KIT | KIT-Bibliothek | Impressum | Datenschutz

On numerical methods for the semi-nonrelativistic system of the nonlinear Dirac equation

Jahnke, Tobias 1; Kirn, Michael 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

Solving the nonlinear Dirac equation in the nonrelativistic limit regime numerically is difficult, because the solution oscillates in time with frequency of $\mathcal{O}(\varepsilon^{-2})$, where $0 < ε \ll 1$ is inversely proportional to the speed of light. It was shown in [7], however, that such solutions can be approximated up to an error of $\mathcal{O}(\varepsilon^{-2})$ by solving the semi-nonrelativistic limit system, which is a non-oscillatory problem. For this system, we construct a two-step method, called the exponential explicit midpoint rule, and prove second-order convergence of the semi-discretization in time. Furthermore, we construct a benchmark method based on standard techniques and compare the efficiency of both methods. Numerical experiments show that the new integrator reduces the computational costs per time step to 40% and within a given runtime improves the accuracy by a factor of six.


Volltext §
DOI: 10.5445/IR/1000152783
Veröffentlicht am 18.11.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 11.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000152783
Umfang 26 S.
Serie CRC 1173 Preprint ; 2022/59
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter nonlinear Dirac equation, time integration, error bounds, nonrelativistic limit regime
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page