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Abstract. The performance of machine learning models depends heavily on the
feature space and feature engineering. Although neural networks have made sig-
nificant progress in learning latent feature spaces from data, compositional fea-
ture engineering through nested feature transformations can reduce model com-
plexity and can be particularly desirable for interpretability. To find suitable trans-
formations automatically, state-of-the-art methods model the feature transforma-
tion space by graph structures and use heuristics such as ε-greedy to search for
them. Such search strategies tend to become less efficient over time because they
do not consider the sequential information of the candidate sequences and can-
not dynamically adjust the heuristic strategy. To address these shortcomings, we
propose a reinforcement learning-based automatic feature engineering method,
which we call Monte Carlo tree search Automatic Feature Engineering (mCAFE).
We employ a surrogate model that can capture the sequential information con-
tained in the transformation sequence and thus can dynamically adjust the explo-
ration strategy. It balances exploration and exploitation by Thompson sampling
and uses a Long Short Term Memory (LSTM) based surrogate model to esti-
mate sequences of promising transformations. In our experiments, mCAFE out-
performed state-of-the-art automatic feature engineering methods on most com-
mon benchmark datasets.

Keywords: data mining, feature engineering · monte carlo tree search · reinforce
learning.

1 Introduction

In many applications, the success of machine learning is often attributed to the expe-
rience of experts who use not only the best-fitting algorithms but also extensive do-
main knowledge. This domain knowledge is often reflected in the pre-processing of
raw data: it is transformed step-by-step so that it can be optimally processed by an
automated machine learning pipeline. Most of this heuristic search performed by an
expert is commonly referred to as feature engineering. Due to limited human resources
but ever-growing computing capabilities, automating this search process is becoming
increasingly attractive.

Feature engineering can be understood as a combinatorial optimization that attempts
to maximize the utility of a subsequent optimization step, i.e., fitting the model. By
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employing explicit feature engineering, as opposed to deep learning (e.g., Long Short
Term Memory (LSTM) [10] in [1]), we obtain a tighter control over the model space.

Furthermore, good feature engineering can increase the robustness (generalizability
to unknown data) and interpretability (predictability of decisions based on input fea-
tures) of the overall machine learning architecture.

However, there are several challenges in automatically searching for useful fea-
tures made up of sequences of atomic mathematical transformations such as addition
(add), logarithm (log), or a sine function (sin). First, the search space grows large very
quickly, as the number of possible transformation sequences grows exponentially with
their length and the atomic transformations allowed. Second, evaluating a potentially
promising transformation sequence can be time-consuming, as it requires training and
evaluation of a machine learning model. Both of these features make the search chal-
lenging and require methods that search the space efficiently.

To address these challenges, Cognito [6] models the exploration of the transfor-
mation space with a transformation tree and explores the tree with some handcrafted
heuristic traversal strategies such as depth-first, global traversal, or balanced traver-
sal. Furthermore, the recently proposed reinforcement-based approach [7] applies a
Q-learning algorithm and approximates the Q value with linear approximation to au-
tomate feature engineering.

While these methods achieve good results, our hypothesis is that they can be signif-
icantly improved by addressing two aspects, namely:

– Choice of search hyperparameters and dynamic adaptation of the heuristic
strategy: A serious problem with an approach that relies entirely on guidance is the
tendency to fall into local optima. Strategies like ε-greedy and Upper Confidence
Bound (UCB) [17] can mitigate this problem, however, both need careful tuning of
the initial hyperparameters that also control the dynamic adaptation of their search
strategy.

– Sequential information of the composite transformations: New features can be
transformations of existing features. Such compositions are sensitive to the order in
which the atomic transformations are applied. State of the art feature engineering
methods approximate the performance of a given transformation sequence with a
linear model [7] or a deep convolutional neural network [8], which do not exploit
the sequential information (order) contained in the composite transformation.

To address these shortcomings, we present a novel algorithm called Monte Carlo
tree search for Automatic Feature Engineering (mCAFE). We choose Thompson sam-
pling as an automatically adjusting selection policy, in combination with an LSTM
network to capture the sequential information in the feature transformation sequences,
while the main structure follows a Monte Carlo Tree Search (MCTS) [9].

Our contributions can be summarized as 1) we leverage Thompson sampling to
guide the exploration, thus avoiding the parameters initialization and strategy dynamic
adjustment problem. 2) we utilize sequential information of composed transformations
by training an LSTM-based surrogate model for predicting the expected reward of a
transformation sequence to a given dataset. 3) we evaluated the algorithm on common
benchmark datasets (see [7]) and achieved improvements on most of them.
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2 Related work

In recent years, a large number of research results have emerged for domain-specific
feature engineering. The work of [2] investigates how to share information through fea-
ture engineering in multi-task learning tasks, and [3] tries to find suitable features to
improve the class separation. However, less new research has been done on feature en-
gineering applicable to all data types. FCTree, proposed in [12], uses the original and
constructed features as the splitting point to partition the data through a decision tree.
It constructs local features where the local error is high and the features constructed so
far are not well predicted. FEADIS [13] uses a random combination of mathematical
functions, including ceiling, modulus, sin, and feature selection methods to construct
new features. Of these, features are then selected greedily and added it to the original
features. The Data Science Machine (DSM) [4] applies transformations to all features
at once. Then, feature selection and model optimization are performed on the gener-
ated dataset. A similar procedure was also applied in [5]. In contrast, ExploreKit [14]
increases the constructed features iteratively. To overcome the exponential growth of
the feature space, ExploreKit uses a novel machine learning-based feature selection ap-
proach to predict the usefulness of new candidate features. Similarly, Cognito [6] intro-
duced the notion of a tree-like exploration of the transformation space. Through a few
handcrafted heuristics traversal strategies, such as depth-first and global-first strategy,
Cognito can efficiently explore the set of available transformations. However, several
factors, such as episode budget constraints, are beyond the consideration of the strat-
egy. As an improvement, a reinforcement learning-based feature engineering method
was proposed in [7] to explore the available feature engineering choices under a given
budget. Finally, LFE [15] considers each feature individually and predicts the best trans-
formation of each feature through the learning-based method. However, none of these
methods takes the order of the transformations of the features into account. More re-
cently, a graph-based method was proposed in [8] that guides the exploration of the
transformation space with a deep neural network.

3 Methodology

We model the feature engineering problem as a classic episode-based reinforcement
learning problem consisting of an agent interacting with the environment. The search
starts from the initial state representing the original dataset D0 ∈ D, where D denotes
the state space. From D0, a transformation t ∈ T (action) can be chosen to transform
the dataset (all the features contained in the dataset) according to t. The new state D′

is then obtained by the concatenation of the data of the old state D with t(D), i.e.,
D′ = [D, t(D)]. Through this, the new state contains all information (data) from the
previous states, which can be seen as a Markov property. Finally, for each state D, a
machine learning model can be trained on D to obtain its n fold cross-validation per-
formance. However, since we seek to obtain the best sequence of length L, we further
define a feature engineering pipeline, as an ordered sequence (t1, · · · , ti, · · · , tL) con-
sisting of L transformations. The i-th entry of the sequence denotes the decision in the
i-th step, i.e., the transformation to apply to the data in order to generate new features.
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Overall, the environment can be summarized with a 3-tuple (D, T , r), denoting the state
space D, the transformation (action) space T and the rewards r ∈ {0, 1}. The reward
thereby expresses whether a transformation pipeline of length L improved over the best
performing model found so far.

Monte-Carlo Tree Search (MCTS) defines a class sampling-based tree search algo-
rithms used to find optimal decisions in vast search domains and has been successfully
applied to related problems like feature subset selection [25]. To deal with huge search
spaces, MCTS models the search space as a tree structure and explores the tree itera-
tively. It gradually favors the most promising regions in the search tree given an arbitrary
evaluation function.

Evidently, our search space of feature transformations can span such a tree, which
allows the application of MCTS to find a feature set that contains features constructed
by an optimal transformation pipeline on the original dataset. We discuss the construc-
tion of the tree in the following, alongside the selection policy (Thompson sampling)
and a surrogate model-based (LSTM) expansion policy. Finally, we will outline the
overall mCAFE algorithm. In contrast to problems like feature subset selection, the
ordering of the nodes inside the tree is of critical importance in our case.

3.1 The transformation tree

We illustrate the reinforcement task with a transformation tree of maximum depth L,
in which each node represents a state (dataset), each edge represents an action (trans-
formation) and each path from the root to a leaf node represents a feature engineering
pipeline. Additionally, each edge in the tree is associated with a distribution, which
shows the mean success (reward = 1) probability of taking the action at its parent state.
The nodes in the tree are divided into two categories: (1) root nodeD0 is the initial state
for each pipeline and represents the original dataset; (2) derived nodesDi, where i > 0,
has only one parent node Dj , i > j ≥ 0 and the connecting edge responds to the action
t ∈ T applied to the parent node, i.e., Di = [Dj , t(Dj)]. In this way, we translate the
feature engineering problem into a problem of exploring the transformation tree to find
the node that maximizes the expected reward.

Fig. 1 shows a full transformation tree for a pipeline of L = 2 and two available
actions T = {log, add}. Each node in the tree is a candidate dataset for the feature
engineering problem. For example, the derived nodes D4 and D5, represent

D4 = {D0, add(D0), log(D0), log(add(D0))} ,
D5 = {D0, log(D0), add(D0), add(log(D0))} .

Note that, although the transformations inD4 andD5 are the same, the resulting dataset
is not identical due to the order in which the transformations are applied.

We can find the optimal node by traversing this tree. However, the complexity of
this task grows exponentially as L and the number of available transforms |T | becomes
larger. Since traversing all possible nodes of the tree is prohibitive, mCAFE focuses
on optimizing the selection policy πs and expansion policy πe to reduce the number of
evaluations required to find a good transformation sequence.
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Fig. 1. Representation of feature transformation with a tree structure. Here, each node corre-
sponds to a state D and each edge corresponds to a transformation (action). The distributions on
the edges display the distribution over the mean success (reward = 1) probability when taking the
action in the parent state.

3.2 The selection policy

The selection policy πs determines the balance between exploration and exploitation. It
guides the selection for known parts of the MCTS. The UCB and ε-greedy are the two
most commonly used selection policies, for which also strong theoretical guarantees on
the regret1 can be proven. While they have proven successful in various reinforcement
learning settings, they are not ideal for the application of feature engineering. This is
mainly due to their requirement to explicitly define the exploration and exploitation
trade-off through ε in ε-greedy and λ in the UCB. Additionally, ε greedy does not adapt
the trade-off dynamically but always pursues ε % exploration. To address these prob-
lems, we make use of the Thompson sampling as the selection policy. In the following,
we introduce Thompson sampling and adapt it to the feature engineering case.

Consider the state space D, the action space T and rewards r ∈ {0, 1}. Thomp-
son sampling selects an action based on the probability of it being the optimal action.
Representing the set of N observations O = {(r, t,D)}N , where D ∈ D, t ∈ T , we
model the probability of different rewards of each action with a parametric likelihood
distribution p(r|t,D, θ) depending on the parameters θ. The prior distribution of these
parameters is denoted by p(θ). Consequently, the posterior distribution given a set of
observationsO can be calculated using Bayes rule, i.e., p(θ|O) ∝ p(O|θ)p(θ). Thomp-
son sampling implements the selection policy πs by sampling a parameter θ from the
posterior distribution p(θ|O), and taking the action that maximizes the expected reward.
Hence,

πs(D) = argmax
t∈T

E [r|t,D, θ] where θ ∼ p (θ|O) . (1)

Since, in the case of feature engineering, each state D ∈ D satisfies the Markov
property, we can simplify the problem of which action to take on state D, to whether

1 The amount we lose for not selecting optimal action in each state
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taking the action t ∈ T leads to a performance improvement. This can be modeled as
a classic Bernoulli bandit problem, where the variable θ = (θ1, θ2, · · · ) denotes the
expected values of a Bernoulli random variable expressing the probability of taking the
selected action in given a state (and obtaining a reward of one). The distribution of the
parameter θt can be modeled through a beta distribution

p(θt|α, β) = Γ (α+β)
Γ (α)Γ (β)θ

α−1
t (1− θt)β−1,

where Γ is the Gamma function. Γ (α+β)
Γ (α)Γ (β) serves as a normalisation constant that en-

sures the integration of the density function over (0,1) is 1. The parameters α and β
control the shape of the distribution and the mean of the distribution is α

α+β . It denotes
the expectation that taking the corresponding action will lead to performance improve-
ment. The higher α, the larger the mean and therefore the probability of the action to be
selected. On the other hand, the larger β, the lower the probability.

The beta distribution is conjugate to the Bernoulli distribution (i.e., the posterior
distribution p(θ|O) inherits the functional form the prior distribution p(θ)). Given an
observed sample O = (r, t,D), the posterior distribution of the parameters θ is given
by

θt′ ∼ Beta (α+ 1r=1,t′=t, β + 1r=0,t′=t) , t′ ∈ T . (2)

The parameter α is incremented when the action led to an improvement in per-
formance. Otherwise, the parameter β is incremented. In this view, α represents the
number of successes in the Bernoulli trial and β represents the number of failures.
Furthermore, the support of the beta distribution is (0, 1), independent of the parame-
terization. This ensures that there is always a nonzero probability for each action to be
selected. Consequently, there is always a nonzero probability to take each path in the
tree.

Fig. 1 shows an example of the tree representation. Each edge in the tree maintains
a beta distribution Beta(α, β). By comparing the two transformations on D0 with the
same β, we can see that the higher the value of α the more the distribution is shifted
towards sampling larger values (higher probabilities of success). In each step, an edge
is selected based on the sampling result. This ensures the priority of high-quality edges
while also allowing inferior edges to be selected occasionally. By using Thompson
sampling as the selection policy, we avoid choosing hyperparameters to balance the
exploration and exploitation trade-off. In contrast, the trade-off is adjusted dynamically
through the posterior distribution of the parameter θ, which is updated along with the
observation. Even though α and β represent hyperparameters, their choice is arguably
more intuitive as α = β = 1 describes a uniform distribution.

The requirement to construct and sample from a beta distribution for each action
may rise efficiency concerns, as this process is slow compared to an ε-greedy selection.
However, this is not an issue for feature engineering as in each episode, the selection
phase takes little time compared to the other phases of the algorithm. This will be further
explored in Section 4 (see Table 1).
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Fig. 2. The Surrogate network consist of 2 LSTM layers of size 32 and a two fully connected
layers of size 32 with a ReLU activation function.

3.3 The expansion policy

The selection policy πs guides the selection of actions in parts of the search space that
have been explored. Outside of the explored search space and beyond the leaves of the
MCTS, the expansion policy πe guides the selection of the actions t. It expands the
child nodes to the tree and selects the one with the maximum expectation reward (Q
value) as the next exploration candidate

πe(D) = argmax
t∈T

E [r|t,D, θ]

= argmax
t∈T

Q̂(D, t).
(3)

Since the state space D is huge and it is infeasible to calculate the expectation
directly, mCAFE models it with a surrogate network Q̂(D, t) as shown in Fig. 2. This
network takes the selected action t and the action sequence, which was used to generate
the leaf node stateD as input, and outputs the expectation reward of taking this action at
the state. Considering the characteristic input and order information in the sequence, the
surrogate network consists of three parts, namely a binary encoder which takes an action
as input and outputs a binary code, one LSTM layer with a hidden size of 32 to deal
with different lengths of the input sequence and capture their sequential information,
and a fully connected layer with an input size of 32 and ReLU activation function to
map the LSTM output to the expectation.

Since each edge in the tree maintains a beta distribution, we collect training data
from all the existing edges in the tree and update the surrogate model after each iteration
(episode). With the help of the surrogate model Q̂(D, t), the expansion policy can be
defined as selecting the action t that maximizes the expectation reward predicted by the
surrogate model.

3.4 The mCAFE algorithm

The mCAFE applies MCTS to explore the target space, while the selection policy grad-
ually biases the actions taken towards the more promising regions of search space in
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Fig. 3. The mCAFE framework: each iteration (episode) includes four phases: selection, expan-
sion, roll-out, back-propagation. B is the number of iterations.

order to find the optimal sequence of actions. It follows the general MCTS scheme,
where the main four phases have been modified as follows (Fig. 3):

Selection Starting from the root node, mCAFE selects the child node according to
the selection policy πs iteratively until it reaches a leaf node.

Expansion In a leaf node of the transformation tree, all the available child nodes
are expanded to the tree. One of these nodes is selected to explore according to the
expansion policy πe.

Roll-out Instead of the performance of the current node, we are interested in whether
the expectation performance of its descendant nodes has been better than the best per-
formance so far. To achieve this, mCAFE combines the n-folds cross-validation and the
general Roll-out process by the following: Assuming that the current node is of depth
l in the MCTS tree, mCAFE completes the feature engineering pipeline by sampling
L − l transformations from T randomly with replacement, where L is the predefined
length of the pipeline (transformation sequence). This process is repeated n times to get
n different pipelines (transformation sequences), where n is the number of iterations in
n fold cross validation. A reward of r = 1 is returned if the mean evaluation score of
the transformation sequences is higher, else r = 0.

Back-propagation The reward from the roll-out process is back propagated along
the path from the node selected in the expansion process to the root node in the tree,
updating the parameters α, β in each edge on the path with the update rule (see Sec-
tion 3.2).

The algorithm stops after the computational budget is exhausted, e.g. the algorithm
stops when the number of episodes reaches 100 in the experiment.

Fig. 4 shows an example of an episode of the mCAFE algorithm. Starting from
the root node D0, it selects explored nodes according to the selection policy πs until
reaching the leaf nodeD4. Then an unexplored nodeD7 is selected and expanded to the
tree according to the expansion policy πe. If the depth of the current node l (expanded
node D7) is smaller than the predefined pipeline length L (max depth), an action is
selected according to the random policy and applied to the current node to create a
new node, which is regarded as the new current node. This process is repeated until
the depth of the new node l is larger than the pipeline length L. Finally, the current
node is evaluated and its reward is back-propagated, updating the parameters of the
beta distributions along the path from D0 to D7. Since r = 1, the α of all edges along
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Fig. 4. Example of an episode of mCAFE. The beta distributions of the edges in the selected
path are displayed next to the corresponding edge. Blue denotes the distribution before back-
propagation and orange after back-propagation.

the path are incremented, while the β remain unchanged. Correspondingly, the beta
distribution of each edge in the path is slightly shifted to the right, and the probability
of selecting the corresponding actions is increased.

4 Evaluation

In this section, we design six different experiments to address the following questions:
1) How well does the mCAFE approach compare to the state-of-the-art [7]? 2) Is the
sampling-based selection policy necessary for the mCAFE algorithm? 3) Is the se-
quential information of the transformation sequence important for the prediction of the
Q value? 4) Is the surrogate-based expansion policy necessary for the mCAFE algo-
rithm? 5) How should the hyperparameter L (pipeline length) be chosen in the mCAFE
algorithm? 6) How does mCAFE perform for different predictive models?

For the first five experiments, we use the same benchmarks as [7]. For this, we
tried to reproduce this previous work. Some datasets were removed from the experi-
ment since either the results of the base model differ considerably from those in [7],
e.g., ’Amazon Employ’ and ’Whine Quality Red’. Additionally, ’Wine Quality White’,
’Higgs Boson’, ’SVMGuide3’, ’Bikeshare DC’ were removed as they displayed a dif-
ferent dataset size compared to the one cited in [7]. To overcome this problem for future
work, we published our code and datasets at https://github.com/HuangYiran/MonteCarlo-
AFE.git.

https://github.com/HuangYiran/MonteCarlo-AFE.git
https://github.com/HuangYiran/MonteCarlo-AFE.git
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We run the last experiment on the Automatic Machine Learning (AutoML) bench-
mark datasets [24]. We keep the same hyperparameter setting as in the first four exper-
iments for both our work and the baseline.

In the experiments, we use episode budgets instead of time budgets for the following
three reasons. 1) Different from some other optimization tasks, the time spent on can-
didate evaluation for feature engineering tasks dominates the overall time spent. This
time is inevitable for all the evaluation-oriented optimization methods when dealing
with feature engineering tasks. Table 1 shows the average percentage of time taken by
the mCAFE for each step in the first 20 episodes. The roll-out phase, which consist of
random transformation selection and candidate evaluation, takes up an average of 97%
of the overall time. 2) The run time varies greatly across datasets. It is influenced by
the size of the data and the sensitivity of the data to different transformations. 3) The
algorithm implementation and operating environment have a significant impact on the
run time.

Table 1. Average percentage of time for each process in the first 20 episodes.

Size Time spent in percentage (%)
Dataset Rows Feat. Selection Expansion Roll-out Back-propagation
SpecFact 267 44 0.01 0.04 96.94 3.01
PimaIndian 768 8 0.02 0.05 97.29 2.66
Lymphography 148 18 0.01 0.04 96.98 2.97
Ionosphere 351 34 0.01 0.06 96.37 3.56
AP-omentum-ovary 275 10936 0.01 0.02 98.57 1.40
SpamBase 4601 57 0.01 0.01 98.74 1.24

For the first five experiments, we use the random forest model of the sklearn package
(version 0.24) with default parameters and an episode budget of B = 100 as in [7], in
order to make the result more comparable.

We set the pipeline length to L = 4 according to the result of the third experiment
and all the beta distributions are initialized with (1, 1) for a uniform prior. To reduce the
computation time, we sub-sample to the dataset with a large number of data points. For
the sub-sampling, up to 104 data points are considered. To ensure comparability, we did
not tune any hyperparameters of the feature engineering algorithms to suit a concrete
data set or prediction model (which we changed for the last experiment). Considering
the imbalanced datasets, we apply the F1-score to assess the classification performance
and use 1 - RAE (Relative Absolute Error) as in [7] as the metric for the regression
task. All performances are obtained under 5-folds cross-validation, which also means
the parameter n in roll out process is set to 5.

In the experiment, we used the transformation functions T = { Log, Exp, Square,
Sin, Cos, TanH, Sigmoid, Abs, Negative, Radian, K-term, Difference, Add, Minus,
Product, Div, NormalExpansion, Aggregation, Normalization, Binning }.
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4.1 Performance of mCAFE

We evaluate the improvement of mCAFE algorithm in comparison with the follow-
ing methods, namely the original dataset (Base), a Reinforcement-Based Model (RBM)
with discount factor 0.99, learning rate 0.05 andB 100, a tree-heuristic model (Cognito)
with global search heuristic for 100 nodes, random selection selecting a transformation
from the available transformation set and applying it to one or more features in the orig-
inal dataset. If the addition of the new features leads to an improved performance, we
keep the new feature. This process is repeated 100 times to get the final dataset.

We summarized the performance of the methods in Table 2. It can be seen that,
mCAFE achieves the best score in all the regression datasets against the reinforcement-
based model and achieved superior results on most of the classification datasets. How-
ever, mCAFE performs worse than the reinforcement based model in two datasets on
’Credit Default’ and ’SpamBase’. Among them, the difference on ’SpamBase’ is not
significant. From these results, we conclude that the proposed method performs better
than the state-of-the-art automatic feature engineering approaches.

Table 2. Comparing performance of without feature engineering (Base), reinforcement-based
model (RBM) [7], Cognito [6], random selection and mCAFE in 100 episodes using 15 open
source datasets. Classification (C) tasks are evaluated with F1-score and regression (R) tasks are
evaluated with (1-relative absolute error).

Dataset C/R Rows Feat. Base RBM Cognito Random mCAFE
SpecFact C 267 44 0.686 0.788 0.790 0.748 0.855 ± 0.036
PimaIndian C 768 8 0.721 0.756 0.732 0.709 0.773 ± 0.026
German Credit C 1001 21 0.661 0.724 0.662 0.655 0.764 ± 0.026
Lymphography C 148 18 0.832 0.895 0.849 0.680 0.967 ± 0.016
Ionosphere C 351 34 0.927 0.941 0.941 0.934 0.962 ± 0.014
Credit Default C 30000 25 0.797 0.831 0.799 0.766 0.796 ± 0.006
AP-omentum-ovary C 275 10936 0.615 0.820 0.758 0.710 0.831 ± 0.036
SpamBase C 4601 57 0.955 0.961 0.959 0.937 0.953 ± 0.016
Openml_618 R 1000 50 0.428 0.589 0.532 0.428 0.743 ± 0.015
Openml_589 R 1000 25 0.542 0.687 0.644 0.571 0.776 ± 0.018
Openml_616 R 500 50 0.343 0.559 0.450 0.343 0.622 ± 0.010
Openml_607 R 1000 50 0.380 0.647 0.629 0.411 0.803 ± 0.010
Opemml_620 R 1000 25 0.524 0.683 0.583 0.524 0.765 ± 0.012
Openml_637 R 500 50 0.313 0.585 0.582 0.313 0.637 ± 0.021
Openml_586 R 1000 25 0.547 0.704 0.647 0.549 0.783 ± 0.020

4.2 Ablation study

The proposed selection strategy and extension strategy are the most important com-
ponents supporting the performance of the algorithm. To verify their importance, we
designed two ablation experiments.
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mCAFE-ts gets better result
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Fig. 5. Comparing the performance between mCAFE-ucb and mCAFE.

Selection policy We apply the traditional UCB with ε-greedy policy as selection pol-
icy in the mCAFE algorithm (mCAFE-ucb) and compare its performance with the pro-
posed model, which uses Thompson sampling based selection policy (mCAFE-ts). The
parameter λ of UCB is set to 1.412 as proposed in [23], the ε is set to 0.1 while the
mCAFE algorithm keeps the same setting as the last experiment. Performance of the
classification task is measured with F1-score and regression task is measured with (1-
relative absolute error). Fig. 5 divides the results of the comparison into four categories.
1) mCAFE-ts gets better result: the result performance measured is higher than with
mCAFE-ucb. 2) mCAFE-ts is faster: the number of episodes needed to obtain the same
result is larger on MCAFE-ucb. 3) Tie: mCAFE-ucb obtains the same result and re-
quires the similar number of epochs (difference smaller than 5). 4) mCAFE-ucb gets
better result: mCAFE-ucb obtains the same results and requires a smaller number of
episodes than mCAFE). The result in Fig. 5 demonstrates the importance of the selec-
tion strategy. mCAFE achieved better performance on 64.7% of the datasets and tied on
13.3%.

Expansion Policy In the expansion process, we use an LSTM neural network to ap-
proximate the expectation reward (Q value) of taking an action, since it can capture
the sequential information of the transformation sequence. To prove that this informa-
tion is important for the Q value prediction, we designed an experiment to compare the
performance of using MLP and LSTM as the surrogate model in mCAFE.

To make the trained models comparable, the MLP model here contains two 76 di-
mension hidden layers so that it has a similar number of parameters as the LSTM surro-
gate model mentioned above. We use the mean absolute error as the evaluation criterion.
A smaller value indicates a better model. Both models are trained with 100 epochs. We
can see from Fig. 6 that, the LSTM obtains significantly better results than the MLP
model in all datasets.

To evaluate its contribution to mCAFE, we compare the performance of the follow-
ing three models, namely mCAFE with LSTM-based expansion policy, mCAFE with
random expansion policy, mCAFE with greedy expansion policy, which always expand
the best action explored.

All three models used the same initial parameters as the last experiment. Each model
is evaluated 10 times on each dataset. The performance of the models on the regres-
sion datasets is displayed with the box plot in Fig. 7. We can see that mCAFE with
neural network achieves best performances on all datasets except two, where mCAFE
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Fig. 6. Comparing the performance of MLP and LSTM model in predicting the Q value.
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Fig. 7. Comparing performance of mCAFE with neural network expansion policy (with nn),
mCAFE with random expansion policy (with random) and mCAFE with fix expansion policy
(with fix) on all the regression dataset. Classification task is evaluated with F1-score and regres-
sion task is evaluated with (1-relative absolute error).

with random policy performs better on dataset ’Openml_618’ and mCAFE with fixed
expansion policy performs better on dataset ’Openml_586’. For all datasets except
’Openml_618’ and ’Openml_586’, mCAFE with neural network expansion policy also
loses to mCAFE with random expansion policy on dataset ’AP-omentum-ovary’.

The main differences between these three expansion approaches are the usages of
previous observations and the dispersion of the selected actions. mCAFE with a fixed
expansion policy selects actions greedily according to the performance of the actions
in the first layer. This selection process is stable, however, hinders the exploration of
new transformations, which is likely the reason for its failure in most cases. mCAFE
with neural network expansion policy captures the performance information of previous
observation and uses it in the prediction of the reward expectation of future actions.

4.3 Length of feature engineering pipeline

The length of the feature engineering pipeline L determines the number of actions se-
lected in each roll-out step, as well as the length of the final transformation sequence.
It influences the performance of mCAFE algorithm not only on the final result but also
on the time and memory consumption. In general, the larger L, the larger the time and
memory consumption and, at the same time, the larger the number of features after the
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Table 3. The performances of mCAFE with different predictive models on AutoML benchmark
dataset [24]. The improvements brought by the mCAFE are shown in the parentheses. Classifi-
cation task is evaluated with F1-score and regression task is evaluated with (1-relative absolute
error)

Base performance Performance with mCafe
AutoML benchmark datasets Rbf-svm Linear-svm Linear model Decision tree Rbf-svm Linear-svm Linear model Decision tree
shuttle 0.901 0.996 0.859 0.998 0.996 (0.095) 0.998 (0.002) 0.996 (0.137) 0.998 (0.001)
phpZLgL9q 0.407 0.432 0.503 0.454 0.407 (0.000) 0.432 (0.000) 0.503 (0.000) 0.454 (0.000)
phpyM5ND4 0.563 0.848 0.775 0.920 0.752 (0.189) 0.943 (0.095) 0.893 (0.118) 0.959 (0.039)
phpvcoG8S 0.471 0.426 0.468 0.572 0.561 (0.090) 0.579 (0.153) 0.529 (0.061) 0.578 (0.006)
phpQOf0wY 0.320 0.385 0.457 0.698 0.620 (0.300) 0.493 (0.108) 0.682 (0.225) 0.698 (0.000)
phpnBqZGZ 0.016 0.768 0.700 0.747 0.467 (0.451) 0.768 (0.000) 0.760 (0.060) 0.750 (0.003)
phpmPOD5A 0.919 0.749 0.869 0.912 0.919 (0.000) 0.908 (0.159) 0.908 (0.039) 0.913 (0.001)
phpmcGu2X 0.930 0.953 0.941 0.854 0.970 (0.040) 0.953 (0.000) 0.941 (0.000) 0.854 (0.001)
phpMawTba 0.650 0.589 0.716 0.797 0.802 (0.152) 0.787 (0.198) 0.787 (0.071) 0.820 (0.023)
phpkIxskf 0.833 0.767 0.847 0.877 0.883 (0.050) 0.883 (0.116) 0.870 (0.023) 0.892 (0.015)
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Fig. 8. Comparing performance of mCAFE with different maximum pipeline length on 3 classi-
fication datasets (F1-score) and 3 regression datasets (1-relative absolute error).

transformation. To achieve the best results with limited resources, we conducted an ex-
periment to find a suitable parameter L by comparing the performance of the algorithm
with different L values.

Fig. 8 shows the relationship between length L and the best performance displayed
by the mCAFE algorithm for six datasets. L = 0 signifies the performance of the
random forest model on the base dataset. We can see that some achieve good results
with L = 1, however, increasing L can further improve its performance. Most of the
datasets reach the maximum performance with L = 4, while a small fraction shows a
lower performance. This may be due to the random selection in the starting process.
The performance on ’Dataset_10_lymph’ is worse for higher L, which is probably due
to overfitting. From this experiment, we can conclude that the optimal L depends on the
dataset. However, L = 4 should be a suitable choice in most cases.
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4.4 Performances of mCAFE on different predictive models

Different predictive models differ in their performance and sensitivity to mCAFE on
the same dataset. To test this conjecture, we tested the performance of the mCAFE with
the following predictive models on the AutoML benchmark datasets separately, namely
Rbf-svm, Linear-svm, Linear model, Decision tree.

Table 3 summarizes the results of the experiment. We can see that mCAFE brings
performance improvements to most of the datasets. The value of feature engineering is
more prominent for linear and svm models. It is worth noting that although the perfor-
mance of each model on the original dataset varies greatly, the performance obtained
after mCAFE tends to be close.

5 Conclusion and future work

In this paper, we show that existing automatic feature engineering methods can be sig-
nificantly improved by building upon two simple observations. Our results suggest that
feature engineering should make use of sequence information, incorporating composite
transformations into the surrogate model. In addition, a suitable selection policy should
be chosen. The proposed novel MCTS-based framework uses an LSTM neural network
for the expansion policy to explore the search space efficiently. Furthermore, Thomp-
son sampling is employed to address the trade-off between exploration and exploitation
in the selection policy. Through this, we manage to obtain superior results to state-of-
the-art methods for automatic feature engineering on the majority of commonly used
benchmarks. We believe that further improvements could be made to the algorithms by
adding transformations that might also reduce redundant and irrelevant feature during
the construction.
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