can be optimized in the same fashion. The result of these
optimizations is shown in Section 6.3.4.
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5.10 GPU Implementation - Overview

We now have all the building blocks we need to describe the procedure to compute a
minimal perfect hash function of the input using the GPU. First, the input is sorted as
explained in Section 5.1 to receive an array A of 64-bit keys and another array which
indicates where each bucket begins in A. We then reserve enough space on the host as
well as on the device to temporarily store 128 buckets and the resulting hash function
identification numbers. The memory on the host side must be allocated as pinned (also
called page-locked) memory in order to allow asynchronous data transmission between host
and device. Additionally, the memory which is used as a buffer to be transferred to the
device is allocated as write-combining memory. It is expected to provide faster transfers by
avoiding bus snooping. It is applicable here since the host only writes to this memory [3].

The memory on the device is allocated as one chunk. Like the original RecSplit implemen-
tation [13], we assume the maximum number of keys in a bucket is 3000. This number
is also an upper bound of the number of splittings and bijections in a single bucket, i.e.,
the number of hash functions to store. The largest number of splittings and bijections is
achieved for 3000 keys in a bucket and a leaf size of 2. Note that in this case, the splitting
tree is a binary tree where each node (except the leaf nodes) has two child nodes. Such a
tree with k leaf nodes has exactly 2k − 1 nodes, which can be proven using induction. For
3000 keys and leaf size 2, the number of leaves is 1500 which means 2999 splittings and
bijections. Since each splitting and bijection is stored as a 64-bit value before encoding it
in the Rice Bit Vector later, we reserve the same amount of space as for the bucket keys.

Overall, the global memory space consumption on the device is 2 · 128 · 3000 · 8 bytes =
6 144 000 bytes. Funnily enough, the amount of L2 cache on the Nvidia RTX 3090 (which
we use in our experiments) is 6144 KiB [17]. Because a KiB refers to 1024 bytes, the
available amount of L2 cache is slightly larger than the overall consumption. Moreover,
usually only a fraction of the memory is used since buckets are mostly smaller than 3000
keys and the number of splittings and bijections is much smaller for higher leaf sizes due
to higher fanouts in the aggregation levels.

The implementation uses 128 CUDA streams, i.e., up to 128 buckets are in the pipeline
to being sent to the device, being processed by the device and the results sent back to
the host. For each stream, there is an associated pinned and write-combined memory
region on the host to buffer the bucket, a pinned memory region on the host to buffer the
results and a memory region on the device to store the bucket and the results. Each thread
on the host uses a portion of the streams to process its buckets. It iterates through its
streams in a round robin fashion. If a stream has not been used yet, it is created using
the CUDA runtime. Otherwise, the thread synchronizes with the stream, i.e., waits until
all previously launched operations in the stream are finished. Then, the results (the hash
identification numbers of all splitting and bijections in the splitting tree of the bucket) are
in the respective buffers and can be encoded in the Rice Bit Vector.

After creating or synchronizing with the stream and encoding the results, the thread copies
the next bucket into the buffer — if there is a next bucket. It then launches the necessary
operations to the stream. These operations are all asynchronous, i.e., they immediately
return control to the calling thread and are executed by the CUDA runtime when the
necessary resources are available. The first operation is transferring the buffer containing
the bucket to the device memory. The following operations launch the different kernels.
At first, the higher levels are launched. This is done with a recursive function. If the size
of the bucket is greater than the node size of the second aggregation level, a higher level
kernel is started before recursively calling the same function again twice. The kernel is
started with a single thread block which computes a single splitting. Streams help to still
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utilize the hardware. For each recursive call, the size, starting index of the input, index of
the result and the level (for looking up the starting seed) are adapted.
In the original implementation [13], such a recursive function was used to create the complete
splitting tree. However, the leaf level and the two aggregation levels are treated differently
than the higher levels. Instead of launching a kernel for every single splitting/bijection, one
kernel per level is launched with as much thread blocks as there are splittings/bijections on
the level. This decreases launch overhead and can increase utilization since the number of
concurrent kernels is limited on CUDA GPUs [3]. Note that on these three levels, the size
of a node and the starting seed is constant for all nodes on the level (except for possibly
the last node for which we launch an extra kernel if necessary). Therefore, these three
levels are very homogeneous.
Conversely, the higher levels are heterogeneous. The size may be different for different
nodes on the same level. This information would need to be provided to every single
thread block if we would use kernels with more than one thread block on the higher levels
where each thread block computes a different splitting. In fact, it is not even clear which
nodes could be seen as part of the same level since the splitting tree may not be perfectly
balanced, i.e., the length of the shortest path from the root to a leaf may be different
for different leaves. Moreover, the number of nodes in the higher levels is generally small
compared to the lower levels since each inner node has at least two child nodes. This is
especially true for high leaf sizes, which also means high fanouts in the aggregation levels.
Therefore, only a single block per splitting is used in the higher levels.
As explained above, the three lowest levels are processed by starting one or two kernels per
level. Note that the exact number of launched kernels depends on the bucket size and the
leaf size. For a small bucket, there may only be a single leaf and therefore only a single
kernel launched. However, this can usually not utilize the device completely. For maximum
utilization and minimal overhead, the bucket size and the leaf size should be as large as
possible. This also results in the most space-efficient MPHF. After all kernels are launched
into the stream, the result is scheduled to be transferred to the host.
The sequence in which the hash function identifiers are stored in the result is equal to the
sequence in which the kernels are launched into the stream and for each kernel the thread
blocks from first to last. This is a different sequence than what the Rice Bit Vector expects.
To achieve a correct result, the values must be encoded in the Rice Bit Vector in preorder,
i.e., first the root, then its left child and its left child and so forth until the first leaf, after
which the second leaf is encoded, the second node on the first aggregation level, its first
child and so forth. This is exactly the sequence we get when calculating the splittings and
bijections in a recursive function. However, we only use a recursive function for the higher
levels.
The remaining levels are stored following the results of the higher levels in a breadth-first
order, i.e., first all splittings of the second aggregation level from first to last node, then
all splittings from the first aggregation level and finally all bijections of the leaves. To
correctly unpack the results and encoding them in the Rice Bit Vector, the beginning
of each of these segments is documented in an array for later use. After synchronizing
with the stream to wait for the results, a recursive function is used to unpack the results.
This time, the recursion ends at the leaves and not earlier. This function uses the stored
beginnings of each segment to encode the results in the correct order.
After a thread has processed all of its buckets, it synchronizes with the other threads as
explained in Section 5.8. After all threads are finished, the allocated memory on the CUDA
device is freed. Finally, the Double Elias-Fano representation is constructed as explained
in Section 5.9 using the calculated arrays containing the number of keys and the number
of bits in the Rice Bit Vector for each bucket in a prefix-sum form.
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5.10.1 Batched Memory Transfer
As explained earlier, the input is transferred bucket by bucket to the device. The usual
advice is to batch smaller memory transfers into one larger memory transfer to reduce
overheads associated with each transfer [3]. Depending on the bucket size, each transfer
to the device only contains a few bytes to a few kilobytes. Batching these transfers could
reduce the overhead significantly.
This can be achieved by starting one memory transfer for all streams before the kernels of
the first stream are launched. All buckets are packed contiguously to avoid transferring
unused bytes. This means the starting address of each bucket in global memory must be
adapted. Without batched transfers, each bucket just starts 3000 · 8 bytes after the bucket
before it. To make sure that the kernels in each stream only start processing after the
memory transfer is completed, a CUDA event [3] is used. This event is recorded in the
same stream as the memory transfer and signals whether the transfer has finished. For
each bucket, a synchronization call is inserted before the first kernel launch to wait for the
event.
When the thread arrives at the first stream again, it processes the results of all streams.
This means the thread iterates over the streams, synchronizes with each stream and encodes
its results in the Rice Bit Vector. After all results are encoded, the next batch can be
transferred. Since the thread synchronizes with all streams before starting the next transfer
and launching new kernels, the device and the bus between host and device are not fully
utilized. A possible solution is to use two transfers per batch, i.e., starting a transfer for
the first half of the streams and a transfer for the second half. When encoding the results,
only the first half is considered at first before starting the next transfer and launching
new kernels. In the meantime, the second half of the streams can continue utilizing the
resources. In our case, this is not necessary because we use several CPU threads (see
Section 5.8) which has the same effect.
Testing showed no significant improvements using batched memory transfers. For relatively
large leaf and bucket sizes, the bottleneck is finding the splittings and bijections. The
memory transfers are insignificant, which was also confirmed using the profiling tool “Nvidia
Nsight Systems” [23]. Configurations with smaller leaf and bucket sizes could theoretically
profit more from batched transfers, but they still have high overheads and cannot utilize
the GPU fully due to many small kernel calls. In these cases, SIMDRecSplit is faster than
GPURecSplit; see Section 6.6.1. Thus, the GPU implementation is not optimized further
for small leaf and bucket sizes if the benefit is not very clear. This means batched memory
transfer is not used in our final implementation. In particular, batching the memory
transfers of the opposite direction — transferring the results from the device to the host —
was not implemented in the first place.

5.10.2 Work Queues
The maximum number of kernels using the same GPU at the same time is limited. For
the Nvidia RTX 3090, which we use in our experiments, this number is 128 [3]. However,
the number of work queues (concurrent connections) is by default only 8. All operations
launched into a given stream are appended to one work queue. Since the operations in
the stream are processed sequentially and there are several streams per work queue, the
maximum number of concurrent kernels is effectively limited to 8. This severely limits the
utilization of the GPU since we rely heavily on the fact that several kernels can use the
same GPU at the same time. A single kernel, especially of the higher levels, may only
utilize a small portion of the GPU since the number of thread blocks is rather small.
Fortunately, the number of work queues can be adjusted by setting the environment variable
CUDA_DEVICE_MAX_CONNECTIONS to the desired value [3]. A higher value may
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increase utilization but has higher overheads. The experiments showed that 32 work queues
provide good performance for the most relevant parameters of the GPU implementation,
i.e., relatively high leaf and bucket sizes since for smaller values the overheads are high
anyway and utilization is low; see Section 6.5.5. Therefore, 32 work queues are used in our
experiments by setting the environment variable using the export command [19]. It is the
responsibility of the user to set the environment variable as convenient.

5.11 SIMD Implementation - Overview
The structure of the SIMD implementation is similar to the GPU implementation. First,
the input is sorted. Some threads are started which immediately begin to process their
buckets. For each bucket, a recursive function is called which itself calls the functions of
the respective levels based on the current size before recursively calling itself with adapted
parameters. Contrary to the GPU implementation, the recursion ends at the leaves. This is
much simpler and also resembles the construction in the original implementation [13]. After
a thread has processed all of its buckets, it synchronizes with the other threads as explained
in Section 5.8. After all threads are finished, the Double Elias-Fano representation is
constructed.
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We evaluate the performance of our new RecSplit implementations and compare them to the
original RecSplit implementation in the Sux library [13]. We begin with the experimental
setup in Section 6.1, followed by us fixing a performance bug in the original RecSplit
implementation in Section 6.2. Then, we conduct various experiments concerning the
SIMD and GPU implementation in Section 6.3. The goal is to experimentally verify the
usefulness of different approaches. The next section shows experiments specifically for the
SIMD implementation (Section 6.4), followed by experiments for the GPU implementation
in Section 6.5. We compare both implementations to the original RecSplit implementation
in Section 6.6. Finally, we show a small comparison with PTHash (see Section 3.4).

6.1 Experimental Setup
Hard- and Software

If not said otherwise, the machine used for the experiments features an Intel Core i7-
11700 CPU with 8 cores and 16 threads (hyper-threading activated), 2.5-4.9 GHz, 48 KiB
L1 data cache per core, 32 KiB instruction cache per core, 512 KiB L2 cache per core
and 16 MiB L3 cache overall [5, 20]. It has access to AVX-512 instructions, including
AVX512VPOPCNTDQ. The machine has 64 GiB of dual-channel DDR4-3200 RAM and
an Nvidia RTX 3090 GPU [17]. The experiments are performed using Ubuntu 21.10. All
RecSplit implementations are implemented in C++; the GPU implementation uses CUDA
C++. GCC 11.2.0 [55] is used as the C++ compiler and NVCC from CUDA 11.7 [71] as
the CUDA compiler. The compiler options -march=native and -O3 are used.

General Setup

As a reminder, only the RecSplit construction is using SIMD, multithreading, and/or the
GPU. The query implementation is identical for the SIMD and GPU implementation and
almost equal to the original implementation. The times are measured by wall clock using
the chrono::high_resolution_clock from the C++ standard library. Generally, each
configuration tested in this chapter is repeated five times and the shown data points depict
the average of these five repetitions with the standard deviation as a vertical line. The
inputs for the different repetitions are different, but the input is identical for the same
configuration and repetition of different implementations in the same plot. This is done
to measure the effect of the input on the running time, while ensuring fairness between
different implementations, i.e., different lines in the same plot.
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The input consists of pseudorandom 128-bit keys, and the initial hash function (see
Section 4.1) is skipped. This is reasonable because the result of the initial hash function is
treated as a 128-bit random key anyway.

When measuring query times, 100 million random queries are performed and the total time
is divided by 100 million to receive the average query time. The reported standard deviation
is therefore not the standard deviation of single queries, but the standard deviation of five
data points which are the average of 100 million queries each. Note that the input of a
query may not be part of the original set used in the construction. This should not have
an impact on performance since the distribution is equal. The input of each query depends
on the output of the previous queries (the input is XORed with a variable that is the XOR
of all previous outputs). This avoids the overlapping of instructions for different queries
(pipelines, out-of-order execution, superscalar processors, etc.) such that the resulting
average is a more realistic representation of the time a single query takes, i.e., its latency.
The query benchmark is adopted from the original RecSplit implementation in the Sux
library [13].

If not said otherwise, the implementations are configured as described in the previous
chapter. An exception are balanced splittings (see Section 5.7.2). Since those were only
discovered after most experiments have already been performed and it was not feasible to
redo each experiment, they are not used in most experiments. Per default, SIMDRecSplit
uses as many CPU threads as the CPU has hardware threads (in our case 16), and
GPURecSplit uses 8 CPU threads. The number of threads per thread block is 64 in the
higher levels, 256 in the aggregation levels, and 512 in the leaf level. Those numbers were
chosen through testing.

Nomenclature

The names shown in the legends follow a specific naming scheme:

• Prefix:

– “orig”: the original implementation

– “simd”: the SIMD implementation

– “gpu”: the GPU implementation

• Infix (or suffix):

– “Rot”: bijection rotation is used, see Section 5.5

– “NoRot”: bijection rotation is not used

• Optional suffix: depends on the plot and is used to distinguish different configurations
of the same RecSplit implementation

For example, “origRot” is our modified version of the original implementation with bijection
rotation.

6.2 Performance Bug in the Original Implementation
As explained in Section 2.1, selection on a 64-bit word can be implemented with just three
instructions if the instruction set extension BMI2 is available. If not, the Sux library
contains a slower fallback which is used by RecSplit [13]. Unfortunately, there is a bug
in the compile-time detection of the availability of the required PDEP instruction. The
code checks if the macro __haswell__ is defined. The rationale is that Intel Core CPUs
support the BMI2 instruction set for Haswell and newer architectures. However, GCC
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only defines this macro if compiled for the Haswell architecture specifically, e.g., with the
compiler option -march=haswell. If compiled for newer Intel Core architectures, AMD
architectures, or if just the option -mbmi2 is used to activate BMI2, the macro __haswell__
is not defined and thus only the slower fallback is used.

The existence of macros defined by the compiler can be checked for example with echo
| g++ -dM -E -march=skylake - | grep haswell -i, which returns nothing for GCC
9.3.0 [55] and Clang 10.0.0 [2] (by replacing g++ with clang) on Ubuntu 20.04.1 LTS.
In fact, Clang does not even define __haswell__ if the option -march=haswell is used.
The experiments in the original RecSplit paper [46] were compiled with GCC 8.8.1 and
performed on an Intel Core i7-7770. We are not aware of any CPU with this name, but
due to the name similarity we assume it has the same architecture as the Intel Core
i7-7700 [6] (it may just be a typo). The makefile in the Sux library uses -march=native
to set the architecture at compile time. If the authors of RecSplit used this makefile and
compiled their benchmarks on the same machine as the experiments were performed, the
fast selection algorithm was probably not used.

We fix this bug by checking for the macro __BMI2__ instead, which is defined if BMI2 is
available and activated, e.g., with -march=native on a machine where BMI2 is available
or -mbmi2. The only place in the RecSplit construction where the fast selection algorithm
is used is our improved construction of the Double Elias-Fano representation 5.9. This is
such a minor part of the whole construction that this bug fix has no significant effect on the
running time. However, the query algorithm uses the fast selection algorithm twice when
querying the Double Elias-Fano representation and once every time a subtree is skipped,
see Section 4.5. Therefore, using the fast selection algorithm has a significant impact on
the performance of the query algorithm.

Figure 6.1 shows the improvement by fixing the performance bug. The “originalImple-
mentation” is the unaltered implementation from the Sux library [13]. The “origNoRot”
implementation is the original implementation integrated into our framework, with the per-
formance bug fixed and with the option to use bijection rotation (in this case deactivated).
The fixed version is 10–20% faster. In all following measurements, we refer to the fixed
version as the original implementation.

A similar performance bug is in the implementation of clear_rho. We use the correct
instruction to delete the least significant 1-bit instead of the fallback clear_rho(a) =
a & (a − 1) by replacing the macro __haswell__ by __BMI__. However, this makes no
difference using current versions of GCC and Clang since those are able to transform the
fallback to the single instruction automatically if it is available.

6.3 Evaluating Different Techniques
This section evaluates different techniques concerning both of our implementations, i.e.
SIMDRecSplit and GPURecSplit.

6.3.1 Sorting

We have seen how to improve the sorting method to distribute the keys into the buckets in
Section 5.1. As the plots in 6.2 show, the speedup of our faster sorting method compared
to the original method is up to 12. Even with this faster method, the sorting can still take
more than 70% of the total SIMDRecSplit construction time when using multithreading for
the construction of the splitting trees. However, this is only the case for small leaf sizes (in
6.2 leaf size ` = 5) and small bucket sizes. The percentage of the total construction time is
smaller for larger leaf sizes since the sorting time is unchanged whereas computing splitting
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Figure 6.1: Query times of the original implementation before and after fixing the perfor-
mance bug of the selection algorithm. The lines of “originalImplementation”
are before fixing the bug and “origNoRot” after fixing the bug. The MPHF
was constructed with one million keys.

trees becomes more expensive. Similarly, larger bucket sizes decrease the percentage because
sorting gets faster due to better cache efficiency and a smaller array which holds the prefix
sum of the bucket sizes. The percentage in the original implementation is generally smaller
since the construction of the splitting trees takes more time.

The speedup is smaller for ten million keys than for one million keys. This is probably
due to caching effects. One million keys occupy 16 MB. The output of the counting sort
algorithm only needs about half of that since only the least significant bits of the keys
are stored in the output, plus the array containing the prefix sum of the bucket sizes. It
fits completely in the 16 MiB L3 cache of the used CPU. This is not the case for ten
million keys. The SIMD implementation was used for the experiments because the GPU
implementation has large overheads and is generally slower than the SIMD implementation
if leaf and bucket sizes are small. Therefore, the sorting time has a smaller influence on
the construction time of GPURecSplit.

6.3.2 Bijection Rotation - Lookup Table

In Section 6.6.1, we will see that bijection rotation can improve the construction time. We
have seen the possibility of using a lookup table for bijection rotation in Section 5.5.2.
We have implemented it for the original (sequential) implementation because it is more
promising there as for the GPU and SIMD version. As already discussed, using a lookup
table in SIMD or GPU code can be much slower than in sequential code. The resulting
speedups of using a lookup table are depicted in Figure 6.3. As can be seen, no significant
improvement of the construction time is achieved. In fact, the construction takes significantly
longer for larger leaf sizes due to the cache usage of the large lookup table. Consequently,
we do not use the lookup table in the final implementations.

Out of the four tested bucket sizes, the negative impact on performance for leaf size ` = 17
is the largest for bucket size 50. This is because for bucket size 5, the lookup table is rarely
ever used since bijection rotation is generally only used for “full” leaves, i.e., leaves of size
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Figure 6.2: Sorting time, speedup of the faster sorting method compared to the original
method, and the percentage of the total RecSplit construction time for leaf
size ` = 5. The bucket sizes are {5 + 50i | i ∈ [40]}. There is no plot for the
percentage of the original sorting method of the total construction time because
this would require changing other parts of the algorithm or computing the
prefix sum of the bucket sizes, see Section 5.1. However, the percentage would
definitely be larger.
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Figure 6.3: Speedup of using a lookup table for bijection rotation (“origRotLookup”)
compared to using no lookup table. The input consists of one million keys.

`. For buckets of size 500 and 2000, the required amount of work in the aggregation and
higher levels is much larger than for bucket size 50. The lookup table has no effect on these
levels, thus the negative effect is smaller.

6.3.3 Balanced Splittings

In Section 5.7.2, we have proposed making the splittings in the higher levels more balanced.
The mathematical analysis of the exemplary splitting tree has shown that we expect
no significant difference of the construction time and the number of bits the MPHF
consumes. The experiments validate the analysis. We measured less than 5% difference in
the construction time using balanced splittings, sometimes it is slower and sometimes faster.
This difference is not significant given the standard deviation. Similarly, the difference of
the space consumption is less than 0.001 bits per key (more or less) which is negligible as
well.

As expected, the queries are faster if balanced splittings are used. This is shown for the
SIMD version in Figure 6.4. Note that the resulting MPHF of the GPU implementation is
identical to the result of SIMDRecSplit if the configuration is equal. Hence, evaluating the
GPU implementation here is redundant. The effect of balanced splittings is the largest
for bucket size 50. The higher levels are almost irrelevant for bucket size 5, which means
the effect is minor. For large bucket sizes, the effect shrinks since the overall query times
increase while the effect of balanced splittings do not increase significantly. After the first
splitting (the root node), the number of keys in the left child is a multiple of the number
of keys in a node of the second aggregation level. This means this splitting will always be
balanced, and we have changed nothing. Therefore, the only splittings which can profit
from our change are the outermost right splittings, which become relatively fewer for larger
bucket sizes.

6.3.4 Double Elias-Fano

We explained how to improve the construction time of the Double Elias-Fano representation
in Section 5.9. As we can see in Figure 6.5, this is only really relevant for small leaf and
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key sizes, and with and without bijection rotation. The measurements with
balanced splittings were conducted on Ubuntu 22.04 instead of Ubuntu 21.10.
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Figure 6.5: Construction time, speedup of the faster method compared to the original
method, and the percentage of the total RecSplit construction time of the
Double Elias-Fano representation for leaf size ` = 5. The bucket sizes are
{5 + 50i | i ∈ [40]}. The input consists of one million keys.

bucket sizes, e.g., both 5, where the slower Double Elias-Fano construction takes 28%
of the total SIMDRecSplit construction time. For larger leaf sizes, the construction of
Double Elias-Fano takes the same amount of time, but the computation of the splitting
trees takes much longer. For larger bucket sizes, the input arrays of the Double Elias-Fano
representation are smaller since both input arrays contain κ+ 1 elements for κ buckets.
This means the time to construct it decreases.

Generally, the achieved speedup compared to the original implementation of the Double
Elias-Fano representation is between 2 and 6. Like the sorting method (see Section 6.3.1),
we only evaluated the SIMD implementation here. For the configurations where the faster
construction has a significant impact on the overall running time, i.e., small leaf and bucket
size, the overhead of GPURecSplit is too large for any useful measurements.

6.4 Evaluating Different Techniques - SIMD Implementation

We evaluate different techniques concerning the SIMD implementation in this section. As
said before, SIMDRecSplit uses 16 threads if not said otherwise.
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Figure 6.6: Construction time of SIMDRecSplit, comparing both implementations of the
XOR step before applying the remix function. The input consists of one million
keys.

6.4.1 32-Bit Hash Function

Section 5.3.1 presents two different possible implementations of how to compute the XOR
of the 32 most and 32 least significant bits as the input of the remix function. One
implementation uses the compress function whereas the other uses the blend16 function.
The plots in Figure 6.6 show clearly that the implementation that uses blend16 is faster.
We use it for the final implementation of SIMDRecSplit.

The use of the original 64-bit remix function was not evaluated for the SIMD implementation
as this would require changing many parts of the code. However, we evaluate it for the
GPU implementation in Section 6.5.1.

6.4.2 Bijection Midstop Parameter

The bijection midstop factor α is used to determine the bijection midstop parameter
p = p(m) = dα

√
me which denotes the number of keys that are processed before checking for

a collision; see Section 5.4.1. For the original implementation, α = 2 and for GPURecSplit
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α = 3. The speedup achieved by using different values of α compared to using no bijection
midstop is shown in Figure 6.7. Note that bijection midstop is used even for small leaves
in these plots. In the final implementation, bijection midstop is only used for leaves of size
at least 12. This seems reasonable since most bijection midstop factors achieve a speedup
greater than 1 for ` ≥ 12. Note that this means bijection midstop performs not as bad as
it seems in the plot for bucket size 5.

All other measurement in this chapter use α = 2.6. Looking at Figure 6.7, this does not
seem optimal. This value was chosen because it performed best in preliminary experiments.
Many other experiments in this chapter were performed before the measurements in
Figure 6.7, so we decided to retain it for the remaining experiments as well.

6.4.3 Bijection Midstop Popcount

As discussed in Section 5.4.3, popcount can only be used on vectors if the instruction
set extension AVX512VPOPCNTDQ is available. Otherwise, the preliminary words are
dumped in an array before calculating popcount one word after the other to decide which
hash functions already exhibit a collision. The speedup of using the vector popcount
instruction relative to the sequential fallback is depicted in Figure 6.8. As expected, a
significant difference is only measured for ` ≥ 12 since bijection midstop is not even used
otherwise. Then, the speedup is about 10%.

As we have seen in other experiments, the greatest speedup is achieved for bucket size 50.
For bucket size 5, most leaves are smaller than 12 and therefore bijection midstop is not
used at all. For large bucket sizes, the aggregation and higher levels become more relevant
and are thus decreasing the effect of improving the search for bijections.

6.4.4 Bijection Rotation Midstop

After processing both sets when using bijection rotation, the SIMD implementation checks
whether any collisions has been found. This is not to be confused with bijection midstop
(bijection midstop and bijection rotation are mutually exclusive), but the idea is the same;
see Section 5.5.3. This optimization can only be used if the instruction set extension
AVX512VPOPCNTDQ is available and is only used for ` ≥ 11. The results can be seen
in Figure 6.9. The speedup is up to 30%. Like in other plots before, the largest speedup
is measured for bucket size 50. For buckets of size 5, bijection rotation is rarely used
because bijection rotation is only used for full leaves. For large buckets, the aggregation
and higher levels make up a larger part of the construction time, thus decreasing any effect
only affecting leaves.

6.4.5 16-Bit Integer Division

As explained in Section 5.6.1, 16-bit integer division can be used in the aggregation levels
which could theoretically be faster. However, Figure 6.10 shows no clear benefit of using
16-bit division. Perhaps, the time the division takes is insignificant compared to the
total construction time. Since we do not profit from 16-bit division, we take the simpler
implementation and use 32-bit integer division.

6.4.6 Multithreading

The construction of the splitting trees is parallelized by distributing the buckets to different
threads, see Section 5.8. This is fairly straightforward with almost no communication
between different threads required. The resulting speedups without bijection rotation are
shown in Figure 6.11. With bijection rotation, the corresponding plots look very similar
and are therefore omitted. The achieved speedups are up to 7. For bucket size 5, the
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Figure 6.7: Construction time speedup of SIMDRecSplit using different bijection midstop
factors relative to the construction time using no bijection midstop at all. The
implementations using bijection midstop use it for all leaves, even very small
leaves. The input consists of one million keys.
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Figure 6.8: Construction time speedup of SIMDRecSplit using the vector popcount instruc-
tion for bijection midstop relative to the construction time using the fallback.
The input consists of one million keys.
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Figure 6.9: Construction time speedup of SIMDRecSplit using bijection rotation midstop
(not to be confused with bijection midstop) for all leaf sizes and for ` ≥ 11
relative to the construction time without bijection rotation midstop. The input
consists of one million keys.
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Figure 6.10: Construction time speedup of SIMDRecSplit using 16-bit integer division
instead of 32-bit integer division. The speedup of “simdNoRot16BitDivision”
is relative to the version with 32-bit division and deactivated bijection rotation,
and the speedup of “simdRot16BitDivision” is relative to the version with
32-bit division and with bijection rotation activated. The input consists of
one million keys.

speedups are smaller because sorting and the Double Elias-Fano construction take more
time, and they do not use multithreading. Even for a very large leaf size `, most buckets
will be processed quickly since they are smaller than ` if the bucket size is 5. This means
the time it takes to construct the splitting trees does not increase exponentially with ` as
for larger bucket sizes.
Interestingly, the speedup declines for ` > 12 and relatively large bucket sizes. Unfortunately,
we do not have a good explanation for this behavior. A conjunction is that the proportion
of vector instructions increases for larger leaf sizes. A single vector instruction may need
more energy than a single scalar instruction since more transistors are active. This means a
single core may draw more power if many vector instructions are used. It may be necessary
to decrease the clock frequency to avoid overheating of the CPU. In this case, the use
of more threads has also decreased utility because they contribute to the overall power
consumption.
A similar conjunction is that the total construction time increases for larger leaf sizes which
means the CPU may not be able to hold the clock frequency during the whole construction.
It may throttle down after a while. Between the different measurements, the MPHF is
always queried 100 million times. This is done sequentially, i.e., the CPU may be able to
cool down before the next construction.
The plots also show that the SIMD implementation can profit from hyper-threading. Using
16 threads gives a slightly larger speedup than using only 8 threads although the used CPU
only has 8 physical cores.

6.5 Evaluating Different Techniques - GPU Implementation
This section is dedicated to evaluating different techniques concerning the GPU implemen-
tation.
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Figure 6.11: Construction time speedup of SIMDRecSplit using various number of threads
relative to using only a single thread. The input consists of one million keys.

6.5.1 32-Bit Hash Function

We have engineered a 32-bit hash function in Section 5.3 to combat slow 64-bit integer
multiplications. As Figure 6.12 shows, this can accomplish a speedup of up to 1.7 for large
leaf sizes. Contrary to most other techniques evaluated so far, this also has an effect on the
resulting MPHF and the query algorithm. The query algorithm must also use the 32-bit
hash function instead of the original 64-bit hash function. Fortunately, there is no negative
impact on the number of bits the MPHF takes. The difference is less than 0.002 bits per
key in both directions. This is indistinguishable from noise.

This is not the case for the query times. As can be seen in Figure 6.13, the 32-bit hash
function has a negative impact on the query time. Queries take about 3% longer with the
32-bit hash function. The reason is that there is an extra step required. Before applying
the 32-bit remix function, the 32 most and 32 least significant bits must be combined
with XOR. The 32-bit remix function itself should not have a negative impact on the
performance since it does the same operations, just with 32 bits instead of 64 bits. If it has
any impact, it should be positive because the 32-bit constant used for multiplication must
not first be moved into a register unlike the 64-bit constant in the 64-bit remix function.

Using the 32-bit hash function decreases the construction time without an effect on the
space requirements, but it increases the query time. This means using it is useful if the
query time is not a major concern, e.g., if the space consumption is the most important
metric. If the query time is important, the picture is not as clear. To get a better overview
of the tradeoff between construction and query time using the 32- vs the 64-bit hash
function, Figure 6.14 pictures the Pareto fronts (see Section 2.5) of GPURecSplit with
both hash functions. This means from all the tested combinations of leaf and bucket size,
only those points are shown for which no other point has a less than or equal construction
and query time and is strictly better in at least one of those metrics.

The outcome of Figure 6.14 is that neither the 32- nor the 64-bit hash function is clearly
better in this tradeoff. If for example the Pareto front of “gpuNoRot32Bit” was below-left
of the Pareto front of “gpuNoRot64Bit”, it would mean that the 32-bit hash function is
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Figure 6.12: Construction time speedup of GPURecSplit using the 32-bit hash func-
tion relative to using the original 64-bit hash function. The speedup of
“gpuNoRot32Bit” is relative to the version without bijection rotation, and the
speedup of “gpuRot32Bit” is relative to the version with bijection rotation.
The input consists of one million keys.
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Figure 6.13: Query time speedup of GPURecSplit using the 32-bit hash function relative
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Figure 6.14: Pareto fronts (construction time versus query time) of using the 32-bit hash
function or the original 64-bit hash function. The input consists of one million
keys.

better in the case when bijection rotation is not used. This is because for every combination
of leaf size and bucket size that “gpuNoRot64Bit”, one could find a combination such that
“gpuNoRot32Bit” has faster construction and query time. However, since the lines cross
several times and the same is true for “gpuRot32Bit” and “gpuRot64Bit”, there is no clear
winner.

6.5.2 Bijection Midstop Parameter

We measure the influence of the bijection midstop factor α on the construction time as in
Section 6.4.2. Remember that the resulting bijection midstop parameter is p = p(m) =
dα
√
me. The speedup achieved by using different values of α compared to using no bijection

midstop is shown in Figure 6.15. Note that bijection midstop is used even for small leaves
in these plots. In the final implementation, bijection midstop is only used for leaves of size
at least 14. Like in many other experiments before, the effect is the greatest for bucket size
50. Bucket size 5 is dominated by the overhead of using a GPU, and for larger bucket sizes
the aggregation and higher levels take a larger portion of the total construction time.

All other measurements in this chapter use α = 3. Looking at Figure 6.15, α = 2.8
could be a bit better. However, the value 3 was chosen because it performed best in
preliminary experiments. Many other experiments in this chapter were performed before
the measurements in Figure 6.15, so we decided to retain it for the remaining experiments
as well.

6.5.3 Using Shared Memory in Aggregation Levels

We have proposed an alternative approach to store the counts in shared memory instead
of in a packed form in registers, see Section 5.6.3. In fact, this was how the aggregation
level was implemented in the beginning. Only after the SIMD implementation enforced
a different approach due to expensive gather instructions, it became clear that the same
approach should improve the performance of GPURecSplit. This is validated by Figure 6.16.
As expected, there is no significant difference for bucket sizes 5 and 50 since the aggregation
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Figure 6.15: Construction time speedup of GPURecSplit using different bijection midstop
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leaves. The input consists of one million keys.
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Figure 6.16: Construction time speedup of GPURecSplit by storing the counts of the
aggregation level in packed form in registers relative to the alternative approach
of storing the counts in shared memory. The speedup of “gpuNoRot” is relative
to the version without bijection rotation and the speedup of “gpuRot” is relative
to the version with bijection rotation. The input consists of one million keys.

levels do not play an important role for such small buckets. For larger bucket sizes and
relatively large leaf sizes, the speedup is up to 1.5. The construction time is dominated by
the overhead of using a GPU for small leaf sizes, therefore no significant improvement can
be measured there.

6.5.4 Key Redistribution

Section 5.6.3 describes how to use warp-aggregated atomics to efficiently distribute the
keys into the right child nodes after a valid splitting has been found. It was already stated
that manually using warp-aggregated atomics should not improve the construction time
since the compiler is able to optimize this automatically. This is confirmed by Figure 6.17.
The difference is indistinguishable from noise as the standard deviations indicate.

6.5.5 Work Queues

We have seen in Section 5.10.2 that the number of work queues is per default only 8. This
decreases the GPU utilization because the GPU implementation relies on the concurrent
execution of many kernels to utilize the complete processing power of the GPU. The effect
of increasing the number of work queues is shown in Figure 6.18. The speedup is larger
than 3 for some configurations. As many times before, the speedup is the highest for bucket
size 50. For bucket size 5 or if the leaf size is small, the construction takes actually longer.
The reason is that the overhead of a kernel launch increases if more work queues are used
and the number of kernel launches is high if bucket size or leaf size is small. The larger
overhead is why the number of work queues is per default only 8.

For larger bucket sizes, the speedup is smaller because the implementation relies less on
concurrent kernels. In a large bucket, the aggregation levels and the leaf level contain
many thread blocks and are therefore able to utilize the GPU better than smaller buckets.
Figure 6.18 only shows the speedups without bijection rotation because the plots with
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Figure 6.17: Construction time speedup of GPURecSplit by using warp-aggregated atomics
manually. The values of “gpuNoRotWarpAggregated” are measured with warp-
aggregated atomics in the higher levels and the aggregation levels, whereas
“gpuNoRotWarpAggregatedHigherLevels” uses warp-aggregated atomics man-
ually only in the higher levels. The input consists of one million keys.
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Figure 6.18: Construction time speedup of GPURecSplit by using more than the default 8
work queues. The numbers in the legend denote the number of work queues.
The input consists of one million keys.
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bijection rotation look almost identical. The only difference is that the speedups are a bit
smaller for bucket size 50, only up to 2.5 instead of 3.5. This is because finding bijections is
the most expensive part for bucket size 50, but they are a lot faster using bijection rotation.
Therefore, the increased overhead of using more work queues has a larger impact than
without bijection rotation.

6.5.6 Multiple GPUs

We have also measured how well GPURecSplit scales with more than one GPU. Only a few
slight changes to the code are necessary to enable the use of more than one GPU. Each
CPU thread creates its streams on one GPU and launches all its kernels on this GPU.
Theoretically, it should be able to scale perfectly with more GPUs since no synchronization
between different threads is required. Unfortunately, this is not the case in practice as
Figure 6.19 shows. There is only a speedup greater than 1 for very large leaf sizes and an
at least moderately large bucket size or for a very large input.

The machine used for this experiment is part of the bwUniCluster. Specifications of the
machine can be found at [1] under the name “GPU x4”. It features two Intel Xeon Gold
6230 CPUs [7] with 20 cores each, 384 GB of main memory and four Nvidia Tesla V100
GPUs [16]. This particular GPU is one generation older than the RTX 3090, but the
number of 32-bit integer ALUs is almost equal with 5120 ALUs instead of 5248. The newest
CUDA version available on this machine is 11.4, so this is the version we use. CUDA 11.4
only officially supports GCC up to version 10. GCC 10.3 produced an internal compiler
error upon compiling the project, thus we use GCC 10.2. The operating system is Red Hat
Enterprise Linux 8.4.

To ensure full utilization of all GPUs, we doubled the number of CPU threads to 16 and
the total number of streams to 256. This means there are four CPU threads per GPU and
64 streams. These numbers were not specifically optimized, i.e., there is perhaps room for
improvement. The reason for the less-than-expected improvement is probably the large
overhead associated with using several GPUs. Memory must be allocated and later freed
on all devices, more streams and threads must be created and destroyed, there is more
synchronization overhead after the threads have finished, etc. The bus between the CPU
and GPUs may also increasingly become a bottleneck the more GPUs are used. This
particular problem could be alleviated by using batched memory transfer as explained in
Section 5.10.1.

Many overheads are constant. Therefore, they are less relevant for a billion input keys
than for a million. This explains why the speedups are generally bigger for a larger input.
Figure 6.19 also shows that larger bucket sizes lead to smaller speedups. This is the case
because the utilization is generally higher for larger bucket sizes. The speedup increases
for very large leaf sizes since the overheads become increasingly irrelevant due to very
long-running kernels. The leaf kernels are shorter with bijection rotation, hence the speedup
is smaller.

6.6 Comparison with the Original RecSplit Implementation
In this section, we finally compare our new implementations with the original RecSplit
implementation. We begin with the construction time, followed by the space consumption
and the query times. In the end, we provide some plots showing the Pareto fronts of all
implementations to get an overview which implementations are better suited in which
situations. The measurements in this section were performed with one million keys and
with one billion keys. For the latter, the maximum leaf size is only 10 instead of 17 since the
construction would take too long for larger leaf sizes. The SIMD and GPU implementations
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Figure 6.19: Construction time speedup of GPURecSplit by using four Nvidia Tesla V100
GPUs relative to using only one. The speedup of “gpuNoRot4GPUs” is relative
to the version without bijection rotation, “gpuRot4GPUs” is relative to the
version with bijection rotation.
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Table 6.1: Maximum speedups of our new implementations compared to the original imple-
mentation without bijection rotation for one million keys. The bucket and leaf
size that can achieve this speedup are depicted as well.

Implementation Maximum speedup Bucket size b Leaf size `
origRot 13 50 17
simdNoRot1Thread 7 5 9
simdRot1Thread 50 50 17
simdNoRot16Threads 46 50 12
simdRot16Threads 333 50 15
gpuNoRot 581 2000 17
gpuRot 1873 50 17

use balanced splittings (see Section 5.7.2) in this section. To make the difference between
the original implementation (“origNoRot”) and our implementations more clearly, the
original version is drawn with dashed lines.

6.6.1 Construction Time

Figure 6.20 depicts the construction time of our implementations. For bucket size 5,
SIMDRecSplit is generally faster than the other implementations. Using a GPU has too
much overhead for such small buckets. Therefore, the GPU implementation is only faster
than the original implementation for very large leaf sizes where the overheads play an
decreased role. Even then, the difference is not large since GPU utilization is low for small
buckets. This changes drastically for bucket size 50. With leaf size 17 and one million
input keys, the speedup of GPURecSplit with bijection rotation relative to the original
implementation without bijection rotation is more than 1800 as can be seen in Figure 6.21a
and Table 6.1.

The speedup is higher for bucket size 50 than for larger bucket sizes since bijection rotation
has the biggest effect for this bucket size. For bucket size 5, most leaves are very small
and do not profit much from bijection rotation. For larger buckets, the aggregation and
higher levels make up a larger portion of the running time, and they do not profit at all
from bijection rotation. Generally, bijection rotation leads to smaller construction time.
As expected, the difference is greater for larger leaf sizes; see Section 5.5.1 for an analysis.

Other than the other implementations, the GPU implementation gets faster for larger
bucket sizes, as is quite obvious in Figure 6.20b. The reason is that the GPU can be better
utilized and the overhead is reduced since the kernel calls of the leaf and aggregation levels
contain more thread blocks. The large overheads are also the reason why the construction
time of GPURecSplit does not increase for larger leaf sizes until about leaf size 12. For
smaller leaf sizes, the overhead dominates the construction time. As a corollary, it is never
really useful to use GPURecSplit with ` < 12 since we get a faster and more compact
MPHF with the same construction time by using ` = 12.

For small leaf or bucket sizes, SIMDRecSplit is the fastest implementation, but the GPU
implementation overtakes it if both parameters are large. In this case, GPURecSplit
can reach very large speedups. Unfortunately, the speedup of the SIMD implementation
decreases for large leaf sizes as visible in Figure 6.20a. We have seen something similar
in Section 6.4.6, but the same explanation is not applicable here. If the reason was CPU
throttling due to more vector instructions, then the CPU was actually better utilized since
vector instructions are doing more work per instruction. Perhaps a better explanation is
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Figure 6.20: Construction time of all our RecSplit implementations for different bucket and
leaf sizes.
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Figure 6.21: Construction time speedup of all our RecSplit implementations relative to the
original implementation without bijection rotation.
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Figure 6.22: Space consumption of the original implementation and our version with bijec-
tion rotation. The input consists of one million keys. The other implementa-
tions are not shown since the space consumption is nearly identical. For the
same reason, the plots for a billion input keys are omitted.

that both, bijection midstop and bijection rotation, work better in scalar code than in
SIMD code, and these techniques become increasingly powerful for large leaf sizes. We have
to do quite some extra work for bijection midstop which is not necessary in the original
implementation, see Section 5.4.3. The bijection rotation midstop is also not as effective,
and if at least one SIMD lane has not found a collision, the whole vector has to be finished
processing; see Section 5.5.3.

6.6.2 Space Consumption

The space consumption of RecSplit with and without bijection rotation is shown in Fig-
ure 6.22. The SIMD and GPU implementations have virtually the same space consumption
as the respective version of sequential RecSplit with or without bijection rotation. The
difference is less than 0.002 bits per key in both directions for a million keys, and nearly
nonexistent for a billion keys. This means the differences in the final MPHF, in particular
the use of the 32-bit hash function, have no significant effect on the space requirements.

As expected, the space consumption decreases for larger bucket and leaf sizes. For small
buckets, the Double Elias-Fano representation takes up a lot of space such that the total
space consumption is between 2.6 and 3.0 bits per key. However, for bucket size 50 it is
already very small compared to the space consumption of the Rice Bit Vector. The total
space consumption is between 1.7 and 2.2 bits per key. Increasing the bucket size further
to 2000 only saves about 0.1 bits per bucket. This comes at the cost of much slower queries
as we will see later. Increasing the leaf size has a greater effect. Of course, this leads to
longer construction time, but the query times are improved as well.

Using bijection rotation increases the space consumption by about 0.05 bits per key for
leaf size 5, but the difference shrinks for larger leaf sizes and becomes insignificant for
fairly large leaf sizes. To understand this behavior, take a look back at Theorem 5.1 in
Section 5.5.1. It tells us that given a leaf of size m, we need to try out on average a factor
of m fewer hash function. To be able to store the correct rotation, only every m-th hash
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function is tried. This means that the number stored in the Rice Bit Vector is on average
the same, i.e., the space consumption should be identical.
However, we made some assumptions to prove Theorem 5.1. If those are not true, the factor
by which the number of trials are reduced is smaller than m. Since we still only try every
m-th hash function, the space consumption is larger than without bijection rotation. For
larger leaf sizes, the assumptions are approximately met, and consequently the reduction
factor is approximately m. For example, |A| ≈ |B| if m is large according to the law of
large numbers. Similarly, the number of distinct rotations of a is on average closer to m
the larger m is. This is not sufficient to fulfill the assumptions of the theorem, but the
calculations are closer to the truth the more close |A| and |B| are, and the more close the
distinct number of rotations of a is to m. In conclusion, the difference of using bijection
rotation versus not using bijection rotation decreases for larger leaf sizes.

6.6.3 Query Time
To avoid overcrowded plots, the plots for the query time are split up into plots only
containing the query time of the original implementations (Figure 6.23) and plots containing
the speedups of the remaining implementations relative to the original implementations
(Figure 6.24). As expected, the query times generally increase for larger bucket sizes but
decrease for larger leaf sizes. This is because the query time is fundamentally dependent
on the height of the splitting trees, and the height is larger for bigger buckets but smaller
for large leaf sizes due to higher fanouts in the aggregation levels.
The query times are significantly larger for a billion keys than for a million keys. The reason
is not algorithmic, as the query time is O(1), but simply cache related. Even for bucket
size 5 and leaf size 5, the MPHF of a million keys takes up less than 3 MB (see Figure 6.22)
which fits easily in L3 cache. For a billion keys, the space consumption is three orders of
magnitude larger. Caching can also explain an interesting anomaly in Figure 6.23b. The
query times of a billion keys are smaller for bucket size 500 than for bucket size 50. The
reason is probably that the Double Elias-Fano representation is smaller for bucket size 500,
hence a larger part of it fits in the cache. For example using the formulas in Section 4.5.2,
the jump array needs about 266 kB and fits in L2 cache while the upper-bits array together
take up at most 12 MB and therefore fit in L3 cache. For bucket size 50, both are ten
times larger.
Using bijection rotation, the query times are a few percent larger. This is expected since
more work is necessary. First, an additional case distinction is required to check whether
the found leaf is full (i.e., m = `) because only full leaves use bijection rotation. If it is
full, a modulo operation is used to calculate the rotation. In the case where the key was in
the set B which was rotated (see Section 5.5), we have to apply the rotation which needs
another modulo operation. Fortunately, the modulus is in both cases the compile-time
constant `. Therefore, the compiler is able to avoid expensive modulo operations similar to
Section 5.6.1. In the simplest case, ` is a power of two. Then, modulo can be replaced by a
single inexpensive AND instruction. This is the reason why the difference between the two
implementations in Figure 6.23 is smaller for ` = 8 and ` = 16.
Looking at Figure 6.24, the SIMD and GPU implementations produce neither generally
faster nor generally slower MPHFs. In most cases, the difference is less than 2%. However,
for a million keys and bucket size 5, the speedup is up to 8%. The reason could be that
the starting seeds are compile-time constants (see Section 5.2), but it is unclear whether
this can really explain such great differences. At least it is reasonable that the influence is
greater for bucket size 5 than for larger buckets as the overall work is smaller.
Interestingly, the chart is flipped for a billion keys. The GPU implementation produces an
MPHF that is up to 11% slower than the original implementation. Given the fact that the
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Figure 6.23: Query time of all our RecSplit implementations for different bucket and leaf
sizes. Only the original implementations are shown for a better visualization.
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Figure 6.24: Query time speedup of all our RecSplit implementations relative to the original
implementation. The speedups with bijection rotation are relative to the
original implementation with bijection rotation, and the speedups without
bijection rotation are relative to the original implementation without bijection
rotation.
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GPU implementation produces the exact same MPHF as the SIMD implementation which
is much faster in this case, this difference is perhaps better explained with the measuring
method than an actual difference in the result. The queries are timed directly after the
MPHF is constructed. Maybe there is a difference in the clock frequency of the GPU.
Unfortunately, we can only speculate at this point.

6.6.4 Pareto Fronts

If the user does not care for the query time, Figure 6.25 tells us that GPURecSplit with
bijection rotation is the best choice for very compact MPHFs, whereas SIMDRecSplit with
bijection rotation is better suited for very fast construction at the cost of more bits per key.
The original implementation is never useful as it is completely dominated by the SIMD
implementation. For a billion keys, GPURecSplit with bijection rotation, bucket size 2000
and leaf size 17 dominates almost everything. Only the SIMD implementation can construct
the MPHF slightly faster at the expense of significantly more space. Figure 6.25 also shows
us that bijection rotation is indeed useful, i.e., the slightly higher space consumption can
be offset by tweaking the parameters such that the construction is still faster and produces
a more compact MPHF.

If the user only cares about query and construction time, Figure 6.26 clearly states that
SIMDRecSplit is the preferred choice. This is expected since it is generally a lot faster
than the original implementation, and GPURecSplit is slow for small bucket sizes which
are necessary for fast queries. Bijection rotation seems to be a bit better for the SIMD
implementation, but this is not the case for the other implementations.

For the sake of completeness, we show the Pareto fronts of query time versus space
consumption in Figure 6.27. There are no big differences between the implementations
since the goal of our implementations is to improve the construction time while retaining
the query time and space consumption as good as possible. That said, bijection rotation
is counterproductive if the construction time is irrelevant since it slightly increases space
consumption and query time.

6.7 Comparison with PTHash
To the best of our knowledge, our implementations of RecSplit are the best methods to
construct very space-efficient MPHFs (below 2 bits per key) at practical construction and
query times. Currently, the best method for very fast queries at reasonable construction time
and space consumption is PTHash [76, 75]; see Section 3.4. We have tested PTHash with
the parameters used in a paper by the authors [75]. As evident in Table 6.2, SIMDRecSplit
with bucket size 7 and leaf size 11 has better construction time and space consumption than
PTHash. However, PTHash has up to 2.6× faster queries. No RecSplit implementation
can come close to the query times of PTHash. Even by increasing the leaf size further,
only minuscule improvements can be measured since with b = 7 and ` = 11 most splitting
trees only consist of a single leaf.
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Figure 6.25: Pareto fronts (construction time versus space consumption) for the different
implementations.
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Figure 6.26: Pareto fronts (construction time versus query time) for the different imple-
mentations.
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Figure 6.27: Pareto fronts (query time versus space consumption) for the different imple-
mentations.

80



6.7. Comparison with PTHash

Table 6.2: Comparison with internal-memory PTHash. SIMDRecSplit and PTHash both
use 16 threads. For SIMDRecSplit, bucket size b = 7 and leaf size ` = 11.
Bijection rotation is not used. As in a paper by the authors of PTHash [75], it
uses α = 0.94 and c = 7 with the encoder mentioned in parentheses; see [76] for
details.

Method
1 million keys 10 million keys 100 million keys

Constr. Space Query Constr. Space Query Constr. Space Query
[ns/key] [bits/key] [ns] [ns/key] [bits/key] [ns] [ns/key] [bits/key] [ns]

SIMDRecSplit 46 2.39 29 52 2.39 37 83 2.39 73
PTHash (D-D) 102 3.48 12 98 3.34 14 112 3.23 26
PTHash (PC) 95 3.11 13 99 2.91 16 110 2.76 29
PTHash (EF) 101 2.70 21 99 2.54 27 108 2.45 45
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In this thesis, we present new techniques to construct minimal perfect hash functions
(MPHFs) faster. In particular, we provide new implementations of the RecSplit MPHF [46]
that make use of multithreading, SIMD, and GPUs. We also propose a new technique called
bijection rotation to construct MPHFs on small key sets of size m with almost optimal space
consumption and an up to m times faster construction than the usual brute-force approach.
Using bijection rotation, we achieve speedups of up to 333 for our SIMD implementation
on an 8-core CPU, and up to 1873 for our GPU implementation compared to the original,
sequential implementation in the Sux library [13]. This makes it possible, for example, to
construct an MPHF with 1.56 bits per key in less than 1.5 µs per key.

7.1 Future Work
There are many ways to improve our work or RecSplit in general. We propose some ideas
in this section for possible future work.

7.1.1 Bijection Rotation

We introduced bijection rotation in Section 5.5 and provided a rudimentary analysis in
Section 5.5.1. For future work, it would be interesting to analyze bijection rotation more
thoroughly, in particular the average savings without using assumptions that are not always
true. Based on this analysis, it would be wise to adapt the fanouts in the aggregation levels.
The fanouts were chosen in the original RecSplit paper [46] such that the expected work in
both aggregation levels is approximately equal to the expected amount of work in the leaf
level. With bijection rotation, the expected amount of work in the leaf level is reduced.
Therefore, the fanouts should be decreased as well. We have not yet done this, which is
the reason why bijection rotation is currently the most useful for bucket size about 50.

7.1.2 Combine RecSplit with SAT-Based MPHF

We mentioned a SAT-based MPHF [81] in Section 3.5. The authors proposed two techniques:
one that achieves about 1.83 bits per keys in practical time, and one that is nearly optimal,
albeit slow and only feasible for small inputs of at most about 40 keys. Future work could
try to use this second technique to compute the bijections in RecSplit. Perhaps, this is
faster, especially for large leaves. If it is indeed faster, then it is interesting to see whether
SAT-based techniques can also be used to accelerate the search for splittings.
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7.1.3 Scalability
We discussed the use of multiple GPUs for GPURecSplit in Section 6.5.6. The authors of
RecSplit have already denoted that RecSplit can easily make use of distributed computing
(e.g., with MapReduce [42]) and external storage. The latter can be achieved by using an
external sorting algorithm [43], the remaining steps only need one bucket in main memory
at a time. This allows for RecSplit implementations that scale well beyond a few billion
keys.
However, the more input keys, the higher the risk for hash collisions in the initial hash
function, see Section 4.1. If a collision appears, RecSplit cannot determine an MPHF (the
implementation runs into an endless loop). To diminish the chance of a collision, a 128-bit
hash function is used. Unfortunately, not every bit is used. The 64 least significant bits
of the 128-bit key are used to find splittings and bijections inside the bucket, but the 64
most significant bits are only used to calculate the bucket of the key. Since there are only⌈
n
b

⌉
buckets, the extracted information contains only log2

⌈
n
b

⌉
bits. This is obvious if the

number of buckets is a power of two: the bucket-assignment function (see Section 4.2) just
extracts the log2

⌈
n
b

⌉
most significant bits of the key.

The result is that RecSplit has not the collision resistance one would expect from 128-bit
keys. For example, consider n =

⌈
1.18
√

264
⌉
≈ 5 billion keys and bucket size b = 2000.

According to the birthday paradox [65], there is at least one collision in the 64 least
significant bits of the keys with a probability of more than 50%. There are 2.5 million
buckets, and the construction fails if two colliding keys end up in the same bucket. It
follows that the probability of failure is at least 0.5 · 1

2 500 000 = 1
5 000 000 . It is up to the

reader whether a chance of 1 in 5 million is an acceptable risk. Of course, this also depends
on the situation. The valuation is different if the construction is run once with a human
supervisor versus if it is used in a consumer application that is used by millions of users.
It is important to note that this problem results in a practical limitation of the input
size. For roughly 13 quadrillion keys (13 · 1015 ≈ 1.44 · 253, or 208 petabytes of data), the
probability of failure is more than 50%. According to the birthday paradox, that is a factor
of 1674 smaller than the 1.18

√
2128 keys that would provide the same limit if the whole

128 bits were used.

Solutions

A simple solution is checking for collisions in every bucket. If there is a collision in any
bucket, use another seed for the initial hash function and try again. This is reasonable if the
chance of failure is not too large. Another solution is to use the whole 128-bit keys for the
construction of the splitting trees. This way, RecSplit has the same collision resistance as
expected from 128-bit keys, but this comes at the cost of significantly increased construction
time (presumably at least a factor of 2). One solution should be implemented for a scalable
and practical implementation of RecSplit.

7.1.4 Generalizations
The authors of RecSplit remark that RecSplit can be generalized to perfect hash functions
that are not minimal, i.e., the codomain is not [n], but [m] for m > n and the perfect hash
function is only required to be injective instead of bijective. Such perfect hash functions
can be even more compact than MPHFs. Similarly, RecSplit can be generalized to k-perfect
hashing to save space, where up to k keys per hash value are allowed. This has been
implemented by the author of this thesis, but the result is (yet) unpublished. A future
production-ready implementation of RecSplit could offer both generalizations and decide
automatically whether a SIMD or GPU implementation is used based on the parameters
(bucket and leaf size) and the presence of a suitable GPU.
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