
1

Reconstruction of governing equation for nonlinear
dynamical systems based on Universal Differential
Equation
José G. Cóndor López1,3,*, Michael Leupolz1,2, Sven Herold3

1MercedesBenz Group AG; michael.leupolz@mercedesbenz.com
2Karlsruhe Institute of Technology, Institute of Vehicle System Technology
3Fraunhofer Institute for Structural Durability and System Reliability LBF; sven.herold@lbf.fraunhofer.de
*Correspondence: jose_gabriel.condor_lopez@mercedesbenz.com

Abstract: In the sense of blackbox approaches, datadriven models can be used for the mathematical
description of complex dependencies of (multi)physical processes. A specific or prior physical know
ledge inside the model is not required and is compensated by costintensive data amounts. Due to the
restrictive accessibility of data in some engineering fields, blackbox models are limited regarding their
applicability. The incorporation of physical knowledge into Machine Learning methods counteracts data
limitations and leads to data efficient modelling approaches. The Universal Differential Equation (UDE)
approach seeks for data reduction by combining physical based models and Machine Learning. This
enables semiautomated and in some special cases fullyautomated modelling. The resulting models
and their evaluation are valuable for gaining knowledge during development, production and operating
phase. In this paper, UDE is applied to reconstruct the governing equation of a nonlinear dynamical sys
tem represented by a forced duffing oscillator and compared with blackbox approaches afterwards. In
contrast to the approximation of the entire governing equation by an Universal Approximator, UDE aims
to approximate only unknown terms inside the differential equation using Universal Approxiamtors such
as Neural Networks. Based on sparse regression methods these unknown terms are reconstructable
in a targeted manner. The methodology is applied and validated on a nonlinear dynamical system con
sidering robustness and sensitivity aspects against uncertaintyprone training data (e.g. measurement
data) and different datadriven modelling approaches are compared regarding their forecast capabilities.
Afterwards, potentials for further fields of application in automotive development are shown.

Keywords: Scientific Machine Learning, Universal Differential Equation, forecasting, equation recon
struction, nonlinear dynamics, sparse regression

1 Introduction

In many science and engineering applications numerical simulations of physical based models descri
bed by ordinary or partial differential equation are powerful tools regarding design space exploration and
prediction capability of dynamical system behaviour. Investigation such as sensitivity analysis, identify
ing optimal model parameters or predictions beyond existing measurement data are enabled by these
kind of physical models [1]. However, in some engineering fields like automotive or aerospace sector
the computation of these models is characterized by complex and resource intensive numerical simula
tions [2, 3]. Due to the rapidly increasing interest on Machine Learning (ML) in the last years and their
impressive results in application fields where large amount of data are collected [3], different ML based
models are applied to approximate the system behaviour in a time consuming manner. Whereas in [4]
Neural Networks (NN) are used to predict noise transfer functions depending on excitation and geome
try parameters, Gaussian Process Regression is proposed to approximate vehicle crash finiteelement
simulations [2]. The presented metamodel in [5] is applied to learn the dependency between geometrical
kinematics manipulation of a chassis component and their resulting characteristic frequency response
function. Such a metamodel is able to identify optimal geometry configurations regarding the transfer
behaviour. These datadriven models represent blackbox models due to their ability of mapping inputs
directly to outputs without any scientific knowledge inside the model. Furthermore, they are trained on a
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set of numerical simulation results. In some applications these amount of data is not accessible or little to
no data exist due to expensive experiments [1, 6]. Therefore, new approaches are needed to overcome
these data limitations. By integrating ML approaches into physical based models the field of Scientific
Machine Learning (SciML) aims for data amount reduction as well as acceleration during training and pre
diction which shows potential in different engineering applications [1, 3, 6]. Whereas in [7] ML concepts
are combined with scientific structures resulting in a new kind of NNs known as Neural Ordinary Differen
tial Equations (NODE) which represents an initial value problem, the proposed PhysicsInformed Neural
Network (PINN) in [8] incorporates prior physical knowledge in the form of partial differential equation
into the loss function. The presented approach Universal Differential Equation (UDE) in [6] combines
ML techniques selectively inside the prior known physical based model to consider and approximate
unknown physical dependencies of the model. By means of sparse regression, these approximated un
known terms are reconstructable afterwards. This pointwise identification requires less state information
in comparison to the presented Sparse Identification of Nonlinear Dynamics (SINDy) approach by [9]
which generates proper results recovering ordinary differential equations (ODE) in [10, 11, 12].

This work aims to compare different datadriven modelling approaches in time domain regarding different
depth of physical knowledge incorporation and their forecasting capabilities based on a nonlinear dyna
mical system. Afterwards, the potential of UDE regarding reconstruction of unknown terms is discussed.

2 Datadriven modelling approaches

In the following, we introduce different datadriven modelling approaches with the ability to model dy
namical system behaviour in time domain and to forecast time series. The approaches differ regarding
their depth of incorporating physical knowledge inside the model and cover fields of classical ML and
SciML. The presented approaches are trained using the Python package PyTorch and the Julia package
DiffEqFlux.

2.1 Nonlinear Autoregressive Neural Network

The main idea of the Nonlinear Autoregressive (NAR) is based on the extension of the linear autore
gressive model proposed by [13]. Instead of using linear combinations the NAR approach integrates
a nonlinear estimation function to approximate the time series by a previous sequence of time series
elements 𝑘 which is also known as time window [14]. Due to the capabilities of NN to approximate any
function with a desired accuracy stated by the Universal Approximator (UA) theorem in [15], we introduce
a NAR model with NN as nonlinear estimation function 𝑓NN described by

x (𝑡) = 𝑓NN൫x𝑡−1,x𝑡−2, … , x𝑡−𝑘 ,p൯. (1)

Here, x(𝑡) ∈ ℝ𝑠×1 represents the 𝑠 states of the system at time 𝑡 and p represents the weights and biases
of the NN which is a feedforward net with 𝑠 × 𝑘 inputs and 𝑠 outputs.

2.2 Long ShortTerm Memory

Long ShortTerm Memory (LSTM) is a special form of recurrent NNs, explicitly designed to predict time
series with large time lag. To make this possible a socalled memory cell is embedded in the NN. The
memory cell consists of a selfrecurrent connection (SRC) and two gates known as input and output
gates, positioned before and after the SRC. Those gates decide which data to store in the memory cell
and whether to apply the included information on the next input data of the NN. As gates, sigmoid neural
net layers are used. This form of LSTM was first introduced in. [16]
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Over the years many variants of LSTMs were developed. An overview of different variations can be found
in [17]. The LSTM used in this research includes an additional gate. The forget gate acts directly on the
SRC and ensures that memory cell does not continuously grow but also actively resets [18]. A profound
technical analysis is given in [19]. To enable the model to learn even more complex relations between
input and output, multiple LSTM layers can be stacked, leading to one LSTM layer being the input to
another LSTM layer. This procedure is e.g. investigated in [20].

2.3 Neural Ordinary Differential Equation

The proposed kind of deep NNmodels in [7] based on combining fields of ML with the numeric of differen
tial equations solvers. Instead of approximate the nonlinear behaviour of the dynamical system directly
without integrating any knowledge of the underlying system, a NN is introduced to learn the derivative of
the system state and results in an initial value problem described by

𝑑x
𝑑𝑡 = 𝑓NN (𝑡,x,p) with x (𝑡 = 0) = x0, (2)

where x0 denotes the initial condition. The analytical solution of the initial value problem is given by

x = x0 +න
𝑡

𝑡0
ቆ𝑓NN (𝑡,x,p) ቇ𝑑𝑡. (3)

In the case where the analytical integration of 𝑓NN (𝑡,x,p) is unfeasible, numerical methods like forward
Euler method are requiered to approximate the solution. The discretization is described by

x𝑡+1 = x𝑡 + ℎ ⋅ 𝑓NN (𝑡,x𝑡 ,p) , (4)

where ℎ corresponds to the step size and x𝑡 as well as x𝑡+1 represent the solution of the initial value
problem at time 𝑡 and 𝑡 + 1. The architecture of this resulting hybrid model built up by a NN and ODE
solver is similar to a residual NN. This new kind of deep NN models called Neural ODE parameterize the
derivative of the hidden state using NNs instead of specifying a discrete sequence of hidden layers [7].
Therefore, Neural ODE can be interpreted as an infinitely deep model [21]. Furthermore, any stated ODE
solver can be used to solve the initial value problem.

2.4 Universial Differential Equation and sparse regression

The presented UDE approach in [6] corresponds to the emerging field of SciML and aims for integrating
ML approaches into physical based models. The main idea of UDE is to consider unknown parameters
or physical dependencies inside ODEs by incorporating UAs. Additionally, the missing equation fractions
can be reconstructed based on the trained UAs afterwards. In comparison to NAR or LSTM, which ap
proximate the dynamical behaviour without any specific physical information or PINN by inserting the
complete ODE into the loss function [8], UDE merges both concepts and combines already physical
knowledge with unknown term into a new kind of differential equation. In general, the UDE is formulated
as follows:

𝑑x
𝑑𝑡 = 𝑓 (𝑡,x,u (𝑡,x,p)) with x (𝑡 = 0) = x0. (5)

Here, 𝑓 represents a function which describes the systems equation of motion and u denotes an UA,
such as a NN, a Fourier expansion or other ML models. The selection of an appropriate UA depends on
the dimensionality of the stated problem formulation [6]. This introduced initial value problem is solved
analogously to the NODE approach, which can be therefore interpreted as a special form of UDE by
treating the whole differential equation as unknown.

The reconstruction of unknown terms in Equation (5) based on the idea of the proposed methodology
SINDy by [9]. Instead of reconstructing the entire differential equation of a dynamical system, we focus on



4

identifying unknown terms only which are described by UAs. The incorporation of the physical knowledge
enables a more selectively equation reconstruction and the data collection of all states as well as their
derivatives is not mandatory. The resulting regression problem is described by the system of equations

U = 𝚯(X) ⋅ 𝚵, (6)

where U denotes the prediction of the UA, X is a matrix representation of x and 𝚵 denotes the spar
se vector of coefficients containing information about which nonlinearities are active. The library 𝚯(X)
consists of possible nonlinear functions [9] and can be build up by constant, polynomial or trigonometric
terms like 𝚯 = ൣ1,X,X2,X3, sin (X)൧. By inserting a 𝐿1 regularization term to the regression problem in
Equation (6), the sparsity of the coefficient vector 𝚵 is enhanced. The degree of sparsity is determined
by the sparsification parameter 𝜆 thresholding all coefficients in 𝚵 below a certain cut off value [9]. The
optimization regression problem results in:

𝚵 = argmin
𝚵′

‖𝚯 (X) 𝚵′ − U‖2 + 𝜆 ‖𝚵′‖1 . (7)

3 Problem definition

The study of the presented datadriven approaches are based on an external excited duffing oscilla
tor system. The governing differential equation of this geometrically nonlinear dynamical system (NDS)
is characterized by a nonlinear cubic stiffness term and is transformed into a first order ODE system
described by

�̇�1 = 𝑥2 (8)

�̇�2 = − 1
𝑚 ൫𝑐 ⋅ 𝑥2 + 𝑘 ⋅ 𝑥1 + 𝛽 ⋅ 𝑥31 − 𝐴 ⋅ sin (𝜔 ⋅ 𝑡)൯ ,

with the mass of the system𝑚, the damping coefficient 𝑐, the stiffness coefficient 𝑘, the cubic stiffness co
efficient 𝛽, the amplitude 𝐴 and the frequency 𝜔 of the external applied harmonic force 𝐹ext = 𝐴⋅sin (𝜔𝑡).
The states of the systems are represented by 𝑥1 and 𝑥2, respectively, �̇�1 and �̇�2 represent the time de
rivatives of the states. The mechanical model is defined as shown in Figure 1. The considered model
parameters for the numerical simulation are selected to avoid periodic steady state behaviour during ob
served simulations time 𝑇 = [0, 10] and are summarized in Table 1. Further simulation parameters are
settled up such that the system starts at rest position described by the initial conditions 𝑥1 (𝑡 = 0) = 0
and 𝑥2 (𝑡 = 0) = 0. For purposes of clarity, we introduce model parameters regardless of physical units.

The resulting ideal time series as well as the noiseaffected series of NDS denoted by the displacement
𝑥1 and the velocity 𝑥2 is depicted in Figure 1. For the time integration we used 𝑡Δ = 0.01 as simulation
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Figure 1: Description of the mechanical model of an external excited duffing oscillator and visualisation
of resulting ideal (𝜂 = 0) and noisy (𝜂 = 0.04) time series of NDS. Division of the data into accessible
(training region) and nonaccessible data (forecasting region) for the datadriven approaches.
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stepsize. The noisemanipulated time series is obtained by adding a normally distributed number cha
racterized by zero mean value and unit standard deviation to each time step. The noise magnitude is
adjustable by 𝜂. To obtain the training data for the presented datadriven approaches the time series is
divided into two regions. The grey coloured area is introduced as training region and is accessible data
during training phase. The time series in the forecasting region is utilized to evaluate the forecasting
capabilities of the trained models afterwards. Therefore, this region represents nonaccessible data. In
some datadriven approaches, such as NN, testing data is required during training phase. These testing
data will be selected from the training region as well.

Table 1: Model parameters of external excited geometrically nonlinear dynamical system

𝑚 𝑐 𝑘 𝛽 𝐴 𝜔
1 0.1 4 0.5 3 4

In many engineering application fields such as automotive industry, physical model parameters like mass
properties or stiffnesses of dynamical systems can be determined bymeasurements with a high accuracy.
However, the identification of damping coefficients is characterized by uncertainty. For sake of simplicity,
we assume a constant damping coefficient inspired by [11]. Therefore, we focus on the geometrically
nonlinear term 𝛽 ⋅ 𝑥31 as unknown physical dependency. To cover the unknown term inside the physical
based model we augment them with an UA resulting in an UDE described by

�̇�1 = 𝑥2 (9)

�̇�2 = − 1
𝑚൫𝑐 ⋅ 𝑥2 + 𝑘 ⋅ 𝑥1 − 𝐴 ⋅ sin (𝜔 ⋅ 𝑡) ൯ + 𝑢 (𝑡,x,p) .

4 Results and comparison

The presented datadriven approaches in Section 2 are trained based on the noisemanipulated time
series within the training region using a noise magnitude of 𝜂 = 0.04 considering uncertainty. As UA, we
used NN for each approach to model the dynamical behaviour of the system. The architecture as well
as the activation functions of the implemented NN vary depending on the used approach and number of
inputs. The evaluation of the trained models based on the mean squared error loss function ℒ which is
described by

ℒ = 1
𝑛 

𝑗
ℒ𝑗 =

1
𝑛 

𝑗

𝑖
ቀ𝑥𝑖𝑗,train − 𝑥𝑖𝑗,predቁ

2
, (10)

with the number of data points 𝑛, the training data 𝑥𝑖𝑗,train and the prediction of the datadrivenmodel 𝑥𝑖𝑗,pred.
The index 𝑖 denotes the 𝑖th component whereas 𝑗 denotes the 𝑗th state of the respectively data. The
selection of the NN architecture for each approach is motivated by identifying comparable datadriven
models within a similar range of loss value moreover than seeking for the least loss value.

For the comparison and evaluation of the approaches, we depict the predicted time series of the models
in Figure 2 divided into their system states. The corresponding loss values are listed in Table 2 classi
fied regarding the considered region. The resulting loss values of the corresponding models inside the
training region are limited by ℒ < 0.01 and is also clearly observable by comparing the time series trajec
tories in this region. Respectively, all trajectories are closely stacked and only minor deviations resulting
from the LSTM are notable. Therefore, the selected datadriven model architectures are able to learn
the dynamical behaviour of the system accurate enough considering noisemanipulated data and show
nonoverfitting properties.

In spite of similar loss values inside the training regions, the forecasting capabilities represented by
the trajectories in 𝑡 ∈ (2.5, 10] show different deviations depending on the model. Whereas the UDE
approach is capable to predict the physical behaviour with a loss value of ℒUDE = 0.0066, the forecasting
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Table 2: Loss values of resulting datadriven approaches NAR, LSTM, NODE and UDE divided into
training and forecasting region.

Loss value NAR LSTM NODE UDE

Training region 0.0051 0.0099 0.0052 0.0051
Forecasting region 2.9230 2.3974 3.4737 0.0066

of the models without physical incorporation NAR, LSTM and NODE are characterized by periodic and
shifted time series trajectories. They are not predicting the dynamical behaviour in a right manner with
comparatively large loss values ℒLSTM ≥ 2.3974. While NAR and NODE are quite similar regarding
periodicity of their trajectories, LSTM shows up less amplitude level and shifting properties, which leads to
the second best result during the prediction although LSTM reaches the worst loss value during training.
As a consequence, the loss value of the trained models is not an adequate indicator for the prediction
performance of a model.
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Figure 2: Comparison of the resulting datadriven appoaches based on noisecontaminated training
data (𝜂 = 0.04) regarding training region (𝑡 ∈ [0, 2.5]) and forecasting capability (𝑡 ∈ (2.5, 10]).

The preserving periodicity of the nonphysical incorporated models is substantiated by the time series
during training, which tends to appear like a periodic curve. This erroneously pattern is learned by the
datadriven approaches and mislead to undesired forecasting abilities. In that sense, the quality of the
prediction depends strongly on the quantity of accessible data. It is assumable that, the more recorded
amount of data during training is available, the better behaviour of dynamical system can be learned
and predicted. Even though UDE is capable to model the missing physical dependency due to the incor
poration of the already known physical information under same data conditions. Instead of learning the
entire system, the NN inside the UDE has to learn a small fraction of the dynamical system and is able
to forecast the time series in a proper way. Therefore, UDE demonstrates robust properties regarding
limited amount of data as well as their noisemanipulation.

Due to the promising forecasting capabilities of the UDE approach, we use them for the selectively
reconstruction of the missing term based on sparse regression presented in Equation 6. Therefore,
we construct a library 𝚯 built up by polynomial functions up to order five as possible nonlinear function
candidates. As sparsification parameter, we applied a range of permissible values 𝜆 ∈ [0.1, 10] to find the
pareto optimal solution. To provide better comparability, in Figure 3 themissing term−𝛽/𝑚⋅𝑥31 is depicted
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against the approximation by NN and the sparse reconstructed term for noisemanipulated (𝜂 = 0.04) and
noiseless (𝜂 = 0) data sets. Thismissing term is usually nonaccessible data duringmodel reconstruction.
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Figure 3: Comparison of noisecontaminated (𝜂 = 0.04) and ideal (𝜂 = 0) missing term with trained NN
inside UDE (a), reconstructed equation (b) and ideal reconstructed equation (c) from sparse regression.

Even though UDE predicts the time series based on the noisemanipulated data accurate enough, the
comparison of the missing term and the NN in Figure 3a shows up major deviations. The resulting
reconstructed term of the sparse regression 𝑢 = 𝑝1 ⋅ 𝑥1 + 𝑝2 ⋅ 𝑥31 is determined by a linear combination
of polynomials where 𝑝1 and 𝑝2 are the active coefficients of the sparse vector. In Figure 3b there are
still some notable deviations caused by the noisy data but the overall physical behaviour is represented
in the right manner and leads to a slightly better performance regarding forecasting represented by the
loss value of the reconstructed equation ℒrec = 0.0064 in comparison to that of purely NN inside UDE
ℒUDE = 0.0066. In an ideally noiseless case, see Figure 3c, it is possible to fully reconstruct the missing
term based on the trained NN. It should be mentioned that depending on the choice of function library, the
reconstructed term might vary with respect to their sparsity. A restriction of possible function candidates
in the sense of physical feasibility is therefore necessary to enable semiautomated or fullyautomated
modelling.

5 Conclusions and outlook

In this work, we present different datadriven approaches to model the dynamical behaviour of an external
excited nonlinear oscillator in time domain regarding different depth of physical knowledge incorporati
on. By comparing them, we show that combining physical models with Machine Learning approaches
results in more promising forecast capabilities than using ordinary forecasting algorithms even though
all models show similar loss values during training phase. In addition, we demonstrate selectively term
reconstruction of the missing term based on sparse regression. The usage of noisecontaminated data
for the training of the approaches considers robustness aspects. This kind of approach enables the con
sideration of unknown physical dependencies by modelling them with surrogate models such as Neural
Network and reconstruction of missing terms afterwards.

For future research, the Universal Differential Equation framework will be applied to more complex dy
namical systems to explore the level of automation modelling in the sense of digital twin and will be
confronted with challenges regarding appropriate Machine Learning architecture as well as function li
brary during reconstruction. A specific application field in the automotive industry is the identification of
unknown physical terms of electrified powertrain mount systems described by multi body models to im
prove the simulation e.g. the engine movement in different driving scenarios to cover package issues.
Another application field is the extension of dynamical stiffness models of engine mounts in frequen
cy domain by selectively integration of Universal Approximators in the sense of Universal Differential
Equation.



8

References

[1] E. Y. Qian, “A Scientific Machine Learning Approach to Learning Reduced Models for Nonlinear
Partial Differential Equations,” Ph.D. dissertation, Massachusetts Institute of Technology, Feb. 2021.

[2] J. Hay, J. Fehr, and L. Schories, Eds., Crash Pulse Prediction for Scenariobased Vehicle Crash
FESimulations, ser. IRCOBI Conference 2020, no. IRC2022, Munich, Germany, 2020.

[3] N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm, M. Parashar, A. Patra,
J. Sethian, S. Wild, K. Willcox, and S. Lee, “Workshop Report on Basic Research Needs for Scien
tific Machine Learning: Core Technologies for Artificial Intelligence,” Feb. 2019.

[4] D. E. Tsokaktsidis, T. von Wysocki, F. Gauterin, and S. Marburg, “Artificial Neural Network predicts
noise transfer as a function of excitation and geometry,” in Proceedings of the 23rd International
Congress on Acoustics, Aachen, Germany, Sep 2019, pp. 4378–4382.

[5] T. von Wysocki, M. Leupolz, and F. Gauterin, “Metamodels Resulting from Two Different Geometry
Morphing Approaches Are Suitable to Direct the Modification of StructureBorn Noise Transfer in
the Digital Design Phase,” Applied System Innovation, vol. 3, no. 4, 2020.

[6] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, A. Ramadhan,
and A. Edelman, “Universal Differential Equations for Scientific Machine Learning,” arXiv, 2021.

[7] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural Ordinary Differential Equa
tions,” arXiv, 2019.

[8] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physicsinformed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equa
tions,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.

[9] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from data by sparse
identification of nonlinear dynamical systems,” Proceedings of the National Academy of Sciences,
vol. 113, no. 15, pp. 3932–3937, 2016.

[10] M. Stender, S. Oberst, and N. Hoffmann, “Recovery of differential equations from impulse response
time series data for model identification and feature extraction,” Vibration, vol. 2, no. 1, pp. 25–46,
2019.

[11] M. Didonna, M. Stender, A. Papangelo, F. Fontanela, M. Ciavarella, and N. Hoffmann, “Recon
struction of governing equations from vibration measurements for geometrically nonlinear systems,”
Lubricants, vol. 7, no. 8, p. 64, 2019.

[12] Y. Ren, C. Adams, and T. Melz, “Systemidentifikation eines Einmassenschwingers mit spärlicher
linearer Regression,” in DAGA 2020  46. Jahrestagung für Akustik, 2020, pp. 567–570.

[13] G. Box and G. Jenkins, Time Series Analysis: Forecasting and Control. HoldenDay, 1970.
[14] G. Dorffner, “Neural Networks for Time Series Processing,” Neural Network World, vol. 6, pp. 447–

468, 1996.
[15] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approxi

mators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.
[16] S. Hochreiter and J. Schmidhuber, “Long shortterm memory,” Neural computation, vol. 9, no. 8, pp.

1735–1780, 1997.
[17] Y. Yu, X. Si, C. Hu, and J. Zhang, “A Review of Recurrent Neural Networks: LSTMCells and Network

Architectures,” Neural computation, vol. 31, no. 7, pp. 1235–1270, 2019.
[18] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction with LSTM,”

Neural computation, vol. 12, no. 10, pp. 2451–2471, 2000.
[19] R. C. Staudemeyer and E. R. Morris, “Understanding LSTM  a tutorial into Long ShortTermMemory

Recurrent Neural Networks,” arXiv, Sep. 2019.
[20] A. Graves, A.r. Mohamed, and G. Hinton, “Speech Recognition with Deep Recurrent Neural Net

works,” arXiv, Mar. 2013.
[21] C. Rackauckas, M. Innes, Y. Ma, J. Bettencourt, L. White, and V. Dixit, “DiffEqFlux.jl  A Julia Library

for Neural Differential Equations,” arXiv, Feb. 2019.


	Introduction
	Data-driven modelling approaches
	Nonlinear Autoregressive Neural Network
	Long Short-Term Memory
	Neural Ordinary Differential Equation
	Universial Differential Equation and sparse regression

	Problem definition
	Results and comparison
	Conclusions and outlook

