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We present the five field mixed finite element formulation introduced by Armero

and extend it to 3D problems. It combines the nonlinear mixed pressure element
with an enhanced assumed strain (EAS) method based on the transposed Wilson
modes. The well-known mixed pressure element arises from a Hu-Washizu-like
variational principle, where dilatation and pressure are independent variables. This
functional is further modified using the EAS framework to get the mixed formulation
presented in this work. The element is compared to several mixed pressure and EAS
element formulations showing its great performance in alleviating volumetric and
shear locking in large deformation problems. The main focus of the present work is
spurious hourglassing of mixed finite elements that arise in hyperelastic and elasto-
plastic simulations.

Keywords: mixed finite elements, enhanced assumed strain, hyperelasticity, elasto-
plasticity, robustness, numerical instabilities.

1 Introduction

The finite element method (FEM) (see e.g. Wriggers [19]) is one of the most significant methods
to numerically solve partial differential equations (PDE) in solid continuum mechanics. Its key
idea is to subdivide a body in the name giving finite elements (FE) and to approximate the
deformation of this body using the weak form of a PDE.
One of the major phenomenons that limits the applicability of low-order displacement elements
is locking, which denotes numerical stiffening of the body. It causes too small deformations and
slow convergence with mesh refinement. A distinction is made between shear and volumetric
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locking occurring in bending dominated problems and in the incompressible limit, respectively.
In 1985 Simo et al. [14] presented a mixed element formulation based on a Hu-Washizu [17]
three field functional introducing extra variables for dilatation and pressure, such that the
deviatoric and volumetric part of the strain tensor can be treated separately. This alleviates
the effects of volumetric locking for nearly incompressible materials.
In 1990 and 1992 Simo and Rifai [13] and Simo and Armero [11] presented another widely used
mixed finite element method called enhanced assumed strain method (EAS) for linear and non-
linear deformations, respectively. This method introduced enhanced strains in addition to the
compatible strains with ansatz functions based on the previously introduced popular incompat-
ible displacement modes (see Wilson [18]). While EAS elements work extremely well for small
deformation problems, they unfortunately suffer from spurious hourglassing instabilities under
large deformation compression as first pointed out by Wriggers and Reese [20]. A first remedy
to this problem was proposed by Korelc and Wriggers [6] who introduced a method of trans-
posed Wilson modes in 1996 solving this problem for polyconvex elastic materials. However,
the method proposed in Korelc and Wriggers [6] is not frame-invariant if it is subject to large
rotations which was corrected by Glaser and Armero [3]. For more details on the long history of
EAS elements, including various ansatz functions and transformations, see e.g. Pfefferkorn and
Betsch [7]. Even though the transposed Wilson-modes eliminated hourglassing in hyperelastic
problems, the element still suffers from hourglassing in elasto-plastic simulations. To the best
knowledge of the authors, there exists no EAS element that overcomes this problem without
introducing unphysical expressions with parameters to be set by the user.
In this paper we discuss an element formulation presented by Armero [1] in 2000, that combines
the mixed pressure formulation of Simo et al. [14] with the EAS method of Glaser and Armero
[3]. The key idea is to enhance only the non-diagonal elements of the deformation gradient
yielding a specific enhancement of the deviatoric part of the strain tensor, since the locking
of the volumetric part is taken care of by the mixed pressure ansatz. This yields a five field
variational functional which is basis for a stable and hourglassing-free finite element method for
nonlinear elastic material behavior with great results in computing deformations of hyperelastic
as well as in elasto-plastic formulations. Most remarkably, the element presented by Armero [1]
shows no hourglassing in 2D elasto-plastic simulations. Hence Armero [1] remedies the shear
locking of the mixed pressure element of Simo et al. [14] whilst circumventing the spurious
hourglassing effects of the EAS formulation by Simo and Armero [11] in 2D. The 3D case,
however, has not been covered so far. In this paper we present a 3D version of this element
formulation and provide numerical tests for 3D elastic and plastic material behavior. We show
most importantly that, unfortunately, the 3D formulation of this element is not hourglassing-
free in elasto-plastic simulations.
The paper is structured into four chapters. Chapter 2 covers the mixed finite element method
of Armero [1]. Chapter 3 contains numerical tests assessing the performance and stability of
the mixed element presented in Chapter 2 by comparing it to mixed EAS and mixed pressure
element formulations. It is shown that the mixed pressure EAS element has extremely high
robustness (concerning number of load steps and number of Newton-Raphson (NR) iterations)
and is not susceptible to locking. However, in 3D it is not hourglassing-free in standard tests.
Finally, Chapter 4 concludes the paper and its results with a short summary.
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2 The Five-Field Finite Element Formulation

In this section we give an overview of the five-field finite element formulation, which was first
presented by Armero [1] for 2D problems. In the present work we focus on the 3D formulation.

2.1 Deformation Gradient
We first introduce the deformation gradient F since its structure is the key to both mixed
methods on which the present element relies. It combines the volumetric and deviatoric split
used for the mixed pressure element in Simo et al. [14] with an additive enhancement. The
purely displacement based deformation gradient

Fφ(φ) = Grad (φ) = ∂φ(X)
∂X

(1)

is modified in the form
F(φ, θ, Γ) = θ1/3Ĵ−1/3F̂. (2)

Therein, θ is the (independent) dilatation and Ĵ = det(F̂). Moreover, the enhancement is
denoted by (•̂) and the enhanced deformation gradient F̂ is given by

F̂(φ, Γ) = Fφ(φ) + F̃(φ, Γ), (3)

where
F̃(φ, Γ) = Fφ,0(φ)FΓ(Γ) (4)

is the enhanced part of the deformation gradient, which depends apart from the enhanced
degrees of freedom Γ on the deformations φ via Fφ,0, which is the compatible deformation
gradient (1) evaluated at the element centroid, in order to ensure frame invariance (see Simo
et al. [12] and Glaser and Armero [3]). Finally, FΓ includes the enhanced degrees of freedom
Γi arranged in vector Γ and is specified in section 2.3.

2.2 Variational Framework
The classic variational potential for the pure displacement element formulation is extended by
two constraints. The first condition on kinematic level, J = θ with J = det(Fφ), is enforced
by the Lagrange multiplier p in analogy to Simo et al. [14]. The second constraint ensures
that the enhanced part of the deformation gradient F̃ vanishes on the continuum level and is
enforced by the second Lagrange multiplier P. This yields the five-field functional

Π(φ, θ, p, Γ, P) =
∫

B0

[
W (C) + p (J − θ) − P : F̃

]
dV + Πext(φ) , (5)

where W is an arbitrary hyperelastic strain-energy function characterizing the behavior of
body B, which is mapped from its reference configuration B0 to its current configuration by
deformation map φ. Furthermore, Πext denotes the potential of external forces not further
specified here and C = FTF is the modified Cauchy-Green tensor computed using F(φ, Γ).
The five independent fields in (5) require the five stationary conditions

δφΠ =
∫

B0
dev(τ ) : ∇̂s(δφ) + pJI : ∇s(δφ) − δφF̃ : P dV + δφΠext = 0, (6a)
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δθΠ =
∫

B0

(1
3tr(τ )θ−1 − p

)
δθ dV = 0, (6b)

δpΠ =
∫

B0
δp (J − θ) dV = 0, (6c)

δΓΠ =
∫

B0
dev(τ ) : sym

(
Fφ,0δΓFΓF̂−1)

− δΓF̃ : P dV = 0, (6d)

δP Π = −
∫

B0
δP : F̃ dV = 0, (6e)

where τ is the constitutive Kirchhoff stress tensor and assumes the usual form

τ = FSFT with S = 2∂W (C)
∂C

(7)

for a hyperelastic material model1. Furthermore, ∇̂s(•) is a modified symmetric gradient in the
spatial configuration that arises from the derivative of the Cauchy-Green tensor C with respect
to φ. The modified gradient ∇̂(•) is given by

∇̂(•) := ∇̂x(•) =
[
∇X(•) + FT

Γ∇0(•)
]

F̂−1, (8)

where ∇0(•) = ∇X(•)
∣∣∣
ξ=0

and ∇X(•) = Grad(•).

2.3 Discretization
For all simulations we consider the common isoparametric concept and the Bubnov-Galerkin
method. Thus, the approximate (•)h and elementwise (•)e position Xh,e and displacement φh,e

as well as its variation δφh,e are given by

Xh,e =
∑
I∈I

N e
I Xe

I , φh,e =
∑
I∈I

N e
I φe

I and δφh,e =
∑
I∈I

N e
I δφe

I (9)

for all elements e ∈ {1, 2, . . . , ne} in the subdivision Bh
0 = ⋃ne

e=1Ωe of body B0. Furthermore,
I is the set of nodes in the reference element Ω□. The standard trilinear Lagrangian shape
functions for the eight noded cube are employed.
Constant ansatz functions are used for the dilatation θ and Lagrange multiplier p since they
match well with linear shape functions on the deformation φ if θ and p are restricted to each
element Ωe as discussed e.g. in Hughes [4]. This yields

θh,e = const and ph,e = const in every element. (10)

This element does not fulfill the LBB-condition (cf. Boffi et al. [2]). This means, that for some
boundary conditions checkerboard solutions for the aproximated pressure arises. Fortunately,
this can easily be fixed by various workarounds e.g. L2-smoothing (cf. Wriggers [19]).
Finally, we discuss the approximation of FΓ(Γ) introduced in (4). Armero [1] uses transposed
Wilson modes which are first described in the work of Korelc and Wriggers [6]. The basic idea
of the element proposed by Armero [1] is to only use the non-diagonal modes.2 We extend this
1 Note that all terms in (6) refer to the spatial configuration except for terms containing P or δP since these

terms vanish on discrete level due to the orthogonality condition given below.
2 We also tested the same element with all nine transposed Wilson Modes for the enhanced field. That element

is even softer than the element of Armero, which is too soft in pure bending problems with undistorted
meshes. Thus, the element with all 9 enhanced modes is not taken into account in subsequent investigations.

Hille et al. 2020



3 Numerical Investigations 5

formulation to the three-dimensional space which yields an enhancement field of the form

FΓ(Γe) = jh,e
0

jh,e(ξ)
(
Jh,e

0

)−T


 0 Γe

1ξ Γe
2ξ

Γe
3η 0 Γe

4η
Γe

5ζ Γe
6ζ 0


 (

Jh,e
0

)−1
, (11)

where J0 = J
∣∣∣
ξ=0

and J is the Jacobian matrix of the isoparametric map. Analogously, their
determinants are given by j = det(J) and j0 = det(J)

∣∣∣
ξ=0

, respectively.

In analogy to standard EAS elements the present five-field element formulation fulfills the patch
test provided that

∫
Ω□

FΓ dΩ□ = 0 is fulfilled (see Armero [1]).
The usual L2-orthogonality condition assumed between discrete stress and strain field yields∫

Ωe
F̃h,e : δPh,e dV =

∫
Ωe

δF̃h,e : Ph,e dV = 0 (12)

on element level. This allows to eliminate P in the discrete case such that only four fields
remain in the discretized version of functional (5).

3 Numerical Investigations

This chapter covers benchmarks testing the performance of the finite element formulation pre-
sented in Section 2. The element is compared to the standard isoparametric displacement
element and popular (well-working) mixed elements. Armero [1] already described and evalu-
ated the mixed pressure EAS element using various 2D tests. Thus, the focus of this work lies
on the 3D formulation.
The element proposed by Armero is denoted Q1/P0ET2. Its 3D extension covered in this
work is named H1/P0ET6. The 3D elements used for comparison in the following numerical
examples are:

• H1, the standard isoparametric 8-node displacement element,
• H1/E9, the classic EAS element formulation (see Simo and Armero [11]) and H1/ET9,

the EAS formulation with transposed Wilson modes (see Glaser and Armero [3]),
• HA1/ET12, an extension of H1/ET9 with additional volumetric modes using a 9-point

integration (see Pfefferkorn and Betsch [7]) and
• H1/E9-MIP and HA1/E12-MIP the EAS elements with improved robustness by use of

the mixed integration point (MIP) method (see Pfefferkorn et al. [9]),
• H1/P0, the three field mixed pressure element (see Simo et al. [14]) and
• H1/S18, the well known assumed stress element by Pian and Sumihara [10], which has

18 stress modes in 3D.
We consider two material models for all simulations. First, the nonlinear neo-Hookean material
model with strain-energy function

W = µ

2 (tr(C) − 3) + λ

2 (ln J)2 − µ ln J (13)
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for elastic behavior.34 Second, the multiplicative J2-plasticity model with nonlinear isotropic
hardening and the Hencky elastic law as proposed by e.g. Simo [15]. The material parameters
of that model are set to their usual values (see e.g. [1], [3] or [8]).

3.1 Cooks Membrane
The first test described in the present work is the Cooks membrane test. Figure 1 shows the
system, which is clamped on the left. We employ the elastic model given in (13) with material
parameters µ = 756.00 and λ = 8.2669 · 104.
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Figure 1: Cooks membrane: system (left) and displacement u of the hindmost node in the right upper corner
(right).

The focus of this test is on shear and volumetric locking. To determine the elements perfor-
mance, we evaluate the displacement u in y-direction of the top right corner caused by equally
distributed shear stress τ = 100. The right image in Figure 1 shows this deformation in de-
pendence of the number of elements per side for the various mixed elements (there are always
2 elements in direction of the thickness).
The worst element is H1/P0 which suffers from shear locking since only the volumetric parts
are modified in this formulation. On the other end, H1/P0ET6 exhibits the best results with
fastest convergence with mesh refinement.
Another interesting result of this investigation is the number of load steps required to achieve
convergence of Newton’s method. Regardless of the mesh size, H1/P0, H1/S18 and H1/P0ET6
only need one load step for convergence while EAS elements need at least six load steps.5 This
suggests, that H1/P0ET6 inherits the robustness, meaning size of applicable load steps and
number of necessary Newton iterations, from H1/P0. Consequently, it is numerically more
efficient. This result is confirmed in Section 3.5. Note that the efficiency strongly depends on
the aspect ratio of the elements in case of H1/P0ET6.

3 Note that no volumetric deviatoric split in W (13) is considered in the present work in contrast to many
works on mixed elements with approximation of the pressure (see e.g. Simo et. al [14]).

4 A inverse stress strain relation of (13) for H1/S18 is given in [9].
5 Elements with MIP method need even slightly more iterations in this example, which shows that there are

cases where this method is not advantageous. Nevertheless, it improves convergence in many cases (see
Pfefferkorn et al. [9]).
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Figure 2: Setup for stability test 2D (left) and hourglass modes 2D (right).

3.2 Stability Test
This section describes the modal analysis presented in Armero [1], where the eigenvalues of the
stiffness matrix are evaluated to examine possible instabilities from so called hourglass modes.
Armero [1] covers the 2D version of this test while this paper focuses on 3D testing as mentioned
above.
Every eigenpair linked to an eigenvalue ωi of the element stiffness matrix denotes a specific
mode, that describes one kind of motion or deformation, that the element can perform. Be-
sides the six rigid body and the six constant strain modes, there are twelve hourglass modes
in 3D with a corresponding eigenvalue ωhour

i . These eigenvalues can cause locking and numer-
ical instabilities and sometimes yield non-physical deformations in numerical computations.
Negative hourglass eigenvalues can cause typical hourglass patterns, thus, the construction of
element formulations that exhibit only positive eigenvalues should be the goal.
For the 3D version of this test we consider a single finite element Ωe = [−1, 1]3. It is deformed
in a state of uniaxial stress which allows to analytically compute the principal stretch λ2 = λ3
for any given λ1 using conditions τ2 = τ3 = 0.6 Armero [1] showed, that for the plane strain case
of the problem depicted in Figure 2, the hourglass-eigenvectors are always constant and thus
let us readily compute the corresponding eigenvalues. In the uniaxial 3D case, the hourglass-
eigenvectors depend on the stiffness matrix and thus on the material properties and the element
formulation. However, they can still be computed analytically as shown in Pfefferkorn and
Betsch [8].
Since the eigenmodes are well known, a matrix of eigenvectors can be described and a product
of the stiffness matrix and the hourglass matrix yields the eigenvalues. For the elastic case we
use the Lamé parameters λ = 105 and µ = 20.
Before we list the 3D results, we give a brief summary of previous results for 2D elements. The
first thorough work on the instabilities under compression of Q1/E4 is Wriggers and Reese [20].
Viehbahn et al. [16] showed for Q1/S5 and Wriggers and Reese [20] for Q1/E4, that these two
elements show instabilities in uniaxial pressure (ωhour

2 < 0 for λ1 < 1).7 All other elements

6 Due to the non-linearity of this expression a solver e.g. Newton’s method might be required to solve for λ2.
However, for the considered material models, an analytic solution is possible.

7 Q1/S5 has a different behavior in tension than all other elements which might emerge from problems with
the Legendre transformation.
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tested exhibit no negative hourglass eigenvalues as shown by Armero [1]. In the case of the
elasto-plastic material model only Q1/E4 shows instabilities in uniaxial pressure while all other
EAS elements suffer from instabilities under tension (see also Section 3.3).
There are twelve hourglass eigenvalues in the three-dimensional case. Due to symmetry of the
uniaxial stress problem, some of these twelve modes are identical except for a rotation around
the x-axis (see Pfefferkorn and Betsch [8]). Thus, only the unique eigenvalues are shown in
Figure 3 for the neo-Hookean and for the elasto-plastic material model, respectively.
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Figure 3: Hourglass eigenvalues of 3D elements for the neo-Hookean (top) and elasto-plastic (bottom) material
model.

For the elastic material behavior mode 6 of Q1/P0ET6 is slightly negative under compression
although this seems not to influence its stability in practical simulations.
For the plastic material behavior Q1/P0 shows the best results since all eigenvalues are strictly
positive. H1/E9, HA1/ET12 and H1/P0ET6 all have instabilities in the plastic case since
various eigenvalues are below zero. In particular, modes 7 and 8 have different shapes and
much lower values for H1/P0ET6 than for standard EAS elements. This ultimately leads to
the hourglassing patterns observed in Section 3.4. The EAS elements exhibit negative modes as
well. In particular, ωhour

6 is negative. However, this mode is not activated in distorted meshes
as shown in Sec 3.4, whereas it leads to hourglassing situations in plane strain necking problems
(see Section 3.3).
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3.3 Necking Plane Strain
In this and the following example we consider a necking simulation using the elasto-plastic
material and focus on hourglassing patterns. A rectangular bar with a length of L = 53.334
and a width of R = 12.826 is subject to prescribed displacements v̄. Necking is initiated by a
geometric imperfection in form of a linear reduction of R to R̄ by ∆R. In order to capture the
hourglassing patterns, a total of 200 load steps is considered to reach v̄ = 7. Note that only
one fourth of the specimen needs to be simulated due to symmetry. For more details see e.g.
Armero [1] or Pfefferkorn and Betsch [8].

X, u

Y, v

1
5L4

5L

R R̄

v = v̄

Figure 4: Thin bar: setup (left) and deformed mesh for v̄ = 5.6 of Q1/ET4 (middle) and Q1/P0ET2 (right).

As shown in Figure 4, exemplary for Q1/ET4, all EAS based element formulations suffer from
hourglassing patterns while Q1/P0 and Q1/P0ET2 are hourglassing-free. Here, the negative
eigenvalues of Mode 6 (or rather its 2D equivalent) observed in Section 3.2 cause the hourglass-
ing patterns.

3.4 Necking Circular Bar
In analogy to Section 3.3, the 3D version of the necking problem is conducted on one eighth
of a circular bar of length L = 53.334 and Radius R = 6.413. After a total of 50 load steps
opposite results to Section 3.3 are obtained as shown in Figure 5. All EAS based elements
are hourglassing-free, but the element of Armero, H1/P0ET6, shows hourglassing patterns. In
dissent to the results of Simo and Armero [11] H1/P0 is hourglassing-free. Thus, for the current
problem with its distorted elements, the negative Mode 6 does not seem to induce hourglassing
while the negative modes 7 and 8 observed for H1/P0ET6 induce hourglassing.

3.5 Spherical Shell with Opening
The final test presented in the present paper is the spherical shell problem with opening modeled
using the neo-Hookean nonlinear elastic material model with λ = 1.2115 · 105 and µ = 8.0769 ·
104. The left image in Figure 6 shows the setup with middle radius r = 10, thickness 0.5 and
opening angle β = 18◦ while the right image shows the deformed mesh computed with element
formulation H1/E9. The shell is deformed by prescribed displacements applied at the inner
edge of the top opening. For more details on setup and procedure see e.g. Korelc et al. [5].
Table 1 presents the required number of load steps nsteps and total number of Newton-Raphson
(NR) iterations nNR plus the resulting reaction force in z-direction Rz.8 Since the aspect ratio
8 We use the Newton tolerance ||R|| < 1 · 10−8 as well as a maximum of 20 numerical iterations per load step.
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Figure 5: Circular bar: setup (left) and from left to right the deformed meshes of H1/ET9, H1/P0 and
H1/P0ET6.
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Figure 6: Spherical shell with opening: setup (left), deformed mesh (right).

of the used mesh is around 1, H1/P0ET6 exhibits pronounced robustness similar to H1/P0
(and H1/S18). The low reaction force Rz is explained by the too soft behavior of H1/P0ET6
for nearly undistorted meshes. All EAS elements require a much higher number of load steps as
well as more than double the amount of NR iterations. We emphasize, that this behavior can
not be observed for H1/P0ET6 if poor aspect ratios occur. In that case H1/P0ET6 performs
extremely poor and even worse than EAS elements.9

9 The convergence test of a circular ring (see e.g. Pfefferkorn et al. [9]) provides a good example of the poor
behavior of H1/P0ET6 in shell-like problems.

Table 1: Results of the spherical shell test
element type req. nsteps total nNR Rz

H1/ET9 9 77 5487.5
H1/ET9-MIP 8 58 5487.5
HA1/ET12 9 77 5489.8
HA1/ET12-MIP 8 58 5489.8
H1/P0 3 27 5773.5
H1/P0ET6 3 29 4920.6
H1/S18 3 27 5454.1
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4 Conclusion

The present paper covers the mixed pressure EAS element formulation of Armero [1] with an
extension to 3D as well as thorough evaluation of the performance of the element regarding
numerical instabilities such as spurious hourglassing patterns as well as locking and robustness
in NR-iterations.
Although the element formulation of Armero [1] is stable and hourglassing-free for regular
meshes with nonlinear elastic material behavior, some problems occur in case of distorted
meshes and for elasto-plastic material behavior.
In particular, while Q1/P0ET2 solves the hourglass problems, that EAS element formulations
such as Q1/ET4 suffer in case of 2D elasto-plastic simulations (see Armero [1]), converse results
are observed in 3D computations. Here, H1/P0ET6 shows hourglassing and EAS elements show
no spurious results.
In conclusion, there is yet an EAS based element formulation to be found, that is free of
spurious hourglassing effects with nonlinear elastic and elasto-plastic material behavior in 2D
and 3D, that furthermore provides the required robustness for different problem formulations.
Finding such an element remains the task for element development. Nevertheless, the element
formulation of Armero [1] provides an interesting mixed element with many desirable properties
and works especially well in 2D.
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