The double-disk diamond window as backup broadband window solution for the DEMO Electron Cyclotron System

G. Aiello¹, G. Gantenbein², J. Jelonnek¹, A. Meier¹, T. Scherer¹, S. Schreck¹, D. Strauss¹, M. Thumm²

¹IAM, ²IHM, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Motivation

- The second variant of the DEMO Electron Cyclotron System (ECS) requires gyrotrons frequency steering
- Broadband optical chemical vapor deposition (CVD) diamond windows are thus required
- Primary choice is the Brewster-angle window. The double-disk window is the broadband backup solution

Approach

- Symmetry condition
- T dependent properties
- 10 l/min at 20°C at inlet
- 0 Pa at outlet
- 2 MW @ 204 GHz Gaussian beam
- 20 mm beam radius
- \(P_{\text{abs}} = 1847 \text{ W in disk} \) (\(\tan\delta = 3.5\times10^{-5} \))
- Reference case and sensitivity studies

Results

- Max T of 238°C at disk center (250°C limit)
- Max stress in the disk below the 150 MPa conservative limit
- Max stress in the cuffs below the minimum ultimate tensile strength (177 MPa)

- The flow rate of 10 l/min is the minimum boundary condition
- The beam radius of 20 mm is the upper boundary limit (window aperture radius of 40 mm)
- The \(\tan\delta \) value of 3.5E-05 is reasonable to account for disk degradation potential factors

Objectives

- Investigate the possibility of using the double-disk window for the DEMO beam scenarios by CFD and structural analyses
- Perform sensitivity studies with respect to mass flow rate, loss tangent, beam radius and frequency
- Explore conceptual design alternatives to increase safety margins against limits

Symmetry condition

T dependent properties

10 l/min at 20°C at inlet

0 Pa at outlet

2 MW @ 204 GHz Gaussian beam

20 mm beam radius

\(P_{\text{abs}} = 1847 \text{ W in disk} \) (\(\tan\delta = 3.5\times10^{-5} \))

Reference case and sensitivity studies