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Abstract—Ethereum smart contracts expose their functions to
an untrusted network. Therefore, access control is of utmost
importance. Nevertheless, many smart contracts have suffered
exploits due to improper design or implementation of access
control policies.

In this work, we propose an approach for modeling role-
based access control policies for Ethereum smart contracts on
the architecture level, and we describe a process for ensuring
that the implementation is correct w.r.t. that model. We achieve
this through a combination of code generation, formal verification
and static code analysis. Additionally, we provide an argument
for the correctness of our approach and demonstrate its feasibility
by detecting manually introduced violations in a case study.

Index Terms—Smart Contracts, Access Control, Ethereum

I. INTRODUCTION

Smart contracts are programs which work in conjunction
with a distributed ledger, managing resources and transactions.
In recent years, the applications built with smart contracts have
been getting more complex, with the most prominent platform
being Ethereum.

The growing complexity of applications entails more com-
plex access control policies. This is especially true for a public
blockchain environment, where every function can be called
by everybody in the network as a matter of principle. Access
control failures have long been recognized as an important
source of exploits.1 While some research has been done in the
area and better practices continue to be adopted, attacks which
exploit flawed access control continue to happen [1].

Therefore, we present an approach to achieve correct-by-
construction access control for Ethereum smart contracts.

An established approach to handle complexity in software
systems is selecting an appropriate level of abstraction with
information sufficient for the purpose at hand. Based on this
observation, we define access control policies for smart con-
tracts on the software architecture level using role-based access

1Cf. https://swcregistry.io/

control (RBAC) as the underlying access control model. This
enables application developers to either focus on the design
of the architecture and access policies or the implementation
of the smart contracts.

However, when a developer implements smart contracts
or changes existing ones, errors can arise that violate the
specified access policies. In order to ensure that the application
correctly implements the policies, we design a development
process which employs a combination of code generation and
formal verification. From the architecture model, we derive
a source code skeleton consisting of contracts with state
variables and function stubs. Access to functions is restricted
by Solidity modifiers and a generated access control smart
contract. Furthermore, functions and formal specification are
generated as well, to enforce the modeled access control pol-
icy. After the implementation of the function stubs is finished,
the developer will analyze it using the formal verification
tool SOLC-VERIFY [2] and the static analysis framework
SLITHER [3]. If the tools do not indicate any violation, then the
implementation accords with the access control policy defined
on the architecture level. Otherwise, the output of the tools
helps the developer to find the parts of the implementation
where violations of the policy are possible.

To summarize, our contributions are as follows. First, we
define a formal model to describe role-based access control
policies for smart contracts at the architecture level. Second,
we define what constitutes a correct implementation of these
policies on the source code level. Third, we develop a meta-
model for the description of Solidity applications with access
restriction based on RBAC policies. Fourth, we implement a
code generator which produces Solidity smart contract stubs
with formal annotations. Lastly, we define an iterative process
of modeling, implementation, and formal verification. The
result of this process is an implementation which is guaranteed
to be correct with respect to the initial RBAC policy.

This paper is structured as follows. In Section II, we present



related work. In Section III, we introduce relevant aspects of
the Solidity programming language, the concept of RBAC used
in our approach, and our running example. Going forward,
we present our main approach in Section IV, and evaluate it
in Section V. Section VI concludes this paper.

II. RELATED WORK

To achieve our goal of correct-by-construction access con-
trol for Solidity smart contracts, we combine the techniques
of model-driven software development (MDSD) and formal
verification.

The importance of access control in the context of
blockchain applications is underlined by a lot of recent re-
search. Several approaches deal with implementing access
control for the functionality provided by Ethereum applica-
tions, such as Chatterjee et al. [4]. In contrast, while our
approach also deals with access to functions, our main focus
is access to smart contract state.

Several approaches exist that use MDSD to model smart
contracts and access control, including its policies, and gen-
erate the resulting Solidity source code.

The approach Caterpillar by López–Pintado et al. [5] is
an execution engine for smart contract applications. This ap-
proach allows developers to send a model of their application
written in the Business Process Model and Notation language
through a REST API to be compiled and deployed on the
Ethereum blockchain.

To model access control for smart contracts, BlockchainStu-
dio [6] extends Caterpillar with model elements for describing
RBAC policies like organizations, users and roles. Addition-
ally, each function is extended by defining which roles are
allowed to access it. These permissions are checked at runtime
using an additional smart contract that maps addresses to users
and roles.

A framework with similarly extensive capabilities to Cater-
pillar is FSolidM by Mavridou and Laszka [7], which allows
for the modeling of smart contracts using transition-based
finite state machines (FMSs). Based on such an FSM, the
approach automatically generates Solidity source code. Ad-
ditionally, it allows for the addition of design patterns. One
of these is a simple ownership-based access control, which
defines a single address for each contract as the owner, who
has additional permissions to access vulnerable parts of the
contract. Our approach focuses explicitly on access control
and allows for much richer access control policy specification.

There are several approaches applying the analysis and
verification of smart contracts. The VeriSolid extension by
Mavridou et al. [8] introduces formal verification for the
FSolidM framework by Mavridou and Laszka [7]. The newly
introduced formal verification is done by employing model
checking on the transition-based models to reason about
deadlock freedom, liveness and safety.

Alhabardi et al. [9] use the interactive theorem prover
Agda to verify Bitcoin smart contracts. This verification is
applied to smart contracts that focus on the security property
of access control. Similarly, Schiffl et al. [10] rely on the

formal verification capabilities of SOLC-VERIFY [2] to verify
the correctness and temporal properties of the Ethereum access
control system Palinodia [11].

Our approach is similar in that it uses formal verification
tools. However, instead of manually specifying the desired
property, the focus on access control allows us to use a more
suitable layer of abstraction for the description of the policies.
Our combination of MDSD and formal verification imple-
ments a separation of concerns: the descriptions of policies
happen on a more abstract level, while implementation and
verification take place on the source code level.

Combining MDSD and formal verification to reason about
access control for smart contracts is done in a technical
report by Reiche et al. [12]. Their approach relies on the
Palladio Component Model as an architectural model for
describing access control policies. Based on this model, smart
contracts are generated and formally verified using SOLC-
VERIFY [2]. Using the Palladio Component Model introduces
limitations regarding complex data types and their verification.
Additionally, the work of Reiche et al. uses an ad-hoc approach
for the generation. We complement this approach by provid-
ing a formal basis for our transformations and generations.
Furthermore, our work also considers indirect access to state
variables, as opposed to just direct write access.

III. PRELIMINARIES

A. Solidity

A prominent platform for smart contracts is Ethereum, a
permissionless blockchain technology. For the development of
smart contracts, Ethereum provides developers with a Turing
complete instruction set in the form of the Ethereum Virtual
Machine (EVM). Before a smart contract is deployed, it is
compiled into low-level, stack-based bytecode that is executed
on the EVM. High-level programming languages for Ethereum
include Solidity and Vyper [13]. For our approach, we target
the Solidity programming language, because it is the most
widely used higher-level language for Ethereum.

Solidity is a “contract-oriented” programming language; the
overall structure of a Solidity application consists of contracts,
state variables, and functions. Contracts are similar to objects
in object-oriented programming languages; Solidity also offers
interfaces and inheritance.

In Ethereum, there are external accounts (representing actual
persons or entities) and contract accounts (representing smart
contracts on the Ethereum blockchain). For our approach,
there is no need to differentiate between the two. In the
Solidity programming language, accounts are identified by
the address datatype. The values for this datatype are unique
160 bit integers, allowing for an unambiguous identification
of entities.

Every smart contract has its own state, which is defined in
the form of state variables. Built-in data types include different
integer types, booleans and strings as well as arrays, structs
and mapping types. The state of a contract also includes its
balance in Ether, the currency of the network.



Access to a contract’s state is managed by its functions.
Functions in Ethereum are transactional, i.e., they either
succeed or revert completely. In the context of Ethereum, a
transaction is a function call which potentially changes the
state.

The business logic of a smart contract often depends on the
current state of the network environment, e.g., the caller of a
function, the time, the current block number, or the amount
of currency that was transferred in a call. Within a smart
contract, these are accessible via the msg and block fields (e.g.,
msg.sender, block.timestamp, block.number, and msg.value).

Functions can be private (only callable from within a
contract) or public. Public functions are exposed to the en-
tire Ethereum network and can be called by any account.
Therefore, in a sense, a Solidity function has to implement
its own access control – if some functionality should only be
accessible to a subset of users, then a function needs to check
at runtime whether the caller is in that subset.

One way to achieve this is the require keyword, which
takes a boolean condition. If the specified condition fails at
runtime, the current function terminates and any changes to
the contract’s state are reversed to the state before the function
call.

Another concept of Solidity are modifiers, which are em-
ployed to change or influence the behavior of the function they
annotate. For this purpose, a new function is created with the
modifier keyword instead of the function keyword. The name
of a modifier can be added to the signature of any function in
the contract. In the modifier’s code, the sequence ; marks the
behavior of the original function, so a modifier can be used
to add behavior before or after the original function.

B. Formal Analysis Tools

Ethereum smart contracts often manage cryptocurrency or
tokens representing real-world assets. Since smart contracts
cannot be changed after deployment, it is of supreme im-
portance that they work as intended and contain no bugs.
To ensure this, different tools were developed to analyze
the behavior and structure of smart contracts as early in the
development process as possible. By doing so, developers are
supported in creating safe and secure smart contracts, and the
possibilities for attacks and exploitation are reduced.

For our approach, we rely on the capabilities of
SLITHER [3], a static analysis framework, and SOLC-
VERIFY [2], a tool for the formal verification of Solidity smart
contracts.

The static analysis framework SLITHER by Feist, Grieco,
and Groce [3] allows for the detection of vulnerabilities and
possible code optimizations as well as supporting developers
with understanding the source code. For this, it takes the
abstract syntax tree created by the Solidity compiler and trans-
forms it into a hierarchical representation that supports object-
oriented access through its public API. This representation is
utilized by different implemented extensions to either analyze
the smart contract for the presence of certain vulnerabilities

like reentrancy, or summarize its structure for a better un-
derstanding with a call or inheritance graph. Additionally,
the framework provides developers with a public python API
enabling the development of custom extensions that implement
new types of analysis or contract summary.

The formal verification tool SOLC-VERIFY by Hajdu and Jo-
vanović [2] analyzes the correctness of Solidity smart contracts
on a function-to-function basis. For this purpose, it provides an
annotation language that allows to add formal specifications
in the form of comments to Solidity smart contracts. These
take the form of contract-level invariants, functional pre- and
postconditions as well as loop invariants. The specification
language is a combination of first-order logic and Solidity.
For example, the require keyword introduced in Section III-A
is taken into consideration as an additional precondition.

For our work, the most relevant aspect of SOLC-VERIFY’s
specification language are frame conditions (or modifies
clauses). These are part of a function contracts and specify
which part of the state may be modified by the function.
A successful proof of a function’s contract means that the
function can modify at most those state variables mentioned
in the modifies clause.

C. Role-Based Access Control (RBAC)

Access control focuses on stopping unwarranted entities
from accessing data or functionality they are not allowed to
see, use, or change. An access control request consists of
a subject, which can be a user or anything that wants to
access a resource, and an object, which is the resource or
element that should be accessed. A policy defines the rules
describing which subjects are allowed to access which objects.
Each policy is an instance of an access control model, which
formalizes the aspects that are considered in the policy [14].

Due to the public nature of permissionsless blockchains like
Ethereum, read access is possible under any circumstances and
cannot be restricted. Therefore, we understand access control
as restricting write access.

For our approach, we employ role-based access control
(RBAC), where permissions are abstracted from single entities
to roles. Therefore, the subjects are handled as groups of
individual entities that all possess the same permissions. These
entities are represented in the Solidity programming language
by the address data type. For the smart contract domain,
we modify the formal standard model of RBAC by Sandhu
et al. [15]. The resulting formal model contains three sets:
Functions, State Variables and Roles. These sets are connected
to describe policies where certain roles are permitted to access
certain functionality or data.

The assignment of entities to roles happens either statically
or dynamically [14]. For a static role assignment, the entities
are added as a part of the model on the architectural level
and the assignment does not change at runtime. A dynamic
assignment on the other hand is done only at runtime on the
source code level, allowing for more flexibility. This is espe-
cially relevant for permissionless blockchains like Ethereum,



where not all accessing entities are known to the software
architect beforehand.

D. Secure Information Flow

Apart from modeling direct write access, our approach also
considers information flow between state variables. Specifi-
cally, we handle insecure information flow as defined by Ter-
auchi and Aiken [16]. The authors define a secure information
flow as a program where the final values for the low-security
variables do not depend on the initial values of the high-
security variables.

In the domain of smart contracts, we define these secure
information flows in correspondence with the roles from the
formal model. Here, an information flow is secure iff the value
of variables that must not be modified by a role does not
depend on the value of variables a role can modify – neither
directly via an assignment nor indirectly via effects on control
flow. An insecure information flow, on the other hand, allows
a role to influence the value of a state variable.

For our purposes, we use the following definition. Insecure
information flow takes one of the following three forms, which
are all considered in our approach:

1) Direct: The value of one state variable is directly as-
signed to another state variable.

2) Indirect: The value of one state variable depends on
another state variable through conditions like if-then-
else or require.

3) Transitive: The value of one state variable s1 depends
on another state variable s2, which itself depends on
another state variable s3. In this case, s1 also depends
on s3. The connection between s1 and s2 as well as the
connection between s2 and s3 can be direct, indirect, or
transitive.

E. Running Example: Auction

Originating from the Solidity documentation [17], our run-
ning example is based on the real-world scenario of an auction,
where different entities bid on items that are for sale. In the
open version from the documentation, all participants see who
is bidding what amounts of money on which item.

The version we employ consists of two smart contracts,
SingleAuction and AuctionManagement. By calling a publicly
accessible function of the AuctionManagement contract, any
entity can create a new auction, represented by a SingleAuction
contract. Beside this creation, the AuctionManagement pro-
vides no additional functionality. In the SingleAuction contract,
four different roles are available:

• The seller represents the entity responsible for the cre-
ation of the auction. This role has the permission to
collect the money after the auction ended.

• The auction manager can shutdown all auctions in the
case of an emergency (e.g. a security breach in the
contract).

• Bidding is publicly available to all entities. Any bidding
entity is assigned to the bidder role, allowing them to
withdraw the money they bid before the auction has

ended. The highest bidder is a specialization of the bidder
role. It can only be assigned to one entity at any point in
time. This entity, as the name suggests, is the one that bid
the most money during the auction and is thus allowed
to collect the auction’s item.

IV. ENFORCING RBAC POLICIES FOR SOLIDITY SMART
CONTRACTS

This section describes our contributions. First, we describe
how we model Solidity smart contracts with role-based access
control policies. Next, we define what constitutes a correct im-
plementation of such a model. Then, we describe an approach
for how, given a model, an implementation can be developed
which is guaranteed to fulfill that notion of correctness.

A. Formally Modeling RBAC Policies

To formally describe RBAC policies for smart contracts,
we build on the formal RBAC model we introduced in Sec-
tion III-C. First, we define the three basic sets of functions,
state variables, and roles:

• F: Set containing all functions
• S: Set containing all state variables
• R: Set containing all roles
The core of our model is the description of which roles

can (1) access which functions, and (2) access which state
variables. For modeling admissible access of a role to a
function, we define the relation RtoF . The access to state
variables is split into direct write access (RmS) and indirect
access (RiS):

• RtoF ⊆ R × F: (r, f) ∈ RtoF iff role r is allowed to
call function f .

• RmS ⊆ R × S: (r, s) ∈ RmS iff role r is allowed to
modify the state variable s.

• RiS ⊆ R × S: (r, s) ∈ RiS iff role r is allowed to
influence the state variable s. Each influence relation con-
stitutes a possibly insecure information flow as introduced
in Section III-D.

Furthermore, we define some additional relations, which
serve as auxiliary specification for code generation and in-
terpretation of the verification tool results:

• FtoS ⊆ F × S: (f, s) ∈ FtoS iff function f is allowed
to write state variable s – either directly or transitively
through its called functions.

• StoS ⊆ S × S: (s1, s2) ∈ StoS iff an information flow
from state variable s1 to state variable s2 exists

• FtoF ⊆ F × F: (f1, f2) ∈ FtoF iff function f1 is
allowed to call function f2. This also includes transitive
function calls.

Lastly, we add a subset of the role authorization constraints
defined in the Generalized Model for RBAC by Ben Fadhel,
Bianculli and Briand [18]. These constraints add connections
between roles like hierarchy, mutual exclusion or prerequisites.
Additionally, the amount of entities assigned to a specific role
can be limited and a temporal or boolean context for the access
can be specified.
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Fig. 1. Visual representation of the formal model we employ as a foundation
for describing RBAC policies for smart contracts.

Figure 1 gives a complete visual overview of this formal
model. An application of the model on the auction example
from Section III-E is given in Figure 2, where the different
sets and relations are represented by visual elements.

State Variables

SingleAuction

emergencyShutdown()

collectMoney()

bid()

collectItem()

close()

withdraw()

Seller Bidder Manager Highest
Bidder

public

AuctionManagement

createNewAuction()

currentBids : Mapping 
(Address int)

auctionClosed : bool

moneyCollected : bool

highestBid : bool

Caller-Specific
Mapping

Function modifies
variable

Function creates
contract

Fig. 2. Visual representation of the SingleAuction and AuctionManagement
smart contracts from our running example. The colored dots symbolize which
of the roles is permitted to call the function or modify the state variable. The
lock represents a caller-specific mapping, which we define in Section IV-C.

B. Correctness of Smart Contracts w.r.t. a Model
This section gives a brief overview of what it means for the

implementation of a smart contract application to be correct
w.r.t. a model as described above.

We assume that, for every f ∈ F and every s ∈ S, there
is a corresponding function or state variable, respectively.
For roles, there is no direct equivalent in Solidity. Instead,
individuals are represented by Ethereum addresses and roles
correspond to collections of addresses. To represent this in the
code, the application is assumed to provide a method to check
whether a given address has a given role at a certain point in
time.

In our approach, these assumptions are ensured by the code
generation; they hold by construction.

Then, to be correct, an implementation must satisfy the
following conditions:

• an implementation is correctly handling access to func-
tions if, whenever a function f is called by an address,
then either the address has a role r that is allowed to call
f , i.e., (r, f) ∈ RtoF or the function reverts

• an implementation is correctly handling direct write ac-
cess if an address can invoke a transaction in such a way
that the value of a state variable s is changed by that
transaction only if that address has a role r such that
(r, s) ∈ RmS

• an implementation is correctly handling indirect access if
an address can effect the change of any state variable that
s depends on only if it has a role r such that (r, s) ∈ RiS.
A variable x depends on a variable y iff, given two states
which are equal up to the value of y, there is a sequence
of function calls that, when applied to the two states,
results in states with different values of x.

We deem an implementation correct if it fulfills all three of
these requirements.

C. Modeling RBAC Policies on the Architectural Level

We represent the formal model on the architectural level by
employing the Eclipse Modeling Framework (EMF) to create
a new metamodel. The resulting AccessControlMetamodel
(ACM) is an instance of the Ecore meta-metamodel and is
instantiated to create a concrete model which represents the
RBAC policies for a specific use case. The ACM consists
of two packages: The SmartContractModel package provides
elements to describe the smart contract (e.g. functions and state
variables) whereas the AccessControlSystem package focuses
on all elements representing the RBAC policies (e.g. roles and
the connecting relations). In addition to the aspects described
in the formal model, the ACM also allows for modeling access
to storage locations of a mapping data structure as well as
access to a contract’s balance. This covers the balance of the
modeled contract as well as the contract of the function caller
(represented by Solidity’s msg.sender keyword).

To reason about the soundness of the model instances, we
define explicit constraints using the OCL language. These 15
constraints include, for example, a check that the cardinality of
any role is described with a positive integer greater then zero
or that the two roles selected as mutually exclusive are not
the same. By verifying these constraints, we prevent syntactic
errors from occurring in the model instances.

Similarly, to verify the soundness of the modeled RBAC
policies, we define a list of properties that the ACM instances
need to fulfill. Otherwise, the supporting relations from Sec-
tion IV-A may not hold and the generator could not create the
foundation for a correct implementation.

• If a role r is allowed to call a function f ((r, f) ∈ RtoF )
but not allowed to modify a state variable s ((r, s) /∈
RmS), f is restricted from modifying s ((f, s) /∈ FtoS).
Also, all functions called by f are restricted from modi-
fying s.



• If a role r is allowed to call a function f ((r, f) ∈ RtoF )
but not allowed to influence a state variable s ((r, s) /∈
RiS), f is restricted from influencing s ((f, s) /∈ FtoS).
Additionally, all functions called by f are restricted from
influencing s and all state variables modified by f are
not allowed to influence s

• If a role r is allowed to modify a variable s1 ((r, s1) ∈
RmS) but is not allowed to influence another state
variable s2 ((r, s2) /∈ RiS), s1 is banned from influencing
s2 ((s1, s2) /∈ StoS)

• If a role r is allowed to call function f ((r, f) ∈ RtoF ),
it also needs permission to call all functions which f is
allowed to call.

D. Generation of Solidity Smart Contracts

After creating the ACM for representing RBAC policies on
the architectural level, we define and develop an approach for
enforcing these policies on the source code level. To achieve
this goal, we implement a generator capable of translating
the instances of the ACM into Solidity smart contracts. This
generator, as well as the metamodel, is publicly available in
our GitHub repository2. The generated smart contracts contain
the modeled state variables and function stubs. Since the
function’s behavior is not modeled in the architecture, the
function’s body is left empty. To enforce the correctness of
the RBAC policies, the generator generates a smart contract
to perform the access control, modifiers to restrict the access to
functions and annotations for the SOLC-VERIFY tool to enable
verification of the access of functions to state variables.

a) Generation of the Access Control Smart Contract:
To dynamically manage the assignments of Solidity addresses
to roles, we generate an additional access control smart
contract. The result of the generation for the running example
is displayed in Listing 1. The roles are represented by an
enumeration (cf. line 1). The assignment is stored as a nested
mapping (cf. line 2), which maps each address to a second
mapping that connects each available role with a boolean
value. Changes to the role assignment are done by changing
a specific mapping location. The functions for accessing and
verifying the mapping are generated as well. The checkAccess
function, for example, begins in line 4 and is employed to
analyze the entity-to-role assignment at runtime. In general,
the complete access control contract is fully functional and
must not be modified after its initial generation. However, the
software developer needs to manually implement the dynamic
entity-to-role assignment that is enforced at runtime. This
is done by calling generated functions in the access control
contract in the implementation of the partly generated smart
contracts.

b) Generation of Solidity Modifiers: In order for the
access control policies to be fulfilled, access to functions
has to be restricted to entities that have a certain role. We
achieve this using Solidity modifiers (cf. Section III-A). A
modifier adapts a function’s behavior. For our approach, we

2https://github.com/KASTEL-CSSDA/SolidityAccessControlEnforcement

1 enum Roles { SELLER, BIDDER, HIGHEST_BIDDER,
MANAGER, ADMIN }

2 mapping(address => mapping(Roles => bool))
private roleAssignment;

3
4 function checkAccess(address entity, Roles role)

public view returns(bool result) {
5 return roleAssignment[entity][role];
6 }

Listing 1. Excerpt from the generated access control smart contract for the
running example from Section III-E.

generate a modifier for each function f . The modifiers check
if the calling address is assigned to any of the permitted roles
defined by (r, f) ∈ RtoF . To check this role assignment, the
checkAccess function of the access control contract is called.
For example, in Listing 2 the onlySeller modifier defined in
line 11ff is employed in line 6 to restrict access to the close
function to entities that are assigned to the seller role.

c) Generation of SOLC-VERIFY Annotations: In addition
to the Solidity code stubs, we generate annotations in the
specification language of the SOLC-VERIFY tool. Specifically,
we create frame conditions: For any function f , we generate
one modifies clause mentioning the state variable s for each
(f, s) ∈ FtoS. SOLC-VERIFY either provides a proof that
a function modifies at most the state variables in its frame
condition, or the proof fails and the tool reports the possible
violations. An example frame condition is provided in line 4
of Listing 2, where the close function is permitted to modify
the auctionClosed state variable.

1 bool private auctionClosed;
2 mapping(address => uint) private currentBids;
3
4 /// @notice modifies auctionClosed
5 /// @notice modifies currentBids[msg.sender]
6 function close() public onlySeller {
7 auctionClosed = true;
8 currentBids[msg.sender] = msg.value;
9 }

10
11 modifier onlySeller {
12 require(accCtrl.checkAccess(msg.sender,

AccessControl.Roles.SELLER));
13 _;
14 }

Listing 2. Excerpt from the generated SingleAuction smart contract based on
the model visually represented in Figure 2.

Similarly, access to a mapping data structure can be re-
stricted to only allow changes to the storage location asso-
ciated with the address currently calling the function. This
restriction is enforced with SOLC-VERIFY annotations, like the
comment in line 5 of Listing 2. This annotation formalizes
that the currentBids state variable may only be modified at
the storage location represented by the msg.sender. Regarding
changes to the contract’s balance, we employ postconditions to
compare the balance before and after the function’s execution.



E. Implementation Process

Based on the presented approach, we define a process for
developing an implementation which is correct w.r.t. a given
RBAC model. Figure 3 shows an outline of the process. It
involves two stakeholder roles, the software architect and the
software developer, as well as three tools: SOLC-VERIFY [2],
SLITHER [3] and our generator.

The process begins with the software architect that creates
instances of the ACM as a representation of the real-world
scenario. In the next step, a soundness check verifies the
fulfillment of the properties and OCL constraints introduced
in Section IV-C. Therefore, violations to the underlying RBAC
model are detected early during the development process
and are communicated back to the architect. Only when
no violations occur, the generator creates the smart con-
tract stubs annotated with formal specifications as described
in Section IV-D. After the generation, the software developer
manually implements the smart contract function stubs with-
out modifying the generated elements like the modifiers or
annotations.

For the verification of this implementation, SOLC-VERIFY
and SLITHER are employed. As we mentioned in Section IV-D,
SOLC-VERIFY formally verifies the generated modification
specifiers and postconditions. Therefore, if a function f mod-
ifies a state variable s that it is not permitted to modify
((f, s) /∈ FtoS), an error is reported. To reason about the
influence relation between state variables and roles, we employ
the static analysis framework SLITHER. However, the analyses
incorporated in the default framework do not cover all aspects
of the influence relation mentioned in Section III-D. This
prompted us to implement an extension that returns a compre-
hensive overview where all influencing variables for each state
variable are shown. This includes transitive influence as well
by calculating the transitive closure. The implementation for
the SLITHER extension is also available in our repository. After
the influence overview is created, a stakeholder needs to manu-
ally check each connection between two state variables s1 and
s2. Due to the overapproximation introduced by calculating the
transitive closure, it first needs to be checked if the connection
is a false positive. Every influence connection that cannot
occur at runtime but is introduced by our overapproximation
qualifies as a false positive and is excluded from further
processing. If it is a true positive, it is checked whether
an element representing the influence connecting between s1
and s2 exists in the model ((s1, s2) ∈ StoS). If such a
model element exists, no violations occur. However, if no such
element exists, the implementation may handle indirect access
incorrectly w.r.t the model, as we explained in section IV-B.
So the stakeholder needs to check whether any role gains
unwarranted influence access through this detected influence
connection between two state variables. If no role gains access,
a shortcoming in the ACM instances is detected. Otherwise,
the gained access violates the modeled RBAC policies.

If such an access violation is detected in the implementation
by either tool, it needs to be communicated back to the stake-

holders. When the results are communicated to the software
developer, they can be used to correct the implementation to
follow the designed access control policies. On the other hand,
when the results are communicated to the software architect,
the mismatch between architecture and implementation are
made explicit and implications on the security of the total
system can be evaluated. Therefore, either the source code or
the architectural models are adapted to prevent the violations
from occurring. To connect the verification results with the
model or implementation elements, we propose to employ
a correspondence model, as explained in [19]. However, if
no violations are found, the smart contracts are ready for
deployment.

F. Correctness of the Approach

The goal of our process outlined above is to stop unwar-
ranted entities from accessing functionality and modifying
state variables. In section IV-B, we gave a definition of what
constitutes a correct implementation w.r.t. a formal model of an
application. Here, we argue why the process described above
results in an implementation which is correct in that sense.

The functions and state variables as well as the
checkAccess method, which tests whether a given address
has a given role, are all provided by our code generator.

Access to functions is handled by the generated modifiers
and their inclusion in the corresponding function headers as
described in Section IV-D. These modifiers ensure that an
address which does not have a role that allows it to call a
function, as specified by RtoF , will only cause the function
to revert with an error message. This is the implementation of
access being denied.

Direct write access is first addressed on the architecture
level, where a model is only accepted by our modeling tool if
a role which may not access a variable may also not access any
function which can modify that variable. On the source code
level, this is enforced by a combination of function modifiers
and verified frame conditions. Access to functions is restricted
through modifiers. Since SOLC-VERIFY is sound, a successful
verification of the generated frame conditions guarantees that
the FtoS relation is correctly implemented. Since in Solidity
there is no way of changing a state variable except through
function calls, we conclude that a resulting implementation
adheres to our definition of correctness.

As for indirect access, the argument is largely analogous
to the one for direct write access. SLITHER analyzes which
dependencies between variables (in the sense of the definition
in section IV-B) exist, and access control to functions prevents
addresses lacking the necessary roles from modifying state
variables on which the critical variables depend.

In contrast to SOLC-VERIFY, SLITHER does not give a
soundness guarantee. Therefore, in theory, it is possible that
an implementation still contains information flows which are
forbidden by the model even if SLITHER does not report them.
In practice, we found no such examples, however.
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Fig. 3. The process envisioned for developers and architects using the presented approach to enforce their smart contract RBAC policies.

V. EVALUATION

To empirically demonstrate the feasibility of our approach,
we manually implement three real-world scenarios and their
access control by following the process outlined in Figure 3.
For each scenario, we model the roles, functions and state
variables on the architectural level with the model from Sec-
tion IV-C. This model is based on the system’s description
by the original developers, where we fill in any existing gaps.
During this implementation, we add violations for the different
requirements described as a foundation for a correct imple-
mentation in Section IV-B. By showing how our approach is
able to identify these violations we underline its capability to
assess the correctness of an implementation w.r.t. the modeled
RBAC policies. The resulting implementations as well as the
model instances are available in our GitHub repository.

The three scenarios we employ for this case study vary
in complexity. However, all of them benefit from a correct
enforcement of access control. Due to the size of the Palin-
odia [11] and Augur [20] scenario, we will focus on the
third scenario, Fizzy [21], here. Fizzy was an automatic flight
delay insurance system developed by the insurance company
AXA, allowing for a tamper-proof payment if a delayed flight
occurs. It consisted of two contracts, InsuranceManagement
and Insurance, with only two roles, the insurant and the
insurance company. A visual summary can be examined
in Figure 4.

As we mentioned in Section IV-E, all four properties for
sound model instances introduced in Section IV-C are analyzed
once on the architectural level before anything is generated.
If, for example, the insurant in the Fizzy scenario is modeled
to start the payout process, this violation is communicated
to the software architect before the generation continues. On
the source code level, violations to the correctness of the
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cancel()

changeAccount()
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insurant : Address
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private

Function
calls

Function

Fig. 4. Visual representation of the Fizzy scenario [21]. It relies on the same
visual elements introduced in Figure 2 to describe our running example.

implementation described in Section IV-B are detected by
SOLC-VERIFY and SLITHER. Incorrectly handling direct write
access allows a role r to illegally modify a state variable s
through function f . For the Fizzy scenario we demonstrate
this violation by setting the insurant state variable to zero
in line 7 of Listing 3. This access allows the insurance
company role to illegally modify the insurant variable.
However, since no modification specifier is generated for the
modification done by the payout function to the insurant
variable ((payout, insurant) /∈ FtoS), this violation is detected
by SOLC-VERIFY.

Incorrectly handling indirect access results in insecure in-
formation flows between state variables that are identified
by our SLITHER extension. Currently, the results returned



1 address private insurant;
2 bool public insuranceClosed;
3
4 /// @notice modifies insuranceClosed
5 function payout() internal onlyInsuranceCompany {
6 insuranceClosed = true;
7 insurant = address(0);
8 }
9

10 /// @notice modifies insurant
11 function changeAccount(address newInsurant)

external onlyInsurant {
12 require(!insuranceClosed);
13 insurant = newInsurant;
14 }

Listing 3. Excerpt from the generated Insurance smart contract based on the
Fizzy scenario visually represented in Figure 4.

by this extension are manually analyzed by a stakeholder
to find violations that would allow a role to illegally in-
fluence a state variable or call a function. As an exam-
ple violation, we manually introduce an influence relation
between the insurant and the insuranceClosed variable
((insuranceClosed, insurant) ∈ StoS) by making changes to
the insurant variable depend on the current state of the insur-
ance contract in line 12 of Listing 3. However, this influence
relation allows the insurance company role to illegally influ-
ence the insurant state variable through the changeAccount
function ((insurance company, insuranceClosed) ∈ RmS and
(insurance company, insurant) /∈ RiS).

With the implementation of these three use cases, we
demonstrate the feasibility and applicability of our approach
for small- to medium-sized real-world scenarios. In our imple-
mented cases, all manually introduced violations to the RBAC
policies were detected.

VI. CONCLUSION AND FUTURE WORK

We presented an approach for modeling Ethereum smart
contracts with role-based access control on the architecture
level. We also implemented a code generator, and showed how
a developer can use formal verification tools to ensure that
the final smart contract correctly implements the architecture
model. Additionally, we extended the static analysis frame-
work SLITHER to reason about information flows between state
variables.

We formally defined the underlying RBAC model and
what constitutes a correct implementation w.r.t. this model.
By following the presented process, we reasoned about the
correctness of our approach in stopping unwarranted entities
from accessing state variables.

Additionally, we executed an empirical evaluation regarding
the feasibility of our approach with a case study. This case
study is made up of three different, real-world scenarios
which we implemented. By manually adding violations to the
model and the implementation, which were identified by our
approach, we outline the capabilities of our approach.

Currently, the developer still has to interpret the output of
SOLC-VERIFY and SLITHER in order to identify which part of

the access control policy is violated by the implementation.
The detected violations also have to be manually integrated to
the architectural model to identify errors arising from them
to the whole system. Therefore, in the future, we plan to
add functionality to provide a unified output of violations in
relation to the access control policies and therefore abstract
from the output of SOLC-VERIFY and SLITHER. In addition,
we plan to use this unified output to integrate the violations
into the architectural model by application of transformation
rules. This approach enables the application of further analysis
with the policies that are aligned with the source code.

While our approach is specific for Solidity smart contracts,
the basic necessities for access control are the same for
other Ethereum programming languages (e.g., Vyper 3) and
even other public blockchain networks. Similarly, the formal
verification relies on concepts that allow for different tools
with similar functionalities to be employed instead of being
limited to SOLC-VERIFY and SLITHER.
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