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„Daran erkenn’ ich den gelehrten Herrn!
Was ihr nicht tastet, steht euch meilenfern,

Was ihr nicht fasst, das fehlt euch ganz und gar,
Was ihr nicht rechnet, glaubt ihr, sei nicht wahr,

Was ihr nicht wägt, hat für euch kein Gewicht,
Was ihr nicht münzt, das, meint ihr, gelte nicht.“

– Mephistopheles

Johann Wolfang von Goethe, Faust II



Abstract

Molecular spectroscopy is an important tool for the characterization of chemical
compounds. Various types of spectroscopy use the effects induced by external mag-
netic fields, such as nuclear magnetic resonance, electron paramagnetic resonance, or
magnetic circular dichroism. Their theoretical description is typically achieved through
quantum chemical methods in combination with linear perturbation theory, as the
magnetic fields used in such experiments are small compared to the electromagnetic
forces responsible for the formation of the chemical bond.
Beyond the linear effects captured by this approach lies a rich and fascinating world of
chemistry waiting to be explored. Entirely new types of chemical bonding, spin-phase
transitions, and color changes of aromatic compounds are just some of the non-linear
effects induced by the presence of a magnetic field. Their theoretical description
requires a finite field approach, in which the magnetic field is explicitly used in the
corresponding Hamiltonian operator. Such an approach can be used for an accurate
description of the effects induced by arbitrarily strong magnetic fields. This allows for
the prediction of spectroscopic properties for molecules in the vicinity of interstellar
objects exhibiting very strong magnetic fields, such as magnetic white dwarfs or neu-
tron stars. In these cases, molecular spectroscopy can be used to verify the existence
of small molecules in such extreme environments.
The theoretical description of a finite field approach requires highly efficient computa-
tional methods, the development and application of which is the subject of this thesis.
First, the theoretical framework for the quantum chemical description of molecular
spectroscopy is introduced. Several well-established methods are adapted for the use in
finite magnetic fields, including density functional theory (DFT), approximate coupled
cluster theory (CC2), and the GW /BSE method. An efficient implementation of these
methods is developed and carefully tested. Selected applications include calculations
on the magnetic circular dichroism spectrum of an organometallic complex, predict-
ing the change of color induced by moderately strong magnetic fields for tetracene
with UV/Vis spectroscopy, and the investigation of rotational-vibrational spectra for
diatomic molecules in strong magnetic fields.
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Zusammenfassung

Molekülspektroskopie ist ein wichtiges Werkzeug für die Charakterisierung chemi-
scher Substanzen. Verschiedene Arten von Spektroskopie verwenden die Effekte, die
durch Magnetfelder hervorgerufen werden, wie etwa Kernspinresonanz, Elektronen-
spinresonanz oder Magnetocirculardichroismus. Ihre theoretische Beschreibung erfolgt
typischerweise durch quantenchemische Methoden in Kombination mit linearer Stö-
rungstheorie, da die Magnetfelder in solchen Experimenten klein sind, verglichen mit
den für die chemische Bindung verantwortlichen, elektromagnetischen Kräften.
Jenseits der linearen Effekte, die durch einen solchen Ansatz beschrieben werden, liegt
eine vielfältige, faszinierende Chemie, die darauf wartet erforscht zu werden. Neue
Arten chemischer Bindung, Spinphasenübergänge und Farbveränderungen aromati-
scher Verbindungen sind nur einige der nicht-linearen Effekte, die durch Magnetfelder
hervorgerufen werden. Ihre theoretische Beschreibung erfordert einen Ansatz, in dem
ein finites Feld explizit im Hamiltonoperator auftaucht. Solch ein Ansatz kann für
eine korrekte Beschreibung von beliebig starken Magnetfeldern verwendet werden.
Dadurch wird die Vorhersage spektroskopischer Eigenschaften von Molekülen in der
Nähe interstellarer Objekte mit extrem starken Magnetfeldern ermöglicht, wie etwa
magnetische Weiße Zwerge oder Neutronensterne. In solchen Fällen kann Molekül-
spektroskopie verwendet werden, um die Existenz kleiner Moleküle nachzuweisen.
Die theoretische Beschreibung eines finiten Feldes erfordert hocheffiziente, rechner-
gestützte Methoden, deren Entwicklung und Anwendung Thema dieser Arbeit sind.
Zunächst werden hierfür die theoretischen Grundlagen für die quantenchemische
Beschreibung von Molekülspektroskopie eingeführt. Einige verbreitete Methoden
der Quantenchemie werden adaptiert, inklusive der Dichtefunktionaltheorie (DFT),
genähertem Coupled-Cluster (CC2), sowie der GW /BSE-Methode. Eine effiziente
Implementierung wird entwickelt und getestet. Ausgewählte Anwendungen werden
vorgestellt, inklusive Rechnungen an Magnetocirculardichroismusspektren eines or-
ganometallischen Komplexes, die Vorhersage der Farbveränderung von Tetracen im
Magnetfeld mithilfe der UV/Vis-Spektroskopie, sowie die Untersuchung von Schwin-
gungsrotationsspektren zweiatomiger Moleküle in starken Magnetfeldern.
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1. Introduction

Magnetism has fascinated humanity for all of history.[1] Countless ancient civilizations
are known to have come in contact with magnetism in the form of magnetic ores
found in nature.[2–4] By the 12th century, the magnetic compass was already in use
for navigation purposes in the western world and later experiments carried out in the
16th century proved the earth itself to be magnetic.[5] The advent of modern natural
sciences in the early 19th century brought some clarity to the questions surrounding
magnetism, intimately connecting it to the phenomenon of electricity. Among others,
the groundbreaking works of André-Marie Ampère, Jean-Baptiste Biot, Félix Savart,
and Michael Faraday laid the foundation for the theory of electromagnetism later
formalized by James Clerk Maxwell in form of his famous equations.[1] Scientific
discoveries of the early 20th century proved that electromagnetic phenomena were
responsible for the nature of the chemical bond, with moving electrons exhibiting
magnetic fields.[6] Finally, the theory of quantum mechanics was able to unify these
discoveries into a powerful tool capable of predicting molecular properties.[7, 8]

Compared to the electromagnetic forces present in molecules, magnetic fields found
on earth are relatively small. The geomagnetic field (ca. 50µT) is able to redirect
magnetized matter such as compass needles.[9] Magnetic ores (ca. 0.5T) exhibit mag-
netic fields strong enough to naturally attract ferromagnetic materials in their close
vicinity.[10] In laboratories, magnets are used for various purposes, including the in-
vestigation of the interaction between matter and magnetism. Several spectroscopic
methods rely on the presence of external magnetic fields, including nuclear magnetic
resonance (NMR), electron paramagnetic resonance (EPR), and magnetic circular
dichroism (MCD) spectroscopy (usually up to 21T).[11, 12] Even the strongest nonde-
structive magnetic fields currently created on earth (ca. 150T) display only a small
fraction of the electromagnetic forces present in molecules.[13, 14]

Future endeavours will very likely push the limit of humanity’s capabilities even
further, making larger and larger magnetic fields experimentally accessible. But even
now, gazing upon the stars reveals the existence of magnetic fields magnitudes stronger
than anything currently obtainable on earth. Elsewhere in the universe, interstellar
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objects such as magnetic white dwarfs (up to 105 T) and neutron stars (up to 1011 T)
exhibit field strengths strong enough to compete with the electromagnetic interactions
responsible for the formation of chemical bonds.[15–18] As a result, entirely new types
of chemical bonding may be induced by these extreme environments.[19]

Molecular quantum mechanics, also known as quantum chemistry, allows for the
description of the physical interaction between magnetism and matter.[20, 21] The
inclusion of a magnetic field in the corresponding calculations is facilitated through its
inclusion in the molecular Hamiltonian operator.[14] Using this approach, the effects
of arbitrarily weak or strong magnetic fields may be calculated, enabling an accurate
prediction of molecular properties both in earth-like conditions and in the vicinity of,
for instance, magnetic white dwarfs. For molecular spectroscopy in weak magnetic
fields (NMR, EPR, MCD), the use of perturbation theory is very common, and
considerable effort has gone into the development of computational methods for a
great variety of chemical applications.[22–31] For the quantum chemical calculation of
molecular properties in finite magnetic fields, substantial progress has been made in
recent years.[32–38] Applications include the investigation of bonding mechanisms in
strong magnetic fields,[19], molecular geometries,[34, 38] spin-phase transitions,[37] and
anapole moments.[39] Furthermore, calculations in finite magnetic fields have been
used in an astrophysical context for the interpretation of atomic spectra measured on
magnetic white dwarfs.[14, 40–43]

Having established the general concepts for chemical bonding in magnetic fields as
well as the computational methods for molecular spectroscopy in the context of per-
turbation theory, all key ingredients for a more general investigation of molecular
spectroscopy in magnetic fields are now formally available. As such, recent years
have seen an increasing amount of research, in which quantum chemical calculations
have been carried out for molecular spectroscopy using finite magnetic fields.[44–49]

Such an approach has several advantages. While yielding identical results to perturba-
tion theory in weak magnetic fields, using finite fields enables us to go beyond just
linear effects, giving us a glimpse of the rich and fascinating chemistry waiting to
be revealed through experimental means. Furthermore, these methods can be used
for the verification of the existence of small molecules in the vicinity of magnetic
white dwarfs.[50, 51] However, the disadvantage is that this approach is associated
with considerable computational cost, which, in the past, limited its application to a
handful of small systems.
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Thus, the central aim of this thesis is the development and application of efficient
computational methods for molecular spectroscopy in finite magnetic fields. This
requires three separate steps:

1. The derivation of theoretical methods for the description of molecular properties
in finite magnetic fields.

2. The efficient and parallel implementation of these methods.

3. The application to different types of molecular spectroscopy in magnetic fields.

Therefore, this thesis is structured into three main parts. First, the theoretical frame-
work is laid out (chapters 2–7). Second, an efficient implementation is discussed
(chapters 8–11). Finally, selected applications are examined (chapters 12–15). The
individual chapters are arranged in the following manner:

• Chapters 2 and 3 build the theoretical foundation of this work. The former
introduces the classical description of electromagnetism and charged particles in
magnetic fields. The latter expands this to a quantum-mechanical description
for molecules in finite magnetic fields.

• In chapter 4, the electronic wave function for molecular systems in external
magnetic fields is examined. Both its gauge origin invariant construction and its
(spin-)symmetry are considered. The discussions on spatial symmetry contained
in this chapter follow research carried out in the context of this thesis, published
in Ref. [52].

• Chapters 5 and 6 introduce methods of modern quantum chemistry for electronic
ground states and electronic excitations, respectively. Their adaption for the
inclusion of external magnetic fields remains the central focus throughout. Some
of these methods have been adapted for this thesis, and the results have been
published in Refs. [53], [54], and [55].

• Chapter 7 concludes the theoretical part of this thesis, presenting a semi-classical
approach for the description of nuclear motion in strong magnetic fields. A central
quantity appearing within this context, the Berry curvature tensor, is introduced.

• In chapters 8 and 9, the efficient implementation of quantum-chemical methods
in finite magnetic fields is discussed. Most importantly, the relevant adaptions
to a program already capable of calculating these quantum chemical methods in
the absence of a field are highlighted. Part of this implementation has previously
been presented by the author in Ref. [56].
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• Chapter 10 is focused on the assessment of the accuracy and efficiency of quantum
chemical methods in strong magnetic fields. Particularly the resolution of the
identity approximation is examined. This chapter contains results previously
published in Refs. [53], [54], and [56].

• In chapter 11, an implementation of a numerical scheme for the calculation of
the Berry curvature tensor is discussed. The computation of partial charges
derived from this tensor in the limit of a vanishing magnetic field is introduced
and their basis set dependence is tested.

• Chapter 12 presents the first application of this thesis: MCD spectroscopy in
weak magnetic fields. Results computed using the finite field implementation are
first compared to those obtained from a perturbative approach. The capability
of the implementation carried out in this work is highlighted by examining the
MCD spectrum of an organometallic complex and comparing it to experimental
data. The results of this chapter were published in Ref. [54].

• In chapter 13, the non-linear effects induced by moderately strong magnetic
fields on optical spectroscopy are investigated. For electronic excitations, the
influence of magnetic fields up to 10,000T is examined for a set of 36 small
to medium-sized molecules. For the tetracene molecule, the influence on the
absorption spectrum in the ultraviolet and visible region (UV/Vis spectroscopy)
is investigated, predicting the change of color this molecule is expected to
undergo in moderately strong magnetic fields. These results were published in
Ref. [53].

• In chapter 14, rotational-vibrational spectroscopy for diatomic molecules in
strong magnetic fields is examined. The complex coupling patterns which result
from the magnetic field are characterized and the canonical ensemble of spectra
is examined. The results discussed here were obtained in the context of this
thesis and presented in Ref. [57].

• Chapter 15 contains the final application presented of this thesis. The equilibrium
geometry of helium clusters in strong magnetic fields is investigated, examining
how well the methods implemented here perform for the description of the
perpendicular paramagnetic bonds responsible for their formation.

The thesis is concluded and summarized in chapter 16, also giving an outlook on the
future of quantum chemical calculations in finite magnetic fields.
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2. A Brief Introduction Into Classical

Electrodynamics

In this work, both a semi-classical and a fully quantum-mechanical description of
molecules and their properties in the presence of external electromagnetic fields
is considered. For both cases, it is vital to understand the fundamental concepts
responsible for the dynamics of moving charged particles in external fields. These
concepts have been known since at least the 19th century, when James Clerk Maxwell
formalized them the context of what is today known as classical electrodynamics.
Thus, after a short section introducing the notation used in this work, Maxwell’s
equations are presented. A convenient description of electromagnetic fields through
their respective potentials is established and the equations of motion governing their
dynamics are re-cast in the framework of magnetic vector and electric scalar potentials.
The gauge problem, which is a direct consequence of using the vector and scalar
potentials, is introduced. The Coulomb gauge, which is commonly employed for semi-
classical calculations and consistently used throughout this work, is presented and
explicit forms for the electric scalar and the magnetic vector potentials are derived.
In particular, the explicit form for a homogeneous, static magnetic field as well as its
unphysical dependence on a gauge origin is discussed.
This chapter concludes with a classical description of the mechanics describing the
motion of a moving charged particle in an electromagnetic field. The principle of
minimal coupling is introduced, yielding a gauge-invariant form for the momentum of
a particle in an electromagnetic field. Lagrangian mechanics is used in order to derive
the well-known form of the Lorentz force. The Hamiltonian of this system is derived,
which forms the basis for the quantum-mechanical description of the Hamiltonian
operator in the next chapter. Finally, the motion of a moving charged particle in an
external, homogeneous, static magnetic field is considered. The resulting cyclotron
rotation is discussed, building the basis for discussions about molecular dynamics in
strong magnetic fields in chapter 14.
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2. A Brief Introduction Into Classical Electrodynamics

2.1. Notation

2.1.1. Atomic Units

Atomic units are used throughout this work, unless explicitly stated otherwise. It
is defined by setting the reduced Planck’s constant ℏ, the elementary charge e, the
mass of an electron me, the Bohr radius a0, and Coulomb’s constant (4πε0)−1 equal
to unity:[58]

ℏ = e = me = a0 = 4πε0 = 1 . (2.1.1)

2.1.2. Linear Algebra

Vectors, matrices, and tensors are denoted by bold letters. Upright letters as subscripts
are used as descriptors. Italic and general Greek letters as subscripts denote the
elements of matrices and vectors, while the first three letters of the Greek alphabet
specifically are used as subscripts for Cartesian tensors, with α, β, γ ∈ {x, y, z}.
Following this notation, the Kronecker delta δij and Levi-Civita symbol εαβγ

δij =

1 if i = j

0 if i ̸= j
(2.1.2)

εαβγ =


1 if (α, β, γ) is a cyclic permutation of (x, y, z)

−1 if (α, β, γ) is a noncyclic permutation of (x, y, z)

0 otherwise

(2.1.3)

define elements of a matrix and a Cartesian tensor of third rank, respectively.[59] The
Einstein summation convention for repeated indices[60]

N∑
i=M

AiBi := AiBi (2.1.4)

is used throughout this work. Regardless of this, the sum sign may be given in certain
instances in order to avoid ambiguities in the lower or upper bound M and N .
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2.2. Basic Principles of Classical Electrodynamics

2.2.1. Maxwell’s equations

The fundamental equations governing the laws of classical electrodynamics are known
as Maxwell’s equations.[61] They form relations between electric fields E and magnetic
fields B

∇ · E = 4πρ , (2.2.1)

∇ ·B = 0 , (2.2.2)

∇× E = −∂B
∂t

, (2.2.3)

∇×B =
1

c20

∂E

∂t
+

4π

c20
j , (2.2.4)

which also involve the charge density ρ and the current density j of a system. The
variable t denotes time, c0 the speed of light in vacuum and ∇ is the nabla symbol.
Equations (2.2.1) and (2.2.2) are known as Gauss’s law and Gauss’s law for magnetism,
respectively. They signify that the flux of an electric field is proportional to the charge
density, while magnetic fields only appear in closed loops. The Maxwell–Faraday
equation (2.2.3) states that time-dependent magnetic fields induce electric fields, while
the Ampère–Maxwell equation (2.2.4) implies that time-dependent electric fields as
well as an electric currents induce magnetic fields.
An additional condition used in classical electromagnetism is that the electric charge
is conserved, also known as continuity equation,[62]

∇ · j = −∂ρ
∂t
, (2.2.5)

which implies that the current density is related to the charge density directly through
the velocity v of the charges:

j = ρv . (2.2.6)

2.2.2. Electric Scalar and Magnetic Vector Potential

Maxwell’s equations may be simplified by working with potentials instead of the fields
themselves. Indeed, the magnetic and electric fields are related to a magnetic vector
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2. A Brief Introduction Into Classical Electrodynamics

potential A and an electric scalar potential φ through

B = ∇×A , (2.2.7)

E = −∇φ− ∂A

∂t
, (2.2.8)

which automatically solve Gauss’s law for magnetism (2.2.2) and the Maxwell–Faraday
equation (2.2.3) by construction.[61] Reinserting these definitions for B and E into
Gauss’s law (2.2.1) and the Ampère–Maxwell equation (2.2.4) yields the following
equations of motions (EOM):

∇2φ+
∂

∂t
(∇ ·A) = −4πρ , (2.2.9)

∇2A− 1

c20

∂2A

∂t2
= −4π

c20
j+∇

(
∇ ·A+

1

c20

∂φ

∂t

)
. (2.2.10)

These EOM only possess four degrees of freedom compared to the six degrees of
freedom contained in the original formulation of Maxwell’s equations.

2.2.3. Gauge problem and gauge fixing

The magnetic vector potential and electric scalar potential are not uniquely defined.
Using a transformed magnetic vector potential A′ = A + ∇Λ and a transformed
electric scalar potential φ′ = φ + C, with Λ being an arbitrary scalar field and C

being a constant, is equally valid and fulfills all conditions imposed onto the two
potentials. Such a shift from one valid form of a potential to another is called a gauge
transformation. Typically, this freedom of choice in the determination of the potentials
is restricted by choosing a gauge. The gauge of φ can be chosen such that the potential
vanishes at large distances. The gauge of A is restricted by introducing an additional
restriction to its divergence ∇ ·A.[61]

One choice of gauge for the magnetic vector potential is the Coulomb gauge,

∇ ·A = 0 , (2.2.11)

which simplifies the EOM in eq. (2.2.9) and (2.2.10) significantly:[62]

−∇2φ = 4πρ , (2.2.12)

−∇2A+
1

c20

[
∂2A

∂t2
+∇∂φ

∂t

]
=

4π

c20
j . (2.2.13)
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2.3. Moving Charged Particle in an Electromagnetic Field

From this, an explicit form for the electric scalar and magnetic vector potentials can
be derived:[63]

φ(r, t) =

∫
ρ(r′, t)

|r− r′|dr
′ , (2.2.14)

A(r, t) = ∇×
∫

B(r′, t)

4π|r− r′|dr
′ . (2.2.15)

In the case of a static, homogeneous magnetic field, eq. (2.2.15) further simplifies to

A(r) =
1

2
B× r , (2.2.16)

which is also sometimes referred to as the symmetric gauge. The magnetic vector
potential in the symmetric gauge exhibits the unphysical behaviour of diverging at
infinity. For a finite volume, however, the symmetric gauge is generally a reasonable
description for a magnetic field in the case of magnetostatic conditions.
It should be noted that the Coulomb gauge is not complete and additional constraints
have to be included. In the case of the symmetric gauge, for instance, this leads to
a dependence of the magnetic vector potential on the gauge origin O of the system,
leading to an infinite number of equally valid magnetic vector potentials:[62]

AO(r) =
1

2
B× (r−O) . (2.2.17)

While this unphysical dependence of the magnetic vector potential on the gauge
origin is not problematic, it is crucial that all observable quantities are gauge origin
independent.

2.3. Moving Charged Particle in an Electromagnetic Field

2.3.1. Principle of Minimal Coupling and Lorentz force

Having introduced a way to describe electromagnetic fields through their vector and
scalar potentials, it is now possible to understand the dynamics of a moving charged
particle in an external field. The Lagrangian of a system,

L = T − V , (2.3.1)
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is defined through its kinetic energy T and potential energy V . The trajectory of a
particle with charge q can be described through its position vector of r. Its velocity is
v = ṙ, where one dot over a variable is used to describe a time-derivative, while two
dots over a variable denote a second derivative with respect to time. The kinetic and
potential energies of the particle,

T =
1

2
mṙ2 , (2.3.2)

V = qφ− qA · ṙ , (2.3.3)

and thus also the Lagrangian, can be constructed in a straightforward manner known
as minimal coupling. The canonical momentum of the particle

p :=
∂L
∂ṙα

= mṙ+ qA (2.3.4)

contains the magnetic vector potential and is therefore a gauge-dependent quantity.
The kinetic momentum

π = p− qA , (2.3.5)

however, must remain gauge invariant as it corresponds to an observable quantity.
The Euler-Lagrange equation

d
dt
∂L
∂ṙ

=
∂L
∂r

(2.3.6)

can then be used in order to construct an EOM for the moving charged particle in the
external electromagnetic field. Identifying the left-hand side (lhs) of the equation as
force and re-inserting the magnetic and electric field from their definitions in eq. (2.2.7)
and (2.2.8) on the right-hand side (rhs), the fundamental force of electrodynamics

FL = q[E+ v ×B] , (2.3.7)

the Lorentz force, is obtained.
In the context of Hamiltonian mechanics, the Hamiltonian of the system

H = p · ṙ− L = T + V (2.3.8)

can be constructed from the Lagrangian and the canonical momentum of the system.
For the moving charged particle in an external, electromagnetic field the Hamiltonian
thus becomes

H =
π2

2m
+ qφ . (2.3.9)
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Since the Hamiltonian corresponds to the energy of the system (H = E), it contains
the kinetic momentum instead of the gauge-dependent canonical momentum. Using
Hamiltonian mechanics, the same EOM that could be constructed from Lagrangian
mechanics through eq. (2.3.6) or Newtonian mechanics using the definition of the
Lorentz force (2.3.7) is obtained.

2.3.2. Cyclotron Rotation

Using the EOM introduced in the last section, the effects of magnetostatic conditions
on a moving charged particle may be considered. A particle of charge q and mass m can
be put into an external, homogeneous, static magnetic field pointed in the z-direction:
B = (0, 0, Bz)

⊤ and E = 0. Given an initial velocity in a direction perpendicular to
the external magnetic field, the charged particle starts to rotate in a circular motion
often referred to as the cyclotron rotation. The frequency of this rotation is called the
cyclotron frequency,[64]

ωC =
qBz

m
, (2.3.10)

and it is only dependent on the magnitude of the magnetic field as well as the charge
and mass of the particle.
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Molecules in External Magnetic Fields

In this chapter, the dynamics of electronic and nuclear motions in molecules is
considered in a fully quantum-mechanical framework. This requires the solution of
the time-dependent molecular Schrödinger equation and therefore the construction of
the molecular Hamiltonian operator.
After a short introduction of quantum-mechanical notation used throughout this
work, the Born–Oppenheimer approximation for molecules in external magnetic fields
is carefully introduced. The molecular Schrödinger equation is separated into the
electronic and nuclear Schrödinger equations using the Born–Oppenheimer ansatz.
Subsequently, the Born–Huang adiabatic approximation and the Born–Oppenheimer
adiabatic approximation are introduced, thereby neglecting different contributions to
the electronic Schrödinger equation, following the nomenclature introduced in Ref. [65].
The construction of an adiabatic potential energy hypersurface is presented, including
its dependence on the external magnetic field.
Using a fully relativistic approach and considering the nonrelativistic limit, an explicit
form for the electronic Hamiltonian operator is derived for hydrogen-like atoms.
Through the principle of minimal coupling introduced in chapter 2, the external
magnetic field is conveniently described through the magnetic vector potential. An
expression for the electronic Hamiltonian is given for the case of static, homogeneous
magnetic fields. This result is generalized to many-electron systems, distributing the
different contributions into field-free, paramagnetic and diamagnetic parts.
Finally, the Hamiltonian operator for nuclear motions in the external field is derived.
The dependence on the Born–Oppenheimer potential energy hypersurface is hereby
considered as well as the dependence of the nuclear kinetic energy on the external
magnetic field through the principle of minimal coupling. Effective screened charges
are introduced through the Berry connection which is shown to naturally enter the
expression for the effective kinetic energy of nuclear motion in a Born–Oppenheimer
potential energy hypersurface.
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3.1. Notation

3.1.1. Operators

In quantum mechanics, any physical quantity may be represented by use of an operator,
which allows for a convenient way to translate the concepts introduced in the context
of classical mechanics (chapter 2) into the framework of quantum mechanics. In
this work, the operator representation of a scalar O is written as Ô. Similarly, the
representation of a vector r is written as r̂. For multiplicative operators, the operator
sign may sometimes be omitted.

3.1.2. Dirac notation

In order to simplify the notation of quantum mechanics, the Dirac notation is employed.
If a wave function Ψ is defined by certain characteristic integer numbers p or q, the
Bra- and Ket-vectors representing Ψp and Ψq can be written as:

⟨p| → Ψ∗
p , (3.1.1)

|q⟩ → Ψq . (3.1.2)

The combination of a Bra- and a Ket-vector is called a Braket and it implies an
integration over the entire Hilbert space over which the wave functions are defined,

⟨p|q⟩ = ⟨q|p⟩∗ =
∫

Ψ∗
pΨq dτ , (3.1.3)

where τ is a representation of the volume associated with this Hilbert space. Using
the Dirac notation, the expectation value of an operator Ô is written as

⟨p|Ô|q⟩ := ⟨p|Ôq⟩ = ⟨Ô†p|q⟩ . (3.1.4)

Observable quantities are represented by Hermitian operators Â = Â† and as a result,
all expectation values of observable quantities become real-valued

⟨p|Â|q⟩ ∈ R , (3.1.5)

even though both operators and wave functions are generally complex-valued.
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3.2. Born–Oppenheimer Approximation

3.2.1. Born–Oppenheimer Ansatz

The nonrelativistic time-dependent Schrödinger equation for a molecular system,

ĤmolΨmol(R, r, t) = i
∂

∂t
Ψmol(R, r, t) , (3.2.1)

is the central EOM in the context of quantum chemistry.[7, 8] It can be constructed
by identifying the molecular Hamiltonian operator Ĥmol as the representation of the
classical Hamiltonian H containing all relevant physical interactions between the Nel

electrons and the Nnuc nuclei constituting the molecule. The solution of this EOM is
given by the time-dependent molecular wave function Ψmol(R, r, t) which describes
the simultaneous motion of all electrons and nuclei contained within the molecular
system. The wave function is dependent on the time coordinate t as well as all position
vectors of both the electrons ri and the nuclei RI .
This problem can be simplified significantly by realizing that due to differences
in mass, the electronic and nuclear movements happen on a different time scale.
The Born–Oppenheimer (BO) ansatz[66, 67] therefore decouples their movements by
approximating the molecular wave function in an infinite series of products between
nuclear and electronic wave functions:

Ψmol(R, r, t) ≈ Ψnuc
p (R, t)Ψel

p (R, r, t) . (3.2.2)

While this ansatz does not correspond to an exact separation of the center-of-mass
motion in an external magnetic field, it should be noted that such an exact separation
is generally not possible for molecules in external magnetic fields.[68–72] Considering the
two time scales separately also leads to a separation of variables for the respective wave
functions. From the perspective of an electron in state p described by the electronic
wave function Ψel

p , the nuclei appear to be fixed. One possibility is to consider
the electronic wave function for clamped nuclei and let it be only parametrically
dependent on the nuclear position vectors RI .[67] From the perspective of a nucleus, on
the other hand, the electronic movements happen instantaneously. Thus the nuclear
wave function corresponding to state p does not need to depend on the electronic
coordinates ri at all.
Reinserting the BO ansatz in eq. (3.2.2) into the time-dependent Schrödinger equation
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(3.2.1) and focusing on the movements of the electrons yields

ĤmolΨel
p (R, r, t) = i

∂

∂t
Ψel

p (R, r, t) , (3.2.3)

where it is beneficial to separate the molecular Hamiltonian

Ĥmol = Ĥnuc + Ĥel (3.2.4)

into an electronic Hamiltonian in the presence of clamped nuclei and a nuclear
Hamiltonian. Both of these operators are constructed as representation of their
classical counterparts using

Ĥel = T̂ el + V̂ el , (3.2.5)

Ĥnuc = T̂ nuc + V̂ nuc . (3.2.6)

For moving charged particles in external magnetic fields, the classical Hamiltonian
was derived in section 2.3.1 and given in eq. (2.3.9). The external magnetic field is
contained in the kinetic energy operators for the electrons T̂ el and the nuclei T̂ nuc

through the principle of minimal coupling and an explicit form of both operators will
be derived later in this chapter.

3.2.2. Adiabatic Approximations

Let the electronic wave functions corresponding to states p and q be represented by
|p⟩ and |q⟩, respectively. Projecting eq. (3.2.3) onto ⟨q| then leads to several important
realizations. Firstly, since the electronic wave functions form an orthonormal set, the
electronic Hamiltonian takes on a diagonal form:

⟨q|Ĥel|p⟩ = ⟨q|T̂ el|p⟩ δpq + ⟨q|V̂ el|p⟩ δpq . (3.2.7)

Secondly, as the operator representing the nuclear potential energy V̂ nuc is a mul-
tiplicative operator, it is also diagonal in the basis of electronic wave functions:

⟨q|V̂ nuc|p⟩ = VNNδpq . (3.2.8)

Thirdly, the nuclear kinetic energy, even in the absence of an external magnetic field, is
generally not diagonal in the basis of electronic wave functions. However, the coupling
of different electronic states through the nuclear kinetic energy can be neglected using
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the Born–Huang adiabatic approximation[65, 73–75]

⟨q|T̂ nuc|p⟩ ≈ TNδpq , (3.2.9)

which only leaves the diagonal terms. The spectral decomposition of these diagonal
terms contains a sum over all electronic states and thus any term in ⟨p|T̂ nuc|p⟩ couples
the electronic state p to all other electronic states. Fully decoupling all electronic
states thus requires that

⟨q|T̂ nuc|p⟩ ≈ 0 , (3.2.10)

which is referred to as Born–Oppenheimer adiabatic approximation.[65, 76]

Within the BO adiabatic approximation, it is sufficient to solve the time-dependent
electronic Schrödinger equation

ĤelΨel
p (R, r, t) = i

∂

∂t
Ψel

p (R, r, t) , (3.2.11)

for each electronic state p individually as they are fully decoupled. For static systems,
the time-independent electronic Schrödinger equation

ĤelΨel
p (R, r) = Eel

p Ψ
el
p (R, r) , (3.2.12)

replaces its time-dependent counterpart, introducing the electronic energy Eel
p . Both

eqs. (3.2.11) and (3.2.12) must be solved separately for each set of nuclear coordinates
R. This results in a potential energy hypersurface (PES) in the coordinate space of
all 3Nnuc nuclear coordinates. For electronic state p, the PES is constructed using the
BO potential energy

EBO
p (R) = Eel

p + VNN , (3.2.13)

which in the context of quantum chemistry is also often referred to as total elec-
tronic energy. Nonadiabatic effects can then, in principle, also be included. One
common approximation aiming at recovering nonadiabatic effects is the diagonal
Born–Oppenheimer correction (DBOC)[77, 78], which in the absence of an external
magnetic field reads

EDBOC
p = ⟨p|T̂ nuc|p⟩ (3.2.14)

and contains only the diagonal terms of the nuclear kinetic energy. In the presence
of an external magnetic field, the DBOC takes a somewhat different form which
converges into the expression given in eq. (3.2.14) for zero-fields. An explicit form for
the DBOC in external magnetic fields is presented later in this chapter.
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3.3. Construction of the Electronic Hamiltonian

3.3.1. Hydrogen-like Atom

The aim of this section is to construct the nonrelativistic electronic Hamiltonian
operator. As a central result, we will obtain a Hamiltonian operator of the form

Ĥel = Ĥel
field-free + Ĥel

paramagnetic + Ĥel
diamagnetic , (3.3.1)

which contains a field-free part, a paramagnetic part which depends linearly on the
external magnetic field, and a diamagnetic part with a quadratic field-dependence. In
the paramagnetic part, the magnetic field is coupled with angular motion and thus
contains both the angular momentum and the spin of an electron. Therefore, the
derivation of an explicit form of the nonrelativistic electronic Hamiltonian operator
requires casting the time-independent electronic Schrödinger equation presented in
eq. (3.2.12) in a fully relativistic picture, which naturally introduces the electron
spin. In a subsequent step, the nonrelativistic limit is considered, resulting in a spin-
dependent two-component framework, which is used throughout this work.
The relativistic equivalent of the electronic Schrödinger equation is the four-component
Dirac equation. For hydrogen-like atoms it reads[79, 80]

 V̂Ne c0 σαπ̂α

c0 σαπ̂α V̂Ne − 2c20

ΨL

ΨS

 = Eel

ΨL

ΨS

 , (3.3.2)

containing the Pauli matrices σα representing the electron spin in three Cartesian
directions. They are traceless 2× 2 matrices which are typically cast as

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (3.3.3)

Thus, the wave function Ψel solving the Dirac equation is a four-component vector
consisting of a so-called large component ΨL and a small component ΨS, both of
which contain two spin components. The Dirac equation presented in eq. (3.3.2) has
electronic and positronic solutions and is shifted in such a way that its electronic
solutions align with those of the electronic Schrödinger equation in eq. (3.2.12), with
negative energy solutions corresponding to bound states.
The diagonal of eq. (3.3.2) contains the shifted potential energy of the system, where
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3. Quantum-Mechanical Description of Molecules in External Magnetic Fields

V̂Ne describes the attractive interaction between nucleus and electron. On the off-
diagonal, the kinetic energy is represented using the Pauli matrices as well as the
kinetic momentum operator π̂ with an explicit form

π̂ = p̂+ Â (3.3.4)

derived from the principle of minimal coupling[81] as presented in the context of classical
mechanics in eq. (2.3.5). It contains the canonical momentum operator p̂ = −i∇
and the magnetic vector potential operator Â. In the case of a static, homogeneous
magnetic field in the Coulomb gauge, it can be written in a form resembling the
symmetric gauge in eq. (2.2.16):

ÂO(r) =
1

2
B× r̂O . (3.3.5)

As discussed before, the gauge origin of this system O has no physical meaning and
can be arbitrarily chosen. One convenient choice mostly used in this work is the origin
of the Cartesian coordinate system. The electron coordinate rO = (r−O) in eq. (3.3.5)
directly references this gauge origin.
Having cast the relativistic Dirac equation, the nonrelativistic limit can be derived by
realizing that the two equations contained in eq. (3.3.2) are coupled. Using the lower
equation, the small component of the wave function can be written as a function of
the large component by

ΨS = Ŷ
σαπ̂α
2c0

ΨL , (3.3.6)

where the coupling operator Ŷ can be conveniently written out in terms of a Taylor
expansion

Ŷ =

(
1 +

Eel − V̂Ne

2c20

)−1

= 1− Eel − V̂Ne

2c20
+ . . . (3.3.7)

which is, of course, an infinite series. In the nonrelativistic limit where c0 → ∞, the
series can be stopped after the zeroth order term

Ŷ ≈ 1 , (3.3.8)

which is considered as the nonrelativistic limit. Substituting the small component in
such a way, eq. (3.3.2) yields[

V̂Ne +
(σαπ̂α)

2

2

]
ΨL = EelΨL , (3.3.9)
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3.3. Construction of the Electronic Hamiltonian

where by comparison with eq. (3.2.12), the large component can be identified as the
electronic wave function ΨL = Ψel. It is important to realize that the nonrelativistic
Schrödinger equation presented in eq. (3.3.9) is still a two-component equation as it
directly references the Pauli matrices. As a consequence, the solutions must also be
two-component wave functions.
Finally, an explicit form of the electronic Hamiltonian operator for a hydrogen-like
atom in a static, homogeneous, external magnetic field can be derived from eq. (3.3.9).
Using the Dirac identity,

(σαâα)(σαb̂α) = (âαb̂α)σ0 + i εαβγ âαb̂βσγ , (3.3.10)

with the zeroth-component Pauli matrix σ0 = I2 being introduced as the two-
component identity matrix, and the definition of the magnetic vector potential in
eq. (3.3.5), we write:

(σαπ̂α)
2 = π̂2 + σαBα . (3.3.11)

The squared kinetic momentum operator π̂,

π̂2 = p̂2 +B ·
(
r̂O × p̂

)
+

1

4

[
B2(r̂O)2 − (B · r̂O)2

]
, (3.3.12)

contains the canonical momentum operator, a paramagnetic term which scales linearly
with the external magnetic field B, and diamagnetic contributions scaling quadratically
with the field. Introducing the gauge origin dependent canonical angular momentum
operator l̂O = r̂O × p̂, and gathering all terms on the lhs of eq. (3.3.9), the electronic
Hamiltonian operator can be divided into four different parts:

Ĥel = Ĥel
0 + Ĥel

BL + Ĥel
BS + Ĥel

BD . (3.3.13)

Firstly, the field-free Hamiltonian Ĥel
0 does not reference the external field and contains

both the kinetic and potential energy contributions also present in the absence of a
field. Secondly, the two paramagnetic contributions are known as the orbital Zeeman
term Ĥel

BL and the spin Zeeman term Ĥel
BS. Thirdly, all diamagnetic contributions are

contained in Ĥel
BD. Explicit forms for all contributions to the electronic Hamiltonian
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3. Quantum-Mechanical Description of Molecules in External Magnetic Fields

can be written out as:

Ĥel
0 =

p̂2

2
+ V̂Ne , (3.3.14)

Ĥel
BL =

1

2
B · l̂O , (3.3.15)

Ĥel
BS =

1

2
σαBα , (3.3.16)

Ĥel
BD =

1

8

[
B2(r̂O)2 − (B · r̂O)2

]
. (3.3.17)

It should be stressed again that even in the nonrelativistic case, the two-component
form of the electronic Hamiltonian directly referencing the electron spin is retained
through the inclusion of the spin Zeeman term.

3.3.2. Many-Electron Systems

An expansion of the electronic Hamiltonian operator for many-electron systems is
straightforward. For a molecular system, henceforth all quantities referencing electrons
are written with subscripts i, j and all quantities referencing nuclei with subscripts of
I, J . The electronic Hamiltonian for a molecule in an external magnetic field can be
divided into the same four contributions presented in eq. (3.3.14) – (3.3.17), that is, a
field-free Hamiltonian, the two paramagnetic orbital and spin Zeeman terms and a
diamagnetic part:[14]

Ĥel
0 =

Nel∑
i

p̂2
i

2
−

Nnuc∑
I

Nel∑
i

ZI

|RI − ri|
+

Nel∑
i<j

1

|ri − rj|
, (3.3.18)

Ĥel
BL =

1

2

Nel∑
i

B · l̂Oi , (3.3.19)

Ĥel
BS =

1

2

Nel∑
i

σα(i)Bα , (3.3.20)

Ĥel
BD =

1

8

Nel∑
i

[
B2(r̂Oi )

2 − (B · r̂Oi )2
]
. (3.3.21)

Here, ZI refers to the nuclear charge of nucleus I. It is important to realize that all
contributions stemming from an external magnetic field in eq. (3.3.19) – (3.3.21) are
one-electron contributions. The interaction between two electrons is strictly contained
in the field-free operator.
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3.4. Construction of the Nuclear Hamiltonian

Examining the field-dependent contributions to the Hamiltonian individually reveals
the effects a magnetic field has on a molecular system. Negative energy contributions
stabilize a physical system while positive contributions destabilize it. A wave function
solving the electronic Schrödinger equation is therefore chosen such that it minimizes
the energy. The orbital Zeeman term in eq. (3.3.19) should thus minimize the total
angular momentum of the system by maximizing its angular momenta and aligning
them anti-parallel to the external field. The same is true for the spin Zeeman term,
which favors an antiparallel orientation of the total electron spin with respect to the
external field. The diamagnetic contribution is always positive and destabilizes the
system. It can be minimized by contracting the molecule, leading to smaller values in
the electron coordinates ri.
The total electronic energy also depends on the nuclear repulsion potential

VNN =
Nnuc∑
I<J

ZIZJ

|RI −RJ |
(3.3.22)

which in the BO adiabatic approximation is merely a constant. On the resulting PES
of an electronic state p spanned by the nuclear coordinates RI , a local minimum

∂EBO
p (R)

∂RIα

= 0 ∀RIα (3.3.23)

corresponds to an equilibrium structure if the related Hessian is positive-definite. This
remains strictly true for a molecular system in an external magnetic field, although the
PES itself is, of course, field-dependent. Since an infinitesimal change in the external
field results only in an infinitesimal change in the hypersurface, one might consider
a field-dependent PES EBO

p (R,B) in which the magnetic field vector B is simply a
variable. Such a PES can have equilibrium geometries at any field strength, but a
global minimum may exist at only a certain field strength which does not necessarily
need to be the zero-field.

3.4. Construction of the Nuclear Hamiltonian

Having constructed the electronic Hamiltonian and BO potential energy hypersurface,
it is now possible to derive an explicit form for a nuclear Hamiltonian operator.
Throughout this entire section, the Einstein summation convention is not used. Starting
from the molecular time-dependent Schrödinger equation in eq. (3.2.1), and using the
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3. Quantum-Mechanical Description of Molecules in External Magnetic Fields

BO ansatz in eq. (3.2.2) for the molecular wave function yields

∑
p

ĤmolΨnuc
p (R, t)Ψel

p (R, r) =
∑
p

i
∂

∂t
Ψnuc

p (R, t)Ψel
p (R, r) , (3.4.1)

thereby separating elecronic and nuclear motions. Within the BO picture, electronic
movement occurs instantaneously while nuclei move along the PES. From the perspec-
tive of the nuclei, it is sufficient to solve the time-independent electronic Schrödinger
equation in eq. (3.2.12) for each (relevant) point of the hypersurface. Thus, the elec-
tronic wave function Ψel

p is not a function of time in eq. (3.4.1). Using the Dirac
notation for electronic states and projecting the Schrödinger equation on state ⟨q|
results in ∑

p

〈
q
∣∣Ĥmol

∣∣Ψnuc
p p

〉
= i

∂

∂t
Ψnuc

q , (3.4.2)

where the orthonormality condition for the electronic wave function was used on the
rhs of eq. (3.4.1).[82]

As previously discussed, the molecular Hamiltonian can be partitioned into the
electronic and nuclear components

Ĥmol = T̂ nuc + V̂ nuc + Ĥel (3.4.3)

and then reinserted into eq. (3.4.2) in order to separate the nuclear Schrödinger
equation into two parts. The first part references the time-independent electronic
Schrödinger equation with clamped nuclei which results in a contribution corresponding
to the BO PES: ∑

p

〈
q
∣∣Ĥel + V̂ nuc

∣∣Ψnuc
p p

〉
= EBO

q (R)Ψnuc
q . (3.4.4)

The second part consists of the nuclear kinetic energy contribution which had previously
been neglected for electronic motions. Using the Born–Huang approximation in order
to neglect non-diagonal terms, the kinetic energy contribution to the nuclear motion
can be written as ∑

p

〈
q
∣∣T̂ nuc

∣∣Ψnuc
p p

〉
=
〈
q
∣∣T̂ nuc

∣∣Ψnuc
q q

〉
, (3.4.5)
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3.4. Construction of the Nuclear Hamiltonian

where the nuclear kinetic energy operator in an external magnetic field is derived
similarly to its electronic counterpart from the principle of minimal coupling:

T̂ nuc =
Nnuc∑
I

1

2MI

Π̂
2

I , (3.4.6)

Π̂I = P̂I − ZIÂ(RI) . (3.4.7)

This kinetic energy does not describe the effective motion of nuclei for a molecule in an
external magnetic field.[72] This would be the case if bare nuclei with charges ZI were
moving in an external magnetic field, which is not what the BO picture suggests. If we
imagine, for instance, the nuclear motion of a hydrogen molecule, most of the nuclear
charge is screened by the electrons in its vicinity. The principle of minimal coupling
leads to a Lorentz force for moving charged particles and should thus only effect the
effective charges Zeff

I as screened by the electrons which are adapting adiabatically to
the nuclear movement on the PES. The effective nuclear kinetic energy T̂ nuc therefore
has to include the adiabatic screening charges from the electrons in addition to the
minimal coupling for bare nuclei as contained in T̂ nuc.
Applying the operator Π̂

2

I contained in the nuclear kinetic energy on the BO ansatz
results in the following expression[83]

Π̂
2

I(Ψ
nuc
q Ψel

q ) = Ψel
q (Π̂

2

IΨ
nuc
q ) + 2 (P̂IΨ

el
q ) · (Π̂IΨ

nuc
q ) + (P̂2

IΨ
el
q )Ψ

nuc
q , (3.4.8)

which can be derived by using the product rule for the canonical nuclear momentum
operator P̂I = −i∇I . Inserting eq. (3.4.8) into the expression for the nuclear kinetic
energy in eq. (3.4.5) in the Born–Huang approximation yields[82]

〈
q
∣∣T̂ nuc

∣∣Ψnuc
q q

〉
=

Nnuc∑
I

1

2MI

[
Π̂

2

I + 2 χ̂I · Π̂I + ∆̂I

]
Ψnuc

q , (3.4.9)

where the two quantities χ̂I and ∆̂I have been introduced

χ̂I = ⟨q|P̂I |q⟩ (3.4.10)

∆̂I = ⟨q|P̂2
I |q⟩ , (3.4.11)

known as the geometric vector potential and geometric scalar potential, respectively.
The geometric vector potential also naturally arises from a gauge transformation of
the electronic wave function in the BO picture and is sometimes referred to as Berry
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3. Quantum-Mechanical Description of Molecules in External Magnetic Fields

connection or Berry potential.[83–86]

Rewriting eq. (3.4.9) results in a convenient form,

〈
q
∣∣T̂ nuc

∣∣Ψnuc
q q

〉
=

Nnuc∑
I

1

2MI

[
(Π̂I + χ̂I)

2 + ∆̂I − χ̂2
I

]
Ψnuc

q , (3.4.12)

in which the nuclear kinetic energy is separated into an effective operator containing
the Berry connection and into another part corresponding to the DBOC energy
contribution:

T̂ eff
q =

Nnuc∑
I

1

2MI

[
P̂I − ZIÂ(RI) + χ̂I

]2
, (3.4.13)

EDBOC
q =

Nnuc∑
I

1

2MI

[
∆̂I − χ̂2

I

]
. (3.4.14)

The subscripts q have been kept in order to reference the explicit dependence on
electronic state q in the quantities presented in eq. (3.4.12). For the effective nuclear
kinetic energy T̂ eff

q in eq. (3.4.13) this stems from the Berry connection operator which
includes an explicit dependence on the electronic state its referencing. It is included
in T̂ eff

q to screen the bare nuclear charges such that the Lorentz force only effects the
effective nuclear charges Zeff

I . Since the distribution of electrons is different for all
non-degenerate electronic states, the screening on the nuclear charges will also be
different.
Finally, neglecting the DBOC contribution, the nuclear Schrödinger equation in the
BO adiabatic approximation reads[

T̂ eff
q + EBO

q

]
Ψnuc

q = i
∂

∂t
Ψnuc

q , (3.4.15)

and thus can only be solved if the BO PES is known for the relevant region of the
nuclear motion. In the absence of an external field, the magnetic vector potential is
zero and no Lorentz force is induced on the moving nuclei. The Berry connection
also vanishes in the absence of an external field as eq. (3.4.10) suggests if real-valued
electronic wave functions are inserted. The presence of the Berry connection therefore
seems to be intrinsically linked to the existence of magnetic fields, even though it
bears no actual dependence on the magnetic field itself. It appears in the calculation
of a variety of magnetic properties, such as rotational g factors, but generally also has
to be considered in the vicinity of conical intersections of the PES.[87–89]
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4. Electronic Wave Function: Construction

and Symmetry

Having established the Born-Oppenheimer approximation for molecules in external
magnetic fields and how to construct the electronic and nuclear Schrödinger equations,
it is time to examine their solutions. Since the nuclear Schrödinger equation requires
a solution to the time-independent electronic Schrödinger equation for each relevant
point of the potential energy surface, it is necessary to focus on the solution to the
electronic Schrödinger equation first.
In this chapter, the electronic wave function for a molecular system in a static,
homogeneous, external magnetic field is closely examined. After establishing a more
convenient notation, the properties of the exact electronic wave function are thoroughly
investigated. Both the global phase as well as a phase introduced by an external
magnetic field are considered. Due to the appearence of the Pauli matrices in the
electronic Hamiltonian, a two-component spinor form for the wave function is suggested.
The linear combination of atomic orbitals ansatz is discussed and how a phase
correction eliminates gauge origin dependencies of observable quantities. The resulting
London atomic orbitals (LAOs) are used throughout this work.
The remaining part of this chapter is concerned with the symmetry of the exact
electronic wave function in an external magnetic field. Firstly, the spin symmetry is
introduced and compared to the spin symmetry of wave functions in the absence of
fields. Secondly, the time-reversal and magnetic symmetries are investigated. Lastly,
spatial symmetry is considered in the framework of molecular point groups in magnetic
fields – magnetic point groups. The investigation of magnetic point groups and their
properties was carried out in the context of this work and published in Ref. [52]. The
results are presented here, including a discussion of general properties of magnetic
point groups and the introduction of a flow chart, which can be used to conveniently
identify magnetic point groups. All of these findings are utilized in the next chapter
in order to classify approximate wave functions by which symmetries are retained.
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4.1. Notation

The majority of this work is concerned with electronic structure theory in external
magnetic fields, both for static and dynamic systems. Therefore, the short-hand
notation Ĥ := Ĥel is used for the electronic Hamiltonian operator and Ψ := Ψel for the
electronic wave function. For the electronic Hamiltonian operator Ĥ, we assume that
the effects of an external, static, homogeneous magnetic field B are included through
the separation presented in eq. (3.3.18)–(3.3.21). Furthermore, the electronic wave
function Ψp in this chapter is referring to a bound electronic state p and is considered
as an exact solution to the time-independent electronic Schrödinger equation (3.2.12).
Continuum wave functions, for which the Born-Oppenheimer ansatz presented in
section 3.2.1 is not valid,[67] are not considered in this work.
Most (but unfortunately not all) properties assigned to Ψp in this chapter also apply
to approximate wave functions such as the ones presented in chapter 5. Whenever any
of the properties discussed in this chapter does not apply to an approximate wave
function, it will be addressed.

4.2. Phase of the Electronic Wave Function

4.2.1. Global Phase

Solutions to the time-independent electronic Schrödinger equation are not unique. In
fact, any phase-shifted wave function

Ψ′
p = eiΦΨp (4.2.1)

with 0 ≤ Φ < 2π has the exact same physical properties as Ψp.[83] This can easily be
verified by calculating the expectation value over any operator Ô

⟨p′|Ô|p′⟩ = ⟨p|e−iΦÔeiΦ|p⟩ = ⟨p|Ô|p⟩ (4.2.2)

and realizing that the phase factor cancels out exactly. If possible without loss of
generality, we choose this phase factor to belong to the set Φ ∈ {0, π} by requiring
the wave function to be real-valued.
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4.2. Phase of the Electronic Wave Function

4.2.2. Gauge Transformation

The magnetic vector potential A has been introduced in the context of classical
electrodynamics in section 2.2.3, thereby establishing the gauge problem. In the
Coulomb gauge (∇ ·A = 0), an explicit form for the magnetic vector potential was
derived for static, homogeneous magnetic fields in eq. (2.2.17). A gauge transformation
from a magnetic vector potential A with gauge origin O to another magnetic vector
potential A′ with gauge origin O′ corresponds to

A′(r) = A(r)−∇Λ(r) , (4.2.3)

where the gauge factor Λ may be writen as

Λ(r) = A(O′) · r . (4.2.4)

Any physical quantity containing the magnetic vector potential, such as the electronic
Hamiltonian derived in section 3.3.2, must then also be gauge transformed, which
may be expressed through a similarity transformation: [90]

Ĥ ′ = e−iΛ(r)Ĥ eiΛ(r) . (4.2.5)

Since the gauge origin has no physical meaning, no observable quantity must depend
on it. Both Ĥ and Ĥ ′ thus correspond to the same physical problem and their solutions
|p⟩ and |p′⟩ must lead to identical electronic energies Ep:

⟨p′|Ĥ ′|p′⟩ = ⟨p|Ĥ|p⟩ = Ep (4.2.6)

Inserting eq. (4.2.5) into eq. (4.2.6) leads to the realization that the gauge transformed
wave functions |p⟩ and |p′⟩ are linked through a phase factor

Ψ′
p = e−iΛ(r)Ψp , (4.2.7)

which results in a gauge origin invariant electronic energy.[71] However, as a consequence
the wave function itself becomes dependent on the gauge origin. Furthermore, the
complex phase factor now contains vital information and thus the global phase Φ

can, in general, not be chosen such that the wave function becomes real-valued. As a
consequence, electronic wave functions for molecules in external magnetic fields are
generally complex-valued.
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4.3. Ansatz for the Electronic Wave Function

4.3.1. Two-Component Wave Functions

The electronic Hamiltonian operator for a molecule in an external magnetic field
depends on the two-component Pauli matrices through the spin Zeeman term given
in eq. (3.3.20). Consequently, the electronic wave function must be expressed in terms
of a two-component spinor

Ψp =

φα
p

φβ
p

 , (4.3.1)

separating the wave function into two parts corresponding to generalized spin compo-
nents denoted by σ ∈ {α, β}.[91] If certain spin symmetries apply, these two generalized
spin components may be decoupled, which is discussed in more detail in section 4.5.

4.3.2. Linear Combination of Atomic Orbitals

For molecular systems, it is generally not possible to find analytic solutions to the time-
independent Schrödinger equation. The electronic wave function can be represented
in terms of a linear combination of basis functions ξµ through

φσ
p = Cσ

µp ξµ(r) , (4.3.2)

where the matrix Cσ contains the expansion coefficients corresponding to the general-
ized spin component σ. A fixed set of basis functions ξµ is referred to as a basis set. If
a basis represents the electronic wave function exactly, it is complete. However, this
generally requires an infinite amount of basis functions. In practice, we use truncated
basis sets in order to approximate the electronic wave function. For electronic wave
functions of molecular systems, a common approach is to choose atom-centered one-
electron wave functions called orbitals as basis functions. For this choice, eq. (4.3.2) is
then referred to as the linear combination of atomic orbitals (LCAO) ansatz.[92–95]

Let us consider the electronic wave function of an atomic system for which the LCAO
ansatz was chosen. All atomic orbitals are then centered at the nucleus and thus a
single point in space. If the gauge origin O of the magnetic vector potential is also
centered at the atom, the phase factor in eq. (4.2.7) vanishes and the electronic wave
function can be chosen to be real-valued without loss of generality. This choice of gauge
is known as the natural gauge origin.[23, 96] Any other choice of gauge corresponds
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4.3. Ansatz for the Electronic Wave Function

to a gauge transformation and results in a complex-valued electronic wave function.
For molecular systems, no natural gauge can be formulated in the LCAO ansatz.
Starting from a set of real-valued basis functions χµ, the gauge transformation of
atomic orbitals (AOs) corresponding to different atoms, each centered at Rµ, is written
as

ξµ(r) = exp

(
− i

2
εαβγBα(R

µ
β −Oβ)rγ

)
χµ(r) (4.3.3)

and incorporates the correct field-induced phase into the electronic wave function.[20, 21, 97]

As a consequence, the electronic wave function generally becomes complex-valued and
dependent on the gauge origin. This choice of basis function is typically referred to as
London atomic orbital (LAO) or alternatively gauge-including atomic orbital (GIAO).
For historical reasons, the term LAO is mostly used in the context of calculations
in strong magnetic fields, while the term GIAO is mostly used for perturbative ap-
proaches.
An atomic orbital χµ can be expressed in terms of a Gaussian-type orbital (GTO)

χµ(r) = Nµ(x−Rµ
x)

aµx(y −Rµ
y )

aµy (z −Rµ
z )

aµz exp
(
−ζµ|r−Rµ|2

)
, (4.3.4)

where Nµ is a normalization constant, aµ is a vector containing integers corresponding
to the type of orbital χµ is representing, with |aµ| = 0 being s-type orbitals, |aµ| = 1

being p-type orbitals and so forth. The exponents ζµ were pre-optimized for certain
basis sets and are held fixed for the entirety of a calculation. In order to further
increase efficiency of quantum chemical calculations, certain subsets of GTOs in a
basis may additionally be contracted with fixed prefactors.[98–100]

It should be noted that the necessity for LAOs is somewhat of a consequence of
using a truncated basis. The LAO phase factor in eq. (4.3.3) is similar to that of a
plane wave, which implies that a magnetic field induces oscillations in the electronic
wave function. A complete basis would be sufficiently flexible to introduce these
oscillations intrinsically and could therefore be chosen to be real-valued without loss
of generality.[101, 102] In small magnetic fields, if a large basis is used and all atoms are
close to the gauge origin, the error of neglecting the LAO phase factors may become
small, although it never vanishes. Historically, this has led to a considerable amount of
research in which a solution to the gauge problem was approximated via a multitude of
methods.[23, 103–111] Recent advances in quantum chemistry have been trying to rectify
this by consistently using LAOs, both in the strong-field regime[19, 32–35, 37, 38, 112] as
well as for perturbative[113–121] approaches.
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4.4. Basic Concepts of Symmetry

An exact electronic wave function has to exhibit the same symmetry as the physical
system it describes. Let Ω̂ represent a constant of motion:

[Ĥ, Ω̂] = 0 . (4.4.1)

The electronic wave function must then either be an eigenfunction to Ω̂ or, in the case
of degeneracies, it can be chosen such that it becomes an eigenfunction satisfying

Ω̂Ψp = ωΨp , (4.4.2)

where ω is a so-called good quantum number describing the system.[122–124] It is
then possible to construct a projection operator Ω̂R corresponding to a symmetry
transformation with respect to the preserved quantity. Any such projection operator
must also commute with the Hamiltonian operator and can be inserted into the
time-independent Schrödinger equation from the left to yield

ĤΩ̂RΨp = EpΩ̂
RΨp . (4.4.3)

Consequently, a projection operator corresponding to a symmetry transformation may
at most introduce a phase factor

Ω̂RΨp = eiΦΨp (4.4.4)

as a symmetry-projected wave function describes an identical state of the system with
an identical electronic energy. The following sections describe symmetry properties of
the electronic wave function describing a molecule in a static, homogeneous, external
magnetic field.

4.5. Spin Symmetry

4.5.1. Spin Operator

In a two-component nonrelativistic framework, the wave function is expressed in
terms of spinors as previously shown in eq. (4.3.1). The Hamiltonian operator may
similarly be cast in terms of a two-component matrix with elements corresponding to
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the generalized spin components of the spinor:

Ĥ =

Ĥαα Ĥαβ

Ĥβα Ĥββ

 . (4.5.1)

The electron spin is represented by the Pauli matrices to which it is related via

Ŝα =
1

2
σα (4.5.2)

and the generalized spin components can be expressed through either a parallel
orientation with respect to the electron spin (α) or an antiparallel orientation (β).
In the absence of an external field, where a molecular system is described through
Ĥ = Ĥ0, the electron spin can always be chosen such that the generalized spin
components are aligned to the z-axis. As a consequence, the spin in this direction
becomes a constant of motion which results in

[Ĥ0, Ŝz] = 0 (4.5.3)

ŜzΨp = SzΨp (4.5.4)

which can be used in order to decouple the electron spin in the two-component
representation of Ĥ, resulting in

Ĥ =

Ĥαα 0

0 Ĥββ

 . (4.5.5)

In external magnetic fields, this is generally not possible as the spin Zeeman term
references the Pauli matrices directly and thus

[ĤS, Ŝz] ̸= 0 . (4.5.6)

If, however, the external magnetic field is aligned with the z-axis, B = (0, 0, Bz)
⊤,

then ĤS and Ŝz commute and the electronic Hamiltonian can be decoupled as shown
in eq. (4.5.5).
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4.5.2. Squared Spin Operator

In the presence of an external magnetic field, the electronic Hamiltonian commutes
with the squared spin operator

[Ĥ, Ŝ2] = 0 (4.5.7)

regardless of the spin orientation and therefore the exact electronic wave function is
always an eigenfunction of Ŝ2:

Ŝ2Ψp = S(S + 1)Ψp . (4.5.8)

4.5.3. Spin Projection Operator

The spin projection operator ŜR(θ,R) describes a rotation of the electron spin around
an axis represented by the unit vector R about an angle of θ. Such a symmetry
transformation must be expressed through a phase factor which takes the form of[123]

ŜR(θ,R) = exp

(
iθ

2
Rασα

)
. (4.5.9)

A rotation about 2π or 360◦ around any axis does not result in an identical spinor,
but instead reverses its sign

ŜR(0,R)Ψp = −ŜR(2π,R)Ψp (4.5.10)

and only a rotation about 4π or 720◦ results in an identical spinor, which constraints
the rotational angle to 0 ≤ θ < 4π.[91, 123]

4.6. Time-reversal symmetry

4.6.1. Time-Reversal Operator

The time-reversal operator T̂ describes the effects of moving a system backwards in
time instead of forwards. It can be written as

T̂ = −iσyK̂ (4.6.1)
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4.6. Time-reversal symmetry

and is thus represented through an antihermitian two-component matrix and therefore
does not correspond to any good quantum numbers.[91, 123] The time-reversal operator
includes the complex conjugation operator

K̂Ψp = Ψ∗
p , (4.6.2)

which is also antihermitian and only has an effect on complex-valued wave functions.
The electronic Hamiltonian operator for a molecule in a static, homogeneous, external
magnetic field does not commute with the time-reversal operator

[Ĥ, T̂] ̸= 0 (4.6.3)

due to the presence of the field-dependent terms.[125] The corresponding electronic
wave function is therefore also not time-reversal symmetric. As a consequence, Kramers
symmetry[126] cannot be invoked for spinors in the presence of magnetic fields:φα

p

φβ
p

 ̸=

−φβ ∗
p

φα ∗
p

 . (4.6.4)

4.6.2. Magnetic Operator

The magnetic operator M̂ can be expressed as a combination of a spin rotation about
an angle of π and the time-reversal operation:[123]

M̂(R) = T̂ŜR(π,R) = iRασαT̂ . (4.6.5)

Despite its name, the electronic Hamiltonian operator for a molecule in a static,
homogeneous, external magnetic field does not commute with the magnetic operator

[Ĥ, M̂] ̸= 0 . (4.6.6)

Electronic wave functions for molecules in external magnetic fields are thus also not
invariant with respect to the time-reversal an magnetic operations. In practice, it is
therefore necessary to choose an ansatz for the electronic wave function which is not
invariant with respect to either operations.[124, 127]
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4.7. Spatial Symmetry

4.7.1. Molecular Point Groups in Static Magnetic Fields

The results of this section were derived in collaboration with Gebele and Klopper in
the context of this work and published in Ref. [52]. This section contains the main
results presented therein, including some additional background on the combined
description of spin and spatial symmetry. For the sake of brevity, the mathematical
proofs contained in Ref. [52] are omitted here.
The incorporation of spatial symmetry into the electronic wave function requires a
group theoretical approach. In contrast to field-free calculations, the symmetry of the
external magnetic field has to be considered in addition to the molecular symmetry of
the system. The spatial symmetry of a molecular system can be described through
symmetry operations Ôi which map the system onto itself. In three-dimensional
space (R3), this is possible through reflections, rotations and their combinations,
with the complete set of symmetry operations forming a group. Both the operator
representations of all symmetry operations Ôi as well as their matrix representations in
R3, Oi, form homomorphic groups. A symmetry operation will transform the position
vector of a nucleus RI according to

OiRI = R′
I , (4.7.1)

where R′
I is the position vector of a nucleus of an identical atom and isotope. Similarly,

the magnetic field is transformed as

det(Oi)OiB = B , (4.7.2)

since its represented by an axial vector as demonstrated in eq. (2.2.7).[128] It should
be noted that the spatial symmetry of a molecular system depends both on the
nuclear configuration and the magnetic field vector and we can thus obtain different
symmetries for different points on the BO PES represented by EBO

p (R,B) as introduced
in section 3.3.2. Consequently, the symmetry of the electronic wave function is also
dependent on the reference point of the BO PES. Most notably, the symmetry of the
electronic wave function is also dependent on the orientation of the external magnetic
field with respect to the molecule. Molecular rotations about an axis not aligned with
the magnetic field vector will therefore generally change the molecular symmetry and
the corresponding symmetry of the electronic wave function.

38



4.7. Spatial Symmetry

Following the rules laid out in eqs. (4.7.1)–(4.7.2), only the following symmetry
operations can exist in static, external, magnetic fields:[52, 128]

• the rotation about an n-fold axis parallel to the field (Ĉn)

• the reflection at a mirror plane perpendicular to the field (σ̂)

• the rotation-reflection about an n-fold axis (Ŝn)

In passing, we note that the inversion (̂i) is not listed since it is identical to the Ŝ2

operation. For each symmetry operation, a projection operator can be introduced,
writing ÔR

C(θ,R) for a rotation about an angle of θ around a rotation axis represented
by unit vector R, ÔR

σ for a reflection and ÔR
S (θ,R) for a rotation-reflection. Such

projection operators corresponding to each symmetry operation may at most introduce
a phase factor to the electronic wave function according to eq. (4.4.4). For a rotation
of the molecular system about a C1 axis, no phase is introduced:

ÔR
C(0)Ψp = ÔR

C(2π)Ψp (4.7.3)

However, if the spin rotation is taken into account as discussed in section 4.5.3, the
electronic wave function transforms according to

ŜR(0,R)ÔR
C(0,R)Ψp = −ŜR(2π,R)ÔR

C(2π,R)Ψp (4.7.4)

and thus the operation Ĉ1 may be represented by a symmetry operation labeled
Ê
′
.[129, 130] Only for a rotation about an angle of 4π, no phase is introduced into the

wave function,

ŜR(0,R)ÔR
C(0,R)Ψp = ŜR(4π,R)ÔR

C(4π,R)Ψp , (4.7.5)

and therefore the symmetry operation Ĉ1/2 is labeled identity (Ê), which in the
context of group theory takes the role of the neutral element.[131] This procedure is
not strictly necessary if the spin variable can be decoupled, that is, if [Ĥ, Ŝz] = 0

and the electronic Hamiltonian can be expressed as presented in eq. (4.5.5). Since
the decoupled electronic wave functions then no longer directly reference the electron
spin, the Ĉ1 operation does not need to include a rotation of the spin and can then
be used as the neutral element and labeled identity (Ê). Those groups which include
the operation Ê

′
are called double groups and their use is strictly necessary if working

with two-component spinors.[130]
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4.7.2. Properties and Identification of Magnetic Point Groups

Point groups which can exist in magnetic fields are denoted as magnetic point groups.
They exhibit a number of properties,[132] which were mathematically proven in collab-
oration with Gebele in the context of this work:[52, 128]

• All magnetic point groups are subgroups of C∞h

• The magnetic point group of a system is a subgroup of the molecular point
group in the absence of a field

• All magnetic point groups are Abelian

As a consequence of the first two points, the magnetic point group of a system can be
identified by examining the cross-section between its molecular point group in the
absence of a field and C∞h.[132] Alternatively, eqs. (4.7.1)–(4.7.2) can be examined for
a molecular system in order to identify its magnetic point group. These considerations
can be condensed into a flow chart as shown in fig. 4.7.1, which can be used to easily
identify magnetic point groups.

Molecule

Linear? noyes

i? noyes

B   C∞?yes

C∞
no

yes

Cs

B    C∞?

no

C1

B   Cn?

B   C∞?yes

C∞h
no

yes

C2h

B    C∞?

no

Ci

B    σ? B    σ?yes

Cnh

yes

Cs

yes no

no

yes

S2n
no

Cn

B   S2n?

no

yes

Ci

no

C1

i?

Figure 4.7.1.: Flow chart to identify the Schoenflies symbols of molecular point groups
in static external magnetic fields. The symmetry operations inversion (i),
rotation about an n-fold axis (Cn), reflection (σ) and rotation-reflection
about a 2n-fold axis (S2n) have to be considered, including their relative
position to the external magnetic field. Reprinted with permission from
Ref. [52] and originally modeled after Ref. [128].
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For linear molecules, this results in two point groups which can not be found in the
absence of a magnetic field: C∞ and C∞h.[90, 133] The character tables for the double
groups corresponding to these two point groups were constructed using Schur’s lemma
for this thesis and first published in Ref. [52]. It should be noted that character tables
are not unique. In this work, the conventions of Altmann and Herzig[130] were chosen
to construct the additional character tables, since they are missing in their otherwise
exhaustive list.
The character table for the double group C∞ is shown in table 4.7.1:

Table 4.7.1.: Character table of the double group C∞. Reprinted with permission from
Ref. [52].

C∞ E C∞(ϕ)
A = Σ +1 +1

E1 = Π
+1 +ε∗1
+1 +ε1

E2 = ∆
+1 +ε∗2
+1 +ε2

E3 = Φ
+1 +ε∗3
+1 +ε3

En
+1 +ε∗n
+1 +εn

E1/2
+1 +ε1/2
+1 +ε∗1/2

E3/2
+1 +ε3/2
+1 +ε∗3/2

E5/2
+1 +ε5/2
+1 +ε∗5/2

E7/2
+1 +ε7/2
+1 +ε∗7/2

En+1/2
+1 +εn+1/2

+1 +ε∗n+1/2

εk = exp(ikϕ), 0 < ϕ < 2π, n = 4, 5, 6, . . .

The character table for the double group C∞h is presented in table 4.7.2. Following
the general conventions of designating irreducible representations, the subscript g
(short for gerade) is used for irreducible representations with a positive sign in their
inversion character, while u (short for ungerade) is used for negative signs. Other
compilations of these character tables do not seem to follow this convention.[134]
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4. Electronic Wave Function: Construction and Symmetry

Table 4.7.2.: Character table of the double group C∞h. Reprinted with permission
from Ref. [52].

C∞h E C∞(ϕ) I σh S∞(ϕ)
Ag = Σg +1 +1 +1 +1 +1

E1g = Πg
+1 +ε∗1 +1 −1 −ε∗1
+1 +ε1 +1 −1 −ε1

E2g = ∆g
+1 +ε∗2 +1 +1 +ε∗2
+1 +ε2 +1 +1 +ε2

E3g = Φg
+1 +ε∗3 +1 −1 −ε∗3
+1 +ε3 +1 −1 −ε3

Eng
+1 +ε∗n +1 (−1)n (−1)nε∗n
+1 +εn +1 (−1)n (−1)nεn

Au = Σu +1 +1 −1 −1 −1

E1u = Πu
+1 +ε∗1 −1 +1 +ε∗1
+1 +ε1 −1 +1 +ε1

E2u = ∆u
+1 +ε∗2 −1 −1 −ε∗2
+1 +ε2 −1 −1 −ε2

E3u = Φu
+1 +ε3∗ −1 +1 +ε∗3
+1 +ε3 −1 +1 +ε3

Enu
+1 +ε∗n −1 (−1)n+1 (−1)n+1 ε∗n
+1 +εn −1 (−1)n+1 (−1)n+1 εn

E1/2,g
+1 +ε1/2 +1 +i −i ε1/2
+1 +ε∗1/2 +1 −i +i ε∗1/2

E3/2,g
+1 +ε3/2 +1 +i −i ε3/2
+1 +ε∗3/2 +1 −i +i ε∗3/2

E5/2,g
+1 +ε5/2 +1 +i −i ε5/2
+1 +ε∗5/2 +1 −i +i ε∗5/2

E7/2,g
+1 +ε7/2 +1 +i −i ε7/2
+1 +ε∗7/2 +1 −i +i ε∗7/2

En+1/2,g
+1 +εn+1/2 +1 +i −i εn+1/2

+1 +ε∗n+1/2 +1 −i +i ε∗n+1/2

E1/2,u
+1 +ε1/2 −1 −i +i ε1/2
+1 +ε∗1/2 −1 +i −i ε∗1/2

E3/2,u
+1 +ε3/2 −1 −i +i ε3/2
+1 +ε∗3/2 −1 +i −i ε∗3/2

E5/2,u
+1 +ε5/2 −1 −i +i ε5/2
+1 +ε∗5/2 −1 +i −i ε∗5/2

E7/2,u
+1 +ε7/2 −1 −i +i ε7/2
+1 +ε∗7/2 −1 +i −i ε∗7/2

En+1/2,u
+1 +εn+1/2 −1 −i +i εn+1/2

+1 +ε∗n+1/2 −1 +i −i ε∗n+1/2

εk = exp(ikϕ), 0 < ϕ < 2π, n = 4, 5, 6, . . .
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Electronic Ground States

Since an exact solution to the electronic Schrödinger equation for molecular systems
is generally not possible, approximations have to be introduced. Most of modern
quantum chemistry is concerned with finding a good compromise between accuracy
and computational effort, leading to a wide variety of different quantum chemical
methods. The adaptation of these methods for the inclusion of external magnetic
fields shall be the main focus of this chapter.
Two types of approaches for approximating the electronic Schrödinger equation are
presented in this work. Firstly, wave function-based methods in which the many-
electron wave function is approximated through various means. This includes the
Hartree–Fock method and subsequent corrections which are commonly referred to as
post Hartree–Fock methods, such as Møller–Plesset perturbation theory up to second
order (MP2) and the approximate coupled cluster singles and doubles (CC2) method.
For all methods, particular care is taken of an appropriate description of the wave
function’s symmetry as described in the last chapter. The resolution of the identity
approximation is introduced, which was derived for external magnetic fields in the
context of this work and published in Ref. [56].
Secondly, Kohn–Sham density functional theory is introduced in which the electronic
Schrödinger equation is approximately solved by modeling a noninteracting reference
system and describing the non-classical electron interaction as a functional of the
electron density and its derivatives. The existence of an external magnetic field induces
currents and their inclusion in the exchange-correlation functional is thoroughly
discussed, which was worked out in collaboration with Holzer and presented in
Ref. [55]. The chapter concludes with the introduction of the post Kohn–Sham method
GW, in which quasiparticle energies are used to replace the functional-dependent and
generally physically meaningless Kohn–Sham orbital energies. The derivation of GW
for molecules in external magnetic fields was carried out in collaboration with Holzer
and Klopper and first presented in Ref. [53].
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5.1. Notation

In this chapter, the many-electron wave function Ψ is approximated through one-
electron wave functions ψ, also often referred to as orbitals. For general orbitals, we
use the subscripts p, q, r, s, for occupied orbitals i, j, k, l and for unoccupied (virtual)
orbitals a, b, c, d. These subscripts are strictly different from the designations p, q used
previously in order to describe electronic states.
Within the context of quantum chemical methods, electron repulsion is represented
through four-center integrals. In this work, the Mulliken notation

(µν|κλ) =
∫∫

ξµ(r)
∗ξν(r)

1

|r− r′|ξκ(r
′)∗ξλ(r

′) dr dr′ (5.1.1)

is consistently employed. In the context of the resolution of the identity (RI) ap-
proximation, an auxiliary basis denoted P,Q,R is introduced, which must not be
confused with the similar, but lower case letter subscripts for general orbitals.[135, 136]

The resulting three- and two-center integrals are defined as

(µν|P ) =
∫∫

ξµ(r)
∗ξν(r)

1

|r− r′|χP (r
′) dr dr′ ; (5.1.2)

(P |Q) =
∫∫

χP (r)
1

|r− r′|χQ(r
′) dr dr′ , (5.1.3)

using the Mulliken notation. For auxiliary basis functions, real-valued GTOs χ can
always be used even in the presence of magnetic fields.[56, 137]

5.2. Hartree–Fock Theory

5.2.1. Basic Concept and Symmetry Classification

The Hartree–Fock (HF) method is one of the most widespread approaches to approxi-
mating the many-electron wave function Ψ.[58, 138–141] For any electronic state such
as the ground state of the system, here denoted as 0, a single Slater determinant
consisting of an antisymmetric tensor product of one-electron wave functions,

Ψ0(x1,x2, . . . ,xN) ≈ (N !)−1/2 det[ψ1ψ2 . . . ψN ] , (5.2.1)
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is used as the ansatz. In an iterative procedure often referred to as self-consistent field
(SCF) method, the orbitals are variationally optimized by solving a set of coupled
effective one-electron Schrödinger equations called canonical HF equations:

F̂ψj = εjψj . (5.2.2)

The Fock operator F̂ serves as an effective Hamiltonian, while the orbital energies
εj are used to characterize the stability of their respective orbitals. The sum of the
orbital energies does not correspond to the total electronic energy of the system.
As previously discussed in sec. 4.4, the exact electronic wave function is an eigenfunction
of any symmetry operator Ω̂. For approximated wave functions such as the Slater
determinant in the Hartree–Fock method, this is not necessarily the case. It is, however,
generally possible to force approximated wave functions to be eigenfunctions of any
symmetry operator, which is equivalent to carrying out the SCF method under a
variational constraint.[122] If the approximated wave function is an eigenfunction of
Ω̂, this does not change the energy, otherwise the additional constraint will lead to
higher energies.
Let us consider the symmetry operations presented in secs. 4.5–4.7. For spatial
symmetry, the Slater determinant is an exact eigenfunction of spatial symmetry
operators. Without loss of generality, the spinors can thus be characterized as belonging
to irreducible representations of the magnetic point group corresponding to the current
nuclear configuration.
Approximate wave functions are generally not eigenfunctions to any spin, time-reversal
or magnetic operator. As mentioned before, these symmetries can be included in
forms of variational constraints, leading to different labels for the HF method. If the
Ŝ2-symmetry is preserved, the term restricted Hartree–Fock (RHF) is used. If only
the Ŝz-symmetry is retained, the method is labelled unrestricted Hartree–Fock (UHF).
Finally, if no spin symmetry is enforced, the method is referred to as generalized
Hartree–Fock (GHF).[142] In combination with preserved symmetries in the time-
reversal or magnetic operator, eight different labels may be assigned to the HF method
as listed in table 5.2.1.[123, 124, 143]

For molecules in static, external magnetic fields, time-reversal and magnetic symmetry
are broken. Therefore, only the complex RHF, UHF and GHF methods should be
applied. For closed-shell molecules where electrons can be paired, the complex RHF
method can be used if the magnetic field is oriented along the z-axis. Since the spin
Zeeman term in the electronic Hamiltonian favors unpaired spins, this restriction
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Table 5.2.1.: Symmetry classification of Hartree–Fock wave functions as modeled after
Ref. [123]. Instead of the acronyms suggested by Fukutome, the more
common Stuber and Paldus designations[143] are used.

Preserved symmetry T̂ M̂ —

Ŝ2 Real RHF Complex RHF

Ŝz Paired UHF Real UHF Complex UHF

— Paired GHF Real GHF Complex GHF

generally leads to Slater determinants of excited states.[32–34] Not preserving the Ŝ2

symmetry, but aligning the magnetic field with the z-axis so that the Ŝz symmetry
can be retained leads to the complex UHF method.[39] This is a common choice since
the magnetic field can always be oriented along the z-axis without loss of generality,
thereby reducing the computational effort significantly by separating the Hamiltonian
and its corresponding wave function according to eq (4.5.5). We refer to those solutions
which do not retain ⟨Ŝ2⟩ = S(S + 1) with S being either an integer or half-integer as
spin contaminated.
For general orientations of the magnetic field, however, only the complex GHF method
can be used.[37, 56] On the one hand, this approach has some advantages, particularly
its compability with relativistic approaches as well as its correct description of triplet
excitations in the framework of time-dependent HF, which will be discussed in more
detail in chapter 6. On the other hand, the complex GHF approach can lead to
symmetry-broken wave functions with lower energies than their UHF counterparts,
most importantly in the context of molecular dissociation.[124] Nevertheless, the
complex GHF method is employed throughout this work.

5.2.2. Generalized Hartree–Fock

The complex GHF method can be derived from the general HF equations presented in
eq. (5.2.2). Since the Fock operator does not commute with Ŝz operator, it must take
the general form from eq. (4.5.1). The one-electron wave functions must be expressed
in terms of spinors as shown in eq. (4.3.1) and using the LCAO ansatz with LAOs in
order to ensure gauge origin invariance. The resulting non-linear equations,Fαα Fαβ

Fβα Fββ

Cα
j

Cβ
j

 = εj

S 0

0 S

Cα
j

Cβ
j

 , (5.2.3)
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are the complex two-component Roothaan-Hall equations. They represent a generalized
eigenvalue problem with the overlap matrix Sµν = ⟨µ|ν⟩ constituting the metric. If
LAOs are employed, the overlap matrix is hermitian.
The Fock matrix can be cast more conveniently using the Pauli matrices, defining
σ1 := σx, σ2 := σy and σ3 := σz. In combination with σ0, the Fock matrix may be
decomposed according to

F = Fm ⊗ σm , (5.2.4)

with m = {0, 1, 2, 3}.[37] These four contributions correspond to a spin-free (σ0) term
as well as three terms representing the electron spin, each in one Cartesian component.
They can be constructed individually as

Fm = hm +Vm[Dm] , (5.2.5)

where h is the one-electron part and V the two-electron part of the Fock matrix.
The two-electron part is a functional of the density matrix which can similarly be
decomposed into a total electron density matrix D0 and three spin density matrices:

D = Dm ⊗ σm . (5.2.6)

The two-component Roothaan-Hall equations are solved in an iterative procedure
with an initial guess for the coefficient matrices C from which the density matrices
are constructed:

Dσσ′

µν = Cσ
µjC

σ′∗
νj . (5.2.7)

For any set of density matrices, the Fock matrix can be constructed according to
eq. (5.2.5). By transforming the Fock matrix into the molecular orbital (MO) basis and
diagonalizing it, a new set of coefficients is obtained and the procedure is continued
until the coefficients are converged.

5.2.3. Construction of the Fock Matrix

Having described an outline of the GHF method and SCF procedure, it is now
necessary to focus on how the Fock matrix is constructed. Since the Fock operator
acts as an effective one-electron Hamiltonian, it must contain all terms derived in
sec. 3.3.2. According to eq. (5.2.5), it can be separated into a one-electron and a
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two-electron part. The one-electron part must be decomposed as

hµν,0 = ⟨µ|ĥ0|ν⟩ , (5.2.8)

hµν,n =
1

2
Bn ⟨µ|ν⟩ , (5.2.9)

with n = {1, 2, 3} and B1 = Bx, B2 = By, B3 = Bz, since only the spin Zeeman term
contains an explicit reference to the Pauli matrices. All other one-electron contributions,
including the canonical kinetic energy, electron-nuclear attraction, orbital Zeeman
and the diamagnetic terms, are contained in the spin-free one-electron Hamiltonian
operator:

ĥ0 =
p̂2

2
−

Nnuc∑
I

ZI

|RI − r| +
1

2
B · l̂O +

1

8

[
B2(r̂O)2 − (B · r̂O)2

]
. (5.2.10)

It should be stressed again that an external magnetic field only directly influences
the one-electron part through its Hamiltonian, while all parts are indirectly impacted
through the use of field-dependent LAOs.
The two-electron part V consists of a classical Coulomb contribution J and a purely
quantum-mechanical term called exchange K resulting from the Pauli exclusion
principle embedded into the method through the use of Slater determinants. While the
Coulomb contribution is repulsive, the exchange contribution represents an attractive
potential between electrons of different spin, thus accounting for a lessened repulsion
between electrons of different spin. Therefore, the exchange contribution is specifically
spin-dependent and the two-electron potential is decomposed as

V0[D0] = J0[D0]−K0[D0] , (5.2.11)

Vn[Dn] = −Kn[Dn] . (5.2.12)

The individual elements of the Coulomb and exchange matrices are given by

Jµν,0 =
∑
κλ

(µν|κλ)Dλκ,0 , (5.2.13)

Kµν,m =
∑
κλ

(µλ|κν)Dλκ,m , (5.2.14)

and need four-center integrals contracted with density matrix elements for their
construction. As such, calculating the exchange contribution is significantly more
computationally demanding than the Coulomb contribution and is usually the most
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time-consuming step of a HF calculation.
Finally, the total electronic energy can be computed from its individual contributions

EGHF = E1e + EJ + EK + VNN , (5.2.15)

E1e = Te + VNe + EBS + EBL + EBD , (5.2.16)

through contraction with their respective density matrices. The field-dependent terms
are all contained in the one-electron energy (E1e) and labeled as their respective
Hamiltonian operators in sec. (3.3.2).

5.2.4. Resolution of the Identity Approximation

In the HF method, the construction of the two-electron contribution to the Fock
matrix is usually the most time-intensive step. More specifically, the construction of
four-center integrals is extremely time-consuming as they are both the most abundant
and computationally demanding integrals to be solved. Through the use of auxiliary
basis functions, the integrals can be approximated through

(µν|κλ) ≈
∑
PQ

(µν|P )(P |Q)−1(Q|κλ) , (5.2.17)

which is called the resolution of the identity (RI) approximation.[135, 144–148] This
can significantly reduce the computational effort for the Coulomb matrix, for which
eq. (5.2.17) can be directly inserted into eq. (5.2.13) to yield

Jµν,0 ≈
∑
κλ

∑
PQ

(µν|P )(P |Q)−1(Q|κλ)Dλκ,0 . (5.2.18)

This requires only the solution of two- and three-center integrals which formally
reduces the scaling from O(N4) to O(N3). This is referred to as the RI-J approxi-
mation.[136, 149] Unfortunately, the typically more computationally demanding exchange
matrix cannot be treated equivalently, as µ and ν refer to the same electronic coordinate.
Therefore, the auxiliary three-center quantities

Bµν,Q =
∑
P

(µν|P )(P |Q)−1/2 , (5.2.19)

B′
Q,κλ =

∑
R

(Q|R)−1/2(R|κλ) (5.2.20)
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are introduced, combined with a generally larger auxiliary basis set. The coefficient
matrices C are then used directly in order to construct the exchange matrix as

Kσσ′

µν ≈
∑
κλ

∑
Q

∑
j

Bµλ,QB
′
Q,κνC

σ
λjC

σ′∗
κj . (5.2.21)

While the RI-K approximation does not formally reduce the scaling of the HF method,
it can still lead to significantly reduced computation times.[149]

A detailed overview of the RI approximation in the context of external magnetic fields
and LAOs was worked out in the context of this thesis and published in Ref. [56]. The
working equations of both RI-J and RI-K for LAOs are identical to those constructed
using AOs. Thus, the only differences between RI for quantum chemical calculations in
the absence and presence of a magnetic field lie in the construction and processing of
integrals. Since auxiliary basis functions can be chosen to be real-valued without loss of
generality,[137] the two-center integrals (P |Q) remain real-valued. Three-center integrals
(µν|P ) in the basis of LAOs are complex-valued; their computation is presented in
sec. 9.5.3 of this work. Finally, the necessary steps for the implementation of the RI
approximation in external magnetic fields are discussed in sec. 8.1.

5.3. Post Hartree–Fock Methods

5.3.1. Electron Correlation

The Hartree–Fock method reduced the many-electron wave function to a single Slater
determinant consisting of one-electron wave functions. Using a mean-field description
for the interaction between electrons, the generalized Hartree–Fock energy EGHF and
corresponding wave function for the electronic ground state |GHF⟩ was obtained.
However, the correlated movement of electrons was disregarded in this approach and
we thus define the difference between the exact electronic energy and HF as the
correlation energy

Ecorr = Eexact − EGHF , (5.3.1)

which is always negative since HF is a variational method. While an exact calculation
of the correlation energy is in principle possible, it is extremely time-consuming and
cannot be carried out for systems containing more than a few electrons. However, a
large number of approximations for the correlation energy are available, presenting
different compromises between accuracy and computational effort. These methods are

50



5.3. Post Hartree–Fock Methods

called post Hartree–Fock methods since they typically require a HF reference wave
function and can thus only be carried out after a successful HF calculation.
All of these post HF methods aim at improving the two-electron part of a HF
calculation and as such, they generally do not reference one-electron terms such as
the field-dependent contributions. Therefore, these methods only indirectly depend
on an external magnetic field through the use of LAOs. A very short overview over
two of these methods implemented in the context of this work is given here and the
interested reader is referred to the literature.[150–154]

5.3.2. Møller–Plesset Perturbation Theory

The correlation energy can be approximated using a perturbative approach. Treating
the two-electron part as the external perturbation, the electronic energy and wave
function can be expanded in a power series. If the GHF wave function is used as
the unperturbed wave function, this approach is called generalized Møller–Plesset
perturbation theory up to n-th order (GMPn). While GMP1 yields the GHF energy
as a result, the first correction results from GMP2 which can be used to approximate
the correlation energy: Ecorr ≈ EGMP2.
In this work, GMP2 is used in combination with the RI approximation.[155–157] Similar
to RI-K, three-center integrals are calculated using LAOs and an auxiliary basis. This
auxiliary basis, however, is typically chosen to be a lot larger than the basis used for
RI-K. The three-center integrals are transformed to the MO basis,

Bpq,Q =
∑
µν

Bµν,Q

[
Cα∗

µpC
α
νq + Cβ∗

µpC
β
νq

]
, (5.3.2)

B′
Q,rs =

∑
κλ

B′
Q,κλ

[
Cα∗

κrC
α
λs + Cβ∗

κrC
β
λs

]
, (5.3.3)

and then used for the approximate construction of four-center integrals:

(pq|rs) ≈ Bpq,QB
′
Q,rs . (5.3.4)

This approach is denoted RI-C and can also be used for other post HF methods in
which the four-center integrals are required.[153, 154] Finally, the GMP2 energy can be
calculated using the following expression:

EGMP2 = −1

4

∑
ijab

|(ia|jb)− (ib|ja)|2
εa + εb − εi − εj

. (5.3.5)
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It should be noted that this approach is only well-defined if no degenerate Slater
determinants exist (εa + εb ̸= εi + εj), which is evident from eq. (5.3.5) considering
the denominator. While extensions to the GMP2 method for degenerate orbitals do
exist, they are not considered in this work. More detailed descriptions of the GMP2
approach can be found elsewhere in literature.[150–152]

5.3.3. Approximate Coupled Cluster Theory

The approximate coupled cluster singles and doubles (CC2) method can be used to
estimate the correlation energy, yielding results similar in quality to MP2.[158] By
constructing the wave function according to

|CC2⟩ = eT̂1+T̂2 |GHF⟩ , (5.3.6)

using a cluster operator consisting of single and double excitations and the GHF
reference wave function, one obtains the two-component CC2 method.[154] Single and
double excitation manifolds are defined by µ1 and µ2 and the corresponding single
and double excitation operators are given by

T̂n =
∑
µn

tµn τ̂µn , (5.3.7)

with tµ1 and tµ2 being the cluster amplitudes τ̂µ1 and τ̂µ2 the excitation operators,
respectively.[159] By using the shorthand notation

ˆ̃H = e−T̂1ĤeT̂1 (5.3.8)

for a similarity transformation of the Hamiltonian using the single excitation operator,
the cluster amplitudes are determined through the solution of the following equations:

Ωµ1 = ⟨µ1| ˆ̃H + [ ˆ̃H, T̂2]|GHF⟩ = 0 , (5.3.9)

Ωµ2 = ⟨µ2| ˆ̃H + [F̂ , T̂2]|GHF⟩ = 0 . (5.3.10)

These equations are solved in an iterative procedure, using RI-C with LAOs for
the construction of four-center integrals.[160, 161] While yielding comparable results to
MP2 for ground-state energies, the CC2 method can also be used for the subsequent
calculation of electronic excitations.[158, 162, 163]
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5.4. Kohn–Sham Density Functional Theory

5.4.1. Basic Concept and Symmetry Classification

Kohn–Sham density functional theory (DFT) is likely the most commonly used method
in modern quantum chemistry.[164–166] Although structurally very similar to the HF
method, it does not rely on finding an approximation to the many-electron wave
function Ψ. Instead, a noninteracting reference system is proposed, which is solved
using a single Slater determinant consisting of one-electron wave functions often
referred to as Kohn–Sham (KS) orbitals. In contrast to the orbitals used in HF theory,
KS orbitals are generally not assigned any physical meaning, with a few exceptions
such as Janak’s theorem.[167–169]

The entire non-classical electronic interaction is then contained in a term called
exchange-correlation (xc) energy Exc, which is self-consistently optimized as a func-
tional of the ground-state electron density. The noninteracting and fully interacting
systems are smoothly linked via the density-fixed adiabatic connection and can in prin-
ciple be exactly represented through the same electron density.[170–175] Unfortunately,
the exact xc functional is unknown, making the use of approximations necessary. In
this work, two types of approximations for the xc functional are used. Firstly, the
generalized gradient approximation (GGA), in which the xc energy is calculated as a
functional of the electron density ρm and its gradient ∇ρm:

EGGA
xc =

∑
m

∫
fxc [ρm(r),∇ρm(r)] dr . (5.4.1)

Secondly, the meta-generalized gradient approximation (MGGA) in wich the xc
functional is additionally dependent on the kinetic energy density τm:

EMGGA
xc =

∑
m

∫
fxc [ρm(r),∇ρm(r), τm(r)] dr (5.4.2)

The subscript m refers to (generalized) spin components of the electron density, its
gradient and the kinetic energy density. These quantities are defined as

ρm(r) = Dµν,m ξµ(r)ξ
∗
ν(r) , (5.4.3)

∇ρm(r) = Dµν,m[{∇ξµ(r)}ξ∗ν(r) + ξµ(r)∇ξ∗ν(r)] , (5.4.4)

τm(r) =
1

2
Dµν,m[p̂ ξµ(r)] · [p̂ ξν(r)]∗ , (5.4.5)
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respectively. In the absence of fields, LAOs ξ(r) are reduced to regular GTOs χ(r). Due
to the similarity of Kohn–Sham DFT and the HF method, the one-electron density
matrix D may be defined as previously presented in eq. (5.2.6). The total electron
density at any point in space with position vector r is described by ρ0(r). Furthermore,
the generalized spin density vector s(r) = (ρ1(r), ρ2(r), ρ3(r))

⊤ may point in arbitrary
directions at any point in space, which is referred to as spin-noncollinearity. All
rotations in the spin manifold are allowed and the generalized spin density is defined
as s(r) = |s(r)|.[176, 177]

Spin-collinear Kohn–Sham DFT can be obtained by imposing additional spin con-
straints for the xc functional. The first option is to limit the spin density vector to
a single component, typically the z-component: s(r) = (0, 0, ρ3(r))

⊤. Then the two-
component Fock matrix can be decoupled according to eq. (4.5.5) and the approach is
labeled unrestricted Kohn–Sham (UKS) DFT. The second option is to assume that
the spin density vanishes completely s(r) = 0, leading to the restricted Kohn–Sham
(RKS) approach.[178–180] In this work, only spin-noncollinear KS DFT is used.

5.4.2. Density Functional Theory in External Magnetic Fields

Using Kohn–Sham DFT in external magnetic fields requires a few additional consider-
ations compared to the field-free case. As already described in the previous section,
the electron density and its related quantities need to be calculated using LAOs in
order to avoid an unphysical dependence on the gauge origin. Furthermore, external
magnetic fields are known to induce currents which the exact xc functional depends
on, leading to current density functional theory (CDFT).[181–185] Alternatively, the xc
functional may also be chosen to be explicitly depend on the magnetic field.[186–188]

The physical current density jm in a quantum-mechanical context can be defined from
its classical counterpart given in eq. (2.2.6) and may be expressed as

jm(r) = π̂ρm . (5.4.6)

Using the principle of minimal coupling, it may be separated into two contributions:

jm(r) = jpm(r) +Axc
m(r)ρm(r) . (5.4.7)

The first contribution is equivalent to the canonical current density,

jpm(r) = p̂ρm =
i
2
Dµν,m[∇ξµ(r)ξ

∗
ν(r)− ξµ(r)∇ξ∗ν(r)] , (5.4.8)
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and is typically referred to as paramagnetic current density, while the second contribu-
tion is field-dependent through the xc contribution to the magnetic vector potential,
Axc

m(r).[181, 189] For electronic ground states, we require the physical current density
to vanish at all points in space, jm(r) = 0, and derive an explicit form for the xc
contribution to the magnetic vector potential:

Axc
m(r) = − jpm(r)

ρm(r)
. (5.4.9)

Thus, the paramagnetic current density for electronic ground states vanishes in the
absence of fields or relativistic effects such as spin orbit coupling.[190, 191]

Several options on how to consider external magnetic fields in Kohn–Sham DFT now
present themselves, three of which shall be briefly discussed here. Firstly, the xc energy
may be approximated using GGA functionals which were derived for calculations in
the absence of fields.[46, 49, 54] No further alterations are made and the only difference
between field-free and field-dependent calculations lies in the use of LAOs.
Secondly, if the xc energy is approximated through MGGA functionals, a depedency
on the paramagnetic current density naturally arises.[184, 185, 189, 192–194] The kinetic
energy density τm(r) presented in eq. (5.4.5) depends on the canonical momentum
operator p̂ which may be replaced via the physical momentum operator π̂ through
the principle of minimal coupling. The resulting physical kinetic energy density τ̃m(r)
may then be expressed as

τ̃m(r) = τm(r)−
|jpm(r)|2
2ρm(r)

(5.4.10)

by inserting the expression for the xc contribution to the magnetic vector potential
as previously derived in eq. (5.4.9). It should be noted that the physical kinetic
energy density as shown in eq. (5.4.10) includes both paramagnetic and diamagnetic
contributions. An alternative derivation of 5.4.10 through the Fermi hole curvature
is possible, but a detailed description is omitted here and the interested reader is
referred to the literature.[195, 196] The use of the physical kinetic energy density in
MGGA functionals is further convenient since the inhomogenity parameter[197, 198]

z̃m(r) =
τvW
m (r)

τ̃m(r)
(5.4.11)

is constrained, 0 ≤ z̃m(r) ≤ 1,[199] and thus iso-orbital regions where one KS orbitals or
several of the same shape dominate the electron density are correctly represented.[189]
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Here, τvW
m (r) is the von Weizsäcker kinetic energy density:[200]

τvW
m (r) =

|∇ρm(r)|2
8ρm(r)

(5.4.12)

Thirdly, new functionals which depend on the current density may be developed. One
common approach is to include the current density via the gauge-invariant vorticity

νm(r) = ∇× jpm(r)

ρm(r)
, (5.4.13)

either by construction of entirely new functionals or by modification of existing
ones.[181, 182, 201–207] The inclusion of the vorticity can, however, lead to significant nu-
merical instabilites.[185, 193, 208] Only the first two approaches (modification of existing
GGA and MGGA functionals) are considered in this work.
In passing, it should be noted that the xc scalar and vector potentials are defined
through their functional derivatives

φxc
m =

δExc

δρm(r)
=

δfxc

δρm(r)
, (5.4.14)

Axc
m(r) =

δExc

δjpm(r)
=

δfxc

δjpm(r)
, (5.4.15)

and may be treated as their classical counterparts described in sec. 2.2.[193] The
vorticity may then be identified as

νm(r) = −∇×Axc
m(r) = −Bxc

m(r) , (5.4.16)

which is equivalent to an intrinsic magnetic field induced by the presence of an external
magnetic field or, alternatively, relativistic effects such as spin orbit coupling.[190, 191]

5.4.3. Spin-Noncollinear Kohn–Sham Density Functional Theory

Spin-noncollinear KS DFT is structurally very similar to GHF, which was introduced
in detail in sec. 5.2. The total energy in KS DFT can be deconstructed as

EDFT = E1e + EJ + Exc + VNN (5.4.17)

and the individual contributions are evaluated using KS orbitals constructed from a
linear combination of LAOs. As in GHF theory, the field-dependent paramagnetic and
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diamagnetic contributions are contained in the one-electron energy. The xc energy
is approximated using any density functional and may also be field-dependent as
described in sec. (5.4.2), for instance in the case of CDFT.
Here, we consider the general case of a spin-noncollinear approach using MGGA
functionals. The xc potential energy matrix is defined as a functional derivative,

V xc
µν,m =

δExc

δDµν,m

=

∫
δfxc

δDµν,m

dr , (5.4.18)

and consequently, the two-electron potential can be decomposed according to:[46]

V0[D0] = J0[D0] +Vxc
0 [D0] , (5.4.19)

Vn[Dn] = Vxc
n [Dn] . (5.4.20)

Using the chain rule of derivatives, Vxc may be written as[38]

V xc
µν,m =

∫ [
∂fxc

∂ρm

∂ρm
∂Dµν,m

+
∂fxc

∂∇ρm

∂∇ρm
∂Dµν,m

+
∂fxc

∂τ̃m

∂τ̃m
∂Dµν,m

]
dr . (5.4.21)

It should be noted that the approach for GGA functionals is equivalent, except that
the last term can be omitted as GGA functionals do not depend on the kinetic
energy density. For MGGA functionals, the physical kinetic energy density τ̃(r) can
be constructed as shown in eq. (5.4.10). In this case, the derivative of the physical
kinetic energy density with respect to a (spin-)density matrix element reads

∂τ̃m
∂Dµν,m

=
∂τm

∂Dµν,m

− jpm
ρm

∂jpm
∂Dµν,m

+
|jpm|2
2ρ2m

∂ρm
∂Dµν,m

, (5.4.22)

highlighting the paramagnetic and diamagnetic contributions according to eq. (5.4.9).
Finally, rearranging the terms, the xc potential energy matrix can be calculated as

V xc
µν,m =

∫ [(
∂fxc

∂ρm
+

|jpm|2
2ρ2m

∂fxc

∂τ̃m

)
ξµ(r)ξ

∗
ν(r)

+
∂fxc

∂∇ρm
{[∇ξµ(r)]ξ

∗
ν(r) + ξµ(r)∇ξ∗ν(r)}

+
1

2

∂fxc

∂τ̃m
[∇ ξµ(r)] · [∇ ξν(r)]

∗

− i
2

jpm
ρm

∂fxc

∂τ̃m
{[∇ξµ(r)]ξ

∗
ν(r)− ξµ(r)[∇ξ∗ν(r)]}

]
dr .

(5.4.23)
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The integral is evaluated over a three-dimensional grid and requires the knowledge
of LAO ξµ(r) and its derivative ∇ξµ(r) as well as the electron (spin-)density ρm(r),
its gradient ∇ρm(r), the kinetic energy density τm(r) and the paramagnetic current
density jpm(r) on all individual points of the grid.

5.4.4. Hybrid and Range-Separated Hybrid Functionals

One significant problem with the approach described thus far is the incorrect descrip-
tion of the exchange functional’s asymptotic behaviour.[209–211] The exact exchange of
HF theory, on the other hand, does not exhibit this problem. Motivated through the
adiabatic connection,[171–175] a fraction 0 < cx < 1 of HF exchange may therefore be
included in the calculations.[212] The resulting method is a hybrid between HF and
KS DFT and the corresponding xc functionals which then typically include (1− cx)

are referred to as hybrid functionals. The energy within the hybrid DFT (HDFT)
approach may be calculated as

EHDFT = E1e + EJ + Exc + cxEK + VNN (5.4.24)

and the (spin-)density-matrix-dependent two-electron potential includes both the xc
potential energy and the fraction of exact exchange:

V0[D0] = J0[D0] +Vxc
0 [D0]− cxK0[D0] , (5.4.25)

Vn[Dn] = Vxc
n [Dn]− cxKn[Dn] . (5.4.26)

The HDFT approach may be further enhanced to better describe long-range behaviour,
which is particularly important for the calculation of Rydberg and charge-transfer
(CT) excitations.[213] This can be achieved by dividing the two-electron operator into
a long-range and into a short-range part:[214–216]

1

r12
=

erf(µr12)

r12
+

1− erf(µr12)

r12
(5.4.27)

The long-range operator is used for the calculation of exact exchange, whereas the
short-range operator is modified for the use in the xc functional. Functionals using
this ansatz are called range-separated hybrid (RSH) functionals. Both the hybrid and
RSH DFT approach can be combined with GGA and MGGA functionals. The RI-K
approximation may be used both for the exact echange in hybrid DFT as well as for
the screened exchange in RSH DFT.
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5.5. Post Kohn–Sham: The GW Method

The systematic improvement of Kohn–Sham DFT is no trivial effort. While in prin-
ciple an exact method, in practice it is necessary to introduce approximations to
the xc functional as previously described in sec. 5.4.1 and 5.4.4. It is not uncom-
mon to classify these approximations according to their relative accuracy using
Jacob’s ladder, with each rung indicating a statistical improvement with respect to
the computation of molecular properties.[217–219] However, the semi-empirical nature
of these approximations prevents the systematic improvement of KS DFT solely
through the use of another type of functional.[220–222] Another approach puts the focus
on improving upon the drawbacks of KS DFT instead. Since KS orbitals are con-
structed for a noninteracting reference system using a variety of mostly semi-empirical
methods, any subsequent calculation including them is affected by their extremely
functional-dependent nature.[167, 168] KS orbital energies may, however, be replaced
by quasiparticle energies for subsequent calculations using the GW method. For a
detailed description of GW, the interested reader is referred to the literature.[223–227]

Based on previous work on the description of GW in external magnetic fields for
atomic systems,[228, 229] a general approach capable of handling molecular systems was
developed in the context of this work in collaboration with Holzer and Klopper, see
Ref. [53]. The general outline of the eigenvalue-only self-consistent GW approach
(evGW )[230] for molecules in finite magnetic fields is presented here.
Starting from self-consistently obtained KS orbitals |p⟩ and their related energies ε(0)p ,
the quasiparticle energies εp are calculated in an iterative scheme according to

ε(n+1)
p = ε(n)p + ⟨p|Σc(ε

(n)
p ) + Σx − V xc|p⟩ . (5.5.1)

Here, V xc is the xc potential as used in the reference KS DFT calculation. The so-called
exchange self-energy is defined as

⟨p|Σx|p⟩ = −
∑
k

(pk|kp) , (5.5.2)

while the correlation self-energy ⟨p|Σc(εp)|p⟩ in turn depends on the quasiparticle
energy, thus necessitating the use of an iterative procedure:

⟨p|Σc(εp)|p⟩ =
∑
k

∑
m̸=0

|(pk|ρm)|2D+
pkm +

∑
c

∑
m ̸=0

|(cp|ρm)|2D−
pcm , (5.5.3)
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where the correlation self-energy was approximated as a product of the one-electron
Green’s function G and the correlation contribution to the linearly screened potential
Wc, hence giving rise to the method’s name. The integrals containing the charge
fluctuation ρm are computed as

(pq|ρm) =
∑
ia

[(pq|ai)Xm
ia + (pq|ia)Y m

ia ] , (5.5.4)

while the matrices D± can are evaluated from

D±
pqm =

εp − εq ± ωm

(εp − εq ± ωm)2 + η2
, (5.5.5)

with η being a small positive number in order to avoid numerical instabilities. The
(de-)excitation vectors Xm and Ym as well as their respective excitation energies ωm

are obtained from the direct random-phase approximation (dRPA):[231–233]

 A B

−B∗ −A∗

X Y∗

Y X∗

 =

X Y∗

Y X∗

ω 0

0 −ω

 , (5.5.6)

where the orbital rotation matrices A and B only contain diagonal contributions from
quasiparticle energy differences and the Coulomb integrals representing the Hartree
kernel:

Aia,jb = (εa − εi)δijδab + (ia|bj) ; (5.5.7)

Bia,jb = (ia|jb) . (5.5.8)

The solution of the dRPA equations is the most time-consuming step of the GW
method, which formally scales with O(N6).[223] Therefore, several approximations
such as the analytic continuation GW (AC-GW )[234–236] or the contour-deformation
GW (CD-GW )[230, 237, 238] approaches, both of which rely on the use of the RI-C
approximation and, in their current formulation, assume Kramer’s symmetry for KS
spinors. Since Kramer’s symmetry is broken in external magnetic fields, AC-GW and
CD-GW should only be used with great care and in small magnetic fields, where the
effects of the broken time-reversal symmetry are negligible.[53] For the construction of
both the KS reference orbitals as well as for all integrals used in the GW method,
LAOs have to be employed in order to avoid dependencies on the gauge origin.
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Electronic Excitations

In the previous chapter, several different approximations to the time-independent
electronic Schrödinger equation for molecules in external magnetic fields have been
discussed. This included the Hartree–Fock method and approximate coupled cluster
theory as well as Kohn–Sham density functional theory and the GW method. Having
found approximate solutions for the static case by using one of these methods, the
propagation in time becomes possible by subsequently solving the time-dependent
electronic Schrödinger equation. This allows for the description of the interaction
between molecules and electromagnetic radiation, giving access to the physical de-
scription of most spectroscopic methods.
This chapter introduces linear response theory for molecules in static, external magnetic
fields. In this approach, the influence of electromagnetic radiation on the molecular
system is treated perturbatively, leading to a physical problem similar to the random
phase approximation discussed in the context of the GW method.
Using linear response theory, time-dependent versions of the quantum chemical meth-
ods established in the last chapter are presented. The first method introduced is
time-dependent Hartree–Fock, followed by a time-dependent version of approximate
coupled cluster. Time-dependent density functional theory requires the additional
evaluation of the exchange-correlation kernel, which is derived for MGGA functionals
in the presence of magnetic fields. Finally, the Bethe-Salpeter equation is discussed,
giving access to linear response theory for quasiparticles as generated by the GW
method. The chapter concludes with the description on how quantum chemical calcu-
lations with any of these methods can be used for the simulation of optical spectra.
This includes the computation of UV/Vis spectra for molecules in finite magnetic
fields as well as the calculation of magnetic circular dichroism spectroscopy. Most of
the results presented in this chapter were derived in collaboration with Holzer and
Klopper and presented in Refs. [53], [54] and [55].
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6.1. Linear Response Theory

6.1.1. Basic Concept

Approximate solutions to the static electronic Schrödinger equation (3.2.12) were
discussed in great detail in the last chapter, introducing the wave function-based HF
and CC2 methods as well as KS DFT and the GW method. These solutions may be
propagated in time by solving the time-dependent electronic Schrödinger equation
(3.2.12) at the same level of theory. While a propagation in the real-time domain is
possible,[239, 240] the most common approach for the solution of the time-dependent
Schrödinger equation is linear response theory (LRT).[177, 241–243] For molecules in
static, external magnetic fields, both the real-time propagation[46, 49] and the LRT
approach[44, 47, 53–55] have been carried out. The focus of this work is LRT, particu-
larly in the context of the aforementioned HF, CC2, DFT, and GW methods. Their
time-dependent (TD) counterparts are denoted TD-HF, TD-DFT and TD-CC2. For
GW, the Bethe-Salpeter equation (BSE) has to be solved, leading to the expression
GW /BSE for time-dependent cases.
In LRT, the interaction between a molecule as described using a quantum chemical
method and electromagnetic radiation as described through classical field theory
(sec. 2.2) is constructed in the framework of perturbation theory, using multipole
expansions to represent the electromagnetic field.[59] The time-dependent electromag-
netic potentials (see: (eq. 2.2.14) and (2.2.15)) are expressed in the frequency domain
through the use of a Fourier transformation. Thus, the linear response of the elec-
tronic wave function and electron density of a molecule may also be expressed in the
frequency domain, with electronic excitations corresponding to resonance frequencies
of the reference system.[241, 243, 244]

The central equation of LRT can be written out asA B

B∗ A∗

Xj

Yj

 = ωj

1 0

0 −1

Xj

Yj

 (6.1.1)

for most quantum chemical methods. Depending on the reference method, eq. (6.1.1)
is referred to as random phase approximation (RPA), Casida’s equation, or Bethe-
Salpeter equation.[243] The vectors Xj and Yj parametrize the j-th (de-)excitation
and are further constrained through an additional normalization condition:

X†X−Y†Y = 1 . (6.1.2)
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6.1. Linear Response Theory

The excitation frequency ωj is equivalent to the excitation energy in atomic units, and
thus these two expressions are used interchangeably. It corresponds to the resonance
of the reference system and is not directly dependent on the external perturbation.
For different quantum chemical methods, only the orbital rotation matrices

Aσσ′ττ ′

ia,jb = (εσ
′

a − εσi )δijδabδστδσ′τ ′ +Kσσ′ττ ′

ia,jb , (6.1.3)

Bσσ′ττ ′

ia,jb = Kσσ′ττ ′

ia,bj , (6.1.4)

differ, here expressed in the two-component framework with explicit reference to the
electron spin through σ, σ′, τ, τ ′ ∈ {α, β}. The orbital energies εσp contain an explicit
reference to the electron spin, which can be omitted for two-component spinors as
introduced in eq. (4.3.1). The coupling matrix K is usually constructed in the AO
basis and then transformed to the MO basis according to:

Kσσ′ττ ′

pq,rs = Kσσ′ττ ′

µνκλ Cσ∗
µpC

σ′

νqC
τ∗
κrC

τ ′

λq . (6.1.5)

For the construction of the coupling matrix, LAOs are used in order to avoid any
dependencies on the magnetic field. The explicit form given to the coupling matrix
depends on the quantum chemical method.

6.1.2. Time-Dependent Hartree–Fock Theory

In the context of GHF, it might be more convenient to express the coupling matrix in
terms of Pauli matrices instead of the generalized spin components of eq. (6.1.5). One
element of the coupling matrix can be calculated as

Kµνκλ,kl =
δ2EGHF

δDµν,kδDκλ,l

(6.1.6)

and can therefore only contain two-electron contributions. This is convenient, as the
coupling matrix may be expressed entirely in terms of two-electron integrals,

Kµνκλ = (µν|κλ){σ0 ⊗ σ0} − (µλ|κν){σm ⊗ σm} , (6.1.7)

and is thus constructed similarly to the field-free case. The only difference lies in the
use of LAOs for the calculation of four-center integrals, either directly or by using
the RI approximation. For a more detailed description of TD-HF in static, external
magnetic fields, the reader is referred to the literature.[44]
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6.1.3. Approximate Coupled Cluster Theory

The TD-CC2 method is the both the most accurate and time-consuming method
for the computation of excitation energies presented in this work. Structurally very
similar to the equation of motion coupled cluster singles and doubles (EOM-CCSD)
method,[112, 245] TD-CC2 approximates the double excitations and uses linear response
theory.[154] In this work, TD-CC2 is used as a reference to benchmark excitation
energies obtained from the other methods.
In order to calculate excitation energies, the Jacobian matrix A is constructed in the
manifold spanned by the single (µ1) and double (µ2) excitations:

Aµ1ν1 = ⟨µ1|[ ˆ̃H + [ ˆ̃H, T̂2], τ̂ν1 ]|GHF⟩ (6.1.8)

Aµ1ν2 = ⟨µ1|[ ˆ̃H, τ̂ν2 ]|GHF⟩ (6.1.9)

Aµ2ν1 = ⟨µ2|[ ˆ̃H, τ̂ν1 ]|GHF⟩ (6.1.10)

Aµ2ν2 = ⟨µ2|[[F̂ , T̂2], τ̂ν2 ]|GHF⟩ (6.1.11)

Excitation energies are obtained either by solving for the left or right eigenvectors of
the Jacobian,

C̄(ωj)A = ωjC̄(ωj) , (6.1.12)

AC(ωj) = ωjC(ωj) , (6.1.13)

both of which are required for subsequent calculation of properties. For a more detailed
overview of TD-CC2, the reader is referred to the literature.[154, 160, 162, 246]

6.1.4. Time-Dependent Density Functional Theory

Spin-noncollinear TD-DFT in the framework of LRT was originally introduced for
applications considering relativistic effects such as spin orbit coupling.[247–251] However,
applications including the investigation of spiral and frustrated spin structures require
a nonrelativistic spin-noncollinear approach.[176, 177, 252–254] For the case of static,
external magnetic fields, spin-noncollinear linear response TD-DFT was first presented
in Ref. [47] in the framework of relativistic quantum chemistry. A nonrelativistic
description was derived in the context of this work in collaboration with Holzer and
Klopper for GGA and MGGA functionals as well as their corresponding hybrid and
range-separated hybrid versions.[54, 55]
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6.1. Linear Response Theory

The coupling matrix in TD-DFT is defined similarly to its TD-HF counterpart:

Kµνκλ,kl =
δ2EDFT

δDµν,kδDκλ,l

. (6.1.14)

For hybrid DFT functionals, it reads

Kµνκλ = (µν|κλ){σ0 ⊗ σ0} − cx(µλ|κν){σm ⊗ σm}+ ⟨µκ|ĝxc|νλ⟩ (6.1.15)

and includes the spin-noncollinear exchange-correlation kernel ĝxc in its last term. For
GGA functionals, it may be deconstructed as

ĝxc =
δ2Exc

δρ0(r)δρ0(r)
{σ0 ⊗ σ0}+

δ2Exc

δρ0(r)δs(r′)
{σ0 ⊗ [σ · s̃(r)]}

+
δ2Exc

δs(r)δρ0(r′)
{[σ · s̃(r′)]⊗ σ0}+

3∑
n=1

1

s(r)

δExc

δs(r)
δ(r− r′){σn ⊗ σn}

+

[
δ2Exc

δs(r)δs(r′)
− 1

s(r)

δExc

δs(r)
δ(r− r′)

]
{[σ · s̃(r)]⊗ [σ · s̃(r′)]}

, (6.1.16)

and generally leads to a 4× 4 matrix structure of Kµνκλ for spin-noncollinear DFT
calculations.[255–257] For the sake of brevity, eq. (6.1.16) uses the generalized unit spin
density s̃(r) = s(r)/s(r). In cases where the generalized spin density becomes very small
in absolute value, the spin-noncollinear xc kernel can become numerically instable, as
s̃(r) may point in an almost arbitrary direction at any point in space.[177, 258, 259]

The spin-noncollinear xc kernel may alternatively be deconstructed according to

ĝxc
kl =

δ2Exc

δDµν,kδDκλ,l

, (6.1.17)

which is equivalent to the form presented in eq. (6.1.16):

δ2Exc
GGA

δDµν,kδDκλ,l

=

∫∫ [(
∂2f

∂ρk∂ρl

)(
∂ρk

∂Dµν,k

∂ρl
∂Dκλ,l

)
+

(
∂2f

∂∇ρk∂∇ρl

)(
∂∇ρk
∂Dµν,k

∂∇ρl
∂Dκλ,l

)

+

(
∂2f

∂ρk∂∇ρl

)(
∂ρk

∂Dµν,k

∂∇ρl
∂Dκλ,l

)
+

(
∂2f

∂∇ρk∂ρl

)(
∂∇ρk
∂Dµν,k

∂ρl
∂Dκλ,l

)]
δ(r− r′)drdr′.

(6.1.18)
For MGGA functionals incorporating the ground-state current density through the
physical kinetic energy density as shown in eq. (5.4.10), the xc kernel can be written

65



6. Quantum Chemical Methods for Electronic Excitations

out using the chain rule of derivatives:

δ2Exc

δDµν,kδDκλ,l

=

∫∫ [
∂2fxc

∂ρk∂ρl

∂ρk
∂Dµν,k

∂ρl
∂Dκλ,l

+
∂2fxc

∂∇ρk∂∇ρl

∂∇ρk
∂Dµν,k

∂∇ρl
∂Dκλ,l

+
∂2fxc

∂τ̃k∂τ̃l

∂τ̃k
∂Dµν,k

∂τ̃l
∂Dκλ,l

+
∂2fxc

∂ρk∂∇ρl

∂ρk
∂Dµν,k

∂∇ρl
∂Dκλ,l

+
∂2fxc

∂∇ρk∂ρl

∂∇ρk
∂Dµν,k

∂ρl
∂Dκλ,l

+
∂2fxc

∂ρk∂τ̃l

∂ρk
∂Dµν,k

∂τ̃l
∂Dκλ,l

+
∂2fxc

∂τ̃k∂ρl

∂τ̃k
∂Dµν,k

∂ρl
∂Dκλ,l

+
∂2fxc

∂∇ρk∂τ̃l

∂∇ρk
∂Dµν,k

∂τ̃l
∂Dκλ,l

+
∂2fxc

∂τ̃k∂∇ρl

∂τ̃k
∂Dµν,k

∂∇ρl
∂Dκλ,l

+
∂fxc

∂τ̃k

∂2τ̃k
∂ρk∂j

p
k

(
∂ρk

∂Dµν,k

∂jpk
∂Dκλ,k

+
∂jpk

∂Dµν,k

∂ρk
∂Dκλ,k

)
+
∂fxc

∂τ̃k

∂2τ̃k
∂ρ2k

∂ρk
∂Dµν,k

∂ρk
∂Dκλ,k

+
∂fxc

∂τ̃k

∂2τ̃k
∂(jpk)

2

∂jpk
∂Dµν,k

∂jpk
∂Dκλ,k

]
δ(r− r′)drdr′ .

(6.1.19)

Finally, by applying additional chain rules of the form presented in eq. (5.4.22) and
reordering some terms, we obtain:

δ2Exc
MGGA

δDµν,kδDκλ,l

=
δ2Exc

GGA

δDµν,kδDκλ,l

+

∫∫ [(
∂2f

∂τ̃k∂τ̃l

)(
∂τk

∂Dµν,k

∂τl
∂Dκλ,l

)

−
(
δαβ
ρk

∂f

∂τ̃k

)(
∂jp

k,α

∂Dµν,k

∂jp
k,β

∂Dκλ,k

)
+

(
∂2f

∂τ̃k∂τ̃l

)(
jp
k,α

ρk

∂jp
k,α

∂Dµν,k

)(
jp
l,β

ρl

∂jp
l,β

∂Dκλ,l

)

+

(
|jpk|

2|jpl |
2

4ρ2kρ
2
l

∂2f

∂τ̃k∂τ̃l
+

|jpl |
2

2ρ2l

∂2f

∂ρk∂τ̃l
+

|jpk|
2

2ρ2k

∂2f

∂τ̃k∂ρl
− δkl

|jpk|
2

ρ3k

∂f

∂τ̃k

)(
∂ρk

∂Dµν,k

∂ρl
∂Dκλ,l

)

+

(
|jpk|

2

2ρ2k

∂2f

∂τ̃k∂∇ρl

)(
∂ρk

∂Dµν,k

∂∇ρl
∂Dκλ,l

)
+

(
|jpl |

2

2ρ2l

∂2f

∂∇ρk∂τ̃l

)(
∂∇ρk
∂Dµν,k

∂ρl
∂Dκλ,l

)

+

(
∂2f

∂ρk∂τ̃l
+

|jpk|
2

2ρ2k

∂2f

∂τ̃k∂τ̃l

)(
∂ρk

∂Dµν,k

∂τl
∂Dκλ,l

)
+

(
∂2f

∂τ̃k∂ρl
+

|jpl |
2

2ρ2l

∂2f

∂τ̃k∂τ̃l

)(
∂τk

∂Dµν,k

∂ρl
∂Dκλ,l

)

+

(
δkl
jp
k,α

ρ2k

∂f

∂τ̃k
−
jp
l,α|jpk|

2

2ρlρ2k

∂2f

∂τ̃k∂τ̃l
−
jp
l,α

ρl

∂2f

∂ρk∂τ̃l

)(
∂ρk

∂Dµν,k

∂jp
l,α

∂Dκλ,l

)

+

(
δkl
jp
k,α

ρ2k

∂f

∂τ̃k
−
jp
k,α|jpl |

2

2ρkρ2l

∂2f

∂τ̃k∂τ̃l
−
jp
k,α

ρk

∂2f

∂τ̃k∂ρl

)(
∂jp

k,α

∂Dµν,k

∂ρl
∂Dκλ,l

)

+

(
∂2f

∂∇ρk∂τ̃l

)(
∂∇ρk
∂Dµν,k

∂τl
∂Dκλ,l

)
+

(
∂2f

∂τ̃k∂∇ρl

)(
∂τk

∂Dµν,k

∂∇ρl
∂Dκλ,l

)

−
(
jp
k,α

ρk

∂2f

∂τ̃k∂∇ρl

)(
∂jp

k,α

∂Dµν,k

∂∇ρl
∂Dκλ,l

)
+

(
jp
l,α

ρl

∂2f

∂∇ρk∂τ̃l

)(
∂∇ρk
∂Dµν,k

∂jp
l,α

∂Dκλ,l

)

−
(
jp
k,α

ρk

∂2f

∂τ̃k∂τ̃l

)(
∂τk

∂Dµν,k

∂jp
k,α

∂Dκλ,k

)
+

(
jp
l,α

ρl

∂2f

∂τ̃k∂τ̃l

)(
∂jp

k,α

∂Dµν,k

∂τl
∂Dκλ,l

)]
δ(r− r′)drdr′.

(6.1.20)
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It should be noted that the Einstein summation convention is only used for repeated
Greek indices in eq. (6.1.20). It is worthwhile to examine a few of the contributions in
the lengthy expression for the full current-dependent xc kernel individually. The first
two terms of the xc kernel,(

∂2f

∂τ̃k∂τ̃l

)(
∂τk

∂Dµν,k

∂τl
∂Dκλ,l

)
−
(
δαβ
ρk

∂f

∂τ̃k

)(
∂jp

k,α

∂Dµν,k

∂jp
k,β

∂Dκλ,k

)
, (6.1.21)

are two contributions which also appear in the absence of ground state currents.
The inclusion of the second term is needed to ensure gauge origin invariance for the
calculation of excited states, which can and do carry currents even if the ground state
is current-free.[189, 260] The third term,(

∂2f

∂τ̃k∂τ̃l

)(
jp
k,α

ρk

∂jp
k,α

∂Dµν,k

)(
jp
l,β

ρl

∂jp
l,β

∂Dκλ,l

)
, (6.1.22)

couples all Cartesian components of jpk to all Cartesian components of jpl , as well as
the other way around.[55] The fourth contribution,(

|jpk|
2|jpl |

2

4ρ2kρ
2
l

∂2f

∂τ̃k∂τ̃l
+

|jpl |
2

2ρ2l

∂2f

∂ρk∂τ̃l
+

|jpk|
2

2ρ2k

∂2f

∂τ̃k∂ρl
− δkl

|jpk|
2

ρ3k

∂f

∂τ̃k

)(
∂ρk

∂Dµν,k

∂ρl
∂Dκλ,l

)
,

(6.1.23)
is added to the local spin-density contribution also present as the first term of
eq. (6.1.18). If k = l, this includes a |jpk|

4/ρ4k contribution, which may lead to numerical
instabilities, especially if the molecule is moved far away from the center of the
Cartesian coordinate system. Terms such as(

∂2f

∂ρk∂τ̃l
+

|jpk|
2

2ρ2k

∂2f

∂τ̃k∂τ̃l

)(
∂ρk

∂Dµν,k

∂τl
∂Dκλ,l

)
(6.1.24)

contain a contribution which is also present in the absence of magnetic fields. Addition-
ally, they couple the ground state current to the electron density through derivatives
of the xc functional with respect to the kinetic energy density.
Finally, contributions such as(

δkl
jp
k,α

ρ2k

∂f

∂τ̃k
−
jp
l,α|jpk|

2

2ρlρ2k

∂2f

∂τ̃k∂τ̃l
−
jp
l,α

ρl

∂2f

∂ρk∂τ̃l

)(
∂ρk

∂Dµν,k

∂jp
l,α

∂Dκλ,l

)
(6.1.25)
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couple the excited state current with the excited state electron density. Similar terms,
which couple the excited state current to the gradient of the electron density or the
kinetic energy density are also present. None of them exist in the absence of a ground
state current. This implies that the excited state current couples to other excited
state quantities through the ground state current.
The derivation of the full current-dependent xc kernel was carried out for this work
and was presented in Ref. [55] as a central result. Using it is strictly necessary in
order to ensure gauge origin invariance for any theory in which currents are induced
for electronic ground states. This is not limited to calculations in external magnetic
fields and can be equally as important for spin orbit coupling.

6.1.5. Bethe-Salpeter Equation

After having constructed quasiparticle energies using the GW method, the Bethe-
Salpeter equation (BSE) can be applied in the framework of LRT in order to calculate
excitation energies and excited state properties.[223, 236, 261–263] While generally more ex-
pensive than TD-DFT, the GW /BSE method is capable of handling the description of
CT and Rydberg excitations for which TD-DFT performs notoriously poorly.[190, 264–266]

The GW /BSE method for molecules in finite magnetic fields was derived in the frame
of this work in collaboration with Holzer and Klopper, see also Ref. [53]. As usual, all
integrals are calculated over LAOs.
In contrast to TD-HF and TD-DFT, the orbital rotation matrix A in the BSE requires
quasiparticle energies obtained from a previous GW calculation:

Aia,jb = (εi − εa)δijδab + (ia|bj)−Wji,ba ; (6.1.26)

Bia,jb = (ia|jb)−Wbi,ja . (6.1.27)

The static screened potential[267]

Wpq,rs =
∑
tu

(ϵ−1)pq,tu(ut|rs) (6.1.28)

is evaluated using the inverse dieletric function

ϵpq,tu = δptδqu −
∑
tu

(qp|tu) (χ0)tu,tu , (6.1.29)
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which in turn involves the calculation of the non-interacting response function:

(χ0)tu,tu =
∑
kc

δtkδuc + δtcδuk
εk − εc

. (6.1.30)

While the four-center integrals in MO basis are generally complex for LAOs, all
quasiparticle energies remain real-valued and thus χ0 is real-valued and diagonal, even
for molecular systems in the presence of an external magnetic field.[53]

The static screened potential may be calculated with significantly less computational
effort by invoking the RI-C approximation:[268]

Wpq,rs = Bpq,Pχ
−1
PQB

′
Q,rs . (6.1.31)

As a consequence, the response function is calculated in the auxiliary subspace,

χPQ = δPQ − 2Re{B′
P,tu (χ0)tu,tuBtu,Q}, (6.1.32)

which remains both symmetric and real-valued in the presence of external magnetic
fields.[53] For the sake of completeness, it should be noted that a hybrid between TD-
DFT and GW /BSE exists, denoted correlation-kernel augmented BSE (cBSE).[223, 269]

For cBSE, the correlation-part of the xc kernel presented in sec. 6.1.4 is included the
orbital rotation matrices for the construction of the BSE in eq. (6.1.26) and (6.1.27).
The static screened exchange, on the other hand, is evaluated using KS orbital energies
instead of quasiparticle energies.[269] This approach improves considerably upon the
otherwise poorly described triplet excitations.[270–272]

6.2. Calculation of Optical Spectra

6.2.1. Electronic Transition Dipole Moments

Optical spectra can be simulated using any quantum chemical method described in
this chapter. For TD-HF, TD-DFT and GW /BSE calculations, this requires solving
eq. (6.1.1) for the (de-)excitation vectors Xj and Yj and excitation energies ωj of all
relevant electronic transitions j contributing to the spectrum. Some transitions may
not contribute to the spectrum due to molecular symmetry, while other transitions
can be neglected because they are energetically too high or low.
For the simulation of optical absorption spectroscopy in the ultraviolet and visi-
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ble region (UV/Vis spectroscopy) as well as magnetic circular dichroism (MCD)
spectroscopy, it is necessary to compute electronic transition dipole moments:[250]

⟨0|µ̂α|j⟩ =
∑
ia

{Xia,j ⟨i|µ̂α|a⟩+ Yia,j ⟨a|µ̂α|i⟩} . (6.2.1)

The dipole operator can be given in the length gauge (µ̂α = −r̂α) or the velocity gauge
(µ̂α = −p̂α), although both representations are equivalent in a complete basis.[273]

Other properties such as magnetic transition dipole moments or electronic transition
quadrupole moments can be relevant for other types of spectroscopy such as electronic
circular dichroism or oriented circular dichroism spectroscopy.[116, 120, 274, 275]

6.2.2. UV/Vis Spectroscopy

UV/Vis spectra are usually measured in SI units of [L mol−1 cm−1]. Using the Beer-
Lambert law, a spectrum may be computed according to

ε(λ)[L mol−1 cm−1] =
20π2NA

ln(10)ε0λ
e2a40me

ℏ2
α′′(ω,Γ) , (6.2.2)

with all quantities given in SI units except for the polarizability α′′ which is assumed to
be in atomic units instead. The spectrum is calculated as a function of the wavelength
λ, which is connected to the frequency (in SI units) according to:

λ =
2πc

ω
. (6.2.3)

Electronic excitations as calculated using LRT are discrete transitions and generate
a line spectrum, whereas vibronic coupling and other effects generally lead to band
spectra for molecular systems. For better comparability, the polarizability should thus
be calculated in a way which includes line broadening:

α′′(ω,Γ) =
∑
j

g(ω, ωj,Γ)Dj ; (6.2.4)

Dj =
1

3
Re[ ⟨0|µ̂α|j⟩ ⟨j|µ̂α|0⟩] . (6.2.5)
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The line-shape function g(ω, ωj,Γ) can be a Gaussian or Lorentzian function with Γ

being the full width at half maximum (FWHM). In this work, the line-shape function

g(ω, ωj,Γ) =
1

π

[ 1
2
Γ

(ω − ωj)2 + (1
2
Γ)2

−
1
2
Γ

(ω + ωj)2 + (1
2
Γ)2

]
(6.2.6)

is used, which is similar to a Lorentzian function including both excitations and de-
excitations. The spectra generated by eq. (6.2.6) in a sum-over-states (SOS) formalism
are equivalent to the complex linear polarization propagator approach, which commonly
uses a damping factor related to the FWHM by γd = 1

2
Γ.[276–279]

6.2.3. Magnetic Circular Dichroism Spectroscopy

MCD spectra are experimentally accessible by measuring the difference in absorption
between left and right circularly polarized light in the presence of an external magnetic
field.[59, 280] Computationally, MCD spectra can be generated through

∆ε(λ)[L mol−1 cm−1] =
20π2NA|B|
ln(10)ε0λ

e3a60me

ℏ3
M(ω,Γ) ; (6.2.7)

[θ]M(λ)[◦ L mol−1 cm−1 T−1] =
9 · 104 πNA

ε0λ

e3a60me

ℏ3
M(ω,Γ) , (6.2.8)

with ∆ε(λ) being the molar absorption coefficient and [θ]M the closely related specific
rotation.[54, 281–283] All quantities are given in SI units except for the differential
absorption M , which is calculated in atomic units. Traditionally, the differential
absorption is calculated in the limit of a vanishing magnetic field using perturbation
theory:[284–288]

M(ω,Γ) = −1

3

∑
j

{
∂g(ω, ωj,Γ)

∂ω
A0j + g(ω, ωj,Γ)

[
B0j +

C0j

kBT

]}
. (6.2.9)

Three individual contributions, commonly referred to as A, B and C terms have
to be considered, which are calculated using quadratic response theory.[29, 31, 289–294]

Their representations A0j, B0j and C0j in eq. (6.2.9) are defined in eqs. (8.222) –
(8.224) of Ref. [288]. The A term results from a Zeeman splitting of degenerate excited
states and is given a derivative line-shape.[287, 295] B term contributions stem from
field-induced mixing of excited states.[287, 296] Temperature-dependent C terms are
the consequence of a Zeeman splitting of (nearly) degenerate ground states.[47, 297] A
graphical depiction of the physical processes for all three terms is shown in fig. 6.2.1.

71



6. Quantum Chemical Methods for Electronic Excitations

Alternatively, the differential absorption M maybe calculated in the presence of a small
external magnetic field using the methods described in this chapter using LRT.[46, 54]

However, since MCD spectra are commonly measured in solution, an isotropic average
of the effects induced by an external magnetic field has to be computed. This generally
requires three separate calculations with magnetic fields aligned in three arbitrary
perpendicular orientations, which can be chosen as the x, y, and z components of the
Cartesian coordinate system.[46, 54] The A and B terms of quadratic response theory
resulting from Zeeman splitting may be computed by

M(ω,Γ) =
∑
j

g(ω, ωj,Γ)Rj ; (6.2.10)

Rj = −1

3
εαβγIm

[ ⟨0|µ̂α|j⟩ ⟨j|µ̂β|0⟩
Bγ

]
. (6.2.11)

This requires a spin-noncollinear approach for the calculation of A term contributions,
as the Zeeman splitting triplet excitations needs to be properly captured. C term
contributions are only relevant for systems with (nearly) degenerate ground states and
generally require more sophisticated methods capable of calculating static correlation.
While the calculation of temperature-dependent C terms has been attempted on the
TD-DFT level, especially for systems with spin doublet ground states,[47, 297] these
are not considered in the frame of this work.

A B C

Figure 6.2.1.: Graphical illustration of the excitations leading to A, B and C terms
in magnetic circular dichroism spectroscopy. The Zeeman splitting of
degenerate excited states leads to A terms, field-induced mixing between
states results in B terms and the Zeeman splitting of (nearly) degenerate
ground state yields C terms. Reprinted with permission from Ref. [54]
and modeled after Ref. [280].
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Equation of Motion

The quantum-mechanical description of electronic motion in external magnetic fields
has been the topic of the last few chapters of this work. Approximate solutions
for both the static and the time-dependent electronic Schrödinger equations were
investigated in the framework of the Born-Oppenheimer adiabatic approximation.
Various molecular properties including those required for the investigation of optical
spectroscopy can be computed using these quantum chemical methods.
For the study of nuclear motion in external magnetic fields, however, the nuclear
Schrödinger equation has to be solved. In this chapter, a semi-classical approach for
the description of nuclear motion is presented using both Hamiltonian and Lagrangian
mechanics. The resulting equations of motion not only include the familiar Born-
Oppenheimer force, but also a screened Lorentz force acting on the moving nuclear
charges. As a consequence, the equations of motion cannot be solved analytically and
require a numerical approach using, for instance, ab initio molecular dynamics. The
solution to these equations of motion is necessary for the investigation of rotational
and vibrational spectra in external magnetic fields.
Of particular interest in this context is the screened Lorentz force acting on the
moving nuclei. It involves the Berry curvature, which is intrinsically connected to
partial charges of molecular systems, even in the absence of external magnetic fields.
Finally, an approximation of the screening force using the Mulliken charge distribution
is presented, which is a convenient alternative for ab initio molecular dynamics
simulations in which the calculation of all involved quantities has to be repeatedly
performed.
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7.1. Nuclear Equations of Motion

7.1.1. Hamilton’s Equations of Motions

The last few chapters were concerned with finding (approximate) solutions to the
electronic Schrödinger equation. In the framework of the BO adiabatic approximation,
nuclear motion was decoupled from electronic motion, and the total electronic energy
EBO

0 of the electronic ground state was calculated on any point of the PES.
The Schrödinger equation for nuclear motion along the PES of the electronic ground
state can be written as [

T̂ eff
0 + EBO

0

]
Ψnuc

0 = i
∂

∂t
Ψnuc

0 , (7.1.1)

if the DBOC is neglected, as previously shown in eq. (3.4.15) for an arbitrary state q.
The effects of an external magnetic field are contained both directly in the effective
kinetic energy operator in eq. (3.4.13) and indirectly in the total electronic energy.
The nuclear equations of motion can now be solved using classical mechanics by
replacing all expectation values with their semi-classical counterparts.[82, 83] The
effective classical Hamiltonian reads

Heff =
Nnuc∑
I

1

2MI

[PI − ZIA(RI) + χI(R)]2 + EBO
0 (R) (7.1.2)

and requires knowledge of the entire BO PES, or at least the region in which the
nuclear motion takes place. The total electronic energy serves as a potential energy
contribution in eq. (7.1.2) and is dependent on the reference quantum chemical method.
Any region of the BO PES may be simulated on a grid, and a spline interpolation is
used to approximate all points in between.[82]

Hamiltons equations of motion are then constructed as

ṘI =
∂Heff

∂PI

=
1

MI

[PI − ZIA(RI) + χI(R)] , (7.1.3)

ṖI = −∂H
eff

∂RI

, (7.1.4)

and a solution involves the construction and propagation of the gauge-dependent
canonical momenta PI .[82, 83] It is therefore preferable to use an alternative method
which only involves gauge-invariant quantities.
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7.1.2. Lagrangian Equations of Motions

Lagrangian mechanics presents itself as a natural alternative to Hamiltonian mechanics
in this case. Closely following Ref. [82], the Lagrangian of eq. (2.3.1) can be constructed
similar to eq. (2.3.8) through a Legendre transformation of the Hamiltonian:

L =
Nnuc∑
I

ṘI ·PI −Heff (7.1.5)

An explicit form for the canonical momentum PI can be derived from eq. (7.1.3) and
written out as:

PI =MIṘI + ZIA(RI)− χI(R) (7.1.6)

Inserting the definitions of the effective Hamiltonian from eq. (7.1.2) and the definitions
for velocity and canonical momentum, eq. (7.1.3) and eq. (7.1.6), respectively into
eq. (7.1.5) reveals the final expression for the Lagrangian for nuclear motion in an
external magnetic field

L =
Nnuc∑
I

[
MIṘ

2
I + ZIA(RI) · ṘI − χI(R) · ṘI

]
−

Nnuc∑
I

1

2
MIṘ

2
I − EBO

0 (R)

=
1

2

Nnuc∑
I

MIṘ
2
I +

Nnuc∑
I

[ZIA(RI)− χI(R)] · ṘI − EBO
0 (R) ,

(7.1.7)

which conveniently separates into contributions corresponding to the kinetic energy
and the velocity-dependent potential energy.[82, 83] The EOM are constructed using
the Euler-Lagrange equation (2.3.6):

MIR̈I + ZIȦ(RI)− χ̇I(R) = ZI

[
∂A(RI)

∂RI

]⊤
ṘI −

Nnuc∑
J

[
∂χJ(R)

∂RI

]⊤
ṘJ − ∂EBO

0 (R)

∂RI

(7.1.8)
The time-derivatives of the lhs can be reframed using the chain rule of derivatives:

Ȧ(RI) =
∂A(RI)

∂RI

∂RI

∂t
=
∂A(RI)

∂RI

ṘI (7.1.9)

χ̇I(R) =
Nnuc∑
J

∂χI(R)

∂RJ

∂RJ

∂t
=

Nnuc∑
J

∂χI(R)

∂RJ

ṘJ (7.1.10)

Introducing the definition of the magnetic vector potential in the symmetric gauge from
eq. (2.2.16) allows for the identification of its Jacobian. The latter is antisymmetric,
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which implies that it can be reframed as:[
∂A(RI)

∂RI

]⊤
= −∂A(RI)

∂RI

. (7.1.11)

By inserting eq. (7.1.9), (7.1.10) and (7.1.11) into the equation of motion in eq. (7.1.8),
it may be rewritten in terms of the forces acting on nucleus I:

MIR̈I = −∂E
BO
0 (R)

∂RI

− 2ZI
∂A(RI)

∂RI

ṘI +
Nnuc∑
J

{
∂χI(R)

∂RJ

−
[
∂χJ(R)

∂RI

]⊤}
ṘJ .

(7.1.12)
The first term on the rhs corresponds to the geometric gradient of the total energy and
can be calculated either directly through ab initio quantum chemistry or alternatively
through derivation of the splines which interpolate the BO PES. The second term is
equivalent to the Lorentz force acting on the bare nucleus I:

−2ZI
∂A(RI)

∂RI

ṘI = ZIṘI ×B . (7.1.13)

The last term in eq. (7.1.12) represents a force accounting for the screening of the
electrons. It contains the Berry curvature:

ΩIJ =
∂χI(R)

∂RJ

−
[
∂χJ(R)

∂RI

]⊤
. (7.1.14)

Inserting the definition of the Berry connection introduced in eq. (3.4.10) into the
Berry curvature, one component can be calculated according to:[83, 85, 86]

ΩIJ,αβ = i

[〈
∂Ψ0

∂RIα

∣∣∣∣ ∂Ψ0

∂RJβ

〉
−
〈
∂Ψ0

∂RJβ

∣∣∣∣ ∂Ψ0

∂RIα

〉]
(7.1.15)

The final expression for the EOM governing nuclear motion in static, external magnetic
fields becomes:[82]

MIR̈I = −∂E
BO
0 (R)

∂RI

+ ZIṘI ×B+
Nnuc∑
J

ΩIJṘJ . (7.1.16)

Several schemes aiming at a numerical solution of eq. (7.1.16) have been presented in
the literature.[57, 82] In this work, a highly efficient algorithm formulated for a similar
problem by Tajima[298] is used, introduced by the author in collaboration with Monzel,
Peters, Tellgren, Helgaker, and Klopper in Ref. [57].
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7.2. Berry Curvature

7.2.1. General Properties and Connection to Charge Distribution

The screened Lorentz force acting on a moving nucleus I in the presence of a static,
external magnetic field can be identified from eq. (7.1.16) as

FLB
I = −ZIB× ṘI +

Nnuc∑
J

ΩIJṘJ . (7.2.1)

The Berry curvature Ω as introduced in eq. (7.1.15) is involved in describing the
screening of bare nuclear charges by the electrons. It is a real-valued, antisymmetric
3Nnuc × 3Nnuc matrix:[83]

Ω⊤
IJ = −ΩJI (7.2.2)

It should be noted that the individual tensors of second rank contained in Ω for each
pair of atoms, ΩIJ , are generally non-symmetric, except for the diagonal blocks.[83]

As usual, they may be decomposed according to

ΩIJ = Ωs
IJ +Ωas

IJ (7.2.3)

into their symmetric and antisymmetric parts. By defining the vector[83]

ωIJ =


Ωas

IJ,zy

Ωas
IJ,xz

Ωas
IJ,yx

 , (7.2.4)

the product between the antisymmetric part of the Berry curvature and the velocity
may be expressed in terms of a cross product:

FLB
I = −

Nnuc∑
J

δIJZIB× ṘI +
Nnuc∑
J

ωIJ × ṘJ +
Nnuc∑
J

Ωs
IJṘJ . (7.2.5)

This is only possible for antisymmetric matrices and thus no similar procedure can be
performed for the symmetric part of the Berry curvature. Inserting the unit matrix as
|B|−2B⊤B = 1, a charge distribution of the screening charges can be defined using
the dyadic product:

ΘIJ = −|B|−2ωIJ ⊗B . (7.2.6)
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The screened Lorentz force may then be rewritten as:

FLB
I = −

Nnuc∑
J

[δIJZI +ΘIJ ]B× ṘJ +
Nnuc∑
J ̸=I

Ωs
IJṘJ . (7.2.7)

In cases where the symmetric part of the Berry curvature vanishes due to symmetry
reasons, the entire screened Lorentz force may be expressed in terms of the screening
charge distribution:

QIJ =
∑
α,β

ΘIJ,αβ (7.2.8)

Partial charges can then be defined accordingly,[83]

qI =
Nnuc∑
J

QIJ (7.2.9)

for the electronic part and adding them onto the nuclear charges ZI . The electronic
partial charges have to obey the sum rule

Nnuc∑
I

qI = −Nel (7.2.10)

and their definition holds even in the limit of a vanishing magnetic field:

q
|B|→0
I = lim

|B|→0

Nnuc∑
J

∑
α,β

QIJ,αβ ̸= 0 . (7.2.11)

This implies that the partial charges obtained through the Berry curvature may be
used even in the absence of external fields, provided an external field is considered
perturbatively in the calculation of the partial charges.

7.2.2. Approximation through Mulliken Charge Matrix

The Berry curvature as presented in eq. (7.1.15) may be calculated on the HF level
using either a numerical differentiation scheme or analytically by solving the coupled
perturbed Hartree–Fock equations.[83, 86] In principle, the Berry curvature could be
computed using any wave function-based quantum chemical method, although no
implementations using post HF methods are currently available. Since the perturbation
of the many-electron wave function itself is required for the construction of the Berry
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curvature, using DFT could potentially result in inconsistent results, which should be
cautiously investigated in future work.
Another option is to calculate the effects of the Berry curvature approximately.[57]

Since the main effect of the Berry curvature is to introduce screening charges, it can
be approximated using any charge distribution,

FLB
I = −

Nnuc∑
J

[
δIJZI − Q̃IJ

]
B× ṘJ , (7.2.12)

where the symmetric part of the Berry curvature was neglected, while the charge
distribution was obtained in some approximate manner. It should be noted that the
approximate charge distribution Q̃ is usually obtained as a Nnuc ×Nnuc matrix, which
is equivalent to contracting the Cartesian components charge distribution tensor Q
for every pair of atoms.
One possible approximation for the charge distribution is through the use of Mul-
liken charges.[299–301] Using the Mulliken population analysis, the electronic charge
distribution may be approximated according to:

Q̃IJ = −
∑
µ∈I

∑
ν∈J

∑
σσ′

∑
ττ ′

δσσ′Sσσ′

µν D
ττ ′

µν . (7.2.13)

The summation µ ∈ I runs only over those LAOs |µ⟩ which are centered at nucleus I.
An equivalent procedure is carried out for the summation ν ∈ J . Thus, atom-centered
LAOs are assumed in the construction of Q̃IJ , with each basis function only counting
towards the atom it is centered on. Consequently, the Mulliken population analysis is
very dependent on the reference basis set. Mulliken charges are calculated from the
charge distribution through summation over one atomic index:

q̃I =
Nnuc∑
J

Q̃IJ . (7.2.14)

It should be noted that the definition given for Mulliken charges differ from the original
work of Mulliken[299] by a minus sign in eq. (7.2.13), with the present work defining
the electronic charges obtained from the Mulliken population analysis as negative in
order to stay consistent with charges obtained from the Berry curvature tensor. As a
consequence, the Mulliken charges obey the sum rule presented in eq. (7.2.10), instead
of yielding the positive number of electrons.[299, 302]
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The total partial charge of an atom is then defined as

zI = ZI + q̃I , (7.2.15)

or, for charges calculated from the Berry curvature tensor, as:

zI = ZI + qI . (7.2.16)

The sum over all nuclear and electronic charges yields the total charge of the molecular
system. For ab initio molecular dynamics simulations, the Mulliken charge distribution
presents itself as a convenient alternative to the vastly more complicated calculation
of the Berry curvature tensor.

80



Part III.

Implementation

81





8. Implementation of Quantum Chemical

Methods in Finite Magnetic Fields

The theoretical framework of quantum chemical methods for the calculation of molecu-
lar properties in external magnetic fields was presented in chapters 5 and 6 of this work.
In this chapter, an efficient implementation of these methods into the Turbomole

program suite is presented. Due to previous implementation work carried out in the
context of relativistic quantum chemistry, Turbomole is a convenient choice for the
implementation of quantum chemical methods in external magnetic fields, as both
methods generally require the use of complex algebra. This chapter therefore first
introduces Turbomole and its modular structure. Previous implementation work
is presented, particularly on the structure of programs capable of quantum chemical
calculations using two-component methods.
The general structure and the relevant routines for calculations of electronic ground
states using GHF or spin-noncollinear DFT in finite, external magnetic fields is pre-
sented. Several methods which improve upon the efficiency of such an implementation
are introduced, including Cauchy–Schwarz screening, the direct inversion of the itera-
tive subspace (DIIS) and the difference densities approach. Finally, the calculation of
ground-state properties including electromagnetic multipole moments and Mulliken
charges is presented. Furthermore, a general outline of the program capable of calcu-
lating molecular gradients in external magnetic fields is discussed, including its use
for geometry optimizations in external magnetic fields.
The calculation of post HF ground-state energies as well as CC2 excitation energies
mostly require the evaluation of two-electron integrals with LAOs. By using the RI-C
approximation, this step can be simplified significantly and thus, only a general outline
of the steps necessary to evaluate two-electron integrals with LAOs for GMP2 and CC2
is presented. Finally, the chapter concludes with the presentation of implementations
for calculating electronic excitations using TD-HF, TD-DFT, and GW /BSE. The
computation of excitation energies as well as related properties such as the electronic
transition dipole moments is discussed.
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8.1. Implementation into TURBOMOLE

The implementation of quantum chemical methods for molecules in finite, external
magnetic fields was carried out in the Turbomole[303–306] program suite. All methods
described in chapters 5 and 6 of this work had already been implemented for two-
component (2c) calculations in the absence of magnetic fields.[305] Particularly notewor-
thy are the implementations of GHF and spin-noncollinear DFT for electronic ground
states,[307–310] electronic excitations[249, 250, 311] and molecular gradients,[310, 312] as well
as the implementations on two-component CC2,[154, 313] and GW /BSE.[236, 314, 315]

These methods all have in common that they require 2c spinors and are thus capable
of explicitly handling complex algebra.
Due to the presence of complex-valued operators in the one-electron Hamiltonian,
eq. (5.2.10), and the use of complex-valued LAOs, eq. (4.3.3), for all integrals, calcula-
tions on molecules in finite magnetic fields generally require complex algebra.[32, 36]

Thus, the implementation of field-dependent methods into code already capable of
handling complex 2c spinors is convenient, as most of the existing architecture can be
straightforwardly adapted.
A few major differences between field-free and field-dependent 2c calculations remain.
Firstly, new one-electron integrals have to be evaluated for the paramagnetic and
diamagnetic terms. Secondly, in addition to the 2c Fock and density matrix, the 2c
overlap matrix,

S =

S 0

0 S

 , (8.1.1)

becomes complex-valued. This has to be factored into quite a few steps, including
the orthogonalization of spinors and convergence-accelerating methods such as the
direct inversion of the iterative subspace (DIIS).[56] Thirdly, all integrals are evaluated
using complex LAOs, which require a few modifications compared to the calculation
of their field-free counterparts.[32, 36, 38] The efficient evaluation of molecular integrals
over LAOs is presented in chapter 9 of this work.
Finally, the permutational symmetry of four-center integrals is reduced from eight- to
fourfold if they are evaluated using complex LAOs:[36, 37, 56, 316]

(µν|κλ) = (νµ|λκ)∗ = (κλ|µν) = (λκ|νµ)∗ (8.1.2)

Therefore, any structure making use of an eightfold permutational symmetry of four-
center integrals must not be used in the presence of magnetic fields. Fortunately, the
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permutational symmetry of two- and three-center integrals is still retained:[56]

⟨µ|Ô|ν⟩ = ⟨ν|Ô|µ⟩∗ ; (8.1.3)

(µν|P ) = (νµ|P )∗ = (P |µν) = (P |νµ)∗ . (8.1.4)

Moreover, auxiliary basis functions may be chosen as real-valued GTOs without loss
of generality,

(P |Q) = (Q|P ) , (8.1.5)

making the use of the RI approximation in the presence of magnetic fields particularly
efficient.[56, 137] The general structure of code handling the computation of two- and
three-center integrals remains similar to the field-free case.
For calculations in the presence of an external magnetic field, the information about the
magnetic field vector needs to be available. Two-component Turbomole calculations
in finite magnetic fields thus require an additional input, which is presented in fig. 8.1.1.
The "$soghf" keyword is generally required for 2c calculations and the ’$magnetic
field’ keyword reads in the magnetic field vector, which is needed for the construction
of LAOs as well as the para- and diamagnetic operators.

Figure 8.1.1.: Input required by Turbomole for 2c calculations in finite magnetic
fields. The keyword ’$magnetic field’ includes the three Cartesian com-
ponents and the absolute value of the magnetic field vector.

8.2. Electronic Ground States

8.2.1. General Outline of SCF Procedure

In this section, the SCF method as implemented into Turbomole for molecules
in magnetic fields is presented. As it is very similar to its field-free counterpart, a
detailed discussion is omitted. Instead, the general procedure is shown in form of a
flow chart in fig. 8.2.1 and the focus of this chapter shall be on the differences between
the field-free and field-dependent cases. Additionally, the methods which can be used
to increase the efficiency are highlighted.
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Figure 8.2.1.: Outline of the SCF procedure as implemented in Turbomole for
calculations on molecules in finite, external magnetic fields. Optional
choices for efficiency increase are highlighted in red. Hartree–Fock and
DFT calculations differ only in the calculation of HF exchange and xc
potential, with HDFT functionals requiring both.
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As input, the molecular geometry, basis set, and magnetic field vector are required.
Using this information, the overlap matrix S as well as matrix representations of the
kinetic energy, T, and nuclear attraction potential, V1e, are computed. Since they are
all hermitian, it is sufficient to store the upper triangle of these matrices. It should be
noted that the kinetic energy contains both the para- and diamagnetic terms induced
by the presence of the external magnetic field, according to eq. (5.2.10). The spin
Zeeman term, however, is treated separately in a two-component approach, as will be
discussed in section 8.2.6 of this chapter.
If the RI approximation is used, the integrals containing auxiliary basis functions
need to be constructed. For RI-J, this includes the calculation of the auxiliary metric,
(P |Q)−1, whereas for RI-K, the additional evaluation of the matrix containing all
elements of Bµν,Q is required as defined by eq. (5.2.19). While two-index quantities
are generally stored in memory, three-index quantities are stored on disk. If Cauchy–
Schwarz screening is used, the two-index integrals (µν|νµ) are calculated and stored in
memory. As a direct consequence of the permutational symmetry shown in eq. (8.1.2),
they are always real-valued.
As an iterative procedure, the SCF method needs an initial guess for the two-component
spinors. Such a guess may be generated using MOs or spinors obtained from extended
Hückel theory,[317] the core Hamiltonian[318] or even a previous calculation either in
the absence or presence of an external magnetic field. These spinors need to be orthog-
onalized with respect to the two-component metric S, which can be achieved either
using a Cholesky decomposition or alternatively via canonical orthogonalization.[319]

Within the SCF loop, the noncollinear densities are constructed from the spinors
according to eq. (5.2.7) and then decomposed such that they parameterize the total
electron density and the spin-densities as shown in eq. (5.2.6). Difference densities may
be calculated if densities from prior iterations are present. All matrices are separated
into their real and imaginary parts.
Both GHF and spin-noncollinear DFT calculations require the evaluation of the
Coulomb potential. It can be constructed using either the RI-J approximation or
four-center integrals. Cauchy–Schwarz screening may be used in combination with the
difference densities approach as described in more detail in sec. 8.2.4 of this chapter.
For GHF and HDFT calculations, the exchange potential has to be evaluated. If the
RI-K approximation is employed, the three-center integrals previously stored on disk
have to be read in every iteration. Alternatively, if the exchange is computed using
four-center integrals, it may be evaluated simultaneously to the Coulomb potential
and Cauchy–Schwarz screening with difference densities can be applied. For spin-
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noncollinear DFT calculations, the xc potential has to be evaluated through numerical
integration on a grid.[320, 321]

Finally, using all contributions including the one-electron Hamiltonian and two-electron
potential, the 2c Fock operator is constructed. It is self-consistently optimized either
by diagonalizing it or by using the DIIS method. New spinors are evaluated until an
energy minimum is found. The solutions obtained through this method are typically
analyzed and labeled according to their spin expectation values. In order to assess
whether the solution is spin contaminated, the expectation value of the squared spin
operator is additionally evaluated.

8.2.2. Coulomb and Exchange Potentials

The evaluation of four-center integrals is typically the most time-consuming part of the
SCF procedure.[322] Optimizing it is thus the most important step in the reduction of
computational cost. By properly utilizing the permutational symmetry of four-center
integrals over LAOs, the computational cost is reduced by about a factor of four. The
general structure of a program which takes advantage of this fourfold permutational
symmetry is presented in this section. An outline of this procedure is shown in fig. 8.2.2
in form of a flow chart.
As previously discussed by the author in Ref. [56], the implementation of integral
evaluation carried out in this work supports parallelization with open multi-processing
(OpenMP). Consequently, the wrapper for the integral evaluation has to be structured
in a way which optimally benefits the OpenMP parallelization.
The integrals are evaluated in shell batches, with a shell referring to all degenerate
AOs of a single type. Integrals are calculated in the basis of Cartesian atomic orbitals
and are thus defined by their angular momentum quantum number |lµ|, with

lµ =


aµx

aµy

aµz

 (8.2.1)

as defined in eq. (4.3.4) for GTOs, with |lµ| = 0 referring to s-functions, |lµ| = 1 to
p-functions, |lµ| = 2 to d-functions and so forth. Spherical AOs can be obtained at a
later point as a linear combination of Cartesian AOs.
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Figure 8.2.2.: Outline of the wrapper for the simultaneous construction of the Coulomb
and exchange potentials. The procedure shown here uses the fourfold
permutational symmetry of four-center integrals over LAOs, which are
calculated in shell batches and directly contracted with their respective
noncollinear densities.
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The first loop (µ) runs over all shells in descending order of their angular momentum
quantum number |lµ|. This is important for the OpenMP parallelization, as it prevents
the cluttering of different processes. The second loop (ν) runs over all shells smaller
or equal to µ in ascending order of their |lν |. Shell-pair quantities for µν are evaluated
here, including LAO phase factors and the overlap integrals for the s-type functions
corresponding to µ and ν. Integral screening with respect to these shell-pair quantities
can be applied here. The noncollinear densities of shell-pair µν are stored separately
for optimal use of memory.
The third loop runs over all shell-pairs κλ less or equal to µν. Two cases are treated
separately for shells κ and λ. The first case, κ ≥ λ, corresponds to the case also
treated for four-center integrals over regular AOs exhibiting an eightfold permutational
symmetry. Cauchy–Schwarz screening and the difference densities approach may be
applied at this point to avoid the calculation of an integral batch if it is expected to
be lower than a certain threshold. For all non-negligible contributions, the additional
shell-pair quantities of κλ are computed and the relevant batches of noncollinear
densities are stored separately. The integral batch (µν|κλ) is calculated, corresponding
to all possible combinations of lµ, lν , lκ, lλ. The efficient integral evaluation of four-
center integrals over LAOs is described in chapter 9 of this work. Finally, the integrals
are contracted with the noncollinear densities in the prepared batches in order to
construct their contribution to the Coulomb and (optionally) exchange potentials.
The second case, κ < λ, does not exist for four-center integrals over AOs. Here, it has
to be considered in a similar manner to the case κ ≥ λ previously described, but only
if µ ̸= ν.
This procedure can be used as described here for GHF and HDFT calculations. For
RSH functionals, the evaluation of four-center integrals needs to take the range-
separated Coulomb operator as introduced in eq. (5.4.27) into account. This requires
an alternative routine capable of handling the error function present in the operator.

8.2.3. Exchange-Correlation Potential

The construction of the exchange-correlation potential works similarly to its field-free
counterpart. While any grid typically used for ground-state calculations in the absence
of fields can in principle also be used here, larger grids are preferable due to the
oscillations described via the LAO phase factors. Instead of AOs, complex LAOs
are evaluated on the grid; their real and imaginary parts are stored separately. For
MGGA functionals, the noncollinear paramagnetic current densities jpm(r) have to
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be additionally evaluated on the grid, which is done in accordance with eq. (5.4.8).
The diamagnetic contribution in the first term of eq. (5.4.23) must be added onto
the contribution from the local spin-density approximation, but its presence is often
omitted in literature.[38, 193]

8.2.4. Efficiency Increase for SCF Procedure

Calculations in finite magnetic fields are more time-consuming than their field-free
counterparts for a multitude of reasons. Firstly, the need for complex algebra gen-
erally makes calculations about four times more expansive. Secondly, the reduced
permutational symmetry results in an additional factor of two if four-center integrals
are used.[37, 56] Thirdly, the computation of integrals is generally more intricate since
the complex LAO phase factor has to be included and translational invariance of
integrals can no longer be invoked.[36, 38] Additional one-electron integrals for the para-
and diamagnetic contributions have to be evaluated, which is less relevant as their
calculation is not particularly demanding. Finally, as LAOs contain plane-wave contri-
butions, integral screening techniques are generally less advantageous, especially in
the presence of very strong magnetic fields.[316] Several techniques known to accelarate
the SCF procedure in the absence of fields were implemented in the context of this
work and presented in Ref. [56]. An overview of these methods shall be given here
nonetheless.
Cauchy–Schwarz screening[323–325] can be used in order to estimate whether a batch of
integrals is negligible. Using the Schwarz inequality,

|(µν|κλ)| ≤
√

|(µν|νµ)|
√
|(κλ|λκ)| , (8.2.2)

the maximum absolute value of an integral batch

τµνκλ = max{|(µν|κλ)|} (8.2.3)

may be evaluated from the two-index quantity (µν|νµ). As stated prior, these two-
index integrals are precomputed and stored in memory. They are real-valued even if
evaluated over LAOs.[56] Additionally, the maximum value of the density contained in
a shell-pair, |Dµν |, may be stored as a two-index quantity. For (µν|κλ), the maximum
value of any density batch it is contracted with is evaluated according to:

υµνκλ =
1

2
max{4|Dµν |, 4|Dκλ|, |Dµκ|, |Dµλ|, |Dνκ|, |Dνλ|} . (8.2.4)
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A shell-quartet can thus be skipped entirely if the product of the largest contributions
is below a certain threshold denoted by ϵ:

τµνκλυµνκλ ≥ 10−ϵ . (8.2.5)

It should be mentioned that the screening in eq. (8.2.4) includes density contributions
for both the Coulomb and the exchange potential. If they are calculated separately,
the screening is more efficient, particularly for large molecules where the majority
of atoms are well-separated. On the downside, four-center integrals then have to be
evaluated twice. A very similar approach uses difference densities[323, 326, 327] instead
of densities for the screening:

∆υµνκλ =
1

2
max{4|∆Dµν |, 4|∆Dκλ|, |∆Dµκ|, |∆Dµλ|, |∆Dνκ|, |∆Dνλ|} . (8.2.6)

The difference density |∆D| is the difference between the density of the current
and previous iterations. Thus, if parts of the density are already converged, their
contributions can be neglected:

τµνκλ∆υµνκλ ≥ 10−ϵ . (8.2.7)

Particularly the last few iterations of the SCF procedure are vastly accelerated by
using difference densities.
The direct inversion of the iterative subspace (DIIS)[328, 329] is an alternative to the
(damped) diagonalization of the Fock matrix. Instead, an error vector,

e = FDS− SDF , (8.2.8)

is evaluated and minimized until a stationary point is reached. If LAOs are used, all
quantities including the error vector itself become complex-valued.

8.2.5. Canonical Orthogonalization

While the development of basis sets for molecules in strong magnetic fields has been
attempted in the past,[43, 71, 330, 331] no broadly used basis set has so far emerged.
Thus, the use of very large uncontracted basis sets is not uncommon for quantum
chemical calculations in such extreme environments.[19, 35] One problem which may
arise if such large uncontracted basis sets are employed, is the appearance of near
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linear dependencies in the basis. They correspond to very small eigenvalues λi of the
overlap matrix,

Svi = λivi , (8.2.9)

and may be avoided if canonical orthogonalization[332, 333] is used for the generation of
an orthonormal set of spinors. Eigenvectors of the metric corresponding to eigenvalues
lower than a certain threshold η are simply discarded,

vi = 0 ∀λi < η , (8.2.10)

and spinors are evaluated accordingly. This functionality was implemented into Tur-

bomole, both for calculations in the absence and presence of external magnetic fields.
Since an identical problem may arise for the metric used in the RI approximation, a
similar procedure was implemented for the auxiliary metric.

8.2.6. Spin Zeeman Scaling

As previously described in sec. 5.2.1, the 2c SCF method does not impose any spin
restrictions onto the electronic wave function or density. Consequently, the solution
usually corresponds to the spin state with the lowest total electronic energy. In strong
magnetic fields, the spin Zeeman term is incorporated through eq. (5.2.9), which leads
to spin states with a very high spin multiplicity (2|S|+ 1) in larger fields.
Electronic excited states may also be calculated using the 2c SCF method if they are
of a different spin multiplicity. By scaling the spin Zeeman term with a factor z,

hµν,n = z

[
1

2
Bn ⟨µ|ν⟩

]
, (8.2.11)

an additional constraint is imposed, which can lead to a different solution to the
SCF method. Values of z > 1 can lead to the description of spin states with higher
multiplicity, while values of z < 1 generally result in lower spin states. For z = 0, the
spin Zeeman term is neglected entirely.
The resulting scaled spin Zeeman energy is calculated as,

EBS = hµν,nDνµ,n , (8.2.12)

and indirectly includes the spin Zeeman scaling z. Since hn only contains the scaled
metric of the corresponding generalized eigenvalue problem, any solution which is
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variationally stable with z must in principle be stable with z = 1. Thus, the spin
Zeeman scaling performs the role of a Lagrange multiplier within an SCF calculation.
In the last iteration, the scaling is set back to z = 1, in order to ensure comparability
between differently scaled calculations. If the minimum found is variationally and
numerically stable, subsequent calculations with z = 1 should yield the same (excited)
wave function as a result.

8.2.7. Squared Spin Operator

In order to evaluate the spin contamination, the expectation value of the squared spin
operator has to be computed. This was implemented for two-component calculations
in the absence and presence of external magnetic fields in the context of this work,
and the presentation here closely follows Ref. [334]. The expectation value of the
squared spin operator for 2c calculations is given by

⟨Ψ0|Ŝ2|Ψ0⟩ =
(
Nα −Nβ

2

)(
Nα −Nβ

2
+ 1

)
+

(
Nβ −

Nel∑
i,j

⟨φα
i |φβ

j ⟩ ⟨φβ
j |φα

i ⟩
)

+
1

4

(
Nel −

Nel∑
i,j

∣∣∣⟨φα
i |φα

j ⟩ − ⟨φβ
i |φβ

j ⟩
∣∣∣2)+

∣∣∣∣∣
Nel∑
i

⟨φβ
i |φα

i ⟩
∣∣∣∣∣
2

,

(8.2.13)

with Nα being the number of α electrons and Nβ the number of β electrons, assuming
that Nα ≥ Nβ. Consequently, the first term of eq. (8.2.13) is the eigenvalue of a wave
function in which the Ŝ2-symmetry is not broken, such as the restricted open-shell
Hartree–Fock solution.[335] The second term is equivalent to the spin contamination of
UHF wave functions.[334, 336] The third term is referred to as z-noncollinearity and it is
a direct result of the lifted Ŝz constraint. The last term is called x, y-perpendicularity
and is a consequence of the presence of spin density in the x and y direction.[334]

8.2.8. Ground State Properties and Expectation Values

Molecular properties of the electronic ground state represented by any hermitian
operator Ô may be calculated according to

⟨Ψ0|Ô|Ψ0⟩ =
∑
µ,ν

⟨µ|Ô|ν⟩Dνµ,0 , (8.2.14)
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using the total electron density matrix D0 if the respective property does not reference
the electron spin. Electric dipole and quadrupole moments are calculated by default
in the current implementation. Their components are represented by the operators r̂α
and r̂αr̂β, respectively. The integrals in eq. (8.2.14) have to be evaluated using LAOs.
Mulliken charges may be evaluated as described in eqs. (7.2.13) – (7.2.14). Here,
the overlap matrix is calculated using complex LAOs and the noncollinear density
is taken from a previous SCF calculation. Additionally, the possibility to print out
the Mulliken charge distribution was implemented, which can be used for molecular
dynamics simulations in finite magnetic fields.[57]

While the visualization of complex-valued orbitals has been attempted in the past,[337]

it remains unclear how much can be gained from interpreting the somewhat arbitrary
complex phase (see: sec. 4.2). The electron density, however, is an observable quantity
and its interpretation is relevant for numerous applications. It may be evaluated on
a grid using the tools implemented for Kohn–Sham DFT as previously described in
sec. 8.2.3. As usual, LAOs are used to ensure gauge origin invariance.

8.3. Molecular Gradients and Geometry Optimization

8.3.1. General Outline

The evaluation of molecular gradients is a quintessential step in the investigation of
molecular structures. Within the BO adiabatic approximation, the electronic wave
function can be evaluated for any nuclear configuration R as detailed in the previous
section. For most chemical applications, however, only equilibrium structures satisfying
eq. (3.3.23) are relevant. They may be systematically found through a process called
geometry optimization, which typically involves the calculation of the molecular
gradient in several steps of the procedure. An efficient implementation is therefore
desirable for geometry optimizations of larger molecules and other applications such
as ab initio molecular dynamics simulations.
Molecular gradients may, in principle, be evaluated at any level of theory. For a
detailed description of the evaluation of molecular gradients on the RHF as well
as UHF and UKS level, the interested reader is referred to the literature.[34, 38] In
this work, molecular gradients were implemented into Turbomole using GHF and
spin-noncollinear KS DFT. Their evaluation requires a successfully converged SCF
calculation on the same level of theory. An individual element of the gradient on the
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HDFT level may be calculated according to:[338]

∂EBO
0 (R)

∂RIα

=
∑
µν

{[〈
µ

∣∣∣∣∣ ∂V̂Ne

∂RIα

∣∣∣∣∣ ν
〉

+ ⟨µ′|ĥ0|ν⟩+ ⟨µ|ĥ0|ν ′⟩
]
Dνµ,0

+
1

2

∑
κλ

[(µ′ν|κλ) + (µν ′|κλ) + (µν|κ′λ) + (µν|κλ′)]Dλκ,0Dνµ,0

− 1

2
cx
∑
κλ

[(µ′ν|κλ) + (µν ′|κλ) + (µν|κ′λ) + (µν|κλ′)]Dλµ,mDκν,m

+ [⟨µ′|ν⟩+ ⟨µ|ν ′⟩]
[
1

2
BnDνµ,n −Wνµ,0

]}
+
∂Exc

∂RIα

+
∂VNN

∂RIα

.

(8.3.1)

For GHF calculations, the full exchange contribution is taken into account, cx = 1,
and no xc energy contribution is present: Exc = 0. For non-hybrid DFT, no exact
exchange is calculated: cx = 0. As previously defined in sec. 5.2 of this work, we
assume m ∈ {0, 1, 2, 3} and n ∈ {1, 2, 3} for 2c calculations. The energy-weighted
density matrix W is defined similarly to the noncollinear density matrix in eq. (5.2.7),

W σσ′

µν = εjC
σ
µjC

σ′∗
νj , (8.3.2)

using spinor energies εj for its construction.[310, 339] It may be decomposed into its
individual noncollinear contributions as

W = Wm ⊗ σm (8.3.3)

by using the Pauli matrices. Finally, the abridged notation for the derivative of a LAO
may be rewritten as

|µ′⟩ = ∂ξµ(r)

∂RIα

=
∂

∂Rµ
α
|lµ⟩ , (8.3.4)

where we used the atom-centered nature of basis functions in order to discard deriva-
tives with respect to nuclear coordinates which the LAO does not reference. Employing
the definition of a LAO in eq. (4.3.3) and its corresponding GTO in eq. (4.3.4), the
derivative of any primitive LAO with respect to a nuclear coordinate may be expressed
according to:[34, 38]

∂

∂Rµ
α
|lµ⟩ =− aµα |lµ − 1α⟩+ 2ζµ |lµ + 1α⟩+

i

2
εαβγBβ(R

µ
γ −Oγ) |lµ⟩

+
i

2
εαβγBβ |lµ + 1γ⟩ .

(8.3.5)
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It should be noted that the derivative with respect to an electron coordinate may
similarly be defined as

∂

∂rα
|lµ⟩ = aµα |lµ − 1α⟩ − 2ζµ |lµ + 1α⟩ −

i

2
εαβγBβ(R

µ
γ −Oγ) |lµ⟩ (8.3.6)

and for the sake of completeness, we note that the derivative with respect to a
component of the gauge origin reads

∂

∂Oα

|lµ⟩ = − i

2
εαβγBβ |lµ + 1γ⟩ . (8.3.7)

Thus, an individual LAO is translationally invariant with respect to the displacement
of the nucleus it is centered on, the electron it describes and the gauge origin:(

∂

∂Rµ
α
+

∂

∂rα
+

∂

∂Oα

)
|lµ⟩ = 0 . (8.3.8)

From this notion, a few key differences for the calculation of molecular gradients in
the absence and presence of an external magnetic field may be inferred. Firstly, all
integrals have to be calculated using complex LAOs. Secondly, the prevalent use of
relations invoking translational-invariance of any kind have to be carefully assessed.
Thirdly, the lowered permutational symmetry of four-center integrals has to be taken
into account similarly to the procedure described in sec. 8.2.2 of this work.

8.3.2. Geometry Optimization in External Magnetic Fields

Molecular geometries in external magnetic fields may be optimized using the quasi-
Newton–Raphson method.[38] The molecular Hessian can be approximated using
gradients in the Broyden–Fletcher–Goldfarb–Shanno (BFGS) approach.[340–343] Ge-
ometry optimizations can be carried out in Cartesian coordinates with certain
constraints,[344–346] which may be straightforwardly done for molecules in external
magnetic fields. While the optimization in Cartesian coordinates is feasible and has
been carried out in the past,[38, 347] it must be carried out carefully. Due to the presence
of the magnetic field, the system is no longer isotropic with respect to rotational
degrees of freedom. The additional rotational barrier[57] with respect to one (linear
molecules) or two (non-linear molecules) rotational axis perpendicular to the magnetic
field vector has to be taken into account. Particularly in small magnetic fields, in
which the barrier is also very small, an optimization may seem to have converged
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because compared to the other (vibrational) degrees of freedom, the contribution of
the rotational modes to the molecular gradient is extremely small.
The use of internal coordinates[348, 349] might rectify this problem somewhat. In the
absence of magnetic fields, rotational and translational degrees of freedom are generally
decoupled from vibrational modes in the internal coordinate Hessian. In the presence
of magnetic fields, up to two additional internal coordinates, one for linear molecules
and two for non-linear molecules, need to be introduced. As the new degrees of freedom
are associated with small gradient contributions, it may be necessary to decouple the
Hessian into its field-free form and the additional 2× 2 Hessian for field-dependent
internal coordinates. The decoupled Hessian for molecules in external magnetic fields
is depicted in fig. 8.3.1.

Regular
internal coordinates

Rota�on 
are decoupled 

Transla�on 
+ 

internal
coordinates

B-dependent

Figure 8.3.1.: Hessian consisting of internal coordinates for molecules in external mag-
netic fields. Due to rotational anisotropy, one (linear molecules) or two
(non-linear molecules) additional field-dependent internal coordinates
need to be introduced. If the Hessian is decoupled, the two blocks may
be optimized separately in an iterative procedure.

The geometry optimization in internal coordinates may then be carried out using the
following procedure: Firstly, the geometry is optimized in regular internal coordinates.
Secondly, the two (one for linear molecules) additional field-dependent rotational
modes are optimized in a separate step with fixed internal coordinates for vibrational
modes. These two separate geometry optimizations are then iteratively carried out,
alternating between one and the other until both are converged. This procedure
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was developed in collaboration with Kitsaras and is currently not implemented into
Turbomole.[350] For geometry optimizations presented in this work, the second step
of this procedure is thus carried out manually.

8.4. Post Hartree–Fock Methods and Electronic Excitions

All implementations on post Hartree–Fock methods and electronic excitations were
carried out in collaboration with Holzer. The implementation of post Hartree–Fock
methods such as MP2 and CC2 in external magnetic fields is very similar to the
implementation of electronic excitations using TD-HF. In both cases, the main part
of the program uses quantities in the MO basis, which in the case of two-component
calculations is already complex-valued even in the absence of magnetic fields. The
information about the magnetic field is implicitly present through the use of spinors
generated from a field-dependent HF calculation, which was previously carried out. The
only additional ingredient are the two-electron integrals, which have to be calculated
using LAOs instead of AOs and then transformed into the MO basis.
For TD-DFT and post Kohn–Sham methods which reference the xc part such as
cBSE, an additional component has to be evaluated: the xc kernel. Its construction
for current-dependent MGGA functionals was described in sec. 6.1.4 of this work. The
implementation of this xc kernel is very similar to the field-free MGGA case.[189, 260]

Additional current-dependent terms have to be evaluated and LAOs have to be used
for its construction. After a transformation to the MO basis, again, everything works
identically to the field-free case.
It should be mentioned that in contrast to the four noncollinear ground state (spin)
densities Dm which are all either hermitian or anti-hermitian, noncollinear (de-)exci-
tation vectors Xj and Yj generally do not possess any symmetry. Thus, they are
decomposed into a hermitian and an anti-hermitian part, resulting in eight complex
matrices, each yet again decomposable into their real and imaginary parts. Furthermore,
it should be noted that the elements of the de-excitation vector Yj have to be
multiplied with complex conjugated two-electron integrals (see for instance eq. (6.2.1)
for reference). In the absence of magnetic fields, this does not make any difference in
the AO basis, but it has to be considered for complex-valued LAOs.
Excited state properties may be calculated from converged vectors Xj and Yj, and
transition densities may be evaluated similarly to ground state densities.
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The previous chapter presented the implementation of quantum chemical calculations
in finite magnetic fields into the Turbomole program suite. For two-component
calculations, where most quantities are already complex-valued in the MO basis, most
of the architecture already present for field-free calculations could be used. One of the
major differences was the reduced permutational symmetry of four-center integrals,
which required the implementation of an entirely new wrapper for the calculation
and processing of these integrals. After having established the main structure of the
programs, this chapter introduces the efficient evaluation of integrals over complex-
valued LAOs. Excellent reviews of this topic can be found in Ref. [36] and [38], although
the formalism used in this work deviates for some key components. Furthermore, the
evaluation of integrals relevant for the RI approximation was developed during this
work and presented in [56].
This chapter follows the basic structures presented in Ref. [36] and [38]. Initially,
the calculation of shell-pair quantities is introduced. This is a relevant step for the
evaluation of any integral presented in this chapter, as for instance highlighted in
fig. 8.2.2. Thereafter, the calculation of overlap integrals and the implementation of
Obara–Saika recurrence relations for overlap integrals over LAOs is presented. It is
shown that the computation of kinetic energy integrals can be expressed entirely in
terms of overlap integrals.
Nuclear attraction integrals cannot be expressed in terms of overlap integrals. They
require the evaluation of the molecular Boys function and a specific set of Obara–
Saika recurrence relations. An algorithm capable of efficiently evaluating both is
discussed. Finally, the calculation of electron repulsion integrals is presented in terms
of four-center integrals as well as three-center integrals. An implementation of the
Head-Gordon–Pople algorithm is presented. For all types of integrals except three-
center integrals, derivatives with respect to nuclear displacements are discussed as
required for molecular gradients.
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9.1. Calculation of Shell-Pair Quantities

This section largely follows Ref. [36] and [38]. As illustrated for four-center integrals
in fig. 8.2.2, the evaluation of shell-pair quantities is a quintessential step in the
calculation of molecular integrals. All molecular integrals require the evaluation of the
overlap between two s-type functions for every non-negligible shell-pair µν according
to:[36, 38]

⟨µ|ν⟩ = ⟨lµ|lν⟩ = ⟨0|0⟩ (9.1.1)

Using the short-hand notation of the plane wave part of LAO ξµ,

kµ =
1

2
B× (Rµ −O) , (9.1.2)

the overlap between two primitive s-type functions may be written as:

⟨0|0⟩ = NµNν

∫ ∞

−∞
e−ζµ|r−Rµ|2+ikµ·r e−ζν |r−Rν |2−ikν ·r dr . (9.1.3)

Additional shell-pair quantities are introduced:

ζ = ζµ + ζν , (9.1.4)

σ = ζ−1ζµζν , (9.1.5)

P = ζ−1(ζµR
µ + ζνR

ν) , (9.1.6)

χ = (4ζ)−1B× (Rν −Rµ) , (9.1.7)

P̃ = P− iχ , (9.1.8)

with ζ being the total exponent, σ the reduced exponent, P the real part and χ the
imaginary part of the complex center of charge P̃.[351] Using these, the overlap of two
primitive s-functions may be expressed as:

⟨0|0⟩ = NµNνe
−σ(Rν−Rµ)2e−ζ(χ2+2iP·χ)

∫ ∞

−∞
e−ζ(r−P̃)2 dr . (9.1.9)

The integral may be decomposed into its three Cartesian components and evaluated as
the product of three one-dimensional integrals. Due to the isotropic nature of s-type
functions, all three Cartesian components yield identical results. Additionally, the
translational invariance of an integral over a Gaussian function with respect to a
displacement of its center can be used if the integral is evaluated over all of space. This
is valid even for a complex-valued center of the Gaussian, provided the integration
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variable is real-valued. The resulting integral reads:∫ ∞

−∞
e−ζ(r−P̃)2 dr =

(
π

ζ

)3/2

, (9.1.10)

We thus define the overlap of two s-type LAOs as:

⟨0|0⟩ = NµNνe
−σ(Rν−Rµ)2

(
π

ζ

)3/2

e−ζ(χ2+2iP·χ) = UPKP = ŨP . (9.1.11)

It should be noted that this result differs from the real-valued GTO case (UP) only in
the presence of the complex-valued factor KP = e−ζ(χ2+2iP·χ). Therefore, an existing
code which is able to calculate the overlap between two s-type GTOs only needs to be
altered by including this additional factor in order to calculate the overlap between
two s-type LAOs. An efficient program may screen integrals via |ŨP|, as for instance
suggested in Ref. [36] and [38]. This might not generally be advisable[316, 352] and an
in-depth analysis of integral screening for LAOs is the subject of future work.

9.2. Overlap Integrals

9.2.1. Horizontal Recurrence Relations

Overlap integrals associated with higher angular momentum quantum numbers can
be calculated using recurrence relations. The horizontal recurrence relation (HRR)
can be derived using the following relations:[351]

|lµ + 1α⟩ = (rα −Rµ
α) |lµ⟩ , (9.2.1)

|lν + 1α⟩ = (rα −Rν
α) |lν⟩ . (9.2.2)

Projecting onto the respective Bra-vectors and subtracting the two equations yields

⟨lµ + 1α|lν⟩ − ⟨lµ|lν + 1α⟩ = ⟨lµ|(rα −Rµ
α)|lν⟩ − ⟨lµ|(rα −Rν

α)|lν⟩ , (9.2.3)

which can be rewritten as the horizontal recurrence relation:[36]

⟨lµ + 1α|lν⟩ = ⟨lµ|lν + 1α⟩+ (Rν
α −Rµ

α)| ⟨lµ|lν⟩ . (9.2.4)
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The HRR for LAOs is identical to its real-valued counterpart in the absence of fields.
It is the cheapest recurrence relation from a computational point of view and does
not reference any shell-pair quantities.[353]

9.2.2. Translational Recurrence Relations

Translational recurrence relations (TRR) can be derived by requiring that an integral
is translationally invariant with respect to the displacement of both nuclei and the
gauge origin: (

∂

∂Rµ
α
+

∂

∂Rν
α

+
∂

∂Oα

)
⟨lµ|lν⟩ = 0 . (9.2.5)

As previously described in sec. 8.3, the inclusion of the displacement with respect to
the gauge origin is absolutely crucial in the presence of external magnetic fields. Using
the product rule for derivatives, the TRR reads:〈(

∂

∂Rµ
α
+

∂

∂Oα

)
lµ
∣∣∣∣ lν〉+

〈
lµ
∣∣∣∣ ( ∂

∂Rν
α

+
∂

∂Oα

)
lν
〉

= 0 . (9.2.6)

Through the definitions introduced in eq. (8.3.5) and (8.3.7), the TRR for overlap
integrals may be rewritten as

2ζµ ⟨lµ + 1α|lν⟩ − aµα ⟨lµ − 1α|lν⟩ −
i

2
εαβγBβ(R

µ
γ −Oγ) ⟨lµ|lν⟩

2ζν ⟨lµ|lν + 1α⟩ − aνα ⟨lµ|lν − 1α⟩+
i

2
εαβγBβ(R

ν
γ −Oγ) ⟨lµ|lν⟩ = 0 ,

(9.2.7)

which may be simplified further by identifying the imaginary part of the complex
center of charge introduced in eq. (9.1.7):

2ζµ ⟨lµ + 1α|lν⟩+ 2ζν ⟨lµ|lν + 1α⟩+ iχα(2ζ) ⟨lµ|lν⟩
= aµα ⟨lµ − 1α|lν⟩+ aνα ⟨lµ|lν − 1α⟩

(9.2.8)

In of itself, the TRR are not particularly useful as they relate an increased angular
momentum quantum number of µ to one of ν, similarly to the HRR.

9.2.3. Obara–Saika Recurrence Relations

Finally, using both the HRR and TRR, a set of useful recurrence relations can be
identified. The Obara–Saika (OS) recurrence relations[354, 355] are derived by inserting
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9. Efficient Integral Evaluation

the HRR into the TRR, which results in the following expression:

2ζ ⟨lµ|lν + 1α⟩+ 2ζµ(R
ν
α −Rµ

α)| ⟨lµ|lν⟩+ iχα(2ζ) ⟨lµ|lν⟩
= aµα ⟨lµ − 1α|lν⟩+ aνα ⟨lµ|lν − 1α⟩ .

(9.2.9)

Rearranging this relation leads to the OS recurrence relations in external magnetic
fields, also referred to as vertical recurrence relations (VRR), which read[36]

⟨lµ|lν + 1α⟩ = (P̃α −Rν
α) ⟨lµ|lν⟩+

aµα
2ζ

⟨lµ − 1α|lν⟩+
aνα
2ζ

⟨lµ|lν − 1α⟩ , (9.2.10)

⟨lµ + 1α|lν⟩ = (P̃α −Rµ
α) ⟨lµ|lν⟩+

aµα
2ζ

⟨lµ − 1α|lν⟩+
aνα
2ζ

⟨lµ|lν − 1α⟩ , (9.2.11)

and are almost identical to their real-valued counterparts. The only difference is the
use of the complex center of charge, that is, the replacement of

P → P− iχ (9.2.12)

at all points in the procedure and the associated use of complex algebra. Unfortunately,
Turbomole does not support the use of OS recurrence relations for overlap integrals
over real-valued AOs and instead uses numerical integration techniques.[320] Thus, an
efficient implementation of the OS recurrence for overlap integrals was carried out in
the context of this work.
While different algorithms can be constructed using the OS recurrence relations to
evaluate the target integral ⟨lµx |lνx⟩, not all of them are equally efficient. In fig. 9.2.1,
three different possible algorithms are depicted. The blue square marks the starting
point, ⟨0|0⟩, while the green square marks the target integral, for instance ⟨7|4⟩. In
this case, the first algorithm (a) uses 29 VRR steps and is the least efficient. The
second algorithm (b) only uses 16 VRR steps and is thus already more efficient. The
third algorithm (c) is implemented in Turbomole. It uses 11 VRR steps of the form

⟨lµ + 1α|0⟩ = (P̃α −Rµ
α) ⟨lµ|lν⟩+

aµα
2ζ

⟨lµ − 1α|lν⟩ , (9.2.13)

which is more efficient to evaluate than the full VRR in eq. (9.2.11). From the resulting
integrals, only ⟨7|0⟩ – ⟨11|0⟩ are stored and then used for the subsequent calculation of
10 HRR steps which are computationally less demanding than their VRR counterparts.
Algorithms b) and c) were both implemented and carefully benchmarked for several
systems. For larger systems in particular, algorithm c) consistently proved to be the
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most efficient.
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Figure 9.2.1.: Three different possible algorithms for the evaluation of Obara–Saika
recurrence relations for overlap integrals. Algorithm a) uses vertical
recurrence relations (red) to progress from the starting point (blue)
to the target (green) in 29 steps. Algorithm b) only uses 17 vertical
recurrence relations. Algorithm c) uses 11 vertical and 10 horizontal
recurrence relations (yellow) and is thus the algorithm of choice.

For overlap integrals, the three Cartesian components can be computed separately.
Therefore, an overlap integral is evaluated as:

⟨lµ|lν⟩ = ⟨lµx |lνx⟩ ⟨lµy |lνy⟩ ⟨lµz |lνz ⟩ (9.2.14)

9.2.4. Molecular Gradient

Derivatives of overlap integrals with respect to nuclear displacements have to be
calculated for molecular gradients. Using the definition in eq. (8.3.5), the respective
integral may be computed as

⟨µ|ν ′⟩ =− aνα ⟨lµ|lν − 1α⟩+ ikνα ⟨lµ|lν⟩+ 2ζν ⟨lµ|lν + 1α⟩

+
i

2
εαβγBβ ⟨lµ|lν + 1γ⟩ ,

(9.2.15)
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which is a linear combination of overlap integrals constructed from the following set:
{⟨lµ|lν − 1α⟩ , ⟨lµ|lν⟩ , ⟨lµ|lν + 1β⟩}.[34] There is a crucial difference between derivative
integrals in the absence and presence of magnetic fields. While for field-free calculations,
the derivative of a px orbital with respect to Rν

y can be calculated as the linear
combination of an s- and a dxy-orbital, the same derivative needs an s-, px-, dxx-, dxy-
and dxz-orbital for |B| > 0.
At first glance, this might seem like quite a few additional integrals need to be evaluated.
However, as the derivative of the overlap integral with respect to all Cartesian
components needs to be calculated for molecular gradients, the individual components
may be computed simultaneously if for the derivative of a batch of integrals ⟨lµ|lν⟩,
additionally all those integrals decreased and increased by one Cartesian component
are calculated. From this set, all derivative integrals can be computed. In comparison
to the field-free case, only the use of LAOs and the additional evaluation of the batch
⟨lµ|lν⟩ itself is required. Compared to the batch with an increased angular momentum
quantum number, this is far less computationally demanding since the latter is both
larger and more complicated to evaluate, requiring more recurrence relations.

9.3. Kinetic Energy Integrals

9.3.1. Evaluation of Integrals

The kinetic energy operator in the presence of a magnetic field reads

T̂ =
p̂2

2
+

1

2
B · l̂O +

1

8

[
B2(r̂O)2 − (B · r̂O)2

]
, (9.3.1)

excluding the spin Zeeman term which only requires the computation of overlap inte-
grals. The individual integrals over the kinetic energy operator can all be calculated as
a linear combination of overlap integrals.[36] In this section, the different contributions
are listed, giving an overview of how to evaluate not only the canonical kinetic energy
contribution, but also the additional integrals over magnetic field-dependent operators.
The spin-independent contribution to the kinetic energy is separated into an integral
over the canonical kinetic energy operator,〈

µ

∣∣∣∣ p̂2

2

∣∣∣∣ ν〉 = −1

2

〈
µ

∣∣∣∣ ∂2∂r2x +
∂2

∂r2y
+

∂2

∂r2z

∣∣∣∣ ν〉 , (9.3.2)
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the orbital Zeeman integral,〈
µ

∣∣∣∣ 12B · l̂O
∣∣∣∣ ν〉 = −1

2
εαβγBα

〈
µ

∣∣∣∣ i r̂β ∂

∂rγ

∣∣∣∣ ν〉 , (9.3.3)

and the integrals containing the diamagnetic terms:〈
µ

∣∣∣∣ 18 [B2(r̂O)2 − (B · r̂O)2
] ∣∣∣∣ ν〉

=
1

8

[
B2

x

〈
µ
∣∣ r̂2y + r̂2z

∣∣ ν〉+B2
y

〈
µ
∣∣ r̂2z + r̂2x

∣∣ ν〉+B2
z

〈
µ
∣∣ r̂2x + r̂2y

∣∣ ν〉 ]
− 1

4

[
BxBy ⟨µ | r̂xr̂y | ν⟩+BxBz ⟨µ | r̂xr̂z | ν⟩+ByBz ⟨µ | r̂yr̂z | ν⟩

]
.

(9.3.4)

Thus, all integrals over the kinetic energy operator can be expressed in terms of
integrals over multipole operators r̂α, derivative operators and combinations thereof.
This is also true for integrals over field-dependent operators. More specifically, the
following multipole integrals are required:

⟨lµ|r̂α|lν⟩ = ⟨lµ|lν + 1α⟩+Rν
α ⟨lµ|lν⟩ (9.3.5)

⟨lµ|r̂2α|lν⟩ = ⟨lµ|lν + 2α⟩+ 2Rν
α ⟨lµ|lν + 1α⟩+ (Rν

α)
2 ⟨lµ|lν⟩ (9.3.6)

Due to the separation of Cartesian components for overlap integrals presented in
eq. (9.2.14), contributions of mixed Cartesian components (r̂xr̂y) are evaluated as

⟨lµ|r̂xr̂y|lν⟩ = ⟨lµx |r̂x|lνx⟩ ⟨lµy |r̂y|lνy⟩ ⟨lµz |lνz ⟩ , (9.3.7)

only requiring electric dipole integrals as presented in eq. (9.3.5). All kinetic energy
integrals can be decomposed using this scheme and thus no further implementation
for operators with mixed Cartesian components is required.
For the calculation of derivative integrals, the effects of the derivative operator with
respect to an electron coordinate, eq. (8.3.6), has to be considered:〈

lµ
∣∣∣∣ ∂

∂rα

∣∣∣∣ lν〉 = aνα ⟨lµ|lν − 1α⟩ − ikνα ⟨lµ|lν⟩ − 2ζν ⟨lµ|lν + 1α⟩ , (9.3.8)〈
lµ
∣∣∣∣ ∂2∂r2α

∣∣∣∣ lν〉 = aνα(a
ν
α − 1) ⟨lµ|lν − 2α⟩ − 2ikναa

ν
α ⟨lµ|lν − 1α⟩

−
[
2ζν(2a

ν
α + 1) + (kνα)

2
]
⟨lµ|lν⟩

+ 4iζνk
ν
α ⟨lµ|lν + 1α⟩+ 4ζ2ν ⟨lµ|lν + 2α⟩ .

(9.3.9)

107



9. Efficient Integral Evaluation

The Einstein summation convention is not used in eq. (9.3.9). No mixed second
derivatives are present in the kinetic energy operator. Finally, the orbital Zeeman
integral in eq. (9.3.3) contains mixed multipole and derivative operators. However, due
to the presence of the Levi-Civita symbol, only mixed operators with different Cartesian
components are obtained. Thus, the resulting integrals are separated similarly to
eq. (9.3.7) and require no further implementation.
A general outline of the algorithm responsible for the calculation of kinetic energy
integrals is presented in fig. 9.3.1 as implemented into Turbomole. It is capable
to handle contracted basis functions and computes an entire shell batch of integrals
simultaneously. In contrast to other implementations which use more general recursion
schemes,[32, 36] all individual contributions to the kinetic energy have been implemented
manually here, which allows for discarding some negligible terms.

Figure 9.3.1.: Outline of the algorithm capable to calculate kinetic energy integrals in
an external magnetic field over LAOs, including the additional orbital
Zeeman and diamagnetic contributions. The algorithm can handle con-
tracted basis functions. An entire shell batch of kinetic energy integrals
is evaluated simultaneously.
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9.3.2. Molecular Gradient

The calculation of molecular gradients requires the evaluation of kinetic energy integrals
which include the derivative operator with respect to nuclear displacements:

〈
µ
∣∣∣ T̂ ∣∣∣ ν ′〉 =

〈
µ

∣∣∣∣ ( p̂2

2
+

1

2
B · l̂O +

1

8

[
B2(r̂O)2 − (B · r̂O)2

]) ∂

∂Rν
α

∣∣∣∣ ν〉 . (9.3.10)

The resulting integrals become very lengthy.[38] Due to the presence of second derivative
operators for the canonical kinetic energy contribution, integrals of the form〈

lµ
∣∣∣∣ ∂2∂r2α ∂

∂Rν
α

∣∣∣∣ lν〉 = −
〈
lµ
∣∣∣∣ ∂3∂r3α

∣∣∣∣ lν〉−
〈
lµ
∣∣∣∣ ∂2∂r2α ∂

∂Oα

∣∣∣∣ lν〉 (9.3.11)

have to be evaluated, where the translational invariance as introduced in eq. (8.3.8)
has been invoked. The integral containing the third derivative with respect to an
electron coordinate reads〈

lµ
∣∣∣∣ ∂3∂r3α

∣∣∣∣ lν〉 = aνα(a
ν
α − 1)(aνα − 2) ⟨lµ|lν − 3α⟩

− 3i kναa
ν
α(a

ν
α − 1) ⟨lµ|lν − 2α⟩

− 3aνα(2ζνa
ν
α + (kνα)

2) ⟨lµ|lν − 1α⟩
+ i kνα

[
6ζν(2a

ν
α + 1) + (kνα)

2
]
⟨lµ|lν⟩

+ 6ζν
[
2(aνα + 1) + (kνα)

2
]
⟨lµ|lν + 1α⟩

− 12i ζ2νk
ν
α ⟨lµ|lν + 2α⟩

− 8ζ3ν ⟨lµ|lν + 3α⟩ ,

(9.3.12)

and includes all overlap integrals with their angular momentum quantum number
decreased and increased up to three times. The algorithm for the calculation of
kinetic energy integrals presented in fig. 9.3.1 can to be modified in two steps to
calculate kinetic energy integral contributions for the molecular gradient. Firstly,
additional overlap integrals of the set {⟨lµα|lνα − 3⟩ , ⟨lµα|lνα + 3⟩} have to be calculated
for every Cartesian component. Secondly, the final integrals are evaluated as linear
combinations of the overlap integrals as presented in Ref. [38]. Again, all contributions
were implemented manually into Turbomole, discarding all negligible terms.
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9.4. Nuclear Attraction Integrals

9.4.1. Basic Integral

Nuclear attraction integrals cannot be calculated as a linear combination of overlap
integrals. For the potential energy contribution from the interaction between an
electron and nucleus I with coordinate RI , the integral over s-type LAOs reads:〈

0

∣∣∣∣ 1

|r−RI |

∣∣∣∣0〉 = NµNνe
−σ(Rν−Rµ)2e−ζ(χ2+2iP·χ)

∫ ∞

−∞

e−ζ(r−P̃)2

|r−RI |
dr . (9.4.1)

The Coulomb operator |r−RI |−1 can be rewritten in terms of its Laplace transform[356]

1

|r−RI |
=

2√
π

∫ ∞

0

e−u2(r−RI)
2

du , (9.4.2)

and consequently, the integral in eq. (9.4.1) may be expressed in terms of a double
integral. Using the Gaussian product theorem, it may be split into a contribution
depending on the electron coordinate and one which does not:[351]

∫ ∞

−∞

e−ζ(r−P̃)2

|r−RI |
dr =

2√
π

∫ ∞

0

∫ ∞

−∞
e−ζ(r−P̃)2e−u2(r−RI)

2

dr du (9.4.3)

=
2√
π

∫ ∞

0

e
− ζu2

ζ+u2
(P̃−RI)

2
∫ ∞

−∞
e−(ζ+u2)(r−S̃)2 dr du (9.4.4)

As usual, the (complex-valued) point S̃ is defined as a point on the line drawn between
P̃ and RI :[351]

S̃ =
ζP̃+ u2RI

ζ + u2
. (9.4.5)

The integration over r is carried out as previously shown in eq. (9.1.10) for overlap
integrals. The integration variable u may be replaced by

t2 =
u2

ζ + u2
, (9.4.6)

which is evidently only defined in the interval 0 ≤ t ≤ 1. After some trivial algebraic
manipulations, we arrive at the final form of the nuclear attraction integral for s-type
LAOs:[36] 〈

0

∣∣∣∣ 1

|r−RI |

∣∣∣∣0〉 = 2ŨP

√
ζ

π

∫ 1

0

e−ζ(P̃−RI)
2t2 dt (9.4.7)
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9.4.2. Complex Molecular Boys Function

The integral on the right-hand side in eq. (9.4.7) belongs to a class of functions known
as the molecular Boys function in the context of quantum chemistry:[357]

Fm(z) =

∫ 1

0

t2me−zt2 dt . (9.4.8)

It is related to the error function and equivalent to a scaled version of Kummer’s
confluent hypergeometric function.[36, 351] For complex arguments such as in the case
of nuclear attraction integrals,

z = ζ(P−RI − iχ)2 , (9.4.9)

the Boys function itself becomes complex-valued. A stable algorithm for the evaluation
of the Boys function capable of handling arbitrary complex arguments derived from
Ref. [358] was implemented in the context of this work and published in collaboration
with Klopper in Ref. [56]. It is reexamined here for arguments of Fm(z) appearing the
case of nuclear attraction integrals.
The Boys function’s argument may be decomposed into a real and imaginary part:

Re(z) = ζ
[
(P−RI)

2 − χ2
]
; (9.4.10)

Im(z) = −2ζ(P−RI) · χ . (9.4.11)

It should be noted that since (P−RI)
2 ≥ 0, the real part of z may become negative

if and only if
(P−RI)

2 < χ2 . (9.4.12)

Moreover, the imaginary part of z may become larger than the real part if P−RI ≈ χ,
with purely imaginary arguments being not only possible, but frequent. As pointed
out in Ref. [358], the evaluation of the Boys function becomes numerically unstable
for cases where Re(z) < 0. In such instances, it is beneficial to evaluate the auxiliary
Boys function,[358]

Gm(z) =

∫ 1

0

t2me−z(1−t2) dt , (9.4.13)

instead, which guarantees numerical stability for Re(z) ≤ 0. It is related to the
molecular Boys function through

Fm(z) = e−zGm(−z) . (9.4.14)
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Thus, in cases of Re(z) < 0, the field-dependent part of ŨP, denoted KP in eq. (9.1.11),
may be interwoven with the Boys function to generate the expression[358]

e−ζ(χ2+2iP·χ) Fm(z) = e−ζ[(P−RI)
2+2iRI ·χ] Gm(−z) , (9.4.15)

which is always numerically stable. Evaluating Fm through Gm is therefore convenient
if Re(z) < 0. Furthermore, it should be noted that Fm(z

∗) = F ∗
m(z), which implies

that any algorithm for the computation of Fm can assume Im(z) ≥ 0 without loss of
generality.[358]

Four different algorithms are used in the Turbomole implementation for arguments
corresponding to different parts of the complex plane, which is illustrated in fig. 9.4.1.
For the asymptotic region of Re(z) > 0 in the blue-shaded area (Re(z) > 40 or
Im(z) > 40), Ishida’s F1 algorithm is used. For the yellow-shaded region (0 ≤ Re(z) ≤
40 and 0 ≤ Im(z) ≤ 40), a Taylor expansion is used according to Ishida’s F3 algorithm.
This requires pre-computed points on a grid, which were generated once using Ishida’s
F2 algorithm. However, as this algorithm quickly loses numerical accuracy, the grid
points were evaluated in quadruple precision, so that double precision accuracy could
be guaranteed.

Re(z)

Im(z)

10 50

10

50

-10-50

Figure 9.4.1.: Illustration for the different algorithms required to calculate the complex
Boys function. The blue- and red-shaded areas use asymptotic approxi-
mations (Ishida’s F1 and G1 algorithms), while a Taylor series employing
a pre-computed grid is used for the yellow- and green-shaded regions
(Ishida’s F3 and G3 algorithms).[358] The black-shaded area is evaluated
using the function’s axial symmetry: Fm(z

∗) = F ∗
m(z). Reprinted with

permission from Ref. [56]
.
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For negative real parts of z, the auxiliary Boys function is evaluated instead. In the
red-shaded area (Re(z) < −60 or Im(z) > 60), an asymptotic approximation is chosen,
which requires Ishida’s G1 algorithm. In the green-shaded area (0 > Re(z) ≥ −60

and 0 ≤ Im(z) ≤ 60), Ishida’s G3 algorithm is employed, using a Taylor expansion
similarly to the previously mentioned F3 algorithm for arguments with positive real
part. Again, these points were pre-computed in quadruple precision using Ishida’s F2
algorithm and then stored in double precision. The entire program was carefully tested
regarding its numerical stability and accuracy, yielding double precision accuracy for
all cases.

9.4.3. Obara–Saika Recurrence Relations

Using the definition of the complex Boys function, it is now possible to derive a set
of Obara–Saika recurrence relations for nuclear attraction integrals. For the sake of
brevity, the short-hand notation for the nuclear attraction operator,

V̂I =
1

|r−RI |
, (9.4.16)

is introduced. The OS recurrence relations require auxiliary integrals over s-type
LAOs which can be calculated according to[36, 358]

〈
0
∣∣∣ V̂I ∣∣∣0〉(m)

= 2UP

√
ζ

π
e−ζ(χ2+2iP·χ) Fm(z) ; (9.4.17)

= 2UP

√
ζ

π
e−ζ[(P−RI)

2+2iRI ·χ] Gm(−z) , (9.4.18)

using eq. (9.4.17) if Re(z) ≥ 0 and eq. (9.4.18) otherwise. Horizontal recurrence
relations can be derived equivalently to overlap integrals and they read:〈

lµ + 1α

∣∣∣ V̂I ∣∣∣ lµ〉(m)

=
〈
lµ
∣∣∣ V̂I ∣∣∣ lν + 1α

〉(m)

+ (Rν
α −Rµ

α)
〈
lµ
∣∣∣ V̂I ∣∣∣ lν〉(m)

. (9.4.19)

Translational recurrence relations require not only the displacement of both nuclei
the LAOs are centered on and the gauge origin, but also the center of charge in the
operator: (

∂

∂Rµ
α
+

∂

∂Rν
α

+
∂

∂Oα

+
∂

∂RIα

)〈
lµ
∣∣∣ V̂I ∣∣∣ lν〉(m)

= 0 . (9.4.20)
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Using the derivative of the Boys function with respect to its argument,[36, 358]

∂Fm(z)

∂z
= −Fm+1(z) , (9.4.21)

as well as the chain rule of derivatives, the OS recurrence relations may then be
derived similarly to to those obtained for overlap integrals:[36]

〈
lµ
∣∣∣ V̂I ∣∣∣ lν + 1α

〉(m)

= (P̃α −Rν
α)
〈
lµ
∣∣∣ V̂I ∣∣∣ lν〉(m)

− (P̃α −RIα)
〈
lµ
∣∣∣ V̂I ∣∣∣ lν〉(m+1)

+
aµα
2ζ

[〈
lµ − 1α

∣∣∣ V̂I ∣∣∣ lν〉(m)

−
〈
lµ − 1α

∣∣∣ V̂I ∣∣∣ lν〉(m+1)
]

+
aνα
2ζ

[〈
lµ
∣∣∣ V̂I ∣∣∣ lν − 1α

〉(m)

−
〈
lµ
∣∣∣ V̂I ∣∣∣ lν − 1α

〉(m+1)
]

(9.4.22)〈
lµ + 1α

∣∣∣ V̂I ∣∣∣ lµ〉(m)

= (P̃α −Rµ
α)
〈
lµ
∣∣∣ V̂I ∣∣∣ lν〉(m)

− (P̃α −RIα)
〈
lµ
∣∣∣ V̂I ∣∣∣ lν〉(m+1)

+
aµα
2ζ

[〈
lµ − 1α

∣∣∣ V̂I ∣∣∣ lν〉(m)

−
〈
lµ − 1α

∣∣∣ V̂I ∣∣∣ lν〉(m+1)
]

+
aνα
2ζ

[〈
lµ
∣∣∣ V̂I ∣∣∣ lν − 1α

〉(m)

−
〈
lµ
∣∣∣ V̂I ∣∣∣ lν − 1α

〉(m+1)
]

(9.4.23)

In contrast to overlap integrals, nuclear attraction integrals cannot be decomposed
according to their Cartesian components.[38] Consequently, the OS recurrence relations
as well as the HRR have to be applied subsequently. A total number of m = |lµ|+|lν |+1

auxiliary integrals over s-type LAOs have to evaluated.
For field-free cases, nuclear attraction integrals are implemented into Turbomole

using numerical integration schemes. The algorithm implemented in the context of
this work uses OS recurrence relations. The integral wrapper is similar to that used for
overlap and kinetic energy integrals as presented in fig. 9.3.1. It is capable of handling
contracted basis functions and evaluates an entire shell batch µν. Auxiliary integrals
over s-type LAOs are calculated using the complex molecular Boys function, which
requires access to the pre-computed values on a grid as described in sec. 9.4.2.
The subsequent application of OS recurrence relations and HRR is illustrated in
fig. 9.4.2 for the example of a nuclear attraction integral over orbitals with angular
momentum quantum numbers lµ = (2, 3, 1)⊤ and lν = (1, 3, 1)⊤. The |lµ|+ |lν |+1 = 12

auxiliary integrals (blue) are calculated using either eq. (9.4.17) or (9.4.18). A total
number of lµx+ lνx = 3 VRR steps (red) are applied for the x direction, thereby reducing
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9.4. Nuclear Attraction Integrals

the required number of auxiliary integrals (m) by one per VRR step. The simplified
OS recurrence relation for lν = 0 is used:〈

lµ + 1α

∣∣∣ V̂I ∣∣∣0〉(m)

= (P̃α −Rµ
α)
〈
lµ
∣∣∣ V̂I ∣∣∣0〉− (P̃α −RIα)

〈
lµ
∣∣∣ V̂I ∣∣∣0〉(m+1)

+
aµα
2ζ

[〈
lµ − 1α

∣∣∣ V̂I ∣∣∣0〉(m)

−
〈
lµ − 1α

∣∣∣ V̂I ∣∣∣0〉(m+1)
]
.

(9.4.24)

In a following step, the HRR (yellow) is used on all resulting nine auxiliary integrals.
The resulting integrals (purple) are used in the same procedure for the y-component
of the angular momentum quantum number and, finally, the z-component.
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Figure 9.4.2.: Overview of algorithm using Obara–Saika and horizontal recurrence
relations to evaluate nuclear attraction integrals. The procedure is
shown for the example of angular momentum quantum numbers lµ =
(2, 3, 1)⊤ and lν = (1, 3, 1)⊤. VRR (red) and HRR (yellow) steps are
subsequently applied, first for the x-component (step 1 and 2), then for
the y-component (step 3 and 4) and finally for the z-component (step 5
and 6). Blue squares symbolize the starting integrals over s-type LAOs.
Purple squares symbolize the starting integrals as taken from a previous
step of the procedure.
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It should be mentioned, that the relevant arrays which store all auxiliary quantities
are allocated at the very beginning of the integral evaluation process, that is, outside
of the very first shell loop as shown, for instance, in fig. 8.2.2. During the procedure, all
integrals are stored without gaps in memory and are referenced through an indexing
technique, allowing for an efficient usage of computational resources.

9.4.4. Molecular Gradient

For the calculation of molecular gradients, both the Pulay contributions of nuclear
attraction integrals, as well as the Hellman–Feynman contributions, have to be
computed.[359–363] While the calculation of the former is relatively straightforward〈

µ
∣∣∣ V̂I ∣∣∣ ν ′〉 =− aνα

〈
lµ
∣∣∣ V̂I ∣∣∣ lν − 1α

〉
+ ikνα

〈
lµ
∣∣∣ V̂I ∣∣∣ lν〉

+ 2ζν

〈
lµ
∣∣∣ V̂I ∣∣∣ lν + 1α

〉
+

i

2
εαβγBβ

〈
lµ
∣∣∣ V̂I ∣∣∣ lν + 1γ

〉
,

(9.4.25)

and requires the same contributions already discussed for overlap integrals in sec. 9.2.4,
the latter are typically calculated by invoking translational invariance.[364, 365] This is
no longer possible for integrals over LAOs as they are also dependent on the gauge
origin and thus the contribution has to be evaluated directly. The evaluation of the
Hellmann–Feynman contribution was recently presented in Ref. [38] for an integral
evaluation scheme using London Hermite Gaussian functions. In this work, the Obara–
Saika recurrence relations presented for real-valued AOs in Ref. [354] is used instead.
The modifications for complex-valued LAOs have been derived and implemented in
the context of this work and have not yet been published.
The auxiliary integrals over s-type LAOs may be calculated according to:〈

0
∣∣∣ V̂ ′

I

∣∣∣0〉(m)

= 2(P̃α −RIα)
〈
0
∣∣∣ V̂I ∣∣∣0〉(m+1)

; (9.4.26)

a result which can be easily obtained through application of the chain rule of derivatives
into the definition of the original nuclear attraction integral in eq. (9.4.17),

〈
0
∣∣∣ V̂ ′

I

∣∣∣0〉(m)

= 2ŨP

√
ζ

π

∂Fm(z)

∂z

∂z

∂RIα

, (9.4.27)

and by additionally using eq. (9.4.9) as well as (9.4.21), respectively. The resulting
VRR can be derived as usual by invoking translational invariance regarding the

116



9.4. Nuclear Attraction Integrals

displacement of all nuclei involved, as well as the gauge origin:(
∂

∂Rµ
α
+

∂

∂Rν
α

+
∂

∂Oα

+
∂

∂RIα

)〈
lµ
∣∣∣ V̂ ′

I

∣∣∣ lν〉(m)

= 0 . (9.4.28)

HRR may be applied similarly to regular nuclear attraction integrals. They are
presented here for the sake of completeness:〈

lµ + 1α

∣∣∣ V̂ ′
I

∣∣∣ lµ〉(m)

=
〈
lµ
∣∣∣ V̂ ′

I

∣∣∣ lν + 1α

〉(m)

+ (Rν
α −Rµ

α)
〈
lµ
∣∣∣ V̂ ′

I

∣∣∣ lν〉(m)

. (9.4.29)

The OS recurrence relations for Hellmann–Feynman integrals over complex-valued
LAOs read:〈

lµ
∣∣∣ V̂ ′

I

∣∣∣ lν + 1α

〉(m)

= (P̃α −Rν
α)
〈
lµ
∣∣∣ V̂ ′

I

∣∣∣ lν〉(m)

− (P̃α −RIα)
〈
lµ
∣∣∣ V̂ ′

I

∣∣∣ lν〉(m+1)

+
aµα
2ζ

[〈
lµ − 1α

∣∣∣ V̂ ′
I

∣∣∣ lν〉(m)

−
〈
lµ − 1α

∣∣∣ V̂ ′
I

∣∣∣ lν〉(m+1)
]

+
aνα
2ζ

[〈
lµ
∣∣∣ V̂ ′

I

∣∣∣ lν − 1α

〉(m)

−
〈
lµ
∣∣∣ V̂ ′

I

∣∣∣ lν − 1α

〉(m+1)
]

+
〈
lµ
∣∣∣ V̂I ∣∣∣ lν〉(m+1)

(9.4.30)〈
lµ + 1α

∣∣∣ V̂ ′
I

∣∣∣ lµ〉(m)

= (P̃α −Rµ
α)
〈
lµ
∣∣∣ V̂ ′

I

∣∣∣ lν〉(m)

− (P̃α −RIα)
〈
lµ
∣∣∣ V̂ ′

I

∣∣∣ lν〉(m+1)

+
aµα
2ζ

[〈
lµ − 1α

∣∣∣ V̂ ′
I

∣∣∣ lν〉(m)

−
〈
lµ − 1α

∣∣∣ V̂ ′
I

∣∣∣ lν〉(m+1)
]

+
aνα
2ζ

[〈
lµ
∣∣∣ V̂ ′

I

∣∣∣ lν − 1α

〉(m)

−
〈
lµ
∣∣∣ V̂ ′

I

∣∣∣ lν − 1α

〉(m+1)
]

+
〈
lµ
∣∣∣ V̂I ∣∣∣ lν〉(m+1)

(9.4.31)

Thus, during the evaluation of Hellmann–Feynman integrals, the original nuclear
attraction integrals need to be considered as well. The algorithm capable of evaluating
the OS for Hellmann–Feynman integrals over LAOs works very similarly to the one
presented in fig. 9.4.2, but requires auxiliary integrals of both types presented in
eq. (9.4.17) and (9.4.27). Furthermore, the algorithm illustrated in fig. 9.4.2 has to
be altered to evaluate Hellmann–Feynman integrals and nuclear potential integrals
simultaneously, as the former require the latter in every step of the procedure.
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9.5. Electron Repulsion Integrals

9.5.1. Four-Center Integrals

As previously discussed, the evaluation of four-center integrals is the most time-
consuming step of the SCF procedure. Considerable effort has been put into finding
efficient techniques for the computation of these integrals, and the resulting algorithms
by McMurchie and Davidson[366], Head-Gordon and Pople,[353] as well as the Rys
polynomial approach[367] are considered standard approaches in modern quantum
chemistry.[351] All of these algorithms are discussed in the context of four-center
integrals over complex LAOs in Ref. [36], which the interested reader is referred to.
In this work, only the Head-Gordon–Pople algorithm was implemented for complex
LAOs. In Turbomole, this algorithm was already implemented for real-valued AOs
and thus only needed to be altered in order to work for complex LAOs. The necessary
modifications are described in this section.
Following the general structure of the wrapper preparing the integral evaluation over
LAOs presented in fig. 8.2.2, the additional computation of shell-pair quantities for
shell κλ is required. They are defined analogously to eq. (9.1.4) – (9.1.8) as:

η = ζκ + ζλ , (9.5.1)

τ = η−1ζκζλ , (9.5.2)

Q = η−1(ζκR
κ + ζλR

λ) , (9.5.3)

Ξ = (4η)−1B× (Rλ −Rκ) , (9.5.4)

Q̃ = Q− iΞ . (9.5.5)

The complex overlap of s-type LAOs is then defined equivilantly to eq. (9.1.11) as:

ŨQ = UQKQ = NκNλe
−τ(Rλ−Rκ)2

(
π

η

)3/2

e−η(Ξ2+2iQ·Ξ) . (9.5.6)

It should be noted that at this point, the batch of integrals can be screened by
neglecting it if |ŨQ| is below a certain threshold,[36] but preliminary studies have
suggested that caution should be advised for complex LAOs.[316, 352]

In addition to shell-pair quantities, a few shell-quartet quantities have to be calculated.
The complex overlap of a shell-quartet of s-type LAOs is given by

ŨPQ = ŨPŨQ , (9.5.7)
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and the reduced exponent of both shell-pairs is defined as:

ϑ =
ζη

ζ + η
. (9.5.8)

Following Ref. [36] and [354], the Coulomb operator may be expressed using the
complex molecular Boys function, incorporating it into the integral similarly to its
introduction for nuclear attraction integrals in sec. 9.4. The auxiliary integrals over
s-type LAOs may then be calculated according to

(00|00)(m) = 2UPUQ

√
ϑ

π
e−ζ(χ2+2iP·χ)−η(Ξ2+2iQ·Ξ) Fm(z) , (9.5.9)

= 2UPUQ

√
ϑ

π
e−ζ(χ2+2iP·χ)−η(Ξ2+2iQ·Ξ)−ϑ(P̃−Q̃)2 Gm(−z) , (9.5.10)

with the argument of the Boys function being

z = ϑ(P̃− Q̃)2 . (9.5.11)

Again, eq. (9.5.9) is used for arguments of the Boys function with a positive real part
(Re(z) ≥ 0), while eq. (9.5.10) is used otherwise. This guarantees numerical stability
for arbitrary arguments of the Boys function.
The Head-Gordon–Pople algorithm subsequently performs VRR steps, first for index
µ with all other indices being held at zero. It counts up to |lµ + lν |.

(lµ + 1α0|00)(m) = (P̃α −Rµ
α)(l

µ0|00)(m) − ϑ

ζ
(P̃α − Q̃α)(l

µ0|00)(m+1)

+
aµα
2ζ

[
(lµ − 1α0|00)(m) − ϑ

ζ
(lµ − 1α0|00)(m+1)

] (9.5.12)

Second, index κ is being raised using the respective OS recurrence relations, counting
up to |lκ + lλ|:

(lµ0|lκ + 1α0)
(m) = (Q̃α −Rκ

α)(l
µ0|lκ0)(m) +

ϑ

η
(P̃α − Q̃α)(l

µ0|lκ0)(m+1)

+
aκα
2η

[
(lµ0|lκ − 1α0)

(m) − ϑ

η
(lµ0|lκ − 1α0)

(m+1)

]
+

aµα
2(ζ + η)

(lµ − 1α0|lκ0)(m+1)

(9.5.13)
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Finally, HRR steps are applied, first for ν, then for λ:

(lµlν + 1α|lκ0)(m) = (lµ + 1αl
ν |lκ0)(m) + (Rµ

α −Rν
α)(l

µlν |lκ0)(m) (9.5.14)

(lµlν |lκlλ + 1α)
(m) = (lµlν |lκ + 1αl

λ)(m) + (Rκ
α −Rλ

α)(l
µlν |lκlλ)(m) (9.5.15)

These HRR steps do not reference the exponents of either shell-pair or the shell-
quartet. Therefore, they can be applied outside of the loops taking care of basis set
contractions. This makes the use of contracted basis sets particularly efficient if the
Head-Gordon–Pople algorithm is employed.
This procedure is almost identical for integrals over AOs and LAOs. To summarize, the
three necessary changes, which have to be introduced into code capable of computing
four-center integrals over real-valued AOs, are highlighted here again. Firstly, two
additional shell-pair quantities have to be calculated, χ and Ξ, corresponding to the
imaginary parts of the respective center of charges P and Q. Their definitions are
given in eqs. (9.1.7) and (9.5.4). Secondly, the program needs to calculate auxiliary
integrals using the complex molecular Boys function Fm(z) ∈ C. To ensure numerical
stability, the two cases Re(z) ≥ 0 and Re(z) < 0 have to be distinguished, with the
latter requiring the evaluation of the auxiliary Boys function Gm(−z) instead. Thirdly,
during the OS recurrence relations, only the following two replacements have to be
introduced:

P → P− iχ (9.5.16)

Q → Q− iΞ (9.5.17)

Most variables in the code have to be set to complex variables instead of real-valued
ones, with the notable exception of the three exponents ζ, η, ϑ.

9.5.2. Molecular Gradient

The analytical calculation of molecular gradients requires the evaluation of four-center
integrals which include the derivatives of LAOs with respect to nuclear displacements.
Analogously to the derivative of overlap integrals (see eq. (9.2.15) for reference), such
a derivative may be defined for four-center integrals as:

(µν|κλ′) =− aλα(l
µlν |lκlλ − 1α) + ikλα(l

µlν |lκlλ)

+ 2ζλ(l
µlν |lκlλ + 1α) +

i

2
εαβγBβ(l

µlν |lκlλ + 1γ) ,
(9.5.18)
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and equivalently for the derivatives of the other three basis functions. In contrast to
four-center integrals over real-valued AOs, translational invariance with respect to the
displacement of all four nuclei cannot be invoked:

(µ′ν|κλ) + (µν ′|κλ) + (µν|κ′λ) + (µν|κλ′) ̸= 0 . (9.5.19)

Rather, the displacement of all functions with respect to the gauge origin also has to
be taken into account, leading to the following relation for translational invariance:(

∂

∂Rµ
α
+

∂

∂Rν
α

+
∂

∂Rκ
α

+
∂

∂Rλ
α

+
∂

∂Oα

)
(µν|κλ) = 0 . (9.5.20)

The general workflow for the calculation of derivatives of four-center integrals is
different for real-valued AOs and complex-valued LAOs. Both cases are illustrated
in fig. 9.5.1, emphasizing on what kind of integrals have to be evaluated for the
derivatives. In the case of LAOs, roughly 4/3 more integrals have to be evaluated.
Due to an additional factor of two from the lowered permutational symmetry and a
factor of four from the use of complex algebra, the calculation of these integrals is at
least about eleven times more expensive for LAOs. Since this integral evaluation is the
most time-consuming step for the computation of molecular gradients with HF and
DFT, this implies that the evaluation of the gradient itself is at least about eleven
times more computationally demanding compared to the field-free case.
On the left-hand side of fig. 9.5.1, the workflow of an algorithm calculating derivatives
of four-center integrals for AOs is presented. Using translational invariance, the
calculation of certain integrals can be avoided.[368] Derivatives with respect to a certain
Cartesian component α only require those integrals where the identical component is
raised or lowered. Since the molecular gradient requires derivatives with respect to all
Cartesian components, this does not mean that any integrals can be neglected, but
the entire algorithm is generally more streamlined.
The workflow of an algorithm which calculates the derivatives of four-center integrals
for LAOs is presented on the right-hand side of fig. 9.5.1. Derivatives of four-center
integrals over LAOs require the additional calculation of four-center integrals where
no component was increased or decreased. No translational invariance can be invoked,
and thus also the derivatives with respect to orbital λ have to be explicitly calculated.
Due to the presence of the last term in eq. (9.5.18), the derivative with respect to
the nuclear displacement in any Cartesian component requires the integrals with all
increased Cartesian components. Thus, the algorithm first evaluates all integrals with
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decreased, unaltered, and increased angular momentum numbers, which are stored in
memory in batches. In the next step, the final integrals are computed through the use
of a specially constructed sorting algorithm.
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Figure 9.5.1.: General workflow for the calculation of derivatives of four-center inte-
grals, both for real-valued AOs (left) and complex-valued LAOs. The
integrals with one angular momentum quantum number decreased (blue)
and increased (red) are required in both cases. For LAOs, the unal-
tered (yellow) four-center integrals are additionally needed. Further,
the derivative with respect to orbital λ can be obtained by invoking
translational invariance (dotted line) for AOs, but not for LAOs.

.

9.5.3. Three-Center Integrals

Three-center integrals are required if the RI approximation is used. Their efficient
evaluation was described for real-valued AOs in Ref. [322]. The necessary modifications
for LAOs were derived during this work and published in collaboration with Klopper
in Ref. [56]. Without loss of generality, it is possible to utilize real-valued GTOs
denoted as

|P ⟩ = χP (r) := |L⟩ (9.5.21)
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for auxiliary basis functions.[137] They ought not to be confused with the center of
charge of shell-pair µν, which was previously defined by its position vector P. The
exponent of auxiliary basis functions shall be written as ρ, while it is centered at a
point with position vector Q. Finally, the overlap of an auxiliary function with itself,
or more precisely its norm, may be defined as:

VQ = NP

(π
θ

)3/2
, (9.5.22)

with NP being the prefactor of |P ⟩, which is particularly relevant for contracted
auxiliary basis sets. The reduced exponent for the shell-triplet can be expressed as:

θ =
ζρ

ζ + ρ
(9.5.23)

Auxiliary integrals may then be straightforwardly inferred from eq. (9.5.9) and (9.5.10)
by replacing shell-pair κλ with the auxiliary basis function:

(00|0)(m) = 2UPVQ

√
θ

π
e−ζ(χ2+2iP·χ) Fm(z) , (9.5.24)

= 2UPVQ

√
θ

π
e−ζ(χ2+2iP·χ)−θ(P̃−R)2 Gm(−z) , (9.5.25)

with the argument of the Boys function being

z = θ(P̃−Q)2 . (9.5.26)

The resulting OS recurrence relations may be constructed similarly to their counter-
parts for four-center integrals as given in eqs. (9.5.12) – (9.5.14).[56, 322] The VRR for
the fist index µ and the auxiliary index are defined as:

(lµ + 1α0|0)(m) = (P̃α −Rµ
α)(l

µ0|0)(m) − θ

ζ
(P̃α −Qα)(l

µ0|0)(m+1)

+
aµα
2ζ

[
(lµ − 1α0|0)(m) − θ

ζ
(lµ − 1α0|0)(m+1)

]
;

(9.5.27)

(lµ0|L+ 1α)
(m) = (Qα −RP

α )(l
µ0|L)(m) +

θ

ρ
(P̃α −Qα)(l

µ0|L)(m+1)

+
aPα
2ρ

[
(lµ0|L− 1α)

(m) − θ

ρ
(lµ0|L− 1α)

(m+1)

]
+
aµαθ

2ζρ
(lµ − 1α0|L)(m+1) .

(9.5.28)
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The second VRR can be significantly simplified in two steps. First, by realizing that
Qα = RP

α , which follows directly from the definition of Q given above. Therefore, the
first term vanishes. Second, if the components of |L⟩ are transformed to spherical
harmonics, the third and fourth term must eliminate one another, which is discussed
in great detail in Ref. [322]. Thus, the second VRR may be conveniently simplified to:

(lµ0|L+ 1α)
(m) =

θ

ρ
(P̃α −Qα)(l

µ0|L)(m+1) +
aµαθ

2ζρ
(lµ − 1α0|L)(m+1) . (9.5.29)

Finally, the HRR are defined as usual and can be applied after shell contractions
have been applied, making this procedure particularly efficient for highly contracted
(auxiliary) basis sets:

(lµlν + 1α|L)(m) = (lµ + 1αl
ν |L)(m) + (Rµ

α −Rν
α)(l

µlν |L)(m) (9.5.30)

It should be stressed that an existing code capable of handling the RI approximation
for real-valued AOs only has to be modified in three steps:

1. The construction of the auxiliary integrals requires the inclusion of the complex
phase factor KP.

2. The argument of the Boys function becomes complex-valued and thus the Boys
function has to be evaluated using the algorithm introduced in sec. 9.4.2.

3. The OS recursion remains identical if the center of charge is replaced through its
complex-valued counterpart as shown in eq. (9.5.16), resulting in most quantities
having to be labeled as complex.
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10. Assessment of Accuracy and Efficiency

In the previous two chapters, the implementation of quantum chemical methods in
finite magnetic fields was presented. Several schemes for the acceleration of calculations
were introduced, and the efficient evaluation of molecular integrals was discussed. In
particular, two approaches for the evaluation of two-electron integrals were presented.
Firstly, the calculation of four-center integrals, which was found to be more intricate
for LAOs due to a decreased permutational symmetry. Secondly, the use of the RI
approximation, in which only three- and two-center integrals had to be evaluated.
In this chapter, the accuracy and efficiency of the implemented quantum chemical
methods is examined, with a focus on how well the RI approximation performs in
strong magnetic fields.
Using a test set of 36 small to medium-sized molecules, the accuracy for the RI
approximation is evaluated. For electronic ground states, the accuracy of RI is assessed
in increasingly strong magnetic fields up to |B| = 1B0. An estimate on the approximate
threshold, up to which RI can safely be used, is discussed. It should be noted that this
discussion assumes the use of auxiliary basis sets parameterized for the field-free case.
Furthermore, a similar assessment is presented for the use of RI in linear response
methods, where magnetic fields of up to 10,000T are used within this work.
After a brief discussion on the accuracy of linear response methods, the efficiency of
the present implementation is assessed. Due to the previously mentioned problems
with integral screening, no detailed benchmark study was carried out in the context
of this thesis. However, exemplary calculations carried out on aromatic molecules are
presented, in order to give a more general estimate on how much more computational
cost is to be expected for calculations in finite magnetic fields, compared to the
field free-case. The chapter concludes with a short presentation of the OpenMP
parallelization, which was implemented for every integral evaluation routine presented
in this work. Part of the results presented in this section were previously discussed by
the author in Refs. [53], [54], and [56].
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10.1. Molecules Used for Benchmark Calculations

A test set of 36 small to medium-sized molecules was used for benchmark calculations
carried out in this chapter. The structural formulas of these molecules are depicted in
fig. 10.2.1. This test set was introduced in Ref. [369], and also used for benchmark
calculations in Refs. [53] and [54]. It consists of the following molecules: acetaldehyde
(1), acetylene (2), CCl2 (3), CClF (4), CF2 (5), cyanoacetylene (6), cyanoformaldehyde
(7), cyanogen (8), diacetylene (9), difluorodiazirine (10), formaldehyde (11), formic acid
(12), formyl chloride (13), formyl fluoride (14), glyoxal (15), H2C3 (16), HCN (17), HCP
(18), HNO (19), HPO (20), HPS (21), HSiF (22), isocyanogen (23), nitrosamine (24),
nitrosylcyanide (25), phosgene (26), propynal (27), pyrazine (28), selenoformaldehyde
(29), SiCl2 (30), silylidene (31), tetrazine (32), thioformaldehye (33), thioformylchloride
(34), thionylcarbonylfluoride (35), and thiophosgene (36). Their respective numbers
are used as abbreviations in later chapters.

10.2. Accuracy of the RI Approximation

10.2.1. Computational Methods

In this section, the accuracy of the RI approximation is assessed for electronic ground
states and electronic excitations. Calculations were performed using the 36 molecules
presented in fig. 10.2.1. For electronic ground states, these molecules were placed in
a magnetic field of up to |B| = 1B0, which was always applied in the Cartesian z-
direction. All calculations were carried out on the GHF/def2-TZVP[370] level of theory.
For calculations employing the RI-J and RI-K approximation, the corresponding
auxiliary def2-TZVP basis[371, 372] was used. Calculations were always converged up
to at least 10−9Eh. Only the lowest singlet state was considered, which becomes an
excited state in stronger fields. For these cases, it was converged using a spin Zeeman
scaling of z = 0.
For electronic excitations, the corresponding ground states were computed without
use of the RI approximation. Two subsequent sets of linear response calculations were
performed, one in which the RI approximation was used and one where it was not used.
All calculations were carried out on the PBE0[373]/def2-TZVP level of theory with a
corresponding def2-TZVP auxiliary basis[157] parameterized for the use in correlated
methods if the RI approximation was used. A large grid (grid 4)[320] was used for the
evaluation of the density functional part.
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10.2. Accuracy of the RI Approximation

Figure 10.2.1.: Test set of 36 small molecules: acetaldehyde (1), acetylene (2), CCl2
(3), CClF (4), CF2 (5), cyanoacetylene (6), cyanoformaldehyde (7),
cyanogen (8), diacetylene (9), difluorodiazirine (10), formaldehyde (11),
formic acid (12), formyl chloride (13), formyl fluoride (14), glyoxal
(15), H2C3 (16), HCN (17), HCP (18), HNO (19), HPO (20), HPS
(21), HSiF (22), isocyanogen (23), nitrosamine (24), nitrosylcyanide
(25), phosgene (26), propynal (27), pyrazine (28), selenoformaldehyde
(29), SiCl2 (30), silylidene (31), tetrazine (32), thioformaldehye (33),
thioformylchloride (34), thionylcarbonylfluoride (35), and thiophosgene
(36). This test set was introduced in Ref. [369].
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10. Assessment of Accuracy and Efficiency

10.2.2. Electronic Ground States

First, the accuracy of the RI approximation for electronic ground states is assessed.
This is relevant, because the auxiliary basis sets were optimized for the use in the
absence of fields. Preliminary investigations on the lowest singlet state of methane and
benzene were carried out by the author in Ref. [56], showing that the RI error increases
non-linearly with the magnetic field strength. Here, a more detailed examination shall
be given. Using both the RI-J and RI-K approximations for the 36 molecules within
the test set yields errors which are depicted in fig. 10.2.2 for different magnetic field
strengths of up to |B| = 1B0.

Figure 10.2.2.: Box plot presenting the error of the RI-JK approximation for a test
set of 36 small to medium-sized molecules.[369] All calculations were
performed on the GHF/def2-TZVP level of theory. The straight line
indicates the median, while the square represents the mean of the RI
error. The orange colored box marks the 25–75th percentile, whiskers
denote the mean ± the standard deviation, and outliers are represented
by diamonds.

Evidently, the RI error increases significantly in the presence of external magnetic
fields. In the absence of a field, the mean error is 0.086 mEh, while it increases to a
mean of 0.393 mEh in a field of |B| = 1B0, which is almost five times larger. More
significantly, the standard deviation also increases by a factor of more than six, from
0.046 mEh in the zero-field to 0.286 mEh in a field of |B| = 1B0. Maximum errors
behave even more egregiously, with errors of over 1 mEh in the strongest investigated
magnetic field.
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10.2. Accuracy of the RI Approximation

The individual errors of RI-J and RI-K behave even more poorly, which is depicted
in fig. 10.2.3. Thus, the combined use of RI-JK contains some error cancellation, even
in the absence of a field.

RI-J RI-K

Figure 10.2.3.: Box plots presenting the error of the RI-J (left) and RI-K (right)
approximations for a test set of 36 small to medium-sized molecules.[369]

All calculations were performed on the GHF/def2-TZVP level of theory.
The straight line indicates the median, while the square represents
the mean of the RI error. The orange colored box marks the 25–75th
percentile, whiskers denote the mean ± the standard deviation, and
outliers are represented by diamonds.

The preliminary investigations carried out in Ref. [56] suggested that the use of
uncontracted basis sets can reduce the RI error, which was not further investigated
in this work. However, it is worth noting a few key points for the use of the RI
approximation in an external magnetic field:

1. Up to magnetic field strengths of about |B| = 0.2 − 0.3B0, the RI error does
not seem to increase too much compared to its zero-field counterpart. These are
field strengths of up to about 70,000T, below which the RI approximation can
be safely used.

2. For magnetic field strengths above this threshold, the RI approximation should
currently only be used with extreme caution, if at all. While maximum errors of
about 1mEh at a field strength of |B| = 1B0 might not seem much compared to
errors expected from the use of HF or DFT, the associated errors for molecular
properties can be expected to be much larger.[56]
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10. Assessment of Accuracy and Efficiency

3. The development of a new auxiliary basis set, optimized for the use in strong
magnetic fields, is absolutely crucial. Such a development remains the subject
of future work.

10.2.3. Electronic Excitations

For the closed-shell molecules of the test set shown in fig. 10.2.1, the lowest 10
excitations were examined, both with and without the use of RI. The resulting RI
errors are shown in fig. 10.2.4 for magnetic field strengths of up to 10,000T. Beyond
this limit, spin-phase transitions were confirmed for some of the molecules, resulting
in instabilities which prevent the investigation of electronic excitations using linear
response theory.[54] As these ‘moderately strong’ magnetic fields of up to 10,000T are
well below the critical threshold determined in sec. 10.2.2, the RI approximation can
safely be used under these conditions. This is emphasized through fig. 10.2.4, where
RI errors are similar for all presented magnetic field strengths. Maximum errors are
approximately 1 meV, well below the expected error of the quantum chemical method.

Δ
Δ

Figure 10.2.4.: Box plots presenting the RI error of electronic excitations for a test
set of 36 small to medium-sized molecules.[369] All calculations were
performed on the PBE0/def2-TZVP level of theory. The straight line
indicates the median, while the square represents the mean of the RI
error. The orange colored box marks the 25–75th percentile, whiskers
denote the mean ± the standard deviation, and outliers are represented
by diamonds. Adapted with permission from Ref. [54].
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10.3. Accuracy of Linear Response Methods

10.3. Accuracy of Linear Response Methods

The accuracy of the TD-DFT and GW /BSE methods in the presence of magnetic
fields were tested by the author in collaboration with Holzer and Klopper in Refs. [53]
and [54]. A detailed review is omitted here, and the interested reader is referred to
these publications. A short outline of the main results presented therein shall be given
here nonetheless for the sake of completeness.
In Ref. [53], triplet excitations calculated using the evGW /BSE method were bench-
marked against TD-CC2 excitation energies for the test set of molecules shown in
fig. 10.2.1. Generally, the methods show good agreement, with evGW /BSE systemati-
cally (but slightly) red-shifted compared to TD-CC2. This is not unexpected, since
TD-CC2 is known to overestimate excitation energies, while evGW /BSE has a ten-
dency to underestimate triplet states.[266, 369] The errors show a dependence on the
reference functional, denoted @DFT. The two choices @BHLYP and @CAM-B3LYP
performed reasonably well, with mean average errors of 0.53 and 0.59 eV, as well as
maximum errors of 1.05 and 1.19 eV, respectively.
In Ref. [54], singlet excitations calculated using TD-DFT were benchmarked against
TD-CC2 excitation energies for the same test set of molecules. The performance
of TD-DFT was excellent for all investigated field strengths, up to 10,000T. The
errors did not change with an increasing field, with a mean absolute error of 0.10
eV at 1,000T and 0.09 at 10,000T. The conclusion is that TD-DFT can be used in
‘moderately strong’ magnetic fields with the same amount of accuracy expected in the
absence of fields.
In conclusion, both the GW /BSE and TD-DFT methods may be used in moderately
strong magnetic fields. Their accuracy can be expected to be similar to the zero-field
case for this region. However, the TD-CC2 reference may have a bias in that regard,
yielding similar errors induced by the presence of a magnetic field, which result in
error cancellation.

10.4. Efficiency of the Implementation

10.4.1. Assessment of Efficiency

In this section, the efficiency of the present implementation is briefly assessed. Due to
the aforementioned problems with integral screening, which have yet to be properly
investigated, a detailed benchmark study remains the subject of future work. Instead,
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the focus of this section shall lie on two aspects concerning computational efficiency.
Firstly, a short comparison between field-free and field-dependent calculations is
presented. Secondly, the scaling of the OpenMP parallelization is examined. These
investigations are carried out for electronic ground states, as they are expected to be
the ‘worst case scenario’, with the expensive integral evaluation generally being the
most time-consuming step.[56, 322]

10.4.2. Computational Methods

For the benchmark calculations presented in this section, the benzene, naphthalene,
and anthracene molecules were examined. Calculations were performed using the
GHF method with either the def2-TZVP or def2-QZVP basis set.[370] If the RI
approximation was used, the corresponding auxiliary def2-TZVP or def2-QZVP basis
sets were employed.[371, 372] Calculations were converged up to 10−8Eh. Difference
densities and Cauchy-Schwarz screening were used. Since these approaches do not
represent approximations, their use is henceforth assumed for all calculations within
this work, even if not specified.

10.4.3. Comparison to Field-Free Calculations

To assess how well the current implementation performs, benchmark calculations were
carried out on benzene, naphthalene, and anthracene. All calculations were done with
Turbomole[306] in the two-component framework, once with the use of regular AOs
and once with LAOs, using a magnetic field strength of |B| = 0.01B0. An identical
number of iterations was obtained for both cases. Similar calculations were carried
out using the RI-JK approximation. All timings are listed in table 10.4.1.
As previously discussed in chapters 8 and 9, the computational effort for four-center
integrals over LAOs results in at least an additional factor of eight for calculations in
finite magnetic fields. In actual calculations, this factor will be even higher, since, for
instance, additional shell-pair quantities have to evaluated. For benzene, an additional
factor of roughly 16 is obtained, while the calculations on larger systems are only
slower by a factor of about 12 compared to the field-free case. This is already very
close to the theoretical limit of an additional factor of eight. However, it should be
mentioned that a modified screening will likely negatively affect the efficiency for
these calculations.
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Table 10.4.1.: Timings in seconds for benchmark calculations carried out on aromatic
molecules. The GHF method was used in combination with def2-TZVP
(four-center integrals) and def2-QZVP (RI-JK approximation). All
calculations were done on CPUs of type Intel® Xeon® E5-2687W v4
@ 3.00GHz. Adapted with permission from Ref. [56].

Benzene Naphthalene Anthracene

Exact GHF (AOs) 617 3670 11870

Exact GHF (LAOs) 9781 45430 144418

Slower by factor 15.85 12.38 12.17

RI-JK (AOs) 328 1694 7065

RI-JK (LAOs) 1717 7252 21098

Slower by factor 5.23 4.28 2.99

For the RI approximation, the comparison to the field-free (AO) case is even more
favorable, with an additional factor of roughly five for benzene, and less than three
for anthracene. The computational cost for the evaluation of three-center integrals
over LAOs increases by a factor of four compared to the AO case. However, for
the present implementation of RI-JK, the computation of three-center integrals over
LAOs is not the most time-consuming step, since they are precomputed only once
and then stored on disk (see sec. 8.2.1). For calculations on larger systems, the most
time-consuming step eventually becomes the transformation from the AO to MO basis
in eq. (5.2.21). This transformation is formally only slower by a factor of two in the
LAO case compared to a field-free two-component calculation.[56]

In combination with the results obtained in sec. 10.2, the conclusion is that RI presents
an excellent compromise between accuracy and efficiency for calculations in finite
magnetic fields, at least for fields in the ‘moderately strong’ regime. This is a strong
incentive for the development of auxiliary basis sets parameterized for the use in
strong magnetic fields.

10.4.4. OpenMP Parallelization

To test the efficiency of the OpenMP parallelization, calculations were run on one, two,
four, six, eight, ten, and twelve OpenMP threads. The resulting timings are plotted
against the inverse number of cores in fig. 10.4.1. A linear regression is presented, which
can be used to evaluate how well parallelized the implementation is. Furthermore,
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the computational overhead may be calculated, which is discussed in more detail
in Ref. [56]. For the present discussion, the most important feature of fig. 10.4.1 is
how well the data is represented through the linear regression. This implies that a
(sufficiently large) calculation run on twelve cores will be approximately twelve times
cheaper compared to a calculation run on only one core. This gives access to the
computation of larger systems like the ones presented in this thesis.

Figure 10.4.1.: Assessment of the efficiency for the OpenMP parallelization. The
electronic ground state was computed at the GHF/def2-TZVP level
of theory, using the difference density approach and Cauchy-Schwarz
screening. For benzene, naphthtalene, and anthracene, the computation
time is plotted against the reciprocal number of cores. All calculations
were done on CPUs of type Intel® Xeon® E5-2687W v4 @ 3.00GHz.
Adapted with permission from Ref. [56].

134



11. Berry Curvature: Implementation and

Connection to Partial Charges

The Berry curvature tensor plays a crucial role for molecular dynamics in finite
magnetic fields. It is responsible for screening the Lorentz forces acting on nuclear
charges by taking the electronic charge distribution into consideration. It was derived
in sec. 7 of this work, similarly to the very recently published approach of Ref. Ref. [82]
and [83]. In the latter publication, a numerical approach for the calculation of the
Berry curvature tensor is proposed for complex RHF wave functions, while the former
is concerned with its application.
In this chapter, the approach is adapted to complex GHF wave function consisting
of two-component spinors. The numerical derivation of wave functions with respect
to nuclear displacements is presented. Since coefficient vectors need to be directly
subtracted, their arbitrary global phase factors already discussed in sec. 4.2.1 need
to be eliminated. This is done by correcting them using the phase factor of the
unperturbed wave function as a common gauge. The general outline of an algorithm
capable of numerically evaluating the Berry curvature tensor is shown and all relevant
steps are discussed, highlighting which quantities need to be computed with an external
quantum-chemical program like Turbomole.
The Berry curvature tensor itself is later used in sec. 14 for the computation of
rotational-vibrational spectra of small molecules in strong, external magnetic fields.
The validity of the presented implementation for molecules in strong magnetic fields
is thus verified later. In the remaining part of this chapter, charge distributions and
corresponding partial charges are calculated from the Berry curvature tensor in the
limit of vanishing magnetic fields. Surprisingly, they do not vanish even though the
Berry curvature itself does. A general scheme for the calculation of these ’Berry
charges’ is introduced. Their basis set dependence is investigated and compared to
that of Mulliken charges for the lithium hydride and lithium fluoride molecules.
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11.1. Implementation of Numerical Evaluation

The Berry curvature tensor was introduced in sec. 7 of this work. It is used to screen
the Lorenz force acting on moving nuclear charges in the presence of an external
magnetic field. One element of the tensor is defined as[83, 86]

ΩIJ,αβ = i

[〈
∂Ψ0

∂RIα

∣∣∣∣ ∂Ψ0

∂RJβ

〉
−
〈
∂Ψ0

∂RJβ

∣∣∣∣ ∂Ψ0

∂RIα

〉]
, (11.1.1)

with Ψ0 being the ground state electronic wave function. The Berry curvature tensor
shown in eq. 11.1.1 can be evaluated using numerical derivatives, which was presented
in Ref. [83] for RHF and UHF. In this work, a similar algorithm is introduced for the
GHF case, closely following Ref. [83].
The numerical derivative of the electronic wave function as evaluated at a certain
point of the BO PES (R) may be written as

∂Ψ0(R)

∂RIα

≈ Ψ0(R+ δ eIα)−Ψ0(R− δ eIα)

2δ
, (11.1.2)

with δ being a small number and eIα a unit vector in Iα direction of the (3Nnuc)-
dimensional space of the BO PES. For all calculations presented in this work, we
assume δ = 10−4. Unfortunately, eq. (11.1.2) cannot be calculated directly, as the
two disturbed wave functions require two separate SCF calculations. As previously
mentioned in sec. 4.2.1, the wave function is attributed with an arbitrary phase factor.
More precisely, each spinor ψj contained in the Slater determinant carries an arbitrary
complex phase which, in contrast to the phase ±1 for real-valued MOs, is not trivial
to eliminate. Culpitt et al.[83] have proposed a solution to this problem, here written
in terms of two-component spinors.
The algorithm presented here requires a few definitions. Firstly, the coefficients of the
unperturbed spinor j are written as Cσ

j , while the coefficients of the perturbed spinors
are denoted as Cσ

j (±Iα). Secondly, the overlap matrix may be perturbed either in
the Bra or Ket. The Bra-perturbed overlap matrix is written as S(±Iα ; 0), while
the Ket-perturbed overlap matrix is given by S(0 ; ±Iα). Finally, the Bra- and Ket-
perturbed overlap matrix reads S(±Iα ; ±Jβ). The overlap between an unperturbed
and a perturbed spinor yields:Cα

j

Cβ
j

†S(0 ; ±Iα) 0

0 S(0 ; ±Iα)

Cα
j (±Iα)

Cβ
j (±Iα)

 ≈ eiϕj(±Iα) (11.1.3)
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Thus, the perturbed spinor may be corrected for its global phase relative to the
unperturbed spinor by multiplication with e−iϕj(±Iα). Calculating the auxiliary overlap,

S±±
IαJβ =

Nocc∑
j

Cα
j (±Iα)

Cβ
j (±Iα)

†S(±Iα ; ±Jβ) 0

0 S(±Iα ; ±Jβ)

Cα
j (±Jβ)

Cβ
j (±Jβ)

 eiϕj(±Iα)e−iϕj(±Jβ) ,

(11.1.4)
the final integral may be evaluated as:[83]

〈
∂Ψ0

∂RIα

∣∣∣∣ ∂Ψ0

∂RJβ

〉
=
S++
IαJβ − S+−

IαJβ − S−+
IαJβ + S−−

IαJβ

4δ2
. (11.1.5)

Evidently, the other integral in the definition of the Berry curvature tensor is simply
the complex conjugate of eq. (11.1.5) and does not require further calculations. The
algorithm evaluating the Berry curvature tensor is constructed in a fairly simple
manner, requiring five basic steps as illustrated in fig. 11.1.1.

Cj
α

Cj
α(± Iα)

S(± Iα ; ± Jβ)

exp[-i ϕ (± Iα)]j

R ± δeIα R ± δeJβ

R ± δeIα

R ± δeJβ

S(± Iα ; ± Jβ)S(± Iα ; ± Iα)

S(± Jβ ; ± Iα) S(± Jβ ; ± Jβ)S± ± 
Iα Jβ

ΩIJ,αβ

Genera�on of unperturbed spinor

Genera�on of 6Nnuc perturbed spinors

Calcula�on of perturbed overlap matrices

Calcula�on of all phase correc�ons

Calcula�on of auxiliary overlaps

Calcula�on of Berry curvature tensor

Figure 11.1.1.: Illustration of algorithm for the calculation of the Berry curvature
tensor. In the first step (blue), the unperturbed spinor and all perturbed
spinors are generated using Turbomole. In the second step (red), the
perturbed overlap matrices are calculated from the off-diagonal blocks
of perturbed molecular superstructures. In the third (yellow), fourth
(green) and fifth (purple) steps, the perturbed spinors and overlap
matrices are processed to generate phase corrections, auxiliary overlaps
and, finally, the Berry curvature tensor.

Firstly, the unperturbed spinors and all 6Nnuc perturbed spinors are generated using
Turbomole. Secondly, the perturbed overlap matrices are computed with Turbo-

mole. This does not require any additional implementations and can be achieved by
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printing out the overlap matrix for a hypothetical system consisting of two blocks, one
for the Bra-perturbation and one for the Ket-perturbation. The off-diagonal block is
identical to the perturbed overlap matrix, which is generally non-hermitian. Thirdly,
the phase corrections e−iϕj(±Iα) are computed for all occupied spinors j in all 6Nnuc

perturbations using eq. (11.1.3). Fourthly, the auxiliary overlaps are calculated with
eq. (11.1.4). Finally, the integrals constituting the Berry curvature are computed using
eq. (11.1.5), from which the Berry curvature tensor is then constructed.
It should be noted that in the current implementation, only diatomic molecules can be
handled, which is sufficient for all cases presented in this work. While the adaption of
the algorithm to larger systems is, in principle, relatively straightforward, an analytical
approach for the calculation of the Berry curvature tensor was recently introduced in
Ref. [86]. It requires the solution of the coupled perturbed Hartree-Fock equations
with the perturbation being the displacement of a nuclear coordinate. This is also
required for second analytical derivatives of the electronic energy with respect to
nuclear displacements, which is needed for the calculation of vibrational spectra in
the absence of magnetic fields.[338, 339] Implementing the analytical calculation of the
Berry curvature tensor into Turbomole is the subject of future work.

11.2. Partial Charges in the Limit of a Vanishing Field

11.2.1. Computational Details

In this section, charge distributions and partial charges for lithium hydride (LiH) and
lithium fluoride (LiF) are calculated from the Berry curvature tensor as shown in
eq. (7.2.6), with an additional contraction of the Cartesian components according
to eq. (7.2.8). First, the charge distribution of LiH is evaluated in sec. 11.2.2. The
geometry was optimized at the RHF/def2-SVP level in the absence of fields, yielding
a bond length of 3.0351 a0, which was held fix for all calculations. All subsequent
calculations were performed in magnetic fields at the GHF/def2-SVP level of theory.
Tight convergence criteria were chosen, with the energy being converged to 10−15Eh

and the norm of the density matrix up to 10−13. This is strictly needed, as finite
differences of spinor coefficients are computed for the Berry curvature tensor.
In the following section, 11.2.3, partial charges of the LiH and LiF molecule were
calculated using the GHF method. A variety of basis sets were used to test the basis set
dependence of results: def2-SV(P), def2-SVP, def2-TZVP, def2-TZVPP, def2-QZVP,

138



11.2. Partial Charges in the Limit of a Vanishing Field

cc-pVDZ, cc-pVTZ, cc-pVQZ, aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ.[370, 374–376]

It should be noted, that the def2-QZVPP basis is not listed, as it is identical to
def2-QZVP for LiH and LiF. The aforementioned tight convergence criteria were used
for every calculation. Mulliken charges were calculated for comparison at the same
levels of theory. The magnetic field was applied in the z-direction in each calculation.

11.2.2. Charge Distribution and Sum Rule

The aim of this section is to test the validity of using the Berry curvature tensor for
the calculation of charge distributions and partial charges in the limit of a vanishing
field. This is done for the exemplary case of the LiH molecule in equilibrium geometry.
The asymptotic limit |B| → 0 was evaluated by applying magnetic fields of different
sizes from 0.1B0 ≈ 23,505T to 10−6B0 ≈ 0.235T perpendicular to the bond axis.
For all cases, charge distributions were calculated from the Berry curvature tensor.
Additionally, the sum rule was evaluated. The results are listed in table 11.2.1. It
should be noted that a numerical evaluation scheme was used for the calculation of
the Berry curvature tensor, with nuclear displacements of 10−4 a0. Thus, the resulting
values are also only expected to be accurate up to the same order of magnitude.

Table 11.2.1.: Charge distributions of LiH in different magnetic field strengths from
0.1B0 ≈ 23,505T to 10−6B0 ≈ 0.235T. In all cases, the magnetic field
was applied perpendicular to the bond. All calculations were carried
out at the GHF/def2-SVP level. The asymptotic behaviour (|B| → 0)
of the charge distribution is clearly visible, with field strengths below
about 500T showing no discernible differences. Sum rules are fulfilled,
yielding −Nel for all field strengths. All charge distributions Q and sum
rules are given in units of [e].

Magnetic field strength Q(Li–Li) Q(Li–H) Q(H–H) Sum rule

|B| = 0.1B0 -2.0044 -0.4573 -1.0810 -4.0000

|B| = 0.01B0 -2.0067 -0.4850 -1.0232 -3.9997

|B| = 0.001B0 -2.0069 -0.4853 -1.0226 -4.0001

|B| = 0.0001B0 -2.0069 -0.4853 -1.0226 -4.0001

|B| = 0.00001B0 -2.0069 -0.4853 -1.0226 -4.0001

|B| = 0.000001B0 -2.0069 -0.4853 -1.0226 -4.0001
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The charge distribution corresponding to the Li–Li block yields −2.0069 e for all field
strengths below about 500T. The H–H block converges similarly to −1.0226 e and the
Li–H block to −0.4853 e. Sum rules yield

∑
IJ QIJ = −4 = −Nel for all field strengths

up to the expected limit of numerical precision. For the evaluation of the sum rules,
the off-diagonal block Q(Li–H) has to be considered twice.
Next, the magnetic field was applied in a parallel orientation to the lithium hydride
bond. This was done identically to the perpendicular orientation and the results are
listed in table 11.2.2. Again, the asymptotic limit is reached for all field strengths
below about 500T. Sum rules are satisfied for all field strengths up to the expected
numerical accuracy.

Table 11.2.2.: Charge distributions of LiH in different magnetic field strengths from
0.1B0 ≈ 23,505T to 10−6B0 ≈ 0.235T. In all cases, the magnetic field
was applied parallel to the bond. All calculations were carried out at
the GHF/def2-SVP level. The results are similar to the perpendicular
case, with charge distributions converging up to the expected numeri-
cal precision and sum rules being fulfilled for all cases. However, the
results themselves are different from the perpendicular case. All charge
distributions Q and sum rules are given in units of [e].

Magnetic field strength Q(Li–Li) Q(Li–H) Q(H–H) Sum rule

|B| = 0.1B0 -2.3073 0.0607 -1.8141 -4.0000

|B| = 0.01B0 -2.3046 0.0079 -1.7112 -4.0000

|B| = 0.001B0 -2.3046 0.0073 -1.7102 -4.0002

|B| = 0.0001B0 -2.3047 0.0074 -1.7103 -4.0002

|B| = 0.00001B0 -2.3047 0.0074 -1.7102 -4.0001

|B| = 0.000001B0 -2.3047 0.0075 -1.7103 -4.0000

In the asymptotic limit of a vanishing field, the charge distribution for the Li–Li block
converges to −2.3047 e, while the H–H block yields −1.7103 e and the Li–H block
amounts to 0.0075 e. These values are drastically different than those obtained from
the perpendicular orientation. This dependence on the angle between the bond and
the external magnetic field needs to be further investigated.
In order to examine this angular dependence, the angle between bond and magnetic
field was rotated in steps of 10◦, computing the charge distribution at each step. The
parallel orientation was taken as the starting point (0◦) and the molecule was rotated
about the Cartesian x- and y-axis, respectively. Evidently, the perpendicular orienta-
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11.2. Partial Charges in the Limit of a Vanishing Field

tion already evaluated above corresponds to the 90◦ case. The angular dependence
of all three contributions of the charge distribution is plotted in fig. 11.2.1 for the
rotation about both the x- and y-axis. While the sum rules are satisfied for each
orientation, the charge distribution itself is not rotationally invariant. The general
patterns exhibited for the rotations about the x- and y-axis are similar, but the total
values are shifted about a phase of 45◦.
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Figure 11.2.1.: Angular dependence of Berry charge distribution in the limit of a

vanishing magnetic field (B). Starting from a parallel orientation (0◦),
the molecule is rotated about the Cartesian x-axis (yellow, purple and
black) and y-axis (blue, red and green). The charge distributions are
evaluated in steps of 10◦, showing that the results are not rotationally
invariant. Sum rules are fulfilled for every orientation.

Partial charges obtained from the Berry curvature are, similarly to the charge distri-
butions discussed so far, also not rotationally invariant.
The rotational invariance of both the charge distribution and, consequently, the partial
charges may be restored if the isotropic average is considered. This was carefully inves-
tigated for a number of different orientations and proven to be true for all examples.
Following the orientations represented by the rotation about the y-axis (the blue,
red and green points in fig. 11.2.1), this is shown in table 11.2.3, where the isotropic
averages for all orientations from 0◦ to 50◦ are listed. This list is not exhaustive and
is presented as such in order to showcase that, indeed, the isotropic average of the
charge distribution as calculated from the Berry curvature is rotationally invariant.
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11. Berry Curvature: Implementation and Connection to Partial Charges

Combining all of these results, it is shown that the charge distribution calculated from
the Berry curvature tensor does not vanish in the asymptotic limit |B| → 0. Instead,
its isotropic average yields reliable results which obey the relevant sum rules and which
are not dependent on the choice of magnetic field. This leads to the conclusion, that
the Berry curvature tensor may be used to generate charge distributions and partial
charges even if the magnetic field is only treated perturbatively. This is somewhat
surprising, as the Berry curvature tensor itself does vanish in the absence of a magnetic
field.

Table 11.2.3.: Isotropic average of the charge distribution as calculated from the Berry
curvature tensor at a field strength of 10−6B0 ≈ 0.235T. The angle
between molecule and magnetic field is varied in steps of 10◦, but the
isotropic average is not affected. The sum rule is thus also satisfied for
all orientations. The calculations were carried out at the GHF/def2-SVP
level. All charge distributions Q and sum rules are given in units of [e].

Angle Q(Li–Li) Q(Li–H) Q(H–H) Sum rule

0◦ -2.1061 -0.3211 -1.2519 -4.0002

10◦ -2.1061 -0.3210 -1.2518 -4.0000

20◦ -2.1061 -0.3210 -1.2518 -4.0000

30◦ -2.1061 -0.3211 -1.2519 -4.0001

40◦ -2.1061 -0.3211 -1.2518 -4.0001

50◦ -2.1062 -0.3211 -1.2519 -4.0002

11.2.3. Partial Charges and Basis Set Dependence

Having established that the isotropic average of the charge distribution calculated from
the Berry curvature tensor can be used in the limit of a vanishing field, this section
aims at evaluating the corresponding partial charges. They are denoted as ‘Berry
charges’ in the following section. This term is introduced in the spirit of Mulliken
charges, which denote partial charges computed from a Mulliken population analysis.
The basis set dependence of Berry charges was investigated using a variety of basis
sets. They were compared to Mulliken charges which were calculated in the absence
of a field at the same level of theory. This procedure was carried out for the two
molecules lithium hydride and lithium fluoride. The results are listed in table 11.2.4,
including the mean and standard deviation (SD).
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11.2. Partial Charges in the Limit of a Vanishing Field

For the computation of Berry charges, the Berry curvature tensor was evaluated in
an external magnetic field of 10−4B0 ≈ 23.5T. This was done three separate times,
aligning the linear molecules with the Cartesian x-, y- and z-axis to calculate the
isotropic average of the charge distribution. For the sake of better comparability, the
charge distributions of each molecular orientation were normalized to fulfill the sum
rule exactly. Berry charges for lithium were calculated by summation over the Li–Li
and one respective non-diagonal block of the charge distribution matrix.

Table 11.2.4.: Basis set dependence of Berry and Mulliken charges for the lithium atom
in lithium hydride and lithium fluoride. Berry charges were obtained
from the isotropic average of charge distributions calculated from the
Berry curvature tensor and normalized to satisfy the sum rule exactly.
Mulliken charges were obtained at the same level of theory. Mean and
standard deviation (SD) are shown to highlight the contrast between
the basis set dependence of both approaches. All values are given in
units of [e].

Lithium hydride (LiH) Lithium fluoride (LiF)

Basis set Berry charge Mulliken charge Berry charge Mulliken charge

def2-SV(P) 0.5792 0.3760 0.8845(a) 0.7398(a)

def2-SVP 0.5728 0.3968 0.8845 0.7398

def2-TZVP 0.6036 0.4225 0.8875 0.8379

def2-TZVPP 0.6305 0.4707 0.8579 0.7782

def2-QZVP 0.6779 0.3044 0.8847 0.6562

cc-pVDZ 0.6030 0.1186 0.8039 0.6223

cc-pVTZ 0.6658 0.2608 0.8216 0.5722

cc-pVQZ 0.6748 0.3243 0.8581 0.6131

aug-cc-pVDZ 0.6723 0.1407 0.8688 0.7095

aug-cc-pVTZ 0.6736 0.3086 0.8824 0.7637

aug-cc-pVQZ 0.6834 0.2148 0.9008 0.8163

Mean 0.6397 0.3035 0.8650 0.7109

SD 0.0387 0.1040 0.0293 0.0866

(a) def2-SV(P) and def2-SVP are identical for LiF.
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For LiH, Berry and Mulliken charges show drastically different results. While both
are always positive for the lithium atom, Berry charges generally predict a much
more positively polarized lithium atom compared to equivalent calculations with
the Mulliken charge. For the investigated basis sets, Berry charges are within the
range of 0.5728 e – 0.6834 e with a mean of 0.6397 e. Mulliken charges of the lithium
atom lie between 0.1186 e – 0.4707 e, with a mean of 0.3035 , less than half of what
was predicted for Berry charges. Furthermore, Berry charges tend to get larger with
an increasing basis, while there is no equivalent trend for Mulliken charges. The
inconsistent behaviour with respect to basis set dependence is a well-known problem of
the Mulliken population analysis.[377] Berry charges, on the other hand, do not appear
to suffer from this problem. The standard deviation for Mulliken charges (0.1040 e) is
more than twice as large as that of Berry charges (0.0387 e) for the small sample of
basis sets investigated here.
The LiF molecule shows similar trends to those discussed for LiH. Berry charges
deviate even less from the mean (0.8650 e), falling in between 0.8039 e and 0.9008 e. The
systematic increase with larger basis sets can in principle be found again, particularly
for the Dunning basis sets (pVXZ). For the Karlsruhe basis sets (def2), this trend
is somewhat broken, with def2-TZVPP producing a slightly lower value than def2-
TZVP. Mulliken charges, on the other hand, show very inconsistent behaviour for
both Dunning and Karlsruhe basis sets with values between 0.5722 e and 0.8379 e and
a mean of 0.7109 e. The standard deviation (0.0866 e) is almost three times larger
than for Berry charges (0.0293 e), indicating how unreliable the Mulliken approach is
compared to the calculation of Berry charges.
As a final remark, it should be noted that the numerical stability of the calculation of
Berry charges for LiF becomes somewhat problematic, particularly for larger basis
sets. The sum rules exhibit errors of about 1% in extreme cases. As mentioned above,
the Berry charges given in table 11.2.4 are all normalized to fulfill the sum rule exactly
for the sake of consistency. It should be stressed, that these errors are a problem of the
numerical evaluation scheme and not the method itself. Also, in most cases sum rules
were still satisfied up to six digits, which is the expected accuracy given the nature of
the method. Likely, this problem would not exist for an analytical approach in the
limit of vanishing fields. The implementation of an analytical evaluation for the Berry
curvature and investigation of Berry charges using a proper test set of molecules is
the subject of future work.
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12. Magnetic Circular Dichroism

Spectroscopy

Magnetic circular dichroism (MCD) spectra are experimentally obtained as the differ-
ence in absorption between left and right circularly polarized light for a compound
in the presence of a small magnetic field. It is mainly used for highly symmetric
molecules, as the presence of an external field breaks the symmetry and allows for the
investigation of otherwise ’dark’ transitions. The computation of MCD spectra is the
first application for the methods developed in the context of this work.
MCD spectroscopy is a convenient starting point for the application of the methods
developed in this work for two reasons. Firstly, since fully perturbative treatments of
MCD spectroscopy are available, the validity of the current implementation may be
verified by comparing the results. This is done for the two compounds p-benzoquinone
and tetrachloro-p-benzoquinone, which were previously investigated in Ref. [286] using
TD-DFT. Calculations were carried out in the context of this work with the finite
field approach at the same level of theory, producing practically identical results.
Secondly, the corresponding experiments are carried out in the presence of magnetic
fields, and therefore in conditions which can be explicitly treated by finite field calcu-
lations. Thus, to further test the validity of the implementation carried out in this
work, calculations are compared to experimental data. As an exemplary case, the
Zn(DiNTAP) molecule, a zinc tetraazaporphyrin with two fused naphthalene units,
is investigated. Using a variety of density functionals, the experimental spectrum
taken from Ref. [280] can be reproduced. The efficiency of the implementation is
highlighted by the calculations on the Zn(DiNTAP) molecule, which has 57 atoms. At
the DFT/def2-TZVP level of theory, the system is represented by 1384 contracted
basis functions, which corresponds to more than 2000 primitive basis functions. Using
the present implementation, systems of such a size can be routinely calculated, making
the methods accessible for a wide variety of chemical applications.
The results presented here were published by the author in Ref. [54] and this chapter
follows the general structure and line of reasoning introduced therein.
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12.1. Comparison to Perturbative Approach

12.1.1. Computational Details

In this section, MCD spectra obtained from the linear response approach in finite
magnetic fields are compared to spectra generated using a fully perturbative ap-
proach. In Ref. [286], the quantum-chemical calculation of p-benzoquinone (pBQ) and
tetrachloro-p-benzoquinone (TCpBQ) is presented using the complex polarization
propagator method,[276, 277] itself an approximation to quadratic response theory. The
two molecular structures are depicted in fig. 12.1.1.

Figure 12.1.1.: Molecular structures of the two molecules p-benzoquinone (pBQ) on
the left and tetrachloro-p-benzoquinone (TCpBQ) on the right.

To compare the two approaches, the MCD spectra of pBQ and TCpBQ were calcu-
lated at the same level of theory also presented in Ref. [286]. All calculations were
performed using Turbomole and a large gridsize (grid 5)[320] for the evaluation of
density functionals. Molecular geometries were optimized at the B3LYP[212, 378, 379]/cc-
pVTZ[374–376] level of theory, using RKS in the absence of a magnetic field. Subsequent
calculations for the electronic ground state were carried out at the DFT/aug-cc-
pVDZ[374–376] level with the three density functionals B3LYP, CAM-B3LYP,[380] and
BHLYP,[212] using a spin-noncollinear approach in the absence of a magnetic field.
After having converged, a magnetic field of |B| = 4T was applied in the Cartesian x-,
y- and z-directions. Only a handful of iterations are then required to converge the
system in the presence of the magnetic field, choosing relatively tight convergence
criteria of 10−10Eh for the electronic energy and 10−8 for the norm of the density
matrix (denoted denconv 8 in the context of this work). Finally, TD-DFT calculations
were performed at the same level of theory, using the RI approximation for both
the exchange and Coulomb parts (RI-JK ) with the auxiliary cc-pVTZ basis.[161]

For both molecules and all three orientations, the 500 lowest electronic excitations
were calculated. The final results were broadened with with a FWHM of 4,000 cm−1,
corresponding to the damping factor of 2,000 cm−1 employed in Ref. [286].
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12.1.2. p-Benzoquinone

The MCD spectrum of pBQ as generated using the three functionals B3LYP, CAM-
B3LYP and BHLYP is shown in fig. 12.1.2. The differential absorption M(ω,Γ) in
atomic units of [e3a60meℏ−3] as defined in eq. (6.2.10) is plotted versus the wavelength
in the region between 200 nm and 400 nm. The result is almost indistinguishable from
the corresponding plot presented in Ref. [286], which was calculated using the complex
polarization propagator method.

Figure 12.1.2.: Magnetic circular dichroism spectrum of p-benzoquinone as calcualted
using linerar response theory in a finite magnetic field of |B| = 4T.
Calculations were carried out at the DFT/aug-cc-pVDZ level of theory
using B3LYP (red, solid), CAM-B3LYP (green, dashed) and BHLYP
(blue, dotted). Adapted with permission from Ref. [54].

In the long-wavelength region depicted here, the spectrum is dominated by one positive
band. This is similar to the experimental spectrum measured in n-hexane, where
one dipole-allowed singlet-transition of character 1Ag → 1B1u was identified with a
maximum of 241 nm.[381] The B3LYP calculation predicts the maximum of this band at
250 nm, while CAM-B3LYP puts it at 233 nm, and BHLYP at 226 nm. The purely per-
turbative approach puts them at 250 nm, 232 nm, and 227 nm, respectively.[286] Several
other, dipole-forbidden transitions are weakly visible in the experimental spectrum,
but are not obtained in the calculations as spin-orbit coupling was neglected.[381]
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12.1.3. Tetrachloro-p-Benzoquinone

The MCD spectrum of TCpBQ was computed using the functionals B3LYP, CAM-
B3LYP and BHLYP in a finite magnetic field of |B| = 4T. The results are presented
in fig. 12.1.3, where the differential absorption M(ω,Γ) in atomic units is plotted
against the wave length in the interval between 150 nm and 400 nm. As expected,
the spectra are almost identical to those generated from the complex polarization
propagator method in Ref. [286].

Figure 12.1.3.: Magnetic circular dichroism spectrum of tetrachloro-p-benzoquinone
as calcualted using linerar response theory in a finite magnetic field
of |B| = 4T. Calculations were carried out at the DFT/aug-cc-pVDZ
level of theory using B3LYP (red, solid), CAM-B3LYP (green, dashed)
and BHLYP (blue, dotted). Adapted with permission from Ref. [54].

The general structure of the spectrum is very similar to the one obtained for pBQ,
with all bands being red-shifted. The positive dipole-allowed 1Ag → 1B1u transition is
shifted to 285 nm in the experimental spectrum.[381] Calculations yield a maximum
at 324 nm for B3LYP, 280 nm for CAM-B3LYP and 266 nm for BHLYP. The purely
perturbative approach only differs in the value for B3LYP, predicting it at 325 nm
instead.[286] The strong negative split-band at about 210 – 230 nm is equally well
reproduced with the finite field approach, as is the rest of the spectrum.
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12.2. Comparison to Experiment: The ZnDiNTAP Molecule

12.2.1. Computational Details

In order to become a standard tool in quantum chemistry, finite field calculations need
to be able to routinely compute sizeable molecules and their spectroscopic properties.
This is put to the test in this section for the calculation of MCD spectra for the
ZnDiNTAP molecule, a zinc tetraazaporphyrin with two fused naphthalene units,[280]

depicted in fig. 12.2.1.

Figure 12.2.1.: Molecular structure of the ZnDiNTAP molecule, a zinc tetraazapor-
phyrin with two fused naphthalene units. Reprinted with permission
from Ref. [54].

The geometry of ZnDiNTAP was optimized at the B3LYP/def2-TZVP[370] level of
theory using RKS in the absence of a magnetic field. All subsequent calculations of
MCD spectra in this section follow the same general procedure. First, the electronic
ground state is evaluated at any level of theory using RKS. Second, the converged
result is taken as an input for a spin-noncollinear calculation in the absence of magnetic
fields at the same level of theory. Third, a magnetic field of |B| = 5T is applied in the
x-, y- and z-direction in three separate calculations, using the previously converged
spin-noncollinear calculation as input, thereby requiring only a few iterations to
converge. A convergence criterium of 10−9Eh is used. The 200 lowest excitations are
calculated using RI-JK with a matching auxiliary basis developed for correlation
methods.[157] Finally, the MCD spectrum is obtained through broadening with a
lorentzian function using a FWHM of 0.3 eV.
In sec. 12.2.2, the choice of basis set is discussed. Calculations are carried out at
the B3LYP/def2-TZVP level, as well as using a mixed basis of def2-TZVP for Zn
and def2-SVP[370] for all other atoms. In sec. 12.2.3, the choice of density functional
is discussed. Calculations are carried out in the mixed basis using the functionals
BP86,[209, 382, 383] PBE,[384] PBE0,[373] BHLYP,[212] and CAM-B3LYP.[380]
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12.2.2. Choice of Basis Set

In order to properly assess the MCD of ZnDiNTAP and compare with an experimental
spectrum, an appropriate basis set must be chosen. As the corresponding quantum-
chemical method is TD-DFT, a basis of triple-zeta quality is sufficiently accurate.
Using the def2-TZVP basis for all atoms results in 1384 contracted or 2063 primitive
basis functions. If, however, the def2-TZVP basis is only used for the Zn atom
and the def2-SVP basis is used for all other atoms, a significantly reduced basis of
688 contracted or 1167 primitive basis functions is obtained. The magnetic circular
dichroism of ZnDiNTAP in both basis sets was calculated using the B3LYP functional.
The resulting spectrum is shown in fig. 12.2.2.

Figure 12.2.2.: MCD spectrum of ZnDiNTAP calculated using two different basis sets.
First (red), the def2-TZVP basis was chosen for all atoms. Second
(black), only Zn is equipped with def2-TZVP, while def2-SVP was
chosen for all other atoms. Due to the similarity of both spectra, the
smaller basis may be chosen. Reprinted with permission from Ref. [54].

Evidently, the mixed basis set produces very similar results when compared to the
large basis set. The lowest energy band is negative in sign and peaks at 677 nm for
the large and 662 nm for the mixed basis. For the second lowest band, positive in sign,
the error is even less pronounced with peaks at 553 nm for the large and 543 nm for
the mixed basis. Finally, the smaller bands between 250 nm and 500 nm are almost
indistinguishable for the two calculations. To reduce the computational effort, the
smaller basis is chosen for all further calculations in this section.
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12.2.3. Choice of Density Functional

Having chosen a basis, the next step is to assess the influence of the choice of density
functional on the MCD spectrum of ZnDiNTAP. A variety of different choices are
presented, including the two GGA functionals PBE and BP86, as well as the hybrid
functionals PBE0 and BHLYP, and the range-separted hybrid CAM-B3LYP. The
resulting spectra for these functionals are presented in fig. 12.2.3. The B3LYP results,
which were already shown in fig. 12.2.2, are omitted here as they are almost identical
to those obtained using PBE0. MGGA functionals were not considered here, as the
xc kernel for this case in eq. (6.1.20) was not yet derived, nor implemented, at the
time this study was made.[55] In any case, the influence of the current density in an
external magnetic field of |B| = 5T is likely negligible.

Figure 12.2.3.: MCD spectrum of ZnDiNTAP obtained from different functionals. On
the left, the spectra computed from the two GGA functionals PBE
(black) and BP86 (red). On the right, the spectra generated from the
two hybrid functionals PBE0 (red), BHLYP (blue), and the range-
separated hybrid CAM-B3LYP (green). Reprinted with permission
from Ref. [54].

The two GGA functionals PBE and BP86 produce extremely similar spectra with a
negative B term responsible for a band peaking at 1181 and 1196 nm, respectively.
The next band corresponds to a positive B term with a maximum at 815 and 823 nm,
respectively. Additional bands with relatively high intensity are visible in the region
between 250 – 750 nm. The (range-separated) hybrid funtionals PBE0, BHLYP, and
CAM-B3LYP produce spectra which are quite similar in their general structure
compared to the GGA calculations. However, the entire spectrum is blue-shifted for all
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cases, with the lowest energy band having a peak at 648, 645, and 649 nm, respectively.
The positive B term shows it maximum at 534, 533, and 538 nm, respectively. This
corresponds to a blue-shift of more than 500 nm for the negative B term and roughly
half the deviation for the positive B term compared to GGA functionals.
The main difference between the spectra calculated by the different (range-separated)
hybrid funtionals is the location, intensity and sign of the low-intensity bands between
250 – 450 nm. They are caused by a complex interplay of several close-lying B terms.
Probably the most prominent effect is how the positive band, clearly visible for PBE0
at about 400 nm, is blue-shifted and almost diminished for BHLYP, only weakly
visible at about 330 nm. For CAM-B3LYP, it completely vanishes. The main difference
between these three functionals is how they treat long-range interactions through
the incorporation of exact exchange. PBE0 uses 25% exact exchange, BHLYP uses
50%, and CAM-B3LYP takes a more dynamic approach by separating the long- and
short-range interactions in the two-electron operator itself. The long-range interaction
is thus generally described better in the order CAM-B3LYP > BHLYP > PBE0. For
a more detailed comparison of these approaches, see also sec. 5.4.4 of this work.

12.2.4. Comparison to Experimental Spectrum

Finally, having discussed the influence of both the basis set and the density functional,
the calculated spectra may be compared to the experimental spectrum in Ref. [280].
First, the low-energy region of the spectrum (above 550 nm) is analyzed. Three high-
intensity Q bands are clearly visible, corresponding to B terms of the MCD. The first
two peaks (806 and 749 nm) correspond to a split band of the spectrum, likely the
result of a coupling to vibrational modes.[54] The positive Q band peaks at 652 nm,
also corresponding to a B term.
All calculations qualitatively reproduce the shape of these bands, although the split
band is not visible in any of them as molecular vibrations were not taken into account.
However, the two GGA functionals fail to correctly predict the location of these two
bands, exhibiting a massive red-shift compared to the experimental spectrum. The
(range-separated) hybrid functionals, on the other hand, exhibit a blue-shift of about
100 nm. Both the use of a larger basis set (see sec. 12.2.2) and the incorporation
of solvation effects would likely stabilize the excited states, thereby red-shifting
these excitations. As a general conclusion, the (range-separated) hybrid functionals
reproduce the experimental spectrum much more reliably than GGA functionals for
the most prominent part of the spectrum: the Q bands.
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Having examined the low-energy region of the spectrum, the second step is to investi-
gate the low-intensity bands in the region between 300 and 550 nm. The experimental
spectrum shows only bands with negative specific rotations between 340 and 550 nm,
and finally two weak positive bands between 300 and 340 nm. This general structure
is only reproduced by the CAM-B3LYP calculation, which suggests that a good
description of long-range interactions is required for the low-intensity bands. The
CAM-B3LYP spectrum and the experimental spectrum taken from Ref. [280] are
compared in fig. 12.2.4. Apart from the aforementioned blue-shift of the computed
spectrum and the lack of coupling to vibrational modes, there seems to be an excellent
agreement between theory and experiment for the MCD spectrum of ZnDiNTAP.

650

593

536

385

332

315

299

285

Figure 12.2.4.: MCD spectrum of ZnDiNTAP as calculated using CAM-B3LYP as well
as def2-TZVP for Zn and def2-SVP for all other molecules. The two Q
bands are located at 650 and 536 nm. Additional low-intensity peaks
are highlighted between 250 and 400 nm. The experimental spectrum
taken from Ref. [280] is presented for comparison. Both spectra are
given in the same units. Printed with permission from Ref. [54].

This example emphasizes that the implementation carried out in this work can be
used for real-world chemical applications. The calculation of MCD spectra in finite
magnetic fields presents itself as a feasible alternative to approaches using second
order perturbation theory, giving access to a tool which can be routinely used for
sizeable molecules with dozens of atoms and more than a thousand basis functions.
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13. Absorption Spectroscopy in Moderately

Strong Magnetic Fields

In the previous chapter, the influence of weak magnetic fields on optical spectroscopy
was discussed. The resulting magnetic circular dichroism spectroscopy was a conse-
quence of two effects induced by the external magentic field. Firstly, the reduced
symmetry of electronic wave functions due to the presence of a magnetic field and sec-
ondly, the Zeeman splitting of degenerate excited states and, potentially, a degenerate
ground state. In this chapter, moderately strong magnetic fields of up to 10,000T are
applied to molecular systems and the resulting absorption spectra are investigated.
The term ‘moderately strong’ magnetic fields is somewhat ambiguous, as the largest
non-destructive magnetic fields currently produced on earth exhibit field strengths
of about 150T.[13] It is used here nonetheless in order to signify a certain regime of
field strengths, where non-linear effects already affect molecular spectroscopy, but
electronic ground states have not yet undergone spin-phase transitions.
As experimental data is not available for molecular spectroscopy under these condi-
tions, the effects described from this chapter forward can currently only be investigated
through quantum-chemical calculations. Consequently, great care should be taken
in the study of molecular and spectroscopic properties in such conditions. For quan-
titative results, only high-level methods can be used and qualitative results should
carefully assessed using a variety of different methods.
In this chapter, the influence of moderately strong magnetic fields on electronic ex-
citations is assessed. This is investigated for a variety of small and medium-sized
molecules to evaluate which excitations are strongly affected by the presence of an
external magnetic field. Such a more general study makes it possible to determine
specific compounds which should have a strong field-dependence of their absorption
spectrum in the ultraviolet/visible (UV/Vis) region. As an illustrative example of this
behaviour, the influence of a magnetic field on the UV/Vis spectrum of tetracene is
investigated, which constitutes a spectacular change of color. The results presented
here have been published by the author in Refs. [53], [54] and [55].
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13.1. Influence of Magnetic Field on Electronic Excitations

13.1.1. Computational Details

In this section, the influence of moderately strong magnetic fields on electronic
excitations of small and medium-sized molecules is investigated. This constitutes a
more general, qualitative study meant to highlight the cases in which molecules exhibit
a strong field-dependence. As such, the TD-DFT method was used for most of the
investigation carried out in this section. The molecules computed here belong to the
set of 36 molecules introduced in sec. 10.1.[53, 369] Molecular geometries were optimized
using GMP2/def2-TZVP and numerical gradients, with the magnetic field aligned
with either the Cartesian x-, y-, or z-axis.
In the first part of this section, sec. 13.1.2, electronic excitations for all 36 molecules
were calculated at the PBE0[373]/def2-TZVP[370] level of theory. First, the electronic
ground states were converged up to a threshold of 10−10Eh for the electronic energy
and 10−9 for the norm of the density matrix (denconv 9). All calculations were carried
out using grid 4[320] in Turbomole. Using a spin Zeeman scaling of 0, the electronic
ground state was kept as closed shell for each calculation, which was confirmed to
be the electronic ground state for almost all examples using a stability analysis on
the PBE0/def2-TZVP and CC2/def2-TZVP level. For more details on this stability
analysis, see the supporting information in Ref. [54]. Finally, electronic excitations
were calculated on the PBE0/def2-TZVP level using the RI-JK approximation with
the corresponding def2-TZVP auxiliary basis set.[371, 372]

A more detailed study of four electronic excitations of pyrazine, also part of the
set of 36 molecules, is carried out in sec. 13.1.3. Electronic ground states were
calculated at the DFT/def2-TZVPP[370] level of theory using the functionals PBE,[384]

TPSS,[385] TPSSh,[385] and ωB97M,[386] using grid 4 as implemented in Turbomole.
Corresponding excited states were calculated on the same level of theory using the
RI-JK approximation with the def2-TZVPP auxiliary basis set.[371]

13.1.2. Small and Medium-Sized Molecules

The aim of this section is to gain a more general understanding on the influence
a moderately strong magnetic field has on electronic excitations. A selection of 36
small and medium-sized molecules was investigated, their structures were shown in
fig. 10.2.1. Linear molecules were aligned with the Cartesian z-direction. For these
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molecules, applying a magnetic field in the Bx or By direction is identical due to
symmetry reasons. Non-linear molecules were aligned following the conventions of their
respective point groups in the absence of magnetic fields. For pyrazine and tetrazine,
the z-axis is aligned perpendicular to the molecular plane, with the x-axis and y-axis
chosen such that the molecular point group is C2h within the external field for all
cases. Magnetic fields were applied at 1,000, 2,500, 5,000, 7,500, and 10,000T.[54]

The resulting excitation energies are presented in fig. 13.1.1 for all molecules with
electronic excitations below 4 eV in the absence of fields.

Bx By

Bz

Figure 13.1.1.: Influence of an external magnetic field on the electronic excitations of
several small to medium sized molecules. The magnetic field is aligned
with the Cartesian components x (upper left), y (upper right) and z
(lower left). Linear molecules are omitted in the Bx diagram due to
symmetry. Geometries were optimized in the respective external field
on the GMP2/def2-TZVP level. Electronic excitations are calcualted
using PBE0/def2-TZVP. Adapted with permission from Ref. [54].
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Upon closer examination of fig. 13.1.1, a few more general patterns may be extracted.
First and foremost, only a few molecules exhibit a strong field-dependence of their
lowest singlet excited state. The direction of the external field appears to play a crucial
role as well, and thus the three different cases should be discussed separately. Which
molecules have excited states that strongly depend on the external field?
For a field only the Bx direction, four noteworthy examples are nitrosylcyanide (25),
thioformylchloride (34), CClF (4), and H2C3 (16). Nitrosylcyanide is a planar molecule
with Cs symmetry (→ C1 in the external magnetic field), which lies in the xz-plane.
The magnetic field is partly aligned with the π-system, and the lowest excitation
energy rises with an increasing external magnetic field. Thioformylchloride is similar to
nitrosylcyanide in almost every regard. CClF is an electrophilic carbene with Cs (→ C1)
symmetry. While not exhibiting a traditional π-system, singlet carbenes are generally
considered similarly, with traditional descriptions suggesting an sp2 hybridization of
the carbon atom.[387] The excitation energy of CClF is significantly increased if larger
fields are applied. The H2C3 molecule, on the other hand, is C2v (→ Cs) symmetric,
and lies in the yz-plane. The magnetic field is aligned in a perpendicular orientation
to the molecule’s π-system and the excitation energy is reduced with an increasing
field.
If the external magnetic field is applied in the By direction, a different picture emerges.
The two most prominent examples with a strong field-dependence are CCl2 (3) and
SiCl2 (30), both with C2v (→ Cs) symmetry. They are derivates of methylene and
silylene, respectively, and behave similarly to the previously discussed CClF molecule.
The magnetic field is applied perpendicular to the C2 axis, which constitutes a sym-
metry axis only present in the absence of a field. As a result, the lowest excitation
energy is considerably increased.
Finally, applying the magnetic field in the Bz direction, quite a few molecules are
strongly affected. Noteworthy examples are HNO (19), HPO (20), HPS (21), se-
lenoformaldehyde (29), thioformaldehyde (33), and thiophosgene (36). All of these
molecules have their lowest excited state increased by the presence of an external
magnetic field. They all have in common that the field is applied in parallel orientation
to their respective π bonds. For HNO, HPO, and HPS the symmetry is Cs (→ C1),
while 29, 33, and 36 constitute a set of molecules with C2v (→ C2) symmetry. There
are two examples of molecules for which the lowest excitation energy is considerably
lowered due to the presence of an external magnetic field: pyrazine (28) and tetrazine
(32). Both are highly symmetric D2h (→ C2h) molecules with aromatic systems and
π-systems aligned perpendicular to the external magnetic field.
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To conclude, excitation energies of π-systems are most affected by the presence of
external magnetic fields. Two general tendencies can be observed. First, the lowest
excitation energies for π-systems are blue-shifted if a field is aligned parallel to the
respective π-bonds, particularly apparent for systems with low excitation energies.
Second, π-systems in general and aromatic π-systems in particular exhibit significant
red-shifts if the external field is applied perpendicular to their π-bonds.

13.1.3. Electronic Excitations of Pyrazine

Pyrazine is an aromatic compound, which, in the previous section, was shown to
exhibit a significant dependence of its lowest excitation energy with an increasing,
perpendicularly applied magnetic field. It is worth examining the absorption spectra
of this compound in more detail. The four excitations lowest excitations of symmetry
B1u (→ Bu), Au (→ Au), B3u (→ Bu), and B2u (→ Bu) are investigated here, with
their field-dependence being depicted in fig. 13.1.2.

Figure 13.1.2.: Field-dependence of excitation energies for pyrazine. Magnetic fields
of up to 10,000T are applied perpendicular to the π-system. Depicted
here are the lowest excitations of symmetry B1u (→ Bu) and Au (→ Au)
on the left, as well as B3u (→ Bu) and B2u (→ Bu) on the right. All
calculations were carried out on the DFT/def2-TZVPP level using
PBE (red), TPSS (blue), TPSSh (green), and ωB97M (black). Adapted
with permission from Ref. [55].
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The results from calculations employing different types of density functionals are in
very good agreement qualitatively for the B1u (→ Bu) and Au (→ Au) excitations, as
well as quantitatively for B3u (→ Bu) and B2u (→ Bu). The GGA functional PBE
generally predicts the lowest excitation energies for every excitation, followed by
the MGGA functional TPSS, the hybrid MGGA functional TPSSh and, finally, the
range-separated hybrid MGGA functional ωB97M. All excitations exhibit a strong
field-dependence, with B1u (→ Bu) and B3u (→ Bu) having their respective excitation
energies lowered in an increasing field, while excitation energies of Au (→ Au) and
B2u (→ Bu) are raised.
In passing, it should be noted that the field-dependence of all exciations in fig. 13.1.2
is practically linear. However, they show non-linear behaviour close to zero-field case,
with smooth transitions into the linear part at about 1,000T. Presumably, this is a
consequence of the external field lowering the system’s molecular symmetry, but a
careful investigation of this behaviour remains the subject of future work.
In conclusion, the field-dependence of excitation energies was examined for a variety
of small to medium-sized molecules and for the pyrazine molecule in more detail. This
study now enables us to predict molecules with strong field-dependence in the visible
part of the absorption spectrum. For instance, for a significant red-shift, an aromatic
compound with a relatively low π → π∗ excitation should be aligned perpendicular to
an external magnetic field.

13.2. UV/Vis Spectroscopy and Color Change of Tetracene

13.2.1. Computational Details

One example for a molecule expected to exhibit a significant red-shift of its absorption
spectrum in the visible region is tetracene. It is an aromatic compound with a sizeable
π-system and its orange-red color indicates a relatively low-lying absorption band for
the π → π∗ transition. Its molecular structure (D2h) is depicted in fig. 13.2.1.

Figure 13.2.1.: Molecular structure of the tetracene molecule.
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In order to obtain more quantitative results, the GW /BSE method is used for investi-
gations carried out in this section. First, the molecular geometry was optimized at the
DFT/def2-TZVP[370] level of theory in the absence of magnetic fields using the hybrid
and range-separated hybrid functionals PBE0,[373] B3LYP,[212, 378, 379] BHLYP,[212] and
CAM-B3LYP,[380] respectively. These functionals predict somewhat different molecular
sizes of tetracene. While all functionals result in a very similar short axis, the long axis
of the molecule has a size-dependence of the order PBE0 > B3LYP > CAM-B3LYP
> BHLYP. Subsequent calculations are carried out using the optimized geometries for
every functional, as well as using the CAM-B3LYP geometry for every functional in
order to estimate the indirect influence of the density functional through the molecular
geometry.
Finally, GW /BSE calculations were carried out using all four reference functionals,
here denoted as @DFT. All calculations were performed using Turbomole and
grid 5.[320] Convergence criteria of 10−10Eh for the electronic energy and 10−8a−3

0 for
the norm of the density matrix (denconv 8). First, the electronic ground state was
computed on the DFT/def2-TZVP level. Second, the evGW method was used in
combination with the contour-deformation (CD) technique. Here, the ten highest
occupied and ten lowest unoccupied spinors are corrected using evGW, while the
remaining spinor energies are shifted accordingly.[53] This is written as CD-evGW (10).
Subsequently, the BSE was evaluated for the lowest 75 eigenvalues. The abbreviation
for the entire approach is CD-evGW (10)/BSE@DFT. UV/Vis spectra are obtained
by broadening with Lorentzian functions and a FWHM of 0.3 eV.

13.2.2. UV/Vis Spectrum in Absence of Magnetic Field

The absorption spectrum of tetracene in the ultraviolet and visible region has been
extensively studied in the literature, both experimentally and theoretically.[388–392]

In the absence of magnetic fields, it is dominated by three electronic excitations.
The transition from the highest occupied molecular orbital (HOMO) to the lowest
unoccupied molecular orbital (LUMO) is referred to as p-excitation and shows a band
which peaks between 455-477 nm depending on external factors. This transition is of
B2u symmetry and polarized along the short axis of the molecule.[388] It is responsible
for the vibrant, orange color of tetracene.
The α-excitation denotes the HOMO→LUMO+1 transition, peaking between 373–
393 nm. Its oscillator strength is comparatively small. The β-excitation corresponds
to the HOMO−1→LUMO transition and shows a peak at 272–275 nm. Its oscillator
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strength is the largest of the three excitations, and as a result, it is the most intense
band in the UV/Vis spectrum of tetracene. Both the α- and β-excitations are of B3u

symmetry and polarized along the long axis of the molecule.[388] Transition densities
for all three transitions were calculated using the CD-evGW (10)/BSE@CAM-B3LYP
method and def2-TZVP basis set. They are presented in fig. 13.2.4 and discussed in
more detail later.
In the theoretical study carried out in this work, the geometries were first optimized
using the four density functionals PBE0, B3LYP, BHLYP, and CAM-B3LYP. Sub-
sequently, excitation energies of the lowest three excitations were evaluated at the
CD-evGW (10)/BSE@DFT level of theory. The results are listed in table 13.2.1.

Table 13.2.1.: Excitation energies for the three lowest transitions of tetracene in
the absence of a magnetic field. Geometries were optimized using the
four indicated functionals and vertical transitions were obtained using
the CD-evGW (10)/BSE@DFT method and def2-TZVP basis set. Ex-
perimental values[388–392] are listed for comparison. All values in [nm].
Adapted with permission from Ref. [53]

Excitation @PBE0 @B3LYP @BHLYP @CAM-B3LYP Exp.[388–392]

p-Excitation 614 505 465 470 455–477

α-Excitation 370 369 349 354 373–393

β-Excitation 270 269 260 265 272–275

The excitation energies obtained from these calculations show good agreement with
the experiment for the α- and β-excitation. However, the p-excitation is described
very poorly with @PBE0 and @B3LYP, while @BHLYP and @CAM-B3LYP show
very similar to results with one another and generally agree well with the experiment.
However, as a post Kohn-Sham method, GW /BSE should not yield results which are
this strongly dependent on the reference functional.
But maybe the reference functional is not the root cause of this problematic be-
haviour? Another option could be the molecular geometries which were optimized
using different functionals. In order to test this, the geometry as optimized us-
ing CAM-B3LYP was taken, which yielded good results for the excitation energy
using CD-evGW (10)/BSE@CAM-B3LYP. Subsequent calculations with the CD-
evGW (10)/BSE@DFT method were performed, using this fixed geometry. The result-
ing excitation energies are listed in fig. 13.2.2.
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Table 13.2.2.: Excitation energies for the three lowest transitions of tetracene in the
absence of a magnetic field. Geometries were optimized at the CAM-
B3LYP/def2-TZVP level for all calculations. Experimental values[388–392]

are listed for comparison. All values in [nm]. Adapted with permission
from Ref. [53]

Excitation @PBE0 @B3LYP @BHLYP @CAM-B3LYP Exp.[388–392]

p-Excitation 484 487 468 470 455–477

α-Excitation 359 360 351 354 373–393

β-Excitation 264 264 261 265 272–275

The dependence of electronic excitations on the reference functional is almost com-
pletely eliminated if all calculations are carried out using the same molecular geometry,
indicating that the inconsistent results were a consequence of poor molecular ge-
ometries. The @PBE0 and @B3LYP results for the p-excitations are still slightly
red-shifted compared to the experimental values, but both the @BHLYP and @CAM-
B3LYP show excellent agreement with the experiment. It should be noted that the α-
and β-excitations are still slightly blue-shifted compared to the experimental spec-
trum. The UV/Vis spectra as calculated with the CD-evGW (10)/BSE@BHLYP and
@CAM-B3LYP methods are presented in table. 13.2.2.
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Figure 13.2.2.: UV/Vis spectrum of tetracene as calculated using the CD-
evGW (10)/BSE@BHLYP (solid line) and @CAM-B3LYP (dashed line)
methods and def2-TZVP basis set. Excitation energies were broadened
using Lorentzians and a FWHM of 0.3 eV.
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13.2.3. Influence of External Magnetic Field

The electronic excitations of tetracene in the absence of a field were assessed using the
GW /BSE method, finding good results particularly with the @BHLYP and @CAM-
B3LYP reference functionals. Using these two methods and the molecular geometry
optimized on the CAM-B3LYP/def2-TZVP level, the influence of an external magnetic
field on the UV/Vis spectrum is now examined. As discussed in detail in sec. 13.1 of
this work, the magnetic field should be applied in perpendicular orientation to the
π-system to induce a significant red-shift of the spectrum.
Calculations were carried out in steps of 1,000T up to a field strength of 9,000T,
above which the ground state becomes unstable. Within the perpendicularly applied
field, the molecular symmetry is lowered to C2h. All excitations were carefully tracked,
including γ and δ which were included to assess whether lower lying states play a role
in the visible part of the spectrum at higher field strengths. All five excitations (p,
α–δ) are of Bu symmetry in the field. The results are presented in fig. 13.2.3.
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Figure 13.2.3.: Influence of an external magnetic field on the electronic excitations
of tetracene. The field is applied in perpendicular orientation to the
molecule’s π-system. All calculations were carried out using the CD-
evGW (10)/BSE@BHLYP (solid line) and @CAM-B3LYP (dashed line)
methods and def2-TZVP basis set. Reprinted with permission from
Ref. [53].
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As expected, the p-excitation is strongly red-shifted by the presence of the external
field, while higher excitations are less strongly affected. The entire structure of these
excitation changes due to the presence of the external field, which can be investigated
by examining the transition densities. They are presented in fig. 13.2.4 in the absence
of fields and in the presence of a magnetic field with a strength of 8,000T. Particularly
the p- and β-excitations appear to be more delocalized within an external magnetic
field, while the transition density for the α-excitation seems the least affected.

p-excitation p-excitation

β-excitation

α-excitation α-excitation

|B| = 0 T |B| = 8,000 T

β-excitation

Figure 13.2.4.: Transition densities of the p-, α- and β-excitations of tetracene in the
absence of a magnetic field (left) and in a field of 8,000T. The color
blue indicates the loss of electron density, while the color red indicates
a gain thereof. Calculated using CD-evGW (10)/BSE@CAM-B3LYP
and the def2-TZVP basis set. Plots were generated using VMD with
an isovalue of 0.0001a−3

0 for the p-excitation and 0.0002a−3
0 for α and

β. Partly reprinted with permission from Ref. [53].

Using all of these results, the UV/Vis spectra in the presence of increasingly large
magnetic fields may be computed in an identical manner to the zero-field case. The
resulting spectra are shown in fig. 13.2.5, where not only the five aforementioned
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excitations were used to generate the spectra, but the lowest 75 excitations. While
some excitations do exhibit very small oscillator strengths in the visible region within
stronger fields, the UV/Vis spectrum is still dominated by the five excitations which
were previously mentioned (p, α–γ).
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Figure 13.2.5.: Influence of an external magnetic field on the UV/Vis spec-
trum of tetracene. Calculations were carried out with CD-
evGW (10)/BSE@BHLYP (solid lines) and @CAM-B3LYP (dashed
lines) and the def2-TZVP basis set. Excitation energies were broadened
using Lorentzians and a FWHM of 0.3 eV. Reprinted with permission
from Ref. [53].

13.2.4. Prediction of Color Change

As mentioned before, the UV/Vis spectrum is the optical absorption spectrum in
the ultraviolet and visible region of electromagnetic radiation. Thus, the color of a
compound is intrinsically linked to this form of spectroscopy. The RGB color code can
be obtained through numerical integration over the red (R), green (G), and blue (B)
parts of the spectrum. Relative intensities may additionally obtained by integration
over the entire visible part of the spectrum.
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For tetracene, the color was evaluated using the UV/Vis spectra shown in fig. 13.2.5.
The resulting colors are presented in fig. 13.2.6. Starting from the vibrant orange
color tetracene is known to exhibit in the absence of fields, the color starts changing
with an increasing magnetic field. As the p-excitation is red-shifted through the entire
visible part of the spectrum, the molecule shifts from orange-red to pink and purple,
until reaching a vibrant blue and finally a light cyan color. In a field of 9,000T, the
p-band hardly absorbs any more light in the visible region of the spectrum and the
resulting color is almost exclusively a consequence of its absorption at the very edge
of the infrared region.

Figure 13.2.6.: Color change of tetracene induced by the presence of increasingly
strong magnetic fields up to 9,000T. Calculations were carried out
with the CD-evGW (10)/BSE@CAM-B3LYP method and def2-TZVP
basis set. All excitation energies were broadened using Lorentzians
and a FWHM of 0.3 eV. The resulting UV/Vis spectra were used to
obtain the RGB codes of the color through a numerical integration
over the red, green and blue sections of the spectrum. The intensity
was scaled relatively to the zero-field case. Reprinted with permission
from Ref. [53].
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14. Rotational-Vibrational Spectroscopy in

Strong Magnetic Fields

The previous two applications discussed in this work were concerned with molecular
spectroscopy in the ultraviolet and visible region of the electromagnetic spectrum.
Both MCD and UV/Vis spectroscopy need (polarized) light in this region, as it is
capable of inducing electronic excitations. Consequently, the theoretical description
of this phenomenon required the time-dependent propagation of the electronic wave
function and/or electron density. The influence of an external magnetic field on
the resulting absorption spectra was investigated through an explicitly quantum-
mechanical treatment of the field. In this chapter, molecular spectroscopy in the
infrared and microwave region of the electromagnetic spectrum is examined. Absorption
spectroscopy in this region is used to investigate molecular vibrations and rotations.
For molecules in the gas phase, both forms of nuclear motion are typically coupled.
The theoretical description of molecular motion is typically carried out using a semi-
classical approach. For molecules in strong magnetic fields, it was introduced in sec. 7
of this work. Compared to the field-free case, the solution to the resulting equations
of motion is vastly more complicated due to the presence of (screened) Lorentz forces
acting on the moving nuclear charges. Therefore, ab initio molecular dynamics is used
in this work for the simulation of rovibrational spectra in strong magnetic fields.
Two small systems are investigated in this chapter: molecular hydrogen (H2) and
lithium hydride (LiH). The outline for the investigation of rovibrational spectra of
these two molecules is identical. First, general effects induced by the presence of
an external magnetic field are discussed. Second, selected nuclear trajectories for
the nuclear motion are presented. Third, an exemplary rovibrational spectrum for
one magnetic field strength is introduced and discussed. Finally, Boltzmann-averaged
spectra generated from a canonical ensemble of trajectories are shown and the influence
of a strong magnetic field is considered. The results discussed here were obtained in
collaboration with Monzel, Peters, Tellgren, Helgaker, and Klopper and presented in
Ref. [57]. This chapter follows the general outline introduced therein.
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14.1. Computational Details

All trajectories and corresponding rovibrational spectra presented in this chapter have
been computed using the Tajima[298] algorithm as presented in Ref. [57]. For more
information on this algorithm, the interested reader is referred to this publication. In
order to function, it requires the following quantities for the relevant region, where
the nuclear motion takes place:

• Total electronic energies,

• Corresponding molecular gradients,

• The Berry curvature tensor.

All of these quantities may be pre-computed on a grid using ab initio quantum
chemistry and approximated through splines for all points in between. The ab initio
computation of molecular gradients can be circumvented, using gradients of the
corresponding total electronic energy spline instead. The total electronic energies
were obtained on the GMP2/def2-TZVP[370] level for all calculations discussed in
this chapter. They were computed using Turbomole, requiring a prior calculation
done with GHF/def2-TZVP. For GMP2, the RI-C approximation was used with an
auxiliary def2-TZVP[371, 372] basis. The Berry curvature tensor was computed using
the implementation presented in chapter 11. It was calculated on the GHF/def2-TZVP
level and normalized to fulfill the relevant sum rules exactly. This step is relevant,
as otherwise a small portion of Lorentz forces are not properly screened, leading to
inconsistent results. The magnetic field is applied in the z-direction for all cases.

14.2. Rovibrational Spectrum of Molecular Hydrogen

14.2.1. Potential Energy Surface

Before investigating molecular rotations and vibrations for H2 in a strong magnetic
field, the BO potential energy surface should be examined. This will help in estimating
the general effects which should be expected as a result of the external field. First, the
electronic states of H2 should be discussed. In the absence of a magnetic field, H2 has
a singlet ground state of 1Σ+

g symmetry and a non-binding excited state characterized
by the term symbol 3Σ+

u .[393] Within an external magnetic field, the point group of
H2 is either C∞h if the field is applied parallel to the bond, C2h for a perpendicular
orientation and Ci otherwise.[133] The ground state (S0) thus becomes 1Σg in the
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parallel case, and 1Ag in all other cases, while the excited state (T1) becomes 3Σu for
the parallel case, and 3Au otherwise.
While the HF method properly describes the spin symmetry of the electronic wave
function close to the equilibrium distance, this is not generally true when considering
the dissociation limit. Beyond the Coulson–Fischer point, the RHF method retains the
proper spin symmetry, ⟨S2⟩ = 0, of the electronic wave function while dissociating to an
egregiously wrong limit. The UHF method dissociates to the proper limit, but exhibits
a strongly spin-contaminated electronic wave function.[394, 395] To illustrate the effects
of an external magnetic field, MP2 calculations were performed at exemplary field
strengths of |B| = 0.01B0 and |B| = 0.5B0, both for the parallel and perpendicular
orientation. The resulting PES are shown in fig. 14.2.1. All calculations use a GHF
reference, but the RHF limit was carefully converged as well, ensuring that ⟨S2⟩ = 0

for every single calculation. Excited states were obtained through spin Zeeman scaling.

MD simulation

MD simulation

Σ
Σ

Σ

|B| = 0.01 B0 |B| = 0.5 B0

Figure 14.2.1.: Potential energy surface of H2 in two magnetic fields, |B| = 0.01B0 (left)
and |B| = 0.5B0 (right), calculated on the GMP2/def2-TZVP level.
The perpendicular (black, blue) and parallel (purple, red) orientations
of the external field with respect to the bond are considered. The
relevant regions for the MD simulations are indicated, lying well before
the Coulson–Fischer point.

For field strengths beyond about |B| = 0.4B0, T1 becomes the electronic ground state
at equilibrium distance. As T1 is non-binding, no molecular vibrations or rotations
can be observed, as the molecule would simply dissociate. Therefore, all observations
described in this section reference the S0 state. It should be emphasized that such an
investigation is relevant for several reasons, even if S0 is not the electronic ground state.
First and foremost, the observations for rovibrational spectra of H2 in strong magnetic
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fields can be used for a more general understanding of how nuclear motion is affected
in external fields. Additionally, excited states may be populated, especially under
conditions where such strong magnetic fields are present, such as in the atmosphere
of magnetic white dwarfs.
The relevant regions in which MD simulations are run are indicated in fig. 14.2.1.
They all lie well before the Coulson–Fischer point, which was carefully checked for all
cases. Therefore, GHF may be used as a reference for the MP2 calculations, exhibiting
the correct spin symmetry. Finally, it should be noted that a rotational barrier is
induced by the presence of the magnetic field. The parallel orientation between the
hydrogen-hydrogen bond and the external field appears to be more stable for both the
S0 and T1 states. The rotational barrier was calculated for different field strengths
and is illustrated in fig. 14.2.2

Figure 14.2.2.: Potential energy barrier for the rotation of the H2 molecule relative
to the 0◦ (parallel) orientation. Calculated on the GHF/def2-TZVP
(dashed line) and GMP2/def2-TZVP (solid line) levels of theory, re-
spectively. All calculations are carried out for the equilibrium bond
length in the parallel orientation, assuming a rigid rotator. Reprinted
with permission from Ref. [57].

The rotational barrier can be well described through a cosine-like potential with a
maximum at the perpendicular orientation. Rotational barriers are generally larger if
correlation effects are taken into account. This is expected to have a large impact for
molecular rotations, as any rotation must overcome this barrier. Even in weak fields,
rotational movement will therefore be slower close to a perpendicular orientation. If
the field strength is large enough, the H2 molecule may not overcome this barrier at
all, leading to librational motion.
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14.2.2. Molecular Rotations and Vibrations

Having discussed the general features of the underlying BO PES, two exemplary
trajectories representing molecular rotation shall now be examined. Both were obtained
in a magnetic field of |B| = 0.2B0, one with a slightly higher initial kinetic energy
of 3.5mEh and the other one with a slightly lower initial kinetic energy of 2.8mEh.
Both trajectories were obtained through a simulation of 435 fs. They are depicted in
fig. 14.2.3, with darker colors indicating slower motion and brighter colors representing
faster motion.

Rotation Libration

Figure 14.2.3.: Trajectories as calculated for a rotational (left) and librational motion
of H2 in an external magnetic field of |B| = 0.2B0. The rotation was
intiated with a kinetic energy of 3.5mEh and the libration with 2.8mEh.
Darker colors indicate slower motion and brighter colors indicate faster
motion. Both rotational and vibrational motion is coupled to stretching
vibrations, since the rotational barrier is dependent on the bond length.
Intramolecular cyclotron rotation is responsible for a rotation of 90◦
about the z-axis in 435 fs of simulation time. Adapted with permission
from Ref. [57].

Three main effects induced by the presence of a strong, external magnetic field can be
observed from these two trajectories:

1. Rotational motion gets considerably slower close to the maximum of the ro-
tational barrier at the perpendicular orientation. On the one hand, an initial
kinetic energy of 3.5mEh is enough to cross this barrier, resulting in rotational
motion. On the other hand, the lower initial kinetic energy of 2.8mEh is not
enough, resulting in a libration.

2. The equilibrium bond length depends on the angle between molecule and
magnetic field. As a consequence, rotational (and librational) motion is generally
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coupled to stretching vibrations of the molecule. An example for such a coupled
motion can be seen in fig. 14.2.3.

3. An additional motion corresponding to a very slow intramolecular rotation can
be seen for both vibrations and librations. This is induced by Lorentz forces
acting on the moving nuclei and directly corresponds to a cyclotron rotation as
introduced in sec. 2.3.2 of this work. This intramolecular cyclotron rotation also
couples to rotational and librational motion.

Molecular vibrations should be expected to behave similarly to their zero-field coun-
terparts, with only stretching vibrations existing for linear molecules. Due to the
interdependence between bond length and rotation barrier, vibronic motion is generally
coupled to rotations and intramolecular cyclotron rotations. Furthermore, vibrational
and rotational overtones should be more pronounced in an external magnetic field
due to the increased anharmonicity of the PES.

14.2.3. Rotational-Vibrational Spectra in Strong Magnetic Fields

The resulting rovibrational spectra are highly complicated, even for the simple case of
molecular hydrogen. A power spectrum may be obtained from a trajectory through a
Fourier transformation of the velocity, requiring simulation times of a few picoseconds.
For the two initial conditions chosen for the trajectories in fig. 14.2.3, the resulting
rovibrational spectra are presented in fig. 14.2.4. The spectra depicted therein were
simulated using a BO PES generated from the GHF and MP2 methods, respectively,
to highlight the effects of electron correlation.
First, the rotational part of the spectrum should be examined. As the rotational
isotropy is broken due to the presence of an external field, the corresponding rotations
must be decomposed into their (z)-, as well as (x,y)-components. The fundamental
frequency for the rotational movement can be found at about 200 cm-1, with the signal
being split into a triplet overall. Upon further examination, the triplet turns out to
be a combination of singlet corresponding to the (z)-component, and a doublet of
peaks corresponding to the (x,y)-components. The coupling constant is exactly twice
the intramolecular cyclotron frequency, indicating that this motion only couples to
the (x,y)-components of rotational motion. Due to molecular symmetry, rotational
overtones only appear at every odd multiple of the fundamental frequency.
For librations, a slightly different picture presents itself. While the (x,y)-component of
librational motion behaves similarly to its rotational counterpart, the (z)-component
only appears at every even multiple of the fundamental frequency. This may be under-
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stood by imagining only the Cartesian z-component of such a librational movement
and comparing it to the rotational one. Since the nuclei cannot pass the rotational
barrier, they arrive at their initial positions in the same interval, in which only half
a ’proper’ rotation is carried out. As such, the (z)-component of a libration should
be expected at twice the frequency of its rotational counterpart. Further, peaks for
librational motion are slightly blue-shifted compared to their rotational counterparts,
due to them not having to pass the rotational barrier itself and thus the region in
which the motion is slowed down the furthest (see the dark blue parts in fig. 14.2.3).

Figure 14.2.4.: Rovibrational spectrum of H2 simulated from identical initial conditions
used for the trajectories depicted in fig. 14.2.3. Power spectra are
obtained through a Fourier transformation of the corresponding MD
simulations. Depicted here are the spectra for initial conditions leading
to librations (red) and rotations (green) using the MP2 (bold) and
GHF (pale) methods. Reprinted with permission from Ref. [57].

Investigating the vibrational part of the spectrum, the stretching vibration appears
at about 4600 cm-1, blue-shifted compared to the zero-field case. This shift to higher
frequencies follows directly from the steeper potential energy minimum, visible for
instance in fig. 14.2.1. As previously discussed, vibronic motion will always be coupled
to rotational motion due to the anharmonicity of the potential energy surface, an
effect which is even more pronounced in the presence magnetic fields. The resulting
vibronic spectrum for a coupling to rotational motion exhibits a P - and R-branch,
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in which a hyperfine structure can be observed. It corresponds to the coupling of
rotations to the intramolecular cyclotron rotation. Consequently, the structure of this
spectrum may be described as a triplet of a doublet.
For the coupling to a librational motion, a slightly different pattern emerges. In
addition to the P - and R-branches, a Q-branch becomes visible, corresponding to the
decoupled (z)-component of librational motion. Consequently, the P - and R-branches
are both doublets due to coupling with the intramolecular cyclotron rotation, while
the Q-branch only contains a high-intensity singlet. The existence of a Q-branch in a
rovibrational spectrum of H2 is thus an indication for librational movement.
Finally, a canonical ensemble of spectra should be calculated, as initial conditions
have a high impact on the resulting rovibrational spectra. This was done for field
strengths up to |B| = 1.8B0, using Boltzmann-distributed initial conditions and a
target temperature of 1500 K. The resulting canonical ensemble of spectra is presented
in fig. 14.2.5.

Figure 14.2.5.: Canonical ensemble of rovibrational spectra for H2 in strong magnetic
fields. Initial conditions were obtained from a Boltzmann-distributed
set of velocities. The simulation time for each spectrum is 1 ps, and
the averaged spectrum is obtained by smoothing over an interval of
ω = ±20 cm−1. Adapted with permission from Ref. [57].

It reveals the averaged influence of strong external magnetic fields on the rovibra-
tional spectrum of molecular hydrogen. The entire spectrum is generally blue-shifted.
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Overtones become clearly visible and more pronounced in an external field. For the
zero-field, only the P - and R-branch are visible, while an increasingly large Q-branch
emerges in stronger fields. This indicates how important librational motion becomes
compared to rotational motion, dominating the spectra in increasingly large fields.
However, it should be stressed that the results presented here should only be under-
stood as an illustrative example of effects, which can be induced in such extreme
environments. The comparison between spectra generated on the GHF and GMP2
level in fig. 14.2.4 reveals the importance of electron correlation in the underlying BO
PES. As such, a more detailed study using the full configuration interaction method
as a reference should be carried out in future work. Furthermore, the semi-classical
nature of the MD simulations is not able to properly describe a few important phe-
nomena, such as nuclear tunneling, which would circumvent librational motion. The
resulting motion is likely a combination of libration and rotation, and requires a purely
quantum-mechanical treatment to be properly described.

14.3. Rovibrational Spectrum of Lithium Hydride

14.3.1. Infrared Spectroscopy in Strong Magnetic Fields

While hydrogen is an abundant material in the vicinity of magnetic white dwarfs, other
light elements such as helium and several second-row elements have been observed in
their atmospheres.[396, 397] Could rovibrational spectroscopy be used in order verify
the existence of small molecules in the vicinity of magnetic white dwarfs? Molecules
without a permanent dipole moment only possess a Raman active stretching vibration,
the excitation of which requires the use of a monochromatic light source. As such an
experiment is currently not feasible, molecular hydrogen will not be detected through
rovibrational spectroscopy in the near future.
Linear molecules with a permanent dipole moment, however, possess an infrared active
stretching vibration. In principle, such molecules could be detected using infrared
spectroscopy. In order to evaluate these results, highly accurate quantum-chemical
methods are required.[14] For a qualitative description of the expected effects of strong
magnetic fields on molecules with a permanent dipole moment, the methods presented
in this work are sufficient. As an exemplary case, the lithium hydride molecule shall
be investigated in this section.
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14.3.2. Potential Energy Surface

First, the potential energy surface of LiH should be investigated. In the absence of
a magnetic field, the molecular point group of LiH is C∞v. The electronic ground
state has 1Σ+ symmetry and there exist several excited states, one of which has the
character 3Π.[398] In the presence of a weak external magnetic field, the molecule has
C∞ symmetry in a parallel orientation, with the corresponding electronic ground
state becoming 1Σ, and with the excited state 3Π retaining its character. For a
perpendicular orientation, the molecular symmetry is Cs, the electronic ground state
has 1A′ character, and the excited state is 3A′. In all other cases, the system has C1

symmetry and the two states become 1A and 3A, respectively.
In weak fields, the singlet state (S0) is the electronic ground state, while beyond a
magnetic field of about 0.1B0, the triplet state (T1) becomes the ground state of the
system.[35] Two exemplary potential energy surfaces are presented in fig. 14.3.1, one
for a field strength of |B| = 0.02B0 and one for |B| = 0.2B0. The region, in which the
MD simulation takes place, is indicated. Since T1 is non-binding, all MD simulations
are carried out for S0.

MD simulation

Σ

Π

MD simulation

|B| = 0.2 B0|B| = 0.02 B0

Figure 14.3.1.: Potential energy surface of LiH in two magnetic fields, |B| = 0.02B0

(left) and |B| = 0.2B0 (right), calculated on the GMP2/def2-TZVP
level. The parallel (black, blue) and perpendicular (purple, red) orien-
tations of the external field with respect to the bond are considered.
The relevant regions for the MD simulations are indicated. Adapted
with permission from Ref. [57].

As illustrated in fig. 14.3.1, the perpendicular orientation is energetically more stable
than the parallel orientation, at least in the relevant region for the MD simulation.
As such, the LiH should be expected to behave somewhat differently than H2 for
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molecular rotations. For the equilibrium distance in the perpendicular orientation, the
rotation barrier is depicted in fig. 14.3.2.

Figure 14.3.2.: Potential energy barrier for the rotation of LiH relative to the 0◦

(parallel) orientation. Calculated on the GHF/def2-TZVP (dashed line)
and GMP2/def2-TZVP (solid line) levels of theory, respectively. All
calculations are carried out for the equilibrium bond length in the
perpendicular orientation, assuming a rigid rotator. Reprinted with
permission from Ref. [57].

While the parallel orientation of the molecule with respect to the external field is
somewhat unique, there exist infinitely many degenerate perpendicular orientations.
As a consequence, there is no necessity for LiH to cross the potential energy maximum
during any form of motion. This is in clear contrast to molecular hydrogen, which had
to cross one of the infinitely many points corresponding to the maximum potential
energy for a rotational movement.

14.3.3. Molecular Rotations and Vibrations

Having examined the potential energy surface of LiH and particularly the rotational
barrier, the impact of an external magnetic field on molecular rotations and vibrations
may now be assessed. First, rotational motion is examined. Since the molecule does
not have to cross the potential energy barrier, the clear distinction between rotations
and librations is eliminated. Instead, motion should be expected to behave more like
a precession. In weak fields, this precession is more rotation-like and in stronger fields
it becomes more libration-like. However, this change is continuous, even disregarding
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quantum effects such as tunneling of the nuclei. Two exemplary trajectories for a more
rotation-like and more libration-like motion are depicted in fig. 14.3.3.

Rotation Libration

Figure 14.3.3.: Trajectories as calculated for a more rotation-like (left) and more
libration-like motion of LiH in an external magnetic field of |B| = 0.2B0.
Darker colors indicate slower motion and brighter colors indicate faster
motion. Intramolecular cyclotron rotations are visible for both cases.
The center-of-mass motion in the xy-plane is highlighted below, while
it was decoupled for the depicted trajectories. Adapted with permission
from Ref. [57].

Both cases were initiated with the molecule aligned with the Cartesian x-axis. The
initial velocities only had components for the rotation about the y-axis and the
stretching vibration. In both cases, a center-of-mass motion can be seen, resembling
an oscillating motion within the xy-plane. Due to net neutrality of LiH, no cyclotron
rotation of the center-of-mass motion is observed. Overall, the oscillating propagation
moves forward in the y-component. If the screening of the Lorentz forces are not taken
into account through either the Berry curvature tensor or the Mulliken charge distri-
bution, an unphysical center-of-charge cyclotron rotation is induced. This highlights
the importance of including these screening terms in the simulations. Intramolecular
cyclotron rotations on the other hand, are observed similarly to H2.
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14.3.4. Rotational-Vibrational Spectra in Strong Magnetic Fields

Finally, the rovibrational spectrum of LiH in strong external magnetic fields may
be examined. For the initial conditions used for the trajectories in fig. 14.3.3, two
rovibrational spectra may be computed through a Fourier transformation of the
velocity (power spectrum) or dipole moments (infrared spectrum). The corresponding
spectra are presented in fig. 14.3.4.
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Figure 14.3.4.: Rovibrational spectrum of LiH simulated from identical initial condi-
tions used for the trajectories depicted in fig. 14.3.3. Power spectrum
(top) and IR spectrum (bottom) are obtained through a Fourier trans-
formation of the corresponding MD simulations. Depicted here are
the spectra for initial conditions leading to more libration-like (red)
and more rotation-like (green) motion on the MP2/def2-TZVP level
of theory. Reprinted with permission from Ref. [57].

For a more rotation-like motion, the rotational spectrum looks similar to H2, with
the fundamental frequency coupling to intramolecular cyclotron rotation and being
split into a multiplet. For a more libration-like motion, a different pattern is found.
LiH molecule is not inhibited in the motion of its (z)-component, which appears at
the fundamental frequency of about 250 cm−1. Overtones of this peak can be found
at every odd multiple of the fundamental frequency due to symmetry reasons. The
multiplet corresponding to the (x,y)-component appears at every even multiple due
to similar reasons discussed for the (z)-component of H2. In the infrared spectrum of
LiH, the intramolecular cyclotron rotation appears for libration-like motion.
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Molecular vibrations behave very similarly to H2, with P - and R-branches being
present for a coupling to a more rotation-like motion and an additional Q-branch
appearing for a coupling to more libration-like motion. A hyperfine structure corre-
sponding to the additional coupling of rotations and librations to an intramolecular
cyclotron rotation can likewise be observed. A canonical ensemble of spectra may be
obtained similarly to H2, with Boltzmann-distributed initial conditions and a target
temperature of 1500 K. 2000 individual spectra were calculated for each canonical
ensemble, with a simulation time of 1 ps per spectrum. The final result was averaged
over an interval of ω = ±20 cm−1. It is depicted in fig. 14.3.5.

Figure 14.3.5.: Canonical ensemble of infrared spectra for LiH in strong magnetic
fields. Initial conditions were obtained from a Boltzmann-distributed
set of velocities. The simulation time for each spectrum is 1 ps, and
the averaged spectrum is obtained by smoothing over an interval of
ω = ±20 cm−1. Reprinted with permission from Ref. [57].

Again, the appearance of the Q-branch in increasing external magnetic fields can
clearly be observed. Furthermore, libration- and rotation-like motion happen simul-
taneously in stronger magnetic fields. This leads to a broad band corresponding to
the (x,y,z)-components of rotation-like motion and the (z)-component of libration-like
motion as well as a relatively sharp ‘overtone’ corresponding to the (x,y)-components
of libration-like motion.
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The investigation of such spectra using more high-level methods such as full configura-
tion interaction remains the subject of future work. While the signals may be shifted,
a qualitative agreement between the resulting spectra and the ones generated here
using an MP2 reference can be expected. The missing description of quantum effects
such as tunneling is likely less important for LiH for the aforementioned reasons, but
in general, a smoother transition between more rotation-like and more libration-like
motion should be expected.

14.3.5. Mulliken Charge Approximation

The main purpose of the Berry curvature tensor is screening the Lorentz force acting on
nuclear charges. If not properly screened, unphysical behaviour such as center-of-mass
cyclotron rotations may be the result. The Mulliken charge distribution may be used
to approximate the Berry curvature tensor, resulting in very similar rovibrational
spectra. Both approaches are compared in fig. 14.3.6 for the rovibrational spectrum of
LiH in an external magnetic field of 0.2B0. The presented spectra differ mainly in the
higher multiplet visible for rotation-like motion if the Berry curvature tensor is used.
The further investigation of these differences is the subject of future work.

Berry 

Mulliken 

Figure 14.3.6.: Comparison between rovibrational spectrum of LiH, calculated using
the Berry curvature tensor (top) and Mulliken charge distribution
(bottom). The spectrum was computed using identical conditions to
those discussed for fig. 14.3.4. Kindly provided by Monzel.
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Clusters in Strong Magnetic Fields

The effects of a strong magnetic field on the Born-Oppenheimer equilibrium geometry
of a molecule can be substantial. While this can be mostly neglected for molecules
with singlet electronic ground states in weak to moderately strong magnetic fields, it
may become pivotal for the accurate description of molecular spectroscopy in stronger
fields. Generally, investigations on the geometry of molecules require the evaluation of
the molecular gradient as described in sec. 8.3, including an approach to optimize the
additional degrees of freedom for internal coordinates discussed therein. In passing,
it should be noted that this step was avoided for the computation of rovibrational
spectra in chapter 14, as the relevant part of the BO PES was approximated through
splines, and the gradient was calculated as an analytical derivative thereof.
In this chapter, the effects of a strong, external magnetic field on the equilibrium
geometry of helium clusters is assessed. This serves the purpose to showcase that
geometry optimizations can routinely be performed using the methods implemented
in the context of this thesis. Helium clusters provide an interesting test case for these
geometry optimizations. They are among the only systems, for which reference data
exists in the literature.[34, 399] They are particularly appealing for such an application,
as they are bound through a type of chemical bond which does not exist in the absence
of magnetic fields. This ‘perpendicular paramagnetic bond’ was first described in
Ref. [19], where the helium dimer in its singlet state was used as an example.
Very recently, geometry optimizations in finite magnetic fields on the CDFT level
were published in Ref. [38]. Therefore, this chapter is particularly concerned with the
assessment of both GHF and spin-noncollinear CDFT for the geometry optimization
of helium clusters. First, the potential energy surface of the helium dimer is discussed,
comparing the results obtained from GHF and different (C)DFT functionals to the
full configuration interaction (FCI) results presented in the literature.[19] Finally, the
geometries of helium clusters of up to 19 atoms are optimized, both in their electronic
ground states and the excited singlet state.
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15.1. Helium Dimer and Perpendicular Paramagnetic Bonding

15.1.1. Computational Details

In this section, the potential energy surfaces of the helium dimer are examined. Only
the perpendicular orientation of the molecular bond with respect to an external
magnetic field is considered. All calculations are carried out using an uncontracted
version of the aug-cc-pVTZ basis set,[374–376] here denoted un-aug-cc-pVTZ, similar to
the investigations in Ref. [19]. To assess how well different quantum-chemical methods
perform, calculations were performed using GHF, GMP2 and spin-noncollinear versions
of the following functionals: PBE,[384] B3LYP,[212, 378, 379] TPSS,[385] and TPSSh.[385]

For all DFT calculations, a large gridsize (grid 5)[320] was employed. Tight convergence
criteria were used, with 10−12Eh for the electronic energy and 10−12 for the norm
of the density matrix (denconv 12). For GMP2, the RI-C approximation was used
in combination with an auxiliary aug-cc-pVTZ basis.[161] This auxiliary basis is not
contracted in its standard form.[400] Calculations in sec. 15.1.2 are performed in a
magnetic field of |B| = 2.5B0, in accordance with Ref. [19], while calculations in
sec. 15.1.3 use a magnetic field of |B| = 2.0B0, similarly to Ref. [34]. Geometry
optimizations were carried out using the method described in sec. 8.3 of this work,
using analytical gradients for every method except for GMP2, for which numerical
gradients were used.

15.1.2. Perpendicular Paramagnetic Bonding

In the presence of strong magnetic fields, a new type of chemical bond can be
induced.[19] This perpendicular paramagnetic bond has a variety of unique features,
including its capability to create strongly bound molecules with a bond order of
zero. This was investigated in Ref. [19] for the Helium dimer in a magnetic field
of |B| = 2.5B0 using the HF and FCI methods. HF yields a qualitatively correct
description, but correlation effects need to be taken into account for quantitative
results. FCI represents the exact solution to the electronic Schrödinger equation within
the limits of the chosen basis, and may therefore be used as a benchmark for quantum
chemical methods.
The singlet ground state of He2 (1Σ+

g ) is only weakly bound in the absence of magnetic
fields. A chemical bond does exist due to dispersion effects, with an equilibrium bond
length of 297 pm and an associated dissociation energy of 0.092 kJ/mol.[19, 401] In a
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perpendicular magnetic field, the singlet ground state has 1Ag character. Due to the
presence of the spin Zeeman term in the electronic Hamiltonian, it eventually becomes
an excited state in larger fields. The potential energy surface in a field of |B| = 2.5B0

is presented in fig. 15.1.1 for the lowest singlet state.

Figure 15.1.1.: Potential energy surface for the lowest 1Ag state of He2 in an external
magnetic field of |B| = 2.5B0, applied in perpendicular orientation to
the bond axis. All calculations use the un-aug-cc-pVTZ basis and the
indicated method: GHF (black), GMP2 (red), spin-noncollinear DFT
with PBE (blue), B3LYP (green), TPSS (purple) and TPSSh (yellow).
TPSS and TPSSh yield almost identical results.

All methods yield qualitatively similar results, predicting a bond with a corresponding
equilibrium bond length of below 100 pm. Geometry optimizations were carried out on
all levels of theory indicated in fig. 15.1.1. The resulting bond lengths and dissociation
energies are shown in table 15.1.1. Dissociation energies were calculated in comparison
to the results of a calculation with a bond length of 4.9 a0 ≈ 259 pm. The basis set
superposition error (BSSE) was not taken into account, but was shown to be very
small in Ref. [19], with a counterpoise correction of 2 kJ/mol.
The values obtained for the equilibrium bond length obtained from the geometry
optimizations are in perfect agreement with those generated using the PES. For GHF,
the bond length (97.9 pm) and dissociation energy (17.8 kJ/mol) are in accordance
with those generated using RHF in Ref. [19]. GMP2 yields practically identical
results to FCI, apparently capturing most correlation effects for this system. All DFT
methods overestimate the strength of this bond, with PBE and B3LYP in particular
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yielding dissociation energies which are approximately 50% too large. The two CDFT
functionals TPSS and TPSSh yield almost identical results, both much closer to the
FCI dissociation energy and bond length than PBE and B3LYP. Whether this is an
effect of MGGA functionals in general, or their dependence on the current density in
particular is impossible to say, as those effects cannot be separated from one another.
However, investigations carried out on the He2 molecule within a magnetic field of
|B| = 1B0 in Ref. [193] reveal similar trends, with GGA functionals overbinding
the system and MGGA functionals yielding good agreement with benchmark values
generated on the FCI level.

Table 15.1.1.: Bond length and dissociation energy of the lowest singlet state of He2

in a perpendicular magnetic field of |B| = 2.5B0. The un-aug-cc-pVTZ
basis was used for all calculations. BSSE was not taken into account.

Bond length Dissociation energy
Method in [pm] in [kJ/mol]

GHF 97.9 17.8

GMP2 94.3 31.3

PBE 90.6 47.1

B3LYP 91.7 46.7

TPSS 92.4 38.4

TPSSh 90.9 37.7

FCI[19] 94 31

15.1.3. Geometry Optimization of Different Electronic States

In the previous section, only the lowest singlet electronic state (1Ag) of He2 was
considered. In strong magnetic fields, this is not the ground state of the system due to
the presence of the spin Zeeman term. The triplet state 3Au was examined in Ref. [19],
itself also not the ground state in strong fields. In this section, the lowest quintet state
(5Ag) is considered and compared to the singlet state in a magnetic field of |B| = 2B0.
Subsequent investigations on helium clusters in sec. 15.2 will also be carried out using
this field strength. It was chosen for comparison with the study presented in Ref. [34],
which was done using identical conditions. The potential energy surfaces for the lowest
1Ag and 5Ag states are depicted in fig. 15.1.2.
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Figure 15.1.2.: Potential energy surface for the lowest 1Ag (left) and 5Ag (right) states
of He2 in an external magnetic field of |B| = 2B0, applied in per-
pendicular orientation to the bond axis. All calculations use the un-
aug-cc-pVTZ basis and the indicated method: GHF (black), GMP2
(red), spin-noncollinear DFT with PBE (blue), B3LYP (green), TPSS
(purple) and TPSSh (yellow). TPSS and TPSSh yield similar results.

For the singlet state, results are qualitatively similar to those obtained in a field
of |B| = 2.5B0, with slightly larger bond lengths and smaller dissociation energies.
The quintet state shows an even stronger bond with dissociation energies between
85 (GHF) and 123 kJ/mol (PBE). Bond lengths are generally longer than for the
singlet state, with predicted values between 120 pm (TPSSh) and 126 pm (GHF).
The results are listed in table 15.1.2.

Table 15.1.2.: Bond length and dissociation energy of the lowest singlet and quintet
states for He2 in a perpendicular magnetic field of |B| = 2B0. The
un-aug-cc-pVTZ basis was used for all calculations.

Bond length in [pm] Dissociation energy in [kJ/mol]

Method Singlet Quintet Singlet Quintet

GHF 112.4 125.9 7.3 84.8

GMP2 105.7 125.1 16.6 94.0

PBE 102.0 123.0 28.3 123.0

B3LYP 103.3 123.7 28.8 104.1

TPSS 103.5 123.3 22.3 113.6

TPSSh 101.4 119.9 21.5 110.1
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15.2. Helium Clusters: Structure and Symmetry

15.2.1. Computational Details

Geometry optimizations for Helium clusters were presented in Ref. [34], where a
magnetic field of |B| = 2B0 was applied perpendicular to the plane in which all
atoms are located. Very recently, additional investigations on the structure of helium
clusters were presented in Ref. [399]. In this section, helium clusters are examined
in identical conditions to Ref. [34], for comparison with the results obtained for the
lowest singlet state on the RHF/un-aug-cc-pVTZ level. Furthermore, calculations are
performed on the electronic ground state in these conditions, which is the state with
highest possible spin multiplicity (S = 2Nnuc). All calculations are performed using
the un-aug-cc-pVTZ basis set in combination with GHF, as well as spin-noncollinear
DFT with the two functionals PBE and TPSS. Spin Zeeman scaling was used to
obtain the molecules in singlet states. Electronic energies are converged up to at least
10−8Eh, norm of density matrices up to 10−6. For calculations on He19, DIIS was used.

15.2.2. Geometry Optimization of Helium Clusters

The equilibrium geometries for small helium clusters were examined on the RHF/un-
aug-cc-pVTZ level in Ref. [34]. Therein, a magnetic field of |B| = 2B0 was applied
perpendicular to the molecular plane. Using GHF/un-aug-cc-pVTZ with a spin Zeeman
scaling of z = 0, the singlet state was obtained for all structures. Four helium clusters
were examined, He3, He4, He7, and He19. The resulting structures are presented in
fig. 15.2.1. As previously observed in Ref. [34], helium atoms in strong magnetic fields
are prone to cluster in equilateral triangular shape. The He3 cluster has C3h symmetry,
He4 forms a rhombus with C2h symmetry, and both the He7 and He19 clusters form
hexagonal shapes with C6h symmetry.
For the electronic ground states of these clusters, which contains only unpaired
electrons, similar structures are formed. They generally exhibit bond lengths which are
about 30 pm longer than for the clusters formed for the singlet state. For calculations
on the TPSS/un-aug-cc-pVTZ level, the resulting bond lengths are shown in fig. 15.2.1
for both the electronic ground state and lowest singlet state. In table 15.2.1, the
bond lengths are additionally given for GHF and PBE. Particularly for He19, the
reduced symmetry due to the presence of the magnetic field (D6h → C6h) can clearly
be observed.
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104.9 pm 133.2 pm

S = 0 S = 6
103.7 pm 131.6 pm

S = 0 S = 8

108.5 pm 154.7 pm

104.4 pm 139.1 pm

S = 0 S = 14 102.4 pm 141.2 pm

S = 0 S = 28

102.9 pm 139.1 pm
103.4 pm 136.6 pm
104.3 pm 144.1 pm

Figure 15.2.1.: Equilibrium geometries of helium clusters with up to 19 atoms in a
magnetic field of |B| = 2B0, applied perpendicular to the plane in
which all atoms are located. All calculations were carried out on the
TPSS/un-aug-cc-pVTZ level of theory. Bond lengths are given for the
lowest singlet state (S = 0) and the ground state (S = 2Nnuc).

The geometries obtained for the electronic ground state from PBE and TPSS are
extremely similar. This is not an error, and was carefully confirmed to be true for He3,
He7, and He19, but could not be further investigated in the frame of this work.

Table 15.2.1.: Bond lengths for equilibrium geometries of helium clusters in a perpen-
dicular magnetic field of |B| = 2B0. All bond lengths are given in [pm].
The calculations were carried out using the un-aug-cc-pVTZ basis and
the indicated methods. Indicated bond colors reference fig. 15.2.1.

Electronic ground state Lowest singlet state
Cluster Indicated bond GHF PBE TPSS GHF PBE TPSS

He3 black 132.5 133.2 133.2 110.5 103.8 104.9

He4
black 131.0 131.5 131.6 109.2 102.4 103.7
red 157.0 155.4 154.7 110.4 108.5 108.5

He7 black 138.9 139.1 139.1 107.4 103.5 104.4

He19

black 141.0 141.2 141.2 103.4 101.8 102.4
purple 138.8 139.1 139.1 105.0 102.0 102.9
yellow 136.1 136.6 136.6 105.2 102.2 103.4
green 144.6 144.1 144.1 106.6 103.9 104.3
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16. Conclusion and Outlook

The aim of this thesis was the development and application of efficient computational
methods for molecular spectroscopy in finite magnetic fields. This required three
separate steps:

1. The derivation of theoretical methods for the description of molecular properties
in finite magnetic fields.

2. The efficient and parallel implementation of these methods.

3. The application to different types of molecular spectroscopy in magnetic fields.

Regarding the first of the three steps, chapters 2–7 introduced the theoretical descrip-
tion required for the calculation of molecular spectroscopy in finite magnetic fields.
The relevant theoretical background of classical electromagnetism was discussed in
chapter 2. In particular, the gauge origin problem was introduced – as well as the
principle of minimal coupling, which can be used to derive a gauge origin invariant
formalism for the motion of charged particles in external magnetic fields. Moving
on, the quantum mechanical framework for this work was introduced in chapter 3.
In particular, the Born–Oppenheimer approximation was used to separate electronic
and nuclear motion within a molecule, and both resulting equations of motion were
discussed. In chapter 4, the construction and symmetry of the electronic wave func-
tion were presented. In particular, the use of London atomic orbitals (LAOs) was
introduced, which are needed for a gauge origin invariant formalism. Further, the
spatial symmetry of the wave function was examined, yielding an easily accessible
scheme for the identification of the molecular point group in a magnetic field.
Chapters 5 and 6 introduced quantum chemical methods for electronic ground states
and excitations in finite magnetic fields. In particular, approximate coupled cluster
theory (CC2), current density functional theory (CDFT), and GW in combination
with the Bethe–Salpeter equation (BSE) were adapted for the use in finite magnetic
fields for this thesis. Finally, chapter 7 presented a review of a recently introduced
approach for the semi-numerical solution to the Schrödinger equation for nuclear
motion. The Berry curvature tensor was established as a fundamental quantity for
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such a description. In summation, these chapters introduced the theoretical framework
required for the calculation of spectroscopic properties in finite magnetic fields.
Having established the theoretical background, an implementation of these methods
was carried out and assessed in chapters 8–11. A convenient choice for such an imple-
mentation was the Turbomole program suite, in which all of the aforementioned
quantum chemical methods had already been implemented in the absence of magnetic
fields. In chapter 8, the general structure of the implementation into Turbomole

was presented. The most important change for finite field calculations was the use of
LAOs in all integral evaluation steps. Therefore, chapter 9 introduced the efficient
evaluation of integrals over LAOs and the implementation of related algorithms.
In chapter 10, the accuracy and efficiency of the implementations carried out in this
work was assessed. A particular focus was the implementation of the resolution of the
identity (RI) approximation. This method has long been established for calculations in
the absence of fields and is known to substantially improve the efficiency of quantum
chemical calculations with only very limited loss of accuracy. Here, it could be shown
that RI performs even more favorably for finite field calculations. As such, it enables
the calculation of spectroscopic properties for sizeable molecules.
Finally, chapter 11 concluded the presentation of implementations carried out in this
work, focusing on the Berry curvature tensor. A numerical scheme for the quantum
chemical calculation of this property was introduced. Partial charges derived from
the Berry curvature tensor were assessed, even in the limit of a vanishing magnetic
field. These ‘Berry charges’ were compared to Mulliken charges, emphasizing their
consistent behaviour with respect to the choice of basis.
With the theoretical framework derived and an efficient implementation at hand, sev-
eral applications were examined in chapters 12–15. The first application was magnetic
circular dichroism (MCD) spectroscopy in weak magnetic fields like those typically
used for such experiments. Results obtained using time-dependent density functional
theory (TD-DFT) were compared to perturbative approaches found in the literature,
yielding identical results. Furthermore, MCD spectra were computed using TD-DFT
in the finite field approach for an organometallic compound, a zinc tetraazaporphyrin
with two fused naphthalene units. The results were compared to experimental data,
showing excellent agreement between theory and experiment.
Having confirmed that the finite field approach implemented in this work yields correct
results for earth-like conditions, the next step was its application to ‘moderately strong’
magnetic fields of up to 10,000T in chapter 13. The influence on electronic excitations
was investigated for a set of 36 small to medium-sized molecules. Some more general
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trends could be extracted, showing in particular that aromatic π → π∗ excitations
are strongly affected by perpendicularly applied magnetic fields. Using the GW /BSE
method, the effects of increasingly strong magnetic fields on the tetracene molecule
were examined. By calculating the absorption spectrum in the ultraviolet and visible
(UV/Vis) region of the electromagnetic spectrum, the color change expected for this
molecule could be determined.
For strong magnetic fields, the calculation of rotational-vibrational spectra of two
diatomic molecules, H2 and LiH was presented in chapter 14. The effects induced by
such strong magnetic fields were discussed, including the complex coupling patterns
obtained under such extreme conditions. Responsible for the complexity of the result-
ing spectra is, among other things, an intramolecular cyclotron rotation. Moreover,
rotational barriers induced by the magnetic field lead to librational motion, which
may be used as an indicator for the presence of a magnetic field in infrared spectra
obtained from magnetic white dwarfs. The final application, presented in chapter 15,
was concerned with the geometry optimization of helium clusters of up to 19 atoms.
As shown in this section, strong magnetic fields may have a large impact on the
molecular structure of compounds, which should not be neglected for applications in
molecular spectroscopy.
To summarize the results of this thesis, established quantum chemical methods were
adapted for the use in finite magnetic fields. They were efficiently implemented into
quantum chemical software. Applications for molecular spectroscopy were presented
for a variety of magnetic field strengths, from earth-like conditions to those with
astrochemical relevancy.
There exist a number of possibilities for the next steps of the research presented in this
thesis. First, its use for molecular spectroscopy and magnetic properties in earth-like
conditions could be further explored. The option to calculate numerical derivatives
with respect to the external magnetic fields opens up an entire new realm of possi-
bilities, giving immediate access to a number of properties such as magnetizabilities
which are otherwise complicated to obtain. The use of ‘Berry charges’ was briefly
explored in this work, and could turn out to be a real alternative if one is interested
in partial charges for some application. Furthermore, it could be investigated, whether
the Berry curvature tensor might be used to derive a new form of population analysis.
For astrochemical applications, the methods presented in this work could be further
developed and might be used to detect small molecules in the vicinity of magnetic
white dwarfs. In particular, infrared and MCD spectroscopy could be used for such
investigations.
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Lastly, the incorporation of relativistic effects seems to be a natural continuation
for this work. The two-component framework used throughout this thesis can be
straightforwardly adapted to include relativistic effects, for instance through the
use of the exact two-component theory in combination with the magnetic balance
condition. Such an implementation would make the calculation of heavy elements in
finite magnetic fields possible. In particular, the investigation of non-linear effects
induced by magnetic fields on spin orbit coupling could be revealed, a phenomenon
which is likely observable even in earth-like conditions.
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A. Appendix

A.1. Abbreviations and Acronyms

A.1.1. Abbreviations in Mathematics

FWHM: Full Width at Half Maximum
lhs: left hand side
rhs: right hand side
SD: Standard Deviation

A.1.2. Abbreviations in Chemistry

EPR: Electron Pair Resonance
MCD: Magnetic Circular Dichroism
NMR: Nuclear Magnetic Resonance
pBQ: p-benzoquinone
TCpBQ: Tetrachloro-p-benzoquinone
UV/Vis: Ultraviolet and Visible

A.1.3. Abbreviations in Quantum Chemistry

BFGS: Broyden–Fletcher–Goldfarb–Shanno
BO: Born–Oppenheimer
BSSE: Basis Set Superposition Error
CC2: Approximate Coupled Cluster singles and doubles
CD: Contour-Deformation
CT: Charge-Transfer
DBOC: Diagonal Born–Oppenheimer Correction
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DIIS: Direct Inversion of the Iterative Subspace
EOM: Equation Of Motion
HRR: Horizontal Recurrence Relation
LRT: Linear Response Theory
OS: Obara–Saika
PES: Potential Energy Surface
RI: Resolution of the Identity
RI-C : Resolution of the Identity for Correlated methods
RI-J : Resolution of the Identity for the Coulomb part
RI-K : Resolution of the Identity for the exchange part
SCF: Self-Consistent Field
SOS: Sum-over-states
TD: Time-Dependent
VRR: Vertical Recurrence Relation
xc: Exchange-correlation

A.1.4. Orbital-Related Acronyms

AO: Atomic Orbital
GIAO: Gauge-Including Atomic Orbital
GTO: Gaussian-Type Orbital
HOMO: Highest Occupied Molecular Orbital
LAO: London Atomic Orbital
LCAO: Linear Combination of Atomic Orbitals
LUMO: Lowest Unoccupied Molecular Orbital
MO: Molecular Orbital

A.1.5. Quantum Chemical Methods

AC: Analytical Continuation
BSE: Bethe–Salpeter Equation
cBSE: Correlation-kernel augmented Bethe–Salpeter Equation
CDFT: Current Density Functional Theory
DFT: Density Functional Theory
dRPA: Direct Random Phase Approximation

198



A.1. Abbreviations and Acronyms

evGW : Eigenvalue-only self-consistent GW
FCI: Full Configuration Interaction
GGA: Generalized Gradient Approximation
GHF: Generalized Hartree–Fock
GMPn : Generalized Møller–Plesset perturbation theory up to n-th order
HDFT: Hybrid Density Functional Theory
HF: Hartree–Fock
KS: Kohn–Sham
MGGA: Meta-Generalized Gradient Approximation
MPn : Møller–Plesset perturbation theory up to n-th order
RHF: Restricted Hartree–Fock
RKS: Restricted Kohn–Sham
RPA: Random Phase Approximation
RSH: Range-Separated Hybrid
UHF: Unrestricted Hartree–Fock
UKS: Unrestricted Kohn–Sham

A.1.6. Abbreviations for Basis Sets

def2: Karlsruhe basis set
SVP: Split Valence Polarization
TZVP: Triple-Zeta Valence Polarization
TZVPP: Triple-Zeta Valence with two sets of polarization functions
QZVP: Quadruple-Zeta Valence Polarization
QZVPP: Quadruple-Zeta Valence with two sets of polarization functions
cc-pVDZ: Correlation-consistent polarized Valence Double-Zeta
cc-pVTZ: Correlation-consistent polarized Valence Triple-Zeta
aug-cc-pVDZ: Augmented correlation-consistent polarized Valence Double-Zeta
aug-cc-pVTZ: Augmented correlation-consistent polarized Valence Triple-Zeta
un: Uncontracted
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