
Scalable High-Quality Graph and
Hypergraph Partitioning

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Tobias Heuer

aus Bietigheim (Baden)

Tag der mündlichen Prüfung: 26.10.2022

Erster Gutachter: Herr Prof. Dr. Peter Sanders
Zweiter Gutachter: Herr Prof. Dr. Ümit Çatalyürek

In loving memories of my mother

Abstract
The balanced hypergraph partitioning problem (HGP) asks for a partition of the node

set of a hypergraph into k blocks of roughly equal size, such that an objective function
defined on the hyperedges is minimized. In this work, we optimize the connectivity
metric, which is the most prominent objective function for HGP.

The hypergraph partitioning problem is NP-hard and there exists no constant factor
approximation. Thus, heuristic algorithms are used in practice with the multilevel
scheme as the most successful approach to solve the problem: First, the input hy-
pergraph is coarsened to obtain a hierarchy of successively smaller and structurally
similar approximations. The smallest hypergraph is then initially partitioned into k
blocks, and subsequently, the contractions are reverted level-by-level, and, on each
level, local search algorithms are used to improve the partition (refinement phase).

In recent years, several new techniques were developed for sequential multilevel
partitioning that substantially improved solution quality at the cost of an increased
running time. These developments divide the landscape of existing partitioning
algorithms into systems that either aim for speed or high solution quality with the
former often being more than an order of magnitude faster than the latter. Due to
the high running times of the best sequential algorithms, it is currently not feasible to
partition the largest real-world hypergraphs with the highest possible quality. Thus, it
becomes increasingly important to parallelize the techniques used in these algorithms.
However, existing state-of-the-art parallel partitioners currently do not achieve the
same solution quality as their sequential counterparts because they use comparatively
weak components that are easier to parallelize. Moreover, there has been a recent
trend toward simpler methods for partitioning large hypergraphs that even omit the
multilevel scheme.

In contrast to this development, we present two shared-memory multilevel hyper-
graph partitioners with parallel implementations of techniques used by the highest-
quality sequential systems. Our first multilevel algorithm uses a parallel clustering-
based coarsening scheme, which uses substantially fewer locking mechanisms than
previous approaches. The contraction decisions are guided by the community structure
of the input hypergraph obtained via a parallel community detection algorithm. For
initial partitioning, we implement parallel multilevel recursive bipartitioning with a
novel work-stealing approach and a portfolio of initial bipartitioning techniques to
compute an initial solution. In the refinement phase, we use three different parallel
improvement algorithms: label propagation refinement, a highly-localized direct k-way
FM algorithm, and a novel parallelization of flow-based refinement. These algorithms
build on our highly-engineered partition data structure, for which we propose several
novel techniques to compute accurate gain values of node moves in the parallel setting.

v

Abstract

Our second multilevel algorithm parallelizes the n-level partitioning scheme used
in the highest-quality sequential partitioner KaHyPar. Here, only a single node is
contracted on each level, leading to a hierarchy with approximately n levels where n is
the number of nodes. Correspondingly, in each refinement step, only a single node is
uncontracted, allowing a highly-localized search for improvements. We show that this
approach, which seems inherently sequential, can be parallelized efficiently without
compromises in solution quality. To this end, we design a forest-based representation
of contractions from which we derive a feasible parallel schedule of the contraction
operations that we apply on a novel dynamic hypergraph data structure on-the-fly.
In the uncoarsening phase, we decompose the contraction forest into batches, each
containing a fixed number of nodes. We then uncontract each batch in parallel and
use highly-localized versions of our refinement algorithms to improve the partition
around the uncontracted nodes.

We further show that existing sequential partitioning algorithms considerably strug-
gle to find balanced partitions for weighted real-world hypergraphs. To this end, we
present a technique that enables partitioners based on recursive bipartitioning to
reliably compute balanced solutions. The idea is to preassign a small portion of the
heaviest nodes to one of the two blocks of each bipartition and optimize the objective
function on the remaining nodes. We integrated the approach into the sequential hy-
pergraph partitioner KaHyPar and show that our new approach can compute balanced
solutions for all tested instances without negatively affecting the solution quality and
running time of KaHyPar.

In our experimental evaluation, we compare our new shared-memory (hyper)graph
partitioner Mt-KaHyPar to 25 different graph and hypergraph partitioners on over 800
(hyper)graphs with up to two billion edges/pins. The results indicate that already
our fastest configuration outperforms almost all existing hypergraph partitioners with
regards to both solution quality and running time. Our highest-quality configuration
(n-level with flow-based refinement) achieves the same solution quality as the currently
best sequential partitioner KaHyPar, while being almost an order of magnitude faster
with ten threads. In addition, we optimize our data structures for graph partitioning,
which improves the running times of both multilevel partitioners by almost a factor of
two for graphs. As a result, Mt-KaHyPar also outperforms most of the existing graph
partitioning algorithms. While the shared-memory graph partitioner KaMinPar is still
faster than Mt-KaHyPar, its produced solutions are worse by 10% in the median. The
best sequential graph partitioner KaFFPa-StrongS computes slightly better partitions
than Mt-KaHyPar (median improvement is 1%), but is more than an order of magnitude
slower on average.

vi

Acknowledgements
This project would not have been possible without the many people who have

supported me on this journey. Thus, I would like to use this chapter to express my
deepest thanks to them.

First of all, I would like to thank my advisor Peter Sanders for welcoming me back
from industry with open arms and for the many discussions that greatly influenced
the outcome of this work. I would also like to thank Ümit Çatalyürek for writing one
of the reviews for this dissertation.

Moreover, I would like to acknowledge the invaluable assistance of my co-authors
Yaroslav Akhremtsev, Ümit Çatalyürek, Karen Devine, Marcelo Fonseca Faraj, Lars
Gottesbüren, Nikolai Maas, Henning Meyerhenke, Peter Sanders, Daniel Seemaier,
Sebastian Schlag, Christian Schulz, and Dorothea Wagner.

The coronavirus has posed many new challenges to our workplaces in recent years.
Under these circumstances, I am more than grateful that our research group has
managed to keep up our friendly and inspiring working atmosphere. Therefore, I would
like to express my deepest thanks to my former and actual co-workers Michael Axtmann,
Timo Bingmann, Daniel Funke, Simon Gog, Demian Hespe, Lukas Hübner, Markus Iser,
Florian Kurpicz, Sebastian Lamm, Moritz Laupichler, Hans-Peter Lehmann, Tobias
Maier, Matthias Schimek, Sebastian Schlag, Lorenz Hübschle-Schneider, Dominik
Schreiber, Daniel Seemaier, Marvin Williams, and Sascha Witt.

Furthermore, I would also like to thank Florian Kurpicz, Moritz Laupichler, Nikolai
Maas, Tobias Maier, Sebastian Schlag, Dominik Schreiber, and Daniel Seemaier for
proof-reading part of this dissertation and their valuable feedback.

Over my academic career, I had the privilege to work with many bright students. I
am very grateful to Patrick Firnkes, Tobias Fuchs, Manuel Haag, Cedrico Knoesel,
Robert Krause, Moritz Laupichler, Nikolai Maas, and Lukas Reister for the endless
hours they put into their projects from which I have gained many new ideas and
insights. Especially, I would like to thank Nikolai Maas, who contributed to my work
as a thesis student and research assistant over many years.

I cannot imagine how my academic career would have gone if I had not joined the
research project of Sebastian Schlag on hypergraph partitioning seven years ago. I have
always appreciated our countless and often endless discussions, in which I have learned
so much. Thus, I would like to thank him for being the best mentor one could imagine.
Moreover, this work would not have been possible without the collaboration with Lars
Gottesbüren. I have always enjoyed our technical and non-technical discussions and
highly value the energy he put into this project over the past years. Last, I would like
to thank my wife Alessa Heuer. She always supported me with her love and motivated
me when things went not as expected.

vii

Table of Contents

1 Introduction 1
1.1 Contributions . 4
1.2 Outline . 8

2 Preliminaries 9
2.1 Definitions and Notations . 9
2.2 The Balanced Hypergraph Partitioning Problem 12
2.3 Shared-Memory Programming . 16

2.3.1 The Theoretical Machine Model 16
2.3.2 The Parallelization Library . 18

2.4 Experimental Design . 21
2.4.1 Benchmark Sets . 21
2.4.2 Methodology . 24
2.4.3 Visualizing Solution Quality . 25
2.4.4 Visualizing Running Times and Speedups 27
2.4.5 Statistical Significance Tests . 28

3 Related Work 29
3.1 Iterative Improvement Algorithms . 30

3.1.1 Kernighan-Lin Algorithm . 30
3.1.2 Fiduccia-Mattheyses Algorithm 32

3.2 Flow-Based Refinement . 35
3.3 The Multilevel Scheme . 38

3.3.1 The Label Propagation Algorithm 41
3.3.2 n-Level Hypergraph Partitioning 41
3.3.3 Algorithmic Components of Sequential Partitioners 43

3.4 Parallel (Hyper)Graph Partitioning . 48
3.4.1 Parallelization Challenges . 49
3.4.2 Algorithmic Components of Parallel Partitioners 52

4 Parallel Improvement Algorithms 59
4.1 Parallel Gain Calculation . 60

4.1.1 The Partition Data Structure 60
4.1.2 The Gain Table . 63
4.1.3 Parallel Gain Recalculation . 67

ix

Table of Contents

4.2 Label Propagation Refinement . 68
4.3 Direct k-Way FM Local Search . 70

4.3.1 Multi-Try k-Way FM Algorithm 70
4.3.2 Highly-Localized k-Way FM Search 71

4.4 Flow-Based Refinement . 74
4.4.1 Parallel Active Block Scheduling 74
4.4.2 Network Construction . 77
4.4.3 The FlowCutter Algorithm . 79
4.4.4 Parallel Maximum Flow Algorithm 80
4.4.5 Intricacies with Preflows and FlowCutter 82
4.4.6 Implementation Details . 82

5 Parallel Multilevel Hypergraph Partitioning 85
5.1 The Hypergraph Data Structure . 87
5.2 Coarsening . 87

5.2.1 Rating Function Evaluation . 88
5.2.2 Clustering Algorithm . 89
5.2.3 Contraction Limit . 91
5.2.4 Community Detection Enhancement 92

5.3 Initial Partitioning . 94
5.3.1 Parallel Recursive Bipartitioning 94
5.3.2 Flat Initial Bipartitioning . 95

5.4 Refinement . 96
5.5 Engineering Aspects . 97
5.6 Algorithm Configuration . 98
5.7 Insights into Multilevel Partitioning 104

5.7.1 Analysis of Search Conflicts . 104
5.7.2 Effectiveness Tests . 109
5.7.3 Scalability . 113
5.7.4 Running Times of Components 117

6 Parallel n-level Hypergraph Partitioning 121
6.1 The Dynamic Hypergraph Data Structure 123

6.1.1 Remove and Restore Incident Nets 125
6.1.2 Contraction Operation . 125
6.1.3 Uncontraction Operation . 126

6.2 Parallel n-level Coarsening . 127
6.2.1 Contraction Forest . 128
6.2.2 Handling Contraction Dependencies 128
6.2.3 Removing Identical Nets . 129

6.3 Parallel n-level Uncoarsening . 129
6.3.1 Sibling Uncontraction Dependencies 130
6.3.2 Batch Construction Algorithm 131
6.3.3 Refinement . 131

x

Table of Contents

6.3.4 Gain Table Maintenance . 132
6.4 Insights into n-Level Partitioning . 133

6.4.1 Algorithm Configuration . 134
6.4.2 Scalability . 135
6.4.3 Running Times of Components 138
6.4.4 Comparison to Multilevel Partitioning 140

7 From Hypergraphs to Graphs 145
7.1 Partition Data Structure . 146

7.1.1 The Gain Table . 146
7.1.2 Attributed Gains . 147

7.2 Multilevel Graph Partitioning . 148
7.2.1 The Graph Data Structure . 148
7.2.2 Peculiarities for Graph Partitioning 149

7.3 n-Level Graph Partitioning . 150
7.3.1 Contraction and Uncontraction Operation 150
7.3.2 Remove and Restore Selfloops and Identical Edges 153

7.4 Experiments . 154

8 A Comparison of Partitioning Algorithms 157
8.1 Included Partitioning Algorithms . 157
8.2 Identifying Competitors . 160
8.3 Comparison to Other Systems . 167

8.3.1 Hypergraph Partitioning . 167
8.3.2 Graph Partitioning . 169

8.4 Summary . 172

9 Multilevel Hypergraph Partitioning with Node Weights 177
9.1 Definitions and Notations . 179
9.2 Balanced Recursive Bipartitioning . 180

9.2.1 Deeply Balanced Bipartitions 180
9.2.2 Sufficiently Balanced Bipartitions 182
9.2.3 The Prepacking Algorithm . 185

9.3 Experiments . 186
9.3.1 The LPT Balance Constraint 188
9.3.2 Balanced Partitioning . 188
9.3.3 Solution Quality and Running Times 190

9.4 Proof of Claim 9.6 . 193

10 Conclusion 195

List of Algorithms 205

List of Figures 207

xi

Table of Contents

List of Tables 211

Bibliography 213

List of Publications 239

xii

1Chapter 1

Introduction

A widely used technique to accelerate parallel graph computations is to partition
the node set of a graph into a predefined number of blocks of roughly the same
size, such that the number of edges running between different blocks is minimized.
This problem is called the balanced graph partitioning problem. The most prominent
applications can be found in distributed scientific simulations [SKK00; Fie+12] and
graph analytics [Low+12; Wan+14]. Here, graph partitioning distributes the node
set of a graph to machines of a compute cluster, which are interconnected through
a communication network. Each processor then performs some work on the nodes
assigned to it and needs to exchange computational results with other processors
that share common edges of the graph. Thus, a good partition evenly assigns the
computational work across the machines and minimizes the communication costs.
Other applications can be found in route planning [SWZ02; Del+11; HS18] and
image segmentation [CG12; PZZ13]. In the former, graph partitioning finds natural
separators in road networks (e.g., bridges, rivers, or highways) which can be used to
accelerate shortest-path algorithms. In the latter, the goal is to partition an image
into several objects of interest.

A graph can only model pairwise relationships between a set of objects. However,
in many real-world problems, more complex relationships exist, which may result in a
loss of information when modeled as a graph.

Consider a set of authors and a set of scientific publications where each publication
is written by a subset of the authors, as illustrated in Figure 1.1 (left). We can
model these relationships with a graph by adding an edge between two authors if
they are co-author of the same publication. However, with this graph model, we
cannot answer queries that ask, e.g., for all publications of an author with more
than three co-authors wihtout an additional labeling on the edges (this example
is slightly adapted from Ref. [ZHS06]). Furthermore, a publication adds a clique
between all its authors, which unnecessarily increases the size of our graph model
(e.g., the largest number of authors on a paper is 5154 [Aad+15]).

For such relationships, a hypergraph – which consists of nodes and hyperedges – models
the underlying application more accurately since hyperedges can connect more than
two nodes.

The hypergraph partitioning problem is a natural generalization of the graph par-
titioning problem. The two most prominent objective functions are the cut-net and
connectivity metric. The former sums up the weight of all hyperedges connecting more

1

1 Introduction

A B

C
D

E F

G

H

I

J

A
B

C D

E
F

G

H

I

J
A, B,
C, D, E

A, E, I,
J

B, E, F

B, D, GC, G

Publications Graph Model Hypergraph Model

Figure 1.1: The graph and hypergraph model of the relationships between a
set of authors and their publications. In both models, the authors are modeled
as nodes. In the graph model, we add an edge between two authors if they
are co-author of the same paper. In the hypergraph model, the authors of an
publication form the hyperedges.

than one block, while the latter additionally considers the number of blocks connected
by a hyperedge. Early work on hypergraph partitioning was mainly driven by the
very-large scale integration (VLSI) design community [SK72; FM82; DK85; AK95;
HB95; AHK97]. A logical circuit consists of gates connected by wires. A partition of a
circuit into equally-sized blocks minimizing the number of wires between the different
blocks divides it into more manageable components that are then mapped onto a
chip in a top-down hierarchical design process. A good partition leads to a reduction
of signal delays and wire lengths, and to a minimization of the layout area required
by the circuit [AK95]. Since a wire can connect more than two gates, a hypergraph
models the underlying problem more accurately than a graph.

VLSI design has long been one of the most prominent applications of hypergraph
partitioning, but new applications have emerged with the rise of parallel scientific com-
puting. For example, hypergraph partitioning is used to minimize the communication
volume of the parallel sparse matrix-vector multiplication [CA99; ÇA01a; ÇA01b]. In
the simplest model, a sparse matrix can be interpreted as a hypergraph where rows
correspond to hyperedges and columns to nodes. Here, the connectivity metric more ac-
curately models the communication volume than any graph-based model [CA99]. Other
applications can be found in distributed quantum circuit simulations [AH19; GK21],
storage sharding in distributed databases [Cur+10; Kum+14; YP15; Ser+16; Kab+17;
Yan+18b], and variable reordering in satisfiability solvers [AMS04].

The author of this dissertation also used hypergraph partitioning to assign guests
to dining tables at his wedding. Here, the guests correspond to nodes, and the
relationships between the guests form the hyperedges (e.g., families, couples, or
friends). A good partition then corresponds to a feasible assignment of guests to
the dining tables that minimizes the number of guests that know each other and
are placed on different tables.

The hypergraph partitioning problem is NP-hard [GJS76; Len90], and it is unlikely
that a constant factor approximation exists unless P = NP [Fel13]. Thus, heuristic

2

solutions are used in practice where the multilevel method has emerged as the most
successful approach to solve the problem [BS93; HL95]. The multilevel scheme consists
of three phases. First, the hypergraph is coarsened to obtain a hierarchy of successively
smaller and structurally similar approximations of the input hypergraph by contracting
pairs or clusters of nodes. Once the coarsest hypergraph is small enough, an initial
partition into k blocks is computed. Subsequently, the contractions are reverted level-
by-level, and, on each level, local search heuristics are used to improve the partition
from the previous level (refinement phase).

The applications of (hyper)graph partitioning have different requirements on the
solution quality and running time of partitioning algorithms. VLSI design is an
example where even small improvements in partitioning quality significantly impact
the performance of a chip and reduces its production costs [HB95]. If (hyper)graph
partitioning is used as preprocessing technique in parallel computations, speed is more
important than quality since the partitioning time should not dominate the overall
execution time. Existing sequential partitioning algorithms can be categorized either
into systems that aim for speed or high solution quality, while the latter are often
more than an order of magnitude slower than the former [Sch20, p. 197].

With ever growing problem sizes, this tradeoff diminishes as the running time of the
highest-quality sequential systems becomes prohibitive. Thus, it becomes increasingly
important to parallelize the techniques used in these algorithms. Early work on parallel
(hyper)graph partitioning has focussed on distributed-memory algorithms [KK96;
WC00b]. The distributed-memory model is effective for trivially parallel problems but
is “not well suited to fine-grained parallelism” [Lum+07] since computational results
must be exchanged via expensive network communication. Therefore, these algorithms
usually do not achieve the same solution quality as their sequential counterparts
because they use comparatively weak components that are easier to parallelize.

As the capability of a single microprocessor converges to its physical limits, current
technology continues to improve the performance of CPUs by increasing the number of
its cores. The main benefit of such systems is that the different processors share access
to the same global memory, which can be used for a fast exchange of computational
results. In the last twenty years, the number of cores per socket increased from a
single core to over one hundred [Bin18, p. 2]. At the same time, the costs of memory
technologies have dropped dramatically1. Therefore, we believe that shared-memory
machines have become a viable alternative for processing large problem instances.

Research has recently focused on shared-memory partitioning algorithms, which
achieve good speedups and produce superior solutions compared to distributed-memory
algorithms [LK16; ASS17]. However, the partitioning quality of these systems is still
not competitive with the best sequential algorithms, as we will see throughout this
work.

1https://hblok.net/blog/storage/ (accessed May 2022)

3

https://hblok.net/blog/storage/

1 Introduction

1.1 Contributions

This dissertation closes the quality gap between sequential and parallel partitioning
algorithms by presenting the first shared-memory multilevel hypergraph partitioner
with parallel implementations of many techniques used by the highest-quality sequential
algorithms. Our new system achieves the same solution quality as the best sequential
codes for optimizing the connectivity metric, while being competitive to the fastest
partitioning algorithms in terms of running time. As a result, it outperforms almost all
publicly available (hyper)graph partitioners and enables the partitioning of extremely
large (hyper)graphs with high solution quality.

This work is based on four conference publications [Got+21a; HMS21a; GHS22a;
Got+22a] and two technical reports [Got+21c; GHS22c]. Furthermore, we describe
unpublished optimizations that we implemented for graph partitioning. All contri-
butions are presented in a consistent level of detail and with extensive experimental
evaluations that go beyond the scope of the individual publications. We further
compared 25 different partitioning algorithms on over 800 graphs and hypergraphs to
our new shared-memory algorithm, which is, to the best of our knowledge, the most
comprehensive comparison that can be found in the partitioning literature. In the
following, we briefly outline the core contributions of this work.

Most of the work presented in this dissertation was done in collaboration with
Lars Gottesbüren. The conference publications [Got+21a; GHS22a; Got+22a]
and technical reports [Got+21c; GHS22c] were written jointly by both authors.
Peter Sanders and Sebastian Schlag provided valuable feedback and assisted in
the editing process of the corresponding publications. Since Lars Gottesbüren and
the author of this work use large parts of these publications in their dissertations,
we include footnotes in the following and a short paragraph in each chapter that
attributes the presented techniques and ideas to each author to highlight their
individual contributions.

Parallel Gain Computation Techniques2. Many local search algorithms greedily
move nodes to other blocks according to a gain function. The gain value of a node
move reflects the change in the objective function when performed on the partition.
In the parallel setting, two concurrent node moves may degrade the solution quality
even if both individual gain values suggest an improvement (due to race conditions
during the gain computation). We present a technique that can detect move conflicts
between concurrent node moves at the time they are performed on the partition based
on synchronized data structure updates. We also use the technique to analyze how
frequently such conflicts occur in local search algorithms, which provides valuable
insights on the impact of such conflicts in practice. We further present a concurrent
gain table data structure for storing and maintaining all gain values with a better
asymptotic worst-case complexity than the one used in KaHyPar [Akh+17a].

2Lars Gottesbüren developed the gain table data structure, while the author of this dissertation
implemented the partition data structure and the technique for detecting concurrent move conflicts.

4

1.1 Contributions

The First Fully Parallel Direct k-Way FM Algorithm3. The Fiduccia-Ma-
ttheyses (FM) algorithm [FM82] is the most widely used local search algorithm in
multilevel partitioning algorithms. It performs the node move with the highest gain
value in each step. Thereby, it also performs moves that intermediately worsen the
solution quality and is therefore able to escape from local optima. A parallel version
of the algorithm is already implemented in the shared-memory graph partitioner
Mt-KaHIP [ASS17]. The algorithm repeatedly starts highly-localized FM searches
in parallel. Each search is initialized with a few seed nodes and gradually expands
around them by claiming neighbors of moved nodes. The implementation has two
major shortcomings: (i) node moves are performed locally and are not visible to other
threads, and (ii) the node moves performed by the different threads are concatenated to
a global move sequence at the end of a refinement pass, for which gains are recomputed
sequentially. Our implementation immediately applies a move sequence to the global
partition once an improvement is found and other threads can see these changes.
Moreover, we parallelize the sequential gain recomputation step. We further integrate
our parallel gain computation techniques to accelerate the algorithm and to adapt
gain values to changes made by other threads.

A Novel Parallelization of Flow-Based Refinement4. We present a novel par-
allelization of the flow-based refinement algorithm used in the sequential hypergraph
partitioner KaHyPar [SS11; HSS19a; Got+20]. The sequential algorithm operates on
bipartitions (partition into two blocks), so the implementation schedules the bipar-
titioning routine on pairs of blocks to improve k-way partitions. Our parallelization
of the algorithm uses two sources of parallelism: a parallel scheduling scheme and a
parallel maximum flow algorithm. In addition, we propose several optimizations that
substantially accelerate the algorithm in practice, enabling the use on extremely large
hypergraphs.

A Scalable Multilevel Hypergraph Partitioning Algorithm5. We present
the first shared-memory multilevel hypergraph partitioning algorithm with parallel
implementations of techniques used by the highest-quality sequential codes. We
implement a parallel coarsening algorithm that finds a clustering of the nodes on each
level, and subsequently contracts it in parallel to obtain the next coarser hypergraph.
The parallel clustering algorithm detects and resolves conflicting cluster assignments
on-the-fly, while previous algorithms use a postprocessing step or expensive locking
mechanisms. To make better contraction decisions, we run a parallel community
detection algorithm before coarsening and use the community structure to restrict
contractions to nodes within the same community in the coarsening phase [HS17a].

3Lars Gottesbüren implemented the initial version of the parallel FM algorithm and the gain
recomputation algorithm. The author of this dissertation has contributed several performance
optimizations for the highly-localized FM searches.

4The author of this dissertation implemented the parallel scheduling scheme, while Lars Gottesbüren
parallelized the flow computations.

5The parallel coarsening, initial partitioning, and label propagation algorithm was implemented by
the author of this dissertation. Lars Gottesbüren developed the parallel community detection
algorithm and was involved in the performance engineering process in many parts of the code.

5

1 Introduction

Once the hypergraph is small enough, we compute an initial partition using parallel
recursive bipartitioning. We further integrate a work-stealing approach to account for
load imbalances within the recursive partitioning calls. In the uncoarsening phase,
we use label propagation refinement, and our novel FM and flow-based refinement
algorithms to improve the partition on each level.

We note that the core algorithmic ideas of the different components are already
used in sequential and partly in parallel systems. However, the overall partitioning
algorithm itself is one of the main contributions of this work as it already outperforms
most of the existing partitioning algorithms even without flow-based refinement. Our
fastest configuration can bipartition our largest hypergraph with more than two billion
pins (= sum of the sizes of all hyperedges) in one minute with 64 threads, while cutting
half as many hyperedges than the bipartitions produced by Zoltan (64 threads, three
minutes) and PaToH-D (sequential, ten minutes). The self-relative speedup of our
algorithm is 24.7 for larger problem instances with 64 threads on average.

A Scalable n-Level Hypergraph Partitioning Algorithm6. The n-level par-
titioning scheme instantiates the multilevel paradigm in its most extreme version
by contracting only a single node on each level. Correspondingly, in each refine-
ment step, only a single node is uncontracted, allowing a highly-localized search for
improvements. The n-level scheme is currently implemented in the highest-quality
sequential partitioner KaHyPar [Sch+16a; Akh+17a; Sch20]. Although (un)contracting
a single node on each level seems inherently sequential, we present a sophisticated
parallelization of the approach that achieves the same solution quality as KaHyPar,
while being an order of magnitude faster with ten threads. To this end, we implement
a dynamic hypergraph data structure to perform concurrent (un)contractions. This is
achieved by developing a representation of contractions by a forest which is used to
determine a parallel execution order of the (un)contractions and to resolve conflicts
on-the-fly. In the refinement phase, the contraction forest is decomposed into batches,
each containing a fixed number of nodes. The batches are then uncontracted in parallel
and used as a starting point for highly-localized local searches.

A Simple Optimization for Graph Partitioning7. Graph (GP) and hypergraph
partitioning (HGP) share many similarities, while HGP is considered “inherently more
complicated” [Kay+12]. We found that the main differences between HGP and GP
are in the representation of the (hyper)graph data structure and how gain values are
computed. Hence, we implement optimized data structures for graph partitioning and
use them as a drop-in replacement in our partitioning algorithms. As a result, we
were able to accelerate our multilevel and n-level algorithm by a factor of 1.75 and
1.91 for graphs.

6The idea and implementation of the parallel n-level partitioning algorithm came from the author
of this dissertation, while Lars Gottesbüren was involved in the performance engineering process.

7The idea of adapting the partition and hypergraph data structure for graph partitioning came from
the author of this dissertation. The implementation was done by Nikolai Maas, who worked as a
student research assistant in our group at the time.

6

1.1 Contributions

The Multi-Threaded Karlsruhe Hypergraph Partitioning Framework. We
make our new shared-memory (hyper)graph partitioner Mt-KaHyPar (Multi-Threaded
Karlsruhe Hypergraph Partitioning) publicly available under https://github.com/
kahypar/mt-kahypar. The code contains our multilevel (Mt-KaHyPar-D) and n-level
partitioning algorithm (Mt-KaHyPar-Q), as well as configurations extending them with
flow-based refinement (Mt-KaHyPar-D-F and Mt-KaHyPar-Q-F).

An Extensive Comparison of Existing Partitioning Algorithms. We propose
multiple configurations of our algorithm, offering different tradeoffs in solution quality
and running time. We have invested considerable effort in integrating as many
publicly available partitioning algorithms as possible into our experimental evaluation
to show to what extent Mt-KaHyPar is competitive. In total, we incorporated 25
different partitioning systems and evaluated them extensively on over 800 graphs and
hypergraphs. The total running time of the experiment would have been 10.43 years
when executed on a single machine. To the best of our knowledge, it is the most
comprehensive study of partitioning algorithms that can be found in the literature.

For hypergraph partitioning, the results show that our fastest configuration Mt-
KaHyPar-D already outperforms almost all partitioning algorithms in terms of solution
quality and running time. On larger hypergraphs with up to one billion pins, it produces
partitions better than those of the previously best parallel hypergraph partitioner
Zoltan [Dev+06] (distributed-memory) by 23% in the median, while it is also faster by a
factor of 2.72 on average. Our highest-quality configuration Mt-KaHyPar-Q-F achieves
the same solution quality as the currently best sequential partitioner KaHyPar [Sch20]
and is an order of magnitude faster with ten threads. For graph partitioning, we show
that Mt-KaHyPar also outperforms almost all existing graph partitioning algorithms.
However, the shared-memory partitioner KaMinPar [Got+21e] is still faster than Mt-
KaHyPar-D, but its solutions are worse by 10% in the median. The best sequential
graph partitioner KaFFPa-StrongS [SS11] computes slightly better partitions than
Mt-KaHyPar-Q-F with ten threads (median improvement is 1%), but it is more than
an order of magnitude slower on average.

There is a well-defined set of techniques for (hyper)graph partitioning providing
different tradeoffs in solution quality and running time. Mt-KaHyPar completely evades
this tradeoff for medium-sized instances as our highest-quality configuration achieves
the same solution quality as the best sequential partitioner KaHyPar while being
slightly faster than PaToH-Q [CA99] which is among the fastest sequential partitioning
algorithms. This tradeoff is now shifted to larger problem instances for which we
provide a new set of Pareto-optimal partitioning methods.

Finding Balanced Partitions is Suprisingly Hard in Practice8. We show
that existing sequential partitioning algorithms considerably struggle to find balanced
partitions for weighted real-world hypergraphs under a tight balance constraint. To

8The idea of revisiting the balanced hypergraph partitioning problem for weighted instances came
from Sebastian Schlag [Sch20, p. 218]. The theoretical foundations and implementation were done
by Nikolai Maas as part of his bachelor thesis [Maa20a], which was supervised by Sebastian Schlag
and the author of this dissertation.

7

https://github.com/kahypar/mt-kahypar
https://github.com/kahypar/mt-kahypar

1 Introduction

this end, we present a technique enabling partitioners based on recursive bipartitioning
to reliably compute balanced solutions. We integrated the balancing technique into the
sequential hypergraph partitioner KaHyPar [Sch20]. In the experimental evaluation,
we show that our new approach computes balanced partitions on all tested instances
without negatively affecting the solution quality and running time of KaHyPar.

1.2 Outline
Chapter 2 introduces basic notations and definitions, and describes our benchmark
sets and experimental methodology. In Chapter 3, we review existing literature
closely related to the techniques used in this dissertation. We particularly focus
on existing sequential and parallel partitioning algorithms to identify techniques
essential for achieving high solution quality. Chapter 4 then presents our parallel gain
computation techniques and three parallel refinement algorithms: a label propagation
algorithm, a highly-localized direct k-way FM algorithm, and a novel parallelization
of flow-based refinement. In Chapter 5, we discuss the algorithmic components of our
parallel multilevel hypergraph partitioner and subsequently turn to our parallel n-level
partitioning algorithm in Chapter 6. Chapter 7 then explains our optimizations for
graph partitioning. In Chapter 8, we compare Mt-KaHyPar to 25 different partitioning
algorithms and show that it offers an excellent tradeoff between solution quality
and running time. In Chapter 9, we turn to sequential partitioning, for which we
implemented a technique that enables partitioners based on recursive bipartitioning to
reliably compute balanced partitions for weighted hypergraphs. Chapter 10 concludes
the dissertation and presents directions for future research.

8

2Chapter 2

Preliminaries

This chapter presents fundamental defintions and concepts, and introduces the
experimental design used in this dissertation. In Section 2.1, we introduce basic
notations and definitions. Section 2.2 then defines the balanced hypergraph parti-
tioning problem, and discusses its computational complexity and several problem
variations. In Section 2.3, we cover parallel programming concepts and present the
parallelization library used in this work. We conclude this chapter with a description
of our experimental design in Section 2.4, including the composition of our benchmark
sets, methodology, and how we visualize running times, solution quality and speedups
of different partitioning algorithms.

References. We closely worked with the authors of the sequential hypergraph
partitioner KaHyPar [Sch+16a; Akh+17a; HS17a; Got+20] prior to our work on
shared-memory hypergraph partitioning. Thus, we reuse large parts of their notations
and definitions in our publications [Sch20, p. 11–14] and use a similar experimental
design as described in the dissertation of Schlag [Sch20, p. 22–34]. We also contributed
to a recent survey on (hyper)graph partitioning [Çat+22a] from which we copied some
text passages that were written exclusively by the author of this dissertation.

2.1 Definitions and Notations

Hypergraphs. A weighted hypergraph H = (V,E, c, ω) is defined as a set of n nodes
V and a set of m hyperedges E (also called nets) with node weights c : V → R>0 and net
weights ω : E → R>0, where each net e is a subset of the node set V . The nodes of a net
are called its pins. We extend c and ω to sets in a natural way, i.e., c(U) :=

∑
u∈U c(u)

and ω(F) :=
∑

e∈F ω(e). A node u is incident to a net e if u ∈ e. I(u) := {e | u ∈ e}
are the set of all incident nets of u. The set Γ(u) := {v | ∃e ∈ E : {u, v} ⊆ e} denotes
the neighbors of u. Two nodes u and v are adjacent if v ∈ Γ(u). The degree of a node
u is d(u) := |I(u)|. The size |e| of a net e is the number of its pins. We denote the
number of pins of a hypergraph with p :=

∑
e∈E |e| =

∑
v∈V d(v). The maximum

node degree and net size is defined as ∆v := maxv∈V d(v) and ∆e := maxe∈E |e|. We
call two nets ei and ej identical if ei = ej . Given a subset V ′ ⊂ V , the subhypergraph
HV ′ is defined as HV ′ := (V ′, {e ∩ V ′ | e ∈ E : e ∩ V ′ 6= ∅}, c, ω′) where ω′(e ∩ V ′) is
the weight of hyperedge e in the original hypergraph. Figure 2.1 shows a hypergraph
and illustrates the notations described in this paragraph.

9

2 Preliminaries

v1

v3 v4

v2

v5
v6

v7

v8v10

v11

v12 v13

e1

e2

e3

e4

e5

e6

e7

e8

e9

v1

v3 v4

v2
v11

e1

e8

e9

I(v1) = {e1, e8, e9} ⇒ d(v1) = 3

Γ(v1) = {v1, v2, v3, v4, v9, v11}

v9

v9

v1

v3 v4

v2

e1

e1 = {v1, v2, v3, v4} ⇒ |e| = 4

V1 = {v1, v2, v7, v8, v9}V2

V3 V4

V4

V1V2

V3

v1

v3 v4

v2

e1 V1
V4

V1

V3

V3 V4

Λ(e1) = {V1, V3, V4} ⇒ λ(e1) = 3

v1 v2

e1 V1

V1

e1 ∩ V1 = {v1, v2} ⇒ Φ(e1, V1) = 2

Incident Nets &
Adjacent Nodes

Hyperedges

Connectivity Set

Pin Count Values

Figure 2.1: Illustration of a 4-way partition of a hypergraph with 13 nodes and
9 hyperedges (middle). Moreover, it shows the incident nets and adjacent nodes
for node v1 (left), and the connectivity set of hyperedge e1 and its pin count value
for block V1 (right).

Graphs. A directed and weighted graph G = (V,E, c, ω) is defined as a set of n
nodes V and a set of m edges E with node weights c : V → R>0 and edge weights
ω : E → R>0. We represent a directed edge (u, v) ∈ E as ordered pair. We call an edge
(u, u) a selfloop and (u, v) with u 6= v a regular edge or simply an edge if we do not have
to distingush between selfloops and regular edges. The set Γ(u) := {v | (u, v) ∈ E}
denotes the neighbors of u. A directed edge (u, v) ∈ E implies that u is adjacent
to v, but v is not adjacent to u unless (v, u) ∈ E. An edge {u, v} is undirected if
(u, v) ∈ E and (v, u) ∈ E. We use the set notation to represent an undirected edge
{u, v}. A graph that only contains undirected edges is called an undirected graph.
Each undirected edge {u, v} can be interpreted as a hyperedge of size two. Thus, the
definitions and notations for hypergraphs also apply to undirected graphs. We denote
the weight of an undirected edge e = {u, v} by ω(u, v) =: ω(e). If {u, v} /∈ E, then
ω(u, v) = 0. For a subset V ′ ⊆ V , ω(u, V ′) :=

∑
v∈V ′ ω(u, v) is the weight of all edges

connecting node u to subset V ′.
The bipartite graph representation Gx := (V ∪E,Ex) [SK72; HM85] of an unweighted

hypergraph H = (V,E) contains an undirected edge {u, e} ∈ Ex if node u is a pin of
net e. More formally, Ex := {{u, e} | ∃e ∈ E : u ∈ e}. Figure 2.2 (middle) shows the
bipartite graph representation of a hypergraph H.

10

2.1 Definitions and Notations

Partitions and Clusterings. A k-way partition of a hypergraph H = (V,E, c, ω)
is a partition of the node set V into k disjoint blocks Π = {V1, . . . , Vk}. A 2-way
partition is also called a bipartition. We denote the block to which a node u is assigned
by Π[u]. For each net e, Λ(e) := {Vi | Vi∩e 6= ∅} denotes the connectivity set of e. The
connectivity λ(e) of a net e is λ(e) := |Λ(e)|. A net is called a cut net if λ(e) > 1. A
node u that is incident to at least one cut net is called boundary node. The number of
pins of a net e in block Vi is denoted by Φ(e, Vi) := |e∩Vi|. We refer to Φ(e, Vi) as the
pin count value for a net e and block Vi. Figure 2.1 (right) illustrates the connectivity
set and pin count value of a hyperedge. The set E(Vi, Vj) := {e ∈ E | {Vi, Vj} ⊆ Λ(e)}
represents the cut nets connecting block Vi and Vj . Two blocks Vi and Vj are adjacent
if E(Vi, Vj) 6= ∅. The quotient graph Q := (Π, EΠ := {(Vi, Vj) | E(Vi, Vj) 6= ∅})
contains an edge between all adjacent blocks.

We call a partition Π ε-balanced if each block Vi satisfies the balance constraint:
c(Vi) ≤ Lmax := (1 + ε)d c(V)

k e for some imbalance ratio ε ∈ (0, 1). A partition that
fullfils ∀Vi ∈ Π : Vi ≤ d c(V)

k e is perfectly balanced. We also refer to an ε-balanced
k-way partition as a balanced or feasible solution.1

A clustering C = {C1, . . . , Cl} of a hypergraph H is a partition of the node set V
into disjoint blocks where the number of blocks is not given in advance. A cluster
Ci is called a singleton cluster if |Ci| = 1. A node contained in a singleton cluster is
called unclustered.

Contractions and Uncontractions. Contracting a clustering C = {C1, . . . , Cl} of
a hypergraph H = (V,E, c, ω) replaces each cluster Ci with one supernode ui with
weight c(ui) =

∑
v∈Ci

c(v). For each net e ∈ E, we replace each pin v ∈ e with the
node ui representing the cluster Ci in which v is contained. After the replacement,
multiple occurrences of the same supernode in a net are discarded. The contracted
hypergraph may contain single-pin nets and nets identical to each other. For the
hypergraph partitioning problem defined in the next section, we can discard single-pin
nets and remove identical nets except for one representative at which we aggregate
their weight as a performance optimization.

Contracting a node v onto another node u replaces v with u in all nets e ∈ I(v)\ I(u)
and removes v from all nets e ∈ I(u)∩I(v). The new weight of u is then c(u)+c(v). We
call u the representative of the contraction and v its contraction partner. Uncontracting
a node v reverses the corresponding contraction operation.

Flows. A flow network N = (V, E , c) is a directed graph with a dedicated source
node s ∈ V and sink node t ∈ V in which each edge e ∈ E has capacity c(e) ≥ 0. An
(s, t)-flow is a function f : V × V → R that satisfies the capacity constraint ∀u, v ∈
V : f(u, v) ≤ c(u, v), the skew symmetry constraint ∀u, v ∈ V : f(u, v) = −f(v, u)
and the flow conservation constraint ∀u ∈ V \ {s, t} :

∑
v∈V f(u, v) = 0. The value

1We note that there is an ongoing discussion in our research group about the correct definition of
the maximum allowed block weight Lmax. In the presence of node weights, there are situations
where no feasible solution exists. We discuss several alternative definitions in Section 9.3.1 in more
detail. However, except for the experimental evaluation in Section 9.3, we focus on unweighted
(hyper)graphs, and thus use Lmax as balance constraint.

11

2 Preliminaries

v4

v3

v1 v2

v5 v6

e1

e2

e3

v1 v2

v3

v4

v6v5

Hypergraph H Bipartite Graph Representation

ω(e1)

ω(e2)

ω(e3)

e1in e1out

v1 v2

v3

v4

v6v5

Lawler Expansion

e2in e2out

e3oute3ine3

e2

e1

Figure 2.2: Illustration of the bipartite graph representation (middle) and Lawler
expansion (right) of a hypergraph H (left). Figure is taken from Ref. [Heu18a].

of a flow |f | :=
∑

v∈V f(s, v) =
∑

v∈V f(v, t) is defined as the total amout of flow
transferred from s to t. An (s, t)-flow f is a maximum (s, t)-flow if there exists no other
(s, t)-flow f ′ with |f | < |f ′|. The residual capacity is defined as rf (e) = c(e) − f(e).
An edge e is saturated if rf (e) = 0. The residual network Nf = (V, Ef , rf) with
Ef := {(u, v) ∈ V × V | rf (u, v) > 0} contains all non-saturated edges. The max-flow
min-cut theorem states that the value |f | of a maximum (s, t)-flow equals the weight of
a minimum cut that separates s and t [FF56]. This is also called a minimum (s, t)-cut.
The minimum (s, t)-cut can be derived by exploring the nodes reachable from the
source or sink via residual edges, which is also called the source-side or sink-side cut.

Flows on Hypergraphs. The Lawler expansion N = (V, E , c) [Law73] of a hyper-
graph H = (V,E, c, ω) is defined as follows: V contains all nodes v ∈ V . For each
hyperedge e ∈ E, we add two nodes ein and eout to V and a bridging edge (ein, eout)
with capacity c(ein, eout) = ω(e) to E . For each pin v ∈ e, we add two edges (v, ein) and
(eout, v) with infinite capacity to E . The Lawler expansion is illustrated in Figure 2.2
(right). A minimum (s, t)-cut in the Lawler expansion directly corresponds to one in
the hypergraph (since only bridging edges have finite capacity).

2.2 The Balanced Hypergraph Partitioning Problem

Problem Definition. Given parameters ε and k, and a (hyper)graph H, the bal-
anced (hyper)graph partitioning problem is to find an ε-balanced k-way partition Π that
minimizes an objective function defined on the (hyper)edges. For k = 2, we refer to the
problem as the bipartitioning problem. The two most prominent objective functions
are the cut-net metric fc(Π) :=

∑
e∈E′ ω(e) (also called edge cut metric for graph

partitioning) and connectivity metric fλ−1(Π) :=
∑

e∈E′(λ(e)− 1) · ω(e) (also called

12

2.2 The Balanced Hypergraph Partitioning Problem

(λ− 1)-metric) where E′ denotes the set of all cut nets. The cut-net metric directly
generalizes the edge cut metric from graphs to hypergraphs and minimizes the weight
of all cut hyperedges. The connectivity metric additionally considers the number
of blocks connected by a net and thus more accurately models the communication
volume for parallel computations [CA99] (e.g., for the parallel sparse matrix-vector
multiplication). The hypergraph partitioning problem is NP-hard for both objective
functions [Len90]. The connectivity value of a net is bounded by its size and the
number of blocks. Hence, the connectivity metric reverts to the cut-net metric for
graph partitioning (|e| = 2 for all e ∈ E) and bipartitioning (λ(e) ≤ 2 for all e ∈ E).
Recursive Bipartitioning vs Direct k-Way Partitioning. A k-way partition
of a (hyper)graph can be obtained either by recursive bipartitioning or direct k-way
partitioning. The former computes a bipartition of the input (hyper)graph and then
calls the bipartitioning routine on both blocks recursively until the (hyper)graph is
divided into the desired number of blocks. The latter partitions the (hyper)graph
directly into k blocks and applies k-way refinement algorithms to improve the partition.
Concept of Gains. Moving a node u from its current block Π[u] to a target block
Vj directly affects the underlying objective function. The gain value of a node move
indicates how much the objective function would change when performed on the
partition. It is central for many moved-based local search algorithms and is universally
applicable to almost all objective functions. These algorithms move nodes greedily to
other blocks according to a gain value. We denote the gain of moving a node u to a
block Vj by gu(Vj). The actual definition of gu(Vj) depends on the objective function.
For the connectivity metric, the gain of a node move is defined as follows:

gλ−1,u(Vj) := ω({e ∈ I(u) | Φ(e,Π[u]) = 1})− ω({e ∈ I(u) | Φ(e, Vj) = 0}).

Moving node u to block Vj decreases the connectivity of all nets by one for which u is
the last remaining pin in block Π[u] (i.e., Φ(e,Π[u]) = 1). Conversely, it increases the
connectivity of all nets e ∈ I(u) by one for which the target block Vj is not part of the
connectivity set Λ(e) (i.e., Φ(e, Vj) = 0). If gλ−1,u(Vj) is positive, then moving u to
block Vj improves fλ−1(Π) by gλ−1,u(Vj).

For the cut-net metric, we can define the gain of a node move as follows:

gc,u(Vj) := ω({e ∈ I(u) | Φ(e, Vj) = |e| − 1})− ω({e ∈ I(u) | Φ(e,Π[u]) = |e|}).

The first term is the weight of all cut nets incident to u which we can remove from
the cut by moving u to block Vj . The second term is the weight of all non-cut nets
incident to u, which become cut if u is moved to block Vj . For graph partitioning, we
can simplify the gain definition as follows (since |e| = 2 for all e ∈ E):

gc,u(Vj) = ω({e ∈ I(u) | Φ(e, Vj) = 1})− ω({e ∈ I(u) | Φ(e,Π[u]) = 2})
= ω(u, Vj)− ω(u,Π[u]).

The gain can be expressed as the weight of all edges connecting u to the target block
Vj minus the weight of all edges connecting u to its current block Π[u].

13

2 Preliminaries

Local search algorithms use gain values to identify node moves with positive
gain [MSS14] or perform the move with the highest gain value in each step [KL70;
FM82]. Krishnamurthy [Kri84] introduced the higher-level gain, which defines l gain
values for each node. The first level gain corresponds to the traditional gain definition,
while subsequent levels capture the impact of the node move for future moves and can
be used for tie-breaking decisions in local search algorithms.

Other Objective Functions. An objective function closely related to the connec-
tivity metric is the sum of external degree metric (SOED) fs(Π) :=

∑
e∈E′ λ(e) ·ω(e) =

fλ−1(Π) + fc(Π) [KK00]. An interesting property of this metric is that removing a
net e from the cut reduces fs(Π) by 2ω(e) while removing a single block from the
connectivity set of a net e with λ(e) > 2 only reduces it by ω(e). Thus, the objective
function prefers removing nets from the cut and, as secondary criteria, optimizes their
connectivity.

For bipartitioning, another popular objective function is the ratio cut frc(Π) :=
fc(Π)

c(V1)·c(V2)
[WC89; WC91]. It additionaly considers the block weights in the denom-

inator and thus implicitly optimizes the balance of the bipartition. The scaled cost
metric fsc(Π) :=

1
n(k−1)

∑k
i=1

Ei

c(Vi)
with Ei := ω({e ∈ E′ | e∩ Vi 6= ∅}) generalizes the

ratio cut to k-way partitioning [CSZ93]. There are several other objective functions
for which we refer the reader to surveys [AK95; Bul+16].

Problem Variations. Instead of partitioning the node set, the (hyper)edge par-
titioning problem asks for a partition of the (hyper)edge set E of a (hyper)graph
H = (V,E, c, ω) into k disjoint and (ε-)balanced blocks E1, . . . , Ek such that an objec-
tive function defined on the nodes is minimized. An widely used objective function for
the (hyper)edge partitioning problem is the vertex cut

∑
u∈V (γ(u)− 1) · c(u), where

γ(u) denotes the number of blocks containing incident (hyper)edges of u [Yan+18a].
The problem is NP-hard [BLV14] and can be used to minimize the number of node
replicas for edge-centric computations on (hyper)graphs in the distributed-memory
setting [Gon+12]. For the edge partitioning problem on graphs, existing approaches
reduce it to traditional node-based graph partitioning [Li+17], which only implicitly
optimizes the vertex cut. Alternatively, the input graph can be transformed into its
dual hypergraph representation [Sch+19] where the edges represent the nodes and
each node of the graph induces a hyperedge spanning its incident edges. Optimizing
the connectivity metric of the corresponding hypergraph partitioning problem directly
optimizes the vertex cut of the underlying edge partitioning problem.

Instead of optimizing a single objective function, there are also formulations opti-
mizing multiple objective functions simultanously. Existing techniques either assign
priorities to the different metrics [Çat+12b; Dev+15] or combine them to a single
objective function [Aba+02; SK03]. Another problem variation is the multi-constaint
partitioning formulation [KK98d; ACU08b; Slo+20]. Here, each node u is associated
with a weight vector c(u) = (c

(1)
u . . . c

(l)
u) with l entries, while there is also one individual

balance constraint L
(i)
max for each entry. A feasible k-way partition Π = {V1, . . . , Vk}

satisfies c(j)(Vi) :=
∑

u∈Vi
c
(j)
u ≤ L

(j)
max for each block Vi ∈ Π and entry j ∈ {1, . . . , l}.

14

2.2 The Balanced Hypergraph Partitioning Problem

The (hyper)graph partitioning problem with fixed nodes introduces an additional
constraint for the block assignment of some nodes. A fixed node is preassigned to one
block prior to partitioning and is not allowed to change its block [ACU08b]. A formal
definition of the problem follows in Chapter 9, where we use fixed nodes to reliably
compute balanced k-way partitions for weighted hypergraphs under a tight balance
constraint.

Hardness Results and Approximations. This paragraph discusses the compu-
tational complexity of the balanced (hyper)graph partitioning and the minimum k-cut
problem. The latter asks for a set of (hyper)edges with minimum weight whose removal
partitions the nodes into k connected components (no balance constraint is enforced).
We will refer to the minimum 2-cut problem as the minimum cut problem. The follow-
ing results consider weighted (hyper)graphs and the cut-net metric as the underlying
objective function. The main theoretical findings are that “the more balanced the
partition we look for has to be, the harder the problem” [WW93] and hypergraphs are
much harder to partition than graphs [RSS18; CL20].

The max-flow min-cut theorem relates the minimum (s, t)-cut in a weighted graph to
the maximum (s, t)-flow in the corresponding flow network [FF56]. Thus, the minimum
cut problem is solvable in polynomial time via n − 1 maximum flow computations.
A similar result also holds for hypergraphs since finding a minimum (s, t)-cut in
a hypergraph can be reduced to finding a maximum (s, t)-flow in a flow network
with n + 2m nodes [Law73] (see Lawler expansion in Section 2.1). The fastest
known algorithms solve the minimum cut problem in O(nm log(n

2

m)) time for directed
graphs [HO92] and O(nm+ n2 log n) time for undirected graphs [NI92; SW97]. The
algorithm proposed by Stoer and Wagner [SW97] finds a minimum (s, t)-cut (where s
and t are not given in advance) with a greedy graph traversal algorithm. The source s
and sink t are then merged and the procedure is recursively applied to the contracted
graph until only one node remains. The lightest minimum (s, t)-cut found within
the recursive calls corresponds to a minimum cut. Klimmek and Wagner [KW96]
generalized the algorithm to hypergraphs, resulting in an algorithm with a running
time of O(n2 log n+ np).

The minimum k-cut problem is NP-hard when k is part of the input [GH94].
For fixed k, the fastest known algorithm solves the problem in Õ(nm2k−3) time for
graphs [Tho08] and Õ(nm2k−2) time for hypergraphs [FPZ19].2 While the optimal
solution for the minimum k-cut problem can be approximated within a factor of 2− 2

k
in polynomial time for arbitrary k on graphs [SV95], there exists no constant factor
approximation for hypergraphs unless P = NP [CL20].

We now turn to the balanced (hyper)graph partitioning problem. The problem
is NP-hard for k = 2 and ε = 0 [GJS76] (also known as the (hyper)graph bisection
problem). However, an O(log n)-approximation for the graph bisection problem
exists [Räc08], whereas the best approximation is within a factor of O(n log5/4 n) for
hypergraphs [RSS18]. Räcke et al. [RSS18] showed that no algorithm can achieve a

2Õ hides polylog arithmetic factors.

15

2 Preliminaries

better approximation ratio than O(n1/4−ε) for the hypergraph bisection problem unless
P = NP . Thus, the hypergraph bisection problem is much harder to approximate
than the graph bisection problem. For k > 2, the existence of a polynomial time
approximation algorithm for the graph partitioning problem is unlikely for ε = 0 [AR04],
while there exists an O(log n)-approximation for ε > 0 [FF15]. In general, it is unlikely
that a polynomial time algorithm exists approximating the optimal solution of the
balanced (hyper)graph partitioning problem within a constant factor for arbitrary k
and ε [Fel13].

2.3 Shared-Memory Programming
This section presents fundamental parallel programming concepts frequently used
throughout this work. This includes the theoretical parallel machine model for analyz-
ing parallel algorithms and the parallelization library Intel TBB used for implementing
our shared-memory (hyper)graph partitioner.

2.3.1 The Theoretical Machine Model
Random Access Machine (RAM). Shepherdson and Sturgis [SS63] proposed an
abstraction from the computer architecture introduced by John von Neumann [Neu45],
which we still use today as an underlying model for analyzing the complexity of sequen-
tial computer programs. The random access machine (RAM) consists of a single pro-
cessing unit and a main memory with an infinite number of cells M [0],M [1],M [2],
For this work, we assume that each memory cell M [i] stores integer values which
can be represented by 64 bits (also called a machine word). Additionally, there are
also a limited number of registers R[0], . . . , R[k]. The RAM model is illustrated in
Figure 2.3 (left). The input for a computer program is stored in the main memory,
and the processing unit executes predefined instructions step-by-step on values stored
in the registers. The results of computations can be transferred between the registers
and main memory via dedicated load and store instructions. In addition, there are
also instructions for arithmetic (addition, subtraction, multiplication, division, . . .)
and logical operations (logical not, or, and, . . .), and (un)conditional branching. The
model assumes that each instruction takes one time unit. Hence, the total running
time of a computer program is the total number of performed instructions.

However, the assumption that each instruction takes one time unit often does not
hold in practice since the RAM model oversimplifies modern hardware architectures.
For example, existing processors contain several arithmetic processing units which can
process independent instructions in parallel (instruction-level parallelism). Moreover,
today’s machines also use a cache hierarchy to accelerate access to frequently used
memory cells. Loading a value from the main memory can be more than orders of
magnitude slower than accessing data from caches [Bin18, see Figure 3.11 on p. 73].
However, incorporating every single implementation detail of modern processors into
the cost model “would end up with a complex model [that is] difficult to handle

16

2.3 Shared-Memory Programming

Processing
Unit

Registers
R[0]

R[1]
. . .

R[k]

Main Memory

RAM

. . .M[0] M[1] M[2] M[3]

Main Memory

PRAM

. . .M[0] M[1] M[2] M[3]

. . .
PE 1 PE 2 PE t

Figure 2.3: Visualization of the RAM and PRAM model. The RAM model
consists of a processing unit that can load values from the main memory into
registers and then perform a predefined set of instructions on them. In the
PRAM model, several processing units have access to the same main memory,
which requires synchronization mechanisms to handle concurrent read and write
accesses.

[and] change with every new processor generation” [San+19]. Thus, the RAM model
provides a simple tool to analyze algorithms in theory. However, algorithm engineers
have to consider the architecture of modern processors in their algorithm design process
as this is equally important in practice.

Parallel Random Access Machine (PRAM). The parallel random access ma-
chine (PRAM) consists of t processing units/elements (PE) sharing a common main
memory over which they can exchange data (see Figure 2.3 (right)).3 The cost model
of RAMs also apply to PRAMs. However, special care must be taken to handle
concurrent reads (R) or writes (W) to the same memory cell. The access can be
either exclusive (E) or concurrent (C). For concurrent write accesses, several models
exist to resolve collisions. The common strategy only overwrites the content of a
memory cell if each PE writes the same value, while the abitrary strategy chooses
one value at random. Moreover, collisions can also be resolved by assigning priorities
to PEs or using a combine operator aggregating values written to the same memory
cell. The memory access model is often given as part of the name of the PRAM
model to describe it sufficiently. For example, common CRCW-PRAM stands for the
concurrent-read concurrent-write PRAM model with the common strategy.

The PRAM model assumes that the instructions of the different PEs are performed
in globally synchronized time steps. This is not realistic in practice. A more practical
PRAM model assumes that each PE processes its instructions asynchronously [Gib89]
and concurrent write accesses are resolved by inserting the new value into a queue
which is then written to the memory cell in first-in first-out fashion [GMR94] (aCRQW-

3The literature denotes the number of processing elements by p, which we already use for the number
of pins of a hypergraph.

17

2 Preliminaries

PRAM: asynchronous concurrent-read queue-write PRAM model). Thus, the write
operation takes time proportional to the number of PEs that concurrently write to
the same memory cell.

The outcome of concurrent write operations is often non-deterministic. There-
fore, modern architectures provide transactional operations in their instruction sets.
A transaction is a set of instructions executed step-by-step, while no other PE is
allowed to write to memory cells accessed by the transaction. We also refer to
a transaction as an atomic operation. In this work, we make use of the atomic
compare-and-swap(M [i], a, b) and fetch-and-add(M [i], a) operation. The former
writes value b to memory cell M [i] if M [i] equals a and subsequently returns true.
Otherwise, it returns false. The latter returns the value stored in memory cell M [i] and
then adds the value a to it. The atomic test-and-set(M [i]) operation is equivalent
to compare-and-swap(M [i], 0, 1). Although many architectures provide hardware sup-
port for a large number of atomic operations, it is often necessary to execute specific
parts of a program as one transaction. This can be achieved via synchronization
mechanisms. In this work, we use spin-locks which we implement by setting a bit via
an atomic test-and-set instruction. The PE succeeding in setting the bit to one
is allowed to execute the protected part of the program, while other PEs spin in a
busy-waiting loop in which they further try to set the bit. However, this serializes the
program and may cause contention on concurrently accessed memory cells, which can
drastically reduce the performance of parallel algorithms.

The PRAM model is a simplified abstraction from parallel machines and allows us to
analyze parallel algorithms. However, the theoretical results often do not match what
we observe in practice since the model largely ignores the complex cache hierarchies
and protocols to keep them synchronized (cache coherence). A limiting factor for the
scalability of parallel algorithms is that the hardware enforces a consistent view on
the shared memory among the private caches of processors. Consequently, overwriting
a cache entry can invalidate cache lines stored in private caches of other PEs. Hence,
achieving perfect speedups is difficult in practice.

2.3.2 The Parallelization Library
We implement all parallel algorithms using the Intel Thread Building Block library
[Phe08] (TBB). TBB “serves two key roles: (1) it fills foundational voids in support for
parallelism where the C++ standard has not sufficiently evolved [...] and (2) it provides
higher-level abstractions for parallelism [...]” [VAR19].

The library exploits task-based parallelism with work-stealing. Figure 2.4 illustrates
its internal task scheduler. An application thread is responsible for spawning (sub)tasks
of parallel computations in a task arena. A task arena contains several slots, each
with a thread-local deque storing incoming tasks. The application thread and idle
threads from the global thread pool then join a slot of a task arena and process the
tasks. Once the local deque of a slot becomes empty, a thread can steal work from the
tail of other deques. If no tasks are left, the threads return to the global thread pool,
and the application thread continues with the execution of the program.

18

2.3 Shared-Memory Programming

T1

Application Thread Global Thread Pool

T2 T3
T4

Task Arena

Slot 1 Slot 2 Slot 3 Slot 4

spawns tasks

T1 T2 T3

joins

joins

joins

Local Deque

. . .

t1
t2

tn

task

steal from tail

next task

Figure 2.4: Visualization of the TBB task scheduler. The application thread
spawns tasks in a task arena. A task arena consists of slots each storing tasks in
a local deque. The threads can join a slot of a task arena and process its tasks.
Once the local deque of a slot becomes empty, a thread can steal tasks from other
slots in the task arena.

It is not deniable that the task scheduler introduces additional overheads. Thus,
TBB might not be the best choice for algorithms with simple loop-based parallelization
patterns. However, it provides many features supportive for implementing complex
parallel algorithms. In this work, we use the concurrent vector and queue implementa-
tion as well as the thread-local storage feature and the scalable allocators. Moreover,
we use low-level interfaces to implement parallel recursion patterns and the task arena
observer pattern to pin threads to CPU cores.

In addition, we use the parallel sort, reduce, and prefix sum algorithms provided by
TBB and our own parallel random shuffle implementation. In the following, we present
the scaling behavior of these operations with an increasing number of threads. In
the experiments, we generate an array A of size N containing 32-bit integer values
and run the operations with t ∈ {1, 4, 16, 64} threads on A. For each operation on a
given array A, we execute ten repetitions and take the arithmetic mean as the total
execution time. We run the experiments on arrays with up to N = 109 entries as this
corresponds to the number of pins/edges of our largest (hyper)graph. The experiments
are performed on machine B (described in Section 2.4.2). Figure 2.5 summarizes the
self-relative speedups Tpar(A, 1)/Tpar(A, t) of the different operations, where Tpar(A, t)
is the execution time of an operation with t threads on a given array A.

Parallel Sorting. For these experiments, we sorted a random permutation of the
numbers from 1 to N . The sort operation exhibits good speedups for t = 4 and
becomes worthwhile on arrays with more than 104 entries. For a larger number of
threads (t ≥ 16), the operation achieves mediocre speedups with 11.12 for t = 64 and
N = 109. We note that there are better parallel sorting algorithms available [Axt+22].
However, we only use the operation to output basic properties of a (hyper)graph (e.g.,
median node degree and net size), which we do not need in experiments.

19

2 Preliminaries

0
1
2
4

8

16

32

64

Sp
ee
d
U
p

0
1
2
4

8

16

32

64

Sp
ee
d
U
p

0
1
2
4

8

16

32

64

Sp
ee
d
U
p

0
1
2
4

8

16

32

64

Sp
ee
d
U
p

Sort Random Shuffle

Reduce Prefix Sum

101 102 103 104 105 106 107 108 109

Number of Elements
101 102 103 104 105 106 107 108 109

Number of Elements

101 102 103 104 105 106 107 108 109

Number of Elements
101 102 103 104 105 106 107 108 109

Number of Elements

4 16 64

Figure 2.5: Speedups of different parallel algorithms used in this work.

Parallel Random Shuffling. We use a block-shuffling scheme that does not guar-
antee uniform randomness but suffices for our purposes. We divide the array into 2t
equally-sized blocks. Each thread then swaps two random blocks and shuffles them
sequentially. In the scalability experiments, we use the operation to obtain a random
permutation of the numbers from 1 to N . The operation shows good speedups also for
a larger number of threads. For t = 64 and N = 108, the speedup is 36.99. However,
the speedups slightly decrease for N = 109. For t = 64 (t = 16) and N = 109, the
total execution time of the parallel random shuffle operation is 0.79s (2.16s), which
we consider negligible for instances with 109 nodes.

Parallel Reduce and Prefix Sum. The parallel reduce operation applies an
aggregation operator on the values of a given array. In the experiments, we compute
the total sum of all entries of array A. The parallel prefix sum operation computes for
each entry j the prefix sum

∑j
i=1 A[i]. For both experiments, each entry of array A

contains either 0 or 1 chosen uniformly at random. As it can be seen in Figure 2.5
(bottom), both operations do not exhibit good speedups. For smaller array sizes, we
also observe some slowdowns. However, both operations are extremely fast. The
total execution time of the parallel reduce and prefix sum operation is 0.03s and 0.09s

20

2.4 Experimental Design

for t = 64 and N = 109. Hence, their running times are negligible for most of the
algorithms in which we use them.

2.4 Experimental Design
In this work, we extensively evaluate different configurations of our algorithm and
present a large comparison of 25 partitioning algorithms. This section explains
the experimental setup for these experiments. We start with a description of the
different benchmark sets. We divide them into sets containing medium-sized and
large (hyper)graph instances. We use the former to evaluate sequential partitioning
algorithms, while the latter is used for comparisons to parallel systems. We then
define the experimental setup, including the specification of the used machines and the
parameters used as input for partitioning the (hyper)graphs of the different benchmarks
sets (e.g., number of blocks k, imbalance factor ε, number of repetitions per instance).
We further explain how we aggregate and visualize different performance indicators to
compare partitioning algorithms (solution quality, running times, and speedups). We
conclude this section with a note on statistical significance testing.

2.4.1 Benchmark Sets
In this dissertation, we evaluate sequential and parallel graph and hypergraph par-
titioners. Parallel algorithms are used when the running time of sequential codes
becomes prohibitive. Thus, we assembled several benchmark sets divided into medium-
sized (M) and large (L) instances. We abbreviate the name of a benchmark set, for
example, with LHG. The baseline denotes the size of the instances in the benchmark
set, while the subscript indicates whether it contains hypergraphs (HG) or graphs (G).
Furthermore, we evaluate different parameter choices of our new partitioner for which
we assembled two parameter tuning benchmark sets MP and LP, which are subsets of
set MHG and LHG (i.e., MP ⊂ MHG and LP ⊂ LHG). In the following, we describe
the sources and composition of the different benchmark sets in more detail.4 The
properties of the different instances are summarized in Figure 2.6.

Hypergraph Instances. Our instances are derived from four sources encompass-
ing three application domains: the ISPD98 VLSI Circuit Benchmark Suite [Alp98]
(Ispd98), the DAC 2012 Routability-Driven Placement Contest [Vis+12] (Dac2012),
the SuiteSparse Matrix Collection [DH11] (Spm), and the international SAT Competi-
tion 2014 [Bel+14] (Sat14).

We translate sparse matrices to hypergraphs using the row-net model [CA99]. Here,
rows correspond to nets and columns to nodes. A non-zero entry in a cell (i, j) means
net i contains node j as a pin. We transform each satisfiability instance into three
hypergraph representations: Literal, Primal, and Dual. In the Literal model,

4We made all benchmark sets and detailed statistics of their properties publicly available from
https://algo2.iti.kit.edu/heuer/dissertation/.

21

https://algo2.iti.kit.edu/heuer/dissertation/

2 Preliminaries

10

100

1K

10K

100K

1M

10M

100M

1B

10B

|V | |E| |P | |̃e| ∆e d̃(v) ∆v

Set MP Set MHG Set MG

Set LP Set LHG Set LG

Figure 2.6: Summary of different properties for our benchmark sets. It shows
for each (hyper)graph (points), the number of nodes |V |, nets |E| and pins |P |
(for graphs the number of pins are 2|E|), as well as the median and maximum net
size (|̃e| and ∆e) and node degree (d̃(v) and ∆v).

each literal represents a node (each variable a induces two nodes: a and ¬a), and
each clause corresponds to a hyperedge, while Primal instances represent variables as
nodes [PM07]. In the Dual model, clauses correspond to nodes, while the variables
form the hyperedges spanning the clauses in which they are contained [MP14].

For comparison with sequential partitioners, we use the well-established benchmark
set of Heuer and Schlag [HS17a], which contains 488 hypergraphs (set MHG). In a later
publication [ASS18], they proposed a subset MP of set MHG with 100 hypergraphs,
which we use for parameter tuning experiments.

To evaluate parallel hypergraph partitioners, we assembled a new benchmark set
composed of 94 large hypergraphs (set LHG). The benchmark set contains the 24
largest Sat14 instances from set MHG, which we enhanced with 18 even larger
Sat14 instances from Ref. [Bel+14]. We also included 42 sparse matrices with at least
15 million non-zeros, randomly sampled from the SuiteSparse Matrix Collection [DH11].
Furthermore, we added all Dac2012 instances from set MHG. For parameter tuning
experiments, we use a subset LP of set LHG composed of the 15 smallest Spm instances
and the 5 smallest Dac2012, Literal, Primal and Dual instances, respectively.

Table 2.1 shows the number of instances included from the different sources and the
largest hypergraph of each benchmark set. The largest instance of set LHG (sk-2005)

22

2.4 Experimental Design

Table 2.1: The number of hypergraphs included from the different sources and
the largest instance of each benchmark set.

Type Set MHG Set LHG Set MP Set LP Source
Spm 184 42 32 15 [DH11]
Ispd98 18 - 10 - [Alp98]
Dac2012 10 10 4 5 [Vis+12]
Sat14 - Primal 92 14 18 5 [Bel+14]
Sat14 - Literal 92 14 18 5 [Bel+14]
Sat14 - Dual 92 14 18 5 [Bel+14]
Total 488 94 100 35
Largest Instance (Pins) ≈ 97M ≈ 2B ≈ 17M ≈ 34M

Table 2.2: The number of graphs included from the different sources and the
largest instance of each benchmark set.

Type Set MG Set LG Source
Dimacs 114 16 [Bad+13]
Social Networks 30 16 [LK14; Lab]
Random Graphs 15 15 [KGB15; Fun+18]
Spm 3 6 [Wil+07; DH11]
Dac2012 10 - [Vis+12]
Total 172 53
Largest Instance (Edges) ≈ 47M ≈ 1.8B

has roughly 2 billion pins. As can be seen in Figure 2.6, the median number of pins of
the hypergraphs in set MHG is ≈ 1.4 million, while the instances of set LHG are more
than an order of magnitude larger on average (median number of pins is ≈ 37 million).

Graph Instances. Our graph benchmark sets are composed of instances from the
10th DIMACS Implementation Challenge [Bad+13] (Dimacs), the Stanford Large
Network Dataset Collection [LK14] and the Laboratory for Web Algorithms [Lab]
(Social Networks), the DAC 2012 Routability-Driven Placement Contest [Vis+12]
(Dac2012), and the SuiteSparse Matrix Collection [Wil+07; DH11] (Spm). Moreover,
we included several randomly generated graphs [KGB15; Fun+18] (Random Graphs).

For comparison with sequential partitioners, we use the benchmark set of Gottes-
büren et al. [Got+21e] (set MG), which was initially assembled to evaluate the
shared-memory graph partitioner KaMinPar. The benchmark set contains 195 graphs
from which we excluded the 39 largest instances (considered too large for sequential
algorithms). We additionally included 16 new graphs from the Stanford Large Network
Dataset Collection [LK14] since we found that social networks were underrepresented

23

2 Preliminaries

after excluding the largest graphs. In total, the benchmark set contains 172 graphs.
For comparison with parallel partitioners, we use the benchmark set of Ahkremt-

sev [Akh19] (set LG), which was initially assembled to evaluate the shared-memory
graph partitioner Mt-KaHIP. The benchmark set contains 42 large graphs from which
we excluded 4 instances since they were used to evaluate external memory algorithms
and are too large to fit into the main memory of a single machine. However, we en-
hanced the benchmark set with 15 out of the 39 excluded graphs from set MG (the other
24 insances were already contained in the benchmark set). In total, the benchmark
set contains 53 large graphs.

Table 2.2 shows the number of instances included from the different sources. The
largest instance (sk-2005) of set LG has roughly 1.8 billion edges. In Figure 2.6,
we see that the medium-sized and large benchmark sets for graph and hypergraph
partitioning have similar properties when comparing the number of edges and pins.

2.4.2 Methodology
Systems. We use a cluster of Intel Xeon Gold 6230 processors (2 sockets with 20
cores each) running at 2.1 GHz with 96GB RAM (machine A) for comparison with
sequential partitioners on our medium-sized benchmark sets. Experiments running on
our large benchmark sets are done on an AMD EPYC Rome 7702P (1 socket with 64
cores) running at 2.0–3.35 GHz with 1024GB RAM (machine B).

Setup. We implemented all algorithms presented in this work in the shared-memory
hypergraph partitioner Mt-KaHyPar5, which is implemented in C++17, parallelized
using the TBB parallelization library [Phe08], and compiled using g++9.2 with the flags
-O3 -mtune=native -march=native.

Unless otherwise mentioned, we run experiments on our different benchmark sets
using the partitioning setup shown in Table 2.3. We restrict the paramater space for
experiments on our large benchmark set and machine B due to limited computational
resources, which ensures that they run in a reasonable time frame. We run parallel
partitioners with 10 threads when we evaluate them on our medium-sized benchmark
sets and machine A. For experiments on machine B, we use all 64 available cores. For
parallel partitioners we add a suffix to their name to indicate the number of threads
used, e.g. Mt-KaHyPar 64 for 64 threads. We omit the suffix for sequential partitioners.

Aggregating Performance Numbers. The input for the balanced hypergraph
partitioning problem consists of a hypergraph H, the number of blocks k, and an
imbalance factor ε. We call a tuple (H, k, ε) an instance. Each hypergraph partitioner
optimizes the connectivity metric, and each graph partitioner optimizes the edge cut
metric. We also refer to the connectivity or edge cut of a k-way partition as its solution
quality.

For each instance, we aggregate running times and the solution quality using the
arithmetic mean over all seeds. We use the geometric mean for absolute running times

5Mt-KaHyPar is publicly available from https://github.com/kahypar/mt-kahypar.

24

https://github.com/kahypar/mt-kahypar

2.4 Experimental Design

Table 2.3: Default partitioning setup for experiments conducted on our medium-
sized (left) and large benchmark sets (right)

Set MHG/ MP/ MG Set LG/ LP/ LG

Number of Blocks k ∈ {2, 4, 8, 16, 32, 64, 128} k ∈ {2, 8, 16, 64}
Imbalance ε = 3% ε = 3%
Repetitions per Instance/Seeds 10 3
Time Limit 8 hours 2 hours
Machine A B
Number of Used Cores 10 64
(only for parallel partitioners)

and self-relative speedups to further aggregate over multiple instances. If all runs of
an algorithm produced imbalanced partitions or ran into the time limit on an instance,
we consider the solution as infeasible. In plots, we mark imbalanced solutions with 7
and similarly instances that timed out with U. Runs with imbalanced partitions are
not excluded from aggregated running times. For runs that exceeded the time limit,
we use the time limit itself in the aggregates.

When we compare two algorithms A and B with geometric mean running times
tA and tB, we use the relative slowdown x = tB

tA
as a measure for running time

improvements. If x > 1, we say that A is faster than B by a factor of x on average.
For comparing the solution quality of two algorithms A and B, we use the median
improvement of A over B. Let I = {I1, . . . , In} be the set of test instances and
qX(I) the solution quality of an algorithm X produced for an instance I ∈ I. Then,
we compute the sequence s = 〈 qB(I1)

qA(I1)
, . . . , qB(In)

qA(In)
〉 and use the median improvement

x = (median(s) − 1) · 100 (in percentage) as measure for improvements in solution
quality. If x is positive, we say that A produces better partitions than B by x% in the
median. Note that the running times of different partitioning algorithms can vary by
more than an order of magnitude, while improvements in solution quality typically
differ only by a few percentages. Thus, we use the median improvement for comparing
solution quality since it is less sensitive to outliers.

We use self-relative speedups Tpar(I, 1)/Tpar(I, t) for analyzing the scalability of
a parallel algorithm [San+19, p. 62]. Here, Tpar(I, t) is the execution time of the
algorithm with t threads for a given input instance I.

2.4.3 Visualizing Solution Quality
Performance Profiles. Performance profiles can be used to compare the solution
quality of different algorithms [DM02]. Let X be the set of all algorithms, I the set of
instances, and qA(I) the quality of algorithm A ∈ X on instance I ∈ I (qA(I) is the
arithmetic mean over all seeds). For each algorithm A, performance profiles show the
fraction of instances (y-axis) for which qA(I) ≤ τ · Best(I), where τ is on the x-axis

25

2 Preliminaries

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2101 103 7 U
Quality Relative to Best [τ]

A B C D

1 1.05 1.1 1.5 2 101 102 U
Quality Relative to Best [τ]

A B

Figure 2.7: Performance profiles comparing four different algorithms (left) and
the result of the effectiveness test between algorithm A and B (right).

and Best(I) := minA′∈X qA′(I) is the best solution produced by an algorithm A′ ∈ X
for an instance I ∈ I. For τ = 1, the y-value indicates the percentage of instances
for which an algorithm A ∈ X performs best. Achieving higher fractions at smaller τ
values is considered better. The 7- and U-tick indicates the fraction of instances for
which all runs of that algorithm produced an imbalanced solution or timed out. Note
that these plots relate the quality of an algorithm to the best solution and thus do
not permit a full ranking of three or more algorithms.

Figure 2.7 (left) compares the solution quality of four different algorithms using a
performance profile. Algorithm A and C compute on roughly 40% of the instances
the best solutions while algorithm B and D only on 10% (see τ = 1). The solutions
produced by algorithm A are worse than the best by ≈ 4% in the median (intersection
of y = 0.5 with the red line is at τ ≈ 1.04). If we compare algorithm C and D based on
their geometric mean solution quality, we would observe that the solutions produced
by algorithm C are better than those of D by 0.2% on average. Hence, we would
probably conclude that there is no significant difference between both. If we look at
the performance profile, we see that algorithm C is on most of the instances closer to
the best solution than D. However, it produces on ≈ 10% of the instances solutions
that are worse than the best by more than a factor of two, which has large influence
on its geometric mean (see green line for τ ≥ 2).

Effectiveness Tests. The performance profile in Figure 2.7 (left) suggests that
algorithm B produces solutions better than those of A. Let us assume that algorithm
A is more than an order of magnitude faster than B on average. Thus, algorithm B
may have an unfair advantage due to its longer running time. Therefore, Ahkremtsev
et al. [ASS17] introduces effectiveness tests to compare solution quality when two
algorithms are given a similar running time by performing additional repetitions with
the faster algorithm. To do so, we generate virtual instances that we compare using
performance profiles. Consider two algorithms A and B, and an instance I. We first

26

2.4 Experimental Design

104

10−1

1

101

102

103

7
U

R
el

.
sl

ow
do

w
n

to
A

0

1
2

4

8

16

32

64

Sp
ee

du
p

0 1000 2000 3000 3416
Instances

B C D

101 102 103 104

Single-Threaded Time of Component [s]

4 16 64

Figure 2.8: The relative running time plot compares the execution times of three
algorithms B, C and D relative to a baseline algorithm A (left) and the speedup
plot shows self-relative speedups of a parallel algorithm with an increasing number
of threads (right).

sample one run of both algorithms for instance I. Let t1A, t
1
B be their running times

and assume that t1A ≤ t1B. We then sample additional runs without replacement for A
until their accumulated time exceeds t1B or all runs have been sampled. Let t2A, . . . , t

l
A

denote their running times. We accept the last run with probability (t1B−
∑l−1

i=1 t
i
A)/t

l
A

so that the expected time for the sampled runs of A equals t1B. The solution quality
is the minimum out of the sampled runs. For each instance, we generate 10 virtual
instances.

Figure 2.7 (right) shows the result of the effectiveness test for algorithm A and B
using a performance profile. The plot shows that there is no significant difference
between both algorithms when both are given the same amount of time to compute a
solution for each instance.

2.4.4 Visualizing Running Times and Speedups
Running Times. Figure 2.8 (left) compares the execution times of three algorithms
B, C and D relative to a baseline algorithm A. The plot shows the slowdown of
an algorithm relative to a baseline algorithm for each instance sorted in increasing
order. We can see on how many instances the baseline algorithm is faster than another
algorithm, and it also gives a good intuition for the magnitude of the improvements.
Since the plot does not reveal any information on absolute execution times, we report
geometric mean running times in the text when discussing these plots.

Speedups. Figure 2.8 (right) shows self-relative speedups of a parallel algorithm
with an increasing number of threads. In the plot, we represent the speedup of each
instance as a point and the centered rolling geometric mean with a window size of 25 as
a line. The x-axis shows the single-threaded running time of the algorithm. In contrast

27

2 Preliminaries

to many other publications in the parallel partitioning community, we do not correlate
speedups to any of the common (hyper)graph metrics (such as the number of pins).
We found that the running time often depends on a variety of different factors (e.g.,
pruning rules, sparsification techniques, or events that trigger repetitions). Fitting
suitable parameters for a combination of the metrics seem much more complicated
than plotting against sequential running time, which is often nicely correlated with
speedups. Furthermore, the longer an algorithm runs sequentially, the more important
is an efficient parallelization to achieve reasonable running times.

2.4.5 Statistical Significance Tests
In the performance profile in Figure 2.7 (left), it is not immediately obvious whether
or not algorithm B performs better than C since both performance lines are close to
each other. In this work, we use the Wilcoxon signed-rank test [Wil92] to determine
whether the differences between partitioners with similar quality are statistically
significant. At a 1% significance level (p ≤ 0.01), a Z-score with |Z| > 2.576 is deemed
significant [CS09, p. 180].

However, there is an ongoing controversy regarding statistical significance test-
ing [Nuz14; WL16; MWS17; BD19; KW19]. These tests decide if the difference
between two measurements is statistically significant but do not reveal any information
on whether or not the difference is relevant in practice [Ang+19]. We therefore only
use the Wilcoxon signed-rank test to show that the difference between two algorithms
is not statistically significant.

28

3Chapter 3

Related Work

This chapter gives an overview of existing algorithms for the (hyper)graph partition-
ing problem, focusing on techniques used in well-established sequential and parallel
partitioning algorithms. Most of these algorithms are based on the multilevel paradigm
as it provides an excellent tradeoff between solution quality and running time. We
carefully analyze and describe the core components of these systems and identify
techniques essential for achieving high solution quality. We also explain the main
parallelization challenges and compare the best sequential and parallel partitioning sys-
tems in a short experimental evaluation demonstrating that parallel systems currently
do not achieve the same solution quality as the highest-quality sequential algorithms.
This will provide us with a starting point for our research, as the detailed analysis will
reveal techniques for which there is no efficient parallelization or where compromises
have been made.
Excluded Topics. The goal of this chapter is to provide an overview of techniques
used in multilevel partitioning algorithms essential for achieving high solution quality
in a reasonable amount of time. We therefore do not cover techniques that favor
speed over solution quality, often omitting the multilevel paradigm and thus produce
partitions of low quality. This excludes streaming partitioning algorithms [Tso+14;
PGK19; FS21; JSA21], geometric partitioning algorithms [BB87; Sim91; Wil91;
TN94; MK98; Dev+16; LTM18], and flat partitioning algorithms [Rah+13; ABM16;
SMR16; Mar+17; Slo+17] that directly partition the input (hyper)graph into k blocks.
Furthermore, we are interested in algorithms that can be applied on (hyper)graphs
with up to one billion pins/edges. Hence, we do not discuss techniques with high
running times for instances at that scale, such as evolutionary algorithms [BM94; AY04;
KKM04; SWC04; Arm+10; BH11a; SS12; ASS18], diffusion-based techniques [MMS08;
MMS09; Mey12], or spectral partitioning [DH72; Bar82; BS93].

We refer the reader to survey articles [AK95; KAV04; PM07; BS11; Bul+16;
Çat+22a] for a comprehensive overview on the (hyper)graph partitioning literature.
Especially noteworthy is the dissertation of Schlag [Sch20], who presents the most recent
and comprehensive overview of partitioning techniques from a historical perspective.
Outline. We start this chapter with a detailed discussion of the two most prominent
local search algorithms in Section 3.1 – namely the Kernighan-Lin [KL70] and Fiduccia-
Mattheyses algorithm [FM82]. We then turn to flow-based refinement in Section 3.2,
which is considered the most powerful improvement heuristic for (hyper)graph parti-
tioning. Section 3.3 introduces the multilevel paradigm and discusses the algorithmic
components of existing sequential multilevel algorithms. We conclude this chapter

29

3 Related Work

with an overview of the parallel partitioning literature in Section 3.4 with a particular
focus on parallelization challenges and the building blocks of state-of-the-art parallel
partitioning systems.

References. This chapter contains text passages from our conference publica-
tions [Got+21a; HMS21a; GHS22a; Got+22a], technical reports [Got+21c; GHS22c]
and from a survey article [Çat+22a] in which we were involved as co-authors. However,
most of it was written exclusively for this dissertation.

3.1 Iterative Improvement Algorithms
A widely-used algorithmic approach for optimization problems starts with an initial
feasible solution and then iteratively improves it by exploring neighboring solutions
until a local optimum is found. For the (hyper)graph partitioning problem, such
algorithms move nodes across partition boundaries and accept the new solution if it
improves the underlying objective function. Most early partitioning algorithms were
based on this scheme until the multilevel paradigm was introduced in the mid-1990s.
In their seminal work, Kernighan and Lin [KL70] proposed an iterative improvement
algorithm “what is often described as the first good graph bisection heuristic” [AK95].
The algorithm exchanges node pairs between the two blocks based on their gain values.
It also performs node moves that intermediately worsen the solution quality and
therefore is able to escape from local optima. Fiduccia and Mattheyses [FM82] (FM
algorithm) then further improved the algorithm by moving one node in each step
instead of exchanging node pairs. In addition, the FM algorithm runs in linear time
by using a novel data structure for maintaining the gain values of node moves. We
describe both algorithms in more detail in the following since they are still used in
many variations in today’s partitioning systems.

3.1.1 Kernighan-Lin Algorithm
Kernighan and Lin [KL70] presented the first effective local search algorithm for the
graph bisection problem that asks for a bipartition Π = {V1, V2} with |V1| = |V2|.
The general idea is that a bisection Π = {V1, V2} can be transformed into an optimal
solution ΠOPT = {V ∗

1 , V
∗
2 } by exchanging the nodes of X := V1 \V ∗

1 and Y := V2 \V ∗
2

between the two blocks of Π. However, identifying X and Y is NP-complete [KL70].
Thus, the algorithm approximates both sets by repeatedly pairing two nodes u ∈ V1

and v ∈ V2 that yield the largest edge cut reduction when both are moved to their
opposite block. We refer to such an operation as an exchange operation.

The Algorithm. The Kernighan-Lin algorithm works in passes. At the beginning
of each pass, the algorithm computes the gains gu(V2) for all nodes u ∈ V1 that
corresponds to the reduction of the edge cut when u is moved to block V2 (for all nodes
v ∈ V2 analogously). Furthermore, each node is either locked or unlocked. Initially, all
nodes are unlocked. In each pass, the algorithm repeatedly pairs two unlocked nodes

30

3.1 Iterative Improvement Algorithms

u ∈ V1 and v ∈ V2 leading to the largest edge cut reduction when both are exchanged.
Subsequently, the algorithm performs the exchange operation, sets the state of u and
v to locked, and updates the gains of the remaining unlocked nodes. A pass ends when
all nodes are locked. The gain of exchanging u and v is gu(V2) + gv(V1) − 2ω(u, v).
Since both individual gains assume that edge {u, v} can be removed from the cut,
we subtract 2ω(u, v). The algorithm reverts to the best seen solution at the end of
each pass by determining the index l that maximizes the partial sum

∑l
i=1 gi where

gi is the gain of the i-th exchange operation. The algorithm then continues with
the next pass until it converges (i.e., l = 0). Note that it also performs moves that
intermediately worsen the edge cut (gi < 0). Thus, it can escape from local optima to
some extent.

The algorithm can be extended to optimize the edge cut of k-way partitions by
scheduling the bipartitioning algorithm on adjacent block pairs [KL70]. The algorithm
performs several iterations over all block pairs. In later iterations, it only considers a
block pair (Vi, Vj) if either Vi or Vj changed in a previous iteration. Schweikert and
Kernighan [SK72] generalized the algorithm to hypergraph partitioning.

Running Time. Kernighan and Lin [KL70] use an adjacency matrix to represent a
graph. Thus, the initial gain computation scans all entries of the adjacency matrix,
which can be done in O(n2) time. In each pairing step, the algorithm sorts the gains
of the nodes in block V1 and V2 separately in decreasing order. In general, finding the
two nodes u ∈ V1 and v ∈ V2 that yield the largest edge cut reduction has a running
time of O(n2) (even if both lists are sorted). The operation can be implemented
by fixing a node of block V1 and then scanning down the sorted list of block V2.
However, Kernighan and Lin [KL70] noted that the scan could be aborted rapidly
if it finds a pair whose exchange gain does not exceed the maximum gain seen so
far. Hence, the running time of the scan is dominated by the sorting step, which
is an O(n log n) operation. After an exchange operation, the algorithm updates the
gains of the remaining unlocked nodes. For each node x ∈ V1, it adds 2ω(x, u) and
subtracts 2ω(x, v) from gx(V2). The gain updates for all nodes y ∈ V2 can be done
analogously. Therefore, the running time to update the gains of all unlocked nodes
is O(n). Determining the maximum index l that maximizes

∑l
i=1 gi at the end of

each pass is a linear time operation. In each pass, the algorithm performs n exchange
operations. Thus, the overall running time of a pass is O(n2 log n). The number of
edges bounds the number of passes. However, several experimental studies report that
the algorithm converges within a constant number of passes [KL70; DK85; Dut93].

Dutt [Dut93] reduced the running time of the algorithm toO(mmax(log(n),∆u)) per
pass where ∆u is the maximum node degree of the input graph. The implementation
uses an adjacency list to represent the graph, allowing more efficient gain computations
and updates. Furthermore, the pairing step only considers the first d(u) + 1 values of
the sorted list of V2 for a node u ∈ V1 since we can abort the scan if we encounter the
first non-adjacent node of u. The algorithm also uses an AVL tree [AHU74] to keep
the gain values sorted.

31

3 Related Work

3.1.2 Fiduccia-Mattheyses Algorithm
The Kernighan-Lin algorithm was the first effective local search heuristic for the
graph bisection problem that was able to escape from local optima. However, it also
has several disadvantages. In order to handle weighted instances, Kernighan and
Lin [KL70] replaced each node u ∈ V with c(u) auxiliary nodes and connected them
to a clique with edges of appropriately high cost such that it is unlikely that a good
bisection will cut these edges. However, this transformation significantly increases
the size of the graph, and a bisection can cut some of the high-cost edges. Moreover,
the algorithm only performs moves that preserve the balance, while the definition of
the traditional (hyper)graph partitioning problem allows some leeway in the block
weights. Lastly, and most importantly, the main drawback is its high computational
complexity.

To this end, Fiduccia and Mattheyses [FM82] presented the first linear time local
search heuristic (FM algorithm) for the hypergraph partitioning problem that over-
comes the drawbacks of the Kernighan-Lin algorithm. The FM algorithm proceeds also
in passes, but it moves only one node at a time instead of exchanging nodes in each
step. The algorithm achieves a running time of O(p) per pass by using a priority queue
specifically tailored to the hypergraph partitioning problem. The algorithm is still
used in many variations in existing partitioning algorithms. In this dissertation, we
present the first fully-parallel direct k-way formulation of the FM algorithm. Therefore,
we will explain the core algorithm that operates on bipartitions, extensions to k-way
partitioning, and some variations of the algorithm that we use in our work.

The Problem. Unlike many other techniques in the partitioning context, the FM
algorithm was originally developed for hypergraphs with node weights and unit
hyperedge weights (adaption to non-uniform hyperedge weights is straightforward,
as explained later). It improves the cut-net metric of a bipartition Π = {V1, V2}. A
bipartition is considered balanced if block V1 satisfies

r · c(V)−max
u∈V

c(u) ≤ V1 ≤ r · c(V) + max
u∈V

c(u)

for some imbalance parameter 0 < r < 1. Adding the maximum node weight to the
balance definition ensures that a node can always be moved to either V1 or V2.

The Algorithm. The FM algorithm proceeds in passes similarly to the Kernighan-
Lin algorithm. Initially, it computes the gains gu(V2) and gv(V1) of all nodes u ∈ V1

and v ∈ V2 and inserts them into two separate priority queues (PQ), each representing
one block of the bipartition. The nodes contained in the PQs are free to move to their
opposite block. Once a node is moved, it is locked in its current block until the end of
the pass. In each pass, the algorithm repeatedly selects the move with the highest
gain, performs it, and updates the gain of all free neighbors. A pass ends when all
nodes are locked, or the balance constraint prevents further node moves. Subsequently,
the algorithm reverts to the best seen solution and continues with the next pass until
no further improvements are possible.

32

3.1 Iterative Improvement Algorithms

pmax

C

0

gmax

−gmax

u1 u2

u4

u6 u8

u1 u2 u3 u4 u5 u6 u7 u8 un

Figure 3.1: Illustration of the bucket priority queue data structure used in the
FM algorithm.

Since the FM algorithm operates on hypergraphs with node weights, it must ensure
that the move with the highest gain does not violate the balance constraint. Note that
if both PQs are non-empty, there is always a node that can be moved to its opposite
block due to the definition of the balance constraint. The algorithm first selects the
node moves with the highest gain and then rejects moves that would result in an
imbalanced bipartition. Among the remaining moves, it chooses the one leading to
the best balance. A tie-breaking scheme can be used if there is still more than one
candidate.

A time-consuming part of the algorithm is maintaining the gain values in a pass.
Fiduccia and Mattheyses [FM82] use delta gain updates to update the gain values of all
neighbors of a node u that moved from a block Vi to Vj . The update procedure iterates
over all nets e ∈ I(u) and decides whether or not the gains of the remaining free pins
of e have to be updated based on the pin count values Φ(e, Vi) and Φ(e, Vj). They
showed that only four cases trigger a gain update, and updates occur at most four
times per net and pass. Since, as we will see in the next paragraph, the PQ provides
amortized constant time operations for all required operations of the algorithm, the
overall running time of a pass is O(p).

Bucket Priority Queue. The bucket priority queue data structure uses the obser-
vation that the maximum node degree ∆u (assuming unit hyperedge weights) bounds
the highest possible gain value gmax of a node move. The data structure then uses
2gmax + 1 gain buckets, each representing a gain value in the range [−gmax, . . . , gmax].
Each bucket stores node moves with a particular gain value in a doubly-linked list.
Furthermore, it uses an array C of size n storing handles to the entries in the doubly-
linked lists for each node. Additionally, a pointer pmax points to the bucket containing
the node moves with the highest gain. Figure 3.1 illustrates the data structure.

Inserting a node into the bucket priority queue entails inserting it at the end of
the doubly-linked list of its corresponding gain bucket and storing a handle to it in

33

3 Related Work

C. Updating a gain value of a node move can be done by identifying the node over
its handle in C, removing it from its current doubly-linked list and inserting it into
its new gain bucket. Removing a node can be done similarly. The node moves with
the highest gain can be identified via pmax. The pointer pmax is updated if a node
is inserted with a gain value greater than pmax. If the bucket to which pmax points
to becomes empty, we linearly scan downwards to find the next non-empty bucket.
Fiduccia and Mattheyses [FM82] showed that the time required to update pmax is in
O(p) per pass.

This result does not hold for hypergraphs with hyperedge weights since the highest
gain value is then bounded by ∆u ·maxe∈E ω(e). More recent FM implementations
therefore switched to binary heaps [OS10; SS11; Sch+16a]. Schlag [Sch20, p. 154]
compared both approaches and concluded that binary heaps are slightly faster than
bucket priority queues for weighted instances. In his experiments, he used a space-
efficient bucket priority queue implementation for weighted hypergraphs that were
proposed by Papa and Markov [PM07]. The implementation uses a binary search tree
maintaining the distinct gain values and a hash table storing the gain buckets.

Extensions to k-way Partitioning. Sanchis [San93] and Hendrickson and Le-
land [HL95] proposed a variant of the FM algorithm for k-way partitioning using
k(k − 1) bucket priority queues (one for each move direction). Additionally, it uses a
binary heap storing the node moves with the highest gain of each bucket priority queue
(PQ). Cong and Lim [CL98] showed that the k-way FM algorithm of Sanchis [San93]
is outperformed by a 2-way FM implementation that obtains a k-way partition via
recursive bipartitioning. They noted that due to the high degree of flexibility, the
k-way FM algorithm tends to make wrong decision and increases the probability of
getting stuck in a local minima. Moreover, the algorithm has a space complexity of
O(nk(k − 1)), which makes it impractical for larger problem instances.

To this end, Cong and Lim [CL98] presented the K-PM algorithm that reduces
the k-way partitioning problem to sets of concurrent bipartitioning problems. At
the beginning of a FM pass, the algorithm computes a matching between the blocks
of the partition and then only allows node moves between paired blocks. Thus, it
requires only k PQs. Zien et al. [ZCS97] proposed the Rotary KLFM algorithm that
splits each FM pass into k phases. In each phase, one block is chosen as the target
block, and then it considers only moves to and out of that particular block. This
results in 2(k − 1) possible move directions. Osipov and Sanders [OS10] use k PQs in
their FM implementation. Each PQ represents one block and stores node moves to
that particular block. Sanders and Schulz [SS10; SS11] reduced this to a single PQ
considering only the move with the highest gain for a node.

Stopping Rules. The Kernighan-Lin and FM algorithm continue a refinement pass
until all nodes are moved to their opposite block or the balance constraint prevents
further node moves. Techniques reducing the complexity of a pass are based on the
idea of aborting a pass early when further improvements become unlikely. Gilbert
and Zmijewski [GZ87] abort a pass when the sum of the observed gain values is
less than −∆u or when the algorithm performs ∆u consecutive negative gain moves.

34

3.2 Flow-Based Refinement

Hendrickson and Leland [HL95] terminate when the difference between the best solution
seen so far and the current solution becomes too large. Karypis and Kumar [KK98c]
abort when the last x node moves have not improved the overall edge cut. Osipov
and Sanders [OS10] use an adaptive stopping rule. They assume that the observed
gain values of the last p node moves follow a normal distribution with expectation
µ and variance σ2. Then they argue that it is unlikely to find further improvements
if pµ2 > ασ2 + β where α and β are tuning parameters. The parameter β (= log n)
avoids that a local search stops after a few steps. Schlag [Sch20, p. 155] showed that
his FM implementation with the adaptive stopping rule is an order of magnitude faster
than the stopping rule of Karypis and Kumar [KK98c] with x = 350.

Highly-Localized FM Searches. The FM algorithm chooses the node move with
the highest gain in each step. If there are several feasible moves with the same gain
value, one node must be chosen using a tie-breaking scheme. Hagen et al. [HHK97]
evaluated the following tie-breaking strategies to choose the best move from the highest
gain bucket: pick a random node move, select the node move inserted last (LIFO) or
first (FIFO) into the gain bucket. It seems that this is only a minor implementation
detail, but the LIFO significantly outperformed the FIFO and random tie-breaking
strategy. Hauck and Borriello [HB97] gave a possible explanation for this behavior.
After a node is moved, the gains of some of its neighbors are updated. A gain update
requires removing it from its current bucket and inserting it at the tail of the new
bucket. This makes it more likely that the algorithm will move neighbors of an already
moved node next. Thus, the search expands around moved nodes, which seems to be
beneficial.

The graph partitioner KaFFPa [SS10; SS11] implements a highly-localized version of
the FM algorithm using a single PQ initialized with a single node and its neighbors.
The search then gradually expands around the seed nodes by inserting neighbors of
moved nodes into the PQ. The algorithm uses the adaptive stopping rule of Osipov
and Sanders [OS10] to abort a search early. Afterwards, a new seed node is used to
start the next search. The expansion step only considers boundary nodes that were
previously not touched by another search. A pass ends when there are no remaining
seed nodes left. This procedure is then repeated for a constant number of passes. We
present a parallel version of this algorithm in this work and will later refer to it as the
multi-try k-way FM algorithm.

3.2 Flow-Based Refinement
The previously presented local search algorithms greedily move nodes to different
blocks according to a gain value. The gain of a node move depends on its local
neighborhood. However, there are situations where the optimal move sequence does
not follow a greedy pattern.

35

3 Related Work

V1 V2

gu(V2) = 2

gv(V1) = 1

gw(V1) = 0

w

v

u

Lmax = 6

V1 V2

gu(V2) = 0

gw(V1) = 0

w

v

u

Figure 3.2: Illustration of a situation where the FM algorithm makes a subopti-
mal decision. The node u can not be moved to block V2 as this would result in
an imbalanced bipartition.

Figure 3.2 illustrates a situation where the FM algorithm makes a suboptimal
decision. Clearly, moving node u to block V2 yields the largest edge cut reduction,
but would result in an imbalanced bipartition (c(V2) + c(u) = 7 > 6 = Lmax).
Therefore, the FM algorithm moves the node with the highest gain of block V2

to V1, which is node v with gv(V1) = 1. This locks v in block V1 and prevents
further improvements in the current pass. However, moving w instead of v would
enable the move of u to V2 and reduce the edge cut by 2 (instead of 1).

For hypergraphs, the presence of large nets makes it especially difficult to find mean-
ingful moves [Saa95]. A net e contributes positively to the gain of a node u, e.g., for
the cut-net or connectivity metric, if and only if u is the last remaining pin of e in
its current block. Thus, for hypergraphs with large nets, many of the moves have
zero gain, and the outcome of local search algorithms depends mainly on tie-breaking
decisions.

It seems natural to use the max-flow min-cut theorem [FF56] to overcome the
limitations of existing move-based local search heuristics. The theorem relates the
global minimum cut separating two nodes s and t of a graph G to the maximum flow
between s and t in the corresponding flow network of G. However, it was overlooked
for a long time because it was unclear how to obtain balanced bipartitions and it
was perceived as computationally expensive [KL70; YW96]. This perception changed
over the last two decades since several publications demonstrate the effectiveness of
flow-based refinement for balanced (hyper)graph partitioning. Today it is considered
the most powerful refinement technique and is used in the highest-quality (hyper)graph
partitioners KaFFPa [SS10; SS11] (optimizes the edge cut metric) and KaHyPar [HSS19a;
Got+20] (optimizes the cut-net and connectivity metric). In this work, we present a
parallel formulation of the flow-based refinement routine used in KaHyPar [Got+20]
that generalized the approach of KaFFPa [SS10; SS11] from graphs to hypergraphs.
Therefore, we outline the core ideas of these algorithms and explain them in more
detail in Section 4.4.

36

3.2 Flow-Based Refinement

Flows on Hypergraphs. Lawler [Law73] reduced the problem of finding a minimum
(s, t)-cut in a hypergraph to computing a maximum (s, t)-flow in a directed graph
(see Lawler expansion in Section 2.1). Liu and Wong reduced the size of the Lawler
expansion by explicitly distinguishing between graph edges (|e| = 2) and hyperedges
(|e| > 2), while Heuer et al. [HSS19a] additionally removed low-degree nodes (d(u) ≤ 3).

There exist several algorithms computing maximum flows directly on hypergraphs.
Li et al. [LLC95] presented a variant of the push-relabel algorithm of Goldberg
and Tarjan [GT88], while Pistorius and Minoux [PM03] implemented the Edmonds-
Karp [EK72] algorithm for hypergraphs. Recently, Gottesbüren et al. [GHW19]
generalized Dinic’s algorithm [Din70] to hypergraphs.

Balanced Flow-Based Refinement. Yang and Wong [YW96] proposed the FBB
algorithm (Flow-Balanced-Bipartition) that finds a balanced bipartition of a hyper-
graph via incremental maximum flow computations. The algorithm computes a
minimum (s, t)-cut, and if the induced bipartition is not balanced, the smaller side
plus one additional node (also called piercing node) is contracted onto the corre-
sponding terminal, i.e., s or t respectively. This ensures that the algorithm finds a
different cut (possibly a larger cut) in the next iteration but with better balance.
The algorithm then augments the previous flow again to a maximum flow. Li et
al. [LLC95] improved the FBB algorithm with better piercing decisions. Hamann and
Strasser [HS18] propose the FlowCutter algorithm that works similar to the FBB algo-
rithm but computes several bipartitions with increasing cut sizes and better balance.
Gottesbüren et al. [GHW19] generalized the FlowCutter algorithm to hypergraphs
(HyperFlowCutter).

Figure 3.3 illustrates one iteration of the FBB algorithm. We denote with
S and T the sets of nodes that are already contracted onto the source s and
sink t. The sets Sr and Tr define the nodes reachable from the source s and
sink t after a maximum flow computation. We assume that both bipartitions
(S ∪ Sr, V \ (S ∪ Sr)) and (T ∪ Tr, V \ (T ∪ Tr)) induced by the first maximum
flow computation are not balanced (see left side of Figure 3.3). Then the
algorithm contracts Sr plus the piercing node u onto the source s (assuming
|S ∪ Sr| ≤ |T ∪ Tr|) and augments the previous flow again to a maximum flow
(see right side of Figure 3.3). This induces a new cut (potentially larger) with
better balance.

Sanders and Schulz [SS10; SS11] integrated a flow-based refinement routine into
their graph partitioner KaFFPa. The algorithm improves the edge cut of a given
bipartition Π = {V1, V2}. The general idea is to grow a size-constrained region B
around the cut edges of Π. All nodes of V1 \ B and V2 \ B are then contracted to
the source s and sink t. The size of region B is chosen such that each minimum
(s, t)-cut yields a balanced bipartition in the original graph. If the algorithm improves
Π (better cut or balance), then the size of region B is doubled in the next iteration.
Otherwise, it is halved. The algorithm terminates if the size of region B becomes
smaller than a predefined threshold. The algorithm can be used to improve the edge

37

3 Related Work

s tSr Tr
u

piercing node

s tTr
u Sr

Figure 3.3: Example of one iteration of the FBB algorithm.

cut of a k-way partition by scheduling it on adjacent block pairs (similarly as already
proposed for the Kernighan-Lin algorithm [KL70]). Heuer et al. [HSS19a] integrated
this approach into their hypergraph partitioner KaHyPar, which was then further
improved by Gottesbüren et al. [Got+20] by replacing the bipartitioning routine with
the HyperFlowCutter algorithm [HS18; GHW19].

Liu and Wong [LW98] enhanced the FBB algorithm with the most balanced minimum
cut heuristic. The heuristic uses the observation that there is usually more than one
minimum (s, t)-cut. The algorithm then enumerates all minimum (s, t)-cuts and
chooses the one with the best balance. The technique is also used in the (hyper)graph
partitioner KaFFPa [SS10; SS11] and KaHyPar [HSS19a] and implicitly in the FlowCutter
algorithm [HS18; GHW19] (piercing nodes that avoid augmenting paths in the next
iteration). Piccard and Queyranne [PQ80] provided the theoretical foundations for this
heuristic. Their theorem establishes a one-to-one correspondence between all minimum
(s, t)-cuts and the strongly connected components (SCC) in the residual network of a
maximum (s, t)-flow. One can then enumerate different minimum cuts by contracting
all SCCs in the residual graph into a single node which yields a directed acyclic graph
(DAG). Sweeping through a topological ordering of the DAG then induces different
bipartitions with the same cut value. Note that there usually exists more than one
topological ordering and finding the minimum (s, t)-cut with the best balance is still
NP-complete [PQ80].

Notable other flow-based refinement algorithms are Improve [AL08] and MQI [LR04],
which optimize the expansion or conductance metric of bipartitions. Delling et
al. [Del+11] use flow techniques to find natural cuts in road networks. Schild and
Sommer [SS15] use geometric information available in road networks to compute a
linear embedding of the nodes, which is then utilized to construct the source and sink
sets of a flow network.

3.3 The Multilevel Scheme
Iterative improvement algorithms were long used as the main approach for solving
the hypergraph partitioning problem with the FM algorithm as the most successful
technique. The original FM algorithm [FM82] starts from a randomly generated initial
bipartition and then iteratively improve it by moving nodes between the blocks until

38

3.3 The Multilevel Scheme

no further improvements are possible. A widely used technique enhancing its solution
quality performs multiple restarts using different initial solutions and returns the best
found bipartition. Alpert and Kahng [AK95, p. 61] analyzed the edge cuts produced
by the FM algorithm when repeated executions are used. They noted that the solution
quality of the bipartitions follows roughly a normal distribution, and the average
quality of the bipartitions was significantly worse than the best found solution. Thus,
the linear running time of the FM algorithm is outweighed by the fact that many
repetitions are required to achieve high solution quality. Bui et al. [Bui+87; Bui+89]
compared several iterative improvement algorithms for the graph bisection problem to
the edge cut of an optimal bisection on randomly generated graphs. They observed
that the Kernighan-Lin algorithm [KL70] finds near-optimal solutions for graphs with
a high average node degree. However, the edge cuts deteriorate significantly for graphs
with a low average node degree (≤ 3). For low-degree graphs, the gain values of node
moves are relatively small (bounded by the degree of a node). Thus, the outcome of
the algorithm mainly depends on tie-breaking decisions. The same behavior can be
observed for hypergraphs with many large nets [Saa95; CA99; Kar+99] since a net e
only positively contributes to the gain value of a node u when u is the last remaining
pin of e in its corresponding block. The Kernighan-Lin and FM algorithm can break
out of local optima by temporarily increasing the cut size of the solution. However, as
the problem size increases, the number of local optima increases significantly reducing
the likelihood of finding a solution close to the global optimum [CS93].

These observations suggest that it is beneficial to reduce the size of the input
hypergraph while increasing its average node degree and reducing the size of large
nets. Ishiga et al. [IKS75] presented the first algorithm that accomplishes this (even
though many of the problems were not known at the time). The algorithm finds a
clustering of the nodes and contracts them to obtain a coarser instance of the input
hypergraph. Then the algorithm uses the Kernighan-Lin algorithm [KL70] to compute
an initial partition on the coarser representation which is then projected back to the
input hypergraph. They noted that the contraction step buried a large number of nets
within the clusters, and therefore, the coarse hypergraph represents a simpler form
that is easier to partition. These algorithms are known as two-level algorithms, i.e.,
the first level corresponds to the input (hyper)graph, while the second represents a
coarser approximation obtained by a clustering algorithm.

Saab [Saa95] observed that densely-connected nodes are good cluster candidates
since such nodes tend to stay in the same block of the partition after one pass of the
FM algorithm. Due to the way contractions are performed, a partition on a coarse
representation can be projected back to the input (hyper)graph with the same cut
and balance properties. This allows refinement algorithms to operate on different
scales [HL95]. Performing local search on coarser levels moves clusters across partition
boundaries and therefore, it can explore a greater solution space than on the input
(hyper)graph. Alpert et al. [AHK97] also noted that local search algorithms converge
faster after the uncontraction step since they already start with a good solution.

The introduction of the two-level approach considerably improved the performance
of move-based local search algorithms [Bui+89]. However, Alpert et al. [AHK97]

39

3 Related Work

Coarsening
U
nc

oa
rs
en

in
g

refine

Initial
Partitioning

match /
cluster

contract uncontract

.

Output Partition

.
.

Figure 3.4: The multilevel scheme. Figure is taken from Ref. [Sch20].

noted that clustering techniques used in these algorithms reduce the size of the input
(hyper)graph too aggressively, preventing refinement algorithms from finding good local
optima. An alternative is to apply the clustering algorithm recursively and control
the size of the coarser approximation on each level. This inspired several research
groups [BS93; BJ93; CS93; HB95; HL95] to study the multilevel scheme as it is used
in most of today’s state-of-the-art partitioning algorithms.

Figure 3.4 illustrates the multilevel scheme that proceeds in three phases: First, the
(hyper)graph is coarsened to obtain a hierarchy of successively smaller and structurally
similar (hyper)graphs by contracting pairs or clusters of nodes. Once the coarsest
(hyper)graph is sufficiently small, an initial partition into k blocks is computed.
Subsequently, the contractions are reverted level-by-level, and, on each level, local
search heuristics are used to improve the partition from the previous level (refinement
phase).

Hendrickson and Leland [HL95] showed that their multilevel partitioning method
offers an excellent tradeoff between quality and running time. It computes partitions
with comparable edge cuts to the multilevel spectral partitioning approach of Bernard
and Simon [BS93] in a fraction of the time. Hauck and Borriello [HB97] showed in an
extensive study that multilevel algorithms produce partitions with significantly better
edge cuts than two-level approaches, while being only moderately slower.

This section discusses techniques used in sequential multilevel partitioning algorithms
with the aim of identifying methods that produce high quality solutions. We start
with introducing the label propagation algorithm in Section 3.3.1, which is a popular
technique used in all phases of the multilevel scheme. Section 3.3.2 then explains the
n-level scheme that instantiates the multilevel paradigm in its most extreme version by
contracting only a single node on each level. We conclude this section by comparing
the algorithmic components used in existing partitioning algorithms in Section 3.3.3.

40

3.3 The Multilevel Scheme

3.3.1 The Label Propagation Algorithm

The label propagation algorithm is a greedy heuristic applicable in all phases of
multilevel scheme. Furthermore, it is directly amenable to parallelization due to
its simplicity. The algorithm was first mentioned in the context of semi-supervised
learning to learn missing labels from existing graph data [ZG02] and later also used to
detect communities in large-scale networks [RAK07]. Earlier work in the partitioning
context refers to the same method as greedy refinement [KK98c; KK00].

The original algorithm associates with each node u ∈ V a label L[u]. Initially, it
assigns each node u its own label L[u] = u. Then, the algorithm works in rounds. In
each round, it visits all nodes in some order. If it visits a node u, it assigns u the label
that occurs most frequently in its neighborhood Γ(u) (ties are broken randomly). The
algorithm proceeds until a predefined number of rounds are reached, or none of the
nodes changed their label in a round.

In the coarsening phase, the label propagation algorithm can be used to compute
a clustering C. All nodes with the same label belong to one common cluster. The
algorithm often uses a size-constrained U bounding the weight of the heaviest cluster
to prevent shrinking the (hyper)graph too aggressively [MSS14]. In the refinement
phase, it can be used as local search algorithm by initializing the labels with a k-way
partition and U = Lmax [KK98c; KK00; ACU08b; MSS14]. The algorithm then moves
a node u to the block Vj with the highest gain gu(Vj). The algorithm only performs
moves improving the objective function (positive gain moves), and therefore it cannot
escape from local optima [BC09]. The algorithm has a running time of O(p) per round,
and it usually converges within a few rounds [KK98c].

3.3.2 n-Level Hypergraph Partitioning

Traditional multilevel algorithms contract matchings or clusters on each level, inducing
a multilevel hierarchy with approximately logarithmic depth. There is usually a
correspondence between the number of levels and the tradeoff between solution quality
and running time [Saa95; Sch20]. More levels provide “more opportunities to refine the
current solution” [AHK97] but require highly-engineered algorithmic components to
achieve reasonable running times. Osipov and Sanders [OS10] introduced the n-level
scheme instantiating the multilevel paradigm in its most extreme version, contracting
only a single node on each level. Correspondingly, in each uncoarsening step, only
a single node is uncontracted, allowing a highly localized search for improvements.
Schlag [Sch20] developed KaHyPar, the first hypergraph partitioner based on the n-level
approach, in which he demonstrated that the scheme can be implemented efficiently in
numerous publications [Sch+16a; Akh+17a; HS17a; HSS19a; Got+20] and produces
partitions of high quality. In this work, we present a parallel formulation of the n-level
technique that closely models the approach of KaHyPar. Thus, we explain the dynamic
hypergraph data structure of KaHyPar in more detail and briefly discuss its algorithmic
components.

41

3 Related Work

0

e0 e1 e2 e3

v1

v0

v2 v5 v6

v4

v3

e0

e1

e2

e3

2 0 1 3 4 3 4 6 2 5 6

0
v0

1

1 0

3

1

2

1

2

3 2

3

v1 v2 v3 v4 v5 v6
0 0

v0

1

1 0

3

1

2

1

2

3 2

3

v1 v2 v3 v4 v5 v6
0

Active Part

Contract
v2 onto v0

v1

v0

v5 v6

v4

v3

e1

e2

e3

0

e0 e1 e2 e3
2 0 1 3 4 3 4 6 0 5 6

3

Inactive Part

E

I(v)

E

I(v)

Figure 3.5: The dynamic hypergraph data structure used in KaHyPar.

The Dynamic Hypergraph Data Structure of KaHyPar. KaHyPar uses a dy-
namic hypergraph data structure to perform contractions on-the-fly, which is illustrated
in Figure 3.5. The pins of nets are represented as an adjacency array E (the sub-range
storing the pins of a certain net is called its pin-list), whereas the incident nets I(v)
of a node v are represented using a adjacency-list. A contraction operation (v, u)
(contracting v onto u) replaces v with u in each net e ∈ I(v) \ I(u) and removes v in
each net e ∈ I(u) ∩ I(v). Removing v from a net e ∈ I(u) ∩ I(v) swaps it to the end of
the pin list of e and decrements the size of e by one, which divides e into an active
and inactive part (see right side of Figure 3.5). The incident nets of u are updated
by copying the nets I(v) \ I(u) to the adjacency list of u. The contractions must be
reverted in reverse order of contraction. To revert a contraction (v, u), it considers all
nets e ∈ I(v) to which v was previously adjacent. If v is the first pin in the inactive
part of the pin list of e, we increment the size of the active part. Otherwise, we replace
u with v.

Algorithmic Components of KaHyPar. KaHyPar’s coarsening algorithm proceeds
in passes until the number of nodes drops below 160k. In each pass, the nodes are
visited in random order and whenever a node u is visited, it is contracted onto the node
v that maximizes the heavy edge rating function r(u, v) :=

∑
e∈I(u)∩I(v) ω(e)/(|e| − 1).

Initial partitioning uses n-level recursive bipartitioning with a portfolio of initial
bipartitioning techniques [Heu15a; Sch+16a]. After reverting a contraction, KaHyPar
starts a highly-localized version of the FM algorithm using the adaptive stopping rule
of Osipov and Sanders [OS10]. The FM search is initialized with the uncontracted
nodes and gradually expands around them (for more details, see Section 3.1.2). To
improve performance, it uses a gain table storing the gain values for each possible
node move. This prevents expensive recomputations during an FM pass. The gain
table is initialized with the gain values of all possible node moves on the coarsest
hypergraph. The FM algorithm maintains the gain values of the gain table using delta
gain updates [Akh+17a; Sch20]. After an uncontraction, it recomputes the gain table
entries of the uncontracted nodes. In addition to the FM algorithm, KaHyPar also
uses flow-based refinement [Heu18a; HSS19a; Got+20].

42

3.3 The Multilevel Scheme

3.3.3 Algorithmic Components of Sequential Partitioners
This section provides an overview on existing sequential partitioning algorithms with
the aim to identify essential techniques for producing high quality solutions. For
this purpose, we review the building blocks of (hyper)graph partitioners frequently
appearing in the evaluations of recent publications. Table 3.1 summarizes the different
partitioners and their algorithmic components discussed in this section.

We focus on techniques for the traditional (hyper)graph partitioning problem as
defined in Section 2.2 (excluding, e.g., fixed nodes, multi-constraint or multi-objective
formulations). Note that (meta)heuristics achieving even better solution quality than
the multilevel scheme exist, e.g., V-cycles [Wal04], evolutionary algorithms [SS12;
ASS18] or approaches based on integer linear programming [HNS20]. However, they
have substantially longer running times, which are prohibitive for very large (hy-
per)graphs. Therefore, we limit the scope to techniques used within coarsening, initial
partitioning, and refinement.

Coarsening. Early work on multilevel partitioning primarily used matching-based
coarsening schemes [HL95; KK98a; KK98c; WC00a; VB05; MMS08; SS11]. A matching
of a graph is a set of edges, no two of which are incident on the same node. A node is
called matched if it is adjacent to one edge in the matching. Coarsening algorithms
based on this scheme compute a maximal matching (matching where each edge of
the graph is adjacent to at least one matched node) and subsequently contract all
edges of the matching to obtain the next coarser graph. On hypergraphs, matching-
based coarsening algorithms implicitly work on the clique expansion [Kar+99] (each
hyperedge is replaced by a clique). A common approach iterates over all nodes in some
order, and whenever an unmatched node u is visited, it is matched with an unmatched
neighbor v ∈ Γ(u) that maximizes a rating function r(u, v) [KK98a; KK98c; WC00a]
(local greedy matching). Table 3.2 lists different rating functions. An alternative
approach iterates over the edges in descending order of their weight and adds an
edge to the matching if both adjacent nodes are unmatched (global greedy matching).
KaFFPa [SS10; Sch13] uses the Global Path Growing (GPA) algorithm [DH03] to
construct a matching. The algorithm works similarly to the global greedy matching
algorithm but does not immediately build the matching. Instead, it constructs
subgraphs composed of paths and cycles and uses dynamic programming to compute
optimal solutions for the subgraphs. Holtgrewe et al. [HSS10] showed that the GPA
algorithm with expansion2(u, v) as a rating function produces significantly better edge
cuts than the local and global greedy matching technique with weight(u, v) as a rating
function.

Matching-based coarsening algorithms work well for (hyper)graphs with a regular
structure, e.g., finite element meshes with uniform node degree distributions. However,
complex networks with power-law node degree distributions are difficult to coarsen
with matching-based approaches. Here, many low-degree nodes are adjacent to a few
high-degree nodes. This leads to small matchings and consequently to a large number
of levels [AK06]. Therefore, many partitioning algorithms switched to clustering-
based coarsening schemes. On each level, densely-connected nodes are grouped and

43

3 Related Work

Table 3.1: Algorithmic components of existing sequential partitioning algorithms.

Ch
ac

o

Sc
ot

ch

M
et

is

Jo
st

le

K
aS

Pa
r

K
aF

FP
a

hM
et

is

Pa
To

H

M
on

dr
ia

an

K
aH

yP
ar

D
es

ig
n Type G

P

G
P

G
P

G
P

G
P

G
P

H
G

P

H
G

P

H
G

P

H
G

P

Direct k-Way G#1 # G#2 #
Recursive Bipartitioning # # #

C
oa

rs
en

-
in

g

Community Detection # # # # # # # # #
n-Level # # # # # # # #
Matching ? # #
Clustering # ? G#3 # # # #

IP

Direct k-Way # # # # # # #
Recursive Bipartitioning # # # # #
Portfolio # # # # #
Third-Party # # # # # # # # #

R
efi

ne
-

m
en

t

LP # # # # # #
Boundary FM G#4 G#4 # G#4 G#4 G#4 #
Localized FM # # # # # # #
Flows # # # # # # # #

Open Source # # # # # # # #
Publicly Available # #

subsequently contracted into a single node. To prevent coarsening from reducing the
size of the (hyper)graph too aggressively, many partitioners abort the clustering process
when the size of the coarser approximations drops below half the size of the input
(hyper)graph [KK00; AK06]. Moreover, high-degree nodes commonly appear in larger
clusters. Thus, high-degree nodes become heavy nodes in the coarsest (hyper)graph,
making it difficult or even impossible to find a feasible initial partition [MSS14].
Therefore, a common technique enforces a size-constrained on the weight of the
heaviest cluster [MSS14; Sch+16a; Akh+17a] or penalizes the contraction of heavy
nodes in the rating function [CA99; SS10; Sch13].

Clustering algorithms used in practice are based on size-constrained label propaga-
tion [MSS14] (see Section 3.3.1) or hierarchical agglomerative clustering [CA99; KK00;
AK06; ACU08b]. The latter proceeds similarly to the previously presented matching

1The FM implementation of Chaco uses k(k − 1) PQs. To improve performance, Chaco restricts the
number of blocks to at most 8 and uses octa-sectioning until the graph is partitioned into the
desired number of blocks.

2There exists a direct k-way version of PaToH [ACU08b] but it is not publicly available.
3Several clustering algorithms are described in Ref. [AK06], but the techniques are not integrated

into the publicly available version of Metis.
4 only 2-way FM

44

3.3 The Multilevel Scheme

Table 3.2: Listing of different rating functions used in coarsening algorithms.

Partitioner Rating Function Type M
at

ch
in

g

C
lu

st
er

in
g

n
-L

ev
el

Metis, Jostle weight(u, v) := ω(u, v) GP # #
KaSPar expansion(u, v) := ω(u,v)

c(u)c(v) GP # #

KaFFPa expansion2(u, v) := ω(u,v)2

c(u)c(v) GP # #

innerOuter(u, v) := ω(u,v)
Out(u)+Out(v)−2ωu,v

with Out(u) :=
∑

w∈Γ(u) ω(u,w) GP # #

PaToH absorption(u, C) :=
∑

e∈I(u)∩I(C)
|e∩C|ω(e)

|e|−1 HGP # #

hMetis heavyEdge(u, v) :=
∑

e∈I(u)∩I(v)
ω(e)
|e|−1 HGP # #

KaHyPar heavyEdge(u, v) HGP # #

algorithms with the difference that unmatched nodes can join clusters consisting
of already matched nodes. In contrast to label propagation, nodes cannot change
their cluster after joining it. The algorithm can be either implemented in a localized
or global greedy fashion. The localized version visits the nodes in some order, and
whenever a node u is visited, it is added to a cluster C ∈ C that maximizes the
rating r(u,C). The global approach determines the node-cluster pair with the highest
rating r(u,C) in each step. KaHyPar [Sch+16a] uses a PQ for this and performs lazy
updates of the ratings (since r(u,C) can change if an adjacent node of u joins cluster
C). Akhremtsev et al. [Akh+17a] (for the connectivity metric) and Abou-Rjeili et
al. [AK06] (for the edge cut metric) independently showed that the localized version is
significantly faster than the global approach, and both produce partitions with compa-
rable quality. The n-level scheme can also be classified as a hierarchical agglomerative
clustering technique.

The previously presented coarsening algorithms perform contraction decisions based
on the local neighborhood of a node. KaHyPar [HS17a] additionally uses community
detection as a preprocessing step enhancing the coarsening process with global in-
formation about the community structure of the hypergraph. To do so, KaHyPar
transforms the input hypergraph into its bipartite graph representation and uses the
Louvain algorithm [Blo+08], maximizing the modularity objective function. It then
restricts contractions to nodes within the same community in the coarsening phase
and thus preserves some of the global structure.

Initial Partitioning. The coarsening phase usually proceeds until only c · k nodes
remain where c is a tuning parameter. Typical parameter choices for c are between 10
and 200 [KK98c; Kar+99; SS10; Akh+17a]. Direct k-way partitioning algorithms often
use multilevel recursive bipartitioning (RB) to obtain an initial k-way partition of the
coarsest (hyper)graph [KK98c; ACU08b; Sch13; Akh+17a]. Heuer [Heu15a] showed

45

3 Related Work

that this leads to partitions with significantly better solution quality than using flat
direct k-way partitioning methods. Another approach is taken by Jostle [WC00a] that
continues coarsening until k nodes remain and uses it as an initial k-way partition.
However, this may induce a partition violating the balance constraint. Therefore,
Jostle [WC00a] uses balancing techniques in the uncoarsening phase ensuring that the
final k-way partition is balanced. Other partitioning algorithms run third-party parti-
tioners for initial partitioning [OS10; SS10] (e.g., an initial version of KaFFPa [SS10]
used Scotch [PR96] to obtain an initial k-way partition but later replaced it with a
multilevel RB implementation [Sch13]).

Algorithms computing an initial bipartition within the recursive bipartitioning
scheme include the following techniques: random initial partitioning [Kar+99; VB05;
ÇA11; Sch+16a; Sch20], bin packing techniques [ÇA11], (greedy) graph growing
[KK98a; CA99; Kar+99; ÇA11; Sch13; Sch+16a; Sch20], label propagation-based
initial partitioning [Sch+16a; Sch20], and spectral methods [HL95]. Partitioners often
assemble several methods in a portfolio [KK98a; ÇA11; Sch+16a; Sch20], run each
algorithm multiple times followed by FM refinement [HL95; Kar+99; VB05; Sch13;
Sch+16a], and take the best as initial solution. hMetis [Kar+99] refines all initial
solutions in the uncoarsening phase simultaneously and evicts the partitions worse
than the best by more than 10% on each level.

Graph growing techniques grow one block of a bipartition starting from a random
seed node. The next node added to the block can be chosen either via breadth-first-
search or with greedy techniques using a gain function, e.g., FM gain [KK98a; CA99;
ÇA11; Sch13; Sch20] or the weight of the nets connecting a node to the growing
block [ÇA11; Sch20]. The algorithm stops when the weight of all touched nodes would
exceed c(V)

2 . All remaining untouched nodes are then assigned to the second block.

Uncoarsening. Section 3.1 and 3.2 gave an extensive overview of existing refine-
ment algorithms. This paragraph discusses how these techniques are integrated into
multilevel (hyper)graph partitioners.

Although it is known that RB can produce k-way partitions that are arbitrarily far
away from an optimal solution [ST97], early multilevel partitioners mostly use the RB
scheme due to the lack of efficient direct k-way FM formulations. Hendrickson and
Leland [HL95] integrated a direct k-way FM algorithm into their multilevel partitioner
Chaco using k(k− 1) PQs. However, Cong and Smith [CS93] showed that Chaco could
not outperform partitioners based on RB. Multilevel RB algorithms primarily use
boundary 2-way FM implementations [PR96; KK98a; CA99; Kar+99; VB05; Sch+16a]
(PQs are initialized with all boundary nodes).

Metis [KK98c], hMetis [KK00] and PaToH [ACU08b] implement generalizations
of their RB-based systems to direct k-way partitioning. The systems all use the
size-constrained label propagation algorithm [MSS14] for refinement (referred to as
greedy refinement). Although the label propagation algorithm cannot escape from
local optima, the authors argue that the hill-climbing ability of the FM algorithm
becomes less critical in the multilevel context since moves on coarser levels correspond
to moves of entire clusters in the original (hyper)graph. Karypis and Kumar [KK98c]

46

3.3 The Multilevel Scheme

evaluated a direct k-way FM implementation using a single PQ storing the gain of a
node u as ω(u, V \Π[u])− ω(u,Π[u]) (weight of external minus internal edges). The
algorithm then extracts the node with the largest key from the PQ and moves it to
the block that yields the largest edge cut reduction (which may increase the edge cut).
However, they report that the algorithm could not produce better edge cuts than label
propagation refinement, while it was also slower by a factor of two.

KaSPar [OS10], KaFFPa [SS11] and KaHyPar [Akh+17a] use highly-localized versions
of the direct k-way FM algorithm. The local search starts from a small number of
seed nodes and then gradually expands the search around them (for more details,
see Section 3.1.2). KaFFPa uses a single PQ storing the highest gain move for each
node. KaSPar and KaHyPar use k PQs each representing one block storing moves to
that particular block. KaFFPa [SS11] and KaHyPar [HSS19a; Got+20] also implement
quotient graph style refinement techniques that applies 2-way local search algorithms
on adjacent block pairs. Both partitioners use flow-based refinement (see Section 3.2)
and KaFFPa additionally runs boundary 2-way FM refinement. Schlag [Sch20] showed
on a large benchmark set with 488 hypergraphs (set MHG) that the direct k-way
version of KaHyPar produces partitions with better solution quality (for the cut-
net and connectivity metric) than its corresponding RB version (both use the same
algorithmic components).

A Short Comparison of Sequential Partitioning Algorithms. We now present
a short comparison of existing sequential partitioning algorithms illustrating the impact
of the presented techniques on the solution quality in practice. Figure 3.6 compares
KaFFPa-StrongS to Metis-K on set MG (left), and kKaHyPar to PaToH-D on set
MHG (right). As a result of our experimental evaluation in Chapter 8, we identified
KaFFPa-StrongS and kKaHyPar as the highest-quality sequential graph and hypergraph
partitioners, while Metis-K and PaToH-D offer a good tradeoff between solution quality
and running time.

KaFFPa-StrongS (label propagation coarsening) and kKaHyPar (based on the n-level
partitioning scheme) implement clustering-based coarsening algorithms. Both use a
highly-localized direct k-way FM implementation and flow-based refinement. Metis-K
uses a matching-based coarsening algorithm and label propagation refinement, while
PaToH-D uses hierarchical agglomerative clustering and runs boundary 2-way FM
refinement in the uncoarsening phase. All partitioners are based on the direct k-way
partitioning scheme except for PaToH-D, which is based on recursive bipartitioning.

As shown in Figure 3.6, the edge cuts produced by KaFFPa-StrongS are better than
those of Metis-K by 16% in the median, while the partitions computed by kKaHyPar
are better than those of PaToH-D (for connectivity optimization) by 13% in the median.
We point out that differences by a few percentages are considered significant in the
partitioning literature, as we will see in Chapter 8. Moreover, KaFFPa-StrongS and
kKaHyPar compute better partitions than Metis-K and PaToH-D on more than 90% of
the instances. However, Metis-K (geometric mean running time 0.39s) and PaToH-D
(1.17s) are more than an order of magnitude faster than KaFFPa-StrongS (201.99s)
and kKaHyPar (48.97s).

47

3 Related Work

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2 101 102 7 U
Quality Relative to Best [τ]

KaFFPa-StrongS Metis-K

1 1.05 1.1 1.5 2101 103 U
Quality Relative to Best [τ]

kKaHyPar PaToH-D

Figure 3.6: Performance profiles comparing KaFFPa-StrongS to Metis-K on set
MG (left, cut-net optimization), and kKaHyPar to PaToH-D on set MHG (right,
connectivity optimization).

The presented partitioners share many similarities, while KaFFPa-StrongS and
kKaHyPar employ substantially stronger refinement techniques. These refinement
algorithms lead to considerably better partitioning quality at the cost of increased
execution times. Thus, parallelizing these techniques is essential for making high
quality solutions on large instances feasible. However, we also want to point out that,
unlike other partitioning systems, the codebases of KaFFPa (first publication in 2010)
and KaHyPar (first commit in 2013) are actively maintained until today and each
consists of about 40k lines of code. Therefore, it is a mistake to identify only the
refinement algorithms as key components for their high quality. These systems combine
techniques of more than a half-century of research in their particular field. However,
the highly-localized k-way FM algorithm and flow-based refinement component are
not used in any other partitioning algorithm.

3.4 Parallel (Hyper)Graph Partitioning
In the previous section, we discussed the core components of state-of-the-art sequen-
tial partitioning algorithms. We now turn to parallel techniques focusing on how
the sequential algorithms are parallelized and used in modern parallel partitioning
algorithms. We start with a discussion of the main parallelization challenges and then
review the algorithmic components of existing parallel (hyper)graph partitioners.

Distributed-Memory Machine Model. In Section 2.3, we already presented the
shared-memory machine model but omitted the distributed-memory model since it is
only relevant in this section. We therefore briefly explain it in the following. In this
model, several processors (PEs) are interconnected via a communication network, and
each with its private memory inaccessible to others. Computational tasks on each PE
operate independently only on local data usually representing a small subset of the

48

3.4 Parallel (Hyper)Graph Partitioning

input. Intermediate computational results must be exchanged via dedicated network
communication primitives.

Distributed (hyper)graph processing algorithms require that the nodes and (hy-
per)edges of the input are partitioned among the processors. Since many applications
use balanced (hyper)graph partitioning to obtain a good initial assignment, much
simpler techniques are used in distributed partitioning algorithms. There exist range-
based [MSS17] and hash-based partitioning techniques [Slo+17; Slo+20]. The former
split the node IDs into equidistant ranges, which are then assigned to the PEs. If
geometric information is available, one can also use space-filling curves [ABM16;
LTM18].

Each PE then stores the nodes assigned to it and the edges incident to them. The
edges stored on a PE can be incident to local nodes or nodes stored on other PEs (also
called ghost or halo nodes). We say that a node respectively PE is adjacent to another
PE if they share a common edge. If we move a node to a different block, we have to
propagate that change to adjacent PEs such that local search algorithms can work on
accurate partition information. However, each communication operation introduces
overheads that can limit the scalability of the system. Thus, the main challenge
in distributed (hyper)graph partitioning is keeping the global partition information
on each PE in some sense up to date while simultaneously minimizing the required
communication.

3.4.1 Parallelization Challenges
Parallel refinement algorithms should allow several nodes to change their block simul-
taneously. This poses multiple challenges for parallel local search algorithms, which we
discuss in this section. Furthermore, we explain how these problems are addressed in
practice and why most of the refinement algorithms presented in the previous sections
are considered difficult to parallelize.

Move Conflicts. Iterative improvement algorithms move nodes to other blocks
according to a gain value. In the sequential setting, the gain gu(Vj) of moving a node
u to block Vj accurately reflects the change in the objective function since only one
node can change its block at a time. This does not hold in the parallel setting since
concurrent moves of adjacent nodes can adversely affect each others gain. Figure 3.7
illustrates different types of concurrent move conflicts for the edge cut metric. The
case where two adjacent nodes u ∈ Vi and v ∈ Vj with i 6= j, simultaneously move to
different blocks can degrade the edge cut, even if both individual gains suggest an
improvement (conflict type A and B). If, on the other hand, u and v are in the same
block, the actual gain may even be better than suggested by the two individual gains
(conflict type C). In the following, we discuss different solutions to prevent conflicts of
type A and B.

Karypis and Kumar [KK96] use a node coloring of the graph (labeling of the nodes
where adjacent nodes have different labels) and then split a refinement pass into
sub-rounds where only nodes with the same color can change their block. Thus,

49

3 Related Work

u v5

V1 V2

2 2
gv(V1) = 3

gu(V2) = 3

v u5

V1 V2

2 2

V1

V2

V3

u v

2

3

3

4 V1

V2

V3

u

v
2 3

3

4

gv(V3) = 1

gu(V2) = 1

Expected Gain = 6 Actual Gain = -4 Expected Gain = 2 Actual Gain = -1

Type A Type B

Type C

2

2 1

16

5

2

u

v

gu(V2) = 2

gv(V2) = 1

Expected Gain = 3

V1 V2

2

2 1

16

5

2

u

v

Actual Gain = 7

V1 V2

Type D

v

u

V1 V2

c(V2) = Lmax − 1 ≤ Lmax

v

u

V1 V2

c(V2) = Lmax + 1 > Lmax

Figure 3.7: Illustration of different types of move conflicts for the cut-net metric
that occur if two adjacent nodes change their block simultaneously (Type A, B
and C). The conflict type D illustrates concurrent node moves that violate the
balance constraint. Type A and B are taken from Ref. [KK96].

two adjacent nodes cannot change their block at the same time. Another approach
computes an edge coloring of the quotient graph (labeling of the edges where incident
edges have different labels) and then schedule sequential 2-way refinement algorithms
on adjacent block pairs with the same color in parallel [Din+95; WC00b; HSS10].
Note that this restricts the available parallelism to at most k

2 processors/threads. A
third technique is to split a refinement pass into two phases: an upward and downward
phase [TK04a; LK13]. In the upward phase, a node can move from its current block Vi

to a target block Vj if i < j (vice versa in the downward phase). However, this scheme
restricts the set of possible moves and only protects against conflicts of type A.

Walshaw et al. [WCE97] redefine the gain of moving a node u ∈ Vi to a target block
Vj as gu(Vj)−

∑
v∈Γ(u) gv(Vi)/|Γ(u)| (referred to as relative gain). More informally,

the relative gain is the gain of u minus the average gain of u’s neighbors. The gain
function prefers node moves with a high gain value adjacent to nodes with a low gain
value, which are good candidates to avoid collisions.

We note that many publications do not address the aforementioned types of conflicts.
This can be seen as an optimistic strategy assuming that conflicts rarely happen in
practice and are outweighed by node moves improving the objective function.

Balance Constraint. In the sequential setting, balance can be enforced when
starting from a feasible solution by only applying node moves that do not violate the
balance constraint. In the parallel setting, however, different processors can move
several nodes to the same block at the same time. For each processor, it may appear
that the resulting partition is balanced, but the combination of all concurrent node
moves may result in an imbalanced solution (see conflict type D in Figure 3.7).

50

3.4 Parallel (Hyper)Graph Partitioning

Shared-memory algorithms can use atomic instructions to modify the block weights
[ASS17; Got+21e]. If a thread wants to move a node u from its current block Vi to
Vj , it can use atomic fetch-and-add instructions to update c(Vi) and c(Vj). If the
resulting block weight of c(Vj) is smaller than or equal to Lmax, the thread can safely
perform the move. Otherwise, it has to revert the block weight update of c(Vi) and
c(Vj) and discard the move.

Maintaining the balance of a k-way partition is more complicated in the distributed-
memory setting. Here, refinement algorithms often follow the bulk synchronous parallel
model. In a computation phase, each processor moves its local nodes and updates
the block weights locally. In the communication phase, updates are made visible to
other PEs via a personalized All-To-All operation and the exact block weights are
restored with an AllReduce operation [KK96; LK13; MSS17]. Note that this does
not guarantee balance. However, frequent periodic updates adequately estimate the
exact block weights in the computation phase. Some parallel partitioners additionally
revert moves to restore balance [LK13]. Another approach is to send all node moves
to a dedicated master processor, which selects a subset of them satisfying the balance
constraint [TK04a; Dev+06; ASS17]. Slota et al. [SMR16; Slo+17; Slo+20] implement
a scheme that alternates between refinement and balancing phases. In the balancing
phase, the algorithm penalizes moves to overloaded blocks by incorporating a penalty
term into the gain value of a node move. Consequently, moves to underloaded blocks
become more attractive.

Recently, probabilistic methods were proposed that preserve the balance in expecta-
tion [Kab+17; Mar+17]. Kabiljo et al. [Kab+17] aggregates the number of nodes Si,j

that want to move from block Vi to Vj after each computation phase at a dedicated
master processor. Then, a node part of block Vi is moved to its desired target block
Vj with probability min(Si,j ,Sj,i)

Si,j
. This ensures that the expected number of nodes that

move from block Vi to Vj and vice versa is the same and thus preserves the balance of
the partition in expectation.

Many of the previously presented techniques do not guarantee balance. Therefore,
some parallel partitioning algorithms use balancing algorithms restoring the balance
by moving nodes out of overloaded blocks [WCE97; Got+21e; Mal+21].

P-Completeness. The complexity class NC describes the problems solvable in poly-
logarithmic time with a polynomial number of processors [Pip79]. Similar to the
question P ?

= NP, it is unknown whether NC ⊂ P or NC = P. The former would imply
that there exist inherently sequential problems [GHR+95]. A problem is P-hard if
every problem in P can be reduced to it in polylogarithmic time with a polynomial
number of processors. A problem is P-complete if it is P-hard and also in P. The
existence of an efficient parallel algorithm for a P-complete problem would imply that
NC = P. Thus, P-complete problems are considered difficult to parallelize efficiently.

Savage and Wloka [SW91] showed that the Kernighan-Lin and FM heuristic are
P-complete. Furthermore, Goldschlager et al. [GSS82] proved that the maximum flow
problem is P-complete. This means that most of the refinement algorithms presented
in the previous sections are difficult to parallelize efficiently.

51

3 Related Work

3.4.2 Algorithmic Components of Parallel Partitioners
Many authors of sequential partitioning algorithms have presented parallel formu-
lations of their systems, e.g., ParJostle [WC00b] (parallel counterpart to Jostle),
ParMetis [KK96] and Mt-Metis [LK13; LaS+15; LK16] (parallel counterpart to Metis),
and ParHIP [MSS17] and Mt-KaHIP [ASS17] (parallel counterpart to KaFFPa). These
algorithms translate the core ideas of their sequential counterparts into the parallel
setting while more or less addressing the challenges discussed in the previous section.
Historically, research focused on distributed-memory algorithms due to the lack of
powerful multi-core machines at the time. This changed drastically over the last
decade, which is why shared-memory partitioning algorithms have gained interest in
recent years. The shared-memory model is usually more attractive because it offers
more algorithmic options as changes on the global partition are immediately visible to
all PEs without expensive network communication.

This section reviews the building blocks of parallel partitioning systems with a
particular focus on multilevel algorithms. We are mainly interested to which extent
the high quality techniques of sequential algorithms are used in parallel partitioners.
This in turn is the foundation of our research. We structure the following discussion
alongside the different phases of the multilevel scheme. The identified algorithmic
components of parallel partitioning algorithms are listed in Table 3.3.

Coarsening. Parallel coarsening algorithms include matching-based approaches
[KK96; Dev+06; CP08; Çat+12a; KR13; LK13; LaS+15; Akh19], hierarchical agglom-
erative clustering [TK04a; Çat+12a; Mal+21], and size-constrained label propaga-
tion [ASS17; Got+21e]. We structure the following discussion into techniques used in
shared- and distributed-memory partitioners.

Shared-Memory. Mt-Metis [LK13], Mt-KaHIP [Akh19] and PaToH5 [Çat+12a]
implement all similar parallel matching-based coarsening algorithms based on unpro-
tected writes to a shared matching vector M of size n. The algorithm iterates in
parallel over the nodes in some order, and whenever a node u is visited, it computes a
matching partner v according to a rating function and sets M [u] = v and M [v] = u.
In a second parallel pass over the nodes, conflicts are resolved by setting M [u] = u
if M [M [u]] 6= M [u]. Mt-KaHIP [Akh19] sets M [u] = v and matches two nodes u
and v in a second pass if M [u] = v and M [v] = u. The algorithm then continues
with the remaining unmatched nodes. Mt-Metis [LK13] and PaToH [Çat+12a] also
present a version that protects writes to M by locking the two matched nodes. Lasalle
and Karypis [LK13] report that the approach based on unprotected writes scales
slightly better, while Catalyürek et al. [Çat+12a] observed the opposite. Catalyürek et
al. [Çat+12a] noted that the number of conflicts increases with the number of threads,
but the percentage of conflicts was smaller than 0.7% on all tested instances. Mt-
Metis [LaS+15] computes a matching, and if this does not sufficiently reduce the

5PaToH implements a parallel version of its coarsening algorithm but no parallel initial partitioning
and refinement. Therefore, we did not include it in Table 3.3.

52

3.4 Parallel (Hyper)Graph Partitioning

Table 3.3: Algorithmic components of existing parallel partitioning algorithms.

Pa
rJ

os
tle

Pa
rM

et
is

PT
-S

co
tc

h

K
aP

Pa

Pa
rH

IP

M
t-

M
et

is

M
t-

K
aH

IP

K
aM

in
Pa

r

Pa
rk

w
ay

Zo
lta

n

B
iP

ar
t

D
es

ig
n

Type G
P

G
P

G
P

G
P

G
P

G
P

G
P

G
P

H
G

P

H
G

P

H
G

P

Distributed-Memory # # # #
Shared-Memory # # # # # # #
Direct k-Way # # # # #
Recursive Bipartitioning # # # # # # # #
Deep Multilevel # # # # # # # # # #

C
oa

rs
en

-
in

g

Community Detection # # # # # # # # # # #
n-Level # # # # # # # # # # #
Matching # # # #
Clustering # # # # # #

IP

Direct k-Way # # # # # # # # # #
Recursive Bipartitioning # # # # # # # #
Portfolio # # # # # # # # # #
Evolutionary # # # # # # # # # #
Sequential # # # # #

R
efi

ne
m

en
t Label Propagation # # # ?

Band Refinement # # # # # # # #
Boundary FM # # # # # G#6 # # # ? #
Localized FM # # # # # # # # #
Flows # # # # # # # # # # #

M
ov

e
C

on
fli

ct
s Node Coloring # # # # # # # # # #

Sequential 2-way FM # # # # # # # # #
Up- and Downward Phase # # # # # # # #
Relative Gain # # # # # # # # # #
Optimistic Strategy # # # # # # #

B
al

an
ce

C
on

st
ra

in
t Bulk Synchronous # # # # # # # #

Master Process # # # # # # # #
Balancing Algorithm # # # # # # # #
Probabilistic Methods # # # # # # # # # # #
Atomic Instructions # # # # # # # # #

Open Source # # # # # #
Publicly Available # #

size of the graph, it matches unmatched nodes that have a common neighbor (also
known as 2-hop matching). Preferably unmatched nodes of degree one are matched.
Afterwards, the algorithm considers unmatched nodes with the same neighbors (also
called twins). Last, the algorithm matches the remaining unmatched nodes with at
least one common neighbor.

PaToH [Çat+12a] also implements a parallel version of the hierarchical agglomerative

6performs only positive gain moves.

53

3 Related Work

clustering scheme. The algorithm maintains the representatives of each cluster in an
array rep of size n. If rep[u] =⊥ then u is considered as unclustered. If rep[u] = v
then u is clustered and v is the representative of u’s cluster. The algorithm iterates in
parallel over the nodes in some order, and whenever a node u is visited, it is locked and
checked if it is still unclustered. If u is unclustered, the algorithm computes the rating
r(u, v) =

∑
e∈I(u)∩I(v) ω(e) for each neighbor v ∈ Γ(u). Afterwards, it aggregates the

ratings of the representatives of each cluster, i.e., r(u,w) =
∑

v∈Γ(v)∧rep[v]=w r(u, v).
The algorithm then iterates over the aggregated ratings, and whenever a representative
w is found with a higher rating than the currently best, it is locked and checked if
c(u) + c(w) is smaller than a predefined size-constrained U . If fulfilled, w is accepted
as the new best representative for u. Otherwise, it releases the lock for w. In the end,
the algorithm sets rep[u] = w, updates the cluster weight of c(w) to c(u) + c(w), and
releases the locks of u and w.

Mt-KaHIP [ASS17] and KaMinPar [Got+21e] use clustering scheme based on parallel
size-constrained label propagation. The algorithm can be parallelized straightforwardly:
Iterate over the nodes in some order in parallel, and compute for each node u the
label to which u has the strongest connection. Note that during the evaluation of
the ratings, the labels of neighbors may change. However, this happens rarely in
practice and therefore is acceptable [SM16] (often beneficial since it introduces random
noise). The size-constrained on the weight of the heaviest cluster can be maintained
by updating the cluster sizes via atomic fetch-and-add instructions.

Distributed-Memory. ParMetis [KK96], PT-Scotch [CP08], KaPPa [HSS10], Par-
Jostle [WCE97; WC00b] and Zoltan [Dev+06] use parallel matching-based coarsening
algorithms. In the distributed-memory setting, each processor iterates over its local
nodes, and for each node u, it computes a matching partner v according to a rating
function. If v is a local node, then u and v are matched immediately. If v is a remote
node, then a matching request is written into a send buffer for the corresponding
PE [KK96; WCE97; CP08]. The send buffers are exchanged via a personalized All-
To-All communication at the end of the computation phase. The matching requests
are then accepted or rejected (e.g., accepted if v chooses u as a matching partner).
ParMetis [KK96] uses a node coloring of the graph and considers nodes with the same
color in each round. This scheme ensures that the matching partners of each node
remain unmatched in the current round. If a node receives multiple matching requests
in the communication phase (also done via an All-To-All operation), it chooses the
node connected via the heaviest edge.

Parkway [TK04a] implements a parallel version of the hierarchical agglomerative
clustering scheme. Each processor iterates over its local nodes, and for each node u,
it computes the node v with the strongest connection. If v is a local node, then u is
added to v’s cluster. If v is a remote node, then a matching request is written into
a send buffer. The send buffers are then exchanged via a personalized All-To-All
communication at the end of the computation phase. If v is unmatched, matched
locally or already matched remotely, the receiving processor grants the matching

54

3.4 Parallel (Hyper)Graph Partitioning

request. If v is currently also in a remote matching process, then the matching request
of node u is rejected.

ParHIP [MSS17] uses the size-constrained label propagation algorithm to construct
a clustering. Each processor iterates over its local nodes and assigns them to the
cluster with the strongest connection. Cluster updates to and from adjacent PEs are
sent and received asynchronously. The size-constrained U that bounds the weight of
the heaviest cluster is only ensured locally. The authors argue that in the coarsening
phase, the size-constrained is relatively soft, and maintaining exact cluster sizes would
incur to much communication overhead.

Initial Partitioning. A widely-used technique to compute an initial partition in
parallel partitioning algorithms replicates the coarsest (hyper)graph on each proces-
sor/thread and then runs a sequential partitioning algorithm on each copy [KK96;
WC00b; TK04a; TK04b; Dev+06; HSS10; ASS17]. The best initial partition from all in-
dependent runs is projected onto the coarsest (hyper)graph. Another approach is based
on parallel multilevel recursive bipartitioning [CP08; LaS+15]. The (hyper)graph
is partitioned into two blocks using a parallel multilevel bipartitioning algorithm.
Afterwards, the scheme splits the processors/threads into two disjoint groups that
independently perform the two recursive partitioning calls. ParHIP [MSS17] partitions
the coarsest graph using the distributed evolutionary partitioner KaFFPaE [SS12].

PT-Scotch [CP08] introduces the fold-dup technique that divides the processors
into two disjoint subgroups each time the size of the original graph is halved in
the coarsening phase. The two subgroups then recursively continue the coarsening
process on two identical copies of the graph. If only one PE remains, it resorts to
the sequential version of PT-Scotch [PR96]. The algorithm then uses the partition
with the better edge cut from the two recursive partitioning calls to continue the
uncoarsening process. The fold-dup technique is integrated into a parallel multilevel
recursive bipartitioning scheme. Gottesbüren et al. [Got+21e] introduced the deep
multilevel scheme generalizing the fold-dup technique to direct k-way partitioning,
which is used in the shared-memory graph partitioner KaMinPar.

Deep Multilevel Partitioning. KaMinPar [Got+21e] is designed for partitioning
graphs into a large number of blocks (e.g., k ∈ O(

√
n)). Here, the assumption

that the coarsest graph is small does not hold since coarsening algorithms in the
direct k-way setting terminate if the number of nodes drop below c · k where c is
a tuning parameter. Moreover, the running time of algorithms based on recursive
bipartitioning is O(n log k) assuming that the bipartitioning routine takes O(n) time.
Thus, using recursive bipartitioning or sequential algorithms, can become a bottleneck
for partitioning (hyper)graphs into a large number of blocks. Therefore, Gottesbüren et
al. [Got+21e] introduced the deep multilevel scheme illustrated in Figure 3.8.

In the following, we assume that both the number of processors t and the number
of blocks k are powers of two (we refer the reader to Ref. [Got+21e] for the general
case). The algorithm continues parallel coarsening until the number of nodes equals
ct nodes. Then, similar to the fold-dup technique, the processors are split into two

55

3 Related Work

coarsening

bipartitioning

select best

duplicateuncoarsening

balancing + k-way local improvement

4 PEs

4 PEs

4 PEs

4 PEs

n

≈ 8C

≈ 4C

≈ 2C

≈ 2C

4× 1 PE

Figure 3.8: Example of the deep multilevel scheme that partitions a (hyper)graph
into 8 blocks using 4 processors. The colors represent processors indicating on
which copy of the (hyper)graph they work on. Figure is taken from Ref. [Got+21e].

disjoint groups and recursively continue parallel coarsening on two identical copies of
the graph. On the coarsest level, one PE is responsible for bipartitioning a graph with
roughly 2c nodes. During uncoarsening, the algorithm selects the best partition of the
two recursive partitioning calls. Then, if the current number of blocks is still smaller
than the desired number of blocks k, it further bipartitions each block independently in
parallel. The scheme combines recursive bipartitioning and direct k-way partitioning
techniques by recursively bipartitioning blocks and applying direct k-way local search
algorithms in the uncoarsening phase.

Note that the actual implementation does not split the PEs into subgroups for
processing the recursive calls. Instead, it uses task-based parallelism and a work-
stealing approach.

Uncoarsening. In contrast to sequential partitioning algorithms, most of the parallel
systems are based on direct k-way partitioning due to the lack of efficient and scalable
2-way FM implementations. The most widely-used parallel refinement technique is
the label propagation algorithm [KK96; WCE97; TK04a; ASS17; MSS17; Got+21e;
Mal+21]. The algorithm works similarly to what we described in the paragraph on
parallel coarsening. Therefore, we omit a detailed description here.

KaPPa [HSS10] and PT-Scotch [CP08] implement a technique that they call band
refinement. The band graph of a bipartition is a subgraph containing nodes within a
certain distance of the cut. Band refinement extracts a band graph and broadcasts it to
several PEs, which then perform sequential 2-way FM refinement. The best bipartition
from all independent runs is projected onto the original graph. ParJostle [WC00b]
implements the interface optimization technique. The algorithm defines the interface
region Iij consisting of the nodes that prefer to move from block Vi to Vj and vice
versa. For each interface region, one PE is responsible for performing sequential
2-way FM refinement (one PE may be responsible for several interface regions). The
shared-memory graph partitioner Mt-Metis [LK13] parallelizes the greedy refinement

56

3.4 Parallel (Hyper)Graph Partitioning

technique of Metis-K [KK98c]. Each thread inserts nodes into a thread-local PQ and
repeatedly performs the highest positive gain move.

All presented parallel refinement techniques up to this point restrict the set of
possible moves by either using sequential 2-way FM refinement on adjacent block
pairs or performing only positive gain moves (limited ability to escape from local
optima). Therefore, Mt-Metis [LK16] proposes the parallel hill-scanning algorithm
extending its parallel greedy refinement algorithm [LK13]. If the next move from the
thread-local PQ has negative gain, the algorithm attempts to find additional negative
gain moves around this move, which yield overall positive gain if performed together.
This technique is similar to the localized k-way FM algorithm of KaFFPa [SS11]
presented in Section 3.1.2. However, it applies a set of moves to the partition as soon
as it yields positive combined gain (instead of reverting to the best seen solution).
Furthermore, the size of a hill is restricted to at most 16 nodes.

Parallel Multi-Try k-Way FM. Mt-KaHIP [ASS17] implements a shared-memory
version of the multi-try k-way FM algorithm (see Section 3.1.2). The threads perform
highly-localized FM searches that do not overlap on nodes. Each thread initializes its
search with a different boundary node, and gradually expands around it by claiming
neighbors of moved nodes. It performs node moves locally using a thread-local hash
table to update block IDs of nodes and an array of size k to maintain block weights.
When all searches have terminated, the move sequences of each thread are concatenated,
for which gains are recomputed sequentially. The prefix with the highest aggregated
gain value of that combined sequence is then applied.

A Short Comparison of Sequential and Parallel Partitioning Algorithms.
In our experimental evaluation in Chapter 8, we identified Mt-KaHIP (shared-memory)
and Zoltan (distributed-memory) as the best parallel graph and hypergraph partitioners.
We now compare them to KaFFPa-StrongS and kKaHyPar on set MG and MHG to
demonstrate how much the solution quality of sequential and parallel partitioning
algorithms differ at the moment.

As can be seen in Figure 3.9 (left), the solution quality of the partitions computed
by KaFFPa-StrongS are better than those of Mt-KaHIP by 7.5% in the median. On
all instances where KaFFPa-StrongS completed in the given time limit (1121), there
are only 12 instances on which Mt-KaHIP produces partitions with a better edge cut
than KaFFPa-StrongS. However, Mt-KaHIP produces better partitions than Metis-K on
average (median improvement of KaFFPa-StrongS over Metis-K is 16%, see page 47).
Furthermore, Mt-KaHIP (geometric mean running time 0.95s) is more than two orders
of magnitude faster than KaFFPa-StrongS (201.99s) with only ten threads. This is a
promising result since Mt-KaHIP is the first parallel partitioner that implements a
parallel version of the multi-try k-way FM algorithm, which we have identified as an
essential technique for achieving high solution quality.

For hypergraph partitioning (see right side of Figure 3.9), the partitions computed by
kKaHyPar are better than those of Zoltan by 23% in the median. However, Zoltan (0.55s)
is almost two orders of magnitude faster than kKaHyPar (48.97s) with ten threads.

57

3 Related Work

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2 101 102 7 U
Quality Relative to Best [τ]

KaFFPa-StrongS Mt-KaHIP 10

1 1.05 1.1 1.5 2101 103 7 U
Quality Relative to Best [τ]

kKaHyPar Zoltan 10

Figure 3.9: Performance profiles comparing Mt-KaHIP to KaFFPa-StrongS on
set MG (left, cut-net optimization), and Zoltan to kKaHyPar on set MHG (right,
connectivity optimization).

Zoltan implements the recursive bipartitioning scheme and uses a two-dimensional
distribution of the input matrix (rows represent nodes and columns represent the
hyperedges). Hence, “each processor knows only partial information about some nodes
and some hyperedges” [Dev+06]. During refinement, the PEs associated with a range
of nodes collaborate on computing their initial gain values. Subsequently, one PE of
each distributed column is responsible for performing the node moves and updating
the gain values based on its partial information of the hypergraph. This may lead
to incorrect gain values and adversely affects the solution quality with an increasing
number of PEs (also mentioned by Devine et al. [Dev+06]).

In the previous section, we have seen that using stronger refinement algorithms
(e.g., highly-localized direct k-way FM search and flow-based refinement) leads to
substantially better solution quality at the cost of an increased running time. Most of
the existing parallel partitioning algorithms use comparatively weak components that
are easier to parallelize (e.g., label propagation or 2-way FM refinement on adjacent
block pairs). Both, the hill-scanning algorithm of Mt-Metis [LK16] and the multi-try
k-way FM algorithm of Mt-KaHIP [ASS17] can be seen as the first steps in transferring
higher quality techniques to the shared-memory setting. However, these systems are
still inferior compared to the best sequential algorithms.

58

4Chapter 4

Parallel Improvement Algorithms

In the previous chapter, we have seen that existing parallel (hyper)graph partitioners
do not achieve the same solution quality as their sequential counterparts. One of the
main reasons is that parallel systems use comparatively weak components such as
the label propagation algorithm [KK96; WCE97; TK04a; ASS17; MSS17; Got+21e;
Mal+21] or sequential 2-way FM refinement on adjacent block pairs [WC00b; HSS10].
The former cannot escape from local optima, and the latter unnecessarily restricts
the set of possible moves. In contrast, the highest-quality sequential partitioners
implement a diverse set of improvement heuristics such as the highly-localized k-way
FM algorithm [SS11; Akh+17a] and flow-based refinement [SS11; HSS19a; Got+20].

Recently, Akhremtsev et al. [ASS17] presented the first parallel implementation of
the multi-try k-way FM algorithm. Although the solution quality of their partitioner
is still not competitive with the best sequential codes, it produces significantly better
edge cuts than previous parallel systems and achieves good speedups. The results
demonstrate that advanced local search heuristics can be parallelized efficiently and
can be seen as a first step towards closing the quality gap. We therefore continue this
line of work and propose parallel implementations of the most advanced improvement
algorithms. Ultimately, this work aims to implement a parallel system that achieves
the same solution quality as the highest-quality sequential partitioners.

In contrast to most publications, we start with parallel refinement algorithms instead
of explaining them alongside the multilevel paradigm. There are two main reasons for
this. First, the following parallel algorithms are one of the main contributions of this
work. Second, and more importantly, we present two different multilevel partitioners
that share large parts of our codebase. The main difference between both multilevel
algorithms is how (un)contractions are performed, while the refinement algorithms
presented in this chapter are reused with only minor modifications.

Outline. The previous chapter identified the label propagation, the multi-try k-way
FM algorithm [SS11] and flow-based refinement [SS11; HSS19a; Got+20] as essential
techniques for achieving high solution quality. We propose parallel formulations of
these algorithms in Section 4.2 – 4.4. Our multilevel partitioners run these algorithms
on each level. We use the label propagation algorithm to quickly converge to a local
optimum such that the two more advanced techniques can focus on finding non-
trivial improvements [ASS17]. However, all algorithms rely on up-to-date partition
information which is inherently difficult in the parallel setting. We therefore present
multiple techniques for parallel gain (re)computation based on our new partition data
structure in Section 4.1.

59

4 Parallel Improvement Algorithms

References and Contributors. This chapter covers the gain computation tech-
niques and parallel refinement algorithms presented in Refs. [Got+21a; Got+21c;
GHS22a; GHS22c; Got+22a]. The text has been largely rewritten to provide a
consistent level of detail throughout this work, except for large parts of Section 4.4
(flow-based refinement) that contain most of the text verbatim from Ref. [GHS22a].
We further improved the presentation with additional pseudocodes and illustrations.

The author of this dissertation implemented the partition data structure and the
attributed gain value technique presented in Section 4.1.1. The concurrent gain table
and parallel gain recomputation algorithm discussed in Sections 4.1.2 and 4.1.3 was de-
veloped by Lars Gottesbüren. The author of this dissertation further improved the gain
table for n-level partitioning [Got+22a]. We would also like to thank Michael Hamann,
who was involved in the initial idea and discussion for the gain table. The parallel
label propagation algorithm (see Section 4.2), and the parallel scheduling scheme
and flow network construction algorithm for flow-based refinement (see Sections 4.4.1
and 4.4.2) came from the author of this dissertation. Lars Gottesbüren worked on
the parallel multi-try k-way FM algorithm (see Section 4.3) and the parallelization
of the FlowCutter algorithm (see Sections 4.4.3– 4.4.6). Moreover, both authors were
involved in the performance engineering process of all components.

4.1 Parallel Gain Calculation

Because nodes can move simultaneously, it is inherently difficult for parallel partitioners
to compute exact gain values. For example, the gain of a node move can change
between its initial calculation and the actual execution. Consequently, two concurrent
node moves can worsen the solution quality, even if each individual gain suggested an
improvement as explained in Section 3.4.1. Our refinement algorithms have different
requirements for calculating and verifying gains, depending on whether nodes are
moved immediately as they are explored (label propagation) or not (FM and flow-based
refinement). In the following, we describe a technique named attributed gains to track
the overall improvement and double-check the gain of a move (detects move conflicts
with neighbors and is used in all refinement algorithms), a parallel gain table to
accelerate gain calculations, and a novel parallel algorithm for recomputing exact gains
of a move sequence (both used in the FM algorithm). These techniques build on our
concurrent partition data structure which we will describe in the next section in more
detail.

4.1.1 The Partition Data Structure

Our partition data structure stores and maintains the partition assignments Π, the
block weights c(Vi), the pin count values Φ(e, Vi), and connectivity sets Λ(e) for each
net e ∈ E and block Vi ∈ Π.

60

4.1 Parallel Gain Calculation

v6

v1

v0

v2
v5

v4

v3

e1

e0

e3

e2

V1

V2

V3

c(Vi)
V1 V2

2 2 3
V3

Λ(e)
V1 V2

1 0 0
V3 V1 V2

1 1 1
V3 V1 V2

0 1 1
V3 V1 V2

1 0 1
V3

e0 e1 e2 e3

Π
v0

1 2 1 2 3 3 3
v1 v2 v3 v4 v5 v6

Partition Assignments Block Weights

Connectivity Sets

Pin Count Values

Φ(e, V1) Φ(e, V2) Φ(e, V3)
e0
e1
e2
e3

2 0 0
1 2 1
0 1 2
1 0 2

V1 V3

V2

Figure 4.1: The partition data structure.

Figure 4.1 shows our partition data structure for a 3-way partition Π = {{v0,
v2}, {v1, v3}, {v4, v5, v6}}. Hyperedge e1 = {v0, v1, v3, v4} has Φ(e1, V1) = 1
pin in block V1, Φ(e1, V2) = 2 pins in block V2 and Φ(e1, V3) = 1 pin in block
V3. The connectivity set of hyperedge e3 = {v2, v5, v6} is Λ(e3) = {V1, V3}, since
v2 ∈ V1 and {v5, v6} ⊂ V3.

Data Layout. The size of a pin count value is bounded by the size of the largest
hyperedge. To save memory, we use a packed representation with dlog(maxe∈E |e|)e
bits per entry for the Φ(e, Vi) values. Furthermore, we use a bitset of size k to store the
connectivity set Λ(e) of each hyperedge e ∈ E. We iterate over the connectivity set Λ(e)
by taking a snapshot of its bitset and then use count-leading-zeroes instructions. We
compute the connectivity λ(e) = |Λ(e)| of a hyperedge e using pop-count instructions
(counts the number of 1-bits in a machine word).

The Move Node Operation. Algorithm 4.1 shows the update operation performed
on the partition data structure when moving a node u from its current block Vi to
a target block Vj . It starts with an atomic fetch-and-add instruction adding the
weight of node u to the weight of block Vj . If the resulting partition is imbalanced, we
revert the block weight update of c(Vj) and reject the move (see Line 16). Otherwise,
we move node u to block Vj and subtract the weight of node u from the weight of its
current block Vi. We do not perform an atomic operation to update the block ID of
node u since our refinement algorithms guarantee that only one thread moves a node
at a time.

We then update the pin count values Φ(e, Vi) and Φ(e, Vj) of each net e ∈ I(u) using
atomic fetch-and-sub/add instructions. Subsequently, we modify the connectivity
set Λ(e) by flipping a bit in the corresponding bitset if either Φ(e, Vi) decreases to zero
or Φ(e, Vj) increases to one using an atomic xor operation with a bitmask containing
a one at position i respectively j.

61

4 Parallel Improvement Algorithms

Algorithm 4.1: Moves a node u from block Vi to Vj

Input: Node u ∈ Vi and a target block Vj

Output: Attributed gain ∆λ−1 if the node was moved. Otherwise, ⊥.
1 cj ← fetch-and-add(c(Vj), c(u))
2 if cj + c(u) ≤ Lmax then // Check if partition is still balanced
3 Π[u]← Vj

4 fetch-and-sub(c(Vi), c(u))
5 ∆λ−1 ← 0
6 for e ∈ I(u) do

// Update pin count values and connectivity set of net e
7 Φi ← fetch-and-sub(Φ(e, Vi), 1)− 1
8 Φj ← fetch-and-add(Φ(e, Vj), 1) + 1
9 if Φi = 0 then Λ(e)← Λ(e) \ {Vi}

10 if Φj = 1 then Λ(e)← Λ(e) ∪ {Vj}
// Compute attributed gain for hyperedge e

11 if Φi = 0 then ∆λ−1 ← ∆λ−1 + ω(e)
12 if Φj = 1 then ∆λ−1 ← ∆λ−1 − ω(e)
13 updateGainTable(e,Φi,Φj) // see Section 4.1.2
14 return ∆λ−1

15 else
16 fetch-and-sub(c(Vj), c(u)) // revert block weight update of Vj

17 return ⊥

Consider a net e with Φ(e, Vi) = 1 and assume that the last remaining pin u ∈ e
in block Vi moves out of block Vi, while another node v ∈ e moves to block Vi

simultaneously. After applying both node moves, the connectivity set Λ(e) should
contain Vi since v ∈ e ∩ Vi. The pin count update operation either increases
Φ(e, Vi) from 1 to 2 and then to 1 again, or decreases Φ(e, Vi) from 1 to 0 and
then to 1 again, depending on their execution order. The former case does not
trigger any connectivity set update. In the latter case, we may first process the
connectivity set update that increases Φ(e, Vi) from 0 to 1 before we observe
that Φ(e, Vi) decreases from 1 to 0. However, since we modify the bitset of the
connectivity set with an atomic operation that flips a bit at position i, the first
update operation removes Vi from Λ(e) (even though Φ(e, Vi) increases from 0
to 1) and the second adds Vi to Λ(e) again (even though Φ(e, Vi) decreases from
1 to 0). Hence, Vi ∈ Λ(e) after applying both node moves regardless of their
execution order.

After updating the pin count values and connectivity set, we compute an attributed
gain value ∆λ−1 and update a gain table data structure described in the following
paragraph and subsection in more detail.

The move node operation is lock-free. However, in our actual implementation, we use

62

4.1 Parallel Gain Calculation

a separate spin-lock for each net e to synchronize writes to Φ(e, Vi) and Φ(e, Vj) since
we cannot use atomic fetch-and-add operations due to their packed representation
(one machine word can contain several Φ(e, Vi) values). Each thread holds at most one
spin-lock at a time, and, in particular, we do not lock all incident nets of a node before
moving it. Reads are not synchronized. We implement the spin-locks by setting a bit
with an atomic test-and-set instruction (applies to all locks used in this work).1 The
running time of the move node operation is O(|I(u)| ·TGC) where TGC is the complexity
of the gain table update procedure which we discuss in Section 4.1.2.

Attributed Gains. In this work, we optimize the connectivity metric fλ−1(Π) =∑
e∈E(λ(e)− 1) ·ω(e). If we move a node u from block Vi to Vj and Φ(e, Vi) decreases

from one to zero for net e, fλ−1(Π) decreases by ω(e). If, on the other hand, the move
increases Φ(e, Vj) from zero to one, fλ−1(Π) increases by ω(e).

As the gain value of a node move can change between its initial calculation and
actual execution due to concurrent node moves in its neighborhood, we additionally
compute an attributed gain value ∆λ−1 for each move based on the atomic updates
of the pin count values Φ(e, Vi) and Φ(e, Vj) in Line 11 and 12 of Algorithm 4.1. We
attribute a connectivity reduction by ω(e) to the move that reduces Φ(e, Vi) to zero
(see Line 11) and an increase by ω(e) for increasing Φ(e, Vj) to one (see Line 12).

Since we do not lock all incident nets e ∈ I(u) before moving a node u, there is no
guarantee on the order in which concurrent moves perform the pin count updates.
Hence, this scheme may distribute the connectivity reductions to different threads,
but the sum of the attributed gains equals the overall connectivity reduction. Thus,
we use attributed gains as a secondary check to revert moves or move sequences that
degrade fλ−1(Π) and correctly track the connectivity metric.

4.1.2 The Gain Table
Algorithm 4.2 computes the move with the highest gain for a node u. It uses the
following reformulation of the gain value:

gu(Vj) = ω({e ∈ I(u) | Φ(e,Π[u]) = 1})− ω({e ∈ I(u) | Φ(e, Vj) = 0})
= ω({e ∈ I(u) | Φ(e,Π[u]) = 1})− ω(I(u)) + ω({e ∈ I(u) | Φ(e, Vj) ≥ 1})
= b(u)− ω(I(u)) + p(u, Vj)

We will refer to b(u) := ω({e ∈ I(u) | Φ(e,Π[u]) = 1}) as the benefit term and
to p(u, Vj) := ω({e ∈ I(u) | Φ(e, Vj) ≥ 1}) as the penalty term. The new gain
formulation has the advantage that we can calculate p(u, Vj) by iterating over the
connectivity sets Λ(e) of each net e ∈ I(u) (instead of over all blocks Vi ∈ Π \ Λ(e)
which is usually much larger than Λ(e)). Algorithm 4.2 has a running time of

1We note that the atomic block weight updates can cause contention for smaller values of k. However,
the work performed by the different refinement algorithms to identify move candidates usually
dominates the running time of the move node operation.

63

4 Parallel Improvement Algorithms

Algorithm 4.2: Computes the highest gain move for a node u

Input: Node u ∈ V
Output: Pair (gu(Vj), Vj) where gu(Vj) := maxVi∈Π gu(Vi).

1 bu ← 0, p← [0, . . . , 0] // p is array of size k
2 for e ∈ I(u) do
3 if Φ(e,Π[u]) = 1 then bu ← bu + ω(e)
4 for Vi ∈ Λ(e) \ {Π[u]} do p[i]← p[i] + ω(e)

5 Vj ← Π[u], gj ← 0
6 for i = 1 to k do
7 gi ← bu − ω(I(u)) + p[i]
8 if gi ≥ gj and c(Vi) + c(u) ≤ Lmax then // breaking ties uniformly at random
9 Vj ← Vi, gj ← gi

10 return (gj , Vj)

O((
∑

e∈I(u) |Λ(e)|) + k) = O(|I(u)|k). In the following, we present a technique that
reduces the running time to O(k). The idea is to explicitly store and maintain the
benefit and penalty term in the partition data structure. We will refer to this data
structure as the gain table.

Motivation. KaHyPar [Sch+16a; Akh+17a] uses a gain table in its highly-localized
k-way FM algorithm (see Section 3.1.2). The authors report that the gain table
reduces the running time of their FM implementation by 45% compared to a variant
that computes the gain values each time from scratch. We also integrate the gain table
into our parallel FM algorithm (see Section 4.3). Here, the gain table additionally
enables fast recomputations to verify if the gain value of the expected best move had
changed due to concurrent moves made by other threads.

Data Layout. Our gain table maintains the benefit term b(u), the weighted node
degree ω(I(u)), and the penalty term p(u, Vj) for each node u ∈ V and block Vj ∈ Π.
The memory consumption of the data structure is n(k + 2). We initialize the gain
table by iterating over each node in parallel, and use Algorithm 4.2 to compute the
benefit and penalty terms.

Since we use only one memory location for b(u), and not one for each block, the
term can no longer be correctly updated after a node u is moved to a different block
Vj . We could recompute the new benefit term b(u), which require locking all incident
nets of u to prevent other threads from modifying their pin count values. However,
we decided to invalidate the gain table entry of a moved node u since our refinement
algorithms are organized in rounds where each node is moved at most once. Therefore,
we recalculate b(u) for every moved node u after each round.

Gain Table Update. Algorithm 4.3 shows the gainTableUpdate(e,Φi,Φj) proce-
dure used in Line 13 of Algorithm 4.1. It implements the delta gain updates for the
connectivity metric proposed by Schlag [Sch20, Algorithm 4.6 on p. 126], who proved

64

4.1 Parallel Gain Calculation

Algorithm 4.3: Gain Table Update
Input: A net e, and Φi and Φj that we obtained from the atomic updates of the

pin count values Φ(e, Vi) and Φ(e, Vj) in Algorithm 4.1.
1 if Φi = 1 then // Case 1: Φ(e, Vi) decreased from 2 to 1
2 for u ∈ e do

// Find last remaining pin of net e in block Vi

// since moving it out of block Vi decreases λ(e) by one now.
3 if Π[u] = Vi then fetch-and-add(b(u), ω(e))

4 else if Φi = 0 then // Case 2: Φ(e, Vi) decreased from 1 to 0
// Moving the pins of net e to block Vi increases λ(e) by one now.

5 for u ∈ e do fetch-and-add(p(u, Vi),−ω(e))
6 if Φj = 1 then // Case 3: Φ(e, Vj) increased from 0 to 1

// Moving the pins of net e to block Vj do not increase λ(e) anymore.
7 for u ∈ e do fetch-and-add(p(u, Vj), ω(e))

8 else if Φj = 2 then // Case 4: Φ(e, Vj) increased from 1 to 2
9 for u ∈ e do

// Find the previously last pin of net e in block Vj

// since moving it out of block Vj does not decrease λ(e) anymore.
10 if Π[u] = Vj then fetch-and-add(b(u),−ω(e))

their correctness in the sequential setting [Sch20, Theorem 4.3 on p. 127]. We refrain
from discussing the different cases in Algorithm 4.3 and refer to the comments in the
pseudocode describing them in detail.

In the parallel setting, threads may see intermediate states of gain table updates
since we do not synchronize reads. However, we can argue that the gain value gu(Vj)
of each non-moved node u ∈ V and block Vj ∈ Π is correct after we have applied a
sequence of moves in parallel.

We have to show that the order in which we apply the gain table updates is
independent of the order of the pin count updates. The correctness of the gain table
updates then follows from their correctness in the sequential setting. If we look at
the different cases, we see that Case 1 and 4 modify the benefit term and Case 2 and
3 modify the penalty term. Thus, they are independent of each other. Furthermore,
Case 3 performs the reverse operation of Case 2 (and vice versa). Thus, the order in
which we apply the gain table updates is independent of the order of the pin count
updates for both cases. The same holds for Case 1 and 4, which proves the correctness
of the gain table updates in the parallel setting.

Running Time. We restrict the running time analysis of the gain table updates
to the case where each node is moved exactly once. For k = 2, the different cases
shown in Algorithm 4.3 corresponds to the cases of the delta gain updates proposed
for the original FM algorithm [FM82]. Fiduccia and Mattheyses [FM82] showed that

65

4 Parallel Improvement Algorithms

updates are triggered at most four times per net and FM pass. The proof uses the
observation that the pin count value Φ(e, Vi) of a net e and block Vi cannot decrease
to zero anymore if one pin u ∈ e moves to block Vi (since each node is moved exactly
once). Thus, we can trigger all cases of Algorithm 4.3 if we first move all pins of net
e out of block Vi and then move two pins to block Vi again. Hence, in our setting
where each node is moved exactly once, the running time to maintain the gain table is∑

e∈E 4|e| = O(p).
For general values of k, the worst case running time increases to O(pk). We can use

a similar argument as in our previous discussion for k = 2. Each net e has k pin count
values and each Φ(e, Vi) value triggers at most four updates per net e and pass. Thus,
the total running time sums up to

∑
e∈E 4k|e| = O(pk).

In the following, we give an example showing that the O(pk) bound is tight.
Let e = {u1, . . . , uk} be a net with k pins and Φ(e, Vi) = 2 for all blocks
Vi ∈ {V1, . . . , Vk/2}. If we move each pin of net e from its current block Vi to a
block Vi+k/2, then each move triggers exactly two cases of Algorithm 4.3. Thus,
the total running time is O(k|e|).

However, many real-world instances contain only a small fraction of large hyperedges,
and the connectivity λ(e) of a net e is usually small. Hence, the running time of the
gain table updates is often closer to O(p) than to the O(pk) bound in practice.

Differences to KaHyPar. KaHyPar [Sch20] does not distinguish between a benefit
and penalty term and directly stores the gain values gu(Vj) for each node u ∈ V and
block Vj ∈ Π. Therefore, gain table updates modifying the benefit term are more
expensive (see Case 1 and 4 in Line 1 and 8).

If Φ(e, Vi) decreases from 2 to 1 (Case 1 in Line 1), moving the last remaining
pin u ∈ e of block Vi to a block Vj ∈ Λ(e) \ {Vi} decreases λ(e) now. Therefore,
we have to add ω(e) to the gain value gu(Vj) for each block Vj ∈ Λ(e) \ {Vi}.
If Φ(e, Vj) increases from 1 to 2 (Case 4 in Line 8), moving the previously
last pin u ∈ e of block Vj to a block Vi ∈ Λ(e) \ {Vj} does not decrease λ(e)
anymore. Therefore, we have to add −ω(e) to the gain value gu(Vi) for each block
Vi ∈ Λ(e) \ {Vj}. For both cases, the update operation consists of identifying the
(previously) last pin of net e in block Vi respectively Vj and afterwards update
|Λ(e) \ {Vi}| respectively |Λ(e) \ {Vj}| ≤ k− 1 gain values. Thus, the complexity
of the operation is O(|e|+ k − 1) per net.

Consequently, the running time of KaHyPar’s gain table updates is

∑
e∈E

2|e|+ 2(|e|+ k − 1) = O(p+m(k − 1))

for k = 2, but it only requires to store nk values.

66

4.1 Parallel Gain Calculation

4.1.3 Parallel Gain Recalculation
We now propose a parallel algorithm to recompute exact gain values of a sequence
of node moves M = 〈m1, . . . ,mt〉 if they are supposed to be performed in this order.
Each move mi ∈M is of the form mi = (u, Va, Vb), which means that node u is moved
from block Va to Vb. We further assume that each node is moved at most once, as
it is in our parallel FM algorithm presented in Section 4.3, for which we will use the
algorithm later. Recall that a move of a node u from block Va to Vb decreases the
connectivity of a hyperedge e (and also the connectivity metric by ω(e)), if Φ(e, Va)
decreases to zero. Conversely, it increases the connectivity if Φ(e, Vb) increases to one.
The idea of the following algorithm is to iterate over the hyperedges in parallel, and
for each hyperedge, we identify the node moves in M that increase or decrease its
connectivity using the algorithm outlined in Algorithm 4.4.

Consider a hyperedge e and a block Vi ∈ Π. The first observation is that if we move
a pin v ∈ e to Vi, then Φ(e, Vi) can not decrease to zero anymore since each node is
moved at most once. In order to decrease Φ(e, Vi) to zero, we have to move all pins
u ∈ e ∩ Vi out of block Vi before we move the first pin v ∈ e \ Vi to block Vi. In this
case, the last pin u ∈ e moved out of block Vi decreases the connectivity of e and
the first pin v ∈ e moved to block Vi increases its connectivity again. Thus, we can
decide whether or not a move increases or decreases the connectivity of a hyperedge by
simply comparing the indices of the node moves in M , which were last moved out and
first moved to a particular block. Additionally, we need to know if the move sequence
M moves all pins out of block Vi. To do so, we count the number of non-moved pins
v ∈ e in each block. If the number of non-moved pins is zero for a block Vi, then either
Φ(e, Vi) was zero before, or the move sequence M moved all nodes out of block Vi.

Algorithm 4.4 shows the pseudocode that identifies the node moves in M that
increase or decrease the connectivity of a hyperedge e. The algorithm uses two loops,
both iterating over the pins of hyperedge e. The first loop computes the indices of
the node moves that first moved to and last moved out of each block Vi ∈ Π (see
Line 7 and 8). For each non-moved pin u ∈ e (moved nodes are marked in a bitset),
we increment the number of non-moved pins in block Π[u] (see Line 9).

The second loop then decides for each moved pin u ∈ e whether or not it increases or
decreases the connectivity of hyperedge e by evaluating the conditions shown in Line 14
and 16. Let mi := (u, Va, Vb) be the corresponding node move of pin u ∈ e in M . If M
moves all nodes out of block Va (non_moved_pins[Va] = 0) and u is the last pin moved
out of block Va (last_out[Va] = i), while the first move that moves a pin into block Va

happens strictly after mi (i < first_in[Va]), then mi reduces the connectivity metric
by ω(e). Conversely, if M moves all nodes out of block Vb (non_moved_pins[Vb] = 0)
and u is the first pin moved into block Vb (first_in[Vb] = i), while the last move
that moves a pin out of block Vb happens strictly before mi (i > last_out[Vb]), then
mi increases the connectivity metric by ω(e). Since we run the algorithm for each
hyperedge in parallel, several threads can modify the gain value gi of a node move
mi simultaneously. We therefore use atomic fetch-and-add instructions (see Line 15
and 17).

67

4 Parallel Improvement Algorithms

Algorithm 4.4: Parallel Gain Recalculation
Input: Hyperedge e, a sequence of node moves M = 〈m1, . . . ,mt〉 and a shared

gain vector G = 〈g1, . . . , gt〉 representing the recalculated gain values
1 first_in← [∞, . . . ,∞], last_out← [0, . . . , 0] // Arrays of size k
2 non_moved_pins← [0, . . . , 0] // Array of size k
3 for u ∈ e do
4 Va ← Π[u]
5 if u was moved then // moved nodes are marked in a bitset
6 mi := (u, Va, Vb)← find corresponding move in M
7 last_out[Va]← max(i, last_out[Va])
8 first_in[Vb]← min(i, first_in[Vb])

9 else non_moved_pins[Va]← non_moved_pins[Va] + 1
10

11 for u ∈ e do
12 if u was moved then
13 mi := (u, Va, Vb)← find corresponding move in M
14 if last_out[Va] = i ∧ i < first_in[Va] ∧ non_moved_pins[Va] = 0

then
15 fetch-and-add(gi, ω(e))

16 if first_in[Vb] = i ∧ i > last_out[Vb] ∧ non_moved_pins[Vb] = 0 then
17 fetch-and-add(gi,−ω(e))

To further reduce the complexity of the algorithm, we only process hyperedges
containing moved nodes. To do so, we iterate over the node moves in M in parallel
and run Algorithm 4.4 only for incident edges of moved nodes. We mark already
processed hyperedges in a shared bitset using atomic test-and-set instructions.

4.2 Label Propagation Refinement
Our first refinement algorithm is a parallel version of the label propagation algo-
rithm [KK96; WCE97; TK04a; ASS17; MSS17; Got+21e; Mal+21]. The algorithm
only performs moves with positive gain and therefore cannot escape from local optima.
However, we use it to find all simple node moves such that our parallel FM and flow-
based refinement algorithm can focus on finding non-trivial improvements [ASS17]. In
the following, we describe our parallel implementation of the algorithm outlined in
Algorithm 4.5.

Algorithm Overview. The label propagation algorithm works in rounds. In each
round, we iterate in parallel over all boundary nodes, and whenever we visit a node
u, we compute the block Vj that maximizes the gain gu(Vj) and satisfies the balance

68

4.2 Label Propagation Refinement

Algorithm 4.5: The Parallel Label Propagation Algorithm
Input: Hypergraph H = (V,E, c, ω) and k-way partition Π = {V1, . . . , Vk}

1 i← 0
2 bu ← [0, . . . , 0] // bitset of size n
3 be ← [0, . . . , 0] // bitset of size m
4 V ′ ← find all border nodes u ∈ V of Π
5 while i < imax and |V ′| > 0 do
6 V ′ ← parallelRandomShuffle(V ′), V ′′ ← ∅ // see Section 2.3
7 for u ∈ V ′ do in parallel
8 (gj , Vj)← compute move with highest gain for node u // see Algorithm 4.2
9 if gj > 0 or move improves balance then

10 ∆λ−1 ← move node u to block Vj // see Algorithm 4.1
11 if ∆λ−1 ≥ 0 then // move improved fλ−1(Π)

// Activate u and its neighbors for next round
12 for e ∈ I(u) do // ignoring large nets
13 if compare-and-swap(be[e], 0, 1) then
14 for v ∈ e do
15 if compare-and-swap(bu[v], 0, 1) then
16 V ′′ ← V ′′ ∪ {u}

17 else if ∆λ−1 < 0 then revert move // move has worsened fλ−1(Π)

18 V ′ ← V ′′, i← i+ 1
19 reset all entries of bu and be to 0 // see Section 2.3

constraint using Algorithm 4.2. We then move u to block Vj if it either has positive gain
or, in case of a zero gain improvement, if it improves the balance. In Line 10, we apply
the move on the partition data structure and obtain an attributed gain value ∆λ−1.
If ∆λ−1 is negative, we assume that the move has worsened the connectivity metric
due to concurrent moves made by other threads and revert it in Line 17. Otherwise,
we activate u and its neighbors for the next round in Line 12 – 15 (discussed in the
next paragraph). The algorithm proceeds until a predefined number of rounds imax is
reached or none of the nodes changed its block in a round (|V ′| = 0).

Active Nodes. We use the active node strategy to reduce the number of nodes
visited in a round [MSS14]. A node u is called active if either u or one of its neighbors
changed its block in the previous round. Initially, all boundary nodes of the partition
are active. Only active nodes can have a positive gain. In later rounds, gain values of
inactive nodes cannot change because none of their neighbors has changed its block in
the previous round. We use two shared bitsets be and bu to mark already activated
nets and nodes. New active nodes are inserted into thread-local vectors and copied to
the active node set V ′ at the end of each round.

69

4 Parallel Improvement Algorithms

4.3 Direct k-Way FM Local Search

The classical FM algorithm inserts all boundary nodes into a PQ with the highest
gain as key and repeatedly performs the best feasible move. In contrast, the multi-try
k-way FM algorithm of Sanders and Schulz [SS11] initializes the PQ only with a
single boundary node and its neighbors. The algorithm then gradually expands the
search around the seed nodes by inserting neighbors of moved nodes into the PQ.
A stopping rule is used to terminate the search early if it becomes unlikely to find
further improvements [OS10]. Afterwards, the algorithm continues with the next
highly-localized FM search until all nodes are moved at most once.

The multi-try k-way FM algorithm is highly amenable to parallelization since
multiple searches starting from different seed nodes can run in parallel. A parallel
version of the algorithm is already implemented in the shared-memory graph partitioner
Mt-KaHIP [ASS17]. The threads perform localized searches that do not overlap on
nodes. Each thread initializes its search with a different seed node, and gradually
expands around it by claiming neighbors of moved nodes. The seed nodes are polled
from a task queue initialized with all boundary nodes. The algorithm performs node
moves locally using thread-local hash tables and therefore the moves performed by
the different searches are not visible to other threads. Once the task queue is empty,
the move sequences of the threads are concatenated to a global move sequence, for
which gains are recomputed sequentially.

In the following, we present our parallel implementation of the algorithm that
overcomes several shortcomings of the approach implemented in Mt-KaHIP. First, we
can recompute the gains of the global move sequence in parallel using the algorithm
presented in Section 4.1.3. Second, threads immediately apply a move sequence to
the global partition once an improvement is found, and other threads can see these
changes. Since this can invalidate gain values stored in the PQs of other searches, we
propose techniques to adapt the gain values to changes on the global partition.

4.3.1 Multi-Try k-Way FM Algorithm
Algorithm 4.6 outlines the pseudocode of their parallel multi-try k-way FM algorithm.
The algorithm proceeds in rounds, and each round starts with inserting all boundary
nodes into a globally shared task queue Q. The threads then poll a fixed number of
nodes from Q which we use as seed nodes for the highly-localized FM searches in Line 9.
The searches are non-overlapping, i.e., threads acquire exclusive ownership of nodes
(see Line 7 in Algorithm 4.6), while hyperedges can touch multiple searches. Node
moves performed by the different searches are not visible to other threads (performed
locally using thread-local hash tables). However, once a thread finds an improvement,
it immediately applies it to the global partition. We increment an atomic counter to
assign global IDs to node moves at the time they are performed on the global partition,
and store them in a vector that represents the global move sequence. We repeatedly
start localized searches until the task queue is empty.

70

4.3 Direct k-Way FM Local Search

Algorithm 4.6: Multi-Try k-Way FM Algorithm
Input: Hypergraph H = (V,E, c, ω), k-way partition Π = {V1, . . . , Vk}

1 for i = 1 to imax do
2 Q← initialize task queue with all boundary nodes of Π
3 while Q is not empty do in parallel
4 Vseed ← ∅
5 while |Vseed| ≤ smax and Q is not empty do
6 u← Q.pop()
7 if try to acquire node u then
8 Vseed ← Vseed ∪ {u}

9 localizedKWayFM(H,Π, Vseed) // see Algorithm 4.7
10 Π← recomputeGainsAndRevertToBestGlobalPrefix() // see Section 4.1.3
11 if no improvement then break

Once the task queue is empty, we proceed to the second phase, where we recalculate
the gains of the global move sequence (see Section 4.1.3) and then use a parallel prefix
sum and reduce operation on the recomputed gain values to revert to the best seen
solution. The algorithm proceeds until a fixed number of rounds is reached or it fails
to improve the connectivity metric in a round.

4.3.2 Highly-Localized k-Way FM Search
Algorithm 4.7 shows the pseudocode of our highly-localized k-way FM algorithm. It
uses a single PQ storing the move with the highest gain for each inserted node. We
initialize the PQ with several seed nodes and use the gain table to compute the initial
best move for each node (see Line 2 – 4). Then, we repeatedly select the move with
the highest gain and apply it to a thread-local partition ∆Π. Changes on ∆Π are
not visible to other threads. However, we immediately apply a sequence of moves to
the global partition Π once we find an improvement (see Line 15). When we move
a node u to a different block, we collect the nets e ∈ I(u) affected by a gain table
update. We use them to update the gain values of nodes in the PQ and expand the
search to neighbors of moved nodes. The localized search terminates when the PQ
becomes empty or the adaptive stopping rule of Osipov and Sanders [OS10; Akh+17a]
is triggered (see Section 3.1.2). We release the ownership of non-moved nodes at the
end such that other searches can acquire them again. We do not release the ownership
of moved nodes to ensure that each node is moved at most once during an FM pass.

Thread-Local Partition. The FM algorithm repeatedly performs the move with
the highest gain, which can also intermediately worsen the solution quality. At the
end of each search, the algorithm reverts to the best seen solution. If we immediately
apply all moves found by the different searches to the global partition, the threads may

71

4 Parallel Improvement Algorithms

Algorithm 4.7: Highly-Localized k-Way FM Algorithm
Input: Hypergraph H = (V,E, c, ω), k-way partition Π = {V1, . . . , Vk} and a set

of seed nodes Vseed
1 ∆Π← Π
2 for u ∈ Vseed do // initialize PQ with seed nodes
3 (gj , Vj)← computeMaxGainMove(u) // using the gain table
4 PQ.insert(u, gj , Vj)

5 curλ−1 ← 0,M ← ∅
6 while PQ not empty and search should continue do
7 while true do // extract move with highest gain from PQ
8 (u, gj , Vj)← PQ.maxGainMove()
9 (gu, Vj)← recomputeMaxGainMove(u) // using the gain table

10 if gu ≥ gj then gj ← gu, PQ.pop(), break // accept move
// update gain of node u since its actual gain is smaller than expected

11 else PQ.update(u, gu, Vj)

12 apply move of node u to block Vj on thread-local partition ∆Π
13 curλ−1 ← curλ−1 + gj ,M ←M ∪ {(u, Vj)}
14 if curλ−1 > 0 or (curλ−1 = 0 and move improved balance) then
15 apply move sequence M to global partition Π
16 curλ−1 ← 0,M ← ∅,∆Π← Π

17 for all nets e ∈ I(u) affected by a gain table update do
18 for v ∈ e do
19 if v is not marked then
20 if PQ.contains(v) then update gain of v in PQ

// expand search to neighbors of u
21 else if try to acquire node v then
22 (gj , Vj)← computeMaxGainMove(v) // using the gain table
23 PQ.insert(v, gj , Vj)

24 mark v

25 unmark all nodes
26 for u ∈ PQ do release ownership of u

see intermediate states of other searches that are later reverted because they do not
improve the connectivity metric. This becomes a problem when other threads perform
moves depending on these states since reverting a move sequence can invalidate their
gain values. Therefore, we apply node moves to a thread-local partition ∆Π using hash
tables and only perform them on the global partition if they lead to an improvement.

The thread-local partition ∆Π stores changes relative to the global partition. For
example, we compute the weight of a block Vi by calculating c(Vi) + ∆c(Vi) where

72

4.3 Direct k-Way FM Local Search

c(Vi) is the weight of block Vi stored in the global partition data structure and ∆c(Vi)
is the weight of all nodes that locally moved to block Vi minus the weight of nodes that
moved out of block Vi. We maintain the pin count values, and benefit and penalty
terms of the gain table analogously. Moving a node locally overrides its block ID in
the global partition data structure.

Applying a move sequence to the global partition makes it immediately visible to
the thread-local partitions of other threads. Since ∆Π stores local changes relative to
the global partition, the block weights and pin count values are still correct. However,
some gain values may be incorrect since the gain table updates on the global partition
do not consider moves performed locally. In practice, as we will see in the experimental
evaluation, the scheme drastically reduces conflicts since only a small fraction of the
searches find an improvement.

Apply Moves. After extracting a node move from the PQ (see Line 8), we recompute
its gain value using the gain table. If the recomputed gain is worse than the expected
gain value, we update the PQ accordingly. Otherwise, we apply it to the thread-local
partition. This way, we update the PQ to changes made by other threads.

If the observed gain values suggest an improvement, we immediately apply the
corresponding move sequence to the global partition. During that, we compute an
attributed gain value for each move and, if the actual does not match the expected
improvement, we revert to the best seen solution based on the attributed gains.

Gain Updates. If we move a node u from its current block Vi to a target block Vj ,
the gain values of its neighbors v ∈ Γ(u) may change. Therefore, we collect the nets
e ∈ I(u) affected by a gain table update and iterate over the pins to update their gain
values in the PQ. Let v ∈ Γ(u) be a node in the PQ and Vk its target block with the
highest gain before we moved node u from block Vi to Vj . If Vk 6= Vi and Vk 6= Vj ,
then only gv(Vi) and gv(Vj) can be greater than gv(Vk). Hence, we compare the gain
values of moving v to one of the three blocks using the gain table and update the gain
of v in the PQ accordingly. If Vk = Vi or Vk = Vj , then the move may have reduced
gv(Vk), and we recompute the highest gain block for node v using the gain table.

If a node v ∈ Γ(u) is not in the PQ, the thread tries to acquire its ownership and
inserts it into the PQ (see Line 23). The original multi-try k-way FM algorithm [ASS17]
inserts all nodes adjacent to the moved node into the PQ. Our implementation only
considers adjacent nodes incident to nets affected by a gain table update. This
way, we expand the search to boundary nodes whose gain values are affected by the
current move and, subsequently, may improve the connectivity metric. Furthermore,
we run the label propagation algorithm before the FM algorithm in our multilevel
algorithms presented in Chapter 5 and 6. Thus, there are usually no positive gain
moves left. Consequently, node moves have to trigger gain table updates to improve
the connectivity metric.

Implementation Details. We use a binary heap-based priority queue implementa-
tion and store handles to identify elements in the PQ in a shared vector of size n. The
thread-local partitions ∆Π use hash tables with linear probing to resolve collisions. If

73

4 Parallel Improvement Algorithms

the fill grade of a hash table becomes larger than 2
5 , we double its size and rehash the

elements.

4.4 Flow-Based Refinement
The FM algorithm can escape from local optima, but its greedy nature can prevent it
from finding some non-trivial improvements. In particular, if an improvement requires
to violate the balance constraint intermediately, the FM algorithm may fail to discover
it because it only performs moves preserving balance (see Figure 3.2). Furthermore,
large hyperedges can make it difficult to find meaningful moves [Saa95]. They tend to
have many pins in different blocks, leading to mostly zero-gain moves.

Maximum flows overcome the limitations of existing move-based local search heuris-
tics because they find a minimum cut separating two nodes [FF56], and thus have a
more global view on the partitioning problem. However, they were long overlooked
due to their complexity [YW96], but have since enjoyed wide-spread adoption in
the partitioning community [YW96; SS11; HS18; HSS19a; Got+20; GHW19]. Flow-
based refinement is currently considered the most powerful improvement heuristic
for (hyper)graph partitioning, but often substantially increases the running time of
sequential partitioning algorithms, making them impractical for partitioning very large
(hyper)graphs.

Algorithm Overview. In this section, we present the first parallel flow-based
refinement algorithm for hypergraph partitioning. The high-level pseudocode of the
algorithm is outlined in Algorithm 4.8. Flow-based refinement works on biparitions and
can be scheduled on different block pairs to improve k-way partitions [SS11; HSS19a;
Got+20]. We therefore start with a parallel scheduling scheme of adjacent block pairs
based on the quotient graph in Section 4.4.1 (see Line 1 and 2). In Section 4.4.2, we
describe the flow network construction algorithm that extracts a subhypergraph around
the boundary nodes of two adjacent blocks, which then yields a flow network (see
Line 3 and 4). On each network we run the FlowCutter algorithm, whose partition we
convert into a set of moves M and an expected connectivity reduction ∆exp. FlowCutter
and its parallelization are discussed in Sections 4.4.3 and 4.4.4. If FlowCutter claims an
improvement, i.e., ∆exp ≥ 0, we apply the moves to the global partition and compute
the exact reduction ∆λ−1, based on which we either mark the blocks for further
refinement, or revert the moves (see Line 8 and 9).

4.4.1 Parallel Active Block Scheduling
Sanders and Schulz [SS11] propose the active block scheduling algorithm to apply their
flow-based refinement algorithm for bipartitions on k-way partitions. Their algorithm
proceeds in rounds. In each round, it schedules all pairs of adjacent blocks where at
least one is marked as active. Initially, all blocks are marked as active. If a search on
two blocks improves the edge cut, both are marked as active for the next round.

74

4.4 Flow-Based Refinement

Algorithm 4.8: Parallel Flow-Based Refinement
Input: Hypergraph H = (V,E, c, ω) and k-way partition Π of H

1 Q ← buildQuotientGraph(H,Π) // see Section 4.4.1
2 while ∃ active (Vi, Vj) ∈ Q do in parallel // see Section 4.4.1
3 B :=← constructRegion(H,Vi, Vj) // see Section 4.4.2
4 (H, s, t)← constructFlowNetwork(H,B) // see Section 4.4.2
5 (M,∆exp)← FlowCutterRefinement(H, s, t) // see Section 4.4.3 – 4.4.4
6 if ∆exp ≥ 0 then // potential improvement
7 ∆λ−1 ← applyMoves(H,Π,M) // see Section 4.4.1
8 if ∆λ−1 > 0 then mark Vi and Vj as active // found improvement
9 else if ∆λ−1 < 0 then revertMoves(H,Π,M) // no improvement

Parallelization. A simple scheme would be to schedule block pairs that form a
maximum matching in the quotient graph Q in parallel [HSS10]. This allows searches
to operate in independent regions of the hypergraph and thus avoids conflicting moves
between different block pairs. However, this scheme restricts the available parallelism
to at most k

2 threads. Thus, we do not enforce any constraints on the block pairs
processed concurrently, e.g., there can be multiple threads running on the same block
and they can also share some of their nodes as illustrated in Figure 4.2. We use
min(t, τ · k) threads to process the active block pairs in parallel, where t is the number
of available threads in the system. The parameter τ controls the available parallelism in
the scheduler. With higher values of τ , more block pairs are scheduled in parallel. This
can lead to interference between searches that operate on overlapping regions. Lower
values for τ can reduce these conflicts but put more emphasis on good parallelization
of 2-way refinement to achieve good speedups.

Our parallel active block scheduling algorithm uses one concurrent FIFO queue
A to schedule active block pairs. Each block pair is associated with a round and
each round uses an array of size k to mark blocks that become active in the next
round. If a search finds an improvement on two blocks (Vi, Vj) and Vi or Vj becomes
active, we push all adjacent blocks into A if they are not contained yet (marked using
an atomic test-and-set instruction). If either Vi or Vj is already active, we insert
(Vi, Vj) into A if not contained. Thus, active block pairs of different rounds are stored
interleaved in A and the end of a round does not induce a synchronization point as in
the original algorithm [SS11]. For processing in the first round, we sort active block
pairs in descending order of improvement they contributed in previous invocations
(e.g., on previous levels in the multilevel context), with ties broken by larger cut size.
A round ends when all of its block pairs have been processed and all prior rounds
have ended. If the relative improvement at the end of a round is less than 0.1%, we
immediately terminate the algorithm.

Apply Moves. When applying a move sequence M to the global partition Π (each
move m := (u, Vi, Vj) ∈M moves a node u from its current block Vi to Vj), there are

75

4 Parallel Improvement Algorithms

V1 V2

V3

T1

T2

T3

T4

V4

Figure 4.2: Illustration of the parallel scheduling scheme of flow computations
on adjacent block pairs (Ti denotes the flow network constructed by thread i).

three conflict types that can occur: balance constraint violations, ∆λ−1 6= ∆exp, i.e.,
the expected does not match the actual connectivity reduction, and nodes may no
longer be in the block expected by M . These conflicts arise, because concurrently
scheduled flow computations on block pairs can share some of their nodes and nets,
which causes data races on the partition assignments Π, pin count values Φ(e, Vi) and
connectivity sets Λ(e). These are concurrently read by the network construction and
modified when moves are applied. Updates after the construction are not observed,
and thus the state at the time a refinement finishes may differ from the expected state.

Since the running time to apply moves is negligible compared to solving flow problems
(see Figure 5.21 in Section 5.7.4), we can afford to use a lock so that only one thread
applies moves at a time to address these conflicts. First, we remove all nodes from M
that are not in their expected block. Afterwards, we compute the block weights if all
remaining moves were applied. If balanced, we perform the moves, during which we
aggregate the attributed gains ∆λ−1 of each move. If ∆λ−1 < 0, we revert all moves.

Quotient Graph Construction. For each block pair, we explicitly store the hyper-
edges connecting both. This information is required by the flow network construction
algorithm to construct the region B. Block pairs that contain at least one hyperedge
form the edges of the quotient graph. We construct this data structure by iterating
over all hyperedges in parallel and add a hyperedge e ∈ E to the block pairs contained
in {{Vi, Vj} ⊆ Λ(e) | i < j}.

If we apply a move sequence on the partition, we add all hyperedges e ∈ E where
Φ(e, Vj) increases to one to all block pairs contained in {{Vj , Vk} | Vk ∈ Λ(e) \ {Vj}}.
If Φ(e, Vi) decreases to zero, we remove e lazily from the corresponding block pairs in
the flow network construction algorithm.

Implementation Details. KaHyPar [HSS19a] established several pruning rules to
skip unpromising flow computations that we also use in our parallel algorithm. The
first rule skips refinement on two adjacent blocks if the cut between both is less than
ten. The second rule modifies the active block scheduling algorithm such that after

76

4.4 Flow-Based Refinement

the first round only block pairs are scheduled where at least one flow computation
on them improved the solution quality on a previous level (only applicable in the
multilevel context).

We additionally introduce a time limit to abort long-running flow computations.
During scheduling, we track the average running time tf required to solve a flow
problem and set the time limit to 8 · tf . We activate the time limit once k (number of
blocks) block pairs have been processed.

4.4.2 Network Construction
To improve the cut of a bipartition Π = {V1, V2}, we grow a size-constrained region B
around the cut hyperedges of Π. We then contract all nodes in V1 \B to the source
s and V2 \ B to the sink t [SS11; GHW19] as illustrated in Figure 4.3 and obtain a
coarser hypergraph H. The flow network N is then given by the Lawler expansion
of H described in Section 2.1. Note that reducing the hyperedge cut of a bipartition
induced by two adjacent blocks of a k-way partition Πk optimizes the connectivity
metric of Πk [HSS19a].

Network Extraction Algorithm. Sanders and Schulz [SS11] grow a region B :=
B1 ∪ B2 with B1 ⊆ V1 and B2 ⊆ V2 around the cut hyperedges of Π via two
breadth-first-searches (BFS) as illustrated in Figure 4.3. The first BFS is initialized
with all boundary nodes of block V1 and continues to add nodes to B1 as long as
c(B1) ≤ (1 + αε)d c(V)

2 e − c(V2), where α is an input parameter. The second BFS
that constructs B2 proceeds analogously. For α = 1, each flow computation yields
a balanced bipartition with a possibly smaller cut in the original hypergraph, since
only nodes of B can move to the opposite block (c(B1) + c(V2) ≤ (1 + ε)d c(V)

2 e
and vice versa for block B2). Larger values for α lead to larger flow problems with
potentially smaller minimum cuts, but also increase the likelihood of violating the
balance constraint. However, this is not a problem since the flow-based refinement
routine guarantees balance through incremental minimum cut computations (see
Section 4.4.3). In practice, we use α = 16 (also used in KaHyPar [HSS19a; Got+20]).
We additionally restrict the distance of each node v ∈ B to the cut hyperedges to
be smaller than or equal to a parameter δ (= 2). We observed that it is unlikely
that a node far way from the cut is moved to the opposite block by the flow-based
refinement.

Network Construction Algorithm. We implemented two construction algorithms
that are preferable in different situations. Both construct the hypergraph H as
explained at the beginning of Section 4.4.2. In the following, we will denote with
EB := {e ∈ E | e ∩B 6= ∅} the set of hyperedges that contain nodes of region B.

The first algorithm iterates over all nets e ∈ EB. If a pin p ∈ e is contained in
B, we add p to hyperedge e in H. Otherwise, we add the source s or sink t to e, if
p ∈ V1 or p ∈ V2. The second algorithm iterates over all nodes u ∈ B and for each net
e ∈ I(u), we insert a pair (e, u) into a vector. Sorting the vector (lexicographically)
yields the pin lists of the subhypergraph HB . Afterwards, we insert each net e in the

77

4 Parallel Improvement Algorithms

V1 V2

c(B2) ≤ (1 + αε)dc(V)
k e − c(V1)

B1 B2

s t

c(B1) ≤ (1 + αε)dc(V)
k e − c(V2)

Figure 4.3: Illustration of the flow network construction algorithm.

pin list vector into H and add the source s or sink t to e, if Φ(e,B1) < Φ(e, V1) or
Φ(e,B2) < Φ(e, V2).

The first algorithm has linear running time, but has to scan all hyperedges of H in
their entirety in the worst case even if most of their pins are not contained in H. The
complexity of the second algorithm only depends on the number of pins in H, but
requires to sort the pin lists in a temporary vector. We use the second algorithm for
hypergraphs with a low density d := |E|/|V | (≤ 0.5) or a large average hyperedge size
|e| (≥ 100). Note that both algorithms discard single-pin nets and nets that contain
both the source and sink (such nets cannot be removed from the cut).

Parallelization. The first algorithm iterates over all nets e ∈ EB in parallel and
each thread uses the sequential algorithm to construct a thread-local pin list vector.
Afterwards, we use a prefix sum operation to copy the pin lists of each thread to H.

The second algorithm iterates over all nodes u ∈ B in parallel and then uses hashing
to distribute the pairs (e, u) to buckets. Afterwards, we process each bucket in parallel
and apply the sequential algorithm to construct the pin list vector of each bucket.
Finally, we use a prefix sum operation to copy the pin lists of each bucket to H.

Identical Net Removal. Since some nets of H are only partially contained in H,
some of them may become identical. Therefore, we further reduce the size of H by
removing all identical nets except for one representative at which we aggregate their
weight. We use the identical net detection algorithm of Aykanat et al. [ACU08b;
DKÇ13]. It uses fingerprints fe :=

∑
v∈e v

2 to eliminate unnecessary pairwise com-
parisons between nets. Nets with different fingerprints or different sizes cannot be
identical. If we insert a net e into H, we store the pair (fe, e) in a hash table with
chaining to resolve collisions (uses concurrent vectors to handle parallel access). We
can then use the hash table to perform pin-list comparisons between the nets with the
same fingerprint for subsequent net insertions. Note that in the parallel scenario we
may not be able to detect all identical nets due to simultaneous insertions. However,
this does not affect correctness, as removing them is only a performance optimization.

78

4.4 Flow-Based Refinement

Algorithm 4.9: The FlowCutter Algorithm
Input: Original hypergraph H = (V,E, c, ω), flow network H = (V, E) and a

source s ∈ V and sink t ∈ V
Output: Balanced Bipartition of H

1 S ← {s}, T ← {t} // initialize source and sink set
2 initialize flow f : V × V → R≥0 with ∀(u, v) ∈ V × V : f(u, v) = 0
3 while true do
4 f ← parallelMaxPreflow(H, S, T, f) // augment f to a maximum preflow
5 (Sr, Tr)← derive source- and sink-side cut Sr, Tr ⊂ V
6 if (Sr,V \ Sr) is balanced then return (Sr,V \ Sr)
7 else if (V \ Tr, Tr) is balanced then return (V \ Tr, Tr)
8 if c(Sr) ≤ c(Tr) then S ← Sr ∪ selectPiercingNode(S ∪ Sr)
9 else T ← Tr ∪ selectPiercingNode(T ∪ Tr)

4.4.3 The FlowCutter Algorithm
In this section we discuss the flow-based refinement on a bipartition. We introduce
the aforementioned FlowCutter algorithm [YW96; HS18]. It is parallelized by plugging
in a parallel maximum flow algorithm, which we discuss in the next section. To speed
up convergence and make parallelism worthwhile, we propose an optimization named
bulk piercing.

Algorithm Overview. FlowCutter solves a sequence of incremental maximum flow
problems until a balanced bipartition is found. Algorithm 4.9 shows the pseudocode
for the approach. In each iteration, first the previous flow (initially zero) is augmented
to a maximum flow regarding the current source set S and sink set T . Subsequently,
the node sets Sr, Tr ⊂ V of the source- and sink-side cuts are derived. This is done via
residual (parallel) BFS (forward from S for Sr, backward from T for Tr). The node
sets induce two bipartitions (Sr,V \ Sr) and (V \ Tr, Tr). If neither is balanced, all
nodes on the side with smaller weight are transformed to a source (if c(Sr) ≤ c(Tr))
or a sink otherwise. To find a different cut in the next iteration, one additional node
is added, called piercing node. Thus, the bipartitions contributed by the currently
smaller side will be more balanced with a possibly larger cut in future iterations. Since
the smaller side is grown, this process will converge to a balanced partition.

Piercing. For our purpose, there are two important piercing node selection heuristics:
avoid augmenting paths [YW96; HS18] and distance from cut [Got+20]. Whenever
possible, a node that is not reachable from the source or sink should be picked, i.e.,
v ∈ V \ (Sr ∪ Tr). Such nodes do not increase the weight of the cut, while improving
balance. As a secondary criterion, larger distances from the original cut are preferred,
to reconstruct parts of it.

Most Balanced Cut. Once the partition is balanced, we continue to pierce as long
as the cut does not increase. This is repeated with different random choices since it is

79

4 Parallel Improvement Algorithms

fast (no flow augmentation). More balance gives other refinement algorithms more
leeway for improvement. An equivalent heuristic was already proposed in previous flow-
based refinement algorithms, called the most balanced minimum cut heuristic [PQ80;
SS11] (see Section 3.2).
Bulk Piercing Optimization. The complexity of FlowCutter is O(ζm), where ζ is
the final cut weight, and m = |E|. This bound stems from a pessimistic implementation
that augments one flow unit in O(m) work [YW96; HS18]. For refinement, the
performance is much better in practice, as the first cut is often close to the final cut.
Only few augmenting iterations are needed and much less than O(m) work is spent
per flow unit [GHW19], with most work spent on the initial flow.

Still, the flow augmented per iteration is often small: at most the capacity of edges
incident to the piercing node. On large instances, we observed that the number of
required iterations increases substantially. We propose to accelerate convergence by
piercing multiple nodes per iteration, as long as we cannot avoid augmenting paths
and are far from balance. To ensure a poly-log iteration bound, we set a geometrically
shrinking goal of weight to add to each side per iteration. The initial goal for the
source side is set to β(c(V)

2 − c(s)), where β ∈ (0, 1) is the geometric shrinking factor
that is multiplied with the term in each iteration, and c(V)

2 − c(s) is the weight to add
for perfect balance.

If a goal is not met, its remainder is added to next iteration’s goal. We track the
average weight added per node and from this estimate the number of piercing nodes
needed to match the current goal. To boost measurement accuracy, we pierce one
node for the first few rounds. The sides have distinct measurements and goals, so that
we do not pierce too aggressively when the smaller side flips.

4.4.4 Parallel Maximum Flow Algorithm
Maximum flow algorithms are notoriously difficult to parallelize efficiently [SV82; AS95;
BBS15; KÖ19]. The synchronous push-relabel approach of Baumstark et al. [BBS15]
is a recent algorithm that sticks closely to sequential FIFO and thus shows good
results. We first describe the sequential push-relabel algorithm proposed by Goldberg
and Tarjan [GT88] and then present its parallelization. Afterwards, we describe a
so far undocumented bug of their algorithm followed by our fix, and conclude with
implementation details and intricacies of using FlowCutter with preflows. Note that a
maximum preflow already yields a minimum cut, which suffices for our purpose.
Sequential Push-Relabel Algorithm. The push-relabel algorithm [GT88] stores
a distance label d(u) and an excess value exc(u) :=

∑
v∈V f(v, u) for each node.

It maintains a preflow [Kar74] which is a flow where the conservation constraint
is replaced by exc(u) ≥ 0. The distance labels represent a lower bound for the
distance of each node to the sink. A node u ∈ V is active if exc(u) > 0. An edge
(u, v) ∈ E is admissible if rf (u, v) > 0 and d(u) = d(v) + 1. A push(u, v) operation
sends δ = min(exc(u), rf (u, v)) flow units over (u, v). It is applicable if u is active
and (u, v) is admissible. A relabel(u) operation updates the distance label of u to

80

4.4 Flow-Based Refinement

u

v

w

u

v

w

d′ = 0

d′ = 1

d′ = 2

d′ = 3

d′ = 0

d′ = 1

d′ = 2

d′ = 3

exc(u) = 1

exc(v) = 1

exc(w) = 0

exc(u) = 2

exc(v) = 0

exc(w) = 0

3

1

1

1

2
thread 1: relabel(u)

thread 2: push(v, u)

(u, v) is residual, but

d′(u) > d′(v) + 1

Figure 4.4: Example of a push-relabel conflict in the parallel discharge routine
(adapted from Ref. [KÖ19]). The numbers on the arcs denote their residual
capacities.

min({d(v) + 1 | rf (u, v) > 0}), which is applicable if u is active and has no admissible
edges. The distance labels are initialized to ∀u ∈ V \ {s} : d(u) = 0 and d(s) = |V |
and all source edges are saturated. Efficient variants use the discharge routine, which
repeatedly scans the edges of an active node until its excess is zero. All admissible
edges are pushed and at the end of a scan, the node is relabeled. Discharging active
nodes in FIFO order results in an O(|V|3) time algorithm. The global relabeling
heuristic [CG97] frequently assigns exact distance labels by performing a reverse BFS
from the sink, to reduce relabel work in practice. Note that preflows already induce
minimum sink-side cuts, so if only a minimum cut is required, the algorithm can
already stop once no active nodes with distance label < n exist.

Synchronous Parallel Push-Relabel. The parallel push-relabel algorithm of
Baumstark et al. [BBS15] proceeds in rounds in which all active nodes are discharged
in parallel. The flow is updated globally, the nodes are relabeled locally and the excess
differences are aggregated in a second array using atomic instructions. After all nodes
have been discharged, the distance labels d are updated to the local labels d′ and the
excess deltas are applied. The discharging operations thus use the labels and excesses
from the previous round. This is repeated until there are no nodes with exc(v) > 0 and
d(v) < n left. To avoid concurrently pushing flow on residual arcs in both directions
(race condition on flow values), a deterministic winning criterion on the old distance
labels is used to determine which direction to push, if both nodes are active. If an
arc cannot be pushed due to this, the discharge terminates after the current scan, as
the node may not be relabeled in this round. The rounds are interleaved with global
relabeling [CG97], after linear push and relabel work, using parallel reverse BFS in
the residual network.

A Bug in the Synchronous Algorithm. The parallel discharge routine does not
protect against push-relabel conflicts [KÖ19] as illustrated in Figure 4.4. In particular
the winning criterion does not help. A node u may be relabeled too high if it is
concurrently pushed to through a residual arc (v, u) with d′(v) = d(u) + 1. The
arc (u, v) may not be observed as residual yet, and thus u may set its new label
d′(u) > d′(v) + 1, violating label correctness. The bug becomes noticeable when

81

4 Parallel Improvement Algorithms

the algorithm terminates prematurely with incorrect distances. Our fix is to collect
mislabeled excess nodes during global relabeling. When the algorithm would terminate,
we run global relabeling, and restart the main loop if new active nodes are found.

4.4.5 Intricacies with Preflows and FlowCutter
In this section, we discuss challenges we faced during the implementation that arose
from using FlowCutter with preflows. The major difference to a maximum flow is that
there are nodes with positive excess left.

Source-Side Cut. A maximum preflow only yields a sink-side cut via the reverse
residual BFS, but we also need the source-side cut. We can run flow decomposi-
tion [CG97] to push excess back to the source, to obtain an maximum flow. However,
flow decomposition is difficult to parallelize [BBS15]. Instead, we initialize the forward
residual BFS with all non-sink excess nodes. This finds the reverse paths that carry
flow from the source to the excess nodes, which is what we need.

Sink-Side Piercing. Furthermore, when transforming a node with positive excess
to a sink, its excess must be added to the flow value. This only happens when piercing,
as sink-side nodes have no excess, if they are not sinks yet.

Maintain Distance Labels. Finally, we want to reuse the distance labels from the
previous round to avoid re-initialization overheads. However, as the labels are a lower
bound on the distance from the sink, piercing on the sink side invalidates the labels.
Additionally, no new excess nodes are created. In this case, we run global relabeling to
fix the labels and collect the existing excess nodes, before starting the main discharge
loop. When piercing on the source side the labels remain valid and new excesses are
created. These are added to the active nodes and we do not run an additional global
relabeling. The existing excess nodes are collected during regular global relabel runs.

4.4.6 Implementation Details
To facilitate an efficient and practical code, we discuss several implementation details
of our parallel version of the push-relabel algorithm. This covers techniques specific to
the hypergraph setting, multi-source multi-sink settings and general techniques.

Restricting Capacities. Recall that only bridge edges (ein, eout) have finite capac-
ity (ω(e)) in the Lawler network, while all other edges ((u, ein) and (eout, u)) have
infinite capacity. Thus, a hypernode u immediately relieves all its excess to one of its
incident nets e ∈ I(u) during the discharge routine. However, only a small amount of
this excess is pushed over the bridging edge (ein, eout), while the remainder is pushed
back to u. A scheme that evenly distributes the excess of a hypernode to its incident
nets would improve the running time and also the available parallelism.

Since (ein, eout) is the only outgoing edge of ein with non-zero capacity, the flow on
edges (u, ein) is also bounded by ω(e). Adding these capacities is a trivial optimization,
but it reduces running time for one flow computation on our largest instance from

82

4.4 Flow-Based Refinement

over two hours to 14 seconds, when using 16 cores. It also boosts the available parallel
work, since hypernodes are not immediately relieved of all their excess. Without this
optimization the minimum cut contains only bridge edges, but now may contain edges
(u, ein). This matters when tracking cut hyperedges (for collecting piercing candidates),
which are detected by checking if ein and eout are on different sides. Therefore, we do
not check the capacity and visit ein nodes during forward residual BFS.

Avoid Pushing Flow Back. Once the correct flow value is found, the algorithm
could terminate in theory since this already yields a maximum preflow. This is often
achieved in very few discharging rounds. At this point flow is only pushed back to the
source. We terminate once all nodes with exc(u) > 0 have d(u) ≥ n, which is most
often detected by global relabeling. However, we observed that the number of active
nodes follows a power law distribution. Due to little work in later rounds, it takes
many rounds to trigger the global relabeling step. Therefore, we perform additional
relabeling, if the flow value has not changed for some rounds (500), and only few active
nodes (< 1500) were available in each.

Active Nodes. The set of active nodes is implemented as an array containing the
nodes and an array of insertion timestamps that are atomically set to avoid duplicates.
Nodes are accumulated in thread-local buffers that are frequently flushed to a shared
array. During discharging, we build the array for the next round. We insert a node if
it gets pushed to, or if it has excess left after its discharge operation. After a round of
discharging, we swap the previous active nodes array with the newly built one, and
increment the timestamp to reset the markers.

These arrays are reused for global relabeling as well as deriving the source-side
and sink-side cuts. This enables computing the cut-side weights via a simple parallel
reduction over the respective arrays, which we use to decide which side to grow.

Flow Value. We track the flow value to abort the refinement in case it exceeds the
previous cut. Traditionally in push-relabel algorithms, the flow value is determined
from the excess of the sink. Since we have many sinks, we do not want to repeatedly
accumulate all of their excesses. Instead, we also insert sinks into the active nodes for
the next round. This way, we can add their excess deltas to the flow value during the
update phase, but we of course do not discharge them in the next round.

Hypergraph Implementation. For performance reasons we implement the flow
algorithm directly on the hypergraph, simulating the Lawler expansion without actually
constructing the graph flow network. We implement three separate discharge operations
that scan the pins plus the bridge edge or the incident hyperedges of a hypernode and
push the appropriate amount of flow.

83

5Chapter 5

Parallel Multilevel Hypergraph
Partitioning
The previous section has introduced parallel formulations for iterative improvement

algorithms used in the highest-quality sequential partitioners. These systems also
implement the mutlilevel partitioning scheme and run the refinement algorithms on
each level. We will now present our first parallel multilevel algorithm that is part of
the shared-memory hypergraph partitioning framework Mt-KaHyPar (Multi-Threaded
Karlsruhe Hypergraph Partitioning).
Algorithm Overview. Algorithm 5.1 shows the high-level pseudocode of our multi-
level algorithm. In the coarsening phase, we contract clusters of nodes that we obtain
with an algorithm based on hierarchical agglomerative clustering [CA99; KK00; AK06;
ACU08b; Çat+12a]. The coarsening algorithm proceeds in passes and, in each pass,
we iterate in parallel over the nodes. If we visit an unclustered node u, we add it
to the cluster C ∈ C that maximizes the heavy-edge rating function [CA99; Kar+99;
HS17a]. The function prefers clusters that have a large number of heavy nets with
small size with u in common. Subsequently, we contract the clusters and obtain a
coarser hypergraph on which we recursively repeat the coarsening process until the
number of nodes would become less than 160 · k. The main challenge is to perform
consistent cluster update operations as several unclustered nodes may try to join each
others cluster simultaneously.

We additionally enhance the coarsening process with global information about the
community structure of the hypergraph. To do so, we run a parallel community
detection algorithm before coarsening (to improve readability of the pseudocode we
omit this componenent in Algorithm 5.1). Similar to KaHyPar [HS17a], we then use
the community structure to restrict contractions to nodes that belong to the same
community.

To obtain an initial k-way partition, we implement parallel multilevel recursive
bipartitioning and use work-stealing to handle load imbalances within the recursive
partitioning calls. For bipartitioning, we use a portfolio of nine bipartitioning tech-
niques to compute initial solutions [Heu15a; Sch+16a]. We run each of them several
times independently in parallel and continue uncoarsening with the best bipartition
out of these runs.

In the uncoarsening phase, we project the partition Π to the next level finer
hypergraph and run the parallel label propagation, FM, and flow-based refinement
algorithm on each level.
Outline. The remainder of the section discusses the different algorithmic components
of our multilevel partitioner in more detail. Section 5.1 presents the hypergraph data

85

5 Parallel Multilevel Hypergraph Partitioning

Algorithm 5.1: Parallel Multilevel Hypergraph Partitioning
Input: Hypergraph H = (V,E), number of blocks k
Output: k-way partition Π of H

1 H1 ← H,H ← 〈H1〉, i← 1
2 while |Vi| > 160 · k do
3 C ← Vi // Initially, each node is in its own cluster
4 for u ∈ Vi in random order do in parallel
5 if state of u is Unclustered then
6 C ← argmaxC∈C

∑
e∈I(u)∩I(C)

ω(e)
|e|−1 with c(u) + c(C) ≤ cmax

7 add u to cluster C and set state of u to Clustered // see Algorithm 5.2

8 Hi+1 ← Hi.contract(C),H ← H∪ 〈Hi+1〉, i← i+ 1 // see Section 5.1
9 Π← initialPartition(Hi, k) // see Section 5.3

10 for l = i to 1 do
11 Π← project Π onto Hl

12 Π← labelPropagationRefinement(Hl,Π) // see Section 4.2
13 Π← fmLocalSearch(Hl,Π) // see Section 4.3
14 Π← flowBasedRefinement(Hl,Π) // see Section 4.4
15 return Π

structure and parallel contraction operation. In Section 5.2, we explain how we
evaluate the heavy-edge rating function and discuss the clustering and community
detection algorithm. The initial partitioning algorithm based on parallel recursive
bipartitioning and the portfolio of initial bipartitioning techniques are described in
Section 5.3. We then explain the integration of our parallel refinement algorithms in
Section 5.4 and conclude the algorithmic description with implementation details in
Section 5.5. Section 5.6 discusses the configuration of the algorithm and evaluates the
impact of different tuning parameters on the running time and solution quality of the
algorithm. Section 5.7 concludes the chapter with a detailed experimental evaluation
analyzing search conflicts, the effectiveness of the different refinement algorithms, and
the scalability and running times of the different algorithmic components.

References and Contributors. This chapter covers our multilevel partitioning
algorithm presented in Ref. [Got+21a] and improvements for initial partitioning from
Refs. [Got+21c; Got+22a]. The text contains some text passages verbatim from
both publications, but large parts were rewritten substantially since Ref. [Got+21a]
only provides a high-level overview of the overall algorithm. We further present
detailed parameter tuning experiments and an evaluation of the multilevel partitioning
algorithm that goes beyond the scope of the individual publications.

The author of this dissertation contributed the coarsening, initial partitioning,
and rebalancing algorithm. Lars Gottesbüren implemented the parallel community
detection algorithm and several performance optimizations.

86

5.1 The Hypergraph Data Structure

5.1 The Hypergraph Data Structure
The hypergraph data structure stores the incident nets I(u) of each node u ∈ V and
the pin-lists of each net e ∈ E using two adjacency arrays as illustrated in Figure 5.1.
Each node u and net e additionally stores its weight c(u) and ω(e). In the following, we
explain the parallel contraction operation. The algorithm takes as input a clustering
C and each cluster C ∈ C has a unique representative v ∈ C.

Contraction. Contracting a clustering into a coarser hypergraph consists of several
steps. First, we remap cluster IDs to a consecutive range from 0 to |C| − 1 by
computing a parallel prefix sum on an array of size n that has a one at position v if v
is a representative of a cluster and zero otherwise. Then, we accumulate the weights
of nodes in each cluster using atomic fetch-and-add instructions. Subsequently, we
iterate over the nets in parallel, map the pins of e to their new cluster IDs, and remove
duplicate pins by sorting the remapped pins of each net and keeping only the first
occurrence of a node.

Furthermore, we remove nets with a single pin and replace multiple identical nets with
a single net with aggregated weight. We parallelize the InrSrt algorithm of Aykanat
et al. [ACU08a; DKÇ13] for identical net detection. It uses fingerprints

∑
v∈e v

2

to eliminate unnecessary pairwise comparisons between nets. Nets with different
fingerprints or different sizes cannot be identical. We distribute the fingerprints and
their associated nets to the threads using a hash function. Each thread sorts the
nets by their fingerprint and size, and then performs pairwise comparisons on the
subranges of potentially identical nets. We aggregate the weights of identical nets at a
representative and mark the others as invalid.

A parallel prefix sum over an array of size m storing a one at position e if e is a valid
net and zero otherwise yields their IDs in the coarse hypergraph. Subsequently, we
iterate in parallel over the nodes u ∈ V , map the incidents nets of u to the hyperedge
IDs of the coarse hypergraph, and remove invalid nets. Finally, we construct the two
adjacency arrays of the coarse hypergraph by computing parallel prefix sums over the
sizes of the remaining nets, respectively node degrees.

5.2 Coarsening
The purpose of the coarsening phase is to compute a sequence of structurally similar
and successively smaller hypergraphs H = 〈H1 = H,H2, . . . , Hr〉, to enable fast
improvements in the refinement phase. We obtain a coarser hypergraph Hi+1 from the
finer Hi by contracting a node clustering of Hi. To do so, we iterate over the nodes in
parallel, and each node joins the cluster that maximizes the heavy-edge rating function.
Additionally, we enforce a size constraint cmax := c(V)

160·k on the weight of the heaviest
cluster to facilitate finding a balanced k-way partition in the initial partitioning phase.

We store the cluster IDs of the nodes in an array rep of size n. For each node u ∈ V ,
rep[u] = v stores the representative of u’s cluster. For each representative, we maintain

87

5 Parallel Multilevel Hypergraph Partitioning

v6

v1

v0

v2
v5

v4

v3

e1

e0

e3

e2

V

v0

0 2 3 5 7 9 10

v1 v2 v3 v4 v5 v6

0 1 1 0 3 1 2 1 2 3I(v) 2 3

12

0 1 2 3 4 5 6 7 8 9 10 11

E

e0

0 2 6 9 12

e1 e2 e3

0 2 0 1 3 4 3 4 6 2P 5 6
0 1 2 3 4 5 6 7 8 9 10 11

Figure 5.1: The hypergraph data structure used in our multilevel hypergraph
partitioner.

the invariant that rep[v] = v. Initially, each node is unclustered (∀u ∈ V : rep[u] = u).
Only unclustered nodes are eligible to join multi-node clusters in the coarsening phase.
Here, the main challenge is to apply consistent cluster assignments when several
adjacent nodes try to join each others cluster simultaneously (e.g., when they try to
cyclically join each other). A shared-memory implementation of this algorithm already
exists [Çat+12a] using node locks while evaluating the rating function and updating
the clustering C (see Section 3.4.2). Our implementation uses significantly less locking.
More precisely, we do not use any locks during the evaluation of the rating function
and only lock nodes when we detect that several nodes try to join each other.

In the following, we present a cache-friendly algorithm evaluating the heavy-edge
rating function and a clustering algorithm resolving conflicts on-the-fly. Furthermore,
we explain how we track the current number of contracted nodes and abort a coarsening
pass once the contraction limit is reached. Finally, we present a preprocessing technique
adapted from the sequential partitioner KaHyPar [HS17a] that we use to restrict
contractions to densely-connected regions of the hypergraph.

5.2.1 Rating Function Evaluation
A node u joins the cluster C ∈ C that maximizes the heavy-edge rating function

r(u,C) =
∑

I(u)∩I(C)

ω(e)

|e| − 1
.

The rating algorithm iterates over the incident nets e ∈ I(u) and aggregate the ratings
to the representatives rep[v] of each pin v ∈ e in a thread-local hash table. A net
may contain several pins mapping to the same representative. Therefore, we use a
Bloom filter, ensuring that the rating of each representative is considered at most
once per net. The Bloom filter uses 10 ·maxe∈E |e| bits, resulting in a false positive
rate of less than 1% [Bon+06]. Afterwards, we iterate over the aggregated ratings
and determine the representative rep[v] that maximizes r(u, rep[v]) and fullfils the

88

5.2 Coarsening

u

v

x

u v

u v

w

x y z

u

v

x

u v

u v

w

x y z

Desired Cluster

rep array

Path Conflict

Resolution

Cyclic Conflict Path & Cyclic Conflict

w

w

Figure 5.2: The different types of conflicts occuring when several nodes try to
join a cluster simultaneously and their resolutions.

size-constrained c(u) + c(rep[v]) ≤ cmax. In case of ties, we prefer singleton clusters. If
two (un)clustered representatives with the same rating exist, we choose one uniformly
at random. The algorithm then returns the node rep[v] that maximizes r(u, rep[v]),
which we also call the contraction partner of u. Note that the representative of a
node can change during the evaluation of the rating function since we do not lock the
nodes. We use an optimistic strategy assuming that conflicts happen rarely and are
acceptable in practice.

Each thread uses a hash table to aggregate the ratings. Their size is fundamental for
the scalability of our parallel coarsening algorithm since unnecessarily large hash tables
can considerably increase the number of cache misses on shared caches. Therefore, we
use fixed-capacity linear probing hash tables with 215 entries and resort to a larger
hash table if the expected fill ratio exceeds 1/3 of the capacity. We conservatively
estimate the fill grade as the sum of the sizes of incident nets. The larger hash table
uses 6 · 105 entries and, if used, we sample the first 2 · 105 neighbors for the ratings.

5.2.2 Clustering Algorithm
Once a node u chooses a contraction partner v (representative of a cluster C), we
have to set rep[u] = v. Since several nodes can join clusters simultaneously, there may
occur conflicts that must be resolved. As illustrated in Figure 5.2, there are two types
of conflicts: path and cyclic conflicts . A path conflict involves several nodes u1, . . . , ul

and occurs when each node ui tries to join ui+1. In a cyclic conflict, the last node ul

additionally tries to join u1. It is also possible that a combination of both conflicts
occurs, as illustrated in Figure 5.2 (right). We can resolve a path conflict when each
node ui waits until ui+1 has joined its desired target cluster. Afterwards, we can set
rep[ui] = rep[ui+1] to resolve the conflict. However, applying this resolution scheme
to cyclic conflicts would result in a deadlock. Therefore, the threads must agree on
a cluster join operation that breaks the cycle and reduces it to a path conflict. In

89

5 Parallel Multilevel Hypergraph Partitioning

Algorithm 5.2: Clustering Algorithm
Input: A node u and its contraction partner v (u joins the cluster of v’s

representative)
1 Function addNodeToCluster(u, v) // Helper Function
2 fetch-and-add(c(v), c(u))
3 if c(v) ≤ cmax then rep[u]← v
4 else fetch-and-sub(c(v), c(u))

5 if c(u) + c(v) ≤ cmax and compare-and-swap(state[u],Unclustered, Joining) then
6 if state[v] = Clustered then
7 v ← rep[v], addNodeToCluster(u, v)

8 else if compare-and-swap(state[v],Unclustered, Joining) then
9 addNodeToCluster(u, v), state[v]← Clustered

10 else
// wait until state of v changes to Clustered

11 while state[v] = Joining do
12 if cyclic conflict detected and u is node with smallest ID in cycle then
13 addNodeToCluster(u, v) // resolves cyclic conflict
14 state[u]← Clustered, state[v]← Clustered, break

// state of u may have changed due to resolving a cyclic conflict
15 if state[u] = Joining then v ← rep[v], addNodeToCluster(u, v)

16 state[u]← Clustered

the following, we present the clustering algorithm outlined in Algorithm 5.2 resolving
these conflicts on-the-fly.

We associate each node with one of the following three states: unclustered, currently
joining a cluster, or clustered. We use compare-and-swap instructions to ensure
consistency of node states. The clustering algorithm takes a node u and its contraction
partner v as input, where v is a representative of a cluster C. We note that the
representative of cluster C may have changed after the evaluation of the rating
function, but its representative is stored in rep[v]. The algorithm starts by setting the
state of u to joining. If v is already clustered or we succeed in setting the state of v to
joining, we can safely set rep[u] = rep[v] and set the state of u and v to clustered. In
the former case, v and its representative rep[v] are clustered and are not considered by
the coarsening algorithm anymore. In the latter case, v is unclustered and by setting
its state to joining, the thread acquires exclusive ownership for modifying rep[u] and
rep[v].

If v is currently trying to join another cluster, we spin in a busy-waiting loop until
the state of v is updated to clustered by some other thread, and then join its new
cluster (resolves path conflicts). In the busy-waiting loop, we additionally check if u is
part of a cycle of nodes trying to join each other. To detect a cyclic conflict, each node

90

5.2 Coarsening

writes its desired target cluster into a globally shared vector and checks if this induces
a cycle. If so, the node with the smallest ID in the cycle gets to join its desired cluster,
thus breaking the cycle.

We still have to show that no other cluster join operation can induce an additional
cycle and may produce inconsistencies during conflict resolution. In the following,
we say that a directed graph G is weakly connected if the corresponding undirected
graph (each directed edge is replaced with an undirected edge) is connected. A weakly
connected component of G is a weakly connected subgraph of G.

Lemma 5.1
Let G be the directed graph induced by all cluster join operations spinning in the
busy-waiting loop. It holds that each weakly connected component of G has at most
one cycle.

Proof. We assume that G has at least one cycle and is weakly connected. If G consists
of more than one weakly connected component, then there are several independent
conflicting states, and we can apply the following argument to each individually. Each
node in G has an out-degree of one since each node can join at most one cluster.
Thus, G has exactly n edges. If we remove one edge of a cycle in G, G is still weakly
connected and has n− 1 edges. A connected undirected graph with n nodes and n− 1
edges is a tree. Thus, a weakly connected graph with n− 1 directed edges does not
contain any cycles. Consequently, G has at most one cycle. �

If we add a node u to the cluster represented by v, we update the weight of v
to c(v) + c(u) with an atomic fetch-and-add instruction. If c(v) ≤ cmax, we set
rep[u] = v. Otherwise, we reject the cluster join operation.

5.2.3 Contraction Limit
We stop coarsening once the number of nodes of the coarsest hypergraph drops below
160 · k. However, if we are already close to the contraction limit and perform an
additional coarsening pass, the number of nodes may be significantly less than the
desired 160 · k nodes. Therefore, we additionally track the number of contracted nodes
in a coarsening pass and abort if we reach the contraction limit. A simple solution
to achieve this is to increment a globally shared counter n′ via a fetch-and-add
instruction each time a node joins a cluster. However, this may cause contention on
the shared counter n′. Therefore, we choose a different approach.

The idea is to update the globally shared counter n′ only if we are close to the
contraction limit. Let t be the number of threads, n′

i be the number of locally
contracted nodes of thread i, and x the desired number of nodes of the coarsest
hypergraph. Each thread i uses a local contraction limit si, which we initially set to
n−x
t . If n′

i equals si, thread i updates the globally shared counter n′ to
∑

1≤i≤t n
′
i

and sets its new local contraction limit to si +
n′−x

t . Assume that thread i is the first

91

5 Parallel Multilevel Hypergraph Partitioning

thread that reaches its local contraction limit si. Then, it follows that∑
1≤i≤t

n′
i ≤

∑
1≤i≤t

si =
∑

1≤i≤t

n− x

t
= n− x,

which is an upper bound for the current number of contracted nodes. Therefore, the
coarsest hypergraph has at least x nodes at this point. The new local contraction limit
ensures that we update n′ more frequently if we are closer to the contraction limit x.

In addition to the global contraction limit that terminates the coarsening phase, we
use a hierarchy contraction limit on each level to prevent coarsening from reducing
the size of the hypergraph too aggressively. We abort a coarsening pass as soon as
the clustering algorithm reduces the number of nodes by more than a factor of 2.5.
Furthermore, the weight constraint cmax on coarse nodes can lead to passes in which
only a few nodes are contracted. If a pass reduces the number of nodes by less than
1%, we still perform the remaining contraction and then proceed to initial partitioning,
even if the 160 · k node limit is not reached.

5.2.4 Community Detection Enhancement
A main design goal of the coarsening phase is that the coarser approximations should
be structurally similar to the input hypergraph. Ideally, the coarsest hypergraph
should have the same min-cut properties as the original hypergraph. Consequently,
a coarsening algorithm should avoid contractions between nodes incident to nets of
the minimum cut. However, identifying those nets is NP-complete. Therefore, the
sequential partitioner KaHyPar [HS17a] uses community detection on the bipartite
graph representation of the hypergraph [SK72] to identify densely-connected node
clusters. Contractions are then only allowed between nodes in the same cluster. This
preserves some of the global structure in coarsening phase and substantially improves
the quality of both the initial and the final partition [HS17a].

We also integrate the approach of KaHyPar into our multilevel partitioner. We
run the algorithm as a preprocessing step before the coarsening phase and then use
the community structure to restrict contractions to nodes in the same community on
each level. The community detection algorithm consists of two steps: transforming
the hypergraph into its bipartite graph representation and then running the Louvain
algorithm [Blo+08] for modularity maximization, a widely used objective function for
community detection [NG04; Bra+08].

Note that the modularity objective function can also be directly defined on hyper-
graphs [Kam+19]. In a bachelor thesis [Kra21a], which we supervised, we implemented
such an approach instead of using the bipartite graph representation. However, it was
considerably slower and did not significantly improve the solution quality compared
to the approach described in the following.

Graph Transformation. We use an adjacency array to represent the graph and
transform a hypergraph into its bipartite graph representation by computing two
parallel prefix sums over the node degrees and hyperedge sizes. Afterwards, we iterate

92

5.2 Coarsening

in parallel over all nodes and nets and copy their incident nets and pins to the adjacency
array. Similar to KaHyPar [HS17a], we additionally redefine the weight of each edge
based on the density d := m

n of the input hypergraph. Let (u, e) be an edge of the
bipartite graph where u is a pin of net e. Then, ω(u, e) is defined as follows:

ω(u, e) :=

{
d(u)
|e| if d < 0.75

1 otherwise

Parallel Community Detection. We implement the parallel Louvain method
(PLM) of Staudt and Meyerhenke [Blo+08; SM16] for modularity maximization. Let
G = (V,E, ω) be a weighted graph and C a clustering of G. Then, the modularity of
C for a graph G is defined as:

Q(G, C) :=
∑
C∈C

ω(C)

ω(E)
− vol(C)2

4ω(E)2

Here, ω(C) is the total weight of the internal edges of C and vol(C) :=
∑

u∈C vol(u),
where vol(u) :=

∑
v∈Γ(u)\{u} ω(u, v) + 2ω(u, u) is the weighted degree of node u.

The PLM algorithm works in rounds (similar to the label propagation algorithm).
Initially, each node is in its own cluster. In each round, we iterate in parallel over the
nodes and move a node to the cluster in its neighborhood with the highest positive
modularity improvement. The change in modularity when we move a node u from its
current cluster C to a target cluster D can be expressed as follows:

∆Qu(C,D) :=
1

ω(E)
(∆Q(u,D)−∆Q(u,C))

=
1

ω(E)

(
ω(u,D \ {u})− vol(D \ {u})vol(u)

2ω(E)

)
− 1

ω(E)

(
ω(u,C \ {u})− vol(C \ {u})vol(u)

2ω(E)

)
Here, ω(u,C) := ω({(u, v) ∈ E | v ∈ C}) is the weight of the edges connecting u with
cluster C. Our PLM algorithm stores the weighted degrees vol(u) of each node u ∈ V
and the cluster volumes vol(C) of each cluster C ∈ C. To find the cluster D that
maximizes ∆Qu(C,D) for a node u ∈ C, we compute the ω(u,D \ {u}) terms for all
adjacent clusters of u each time from scratch. To do so, we iterate over its neighbors
v ∈ Γ(u) and aggregate the edge weights to adjacent clusters using a thread-local
hash table. If maxD∈C ∆Q(u,D) > ∆Q(u,C), we move u from its current cluster C
to D and update the cluster volumes vol(C) and vol(D) using atomic fetch-and-add
instructions. As in the coarsening phase, we use two hash tables with different sizes to
aggregate ratings and resort to the larger hash table (6 · 105 entries) if the number of
neighbors |Γ(u)| of a node u exceeds 1/3 of the capacity of the smaller hash table (215
entries).

The algorithm proceeds for up to 5 rounds or until less than 1% of the nodes are
moved in a round. If any node was moved, the process is repeated recursively on the
graph obtained from contracting the clusters.

93

5 Parallel Multilevel Hypergraph Partitioning

5.3 Initial Partitioning
In the parallel partitioning literature, many authors argue that the coarsest hypergraph
is small enough to use sequential initial partitioning algorithms [KK96; WC00b; TK04a;
TK04b; Dev+06; HSS10; ASS17]. This assumption holds for most of the instances,
but not in general. The size-constrained cmax that bounds the weight of the heaviest
node in the coarsest hypergraph may prevent coarsening algorithms from reaching
the contraction limit. This happens mainly in complex networks with power-law
node degree distributions. Here, the high-degree nodes reach the maximum allowed
node weight quickly because they are attractive for many low-degree nodes. This can
prevent further contractions in the coarsening phase. In the experimental evaluation
of the shared-memory graph partitioner Mt-KaHIP, the initial partitioning phase has
the largest share on the total partitioning time for many instances [Akh19, p. 134].
Furthermore, the number of hyperedges in a hypergraph is bounded by |P(V)| = 2|V |,
unlike graphs, where the number of edges is bounded by |V |2. Therefore, the coarsest
hypergraph may contain many large nets [Kab+17] even if we reach the contraction
limit. Hence, it is inevitable to parallelize the initial partitioning phase.

Instead of performing sequential initial partitioning, one can use parallel multilevel
recursive bipartitioning. The approach evenly splits the thread pool into two subgroups
which then independently process the two recursive partitioning calls in parallel [CP08;
LaS+15]. However, this can lead to load imbalances when one block contains sig-
nificantly more pins respectively edges than the other block. Complex networks are
again affected by this. Such networks usually consist of a few densely-connected
communities, while other components are only loosely connected to them. A good
partition most likely places the denser parts of the hypergraph into one block inducing
load imbalances in one of the recursive partitioning calls.

We therefore use parallel multilevel recursive bipartitioning with work-stealing to
account for load imbalances. To obtain an initial bipartition within the recursive
partitioning calls, we implemented the same portfolio of flat bipartitioning algorithms
as used in KaHyPar [Sch+16a; Sch20]. In the following, we describe our recursive
bipartitioning algorithm and portfolio approach in more detail.

5.3.1 Parallel Recursive Bipartitioning
We compute initial k-way partitions via parallel recursive bipartitioning using our
multilevel partitioner shown in Algorithm 5.1 (initialized with k = 2). When calling
our partitioning algorithm for k = 2, we replace the initial partitioning call with a
portfolio of initial bipartitioning techniques to obtain an initial solution (described in
the next section). Moreover, we do not use flow-based refinement as it did not improve
the overall solution quality (see Section 5.6).

Once we obtain a bipartition Π = {V1, V2} of the coarsest hypergraph H, we extract
the subhypergraphs HV1

and HV2
and recurse on both in parallel by partitioning

HV1
into dk2 e and HV2

into bk2 c blocks. We ensure that the final k-way partition
obtained via recursive bipartitioning is balanced by adapting the imbalance ratio for

94

5.3 Initial Partitioning

each bipartition individually [Sch+16a]. Let HV ′ be a subhypergraph that should be
recursively partitioned into k′ ≤ k blocks. Then,

ε′ :=

(
(1 + ε)

c(V)

k
· k′

c(V ′)

) 1
dlog2 k′e

− 1 (5.1)

is the imbalance ratio used for the bipartition of HV ′ . The equation is based on the
observation that the worst-case block weight of the resulting k′-way partition of HV ′

obtained via recursive bipartitioning is smaller than (1 + ε′)dlog2(k
′)e c(V ′)

k′ if ε′ is used
for all further bipartitions. Requiring that this weight must be smaller or equal to
Lmax = (1 + ε)d c(V)

k e leads to the formula defined in Equation 5.1.

Implementation Details. We parallelize our algorithms with the shared-memory
library Intel TBB [Phe08]. TBB provides an internal task scheduler implementing a
work-stealing approach (see Section 2.3.2). Hence, we balance the computational work
within the recursive partitioning calls by simply using the parallel primitives of TBB.

5.3.2 Flat Initial Bipartitioning
We use a portfolio of nine different flat bipartitioning algorithms to compute an initial
bipartition, including (greedy) hypergraph growing [KK98a; CA99; Kar+99; ÇA11;
Sch13; Sch+16a; Sch20], random assignment [Kar+99; VB05; ÇA11; Sch+16a; Sch20],
and label propagation initial partitioning [Sch+16a; Sch20]. We run each algorithm
at least 5 and at most 20 times. After 5 runs, we only run an algorithm again if it is
likely to improve the best solution Π∗ found so far. We estimate this based on the
arithmetic mean µ and standard deviation σ of the connectivity values achieved by
that algorithm so far, using the 95% rule. Assuming the connectivity values follow
a normal distribution, roughly 95% of the runs will fall between µ− 2σ and µ+ 2σ.
If µ − 2σ > fλ−1(Π

∗), we do not run the algorithm again. We run each algorithm
independently in parallel, and each bipartition is refined using sequential 2-way FM
refinement [FM82]. We continue uncoarsening using the bipartition with the best
connectivity value. In case of ties, we choose the bipartition with the best balance. In
the following, we will briefly outline the different flat bipartitioning algorithms used in
the portfolio.

Random Assignment. Random initial bipartitioning iterates over the nodes and
assigns each node to a block chosen uniformly at random. If the assignment of a node
violates the balance constraint, we try to add it to the opposite block. If this also fails,
the node is randomly assigned to one of the blocks.

Seed Nodes. The following initial bipartitioning algorithms grow the two blocks of
a bipartition starting from two seed nodes that are far away from each other [GL81].
To compute them, we start a breadth-first search (BFS) from a node chosen uniformly
at random. The last node u touched by the search is our first seed node. Afterwards,
we perform a second BFS starting from u, and the last node touched by this search is
our second seed node. We will call such nodes pseudo-peripheral seed nodes.

95

5 Parallel Multilevel Hypergraph Partitioning

BFS-based Partitioning. The algorithm grows the two blocks of the bipartition
using two breadth-first searches. For each block, we use one queue and initialize it
with one pseudo-peripheral seed node. We then alternate between the two queues and
assign the next node u in the queue to its corresponding block if it does not violate
the balance constraint. Afterwards, we push the neighbors of u into the queue of the
block to which u was assigned. If the queue of a block becomes empty, we assign a
random node to the block (ignoring the balance constraint) and insert its unassigned
neighbors into the corresponding queue.

Greedy Hypergraph Growing. The algorithm maintains a priority queue (PQ)
for each block, storing adjacent nodes of the growing block according to a gain function.
We initialize the PQs with two pseudo-peripheral seed nodes. The algorithm then
assigns the node with the highest gain from one of the two PQs to its corresponding
block and either pushes its neighbors into the PQ or updates their gain values if
already contained.

We use the FM gain [FM82] and the max-net gain definition [ÇA11]. The FM
gain prefers node moves with the least increase in cut size if assigned to the growing
block. The max-net gain of a node u is the weight of the nets e ∈ I(u) incident to the
growing block. Furthermore, we use three different policies to select the next move
from the PQs. The sequential policy first grows block V1 and then block V2. The
global policy assigns the node with the highest gain to one of the blocks in each step.
The round-robin policy alternates between the PQs and assigns the node with the
highest gain from the currently considered PQ to its corresponding block. In total,
we use two different gain definitions and three PQ selection policies, resulting in six
variants of the greedy hypergraph growing algorithm.

Label Propagation. The algorithm initially selects two pseudo-peripheral seed
nodes and five of their neighbors and assigns them to one of the two blocks. Afterwards,
it runs the size-constrained label propagation algorithm [MSS14; Heu15a] until none of
the nodes changed their block in a round or a predefined number of rounds is reached.
If a node is visited, it is moved to the block with the highest FM gain. If the node is
not adjacent to any block, it stays unassigned in the current round. If there are still
unassigned nodes at the end, they are assigned one-by-one to the block with minimum
weight.

5.4 Refinement
In the uncoarsening phase, we revert the contractions level-by-level by projecting the
partition to the next level finer hypergraph. To do so, we iterate over the nodes of
the finer hypergraph in parallel and assign them to the block of their corresponding
constituent in the coarse graph. Afterwards, we run the parallel label propagation,
FM, and flow-based refinement algorithms described in Sections 4.2 – 4.4.

While our refinement algorithms are guaranteed to produce balanced solutions, it
turns out that intermediate balance violations in the FM algorithm improve solution

96

5.5 Engineering Aspects

quality. The intuition behind this is that localized FM searches may each find good
improvements, but their combination is barely infeasible. Hence, we relax the balance
constraint for the second FM phase (the global rollback step) by using the imbalance
ratio ε′ = 1.25 · ε. If the partition is still imbalanced on the finest level, we rebalance
it using an approach that is similar to label propagation. We iterate over the nodes in
parallel. If a node is in an overloaded block and can be moved with non-negative gain,
we perform the move immediately. Negative-gain moves are collected in thread-local
priority queues. If the partition is still imbalanced after performing all non-negative
gain moves, the threads perform the moves with the smallest increase in connectivity
from their priority queues in a second step.

In the experiments on benchmark set MHG, the rebalancing component was triggered
on 2494 out of the 34160 instances (7.3%). The algorithm did not worsen the connec-
tivity metric on 25.7% of the rebalanced instances, while the relative deterioration
of the solution quality was less than 0.25% on 92.9% of all runs. The rebalancing
component worsened the solution quality on five instances by more than 20%. However,
this did not occur for all repetitions (we perform ten repetitions per instance). Hence,
the impact of the rebalancing step on the overall solution quality is negligible.

5.5 Engineering Aspects
In the following, we outline engineering aspects that are necessary to enhance the
performance of our system.

Memory Allocation. Memory allocations are a significant bottleneck, which is
why we implement a custom memory pool. We estimate the memory needed by our
data structures, categorized by the phases of the multilevel scheme, and then allocate
for the peak memory usage across all phases. At the end of a phase, we pass the
memory along to the next phase, and initialize data structures in parallel. Further,
we use the TBB scalable allocator [Phe08] for concurrent memory allocations.

Large Nets. We often iterate over the incident nets of a node and then over the
pins of each incident net, e.g., to aggregate ratings for coarsening, to make neighbors
eligible to move in the next round of label propagation, or to insert them into a PQ for
FM. To improve performance, we skip nets that exceed a size threshold – 100 for label
propagation, and 1000 for FM and coarsening. Furthermore, we completely remove
nets with size greater than max(0.01 · |V |, 5 · 104) before partitioning.

Fast I/O. While evaluating other parallel partitioning algorithms, we found that
the time required to read the input file and construct the (hyper)graph data structure
was often significantly larger than the actual partitioning time. The main issue is that
some tools perform these steps sequentially and use expensive streaming primitives of
C++ to parse the input file. Although we do not measure the time for I/O operations
in our experiments, we also parallelize and optimize this step to improve the usability
of our system.

97

5 Parallel Multilevel Hypergraph Partitioning

The input for our partitioning algorithm is expected in hMetis file format [KK98b].
The first line contains the number of nodes n and hyperedges m, followed by m lines
containing the pins of each hyperedge. We use nmap to map the input file to the
main memory. Afterwards, we perform a sequential pass over the input and divide it
into several chunks that are then processed by the different threads to construct the
hypergraph data structure in parallel.

5.6 Algorithm Configuration
We provide two configurations of our multilevel partitioning algorithm: Mt-KaHyPar-
D (-Default) and Mt-KaHyPar-D-F (-Default-Flows). Mt-KaHyPar-D-F extends Mt-
KaHyPar-D with flow-based refinement. Mt-KaHyPar-D aims to compute good partitions
very fast, while Mt-KaHyPar-D-F aims for high solution quality.

This section discusses the different parameter choices in our algorithm which we
summarize in Table 5.1. Note that each multilevel partitioner has many different
configuration options, with some parameters depending on each other. Our partitioner
is no exception. We therefore refrain from a detailed evaluation of each parameter and
restrict ourselves to algorithmic choices having a significant impact on the performance
of our multilevel partitioner. Some non-evaluated parameters were introduced for
handling special cases on some instances and had no measurable impact on the overall
performance (e.g., sampling threshold, minimum shrink factor, bulk piercing), while
others were taken from KaHyPar’s configuration [Sch20] (e.g, maximum allowed node
weight, contraction limit, rating function).

The following experiments are conducted on benchmark set MP using 10 threads
of machine A. In each experiment, we vary one parameter and use the default values
depicted in Table 5.1 for all others.

Table 5.1: Algorithm configuration of Mt-KaHyPar-D(-F).

Parameter Value Description Reference

Community Detection Section 5.2.4

Louvain Rounds 5 Maximum number of rounds per level

Mininum Num-
ber of Moved
Nodes

1% Minimum number of moved nodes per
round relative to the total number of
nodes

Sampling
Threshold

200.000 We sample the neighbors with a degree
larger than this threshold when aggre-
gating ratings

Coarsening Section 5.2

Rating Function Heavy-Edge Line 6 in Algo-
rithm 5.1

98

5.6 Algorithm Configuration

Contraction
Limit

160 · k We abort coarsening when the number
of nodes drops below this threshold

Section 5.2.3

Maximum Node
Weight

c(V)
160·k Maximum allowed weight of a node in

the coarsest hypergraph
Line 3 in Algo-
rithm 5.2

Hierarchy Con-
traction Limit

2.5 We abort a coarsening pass when we
shrink the hypergraph by a factor of
2.5

Section 5.2.3

Minimum Shrink
Factor

1% If we reduce the size of a hypergraph
only by 1% on a level, we abort coars-
ening

Section 5.2.3

Sampling
Threshold

200.000 We sample the neighbors with a degree
larger than this threshold when aggre-
gating ratings

Section 5.2.1

Initial Partitioning Section 5.3

Minimum IP
Runs

5 We run each flat bipartitioning algo-
rithm at least 5 times

Section 5.3.2

Maximum IP
Runs

20 We run each flat bipartitioning algo-
rithm at most 20 times

Section 5.3.2

IP Refinement (+LP,+FM,-F) During uncoarsening, we use the par-
allel label propagation (+LP) and FM
(+FM) algorithm but no flow-based re-
finement (-F)

Section 5.3

Refinement Section 5.4

Label Propagation Section 4.2

LP Rounds 5 Maximum number of rounds Line 5 in Algo-
rithm 4.5

Multi-Try FM Algorithm Section 4.3

Multi-Try FM
Rounds

10 Number of Multi-Try FM Rounds Line 1 in Algo-
rithm 4.6

Seed Nodes 25 We initialize each localized FM search
with 25 seed nodes

Line 5 in Algo-
rithm 4.6

Balance Viola-
tion Factor

1.25 During global rollback, we relax the
imbalance ratio to ε′ = 1.25 · ε

Section 5.4

Flow-Based Refinement (only for Mt-KaHyPar-D-F) Section 4.4

Flow Region
Scaling Factor

16 If we grow a region B = B1∪B2 around
the cut of a bipartition then c(B1) ≤
(1 + 16 · ε)d c(V)

2
e − c(V2) (analogously

for B2)

Section 4.4.2

τ 1 We use min(t, τ ·k) = min(t, k) threads
to process the active block pairs of the
quotient graph in parallel

Section 4.4.1

Maximum BFS
Distance

2 We restrict the distance of each node
in the region B to the cut nets of a
bipartition to at most 2

Section 4.4.2

Bulk Piercing on We use the bulk piercing feature Section 4.4.3

99

5 Parallel Multilevel Hypergraph Partitioning

Time Limit Fac-
tor

8 We abort a flow problem when it takes
longer than 8tf seconds where tf is the
average running time of all previously
solved flow problems

Section 4.4.1

Maximum Number of Flat Initial Biartitioning Runs (Mt-KaHyPar-D). We
run each flat bipartitioning algorithm at least 5 and at most 20 times. After 5 runs,
we only run an algorithm again if it is likely to improve the best solution found so far.
In this experiment, we evaluate the impact of the second parameter, the maximum
number of runs per flat initial bipartitioning algorithm, on the solution quality and
running time of Mt-KaHyPar-D.

Figure 5.3 shows the performance profiles comparing the solution quality for different
choices of the parameter. The partitions produced by Mt-KaHyPar-D with at most 20
runs are better than those with 2, 5 and 10 runs by 2.1% (using 2 runs is faster by a
factor of 1.5 on average), 0.9% (1.3) and 0.4% (1.16) in the median, respectively. If
we increase the number of initial bipartitioning runs from at most 20 to 50 runs, we
can still improve the connectivity metric by 0.4% in the median, but it slows down the
running time of Mt-KaHyPar-D by a factor of 1.33 on average. We therefore run each
flat bipartitioning algorithm at most 20 times as it provides a good tradeoff between
quality and running time.

Initial Partitioning Refinement Configuration (Mt-KaHyPar-D). In the ini-
tial partitioning phase, we use multilevel recursive bipartitioning and run our parallel
label propagation (LP), FM, and flow-based refinement (F) algorithms to improve a
bipartition in the uncoarsening phase. We will now evaluate whether it is necessary to
run all refinement algorithms or if a subset of them leads to the same solution quality.
In the following, we will denote a refinement configuration with (+LP,+FM,-F) where
+ or − indicates whether or not we run the corresponding refinement algorithm.

The performance profiles in Figure 5.4 show that the differences in the connectivity
metric produced by the different refinement configurations are only marginal. The
running times of the configurations (+LP,-FM,-F) and (+LP,+FM,-F) are comparable
((+LP,+FM,-F) is 1% slower on average). However, enabling flow-based refinement
(+LP,+FM,+F) slows down the overall partitioning time compared to (+LP,+FM,-F)
by 10% on average. We therefore use the parallel label propagation and FM algorithm
in the initial partitioning phase but no flow-based refinement.

Multi-Try FM Rounds (Mt-KaHyPar-D). Our parallel FM algorithm works in
rounds, and each round starts highly-localized FM searches around a few seed nodes
until each node is moved at most once. This experiment determines the number of
rounds required to achieve a good tradeoff between solution quality and running time.

Figure 5.5 (right) shows the performance profile comparing the solution quality of
Mt-KaHyPar-D with an increasing number of multi-try FM rounds. We can see that
the solution quality consistently increases until 10 rounds. Using more than 10 rounds
only leads to minor improvements (increasing the number of rounds from 10 to 20
improves the connectivity metric only by 0.3% in the median). The configuration

100

5.6 Algorithm Configuration

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

Maximum Initial Bipartitioning Runs

2 5 10 20 50

Figure 5.3: Performance profile comparing the solution quality of Mt-KaHyPar-D
with at most ≤ 20 (left) and ≥ 20 (right) runs per flat initial bipartitioning
algorithm.

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
ti
on

of
In
st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
ti
on

of
In
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

Initial Partitioning Refinement Configuration

(+LP,-FM,-F) (+LP,+FM,-F) (+LP,+FM,+F)

Figure 5.4: Performance profile comparing the solution quality of Mt-KaHyPar-D
with different refinement configurations in the initial partitioning phase.

with 10 rounds is slower than with 1 and 5 round(s) by a factor of 1.18 and 1.07, but
faster than 20 rounds by a factor of 1.07 on average. We therefore set the number of
multi-try FM rounds to 10.

Our parallel label propagation algorithm also proceeds in rounds. As it can be
seen in Figure 5.5 (left), we do not observe any further improvements with 5 or more
rounds. This can be explained by the fact that the FM algorithm can escape from
local optima by also performing negative gain moves. Since we move each node at
most once in an FM round, we may not find all possible improvements due to already
moved nodes in the neighborhood of the search region. The regions in which the label
propagation algorithm can find improvements in subsequent rounds are restricted to

101

5 Parallel Multilevel Hypergraph Partitioning

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

Label Propagation Rounds Multi-Try FM Rounds

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

1
2

3
5

10 1
5

10
15

20

Figure 5.5: Performance profile comparing the solution quality of Mt-KaHyPar-D
with different numbers of label propagation rounds (left) and multi-try FM rounds
(right).

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

Flow Region Scaling Factor

1 2 4 8 16 32

Figure 5.6: Performance profile comparing the solution quality of Mt-KaHyPar-
D-F with flow region scaling factor α ≤ 16 (left) and α ≥ 16 (right).

neighbors of moved nodes (since it only performs positive gain moves). Therefore,
the FM algorithm profits more from multiple restarts since different execution orders
allow the localized FM searches to expand to regions of previously locked nodes.

Flow Region Scaling Factor (Mt-KaHyPar-D-F). The flow region scaling factor
α determines the size of the region B containing the nodes part of the flow network.
Larger values for α lead to larger flow problems with potentially smaller minimum
cuts but also increase the likelihood of violating the balance contraint.

Figure 5.6 illustrates the impact of the flow region scaling factor on the solution
quality of Mt-KaHyPar-D-F. The partitions produced by Mt-KaHyPar-D-F with α = 16

102

5.6 Algorithm Configuration

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

Maximum Distance to Cut

1 2 4 8 16 max

Figure 5.7: Performance profile comparing the solution quality of Mt-KaHyPar-D-
F when we restrict the distance of each node to the cut hyperedges of a bipartition
to at most δ ≤ 2 (left) and δ ≥ 2 (right).

are better than those with α = 1, 2, 4, and 8 by 3%, 2.3%, 1.3% and 0.5% in the
median, respectively. Mt-KaHyPar-D-F with α = 16 is slower than the configurations
with α = 1 and α = 8 by a factor of 1.84 and 1.29 on average. If we increase α from
16 to 32, we still see a small improvement by 0.2% in the median but it slows down
the overall partitioning time by 35% on average. Since Mt-KaHyPar-D-F aims for high
solution quality, we set α to 16.

Maximum BFS Distance (Mt-KaHyPar-D-F). We restrict the distance of each
node contained in the region B to the cut hyperedges of the bipartition to at most
δ. The rationale behind this is that larger flow problems potentially lead to smaller
minimum cuts but do not necessarily induce a balanced bipartition. The distance
parameter δ restricts the region B to promising minimum cuts that may induce a
balanced bipartition and lead to a faster convergence of the FlowCutter algorithm.

Figure 5.7 shows the performance profiles that compare the solution quality of
Mt-KaHyPar-D-F with different parameter choices for δ. We see that the solution
quality of Mt-KaHyPar-D-F is slightly better if we use δ = 2 instead of δ = 1. Larger
values for δ do not improve the connectivity metric further (see Figure 5.7 right).
However, Mt-KaHyPar-D-F with δ = 2 is faster than the configuration that does not
restrict the distances (δ = max) by a factor of 1.23 on average.

We conclude that restricting the distance of each node to the cut hyperedges of
the bipartition is an effective technique to improve the running time of flow-based
refinement without comprises in solution quality. Larger flow problems induce smaller
minimum cuts, but balanced bipartitions are only induced by node moves close to the
original cut.

103

5 Parallel Multilevel Hypergraph Partitioning

5.7 Insights into Multilevel Partitioning
We now evaluate the different algorithmic components of Mt-KaHyPar-D(-F) in more
detail. We start by analyzing how frequently search conflicts occur in our parallel
refinement algorithm due to concurrent node moves. We did a similar analysis in
Ref. [GHS22a] for flow-based refinement, and extend it to the label propagation and
FM algorithm in Section 5.7.1. Section 5.7.2 then answers the question whether
using stronger refinement algorithms leads to higher solution quality or if multiple
repetitions of weaker and faster configurations achieve similar results. We conclude the
experimental evaluation by studying the scalability and running times of the different
algorithmic components of Mt-KaHyPar-D(-F) in Sections 5.7.3 and 5.7.4.

5.7.1 Analysis of Search Conflicts
In the parallel setting, several nodes can change their block simultaneously, which
poses additional challenges for implementing parallel refinement algorithms. For
example, the gain of a node move may change between its initial calculation and actual
execution due to concurrent moves in its neighborhood (referred to as move conflicts,
see Figure 3.7 in Section 3.4.1). Existing partitioners either employ techniques that
restrict the set of possible moves during a refinement pass to prevent move conflicts
(see Section 3.4.1) or follow an optimistic strategy assuming that conflicts happen
rarely.

However, to the best of our knowledge, there is no experimental evaluation on
the frequency of such conflicts in practice. Our refinement algorithms also follow an
optimistic strategy but can detect move conflicts using attributed gain values and
moves that violate the balance constraint using atomic fetch-and-add instructions
to update block weights. If we detect such a conflict, we immediately revert the
corresponding move. We will now use these techniques to measure how often these
conflicts occur in practice.

We run Mt-KaHyPar-D-F on our parameter tuning benchmark set MP using all
64 threads of machine B (with k ∈ {2, 8, 16, 64}). The benchmark set MP contains
mainly small hypergraphs, and by using 64 threads, we want to force as many conflicts
as possible. For each instance (hypergraph and number of blocks k), we count the
total number of performed searches and the number of searches that found a potential
improvement (∆exp ≥ 0). In the label propagation algorithm, a search consists of
computing the highest gain move for a boundary node and then either performing it
or not. In the FM and flow-based refinement algorithm, a search returns a sequence
of node moves with a potential improvement based on the observed gains during a
highly-localized FM search or the minimum cut obtained from a flow computation. For
each potential improvement, we count the number of move sequences that violate the
balance constraint (c(Vi) ≥ Lmax), or degrade (∆λ−1 < 0) or improve the connectivity
metric (∆λ−1 ≥ 0). For move sequences with ∆λ−1 ≥ 0, we count if the actual
improvement equals the expected (∆λ−1 = ∆exp) as well as zero-gain (∆λ−1 = 0) and
positive-gain improvements (∆λ−1 > 0).

104

5.7 Insights into Multilevel Partitioning

0
2.5

5
7.5
10

20

30

40

50

60

70

80

90

100

∆exp
≥ 0

Poten
tial

Improve
ment

c(Vi
) ≥

Lmax

Balan
ce Viola

tion ∆λ−1
< 0

Nega
tive

Gain ∆λ−1
≥ 0

Improve
ment

∆λ−1
= ∆exp

Corre
ct Gain ∆λ−1

= 0

Zero
Gain ∆λ−1

> 0

Posit
ive

Gain

N
um

be
r

of
O

cc
ur

en
ce

s
[%

]

LP FM Flows

Figure 5.8: Frequency of search conflicts in the different parallel refinement
algorithms due to concurrent node moves. Our refinement algorithms find move
sequences with a potential improvement ∆exp. Applying a move sequence to
the global partition yields an attributed gain value ∆λ−1 which is the actual
improvement.

Figure 5.8 summarizes the experimental results for each instance using a box plot
(outliers are represented with a point). The plot is divided into three parts. In the first
part, we see the percentage of searches that found a potential improvement (∆exp ≥ 0).
The second part shows the percentage of move sequences for which c(Vi) ≥ Lmax,
∆λ−1 < 0 or ∆λ−1 ≥ 0 relative to the number of potential improvements (∆exp ≥ 0).
The last part shows the percentage of move sequences for which ∆λ−1 = ∆exp,
∆λ−1 = 0 or ∆λ−1 > 0 relative to the number of move sequences that improved the
connectivity metric (∆λ−1 ≥ 0). Table 5.2 shows average percentages for the different
statistics shown in Figure 5.8. We now analyze the conflict rates of the different
refinement algorithms in more detail.

Label Propagation Refinement. On average, the label propagation algorithm
finds a potential improvement for 1.4% of the boundary nodes from which 99.6% are

105

5 Parallel Multilevel Hypergraph Partitioning

Table 5.2: Average percentages for the different statistics shown in Figure 5.8.

LP FM Flows
Avg [%] Avg [%] Avg [%]

∆exp ≥ 0 1.4 3 31.9

c(Vi) ≥ Lmax 0.2 4.5 4.4
∆λ−1 < 0 0.2 0.2 7.1
∆λ−1 ≥ 0 99.6 99.8 88.6

∆λ−1 = ∆exp 99.1 99.6 96.2
∆λ−1 = 0 29.4 44.2 45
∆λ−1 > 0 70.6 55.8 55

applied on the partition (∆λ−1 ≥ 0). For the applied moves, the expected equals the
attributed gain value in 99.1% of all cases on average. Only 0.4% of the potential
improvements violate the balance constraint (0.2%) or degrade the connectivity metric
(0.2%). We also see that most of the performed moves have positive gain (∆λ−1 > 0).
If we only look at Spm instances (which have larger node degrees and net sizes), we
see that 0.7% of the potential improvements violate the balance constraint (0.3%) or
degrade the connectivity metric (0.4%) on average. Thus, larger neighborhoods lead
to more conflicts. However, the conflict rates remain low on average, suggesting that
move conflicts are negligible in practice.

FM Refinement. On average, 3% of the localized FM searches find a potential
improvement. The conflict rates are comparable to those of the label propagation
algorithm. We note that the sum of moves that violate the balance constraint or
degrade or improve the connectivity metric is larger than the number of potential
improvements. The reason is that we relax the balance constraint in the localized FM
searches (see Section 5.4) but use the original balance constraint to count the number
of balance violations.

The results again suggest that conflicts are negligible, and the FM algorithm may
also work well without the different techniques that we used to protect against move
conflicts. However, one of the techniques to reduce conflicts is to perform moves
on a thread-local partition and only make improvements visible to other threads.
We now illustrate the impact of this technique on the solution quality and running
time by running Mt-KaHyPar-D with and without thread-local partitions. If we run
Mt-KaHyPar-D without thread-local partitions, we perform all moves on the global
partition, meaning that threads can see intermediate states of other searches.

Figure 5.9 show the performance profiles comparing the solution quality of the
two approaches (left) and the slowdown of the FM algorithm without thread-local
partitions relative to the running time with thread-local partitions (right). We see that
the solution quality of the partitions produced with thread-local partitions compared to
performing all moves on the global partition is 1% better in the median with 64 threads.

106

5.7 Insights into Multilevel Partitioning

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

26

2−1

1

21

22

23

24

25

R
el

.
sl

ow
do

w
n

of
F
M

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

23

2−1

1

21

22
R

el
.

sl
ow

do
w

n
of

F
M

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
0 100 200 300 400400

Instances

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
0 100 200 300 400400

Instances

Thread-Local Partitions 64
Thread-Local Partitions 10

Global Partition 64
Global Partition 10

Figure 5.9: Performance profile comparing the solution quality (left) and running
times (right) of Mt-KaHyPar-D with and without thread-local partitions.

The difference in solution quality is less pronounced when we use only ten threads.
This demonstrates that move conflicts can have a significant impact on solution quality
with an increasing number of threads. Surprisingly, the FM implementation that uses
thread-local partitions is 2.06 times faster on average with 64 threads, even though
it uses hash tables to store changes on the local partition. We assume this is due to
contention on the hyperedge locks, which we use to update the pin count values when
we perform a node move. Again, the slowdowns are less pronounced with ten threads.

In summary, the FM algorithm has similar conflict rates to the label propagation
algorithm. However, thread-local partitions are required to keep them low.

Flow-Based Refinement. On average, 31.9% of the flow computations on adjacent
block pairs find a potential improvement. Hence, it has significantly higher success
rates as the other two refinement algorithms. We also measured the number of
moved nodes per search and found out that flow-based refinement moves 48.6 nodes
on average, while the FM algorithm moves only 3.3 nodes per localized FM search.
Additionally, flows are computationally expensive, meaning that it can take several
(milli)seconds to solve a flow problem. Changes made by other threads are not visible

107

5 Parallel Multilevel Hypergraph Partitioning

0
2.5

5
7.5
10
20
30
40
50
60
70
80
90

100

N
um

be
r

of
O

cc
ur

en
ce

s
[%

]
k ∈ {8, 16} k = 64

∆exp
≥ 0

c(Vi
) ≥

Lmax

∆λ−1
< 0

∆λ−1
≥ 0

∆λ−1
= ∆exp

∆λ−1
= 0

∆λ−1
> 0

∆exp
≥ 0

c(Vi
) ≥

Lmax

∆λ−1
< 0

∆λ−1
≥ 0

∆λ−1
= ∆exp

∆λ−1
= 0

∆λ−1
> 0

τ = 0.5 τ = 1 τ = 2 τ = 4 τ = max

Figure 5.10: Frequency of search conflicts in the flow-based refinement algorithm
for different values of τ .

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

24

2−4

2−3

2−2

2−1

1

21

22

23

R
el

.
sl

ow
do

w
n

to
τ
=

1

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
0 100 200 300 400400

Instances

τ = 0.5 τ = 1 τ = 2 τ = 4 τ = max

Figure 5.11: Performance profile comparing the solution quality (left) and
running times (right, relative to τ = 1) of Mt-KaHyPar-D-F for different values τ .

when calculating a maximum flow. This can lead to conflicts when applying the
corresponding move sequence. The high success rates, the large number of moved
nodes per flow computation, and the high running times also explain the higher
conflict rates. On average, 4.4% (5.5% for k > 2) of the potential improvements
violate the balance constraint, and 7.1% (8.9% for k > 2) degrade the connectivity
metric. However, as we will see in Section 5.7.3, increasing the number of threads
does not adversely affect the solution quality of Mt-KaHyPar-D-F.

Our scheduler uses min(k, τ · t) threads to process the active block pairs of the
quotient graph in parallel (and one thread for k = 2). Figure 5.10 shows the conflict
rates of the flow-based refinement algorithm for k ∈ {8, 16} (left) and k = 64 (right) for
different values of τ . We can see that we can almost half the number of conflicts when

108

5.7 Insights into Multilevel Partitioning

we use τ = 0.5 instead of τ = max for k ∈ {8, 16}. Figure 5.11 compares the solution
quality of Mt-KaHyPar-D-F for different values of τ (left) and their running times
relative to τ = 1 (right). The performance profile indicates that all configurations
produce partitions with comparable solution quality. However, τ = 0.5 is slower than
τ = 1, and all other configurations have similar running times. Therefore, we choose
τ = 1, providing a good tradeoff between running time and conflict rates.

5.7.2 Effectiveness Tests
We presented several techniques that improve the solution quality of partitions at the
cost of an increased running time. This includes the community detection algorithm
(CD) and the parallel label propagation, FM, and flow-based refinement (F) algorithm.
We now analyze whether enabling each component leads to better solution quality or if
multiple repetitions of weaker configurations can produce similar results. To do so, we
run different configurations of our multilevel algorithm on benchmark set MHG using
ten threads. In order to compare them, we use the effectiveness tests presented in
Section 2.4.3. Here, we compare two algorithms by giving the faster algorithm more
time to perform additional repetitions until its expected running time equals the
running time of the slower algorithm. We abbreviate a configuration with (+CD,-FM,-
F), where + or - indicates whether or not the corresponding component is used. We
enable label propagation refinement in all configurations. Note that (+CD,+FM,-F)
and (+CD,+FM,+F) correspond to Mt-KaHyPar-D and Mt-KaHyPar-D-F.

Figure 5.12 shows the effectiveness tests on virtual instances comparing different
configurations of Mt-KaHyPar. On the left side, we compare configurations where we
successively disable our refinement algorithms except for the last plot that compares
our weakest and strongest configuration (bottom-left). On the right side, we com-
pare variants using the same set of refinement algorithms but with and without the
community-aware coarsening algorithm.

We see that using stronger refinement algorithms leads to significantly better
solution quality. Enabling the FM algorithm improves the connectivity metric by 4.8%
in the median compared to the configuration that only uses the label propagation
algorithm. If we additionally enable flow-based refinement, we can further improve
the solution quality by 2.3% in the median. The partitions computed by our strongest
configuration are better than those of our weakest configuration by 12% in the median.
All configurations using the community-aware coarsening algorithm (+CD) outperform
their corresponding weaker configurations (-CD). However, the differences are less
pronounced when we use stronger refinement algorithms.

Comparison of Mt-KaHyPar-D and Mt-KaHyPar-D-F. The effectiveness tests
have shown that each component improves the solution quality, even when faster
configurations are given more time to perform additional repetitions. We now compare
our two partitioners, Mt-KaHyPar-D and Mt-KaHyPar-D-F, when both perform the
same number of repetitions on our medium-sized (set MHG, 10 threads) and large
benchmark set (set LHG, 64 threads). The results are shown in Figure 5.13 and 5.14.

109

5 Parallel Multilevel Hypergraph Partitioning

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

(+CD,+FM,+F) (+CD,+FM,-F)

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

(+CD,+FM,+F) (-CD,+FM,+F)

1 1.05 1.1 1.5 2 101 102 7

Quality Relative to Best [τ]

(+CD,+FM,-F) (+CD,-FM,-F)

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

(+CD,+FM,-F) (-CD,+FM,-F)

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

(+CD,+FM,+F) (-CD,-FM,-F)

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

(+CD,-FM,-F) (-CD,-FM,-F)

Figure 5.12: Component effectiveness tests for our multilevel partitioner on
benchmark set MHG. The performance profiles compare the solution quality of
different configurations with (+) and without (-) community-aware coarsening
(CD) and FM, and flow-based refinement (F).

110

5.7 Insights into Multilevel Partitioning

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

27

2−1

1

21

22

23

24

25

26

R
el

.
sl

ow
do

w
n

to
M

t-
K

aH
yP

ar
-D

10

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
0 1000 2000 3000 3416

Instances

Mt-KaHyPar-D 10 Mt-KaHyPar-D-F 10

Figure 5.13: Performance profiles and running times comparing Mt-KaHyPar-D
and Mt-KaHyPar-D-F on set MHG.

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

28

1

21
22
23
24
25
26
27

U

R
el

.
sl

ow
do

w
n

to
M

t-
K

aH
yP

ar
-D

64

1 1.05 1.1 1.5 2 101 102 U
Quality Relative to Best [τ]

0 100 200 300 376
Instances

Mt-KaHyPar-D 64 Mt-KaHyPar-D-F 64

Figure 5.14: Performance profiles and running times comparing Mt-KaHyPar-D
and Mt-KaHyPar-D-F on set LHG.

On set MHG, Mt-KaHyPar-D-F computes partitions with better connectivity than
Mt-KaHyPar-D on 97.1% of the instances. The median improvement of Mt-KaHyPar-
D-F compared to Mt-KaHyPar-D is 4.2% while only incurring a slowdown by a factor
of 3.08 on average (geometric mean running time 2.73s vs 0.89s). On set LHG, both
the improvements (5.3%) and slowdowns (geometric mean running time 30.38s vs
4.64s) are more pronounced. The slowdowns are expected since the size of the flow
problems scales linearly with instance sizes, while the complexity of the flow-based
refinement routine does not. We note that Mt-KaHyPar-D-F was not able to partition
our largest instance into k ∈ {8, 16, 64} blocks (sk-2005) and our second and third
largest instance into k = 64 blocks (it-2004 and uk-2005) in under two hours.

111

5 Parallel Multilevel Hypergraph Partitioning

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

(+CD,-F,-V) (-CD,-F,+1V)

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

(+CD,+F,-V) (-CD,+F,+1V)

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

(+CD,-F,-V) (-CD,-F,+3V)

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

(+CD,+F,-V) (-CD,+F,+3V)

Figure 5.15: Performance profiles comparing the solution quality of different
configurations with (+) and without (-) community-aware coarsening (CD), flow-
based refinement (F), and with one (+1V) and three V-cycles (+3V).

Comparison of Community Detection and Iterated Multilevel Cycles. We
run a community detection algorithm to obtain the community structure of the input
hypergraph and use it to restrict contractions to nodes within the same community in
the coarsening phase. This approach is similar to the popular iterated multilevel cycle
technique [Wal04] (also called V-cycle technique). The technique uses an existing k-way
partition to restrict contractions to nodes within the same block in the coarsening
phase. In the initial partitioning phase, the input partition is projected to the coarsest
hypergraph, which then induces the same cut and balance as on the input hypergraph.
This can be repeated several times, each time using the partition found in previous
multilevel cycle as input.

In the following, we compare the solution quality of Mt-KaHyPar-D and Mt-KaHyPar-
D-F with our community detection algorithm (CD) and the V-cycle technique (V)
on set MHG. We abbreviate a configuration, e.g., with (-CD,+F,+1V), where + or -
indicates whether or not the corresponding component is used (F stands for flow-based
refinement, and +1V indicates that one V-cycle is used). Note that (+CD,-F,-V) and
(+CD,+F,-V) corresponds to Mt-KaHyPar-D and Mt-KaHyPar-D-F.

112

5.7 Insights into Multilevel Partitioning

Table 5.3: Geometric mean speedups over all instances and instances with a
single threaded running time ≥ 100s for total partition time (T), community
detection (CD), coarsening (C), initial partitioning (IP), label propagation (LP),
FM, and flow-based refinement. The last row shows the percentage of instances
with a single-threaded running time ≥ 100 seconds.

Mt-KaHyPar-D Mt-KaHyPar-D-F
Flow-Based Refinement

Number of Threads T CD C IP LP FM T k = 2 k ∈ {8, 16} k = 64

All
4 3.5 3.3 3.6 3.7 3.4 3.5 3.1 2.7 2.5 3.4

16 11.1 9.9 11.2 11.1 6.8 10.3 7.4 3 4.9 10.7
64 19.7 20.1 23.3 11.6 7.7 14.4 10.6 2.9 6.2 18.5

≥ 100s
4 3.4 3 3.3 3.4 3.8 3.6 3.1 6 2.5 3.2

16 11.5 10.7 11.6 14.2 12.2 12.6 8.4 9.9 6.3 10.1
64 24.7 27.6 27.4 34 26.8 29.4 14.5 13.3 11.4 17.6

Inst. ≥ 100s [%] 47.6 13.8 17 19.4 1.3 27.9 54.3 25 47.4 51.3

Figure 5.15 shows the solution quality of Mt-KaHyPar-D (left side) and Mt-KaHyPar-
D-F (right side) compared to configurations that replace the community detection
algorithm with one and three V-cycles. As can be seen, using one V-cycle produces
partitions with similar solution quality to our community detection approach. Increas-
ing the number of V-cycles from one to three only moderately increases the solution
quality for Mt-KaHyPar-D, while we see almost no improvement for Mt-KaHyPar-D-F.
This indicates that Mt-KaHyPar-D-F already finds good local optima with little room
for improvements. However, the advantage of the community detection approach
becomes obvious when we look at the running times. Mt-KaHyPar-D (geometric mean
running time 0.88s) with community detection is on 93.4% (99.6%) of the instances
faster than the configuration with one (three) V-cycle(s) (one V-cycle: 1.09s, three
V-cycles: 1.56s). The running time improvements look similar for Mt-KaHyPar-D-F
(2.73s, one V-cycle: 3.5s, three V-cycles: 4.82s).

5.7.3 Scalability

In Figure 5.16 and 5.18 as well as Table 5.3, we show self-relative speedups for several
algorithmic components of Mt-KaHyPar-D and Mt-KaHyPar-D-F with varying number
of threads t ∈ {4, 16, 64}. We run the scalability experiments for Mt-KaHyPar-D on
set LHG and machine B. For Mt-KaHyPar-D-F, we used a subset of set LHG (76 out of
94 hypergraphs) containing all hypergraphs on which Mt-KaHyPar-D-F 64 was able to
finish in under 600 seconds for all k ∈ {2, 8, 16, 64}. This experimental evaluation is
based on the data from the corresponding publications of Mt-KaHyPar-D [Got+21a]
and Mt-KaHyPar-D-F [GHS22a]. We did not rerun these experiments since one run
took roughly six weeks on machine B.

113

5 Parallel Multilevel Hypergraph Partitioning

0
1
2

4

8

16

32

64

0
1
2

4

8

16

32

64

0
1
2

4

8

16

32

64

0
1
2
4

8

16

32

64

1024

0
1
2

4

8

16

32

64

0
1
2
4

8

16

32

64

128

Mt-KaHyPar-D Community Detection

Coarsening Initial Partitioning

Label Propagation FM

101 102 103 104 101 102 103

101 102 103 100 101 102 103 104

100 101 102 100 101 102 103 104

Single-Threaded Running Time of Component [s]

Sp
ee

du
p

4 16 64

Figure 5.16: Speedups of Mt-KaHyPar-D and its different algorithmic compo-
nents.

Scalability of Mt-KaHyPar-D. The overall geometric mean speedup of Mt-KaHy-
Par-D is 3.5 for t = 4, 11.1 for t = 16 and 19.7 for t = 64. If we only consider instances
with a single-threaded running time ≥ 100s, we achieve a geometric mean speedup of
24.7 for t = 64. For t = 4, the speedup is at least 3 on 92.3% of the instances.

Community detection and coarsening share many similarities in their implementation
and both show reliable speedups for an increasing number of threads. For the
remaining three components, we observe that longer single-threaded execution leads to
substantially better speedups. For initial partitioning, increasing the number of threads
from 16 to 64 can even be harmful for instances with a single-threaded running time

114

5.7 Insights into Multilevel Partitioning

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

1 4 16 64

Figure 5.17: Performance profiles comparing the solution quality of Mt-KaHyPar-
D with an increasing number of threads on set LHG.

of one second or less. While label propagation refinement yields the least promising
speedups, it is substantially faster than the other components, taking less than 10% of
the overall running time on over 95% of the instances for t = 64.

The FM algorithm is the most time-consuming component of Mt-KaHyPar-D (see
Figure 5.20 in Section 5.7.4) and therefore its scalability is crucial for the overall
algorithm. The geometric mean speedup of the FM algorithm is 3.5 for t = 4, 10.3 for
t = 16 and 14.4 for t = 64. However, the speedup increases to 29.4 for t = 64 when
we only consider instances with a single-threaded running time ≥ 100s.

Figure 5.17 compares the solution quality of Mt-KaHyPar-D with increasing number
of threads. The solution quality of the partitions with a moderate number of threads
(≤ 4) is comparable. However, using more than 16 threads slightly affects the solution
quality of Mt-KaHyPar-D.

Scalability of Mt-KaHyPar-D-F. The overall geometric mean speedup of Mt-
KaHyPar-D-F is 3.1 for t = 4, 7.4 for t = 16 and 10.6 for t = 64. If we only consider
instances with a single-threaded running time ≥ 100s, we achieve a geometric mean
speedup of 14.5 for t = 64. Since Mt-KaHyPar-D-F extends Mt-KaHyPar-D with flow-
based refinement, we focus on the scalability of this component. Recall that we use
min(t, k) threads to process the active block pairs of the quotient graph in parallel
(and only one thread for k = 2).

For k = 2, the scalability of the flow-based refinement routine largely depends
on the FlowCutter algorithm as the only parallelism source. With 4 threads, the
geometric mean speedup is 2.7. For t ∈ {16, 64}, the parallelization overheads are only
outweighed for longer running instances, with more threads becoming worthwhile at
about 100 seconds of sequential time. Unfortunately, we even experience some minor
slowdowns and the speedups are strongly scattered. The geometric mean speedup for
all instances with a single-threaded running time ≥ 100s is 9.9 for t = 16, and 13.3 for

115

5 Parallel Multilevel Hypergraph Partitioning

0
1
2
4

8

16

32

64

128

0
1
2
4

8

16

32

64

128

0
1
2

4

8

16

32

64

0
1
2

4

8

16

32

64

Mt-KaHyPar-D-F Flow-Based Refinement k = 2

Flow-Based Refinement k ∈ {8, 16} Flow-Based Refinement k = 64

101 102 103 104 101 102 103 104

101 102 103 104 102 103 104

Single-Threaded Running Time of Component [s]

Sp
ee
du

p

4 16 64

Figure 5.18: Speedups of Mt-KaHyPar-D-F and the flow-based refinement routine
for different values of k.

t = 64. However, the speedups match the results of the parallel flow algorithm from
Ref. [BBS15] that we integrated into the FlowCutter algorithm.

For k = 8 (= 16) and t = 64, we use 8 (16) threads to process the active block
pairs in parallel, while the remaining threads are used for parallel flow computations.
Thus, both parallelism sources are used. The speedups are slightly better than for
k = 2. Note that we use sequential implementations of the flow network construction
and maximum flow algorithm when the number of flow problems processed in parallel
equals the number of available threads (e.g., for k = 16 and t = 16). Therefore, the
poor speedups for instances with short single-threaded running times (≤ 100s) are
caused by parallelization overheads.

For k = 64 and t = 64, we achieve a geometric mean speedup of 18.5. In this case,
we use all threads to process the active block pairs in parallel. Thus, all parallelism is
leveraged in the scheduler, and none in the FlowCutter algorithm, which explains why
we obtain more reliable speedups than for all other k.

Figure 5.19 shows that increasing the number of threads does not adversely affect
the solution quality of Mt-KaHyPar-D-F.

116

5.7 Insights into Multilevel Partitioning

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

1 4 16 64

Figure 5.19: Performance profiles comparing the solution quality of Mt-KaHyPar-
D-F with increasing number of threads on set LHG.

5.7.4 Running Times of Components
We now analyze the running times of the different components of Mt-KaHyPar-D and
Mt-KaHyPar-D-F on set LHG in more detail (using 64 threads). Figure 5.20 shows
two different types of plots illustrating the share of each component on the total
partitioning time. The first plot (left) uses a bar plot to visualize the running times of
each component for each instance. In these plots, we take the execution time of the
most time-consuming component and sort the instances according to it. The second
plot (right) is similar to the performance profiles. It shows the percentage of instances
(y-axis) for which the share of a component on the total partitioning time is ≥ x%.

Mt-KaHyPar-D. The most time-consuming parts of Mt-KaHyPar-D are community
detection, coarsening, and the FM algorithm. These components have approximately
the same share on the total partitioning time, which is between 21% and 23% in the
median. However, there are a few instances for which the FM algorithm dominates
the running time. A closer look reveals that these are mainly Dual instances derived
from satisfiability problems [Bel+14]. Hypergraphs from this domain usually have
large hyperedges with a low average node degree. We observed that the localized
FM searches perform many zero-gain moves for these instances, making our adaptive
stopping rule less effective. Thus, the searches move more nodes on average, requiring
more memory to store intermediate states in the thread-local partitions. This makes
the FM algorithm less cache-efficient and increases its running time.

The share of the initial partitioning phase on the total partitioning time is 8.3% in
the median. For k = 2, the share of initial partitioning on the total running time is less
than 10% on 88% of the instances. Larger running times can be observed for Literal
and Primal instances also derived from satisfiability problems. These instances have
many graph edges and highly-skewed node degree distributions (similar to complex
networks). Here, the coarsest hypergraph tends to be larger and causes longer running

117

5 Parallel Multilevel Hypergraph Partitioning

0
10
20
30
40
50
60
70
80
90

100

Sh
ar

e
on

T
ot

al
R

un
ni

ng
T

im
e

[%
]

0
10
20
30
40
50
60
70
80
90

100

Fr
ac

ti
on

of
In

st
an

ce
s

[%
]

0 50 100 150 200 250 300 350 376

Instances
5 10 20 30 40 50 75 100

Share on Total Running Time [%]

Mt-KaHyPar-D

0
10
20
30
40
50
60
70
80
90

100

Sh
ar

e
on

T
ot

al
R

un
ni

ng
T

im
e

[%
]

0
10
20
30
40
50
60
70
80
90

100
Fr

ac
ti

on
of

In
st

an
ce

s
[%

]

0 50 100 150 200 250 300 350371

Instances
5 10 20 30 40 50 75 100

Share on Total Running Time [%]

Mt-KaHyPar-D-F

Community Detection
Coarsening

Initial Partitioning
Label Propagation

FM
Flows

Other

Figure 5.20: Running time shares of different components on the total execution
time of Mt-KaHyPar-D (top) and Mt-KaHyPar-D-F (bottom).

times. The running time of the label propagation algorithm is negligible on most of
the instances.

Mt-KaHyPar-D-F. As shown in Figure 5.20 (bottom), the flow-based refinement
routine dominates the running time of Mt-KaHyPar-D-F on most of the instances. We
therefore analyze this component in more detail. Since the flow-based refinement
algorithm uses nested parallelism, we can only measure the exact running time shares
of the different components for k = 2. For k > 2, we measure the running times of
the different phases in the nested calls and take their sum as the running time of a
component.

Figure 5.21 shows the shares of different components on the total running time of
the flow-based refinement routine for different values of k. For k = 2, solving the flow
problems with the FlowCutter algorithm takes the most time. The results look similar
for k ∈ {8, 16} and are therefore omitted in the plot. For k = 64, the flow network
construction and FlowCutter algorithm both have similar shares on total partitioning

118

5.7 Insights into Multilevel Partitioning

0
10
20
30
40
50
60
70
80
90

100

Sh
ar

e
on

T
ot

al
R

un
ni

ng
T

im
e

[%
]

0
10
20
30
40
50
60
70
80
90

100

Fr
ac

ti
on

of
In

st
an

ce
s

[%
]

0 25 50 75 94
Instances

5 10 20 30 40 50 75 100

Share on Total Running Time [%]

k = 2

0
10
20
30
40
50
60
70
80
90

100

Sh
ar

e
on

T
ot

al
R

un
ni

ng
T

im
e

[%
]

0
10
20
30
40
50
60
70
80
90

100
Fr

ac
ti

on
of

In
st

an
ce

s
[%

]

0 25 50 75 91
Instances

5 10 20 30 40 50 75 100

Share on Total Running Time [%]

k = 64

Apply Moves
Grow Region B

Flow Network Construction
FlowCutter

Other

Figure 5.21: Running time shares of different components on the total execution
time of the flow-based refinement routine.

time. Recall that the size of a flow problem is proportional to the balance constraint
Lmax = (1 + ε)d c(V)

k e. Larger values for k lead to smaller flow problems reducing the
time for solving them.

119

6Chapter 6

Parallel n-level Hypergraph
Partitioning
Traditional multilevel partitioners contract matchings or clusterings on each level,

leading to a multilevel hierarchy with approximately a logarithmic number of levels.
However, there is usually a correspondence between the number of levels and the
tradeoff between solution quality and running time [Saa95; Sch20]. More levels provide
“more opportunities to refine the current solution” [AHK97] at different granularities
but using more local search also increases the running time. The n-level partitioning
scheme completely evicts this tradeoff by instantiating the multilevel paradigm in its
most extreme version, contracting only a single node on each level. Correspondingly,
in each refinement step, only a single node is uncontracted, allowing a highly-localized
search for improvements. The n-level scheme is currently implemented by the sequential
hypergraph partitioner KaHyPar [Sch+16a; Akh+17a]. KaHyPar is the method of choice
for partitioning hypergraphs with high solution quality but is often substantially slower
than other partitioning systems – prohibitively so for large hypergraphs. Although
contracting a single node on each level seems inherently sequential, we show that
under certain relaxations the n-level scheme can be parallelized efficiently and without
compromises in solution quality.

Algorithm Overview. Algorithm 6.1 shows the high-level pseudocode of our par-
allel n-level hypergraph partitioner, which also serves to outline the structure of this
chapter. Contracting and uncontracting nodes in a strict order is inherently sequential,
which is why we have to relax the n-level paradigm. For the coarsening phase, we
iterate in parallel over the nodes and select a contraction partner for each node.
Contractions are performed on-the-fly as in the sequential n-level scheme, completely
asynchronously with the contraction partner selection. To this end, we propose a new
low-overhead hypergraph data structure in Section 6.1 and describe how to imple-
ment contractions and uncontractions on it. This will reveal certain conditions and
intricacies regarding parallelization that must be addressed by the coarsening and
uncoarsening algorithms in Sections 6.2 and 6.3. The challenge addressed in Section 6.2
is to keep the contractions compatible (see Line 5, a formal definition follows) as
well as to determine a schedule for the contraction operations. For uncoarsening,
we construct a sequence of batches B = 〈B1, . . . , Bl〉 of contracted nodes, such that
|Bi| ≈ bmax where bmax is an input parameter. Batches are processed one after another,
enabling the uncontraction of nodes in subsequent batches. Nodes in the same batch
are uncontracted in parallel. The challenge of identifying which nodes can or even
must appear in the same batch is addressed in Section 6.3. After uncontracting each
batch, we apply highly-localized refinement algorithms around the batched nodes.

121

6 Parallel n-level Hypergraph Partitioning

Algorithm 6.1: Parallel n-level Hypergraph Partitioning
Input: Hypergraph H = (V,E), number of blocks k
Output: k-way partition Π of H

1 ∀v ∈ V : rep[v]← v // initialize empty forest F
2 while |V | > 160 · k do
3 for u ∈ V in random order do in parallel
4 v ← argmaxv

∑
e∈I(u)∩I(v)

ω(e)
|e|−1 // see Section 5.2.1

5 if (u, v) can be safely added to F then // see Section 6.2
6 rep[v]← u and contract v onto u // see Section 6.1.2

7 remove single-pin and identical nets // see Section 6.1.1
8 Π← initialPartition(H, k) // see Section 5.3
9 B = 〈B1, . . . , Bl〉 ← constructBatches(F) // see Section 6.3

10 for B ∈ B do // |B| ≈ bmax

11 if B 6= ∅ then
12 for v ∈ B do in parallel
13 uncontract v from rep[v] // see Section 6.1.3
14 Π[v]← Π[rep[v]]

// Localized refinement around the boundary nodes of the current batch
15 while improvement found do
16 Π← labelPropagationRefinement(H,Π, B) // see Section 4.2
17 Π← fmLocalSearch(H,Π, B) // see Section 4.3

18 else
19 restore single-pin and identical nets // see Section 6.1.1

// Global refinement using all boundary nodes of the partition
20 while relative connectivity improvement ≥ 0.25% do
21 Π← fmLocalSearch(H,Π) // see Section 4.3
22 Π← flowBasedRefinement(H,Π) // see Section 4.4

Similarities to Mt-KaHyPar-D(-F). Our n-level code shares most of the algorith-
mic components with Mt-KaHyPar-D(-F). For coarsening, we use the heavy-edge rating
function and restrict contractions to densely-connected regions of the hypergraph by
using the community detection algorithm presented in Section 5.2.4. In the initial
partitioning phase, we use multilevel recursive bipartitioning with the same portfolio of
flat bipartitioning techniques as explained in Section 5.3 but use the n-level coarsening
and uncoarsening algorithm. Uncoarsening uses the same set of refinement algorithms,
but after uncontracting a batch of nodes, we initialize them only with the boundary
nodes of the current batch (see Line 16 and 17). After reverting all contractions from
a coarsening pass, we additionally use a global refinement step that corresponds to
refinement used in Mt-KaHyPar-D(-F) (see Line 21 and 22).

122

6.1 The Dynamic Hypergraph Data Structure

References and Contributors. This chapter covers our n-level partitioning algo-
rithm presented in Refs. [Got+21c; Got+22a]. Large parts of the content were copied
verbatim from the corresponding conference publication [Got+22a], but most of the
experimental evaluation was rewritten and enhanced with additional experiments. The
idea and implementation of the parallel n-level partitioning algorithm came from the
author of this dissertation, while Lars Gottesbüren was involved in the performance
engineering process.

6.1 The Dynamic Hypergraph Data Structure

To support concurrent on-the-fly contractions and uncontractions, we use a dynamic
hypergraph data structure which is a space-efficient version of the one used in KaHy-
Par [Sch20, p. 100]. In KaHyPar, the pins of the nets are represented as an adjacency
array (the sub-range storing the pins of a certain net is called its pin-list), whereas
the incident nets of the nodes are represented using adjacency-lists, i.e., as a separate
vector for each node (see Figure 3.5 in Section 3.3.2). Contracting a node v onto
another node u replaces v with u in all nets e ∈ I(v) \ I(u) and removes v from
all nets e ∈ I(u) ∩ I(v). Because of the adjacency-lists in KaHyPar, a contraction
(u, v) entails copying I(v) \ I(u) to I(u). In the worst case, this can lead to quadratic
memory usage and is therefore not practical for large hypergraphs or hypergraphs
with a highly-skewed degree distribution. Instead, we propose a new data structure
for storing incident nets that enables concurrent (un)contractions without allocating
additional memory. The data structure is slightly slower than the approach used
in KaHyPar (see Section 6.4.3), but allows us to handle larger and highly skewed
instances.

The key idea is to remove I(u) ∩ I(v) from I(v) (instead of adding I(v) \ I(u) to
I(u)). I(u) is obtained by iterating over both the representation of the current I(u)
and the remaining entries of I(v). For each node u ∈ V , we store an array Iu which is
initialized with the incident nets of u on the input hypergraph. We organize all nodes
contracted onto u as well as u itself in a doubly-linked list Lu, so that the current
state for I(u) is obtained by iterating over all Iw arrays for w ∈ Lu. When contracting
v onto u, we remove any incident net of u from the arrays Iw for w ∈ Lv and append
Lv to Lu. For storing the pin-lists of nets, we use an adjacency array as in KaHyPar.
Each pin-list is split into an active and inactive part. The active part represents the
pin-list of the net, and the inactive part contains pins that were previously part of the
net but have already been contracted. The data structure and all operations, which
we describe in more detail in the following, are illustrated with an example of multiple
contraction and uncontraction steps in Figure 6.1. In each step, the top part shows
the current state of the pin-lists, the bottom part shows the incident net arrays Iw
and lists Lw.

123

6 Parallel n-level Hypergraph Partitioning

0

e0 e1 e2 e3
v1

v0

v2 v5 v6

v4

v3

e0

e1

e2

e3

v1

v2 v5 v6

v4

v3

e0

e1

e2

e3

2 0 1 3 4 3 4 6 2 5 6

1

e0
e1 e2 e3

2 4 1 3 3 4 6 2 5 63 0

0

v0

1

1 0

3

1

2

1

2

3 2

3

v1 v2 v3 v4 v5

0

0

0 0

0

0

0

0

0

0 0

0

v6

0

0

0 0 0 0 0 0 0

0

v0

1

1 0

3

1

2

1

2

3 2

3

v1 v2 v3 v4 v5

1

0

0 0

0

0

0

0

0

0 0

0

tu,e

tu v6

0

0

1 0 0 0 0 0

Lu

0

e3

Contract
(v2, v1)
(v3, v6)
(v3, v4)

v2 v3 v5
e1

2

e0 e1 e2 e3
1 3 2 4 3 4 6 2 5 30

0

v0

1

1 0

3

1

2

1

2

3 3

2

v1 v2 v3 v4 v5

1

0

1 0

0

0

0

0

0

0 1

0

v6

0

0

2 1 0 0 1 0 1

Batches B = {B1, B2}
{(v2, v1), (v3, v6)}
{(v1, v0), (v3, v4)}

B1

B2

2

e0 e1 e2 e3
1 3 2 4 3 6 4 2 5 30

0

v0

1

1 0

3

1

2

1

2

3 3

2

v1 v2 v3 v4 v5

1

0

1 0

0

0

0

0

0

0 1

0

v6

0

0

2 1 0 0 1 0 1

Construct
Batches

B1

Uncontract
Batch B1

v1

v2 v5 v6

v3

e0

e1

e2

e3

2

e0 e1 e2 e3
3 1 4 3 4 2 5 60

0

v0

1

1 0

3

1

2

1

2

3 3

2

v1 v2 v3 v4 v5

1

0

1 0

0

0

0

0

0

0 1

0

v6

0

0

1 0 0 0 1 0 0

1 6

Uncontract
Batch B2

2

e0 e1 e2 e3
3 1 3 2 5 6

0

v0

1 0

3

1

2

3 3

2

v1 v2 v3 v4 v5

1

0

1 0

0

0

0

0 1

0

v6

0

0 0 0 0 0 0 0

0 6

1

1

2
0

0

4 0 4v1

v0

v2 v5 v6

v4

v3

e0

e1

e2

e3

a)

b)

c)

d)v2

v1

v0

v3

v4

v5

v6

F = (V, C)

f)

e)

B2 B2 B1 B2

B2 B2 B2

Inactive Part

Inactive Entry

Active Entry

Active Part

Contract
(v1, v0)

Iv6
tu,e

tu
Lu

tu,e

tu
Lu

tu,e

tu
Lu

tu,e

tu
Lu

tu,e

tu
Lu

Figure 6.1: Contraction and uncontraction operations applied on the dynamic
hypergraph data structure.

124

6.1 The Dynamic Hypergraph Data Structure

6.1.1 Remove and Restore Incident Nets
To remove and later restore entries from an incident net array Iw, we additionally
store a counter tw which counts in how many contractions Iw was modified, as well
as a marker tw,e for each entry of Iw. The counter and markers are initially set to
zero. Entries with markers ≥ tw are active, i.e., were not removed yet. To remove
a set X of entries from Iw, we increment tw and iterate over the previously active
entries of Iw (now marked with tw − 1). If the entry is not in X, we set its marker to
tw. Otherwise, we swap the entry and its marker to the end of the active part but
keep its marker at tw − 1, thereby marking the entry inactive. This maintains the
invariant that the entries of Iw are sorted by decreasing markers so that iterating over
active entries of Iw has no overhead. In particular, the iterator for I(u) has a time
complexity of O(|I(u)|+ |Lu|).

To restore entries, we decrement tw so that we consider entries marked with tw,e =
tw − 1 as active again. The restore operations must be performed in reverse order of
the remove operations to restore the correct entries. This is one of the dependencies
addressed in Sections 6.2 and 6.3.

While the description references a separate incident net array for each node, they
are actually organized as an adjacency array. To speed up iteration over incident nets,
we store a second doubly-linked list where nodes w without active entries in Iw are
removed. This improves the iterator’s complexity to O(|I(u)|).

In Figure 6.1 b we contract v0 onto v1. We remove e1 from the incident net array
of v0 but keep e0. Therefore, we increment t0 to 1 and set t0,0 to 1 while leaving
t0,1 at 0. In step f (which uncontracts v1), we decrement t0 to 0 and thus mark
e1 as active again in the incident net array of v0.

6.1.2 Contraction Operation
Algorithm 6.2 shows the pseudocode for contracting a node v onto another node u. To
edit the pin-lists, we iterate over the incident nets e ∈ I(v) and search for the position
of u in e (see Line 4). If we do not find u, we replace v with u in the pin-list of e
in Line 8. Otherwise, we swap v to the end of the active part of e and decrement
the current size of e (see Line 5), as well as mark e in a bitset X. We use this bitset
to remove all nets e ∈ I(u) ∩ I(v) from the incident net arrays Iw for all w ∈ Lv in
Line 10.

In Figure 6.1 b, the contraction (v1, v0) replaces v0 with v1 in net e0 and removes
v0 from net e1. Afterwards, v1 is incident to net e0 and e1.

To enable concurrent contractions, we use a separate lock for each net to synchronize
edits to the pin-lists. In Line 12, the set I(u) may change due to concurrent contractions
onto u, which is why it is not thread-safe to initialize X by iterating over I(u). Therefore,
we use the synchronized edits of the pin-lists to mark the nets e ∈ I(u) ∩ I(v) in X.
If multiple nodes contracted concurrently onto u share a net e, only the first pin-list
edit of e can do the replacement (if u was not already in e). All subsequent edits of e

125

6 Parallel n-level Hypergraph Partitioning

Algorithm 6.2: Contraction Operation
Input: Contraction (u, v)

1 c(u)← c(u) + c(v)
2 for e ∈ I(v) do // edit pin-lists
3 lock e
4 if u in pin-list of e then // e ∈ I(u) ∩ I(v)
5 remove v from pin-list of e
6 mark e in bitset X

7 else // e ∈ I(v) \ I(u)
8 replace v by u in the pin-list of e

9 for w ∈ Lv do // edit incident net arrays
10 remove active entries in X from Iw

11 lock u
12 append Lv to Lu

correctly remove their pins and mark e in their thread-local bitset X.
We use a separate lock for each node u ∈ V to synchronize modifications to Lu and

c(u). If c(u)+c(v) exceeds the maximum node weight cmax, we discard the contraction.
Operations on the incident net arrays Iw for w ∈ Lv are not synchronized (see Line 10)
since Iw is only modified by contracting nodes in Lv. These must be finished before
the contraction of v starts, and our algorithm in Section 6.2 guarantees this.

6.1.3 Uncontraction Operation
Algorithm 6.3 shows the pseudocode for uncontracting a node v that is contracted
onto a node u. To restore Lv from Lu in Line 3, we additionally store the last node in
Lv at the time v is contracted. To restore the incident nets of v that were removed, we
iterate over all nodes w ∈ Lv and decrement the counter tw in Line 5. This reactivates
all entries of Iw that became inactive due to contracting v, i.e., had marker tw,e = tw.
The other active nets are marked with tw,e > tw, which were not incident to u at
the time of contraction and thus not removed. Since we modified the incident nets
Iw based on synchronized edits of the pin-lists, the markers encode information on
how we have to revert the contraction operation for each net e ∈ I(v). To restore the
pin-lists, we iterate over all active nets e ∈ Iw, and if tw,e = tw (e ∈ I(u) ∩ I(v)), we
restore v from the inactive part of the pin-list of e in Line 9 (see v4 in e2 in Figure 6.1
f). Otherwise, if tw,e > tw (e ∈ I(v) \ I(u)), we replace u by v in the pin-list of e in
Line 15 (see v0 replacing v1 in e0 in Figure 6.1 f). In Line 11 and 16, we update the
gain table which we describe in more detail in Section 6.3.4.

In the sequential setting, contractions are undone in the reverse order in which they
were performed, so if v was removed, it is the first entry in the inactive part of e. In

126

6.2 Parallel n-level Coarsening

Algorithm 6.3: Uncontraction Operation
Input: Contraction (u, v)

1 Π[v]← Π[u]
2 lock u
3 restore the sublist Lv from Lu

4 for w ∈ Lv do
5 tw ← tw − 1
6 for active entries e ∈ Iw do
7 if tw,e = tw then // e ∈ I(u) ∩ I(v)

8 if test-and-set(e) then
9 restore all pins in the inactive part of e of the current batch B

10 lock e
11 updateGainTable(u, v, e) // see Algorithm 6.4

12 else // e ∈ I(v) \ I(u)

13 find u in e
14 lock e
15 replace u by v in pin-list of e
16 updateGainTable(u, v, e) // see Algorithm 6.4

17 c(u)← c(u)− c(v)

this case, it suffices to increment the current size of e to restore v in Line 9. In our
parallel implementation, we uncontract the nodes of a batch B in parallel so that
v can be anywhere in the inactive part of e’s pin-list. However, after constructing
the batches, we sort each pin-list (in particular the inactive entries) by the batches
in which the pins are uncontracted (see net e2 in Figure 6.1 d). Then, all pins of
e that have to be restored in the current batch can be activated simultaneously by
appropriately incrementing the current size of e (as seen in parts e and f of Figure 6.1).
Only one thread that triggers the restore case on a net performs the restore operation,
which we ensure with an atomic test-and-set instruction.

6.2 Parallel n-level Coarsening
The previous section introduced a dynamic hypergraph data structure to handle
concurrent (un)contractions. However, we made several assumptions on the order in
which we perform these (un)contractions. For example, we can not contract a node
w onto another node v while simultaneously contracting v onto a node u. Moreover,
we have to revert the contractions in reverse order to restore the incident nets of
each uncontracted node correctly. We designed our hypergraph data structure to
support any valid sequence of (un)contractions. In the following, we will formalize

127

6 Parallel n-level Hypergraph Partitioning

this by introducing the contraction forest from which we derive a parallel schedule of
(un)contractions.

6.2.1 Contraction Forest
Let us assume that we know the contractions we want to perform in advance, i.e.,
for each node v ∈ V , we know its representative rep[v] = u (meaning that v is
contracted onto rep[v]). We call the contractions compatible if the directed graph
F = (V, {(v, rep[v]) | v ∈ V, rep[v] 6= v}) with edges pointing from the contracted node
to its representative is acyclic (underlying undirected edges). If so, we call F the
contraction forest. If v does not get contracted, we have rep[v] = v. These are the
roots. The ancestors of v are the nodes on the unique path towards the root of its
tree. The children of v are all nodes w ∈ V \ {v} with rep[w] = v, and the descendants
of v are the nodes in the subtree rooted at v. Two nodes v1 and v2 are siblings if they
are children of the same node, i.e., v1 6= rep[v1] = rep[v2] 6= v2.

A node can be contracted as soon as all of its children in F have been contracted.
To obtain parallelism, different subtrees and siblings can be contracted independently,
i.e., we traverse F in a bottom-up fashion in parallel. The contracted hypergraph
will be the same regardless of the exact execution order. Only the data structure
representation may differ, i.e., which pin was replaced by its representative and which
pin was removed.

In the actual algorithm, we do not know F in advance but start with rep[v] = v for
all v ∈ V . In the following, we describe how we dynamically extend F in a thread-safe
manner that still enables this parallelization scheme, while simultaneously performing
the contractions.

6.2.2 Handling Contraction Dependencies
Contracting a node v onto another node u does not break compatibility with existing
contractions if it satisfies the following two conditions: (i) F must remain a rooted
forest and (ii) the contraction operation of u onto its parent rep[u] must not have
started yet (see Algorithm 6.2). More precisely, adding edge (v, u) to F must not
induce a cycle, and v must still be a root, i.e., rep[v] = v. If u’s contraction has started,
contracting v onto u would introduce inconsistencies as u may have been replaced by
rep[u] in some of its incident nets. This has two consequences: First, if u’s contraction
has started, we instead contract v onto a suitable ancestor of u. Secondly, if there
are unfinished contractions onto v, we cannot contract v right away. Note that we
explicitly allow multiple concurrent contractions onto the same node.

We use a zero-initialized array pending, where pending[x] stores the number of nodes
y with rep[y] = x whose contraction is not finished. If pending[x] = 0, it is safe to
contract x. If additionally rep[x] 6= x, we assume that the contraction of x onto
rep[x] has started. The entries rep[x] and pending[x] are only modified while holding a
node-specific lock for x. The following procedure takes a contraction (u, v) as input

128

6.3 Parallel n-level Uncoarsening

and ensures at some point that v is contracted onto a node w, where w is either u
(most common case) or an ancestor of u.

First, v is locked so that no other thread can write to rep[v]. If rep[v] 6= v, we
discard the contraction (u, v), as another thread has already selected a representative
for v and will run this algorithm. Otherwise, we walk the path towards the root of
u’s tree in F by chasing the rep entries to find the lowest ancestor w of u, for which
either rep[w] = w or pending[w] > 0, i.e., the contraction of w has not started. If v is
found on this path, the contraction is discarded, as it would add a cycle to F .

If no cycle is found, w is locked, and we check rep[w] and pending[w] again. If they
changed, we release w and keep walking up to find an ancestor of w. Otherwise, w is
the desired candidate. We still finish the walk up to the root to check for cycles. If no
cycles are found, we set rep[v] = w, increment pending[w] by 1, and unlock v and w.

The thread that reduces pending[v] to 0 is responsible for contracting (w, v). If
pending[v] = 0 already, we contract v onto w using Algorithm 6.2, and subsequently
decrement pending[w] by one. If this reduces pending[w] to 0 and rep[w] 6= w, we
recursively apply this process to (rep[w], w). If instead pending[w] > 0, we are done.

6.2.3 Removing Identical Nets
There is one last detail left for the coarsening phase. We remove single-pin and identical
nets after each coarsening pass (see Line 7 in Algorithm 6.1) using the algorithm
described in Section 5.1 (same as in Mt-KaHyPar-D(-F)) but adapt it to the dynamic
hypergraph data structure. Removing this redundant information speeds up the
other algorithmic components. KaHyPar [Sch+16a; Sch20] removes these nets directly
after each contraction operation. Doing this on-the-fly in the parallel setting would
introduce additional dependencies for the batches in the uncoarsening phase since we
have to restore these nets at the time at which they become identical. Furthermore,
the pin-list of a net may change while we simultaneously try to identify identical
nets. Thus, we would have to lock all incident nets of a node to prevent concurrent
modifications of the pin-lists, which is why we decided against it.

6.3 Parallel n-level Uncoarsening
For the uncoarsening phase, our goal is to create a sequence of batches B = 〈B1, . . . , Bl〉,
where B is a partition of the contracted nodes into disjoint sets such that ∀B ∈ B :
|B| ≈ bmax. The batch size bmax is an input parameter that interpolates between
scalability (high values) and the traditional n-level scheme that uncontracts only a
single node on each level (bmax = 1) which is inherently sequential. Each batch Bi will
be chosen such that we can uncontract the nodes v ∈ Bi in parallel. Refinement is
applied after each batch. Processing Bi will resolve the last dependencies required to
uncontract the next batch Bi+1. Clearly, the uncontraction of a node v can only start
once the uncontraction of rep[v] is finished, i.e., all of its ancestors are uncontracted.
Therefore, we construct the batches via a top-down traversal of F . However, we have

129

6 Parallel n-level Hypergraph Partitioning

u

v w

contract

v onto u u w

contract

w onto u u

initial

partition u

V0 V1

uncontract v v

V0 V1u move v from

V0 to V1 v

V0

V1
u

uncontract w

u

v w

V1 V0

Figure 6.2: Example of an uncontraction that increases the cut size (uncontract-
ing w increases the cut by one). This occurs because we did not uncontract the
siblings v and w of u in reverse order of contraction.

introduced additional ordering dependencies between siblings in F due to the way we
perform the replacement edits of the pin-lists.

6.3.1 Sibling Uncontraction Dependencies

Figure 6.2 illustrates a situation demonstrating that it is necessary to uncontract
siblings in the contraction forest F in reverse order of contraction. Consider a hyperedge
e = {v, w}. If we contract v onto a node u, then u replaces v in e (e = {u,w}). If we
subsequently contract w onto u, then w is moved to the inactive part of e (e = {u}).
We now uncontract node v before w, which replaces u in e with v again (e = {v}). If u
and v are in different blocks of the partition, uncontracting w would make hyperedge
e a cut net since w is assigned to the block of u and Π[u] 6= Π[v]. This would violate
a fundamental property of the multilevel paradigm that we can project a partition to
a finer hypergraph in the hierarchy with the same solution quality. Thus, we require
that all sibling contractions are uncontracted in reverse order of contraction. Since we
perform contractions in parallel, we additionally require that contractions that happen
at the same time must be reverted in the same batch.

To detect time overlaps, we atomically increment a counter before starting and after
finishing a contraction operation. For each contracted node v, this yields an interval
[sv, ev] with start time sv and end time ev. If the intervals of two nodes overlap, we
assume they were contracted at the same time, otherwise one is strictly earlier than
the other. Among siblings, we need to compute the transitive closure of nodes with
overlapping intervals and order them decreasingly if one is strictly earlier than the
other. Since comparing for equality with interval overlaps is not transitive, we sort
them in decreasing order of ev. Then, the nodes in a transitive closure are ordered
consecutively and can be found with a rightward sweep from the first interval by
checking whether the next interval overlaps with the union of intervals in the closure
so far and extending the union interval if they overlap.

130

6.3 Parallel n-level Uncoarsening

6.3.2 Batch Construction Algorithm
After the coarsening phase, we need to construct batches of contracted nodes to
uncontract in parallel during the uncoarsening phase. We traverse F top-down in
breadth-first search (BFS) order, using two FIFO queues: Q for the current BFS layer
and Q′ for the next layer. Additionally, we have a batch Bcur that we are currently
adding contracted nodes to. If |Bcur| ≥ bmax or we get to the next BFS level, we
append Bcur to B, and proceed with a new empty batch. We additionally add a
sentinel batch B = ∅ to B whenever all contractions of a coarsening pass are proccesed.
This signalizes the uncontraction algorithm to restore single-pin and identical nets
(see Line 11 and 18 in Algorithm 6.1).

Q and Q′ store elements (u, vi), where u is a node and vi is the i-th child of u in
the sorted order described in Section 6.3.1 (sorted by finish time of the contraction
operation). For elements in Q, we maintain the invariant that u is uncontracted in a
batch before Bcur, so that its children can be added to Bcur. Furthermore, vi is the
first child of u that has not been added to any batch yet. To initialize Q, we insert all
entries (r, w1), where r is a root of F and w1 is the first child of r.

We pop elements from Q until it is empty, and then swap it with Q′. Now, let (u, vi)
be the current element we popped from Q, and let T denote the transitive closure
of vi, as described in the previous section. For each v ∈ T , we add v to Bcur, and
push (v, w1) to Q′, where w1 is the first child of v. Additionally, we push (u, vj) to
the end of Q, where vj is the first child of u outside T , if any. The reason for this
reinsertion is to minimize the number of contractions in the same batch which have
the same representative. This reduces synchronization overheads during uncontraction
operations and reduces the overlap of local searches. The complexity of this algorithm
is O(|V |).

We obtain parallelism by traversing the different trees of F concurrently. F has
as many trees as nodes left in the coarsest hypergraph, so at least around 160 · k.
To approximate a BFS order across trees, we perform one BFS per thread, which is
initialized with the different roots (and first children) assigned to the thread. The
threads collaborate on filling batches, and we keep multiple batches open, as threads
may progress at different rates. The parallelization is work-efficient in the theoretical
sense, as the work is still O(|V |). The span of the algorithm is linear in the maximum
tree size of F .

6.3.3 Refinement
We run our parallel label propagation and FM algorithm after uncontracting a batch
of nodes. Mt-KaHyPar-D(-F) initializes the local searches with the boundary nodes of
the partition. However, this would incur too much overhead with O(|V |) levels since
using all boundary nodes can lead to quadratic running times. Hence, the refinement
should be localized, i.e., focus on areas close to the uncontracted nodes. Instead of
considering all boundary nodes, we only use the boundary nodes from the current
batch. Note that the searches may expand to nodes not in the batch. We do not run

131

6 Parallel n-level Hypergraph Partitioning

our flow-based refinement algorithm here since it solves large flow problems around the
cut of two adjacent block pairs and therefore can not be used as a localized refinement
algorithm.

We complement the localized refinement with a refinement pass on the entire
hypergraph after restoring single-pin and identical nets. Here, we run our parallel FM
(initialized with all boundary nodes) and flow-based refinement algorithm. We do not
run the label propagation algorithm since it gave no quality benefits in preliminary
experiments. The global refinement step is performed on approximately a logarithmic
number of levels similar to the refinement in Mt-KaHyPar-D(-F).

6.3.4 Gain Table Maintenance
The FM algorithm moves nodes greedily according to a gain value. Our parallel
implementation uses a gain table to calculate the highest gain move for each node.
Recall that the gain gu(Vj) of moving a node u from its current block Π[u] to a target
block Vj can be formulated as follows (for the connectivity metric):

b(u) = ω({e ∈ I(u) | Φ(e,Π[u]) = 1})
p(u, Vj) = ω({e ∈ I(u) | Φ(e, Vj) ≥ 1})
gu(Vj) = b(u)− ω(I(u)) + p(u, Vj)

The gain table described in Section 4.1.2 stores the benefit term b(u) and penalty term
p(u, Vj) for each node u ∈ V and block Vj ∈ Π. We use delta-gain updates to maintain
both terms during an FM pass (see Algorithm 4.3). In the multilevel algorithm, the
gains are initialized from scratch on each level, which incurs too much overhead with
O(n) levels. Instead, we update the entries based on the uncontraction operations
described in Section 6.1.

Algorithm 6.4 shows the pseudocode of the gain table update operation after
reverting a contraction (u, v) for a net e ∈ I(v). The algorithm implements the
updateGainTable(u, v, e) procedure shown in Algorithm 6.3. The values b(v) and
p(v, Vj) of the uncontracted node v are initialized to zero. The corresponding values for
u are still correct from the previous levels. Updates of the benefit and penalty terms
of v are done exclusively by one thread, and updates to u can happen from multiple
threads, which is why we use atomic fetch-and-add instructions. Analogously to
the uncontraction operation, on each net e ∈ I(v), we distinguish two cases for the
gain updates due to uncontracting v: (i) whether v replaces u in e (see Line 2), or (ii)
whether u and v are both incident to e after the uncontraction (see Line 8).

If v replaces u, we subtract ω(e) from p(u, Vj) and add it to p(v, Vj) for all Vj ∈ Λ(e).
Additionally, if Φ(e,Π[u]) = 1, we subtract ω(e) from b(u) and add it to b(v). In this
case, Φ(e,Π[u]) does not change, since v is now a pin of e, but u no longer is.

In the second case, where u and v are both incident to e after the uncontraction, we
increase Φ(e,Π[u]) by one since v is assigned to Π[u] and now both u and v are pins
of e in Π[u]. If this increased the value to 2, we have to reduce b(u) by ω(e), since

132

6.4 Insights into n-Level Partitioning

Algorithm 6.4: Uncontraction Gain Table Update
Input: Contraction (u, v) and a net e where the uncontraction operation of (u, v)

is already applied to its pin-list.
// We call this function while holding a net-specific lock for e (see Algorithm 6.3)

1 Vi ← Π[u]
2 if u /∈ e and v ∈ e then // v replaces u in e
3 if Φ(e, Vi) = 1 then
4 fetch-and-add(b(u),−ω(e))
5 fetch-and-add(b(v), ω(e))

6 unlock(e) // see Algorithm 6.3
7 for Vj ∈ Λ(e) do fetch-and-add(p(u, Vj),−ω(e))
8 else //u and v are both incident to e now
9 Φ(e, Vi)← Φ(e, Vi) + 1

10 if Φ(e, Vi) = 2 then
//u may be already replaced in net e by another node w

11 w ← find pin (6= v) of net e part of block Vi

12 fetch-and-add(b(w),−ω(e))
13 unlock(e) // see Algorithm 6.3
14 for Vj ∈ Λ(e) do fetch-and-add(p(v, Vj), ω(e))

moving u out of Π[u] would no longer remove Π[u] from Λ(e). Additionally, we add
ω(e) to each p(v, Vj) for Vj ∈ Λ(e).

The connectivity set Λ(e) of a net e does not change during uncontractions, since
Φ(e, Vi) is only modified in the second case, where Φ(e, Vi) ≥ 1. Therefore, iteration
over Λ(e) is thread-safe. Modification and reads on Φ(e,Π[u]) are thread-safe because
they are protected by a net-specific lock. The parallel setting introduces one more
intricacy. In the second case, u might have been replaced in the active part of e by
some w 6= v due to a concurrent uncontraction (u,w). Therefore, we search for a pin
w in the active part of e with Π[w] = Π[u] and w 6= v, and then update b(w) instead
of b(u). If u was not replaced, we simply find w = u. Since we do this while holding
the lock for e, we can guarantee that if Φ(e,Π[u]) is incremented to 2, there are only
two nodes of Π[u] in the active part of e.

6.4 Insights into n-Level Partitioning
We provide two configurations of the n-level partitioning algorithm: Mt-KaHyPar-Q
(-Quality) and Mt-KaHyPar-Q-F (-Quality-Flows). Mt-KaHyPar-Q-F extends Mt-
KaHyPar-Q with flow-based refinement. Both partitioners aim for high solution quality.

We now evaluate the different algorithmic components of Mt-KaHyPar-Q(-F) in more
detail. Section 6.4.1 discusses the configuration of the algorithm. Most important will

133

6 Parallel n-level Hypergraph Partitioning

be the choice of the maximum batch size parameter bmax, as it interpolates between
scalability and the inherently sequential n-level scheme. We then analyze the scalability
and running times of the different components in Section 6.4.2 and 6.4.3. Section 6.4.4
concludes the experimental evaluation by comparing the traditional multilevel and
n-level partitioning scheme.

6.4.1 Algorithm Configuration
Mt-KaHyPar-D(-F) and Mt-KaHyPar-Q(-F) share large parts of our codebase, and
therefore both use similar parameter settings as depicted in Table 5.1 in Section 5.6.
The parameters for community detection, label propagation, flow-based refinement,
and initial partitioning (uses the n-level (un)coarsening scheme) were adopted without
modifications.

Mt-KaHyPar-Q(-F) implements a different coarsening algorithm but still uses the
heavy-edge rating function, the same contraction limit (160k nodes) and maximum
allowed node weight (c(V)

160·k). The refinement algorithms are reused but are used in a
different context as in Mt-KaHyPar-D. After uncontracting a batch of nodes, we run
a localized version of the label propagation and FM algorithm only initialized with
the boundary nodes of the current batch. Since significantly fewer boundary nodes
are available here, we set the number of seed nodes for the localized FM searches to 5
instead of 25 (all other parameters are the same as in Mt-KaHyPar-D). To improve
scalability, we uncontract multiple batches until the number of restored boundary
nodes exceeds a threshold β = max(bmax, 50 · t), where t is the number of threads, and
only then perform localized refinement. For initial partitioning, we set β = 0 since the
nested parallelism available from recursive bipartitioning suffices.

We use a global refinement pass performed on the entire hypergraph after reverting
all contractions from a coarsening pass (using the FM algorithm and flow-based
refinement). Since Mt-KaHyPar-Q aims for high solution quality, we run the localized
and global refinement step multiple times on each level until the relative improvement
made in a pass is less than 0.25%.

Maximum Batch Size. In Figure 6.3, we compare the impact of different batch
size values bmax ∈ {1, 100, 200, 1000, 10000} on the solution quality and running time
on our parameter tuning benchmark set LP on machine A. For this experiment, the
minimum number of boundary nodes β is set to 0, so that localized refinement is
performed after each batch, and thus scalability depends only on bmax. Each run uses
20 threads.

We see that the different values yield roughly the same performance. Increasing
the batch size from bmax = 100 to bmax = 200 slightly decreases the solution quality.
However, the differences are not statiscally significant (Wilcoxon signed rank test:
Z = −1.2267 and p = 0.2199). The fastest configuration is bmax = 1000 (geometric
mean running time 14.81s), which is 1.64 times faster than bmax = 100 (24.34s)
and 11.42 times faster than bmax = 1 (169.16s) on average. We therefore choose
bmax = 1000.

134

6.4 Insights into n-Level Partitioning

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

27

2−1

1

21

22

23

24

25

26

R
el

.
sl

ow
do

w
n

to
b m

a
x
=

10
00

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
0 25 50 75 100 125 140

Instances

bmax = 1 bmax = 100 bmax = 200 bmax = 1000 bmax = 10000

Figure 6.3: Performance profiles and running times comparing Mt-KaHyPar-Q
with different batch size values bmax.

6.4.2 Scalability
In Figure 6.4 and Table 6.1, we show self-relative speedups for several algorithmic
components of Mt-KaHyPar-Q with varying number of threads t ∈ {4, 16, 64}. We run
the scalability experiments for Mt-KaHyPar-Q on a subset of set LHG (77 out of 94
hypergraphs) that contains all hypergraphs on which Mt-KaHyPar-Q 64 was able to
finish in under 800 seconds for all k ∈ {2, 8, 16, 64}. This experimental evaluation is
based on the data from the corresponding publications of Mt-KaHyPar-Q [Got+22a].
We did not rerun these experiments since it took roughly six weeks on machine B. We
omit scalability experiments with Mt-KaHyPar-Q-F due to the long time requirements
and because flow-based refinement is used in the same context in Mt-KaHyPar-D-F
(see Section 5.7.3).

The overall geometric mean speedup of Mt-KaHyPar-Q is 3.7 for t = 4, 11.9 for
t = 16 and 23.7 for t = 64. If we only consider instances with a single-threaded
running time ≥ 100s, we achieve a geometric mean speed up of 25.9 for t = 64.

Coarsening and batch uncontractions both have similar speedups (i.e., both 11.2 for

135

6 Parallel n-level Hypergraph Partitioning

0
1
2
4

8

16

32

64

256

0
1
2
4

8

16

32

64

512

0
1
2

4

8

16

32

64

0
1
2
4

8

16

32

64

256

0
1
2
4

8

16

32

64

256

0
1
2
4

8

16

32

64

128

Mt-KaHyPar-Q Coarsening

Initial Partitioning Batch Uncontractions

Localized Label Propagation Localized FM

101 102 103 104 101 102 103 104

100 101 102 103 101 102 103 104

100 101 102 103 100 101 102 103 104

Single-Threaded Running Time of Component [s]

Sp
ee

du
p

4 16 64

Figure 6.4: Speedups of Mt-KaHyPar-Q and its different algorithmic components.

t = 16), whereas coarsening performs better for t = 64 (25.4 vs 23.2). Both localized
refinement algorithms yield reliable speedups for an increasing number of threads (both
≥ 20 for t = 64 and instances with sequential time ≥ 100s). Initial partitioning shows
the least promising speedups of all components, but is substantially faster, running
in less than 100 seconds on 92.2% of the instances for t = 1. On some instances we
obtain super-linear speedups (up to 412), which are caused by (un)coarsening in which
non-deterministic behavior causes varying running times.

Figure 6.5 shows that increasing the number of threads adversely affects the solution
quality of Mt-KaHyPar-Q, but only by a very small amount. In a master thesis [Lau21a],
which we supervised, we implemented an asynchronous uncoarsening scheme in which

136

6.4 Insights into n-Level Partitioning

Table 6.1: Geometric mean speedups over all instances and instances with a single
threaded running time ≥ 100s for total partition time (T), coarsening (C), initial
partitioning (IP), batch uncontractions (BU), localized label propagation (LP)
and FM. The last row shows the percentage of instances with a single-threaded
running time ≥ 100 seconds.

Number of Threads T C IP BU LP FM

All
4 3.7 3.3 3.7 3.9 3.9 4

16 11.9 11.2 10.1 11.2 8.1 11.2
64 23.7 25.4 11.6 23.2 15.9 19

≥ 100s
4 3.7 3.4 3.8 3.9 4.1 4

16 12.5 13 11.2 12.1 10.8 12
64 25.9 36.4 18.2 25.6 26.5 21.8

Inst. ≥ 100s [%] 71.8 31.5 7.8 34.4 18.5 39

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

1 4 16 64

Figure 6.5: Performance profiles comparing the solution quality of Mt-KaHyPar-Q
with an increasing number of threads on set LHG.

uncontractions and localized refinement happen concurrently (no batches required).
Here, the differences in solution quality were even more pronounced with an increasing
number of threads. We observed that the uncontraction gain table updates increased
interference with the localized searches. Diversifying the search by trying to keep the
neighborhoods of concurrently uncontracted nodes disjoint has significantly improved
the solution quality. We assume that such an approach may also work well for Mt-
KaHyPar-Q by assembling uncontractions of independent regions of the hypergraph in
a batch.

137

6 Parallel n-level Hypergraph Partitioning

0
10
20
30
40
50
60
70
80
90

100

Sh
ar

e
on

T
ot

al
R

un
ni

ng
T

im
e

[%
]

0
10
20
30
40
50
60
70
80
90

100

Fr
ac

ti
on

of
In

st
an

ce
s

[%
]

0 50 100 150 200 250 300 350370

Instances
5 10 20 30 40 50 75 100

Share on Total Running Time [%]

Community Detection
Coarsening
Initial Partitioning

Batch Uncontractions
Localized Label Propagation
Localized FM

Global FM
Other

Figure 6.6: Running time shares of different components on the total execution
time of Mt-KaHyPar-Q.

6.4.3 Running Times of Components
We now analyze the running times of the different algorithmic components of Mt-
KaHyPar-Q on set LHG in more detail (using 64 threads). Figure 6.6 shows two different
types of plots illustrating the share of each component on the total partitioning time.
The first plot (left) uses a bar plot to visualize the running times of each component for
each instance. In these plots, we take the execution time of the most time-consuming
component and sort the instances according to it. The second plot (right) is similar
to the performance profiles. It shows the percentage of instances (y-axis) for which
the share of a component on the total partitioning time is ≥ x%.

As we can see, the coarsening phase (share on the total partitioning time is 16% in the
median), the batch uncontraction operations (17.3%), and the localized FM algorithm
(22.1%) are the most time-consuming components of Mt-KaHyPar-Q. Outliers in the
running time can be explained when we analyze specific instance classes in more
detail. The largest share on total execution time for Dual instances is attributed
to localized FM (28.4%) where large hyperedges slow down the algorithm (explained
in Section 5.7.4). The running time of batch uncontractions is most pronounced on
Primal and Literal instances (38.1%). The share of coarsening is surprisingly low
on these instances (16.2%), even though the computational complexity of contractions
and uncontractions is the same. However, batch uncontractions additionally require
updating the gain table, and Primal and Literal instances have many small nets
that trigger uncontraction gain table updates more often.

The share of the community detection (3.1%) and global FM algorithm (8.2%),
which made up a large fraction of the total partitioning time in Mt-KaHyPar-D, is less
pronounced in Mt-KaHyPar-Q. The running time of initial partitioning (3.7%) and
localized label propagation (6.7%) is negligible on most of the instances.

138

6.4 Insights into n-Level Partitioning

24

2−1

1

21

22

23

0 50 100 150 200 250 300 350 400 450 488
Instances

R
el

.
sl

ow
do

w
n

to
K

aH
yP

ar

Concurrent Data Structure Optimized Sequential Implementation

Figure 6.7: The plot shows the slowdowns of our concurrent hypergraph data
structure relative to KaHyPar’s hypergraph data structure when we apply a
sequence of contractions sequentially on them for all instances of benchmark set
MHG.

Overhead of the Concurrent Hypergraph Data Structure. We presented a
dynamic hypergraph data structure with low memory overheads that can perform
concurrent (un)contractions. It uses doubly-linked lists to link the incident nets of two
contracted nodes instead of copying them. This requires no additional memory but
may add some overheads since the incident nets of a node are no longer stored in a
consecutive memory region. We therefore study the overhead of the data structure by
comparing it to the hypergraph data structure used in KaHyPar [Sch+16a; Akh+17a]
(explained in Section 3.3.2).

In this experiment, we use our n-level coarsening algorithm to derive a schedule of
contractions, which we then apply to our new and KaHyPar’s data structure sequentially.
In addition to our proposed concurrent hypergraph data structure, we also evaluate an
optimized sequential implementation that is lock-free and does not use the contraction
forest. We run the experiment on benchmark set MHG and perform three repetitions
per hypergraph. We measure the time required to perform all contractions on the
corresponding data structure and use the arithmetic mean over all repetitions as the
total time.

Figure 6.7 shows the slowdowns of applying all contractions to our new hypergraph
data structure relative to KaHyPar’s hypergraph data structure. As we can see,
the slowdown of our concurrent data structure is between 0.74 and 3.09 for 95%

139

6 Parallel n-level Hypergraph Partitioning

of the instances. There are only two instances with a slowdown ≥ 4. On average,
KaHyPar’s data structure is faster by a factor of 1.74. The contraction forest and
locking mechanisms slow down our hypergraph data structure by a factor of 1.21 on
average (compared to the optimized sequential implementation).

Initially, we started with a concurrent implementation of KaHyPar’s data structure
but were not able to partition some of our largest hypergraphs since we ran out of
memory on a machine with 1TB RAM. After replacing it with our low memory data
structure, we observed a slowdown of the overall partitioning algorithm by 5% on
average. However, we are unable to repeat the experiment since we made changes
incompatible with the previous implementation. Moreover, we achieve near-optimal
speedups with a moderate number of threads (see Figure 6.4) that outweigh its
sequential overheads.

6.4.4 Comparison to Multilevel Partitioning
Our multilevel and n-level partitioning algorithms differ in how contractions and
uncontractions are performed. Most of the algorithmic components are shared between
both with only minor adjustments. This allows us to compare both partitioning
schemes directly and answer whether or not more levels lead to better partitioning
quality in practice.

Solution Quality and Running Times. Figure 6.8 – 6.10 compare the solution
quality and running times of Mt-KaHyPar-D(-F) and Mt-KaHyPar-Q(-F) on set MHG and
set LHG.

On set MHG, Mt-KaHyPar-Q computes partitions with better connectivity than Mt-
KaHyPar-D on 87.5% of the instances (median improvement is 1.9%) while it is slower by
a factor of 3.37 on average (geometric mean running time 2.99s vs 0.89s). However, the
differences become less pronounced when both partitioners use flow-based refinement.
The median improvement of Mt-KaHyPar-Q-F over Mt-KaHyPar-D-F is 0.6%, while
it is slower by a factor of 1.86 on average (geometric mean running time 5.08s vs
2.73s). We note that Mt-KaHyPar-D-F (2.73s) is faster than Mt-KaHyPar-Q (2.99s)
and computes better partitions on 87.3% of the instances (median improvement is
2%). However, as we will see in Chapter 8, Mt-KaHyPar-Q(-F) produces comparable
partitions to the sequential n-level partitioner KaHyPar [HS17a; Got+20] (uses similar
algorithmic components), while being an order of magnitude faster with ten threads.

If we compare the solution quality of the partitioners on set LHG, we see that the
results are similar to those on set MHG. However, the differences in the running times
are more pronounced on set LHG. Here, Mt-KaHyPar-Q is slower than Mt-KaHyPar-D
by a factor of 6.48 on average (geometric mean running time 30.1s vs 4.64s). Mt-
KaHyPar-D-F (30.44s) has a comparable running time to Mt-KaHyPar-Q (30.1s) and is
faster than Mt-KaHyPar-Q-F (58.5s).

Effectiveness Tests. The experimental results suggest that traditional multilevel
partitioners can achieve the same solution quality as n-level partitioners when flow-
based refinement is used. However, our n-level partitioner Mt-KaHyPar-Q produces

140

6.4 Insights into n-Level Partitioning

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

Mt-KaHyPar-Q 10 Mt-KaHyPar-D 10

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

Mt-KaHyPar-Q-F 10 Mt-KaHyPar-D-F 10

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

Mt-KaHyPar-D-F 10 Mt-KaHyPar-Q 10

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

Mt-KaHyPar-Q-F 10 Mt-KaHyPar-Q 10

Figure 6.8: Performance profiles comparing Mt-KaHyPar-D(-F) and Mt-KaHyPar-
Q(-F) on set MHG.

partitions with better solution quality than our multilevel partitioner Mt-KaHyPar-D
without flow-based refinement. Since Mt-KaHyPar-D is faster than Mt-KaHyPar-Q, we
now compare both using the effectiveness tests presented in Section 2.4.3. Here, we
give the faster algorithm more time to perform additional repetitions until its expected
running time equals the running time of the slower algorithm.

Figure 6.11 shows the effectiveness tests on virtual instances comparing both par-
titioners with (right) and without flow-based refinement (left) on set MHG. We see
that the difference in solution quality between Mt-KaHyPar-D and Mt-KaHyPar-Q is
only marginal. Hence, if multiple restarts are used, our multilevel achieves the same
solution quality as our n-level partitioner.

The Future of n-Level Partitioning. These negative results are disappointing but
are still an important scientific result. The complexity of today’s partitioning systems
makes it difficult to compare different techniques due to the “lack of documented key
implementation details in the literature” [CKM00a]. The n-level partitioning scheme
is used in the highest-quality sequential partitioner KaHyPar [Sch20] and requires high
engineering efforts to implement efficiently. Our experimental results show that the

141

6 Parallel n-level Hypergraph Partitioning

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2 101 102 U
Quality Relative to Best [τ]

Mt-KaHyPar-Q 64 Mt-KaHyPar-D 64

1 1.05 1.1 1.5 2 101 102 U
Quality Relative to Best [τ]

Mt-KaHyPar-Q-F 64 Mt-KaHyPar-D-F 64

1 1.05 1.1 1.5 2 101 102 U
Quality Relative to Best [τ]

Mt-KaHyPar-D-F 64 Mt-KaHyPar-Q 64

1 1.05 1.1 1.5 2 101 102 U
Quality Relative to Best [τ]

Mt-KaHyPar-Q-F 64 Mt-KaHyPar-Q 64

Figure 6.9: Performance profiles comparing Mt-KaHyPar-D(-F) and Mt-KaHyPar-
Q(-F) on set LHG.

27

2−2

2−1

1

21
22
23
24
25
26

R
el

.
sl

ow
do

w
n

to
M

t-
K

aH
yP

ar
-D

10

28

1

21
22
23
24
25
26
27

U

R
el

.
sl

ow
do

w
n

to
M

t-
K

aH
yP

ar
-D

64

0 1000 2000 3000 3416
Instances

Mt-KaHyPar-Q 10
Mt-KaHyPar-D-F 10

Mt-KaHyPar-Q-F 10

0 100 200 300 376
Instances

Mt-KaHyPar-Q 64
Mt-KaHyPar-D-F 64

Mt-KaHyPar-Q-F 64

Figure 6.10: Running times of Mt-KaHyPar-D-F and Mt-KaHyPar-Q(-F) relative
to Mt-KaHyPar-D on set MHG (left) and set LHG (right).

142

6.4 Insights into n-Level Partitioning

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

Mt-KaHyPar-D 10 Mt-KaHyPar-Q 10

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

Mt-KaHyPar-D-F 10 Mt-KaHyPar-Q-F 10

Figure 6.11: Effectiveness tests comparing Mt-KaHyPar-D(-F) and Mt-KaHyPar-
Q(-F)) on set MHG.

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

21

2−4

2−3

2−2

2−1

1

R
el

.
sl

ow
do

w
n

to
M

t-
K

aH
yP

ar
-Q

20

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
0 25 50 75 100 125 140

Instances

Mt-KaHyPar-Q 20 Contract Always Low on High Degree Node 20

Figure 6.12: Performance profiles and running times comparing Mt-KaHyPar-
Q to an optimization that always chooses the node with larger degree as the
representative of a contraction in the coarsening phase.

technique is not essential to achieve high solution quality and may lead to simpler
systems in the future.

Nevertheless, we still want to point out some future challenges that we could not
entirely address within the scope of this work. One way to improve the effectiveness
of the n-level partitioner is to implement faster (un)contraction operations since they
account for a large fraction of total partitioning time. The coarsening algorithm
iterates over the nodes in parallel, and whenever we visit a node u, we search for a
contraction partner v and subsequently contract v onto u. The complexity of the
contraction depends on the number of incident nets of the contraction partner v. Thus,
a simple optimization is to contract u onto v if d(u) < d(v), and vice versa otherwise.

Figure 6.12 compares Mt-KaHyPar-Q to a version implementing the optimization

143

6 Parallel n-level Hypergraph Partitioning

mentioned above on our parameter tuning benchmark set LP. The optimized imple-
mentation is 60% faster than Mt-KaHyPar-Q, but we also see that the solution quality
deteriorates significantly. From a theoretical perspective, the resulting hypergraph
should be the same regardless of whether we contract v onto u or u onto v. This
behavior was also independently discovered by the authors of KaHyPar (not published).
Understanding this observation may lead to a faster implementation or an approach
that achieves even better solution quality.

Furthermore, we do not use flow-based refinement on each level of the n-level
hierarchy. It might be interesting to implement a localized version of the flow-based
refinement algorithm that only solves small flow problems around the uncontracted
nodes of each batch.

144

7Chapter 7

From Hypergraphs to Graphs

A hypergraph partitioner can also be used to partition graphs. We are aware of
two publications [AB12; Sch20] comparing hypergraph (HGP) and graph partitioning
(GP) algorithms. Both conclude that both types of systems perform equally well on
graph instances. However, Auer and Bisseling [AB12] report that Mondriaan (HGP) is
an order of magnitude slower than Metis and Scotch (GP). This is not surprising since
HGP and GP systems often use similar techniques, but HGP is considered “inherently
more complicated” [Kay+12] and thus more complex “in terms of implementation and
running time” [Bul+16].

These claims seem to be widely accepted, but what makes HGP so much more
complicated than GP? The description of partitioning algorithms is often generic.
For example, label propagation refinement iterates over the nodes in some order, and
whenever we visit a node, we move it to the block maximizing its move gain. The
high-level structure of the algorithm reveals no difference between HGP and GP but
becomes noticeable when we take a closer look at how the gain function is evaluated.

For the cut-net metric of a given bipartition, a graph partitioner computes the move
gain of a node u by calculating the weight of the edges connecting u to the target
block minus the weight of the edges connecting it to its current block. To decide
whether or not a hyperedge e ∈ I(u) can be removed from the cut, we have to know if
u is the last remaining pin of e in block Π[u]. Thus, we either have to scan the entire
pin-list of e or store and maintain the pin count values explicitly. This makes the gain
computation for hypergraphs much more complex than for graphs.

Furthermore, many algorithms iterate over the neighbors Γ(u) of a node u, e.g., to
aggregate ratings in the coarsening phase. For hypergraphs, this requires scanning
the pin-lists of all incident nets of u. The incident nets and pin-lists are often stored
in two separate adjacency arrays [CA99; Sch+16a], which introduces an additional
indirection and random access to enumerate the neighbors of a node. Graph data
structures maintain neighbors in a contiguous memory region, making access to them
more cache-friendly (since only one adjacency array is required).

We have seen that the generic description of partitioning techniques often do not
reveal any differences between GP and HGP. However, the concrete implementation
of these algorithms mainly differ in the design of the partition (gain computation)
and (hyper)graph data structure (representation of neighbors), which is “inherently
more complicated” [Kay+12] for hypergraphs. In this chapter, we want to transform
Mt-KaHyPar into a graph partitioner by implementing simplified data structures that
take advantage of graph properties. From a software engineering perspective, we design

145

7 From Hypergraphs to Graphs

a graph data structure implementing the interface of our hypergraph data structure
such that it can be used as a drop-in replacement in all our partitioning algorithms.
From a research perspective, we study the performance overhead of a hypergraph data
structure for graph partitioning.

Outline. We start this chapter with the partition data structure in Section 7.1,
which covers a simplified gain table and a different algorithm to compute attributed
gain values for graphs. Section 7.2 introduces the graph data structure for multilevel
partitioning and discusses several peculiarities of using the new graph and partition
data structure in our multilevel algorithm. In Section 7.3, we present a dynamic graph
data structure for n-level partitioning. Section 7.4 then concludes this chapter by
comparing the running times of the different components of our multilevel and n-level
partitioning algorithm with and without the new partition and graph data structure.

Contributors. This chapter is based on unpublished work written exclusively for
this dissertation. The idea of adapting the partition and hypergraph data structure
for graph partitioning came from the author of this dissertation. The implementation
was done by Nikolai Maas, who worked as a student research assistant in our group at
the time.

7.1 Partition Data Structure
For hypergraphs, our partition data structure stores the partition assignments Π, the
block weights c(Vi), the pin count values Φ(e, Vi), and connectivity sets Λ(e) for each
net e ∈ E and block Vi ∈ Π. Since a graph edge connects only two nodes, we can
remove the pin count values and connectivity sets as we can calculate them on-the-fly.
The move node operation is shown in Algorithm 7.1. It uses a simplified gain table
and a different approach to compute attributed gains (compare with Algorithm 4.1 in
Section 4.1.1).

7.1.1 The Gain Table
For graphs, the connectivity metric reverts to the cut metric since the connectivity
λ(e) of a graph edge e is either one (internal edge) or two (cut edge). If we move a
node u to another block Vj , we remove all incident edges {u, v} ∈ I(u) with Π[v] = Vj

from the cut. Conversely, edges {u, v} ∈ I(u) with Π[v] = Π[u] become cut edges.
Hence, we can calculate the gain of moving a node u to another block Vj as

gu(Vj) := ω(u, Vj)− ω(u,Π[u]).

Here, ω(u, Vi) denotes the weight of all edges connecting u with block Vi. Thus, the
gain table for graphs stores and maintains the ω(u, Vi) values for each node u ∈ V
and block Vi ∈ Π. After moving a node u, we update the gain table by adding ω(u, v)
to ω(v, Vj) and −ω(u, v) to ω(v, Vi) for each v ∈ Γ(u) using atomic fetch-and-add
instructions (see Line 10 and 11 in Algorithm 7.1). Each node move updates exactly

146

7.1 Partition Data Structure

Algorithm 7.1: Moving a node u from block Vi to Vj

Input: Node u ∈ Vi and a target block Vj

Output: If u was moved to Vj , then the function returns an attributed gain value
∆λ−1. Otherwise, it returns ⊥.

1 B ← [⊥, . . . ,⊥] // Array of size m
2 cj ← fetch-and-add(c(Vj), c(u))
3 if cj + c(u) ≤ Lmax then // Check if partition is still balanced
4 fetch-and-sub(c(Vi), c(u)),∆λ−1 ← 0
5 for e = {u, v} ∈ I(u) do

// Compute Attributed Gain
6 Vl ← Π[v]
7 if not compare-and-swap(B[e],⊥, Vj) then Vl ← B[e]
8 if Vj = Vl then ∆λ−1 ← ∆λ−1 + ω(u, v) // e becomes an internal edge
9 if Vi = Vl then ∆λ−1 ← ∆λ−1 − ω(u, v) // e becomes a cut edge

// Update Gain Table
10 fetch-and-add(ω(v, Vi),−ω(u, v))
11 fetch-and-add(ω(v, Vj), ω(u, v))

12 Π[u]← Vj

13 return ∆λ−1

14 else
15 fetch-and-sub(c(Vj), c(u)) // revert block weight update of Vj

16 return ⊥

2|Γ(u)| gain table entries. Hence, the computational complexity of the gain table
updates when each node is moved at most once is

∑
u∈V 2|Γ(u)| = O(m).

7.1.2 Attributed Gains
We use attributed gains to track the overall improvement and double-check the gain of
a node move. For hypergraphs, we compute this value based on synchronized writes to
the pin count values. For a node move from block Vi to Vj , we attribute a connectivity
reduction by ω(e) to the move that reduces Φ(e, Vi) to zero and an increase by ω(e) for
increasing Φ(e, Vj) to one. Since we removed the pin count values from the partition
data structure, we need another synchronization mechanism to calculate attributed
gains for graphs.

If we move a node u, we need to know whether or not it changes the state of an
edge {u, v} ∈ I(u) (making it an internal or cut edge), and subsequently attribute a
reduction or an increase by ω(u, v). In the parallel setting, another thread may move
an adjacent node v ∈ Γ(u) at the same time, making it difficult to decide which move
removes or adds an edge to the cut. The following algorithm assumes that each node
is moved at most once, as is in our parallel refinement algorithms. The idea is that we

147

7 From Hypergraphs to Graphs

(0, 1)
v0

(0, 4)

(0, 2)

(1, 0)
v1

(1, 3)

(2, 0)
v2 v3

(3, 1)

(3, 4)

v4

(4, 0)

(4, 3)

(4, 5)

(4, 6)

v5

(5, 4)

(5, 6)

v6

(6, 4)

(6, 5)

v1

v0

v2 v6

v4

v3

v5

Figure 7.1: The graph data structure used in our multilevel graph partitioner.

use an array B of size m (initialized with ⊥) to synchronize the node moves for each
edge (instead of the pin count values). If a thread moves a node u to block Vj , we set
the B[e] entries to Vj for all edges e ∈ I(u) using compare-and-swap instructions. If
the operation succeeds for an edge e = {u, v}, no other thread has moved node v yet.
In this case, we compare Vj and Π[v] to compute the attributed gain value for edge
e. If B[e] 6=⊥, another thread has already moved or is simultaneously moving node v
to another block. In both cases, B[e] is the new block of v, and we can compute the
attributed gain value by comparing Vj and B[e].

The label propagation and FM algorithm are organized in rounds, where each node
is moved at most once. Here, we reset array B after each round. The flow-based
refinement routine resets B after applying a move sequence to the global partition.

7.2 Multilevel Graph Partitioning
Our multilevel algorithm contracts a node clustering on each level and runs parallel
refinement algorithms to improve the solution quality of a partition in the uncoarsening
phase. The coarsening algorithm builds on our (hyper)graph data structure, and the
refinement algorithms use the partition data structure discussed in the previous section.
This section presents our graph data structure with a simplified parallel contraction
algorithm and discusses peculiarities of using our coarsening and refinement algorithms
for graph partitioning.

7.2.1 The Graph Data Structure
We use one adjacency array to represent an undirected graph as illustrated in Figure 7.1.
The adjacency list of each node u stores the directed edges (u, v) ∈ I(u). We note
that we could reduce the memory overhead of the data structure by storing only the
neighbors v ∈ Γ(u) instead of the ordered pair (u, v) ∈ I(u) for each node u ∈ V .
However, our graph data structure implements the interface of our hypergraph data
structure such that we do not have to adapt our partitioning algorithms. These
algorithms often iterate over the incident edges of a node and then request the pin-list
of an edge using its edge ID (position in the adjacency array). If we only store the
neighbors in the adjacency lists, we would not be able to efficiently determine the two

148

7.2 Multilevel Graph Partitioning

nodes connected by an edge. Thus, our data structure requires twice as much memory
as traditional graph data structures.

We now outline the parallel contraction operation used to contract a node clustering
on each level. Recall that the coarsening algorithm stores the clustering in an array
rep where rep[u] = v stores the representative of u’s cluster. For each representative v,
we maintain the invariant that rep[v] = v.

Contraction. We first remap cluster IDs to a consecutive range by computing
a parallel prefix sum on an array of size n that has a one at position v if v is a
representative of a cluster and zero otherwise. Then, we accumulate the weights and
degrees of nodes in each cluster using atomic fetch-and-add instructions. Afterwards,
we copy the incident edges of each cluster to a consecutive range in a temporary
adjacency array by computing a parallel prefix sum over the cluster degrees.

We then iterate over the adjacency lists of each cluster in parallel, sort it, and remove
selfloops and identical edges except for one representative at which we aggregate their
weight. Finally, we construct the adjacency array of the coarse graph by computing a
parallel prefix sum over the remaining cluster degrees.

7.2.2 Peculiarities for Graph Partitioning
This section discusses implementation details and interesting properties of using the
multilevel partitioning algorithm with the new partition and graph data structure.

Community Detection. In preliminary experiments, we found that community
detection significantly improves partitioning for complex networks (highly-skewed node
degree distributions) but degrades the solution quality for mesh-like networks (uniform
node degree distributions). We therefore classify a graph based on the average µ
and standard deviation σ of its node degrees. If σ ≤ µ

2 , we assume that the graph
represents a mesh network and deactivate the community detection preprocessing
step. We note that better classification algorithms exist, but the implemented scheme
suffices for our purpose. Moreover, we omit the transformation into the bipartite
graph representation and run the community detection algorithm directly on the graph
representation.

Coarsening. The coarsening algorithm presented in Section 5.2 contracts a node
clustering on each level. To do so, it iterates in random order over the nodes, and
whenever we visit an unclustered node u, we add it to the cluster C maximizing the
heavy-edge rating function r(u,C) =

∑
I(u)∩I(C)

ω(e)
|e|−1 [CA99; Kar+99; HS17a]. For

graphs, the function reverts to r(u,C) := ω(u,C). Thus, a node u joins the cluster
C to which it has the strongest connection. This corresponds to the rating function
used in clustering algorithms based on label propagation [MSS14; ASS17; MSS17;
Got+21e].

Refinement. We use all refinement algorithms without modifications in our multi-
level graph partitioner. We note that flow-based refinement requires further engineering
efforts to handle large graphs efficiently. The flow network construction algorithm

149

7 From Hypergraphs to Graphs

transforms a graph into a hypergraph, while the FlowCutter algorithm runs a parallel
maximum flow algorithm implicitly on the Lawler expansion [Law73]. This causes
much more overhead than necessary, as an optimized version would run the FlowCutter
algorithm directly on the graph representation. Since the development of the graph
partitioning algorithm was done at the same time as the write-up of this thesis, we
were not able to address this performance issue. However, we will implement an
optimized version in a future release of Mt-KaHyPar.

The FM algorithm applies moves to a thread-local partition. The moves are
immediately performed on the global partition, once their individual gains suggest
an improvement. The thread-local partitions store changes relative to the global
partition. For example, we can calculate the local weight of a block Vi by computing
c(Vi) +∆c(Vi), where c(Vi) is the weight of block Vi stored in the global partition and
∆c(Vi) is the weight of all nodes that locally moved to minus the weight of all nodes
that moved out of block Vi. The gain table is maintained analogously.

For hypergraphs, applying a move sequence to the global partition can invalidate
gain table entries stored in the thread-local partitions of other searches. A gain table
update is only triggered when specific pin count values are observed, and applying
moves to the global partition does not consider moves performed locally. For graphs,
the gain table stores the ω(u, Vi) values for each node u ∈ V and block Vi ∈ Π. Moving
a node u from block Vi to Vj requires updating the ω(v, Vi) and ω(v, Vj) values of all
its neighbors v ∈ Γ(u). The correctness of the gain table update does not depend on
any moves performed locally by other threads, and therefore the gain table entries
stored in the thread-local partitions are still correct.

7.3 n-Level Graph Partitioning

Instead of contracting a node clustering, the n-level algorithm contracts only a single
node on each level. In the uncoarsening phase, we assemble independent contractions
in a batch and uncontract them in parallel. We use the contraction forest to derive
a parallel schedule of contractions and to construct the batches. The concept of
the contraction forest is universally applicable to graph and hypergraph partitioning.
Thus, we only have to redesign the dynamic hypergraph data structure, which we will
describe in the following in more detail.

7.3.1 Contraction and Uncontraction Operation
We use an adjacency array to store an undirected graph. The graph is represented as
a directed graph, meaning that each undirected edge e = {u, v} induces two directed
edges (u, v) and (v, u) in the data structure. For an edge (u, v), we call (v, u) its
corresponding backward edge. The ID of an edge is its position in the adjacency array.
For each edge (u, v), we store the ID of its corresponding backward edge (v, u) and
its weight ω(u, v). The unique ID of an undirected edge {u, v} is the smaller ID of

150

7.3 n-Level Graph Partitioning

the two directed edges (u, v) and (v, u). Figure 7.2 illustrates the dynamic graph data
structure with multiple (un)contraction operations performed on it.

Contraction. Contracting a node v onto another node u entails replacing v with u
in each edge (v, w) ∈ I(v) (and also in the corresponding backward edge) and copying
the modified adjacency list I(v) to I(u). For each node u, we store its adjacency list in
an array Iu (initialized with the adjacency list I(u) of the input graph), and all nodes
contracted onto u in a doubly-linked list Lu. Once we have performed the contraction
operation for each edge e ∈ I(v), we lock u and append Lv to Lu. We can then obtain
the adjacency list I(u) of a node u by iterating over all Iw arrays for w ∈ Lu.

A contraction can transform an edge into a selfloop (see Figure 7.2 a) – b) and node
v0). A selfloop can be removed from the graph since it does not contribute to the cut
metric. However, we do not remove them immediately due to reasons explained in the
next section. Instead, we disable selfloops contained in the adjacency list of a node v
when we contract v onto another node (see Figure 7.2 d)). We ignore disabled edges
in further contractions. If we would consider them, we have to transfer selfloops to
the representative of subsequent contractions (contracting v onto u requires to change
(v, v) to (u, u)). Consequently, the uncontraction operation must distinguish between
uncontractions transferring selfloops and transforming them to regular edges again. If
we disable selfloops when we contract a node, selfloops are not transferred, and thus
the uncontraction operation can perform the reverse contraction operation.

The contraction operation is thread-safe since our coarsening algorithm ensures that
all contractions onto v are finished before we contract v onto u. Therefore, Lv is not
modified by another thread. Furthermore, a contraction replaces v with u in all edges
e ∈ I(v) and also in the corresponding backward edges. There may be two threads
processing the same edge, but only one thread replaces v at a time.

Uncontraction. Uncontracting v from u requires restoring Lv from Lu. To do this,
we additionally store the last node of Lv at the time v is contracted. Since multiple
nodes can have the same representative in a batch, we lock u before restoring Lv.
Furthermore, we enable all selfloops of v again. Afterwards, we iterate over each edge
e ∈ I(v) and replace u with v (also in the corresponding backward edge).

Our graph data structure uses significantly less locking than our hypergraph data
structure. We only use a lock when we append Lv to Lu (and restore Lv from Lu),
while our hypergraph data structure locks hyperedges to edit the pin-lists and to
update the gain table.

Uncontraction Gain Table Update. Recall that the gain table stores the ω(u, Vi)
values for each node u ∈ V and block Vi ∈ Π. An uncontraction (u, v) assigns v to
the block of u. Recomputing the gain table entries each time from scratch after each
uncontraction incurs too much overhead with O(n) levels, which is why we update
the ω(u, Vi) values based on the uncontraction of v. The gain table update operation
distinguishes between two cases for each edge e ∈ I(v): (i) the uncontraction transforms
a selfloop into regular edge (e.g., (u, u) to (u, v)) or (ii) the uncontraction replaces
u with v in a regular edge (e.g., (u,w) to (v, w)). Note that the weight of a selfloop

151

7 From Hypergraphs to Graphs

(0, 1)

v0

(0, 4)

(0, 2)

(1, 0)

v1

(1, 3)

(2, 0)

v2 v3

(3, 1)

(3, 4)

v4

(4, 0)

(4, 3)

(4, 5)

(4, 6)

v5

(5, 4)

(5, 6)

v6

(6, 4)

(6, 5)

v1

v0

v2 v6

v4

v3
a)

v5

Contract
v1 onto v0

(0,0)

v0

(0, 4)

(0, 2)

(0, 0)

v1

(0, 3)

(2, 0)

v2 v3

(3,0)

(3, 4)

v4

(4, 0)

(4, 3)

(4, 5)

(4, 6)

v5

(5, 4)

(5, 6)

v6

(6, 4)

(6, 5)

b)

v0

v2 v6

v4

v3

v5

Lu

Lu

Iv6

Contract
v3 onto v4

(0, 0)

v0

(0, 4)

(0, 2)

(0, 0)

v1

(0,4)

(2, 0)

v2 v3

(4, 0)

(4, 4)

v4

(4, 0)

(4,4)

(4, 5)

(4, 6)

v5

(5, 4)

(5, 6)

v6

(6, 4)

(6, 5)

c)

Lu

v0

v2 v6

v4

v5

Contract
v4 onto v5

(0, 0)

v0

(0,5)

(0, 2)

(0, 0)

v1

(0,5)

(2, 0)

v2 v3

(5, 0)

(4, 4)

v4

(5, 0)

(4, 4)

(5, 5)

(5, 6)

v5

(5,5)

(5, 6)

v6

(6,5)

(6, 5)

d)

Lu

Disable Selfloops

Uncontract
v4

(0, 0)

v0

(0,4)

(0, 2)

(0, 0)

v1

(0,4)

(2, 0)

v2 v3

(4, 0)

(4, 4)

v4

(4, 0)

(4, 4)

(4, 5)

(4, 6)

v5

(5,4)

(5, 6)

v6

(6,4)

(6, 5)

e)

Lu

v0

v2 v6

v4

v5

v0

v2 v6
v5

(0, 1)

v0

(0, 4)

(0, 2)

(1, 0)

v1

(1, 3)

(2, 0)

v2 v3

(3, 1)

(3, 4)

v4

(4, 0)

(4, 3)

(4, 5)

(4, 6)

v5

(5, 4)

(5, 6)

v6

(6, 4)

(6, 5)

v1

v0

v2 v6

v4

v3
f)

v5

Lu

Uncontract
v1 and v3

Figure 7.2: Contraction and uncontraction operations applied on the dynamic
graph data structure. Entries modified by an (un)contraction operation are
highlighted red.

152

7.3 n-Level Graph Partitioning

(u, u) is not considered in the gain table entry ω(u,Π[u]). In the first case, we have to
add ω(u, v) to ω(u,Π[u]) and ω(v,Π[u]). In the second case, we have to add −ω(v, w)
to ω(u,Π[u]) and ω(v, w) to ω(v,Π[u]). In both cases, we use atomic fetch-and-add
instructions.

In the parallel setting, it is not immediately apparent whether an uncontraction
transforms a selfloop into a regular edge or replaces its representative: Consider two
nodes v and w, both adjacent before they were contracted onto the same node u
simultaneously. Contracting v and w onto u induces a selfloop (u, u). The batch
uncontraction operation uncontracts both nodes in the same batch. If v and w revert
their contraction for (u, u) at the same time, we need a synchronization mechanism to
decide which uncontraction transforms the selfloop into a regular edge.

We therefore use a bitset X of size m to synchronize the gain table updates. Before
we replace u with v in an edge e ∈ I(v), we check if e is a selfloop. If so, we raise a bit
in X at the position of e’s unique ID using an atomic test-and-set instruction. If
the operation succeeds, uncontracting v transforms the selfloop (u, u) into a regular
edge (u, v). Otherwise, it replaces u.

Differences to KaSPar. KaSPar [OS10] is a graph partitioner based on the n-level
scheme. The graph data structure also uses an adjacency array. A contraction of
two nodes u and v marks both as deleted and appends a new node w to the end of
the adjacency array that contains Γ(u) ∪ Γ(v). Moreover, edges pointing to u and
v are redirected to w. The approach suffers from a worst-case quadratic memory
consumption and may destroy some locality contained in the input data since new
nodes are added to the end of the adjacency array. However, a direct comparison
between our and the approach used in KaSPar is missing in this work since it is not
publicly available.

7.3.2 Remove and Restore Selfloops and Identical Edges
A contraction can transform edges into selfloops or make them identical to others.
Selfloops can be removed from the graph since they cannot become cut edges. We
can also remove identical edges except for one at which we aggregate their weight. To
remove these edges, we divide each Iu array into an inactive and active part. The
inactive part contains selfloops and edges that became identical to others and are not
considered anymore. The active part stores the current incident edges of u.

We can remove selfloops on-the-fly by swapping them to the inactive part of the
corresponding Iu array. This may lead to race conditions with other threads performing
a contraction on the swapped edge (swapping an edge requires updating the IDs of the
backward edges). However, removing these edges is only a performance optimization
and does not affect the correctness of the algorithm. We therefore follow the same
approach as in our n-level hypergraph partitioning algorithm and remove them after
each coarsening pass.

Removing Edges. To remove selfloops and identical edges, we iterate over the
nodes in parallel and process their adjacency lists sequentially. Since incident edges of

153

7 From Hypergraphs to Graphs

a node u are not stored in a continuous memory region (obtained by iterating over
the Iw arrays for w ∈ Lu), we first copy them to a temporary vector and sort them.
Identical edges are now next to each other in the sorted vector. We then add the
weight of all identical edges to one representative (first occurrence of the edge in the
sorted vector) and mark these edges in a globally shared bitset. Selfloops are also
marked in the bitset.

In a second pass, we iterate over the Iu arrays in parallel and swap marked edges
to the inactive part. Note that this changes the edge IDs since they correspond to
the positions in the adjacency array. Thus, we have to adapt the IDs of the backward
edges. To do so, we maintain the permutation induced by the swap operations. In an
additional pass over all edges, we apply the permutation to the IDs of the backward
edges.

Restoring Edges. To restore selfloops and identical edges, we reconstruct the order
of the adjacency array at the time before we removed them using the previously
computed permutation. For each removed identical edge, we additionally store the
edge ID of its representative. We then subtract the weight of each restored identical
edge from its representative.

7.4 Experiments
The presented graph data structures replaces the internal hypergraph representation of
our multilevel and n-level partitioning algorithms. The coarsening, initial partitioning,
and refinement algorithms are reused without any modifications since the graph data
structure implements the interface of our hypergraph data structure. We now analyze
to which extent the running times of the different algorithmic components of Mt-
KaHyPar-D and -Q benefit from the new graph layout. We run the experiments on our
large graph benchmark set LG using all 64 cores of machine B and optimize the edge
cut metric. We were not able to run the configurations with flow-based refinement
due to the reasons explained in Section 7.2.2.

As we can see in Figure 7.3, replacing the internal hypergraph data structure with
our new graph representation has no impact on the solution quality of Mt-KaHyPar-D
and -Q (the n-level graph partitioner even produces slightly better partitions than our
hypergraph partitioning code). We therefore analyze the running time improvements
of the different algorithmic components in more detail. Figure 7.4 shows the speedups
of each component of Mt-KaHyPar-D and -Q for each instance using a box plot.

Mt-KaHyPar-D. The coarsening algorithm has the largest running time improvement
out of all components (geometric mean speedup is 2.48). The algorithm iterates in
random order over all nodes and then over the pin-lists of all incident edges to aggregate
ratings to adjacent clusters. This leads to a large number of random accesses when
the incident edges and pin-lists are stored separately, as is in our hypergraph data
structure. The graph data structure uses one adjacency array which stores neighbors
of a node in a continuous memory region. The simplified representation also leads to

154

7.4 Experiments

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

Mt-KaHyPar-D Mt-KaHyPar-Q

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

Hypergraph Graph

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

Hypergraph Graph

Figure 7.3: Performance profiles comparing the solution quality Mt-KaHyPar-
D/-Q with and without our new graph data structure.

a faster contraction algorithm since only one adjacency array must be contracted, and
identical edges can be removed more efficiently.

For community detection, we observe little to no speedups. This is expected since
the algorithm uses an auxiliary graph data structure on which we then perform the
Louvain algorithm. In a future version, we want to omit the transformation for graph
partitioning.

The FM algorithm shows the least promising speedups (1.29). One of the most
time-consuming parts of the algorithm is retrieving and updating entries from the
gain table. The graph data structure implements a simplified gain table but still
uses k entries per node (instead of k + 2). Thus, retrieving and updating gain table
values still suffer from a poor cache utlization (many main memory accesses), which
may explain that the speedups are less pronounced here. The speedups of the label
propagation algorithm are slightly better compared to the FM algorithm (1.53). The
algorithm computes the gain values each time from scratch but still updates the gain
table when moving a node. Thus, it profits more from the optimized memory layout
when iterating over the neighbors of a node, but its speedup is still limited by the gain
table updates.

The initial partitioning phase (1.8) has better speedups than both refinement
algorithms but slightly worse speedups than the coarsening algorithm. This can be
explained by the fact that initial partitioning uses coarsening and both refinement
algorithms for multilevel recursive bipartitioning.

We also observe minor slowdowns on a few instances. A closer look reveals that these
are mainly graph instances with a regular structure (uniform node degree distributions),
e.g., road networks or finite element meshes. We believe that the input data of these
instances already encode some locality and thus profits less from the optimized data
layout. Furthermore, different random tie-breaking decisions can also significantly
impact the execution time.

In total, the graph data structure improves the running time of Mt-KaHyPar-D by a
factor of 1.75 on average (geometric mean running time 10.8s vs 18.94s).

155

7 From Hypergraphs to Graphs

0

1
2

4

8

16

Sp
ee

du
p

of
C

om
po

ne
nt

0

1
2

4

8

16

Sp
ee

du
p

of
C

om
po

ne
nt

Mt-KaHyPar-D Mt-KaHyPar-Q
1.05 2.48 1.8 1.53 1.29 2.38 1.72 2.68 2.04 1.53

CD C IP LP FM C IP BU LP FM

Figure 7.4: Running time improvements of the community detection (CD), coars-
ening (C), initial partitioning (IP), (localized) label propagation (LP), (localized)
FM, and batch uncontraction (BU) algorithm for each instance when we use the
graph instead of the hypergraph data structure.

Mt-KaHyPar-Q. Figure 7.4 (right) shows the speedups of the different algorithmic
components of Mt-KaHyPar-Q. We omit the community detection algorithm and global
refinement step since they are used in the same context as in Mt-KaHyPar-D.

The speedups of coarsening (2.38) and initial partitioning (1.72) are similar to what
we observed for Mt-KaHyPar-D, while the speedups of the localized label propagation
(2.04) and FM algorithm (1.53) are more pronounced in Mt-KaHyPar-Q. The localized
searches only expand to a small number of nodes around the uncontracted nodes of
each batch. Thus, we assume that most of the gain table values are still contained
in shared caches after the batch uncontraction operation so that the overhead of
retrieving and updating the gain table becomes less dominant.

The batch uncontraction operation (2.68) profits most from the new graph layout.
It reverts the contraction operations and also benefits from the optimized data layout.
Moreover, the uncontraction gain table update operation does not lock edges as in the
hypergraph data structure and does not distinguish between a benefit and penalty
term.

In total, the n-level graph data structure improves the running time of Mt-KaHyPar-Q
by a factor of 1.91 on average (geometric mean running time 97.45s vs 186.32s).

156

8Chapter 8

A Comparison of Partitioning
Algorithms
In the previous chapters, we have seen that Mt-KaHyPar provides multiple config-

urations offering different tradeoffs in terms of speed and solution quality. We now
compare them extensively to existing partitioning algorithms to see if Mt-KaHyPar
can improve the state-of-the-art. This experimental evaluation compares 25 different
partitioning algorithms (excluding Mt-KaHyPar), which we list and describe in Sec-
tion 8.1. Section 8.2 then excludes systems that are outperformed by others. We then
compare the remaining partitioning tools to Mt-KaHyPar in Section 8.3 and summarize
the experimental results in Section 8.4.

References. This chapter summarizes the experimental results from our conference
publications [Got+21a; GHS22a; Got+22a] and technical reports [Got+21c; GHS22c]
and extends them with an extensive comparison of graph partitioning algorithms. We
rerun all configurations of Mt-KaHyPar for this evaluation. The results of all evaluated
hypergraph partitioners were taken from our latest publication [GHS22a]. We made
all experimental results publicly available from https://algo2.iti.kit.edu/heuer/
dissertation/.

8.1 Included Partitioning Algorithms
We did an extensive research on existing partitioning tools and integrate most of them
into this evaluation. This is, to the best of our knowledge, the largest comparison of
partitioning algorithms in the literature. We start this section by explaining which
types of systems are excluded from this evaluation, and then describe the included
partitioning algorithms listed in Table 8.1.

Excluded Partitioning Algorithms. In this experimental evaluation, we partition
(hyper)graphs in up to 128 blocks. This already excludes algorithms restricted to
bipartitioning (e.g., MLPart [CKM00a; CRX03] and ReBaHFC [GHW19]).

We further exclude systems from which we know that they perform considerably
worse than the best sequential codes. This mainly excludes flat partitioning algo-
rithms (e.g., Xtra-Pulp [Slo+17; Slo+20], JA-BE-JA [Rah+13], Spinner [Mar+17],
HYPE [May+18], SHP [Kab+17]). It is known that these algorithms are inferior to
multilevel methods [HB97]. For example, HYPE [May+18] (uses greedy hypergraph
growing) computes partitions that are worse than those of the best sequential codes
by more than an order of magnitude for connectivity optimization on average [Sch20].

157

https://algo2.iti.kit.edu/heuer/dissertation/
https://algo2.iti.kit.edu/heuer/dissertation/

8 A Comparison of Partitioning Algorithms

Table 8.1: Listing of partitioning algorithms included in the experimental eval-
uation. For partitioners publicly available on GitHub, we show the first seven
characters of the corresponding commit hash indicating the version used for the
experiments.

Partitioner Version/Hash Release Date
Sequential Graph Partitioner
Metis 5.1.0 Mar 30, 2013
KaFFPa f239f7a Jan 13, 2022
Scotch 6.1.3 Jan 1, 2022
Parallel Graph Partitioner
KaMinPar 29101f6 Dec 15, 2021
Mt-Metis 0.6.0 Oct 30, 2016
ParMetis 4.0.3 Mar 30, 2013
Mt-KaHIP 30de737 Mar 22, 2021
ParHIP f239f7a Jan 13, 2022
Sequential Hypergraph Partitioner
PaToH 3.3 July 15, 2020
Mondriaan 4.2.1 Aug, 2019
hMetis 2.0pre1 May 25, 2007
KaHyPar 876b776 Aug 18, 2020
Parallel Hypergraph Partitioner
Zoltan 3.83 Jan, 2016
BiPart 49a59a6 Feb 22, 2021

We also exclude partitioners from which we do not expect that they run in a
reasonable time frame on our benchmark sets. For example, we include the strongsocial
configuration of KaFFPa [SS11] (KaFFPa-StrongS), which took roughly one month to
complete on set MG using a cluster with 50 machines of type A. KaFFPa provides
even stronger configurations, e.g., an evolutionary algorithm [SS12] and an approach
based on integer linear programming [HNS20]. We expect that these algorithms
are slower than KaFFPa-StrongS and thus exclude them. For similar reasons, we
do not consider diffusion-based partitioning algorithms [MMS08; MMS09; Mey12],
evolutionary techniques [SS12; ASS18], approaches based on tabu search [AV93;
BH11b], integer linear programming [HNS20], and spectral methods [BS93; ZCS97].

Unfortunately, we are not able to include the publicly available version of Park-
way [TK04a] (distributed hypergraph partitioner), PT-Scotch [CP08] (distributed
graph partitioner), and Chaco [HL95] (sequential graph partitioner). These partition-
ers mostly crash with a segmentation fault on our benchmark instances.

Included Hypergraph Partitioners. We include the following sequential hyper-
graph partitioners: the default (PaToH-D) and quality preset (PaToH-Q) of PaToH

158

8.1 Included Partitioning Algorithms

3.3 [CA99], the recursive bipartitioning (hMetis-R) and direct k-way version (hMetis-K)
of hMetis 2.0 [Kar+99; KK00], Mondriaan 4.2.1 [VB05], and the recursive bipartitioning
(rKaHyPar) and direct k-way version (kKaHyPar, uses similar algorithmic components
than Mt-KaHyPar-Q-F) of KaHyPar [Sch+16a; Akh+17a; HS17a; HSS19a; Got+20].
We additionally include a version of KaHyPar that does not use flow-based refinement
(KaHyPar-CA, uses similar algorithmic components than Mt-KaHyPar-Q). On large
instances, we compare Mt-KaHyPar to the distributed-memory partitioner Zoltan
3.83 [Dev+06] and the deterministic shared-memory partitioner BiPart [Mal+21].
Included Graph Partitioners. We include the following sequential graph parti-
tioners: the recursive bipartitioning (Metis-R) and direct k-way version (Metis-K) of
Metis 5.1.0 [KK98a; KK98c], Scotch 6.1.3 [PR96], and the fast (KaFFPa-Fast), eco
(KaFFPa-Eco), and strong configuration (KaFFPa-Strong) of KaFFPa [SS12; Sch13].
We additionally include the social configurations (KaFFPa-FastS, KaFFPa-EcoS, and
KaFFPa-StrongS) of KaFFPa which use a clustering-based instead of a matching-based
coarsening algorithm.

On large instances, we compare Mt-KaHyPar to the distributed-memory partitioners
ParMetis 4.0.3 [KK96] and the fast and eco configuration of ParHIP [MSS17] as
well as the shared-memory partitioners Mt-Metis 0.6.0 [LK13; LaS+15; LK16], Mt-
KaHIP [ASS17; Akh19] and KaMinPar [Got+21e].
Algorithm Configurations. Almost all included partitioning algorithms have a
considerable number of configuration options that influence their behavior. We
therefore refrain from tuning them and use the default settings mentioned in the
corresponding publications and user manuals. However, we manually adjusted some
parameters to ensure a fair comparison between all algorithms.

Partitioners based on recursive bipartitioning must restrict the input imbalance
ratio ε to facilitate finding a balanced k-way partition (see Section 5.3 for a detailed
explanation). KaHyPar [Sch+16a] (and also our initial partitioning algorithm) adjusts
the imbalance ratio for each bipartition individually based on Equation 5.1. For
partitioners based on recursive bipartitioning, where we observe that most of the
solutions are imbalanced when ε is used, we adjust ε to

ε′ := (1 + ε)
1

dlog2(k)e

which we obtain by applying Equation 5.1 to the first bipartitioning step. This applies
to Metis-R, hMetis-R, and BiPart.

Furthermore, hMetis does not directly optimize the connectivity metric. Instead,
it optimizes the sum-of-external-degree (SOED) metric fs(Π) :=

∑
e∈E λ(e) · ω(e) =

fλ−1(Π)+ fc(Π) (connectivity plus cut-net metric). We therefore configure both hMetis
versions to optimize the SOED metric and compute the connectivity metric accordingly.
We additionally configure Mt-Metis to use its hill-scanning refinement algorithm [LK16]
that produces partitions with better edge cuts than a previous version using greedy
refinement [LK13]. Moreover, Scotch and BiPart do not provide an command line
parameter to set an initial seed value. Thus, we do not perform multiple repetitions
when running them.

159

8 A Comparison of Partitioning Algorithms

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2101 103 7 U
Quality Relative to Best [τ]

1 1.05 1.1 1.5 2101 103 7 U
Quality Relative to Best [τ]

Mt-KaHyPar-D 10
Mt-KaHyPar-Q-F 10

kKaHyPar
PaToH-D

PaToH-Q
hMetis-R

Figure 8.1: Performance profile comparing Mt-KaHyPar to different sequential
partitioning algorithms on set MHG (left, 488 hypergraphs) and on the same
benchmark set where we excluded the instances of our parameter tuning benchmark
set MP (right, 388 hypergraphs).

We made the repository with which we conducted the following experiments publicly
available.1 It contains build scripts and the partitioning calls for each included
algorithm.

A Note on our Benchmark Sets. In Section 5.6, we evaluated different parameter
configurations of our algorithm on our parameter tuning benchmark set MP, which
is a subset of set MHG. In this experimental evaluation, we compare Mt-KaHyPar to
different sequential partitioning algorithms on set MHG. Thus, one might argue that
Mt-KaHyPar might have an unfair advantage since it has been optimized for a subset
of set MHG. A possible solution could be to exclude all instances of set MP from set
MHG for the following comparison. However, as it can be seen in Figure 8.1, it makes
no difference whether or not we include or exclude these instances. Both performance
profiles comparing different sequential partitioning algorithms to Mt-KaHyPar look
exactly the same. Thus, we decided to include the hypergraphs of set MP to increase
the evidence of the following experimental results.

8.2 Identifying Competitors
In this experimental evaluation, we study the performance of 25 different partitioning
algorithms (14 distinct partitioners). In the following, we reduce this set by excluding
systems that are outperformed by others. For the experiments, we used the partitioning
setup shown in Table 2.3 in Section 2.4.2. Recall that we optimize connectivity metric
for hypergraph partitioning, and the cut-net metric for graph partitioning. Moreover,

1https://github.com/kittobi1992/hypergraph_partitioner

160

https://github.com/kittobi1992/hypergraph_partitioner

8.2 Identifying Competitors

we add a suffix to the name of parallel partitioners to indicate the number of threads
used, e.g. Mt-KaHyPar 64 for 64 threads. We omit the suffix for sequential partitioners.

A Note on Improvements. A partitioner X outperforms another partitioner Y if
(i) X produces partitions with significantly better solution quality and is at least as
fast as Y , or (ii) X produces partitions with comparable solution quality than Y and
is significantly faster.

In the following evaluation, no partitioner consistently outperforms another parti-
tioner on all tested instances. Thus, we conclude whether or not an algorithm is better
than another based on metrics extracted from the performance profiles and relative
running time plots. More precisely, we look at the percentage of instances where an
algorithm produces better partitions and is faster than another. Furthermore, we use
the median improvement for solution quality and the average slowdown for running
time to quantify improvements. However, several other metrics could be considered.
For example, we might be interested that the quality of the partitions produced by an
algorithm are not too far away from the best found solutions. To do so, we can look
at the intersection of τ = 1.1 with the line of an algorithm in the performance profiles.
This denotes the fraction of instances where an algorithm performs worse than the
best by at most 10%. However, to simplify the evaluation, we restrict ourselves to the
metrics mentioned above and leave it to the reader to extract further performance
indicators from the plots.

The question remains of what we consider a significant improvement. From an
application perspective, an improvement in solution quality or running time should have
a considerable impact on its application. For VLSI design, even small improvements
in solution quality are considered critical [HB95], whereas speed is more important
than quality for sparse matrix-vector multiplications [CA99]. Hence, evaluating
improvements depends on the application. However, setting up application-specific
benchmarks requires a strong understanding of the underlying domain and is not
within the scope of this work.

We therefore took another approach and looked at improvements that were con-
sidered significant in the past. On benchmark set MHG, the quality preset of PaToH
(PaToH-Q) improves the default preset (PaToH-D) by 5.3% in the median and is a
factor of 4.99 slower on average. The median improvement of hMetis-R compared
to PaToH-Q is 2.6%, while it is a factor of 15.9 slower on average. We can see that
improvements by a few percentages can be considered significant, while the running
times of partitioning algorithms can differ by a multiple.

Sequential Hypergraph Partitioners. Figure 8.2 and 8.3 compare the solution
quality and running times of different sequential hypergraph partitioners on set MHG.

In an individual comparison, PaToH-D and Mondriaan compute better partitions
than the other on roughly 50% of the instances, but there are a few instances where
Mondriaan performs significantly worse than PaToH-D. Moreover, Mondriaan (geometric
mean running time 6.62s) is slower than PaToH-D (1.17s) on almost all instances.

Figure 8.3 (top) compares the performance of KaHyPar-CA to hMetis-R and hMetis-K.
KaHyPar-CA (28.14s) computes better solutions than hMetis-R (93.2s) and hMetis-K

161

8 A Comparison of Partitioning Algorithms

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s 106

10−1

1

101

102

103

104

105

7
U

R
el

.
sl

ow
do

w
n

to
Pa

To
H

-D

1 1.05 1.1 1.5 2 102104 7 U
Quality Relative to Best [τ]

0 500 1000 1500 2000 2500 3000 3416
Instances

Mondriaan PaToH-D

Figure 8.2: Performance profile and running times comparing PaToH-D and
Mondriaan on set MHG.

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

U
10−2

10−1

1

101

102

U

103

R
el

.
sl

ow
do

w
n

to
K

aH
yP

ar
-C

A

1 1.05 1.1 1.5 2 102104 U
Quality Relative to Best [τ]

0 500 1000 1500 2000 2500 3000 3416
Instances

hMetis-R hMetis-K KaHyPar-CA

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

U

10−2

10−1

1

101

U

102

R
el

.
sl

ow
do

w
n

to
k
K

aH
yP

ar

1 1.05 1.1 1.5 2 101 102 U
Quality Relative to Best [τ]

0 500 1000 1500 2000 2500 3000 3416
Instances

rKaHyPar kKaHyPar

Figure 8.3: Performance profile and running times comparing different configu-
rations of KaHyPar and hMetis on set MHG.

162

8.2 Identifying Competitors

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

U

10−1

1

101

102

103

R
el

.
sl

ow
do

w
n

to
Zo

lta
n

64

1 1.05 1.1 1.5 2101 103 U
Quality Relative to Best [τ]

0 100 200 300 376
Instances

BiPart 64 Zoltan 64

Figure 8.4: Performance profile and running times comparing Zoltan and BiPart
on set LHG.

(73.74s) on 56.2% and 68% of the instances (median improvement is 0.5% and 2.6%)
and is faster by a factor of 3.31 and 2.62 on average. In Figure 8.3 (bottom), we
compare the recursive bipartitioning and direct k-way version of the highest-quality
configuration of KaHyPar. The partitions produced by kKaHyPar are better than those
of rKaHyPar by 2.1% in the median, while the running times of both are comparable
(48.97s vs 46.09s).

In summary, we exclude Mondriaan (outperformed by PaToH-D), hMetis-R, and
hMetis-K (outperformed by KaHyPar-CA), and rKaHyPar (outperformed by kKaHyPar)
from further experiments.

Parallel Hypergraph Partitioners. Figure 8.4 compares the performance of
Zoltan and BiPart on set LHG. Zoltan (12.82s) is faster and produces partitions
with better solution quality than BiPart (29.18s) on 85.6% of the instances (median
improvement is 69%). We therefore exclude BiPart in further experiments.

Sequential Graph Partitioners. Figure 8.5 shows that Metis-K (geometric mean
running time 0.39s) outperforms Metis-R (0.55s), KaFFPa-Fast (1.69s), KaFFPa-FastS
(1.88s), and Scotch (1.83s) on set MG. In an individual comparison, Metis-K computes
partitions with better edge cuts than Metis-R, KaFFPa-Fast, KaFFPa-FastS, and
Scotch on 75.41%, 80.31%, 58.3%, and 59.55% of the instances, respectively (median
improvement is 2.9%, 5.8%, 2.2%, and 2.5%, respectively). We note that the partitions
produced by Metis-R are perfectly balanced on 46.3% of the instances, even though
we set the imbalance ratio to ε = 3% as described in the user manual [Kar13]. Thus,
we believe that Metis-R could compute better partitions than Metis-K if it would use
the leeway provided by the balance constraint.

In Figure 8.6, we compare the social configurations of KaFFPa (KaFFPa-EcoS
and KaFFPa-StrongS, clustering-based coarsening) to their non-social counterparts
(KaFFPa-Eco and KaFFPa-Strong, matching-based coarsening). The running times of

163

8 A Comparison of Partitioning Algorithms

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

7
2−3

2−2

2−1

1

21

22

23

7
24

R
el

.
sl

ow
do

w
n

to
M

et
is
-K

1 1.05 1.1 1.5 2 101 102 7

Quality Relative to Best [τ]
0 250 500 750 1000 1204

Instances

Metis-R Metis-K

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

U
7

10−1

1

101

102

103

7
U

104

R
el

.
sl

ow
do

w
n

to
M

et
is
-K

1 1.05 1.1 1.5 2 101 102 7 U
Quality Relative to Best [τ]

0 250 500 750 1000 1204
Instances

KaFFPa-Fast KaFFPa-FastS Metis-K

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

7
10−1

1

101

102

7
103

R
el

.
sl

ow
do

w
n

to
M

et
is
-K

1 1.05 1.1 1.5 2 101 102 7

Quality Relative to Best [τ]
0 250 500 750 1000 1204

Instances

Scotch Metis-K

Figure 8.5: Performance profile and running times comparing Metis-K to Metis-R,
KaFFPa and Scotch on set MG.

164

8.2 Identifying Competitors

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

U
7

10−2

10−1

1

101

102

7
U

103

R
el

.
sl

ow
do

w
n

to
K

aF
FP

a-
Ec

oS

1 1.05 1.1 1.5 2 101 102 7 U
Quality Relative to Best [τ]

0 250 500 750 1000 1204
Instances

KaFFPa-Eco KaFFPa-EcoS

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

U
7

10−2

10−1

1

101

7
U

102
R

el
.

sl
ow

do
w

n
to

K
aF

FP
a-

St
ro

ng
S

1 1.05 1.1 1.5 2 101 102 7 U
Quality Relative to Best [τ]

0 250 500 750 1000 1204
Instances

KaFFPa-Strong KaFFPa-StrongS

Figure 8.6: Performance profile and running times comparing the social configu-
rations of KaFFPa to their non-social counterparts on set MG.

KaFFPa-Eco (10.94s) and KaFFPa-EcoS (10.51s) are comparable, while KaFFPa-Strong
(162.83s) is faster than KaFFPa-StrongS (201.99s). If we look at the performance
profiles in Figure 8.6 (left), we see that the social configurations produce partitions
with better edge cuts than their non-social counterparts.

We exclude Metis-R, KaFFPa-Fast, KaFFPa-FastS, Scotch (outperformed by Metis-K),
and KaFFPa-Eco (outperformed by KaFFPa-EcoS) from further experiments.

Parallel Graph Partitioners. Figure 8.7 (top and middle) shows that KaMinPar
(geometric mean running time 2.67s) outperforms ParHIP-Fast (21.85s), Mt-Metis
(24.33s), and ParMetis (564.24s) on set LG. On almost all instances (≥ 99%), KaMinPar
is faster than ParMetis and ParHIP-Fast. The edge cuts of the partitions produced by
KaMinPar are better than those of ParHIP-Fast by 2.8% in the median. A comparison
to ParMetis and Mt-Metis turns out to be more difficult since both compute imbalanced
solutions on 14.15% and 32.54% of the tested instances. If we include them into the
comparison, then KaMinPar still computes better partitions than ParMetis (median
improvement is 4.4%) and comparable partitions to Mt-Metis (both compute partitions

165

8 A Comparison of Partitioning Algorithms

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

102

10−1

1

101

7

R
el

.
sl

ow
do

w
n

to
K

aM
in

Pa
r

64

1 1.05 1.1 1.5 2 101 102 7

Quality Relative to Best [τ]
0 50 100 150 212

Instances

ParHIP-Fast 64 KaMinPar 64

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

104

10−1

1

101

102

103

7
U

R
el

.
sl

ow
do

w
n

to
K

aM
in

Pa
r

64

1 1.05 1.1 1.5 2 101 102 7 U
Quality Relative to Best [τ]

0 50 100 150 212
Instances

Mt-Metis 64 ParMetis 64 KaMinPar 64

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

102

10−2

10−1

1

101

7
U

R
el

.
sl

ow
do

w
n

to
K

aM
in

Pa
r

64

1 1.05 1.1 1.5 2 101 102 7 U
Quality Relative to Best [τ]

0 50 100 150 212
Instances

ParHIP-Eco 64 Mt-KaHIP 64

Figure 8.7: Performance profile and running times comparing different parallel
graph partitioners on set LG.

166

8.3 Comparison to Other Systems

with a better edge cut than the other on 50% of the instances). Moreover, as illustrated
in Figure 8.7 (bottom), Mt-KaHIP (13.69s) outperforms ParHIP-Eco (159.09s, median
improvement is 2.2%).

We therefore exclude ParHIP-Fast, Mt-Metis, and ParMetis (outperformed by KaMin-
Par) as well as ParHIP-Eco (outperformed by Mt-KaHIP) in further experiments.

8.3 Comparison to Other Systems
We now compare Mt-KaHyPar to the partitioning algorithms identified as the main
competitors in the previous section. Mt-KaHyPar provides a multilevel (Mt-KaHyPar-
D) and n-level partitioning algorithm (Mt-KaHyPar-Q), as well as configurations
extending them with flow-based refinement (Mt-KaHyPar-D-F and Mt-KaHyPar-Q-
F). The partitioning algorithms to which we compare Mt-KaHyPar in the following
can be divided into systems aiming for speed (e.g., PaToH-D and Metis-K) or high
solution quality (e.g., kKaHyPar and KaFFPa-StrongS). To simplify the evaluation, we
compare the fast partitioners to Mt-KaHyPar-D (fastest configuration) and the high
quality partitioners to Mt-KaHyPar-Q-F (highest-quality configuration). However, we
recommend using Mt-KaHyPar-D-F in practice, as using multiple restarts produces
comparable solutions to Mt-KaHyPar-Q-F in the same amount of time (see effectiveness
tests in Section 6.4.4). For graph partitioning, we use the partition and graph data
structure presented in Chapter 7. We run Mt-KaHyPar using ten threads of machine A
when comparing it to sequential partitioning algorithms. Note that we do not use all
available cores of machine A (2 sockets with 20 cores each) since we want to simulate
the performance of Mt-KaHyPar that can be expected on commodity workstations.

A Note on Effectiveness Tests. In previous chapters, we used effectiveness tests
to compare two algorithms by giving the faster algorithm more time to perform
additional repetitions until its expected running time equals the running time of the
slower algorithm. This turns out to be more difficult when comparing a sequential and
parallel algorithm. To ensure a fair comparison, we can run the sequential algorithm
independently in parallel using the same number of threads as the parallel algorithm
and take the best solution out of these runs as the final partition. However, this
requires substantially more memory, and we do not know in advance whether or not
the main memory of the target machine suffices to conduct these experiments on each
instance. We therefore do not perform effectiveness tests in this section.

8.3.1 Hypergraph Partitioning
Medium-Sized Instances. Figure 8.8 and 8.9 compares Mt-KaHyPar to the se-
quential partitioners PaToH and KaHyPar on set MHG. In an individual comparison,
Mt-KaHyPar-D (geometric mean running time 0.88s) computes better partitions than
PaToH-D (1.17s) and PaToH-Q (5.85s) on 82.9% and 58.34% of the instances (median
improvement is 6.6% and 1.2%), while it achieves a speedup of 1.32 w.r.t. PaToH-D

167

8 A Comparison of Partitioning Algorithms

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s 103

10−3

10−2

10−1

1

101

102

7

R
el

.
sl

ow
do

w
n

to
M

t-
K

aH
yP

ar
-D

10

1 1.05 1.1 1.5 2101 103 7

Quality Relative to Best [τ]
0 500 1000 1500 2000 2500 3000 3416

Instances

PaToH-D PaToH-Q Mt-KaHyPar-D 10

Figure 8.8: Performance profile and running times comparing Mt-KaHyPar-D
and PaToH on set MHG.

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

103

10−2

10−1

1

101

102

U

R
el

.
sl

ow
do

w
n

to
M

t-
K

aH
yP

ar
-Q

-F
10

1 1.05 1.1 1.5 2 101 102 U
Quality Relative to Best [τ]

0 500 1000 1500 2000 2500 3000 3416
Instances

KaHyPar-CA kKaHyPar Mt-KaHyPar-Q 10 Mt-KaHyPar-Q-F 10

Figure 8.9: Performance profile and running times comparing Mt-KaHyPar-Q-F
and KaHyPar on set MHG.

and 6.6 w.r.t. PaToH-Q with ten threads on average. Thus, Mt-KaHyPar-D outperforms
PaToH-D and PaToH-Q.

Figure 8.9 (left) shows that the solution quality of the partitions produced by
Mt-KaHyPar-Q-F and kKaHyPar are on par. We also see that the differences in
solution quality between Mt-KaHyPar-Q and KaHyPar-CA is not statistically significant
(Wilcoxon signed-ranked test: Z = −2.4073 and p = 0.01607). Mt-KaHyPar-Q-F (5.08s)
is faster than KaHyPar-CA (28.14s) and kKaHyPar (48.97s) on almost all instances
with ten threads (≥ 99%). This shows that we achieved the same solution quality as
the currently highest-quality sequential partitioner kKaHyPar, while being almost an
order of magnitude faster with only ten threads. Moreover, Mt-KaHyPar-Q-F is also
slightly faster than PaToH-Q, while it computes better partitions than PaToH-Q on
87.7% of the instances (median improvement is 6.4%).

168

8.3 Comparison to Other Systems

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

103

10−1

1

101

102

U

R
el

.
sl

ow
do

w
n

to
M

t-
K

aH
yP

ar
-D

64

1 1.05 1.1 1.5 2 101 102 U
Quality Relative to Best [τ]

0 100 200 300 376
Instances

PaToH-D Zoltan 64 Mt-KaHyPar-D 64

Figure 8.10: Performance profile and running times comparing Mt-KaHyPar-D
to PaToH-D and Zoltan on set LHG.

Large Instances. Figure 8.10 compares Mt-KaHyPar-D to distributed-memory par-
titioner Zoltan and the sequential partitioner PaToH-D on set LHG. Note that PaToH-D
is fast enough to conduct the experiments on set LHG in a reasonable time frame,
while this is not the case for any of the other sequential partitioners.

In an individual comparison, Mt-KaHyPar-D (geometric mean running time 4.64s)
computes better partitions than PaToH-D (51.2s) and Zoltan (12.63s) on 79.78% and
95.21% of the instances (median improvement is 6.6% and 23%), while it is also faster
by a factor of 2.72 than Zoltan and it achieves a speedup of 11.03 w.r.t. PaToH-D
with 64 threads on average. Our flow-based refinement configuration Mt-KaHyPar-
D-F (30.44s) computes partitions better than those of Zoltan by 34% in the median,
while it is only slower by a factor of 2.41 on average. This can be considered a
major breakthrough as it enables partitioning of extremely large hypergraphs with
high solution quality, which was previously only possible with sequential codes on
medium-sized instances.

8.3.2 Graph Partitioning
Medium-Sized Instances. Figure 8.11 and 8.12 compares Mt-KaHyPar to the
sequential partitioners Metis-K and different configurations of KaFFPa on set MG.
Mt-KaHyPar-D (geometric mean running time 0.55s) is slightly slower but produces
considerably better edge cuts than Metis-K (0.39s, edge cuts are better by 5.9% in
the median) when using ten threads. We therefore compare Metis-K to a weaker
configuration by disabling the FM algorithm (referred to as Mt-KaHyPar-S). The
Wilcoxon signed-ranked test reveals that there is no statistically significant difference
between the edge cuts produced by Mt-KaHyPar-S (0.37s) and Metis-K (Z = −1.5126
and p = 0.1304), while the execution times of both are comparable when running
Mt-KaHyPar-S with ten threads.

KaFFPa-StrongS computes slightly better edge cuts than Mt-KaHyPar-Q-F (median

169

8 A Comparison of Partitioning Algorithms

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s 22

2−4

2−3

2−2

2−1

1

21

7

R
el

.
sl

ow
do

w
n

to
M

t-
K

aH
yP

ar
-D

10

1 1.05 1.1 1.5 2 101 102 7

Quality Relative to Best [τ]
0 250 500 750 1000 1204

Instances

Metis-K Mt-KaHyPar-S 10 Mt-KaHyPar-D 10

Figure 8.11: Performance profile and running times comparing Mt-KaHyPar-D
and Metis-K on set MG.

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s 104

10−2

10−1

1

101

102

103

7
U

R
el

.
sl

ow
do

w
n

to
M

t-
K

aH
yP

ar
-Q

-F
10

1 1.05 1.1 1.5 2 101 102 7 U
Quality Relative to Best [τ]

0 250 500 750 1000 1204
Instances

KaFFPa-EcoS KaFFPa-Strong KaFFPa-StrongS Mt-KaHyPar-Q-F 10

Figure 8.12: Performance profile and running times comparing Mt-KaHyPar-Q-F
and KaFFPa on set MG.

improvement is 1%). However, Mt-KaHyPar-Q-F (5.22s) achieves a speedup over
KaFFPa-StrongS (201.99s) by a factor 38.66 with ten threads on average, making
the quality improvement questionable in practice. The differences between the edge
cuts produced by Mt-KaHyPar-Q-F and KaFFPa-Strong (162.83s) are not statistically
significant (Z = −2.3101 and p = 0.02088). Moreover, Mt-KaHyPar-Q-F outperforms
KaFFPa-EcoS (10.51s, edge cuts are better by 2.9% in the median).

This demonstrates that Mt-KaHyPar also outperforms most of the existing sequential
graph partitioners. KaFFPa-StrongS still computes slightly better edge cuts than
Mt-KaHyPar-Q-F, but is more than an order of magnitude slower.

Large Instances. Figure 8.13 compares Mt-KaHyPar-D to the shared-memory par-
titioners Mt-KaHIP (also implements a parallel version of the FM algorithm) and

170

8.3 Comparison to Other Systems

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

103

10−2

10−1

1

101

102

R
el

.
sl

ow
do

w
n

to
M

t-
K

aH
yP

ar
-D

64

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]
0 50 100 150 212

Instances

KaMinPar 64 Mt-KaHIP 64 Mt-KaHyPar-D 64

Figure 8.13: Performance profile and running times comparing Mt-KaHyPar-D
to KaMinPar and Mt-KaHIP on set LG.

KaMinPar on set LG. We see that Mt-KaHyPar-D (geometric mean running time 10.8s)
computes better edge cuts than Mt-KaHIP (13.69s) on 74.52% of the instances (median
improvement is 2.1%), while it is also slightly faster. Thus, Mt-KaHyPar-D outperforms
Mt-KaHIP.

The median speedup of KaMinPar (2.69s) over Mt-KaHyPar-D is 4.51 on average,
but its edge cuts are worse than to those of Mt-KaHyPar-D by 9.9% in the median.
Thus, KaMinPar is the method of choice when speed is more important than quality,
and Mt-KaHyPar-D should be used if one aims for high solution quality.

Comparison to KaSPar. KaSPar [OS10] is the first (graph) partitioning algorithm
based on the n-level scheme and can be considered as a seminal work for KaHyPar. The
algorithm uses highly-localized FM searches and so-called trial trees: after reducing the
size of the graph by a factor of c during coarsening, the graph is copied, and multilevel
partitioning is continued on both copies of the graph recursively. Unfortunately, KaSPar
is not publicly available, but we were able to obtain experimental results for the strong
configuration of KaSPar from the author. There also exists a fast configuration, which
is compared to the strong configuration, a factor of 5 – 6 faster, but it computes
partitions that are 2% – 3% worse on average [OS10].

In the following, we compare Mt-KaHyPar-Q-F (using ten threads) to KaSPar strong
on the same benchmark set used in their publication with the same experimental setup
(k ∈ {2, 4, 8, 16, 32, 64}, ε = 3%, and ten repetitions per instance). The benchmark set
contains 37 graphs composed of random geometric graphs, Delaunay triangulations,
road networks, sparse matrices [DH11], social networks [LK14], and instances from
the Walshaw benchmark archive [SWC04] (for detailed properties of the graphs, see
Ref. [OS10]). However, we excluded three graphs as our version of these instances did
not match the properties reported in their publication (cnr2000, citationCiteseer,
and nld). The experiments run on one of our oldest machines to have at least some
comparable running times (Intel Xeon E5-2670 v3 processor, 2 sockets with 12 cores

171

8 A Comparison of Partitioning Algorithms

0.01
0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 1.05 1.1 1.5 2 101 102

Quality Relative to Best [τ]

Fr
ac

ti
on

of
In

st
an

ce
s

KaSPar strong Mt-KaHyPar-Q-F 10

Figure 8.14: Performance profile comparing Mt-KaHyPar-Q-F and KaSPar strong
on the benchmark set from Ref. [OS10].

each, 2.3 GHz, 128GB RAM).
As can be seen in Figure 8.14, the difference in solution quality between Mt-KaHyPar-

Q-F and KaSPar strong is marginal. KaSPar strong computes on slightly more instances
better partitions than Mt-KaHyPar-Q-F (56% vs 44%). Looking closer at the results
reveals that Mt-KaHyPar-Q-F computes better partitions on social networks, while
KaSPar strong performs better on mesh and road networks. Especially on the Belgium
road network, we observed that Mt-KaHyPar-Q-F cannot find a small separator that
naturally exists in such networks [Del+11] (for k = 2, KaSPar strong cut: 81 vs Mt-
KaHyPar-Q-F cut: 4452). Since the benchmark set contains only three social networks,
we assume that the results would look much better if we had run the experiments
on set MG. The geometric mean running times of Mt-KaHyPar-Q-F (using ten threads)
and KaSPar strong are 1.81s and 24.1s. However, the running times are not comparable
since the experiments run on different machines.

8.4 Summary
This experimental evaluation compared 17 sequential and 8 parallel partitioning
algorithms to our new shared-memory (hyper)graph partitioner Mt-KaHyPar. We
evaluated the partitioners on four different benchmarks sets consisting of 804 graphs
and hypergraphs. The total running time of the experiment would have been 10.43
years when executed on a single machine. Thus, it is the most comprehensive study
of partitioning algorithms using the largest benchmark set that can be found in the

172

8.4 Summary

Mt-KaHyPar-D
(with 10 threads)

PaToH-D

PaToH-Q

Mt-KaHyPar-Q-F
(with 10 threads)

KaHyPar-CA

kKaHyPar

outperforms

outperforms

outperforms

outperforms

Mondriaan

hMetis-R

hMetis-K

rKaHyPar

outperforms

outperforms

outperforms

outperforms

Mt-KaHyPar-D Zoltanoutperforms BiPartoutperforms

Sequential Hypergraph Partitioners

Parallel Hypergraph Partitioners

Mt-KaHyPar-D
(with 10 threads)

Metis-K

KaFFPa-Strong

Mt-KaHyPar-Q-F
(with 10 threads)

KaFFPa-StrongS

KaFFPa-EcoS

better quality

outperforms

is faster

Metis-R

Scotch

KaFFPa-Fast

KaFFPa-FastS

outperforms

Sequential Graph Partitioners

KaFFPa-Eco

outperforms

outperforms

outperforms

outperforms

Mt-KaHyPar-D KaMinPar

Mt-KaHIP

better quality Mt-Metis

ParMetis

ParHIP-Fast

outperforms

Parallel Graph Partitioners

outperforms

outperforms

outperforms

Mt-KaHyPar-S
(with 10 threads)

outperforms

outperforms

ParHIP-Ecooutperforms

Figure 8.15: Summary of the experimental results.

173

8 A Comparison of Partitioning Algorithms

literature.
Figure 8.15 summarizes our main results. We saw that sequential partitioning

algorithms can be divided into systems aiming for speed or high solution quality. The
latter are often more than an order of magnitude slower than the fast partitioning
methods. For hypergraph partitioning, Mt-KaHyPar outperforms all existing sequential
algorithms with only ten threads. It achieves the same solution quality as the currently
highest-quality partitioner kKaHyPar, while it is an order of magnitude faster on
average. Our fastest configuration Mt-KaHyPar-D is faster and produces significantly
better partitions than the default preset of PaToH, which was the previous method of
choice when speed is more important than quality. Furthermore, our highest-quality
configuration Mt-KaHyPar-Q-F is slightly faster than the quality preset of PaToH,
which can also be classified as a fast partitioning method. Thus, Mt-KaHyPar can be
seen as a new type of system that is able to produce high quality solutions very fast.

Since we also optimized Mt-KaHyPar for graph partitioning, we extensively compared
it to sequential graph partitioning algorithms. Here, Mt-KaHyPar also outperforms
all existing systems, except for the highest-quality configuration of KaFFPa. KaFFPa-
StrongS produces edge cuts that are better than those of Mt-KaHyPar-Q-F by 1% in the
median, but it is 38.66 times slower on average. Moreover, it is more than two orders of
magnitudes slower than our fastest configuration Mt-KaHyPar-D. Hence, Mt-KaHyPar
is also the method of choice for graph partitioning unless one has unlimited time for
computing the best possible solution.

On larger (hyper)graphs, where the running time of sequential algorithms becomes
prohibitive, the distributed-memory hypergraph partitioner Zoltan produces partitions
worse than those of our fastest configuration Mt-KaHyPar-D by 23% in the median,
while it is also slower by a factor of 2.72 on average. Our flow-based refinement
configuration Mt-KaHyPar-D-F produces partitions better than those of Zoltan by 34%
in the median. This demonstrates that Mt-KaHyPar can compute high quality solutions
for extremely large hypergraphs, which was previously possible only with sequential
codes on medium-sized instances. The comparison to parallel graph partitioners reveals
that Mt-KaHyPar also computes the best edge cuts for large graph instances. However,
the shared-memory graph partitioner KaMinPar is still faster than Mt-KaHyPar, but its
edge cuts are worse by almost 10% in the median. Hence, there is still a tradeoff for
partitioning graphs: KaMinPar is the method of choice when speed is more important
than quality, and Mt-KaHyPar should be used when one aims for high solution quality.

This study showed that Mt-KaHyPar produces high quality solutions in a fraction of
the time needed by the best sequential systems. As a result, Mt-KaHyPar outperforms
most publicly available partitioning algorithms and enables partitioning (hyper)graphs
with more than one billion pins/edges with previously unattained quality.

Limits of the Study. In this experimental evaluation, we partitioned hypergraphs
with up to one billion pins/edges in up to 128 blocks with an imbalance ratio ε = 3%.
We want to point out that there are still settings where the results of this evaluation
do not apply.

For example, when k is large (k ∈ O(
√
n)), then KaMinPar is the method of choice.

174

8.4 Summary

For this case, other partitioners often struggle to find balanced solutions or do not
complete in a reasonable time frame [Got+21e]. The main performance issue in
Mt-KaHyPar is that the memory required for storing the gain table depends on k.
During the write-up of this thesis, we worked on a configuration to handle the large k
case. Here, we disable the FM algorithm and implement the deep multilevel scheme
for initial partitioning [Got+21e]. However, the latter needs further engineering efforts
to achieve comparable speed to KaMinPar. Moreover, external or distributed-memory
algorithms are the only way to partition instances that do not fit into the main memory
of a single machine.

Hypergraph partitioning with a tight balance constraint (e.g., ε ≈ 0%) poses
additional challenges for refinement algorithms. In this setting, the set of possible
node moves is drastically reduced. Here, KaFFPa implements some effective techniques
based on negative cycle detection in the quotient graph [SS13] (an edge (Vi, Vj) is
labeled with the highest gain move from block Vi to Vj).

175

9Chapter 9

Multilevel Hypergraph
Partitioning with Node Weights

Many real-world applications of hypergraph partitioning (HGP) use node weights to
accurately model the underlying problem domain. The two most prominent examples
are very large scale integration (VLSI) design [AK95; Kar+99] and the parallel
computation of the sparse matrix-vector product [ÇA96]. In the former, HGP is
used to divide a circuit into two or more blocks such that the number of external
wires interconnecting circuit elements in different blocks is minimized. In this setting,
each node is associated with a weight equal to the area of the respective circuit
element [Alp98] and tightly-balanced partitions minimize the total area required by
the physical circuit [DT97]. In the latter, HGP is used to optimize the communication
volume for parallel computations of sparse matrix-vector products [ÇA96]. In the
simplest hypergraph model, nodes correspond to rows and hyperedges to columns of
the matrix (or vice versa) and a partition of the hypergraphs yields an assignment of
matrix entries to processors [ÇA96]. The work of a processor (which can be measured
in terms of the number of non-zero entries [Bis+12]) is integrated into the model by
assigning each node a weight equal to its degree [ÇA96]. Tightly-balanced partitions
hence ensure that the work is distributed evenly among the processors.

Despite the importance of weighted instances for real-world applications, the HGP
research community mainly uses unweighted hypergraphs in experimental evalua-
tions [Sch20]. These instances become weighted implicitly due to contractions in the
coarsening phase. Many partitioners therefore incorporate techniques that prevent the
formation of heavy nodes [Hau95; CA99; HS17a] during coarsening to facilitate finding
a feasible solution during the initial partitioning phase [Sch20]. However, in practice,
many weighted hypergraphs derived from real-world applications already contain
heavy nodes – rendering the mitigation strategies of today’s multilevel hypergraph
partitioners ineffective. The popular ISPD98 VLSI benchmark set [Alp98], for example,
includes instances in which nodes can weigh up to 10% of the total weight of the
hypergraph.
Contributions and Outline. In this chapter, we revisit the hypergraph partitioning
problem with node weights in the multilevel context and show that current state-of-
the-art partitioners often struggle considerably to find feasible solutions for weighted
instances under a tight balance constraint. After introducing basic notation in
Section 9.1, we present a technique enabling partitioners based on the recursive
bipartitioning scheme to reliably compute balanced k-way partitions in Section 9.2.

177

9 Multilevel Hypergraph Partitioning with Node Weights

The proposed method balances the partition by pre-assigning a small subset of the
heaviest nodes to the two blocks of each bipartition (i.e., treating them as fixed
nodes) and optimizes the actual partitioning objective on the remaining nodes. We
further establish a balance property for the pre-assigned nodes that is verifiable in
polynomial time and, if fulfilled, leads to provable balance guarantees for the resulting
k-way partition obtained via recursive bipartitioning. In the experimental evaluation in
Section 9.3, we describe the integration of our algorithm into the sequential hypergraph
partitioner KaHyPar and show that our approach is able to compute balanced partitions
of high quality on a diverse set of weighted real-world instances.

Remarks. There are usually two approaches to compute balanced k-way partitions
under a tight balance constraint in a multilevel partitioner: (i) we either ensure that
initial partitioning finds a balanced partition and refinement only applies changes on
the partition that satisfies the balance constraint, or (ii) we allow intermediate balance
violations [DT97; CKM00a; CKM00b; Got+21e] and use rebalancing techniques to
ensure that the final k-way partition is balanced [WCE97; Got+21e; Mal+21]. Given
that finding a balanced k-way partition is a NP-hard problem [GJ79], both approaches
do not guarantee balance. The method proposed in this work falls into the first
category. We may also not be able to compute for all weighted instances a feasible
solution. However, we established several theoretical results that leads to provable
balance guarantees under certain assumptions and turned out to be extremly effective
in practice. Furthermore, the approach can be integrated into almost all partitioning
systems with minor changes (only support for fixed nodes is required).

A comparison to systems that follow the second approach is missing in this work.
Most of the proposed techniques were developed for non-multilevel algorithms and are
not integrated into existing state-of-the-art partitioners. We also believe that there is
a large design space that is far from being exhausted. Thus, the integration of these
techniques into multilevel partitioner is an interesting avenue for future research. Thus,
the approach presented in this work might be only a first step providing theoretical
foundations and raises attention on the research topic.

References and Contributors. This chapter is based on a conference publica-
tion [HMS21a] from which most text passages are copied verbatim. The paper was
written by the author of this dissertation, except for the experimental evaluation
that was done by Nikolai Maas. Sebastian Schlag assisted in the editing process of
the publication. The idea of preassigning a small portion of the heaviest nodes to
one of the blocks of each bipartition came from the author of this dissertation. The
theoretical foundations and implementation was done by Nikolai Maas as part of his
bachelor thesis [Maa20a], which was supervised by us. In our weekly meetings with
Nikolai Maas, we identified challenges, discussed new algorithmic ideas, and defined
the experimental setup for evaluating the new techniques.

178

9.1 Definitions and Notations

9.1 Definitions and Notations
We will now provide some basic terminology required in the subsequent sections.
In the following, we will refer to a bipartition with Π2 := {V1, V2} and to a k-way
partition with Πk := {V1, . . . , Vk}. We call a k-way partition Πk ε-balanced if each
block Vi ∈ Πk satisfies the balance constraint: c(Vi) ≤ Lk := (1 + ε)d c(V)

k e for some
parameter ε ∈ (0, 1). For bipartitions, we will denote the maximum allowed block
weight with L2 instead of Lk.

Hypergraph Partitioning with Fixed Nodes. Let H = (V,E, c, ω) be a weigh-
ted hypergraph. We refer to a k-way partition Ψk = {P1, . . . , Pk} of a subset P ⊆ V
as a k-way prepacking. We call a node v ∈ P a fixed node and a node v ∈ V \ P an
ordinary node. During partitioning, fixed nodes are not allowed to be moved to a
different block of the partition. The k-way hypergraph partitioning problem initialized
with a k-way prepacking Ψk = {P1, . . . , Pk} is to find an ε-balanced k-way partition
Πk = {V1, . . . , Vk} of a hypergraph H that minimizes an objective function defined
on the hyperedges and satisfies ∀i ∈ {1, . . . , k} : Pi ⊆ Vi. In this chapter, we optimize
the connectivity metric fλ−1(Π) :=

∑
e∈E(λ(e)− 1) · ω(e).

Most Balanced Partition Problem. The most balanced partition problem is
to find a k-way partition Πk of a weighted hypergraph H = (V,E, c, ω) such that
max(Πk) := maxV ′∈Πk

c(V ′) is minimized. For an optimal solution ΠOPT it holds
that there exists no other k-way partition Π′

k with max(Π′
k) < max(ΠOPT). We use

OPT(H, k) := max(ΠOPT) to denote the weight of the heaviest block of an optimal
solution.

Note that the problem is equivalent to the most common version of the job scheduling
problem: Given a sequence J = 〈j1, . . . , jn〉 of n computing jobs each associated with
a processing time pi for i ∈ [1, n], the task is to find an assignment of the n jobs to
k identical machines (each job ji runs exclusively on a machine for exactly pi time
units) such that the latest completion time of a job is minimized. The job scheduling
problem is NP-hard [GJ79] and we refer the reader to existing literature [Gra+79;
Pin12] for a comprehensive overview of the research topic.

Longest Processing Time Algorithm. In this work, we make use of the longest
processing time (LPT) algorithm proposed by Graham [Gra69]. We will explain the
algorithm in the context of the most balanced partition problem: For a weighted
hypergraph H = (V,E, c, ω), the algorithm iterates over the nodes of V sorted
in decreasing node-weight order and assigns each node to the block of the k-way
partition with the lowest weight. The algorithm can be implemented to run in
O(n log n) time, and for a k-way partition Πk produced by the algorithm it holds that
max(Πk) ≤ (43 −

1
3k)OPT(H, k).

Adaptive Imbalance Ratio. The hypergraph partitioner KaHyPar [Sch+16a] en-
sures that a k-way partition computed via recursive bipartitioning (RB) is balanced
by adapting the imbalance ratio for each bipartition individually. Let HV ′ be the

179

9 Multilevel Hypergraph Partitioning with Node Weights

subhypergraph of the current bipartition that should be partitioned recursively into
k′ ≤ k blocks. Then,

ε′ :=

(
(1 + ε)

c(V)

k
· k′

c(V ′)

) 1
dlog2(k′)e

− 1 (9.1)

is the imbalance ratio used for the bipartition of HV ′ . The equation is based on
the observation that the worst-case block weight of the resulting k′-way partition of
HV ′ obtained via RB is smaller than (1 + ε′)dlog2(k

′)e c(V ′)
k′ , if ε′ is used for all further

bipartitions. Requiring that this weight must be smaller or equal to Lk = (1+ε)d c(V)
k e

leads to the formula defined in Equation 9.1.

9.2 Balanced Recursive Bipartitioning
Most multilevel hypergraph partitioners either employ recursive bipartitioning di-
rectly [CA99; Kar+99; VB05; Dev+06; Sch+16a] or use RB-based algorithms in
the initial partitioning phase to compute an initial k-way partition of the coarsest
hypergraph [KK00; ACU08b; Akh+17a]. In both settings, a k-way partition is derived
by first computing a bipartition Π2 = {V1, V2} of the (input/coarse) hypergraph H
and then recursing on the subhypergraphs HV1 and HV2 by partitioning V1 into dk2 e
and V2 into bk2 c blocks. Although KaHyPar adaptively adjusts the allowed imbalance
at each bipartitioning step (using the imbalance factor ε′ as defined in Equation 9.1),
an unfortunate distribution of the nodes in some bipartitions Π2 can easily lead to
instances for which it is impossible to find a balanced solution during the recursive
partitioning calls – even though the current bipartition Π2 satisfies the adjusted
balance constraint.

An example is shown in Figure 9.1 (left): Although the current bipartition
(indicated by the red line) is perfectly balanced, it will not be possible to
recursively partition the subhypergraph induced by the nodes of V2 into two
blocks of equal weight, because each of the three nodes has a weight of four.

9.2.1 Deeply Balanced Bipartitions
To capture this problem, we introduce the notion of deep balance:

Definition 9.1 (Deep Balance)
Let H = (V,E, c, ω) be a weighted hypergraph for which we want to compute an
ε-balanced k-way partition, and let HV ′ be a subhypergraph of H which should be
partitioned into k′ ≤ k blocks via recursive bipartitioning. A subhypergraph HV ′

is deeply balanced w.r.t. k′, if there exists a k′-way partition Πk′ of HV ′ such that
max(Πk′) ≤ Lk := (1+ε)d c(V)

k e. A bipartition Π2 = {V1, V2} of HV ′ is deeply balanced

180

9.2 Balanced Recursive Bipartitioning

2 2 4

2

2

2

2 4

4

2 2 4

2

2

2

2 4

4

2 2 4

2

2

2

2 4

4

V1 V2

V1

V2

V1

V2

V3

V4 V1

V3

V4

V2

c(V4) = 8 > 6 = L4 ∀i ∈ [1, 4] : c(Vi) = 6 ≤ 6 = L4k = 4 and ε = 0

Figure 9.1: Illustration of a deeply (left, green line) and a non-deeply balanced
bipartition (left, red line). The numbers in each circle denotes the node weights.
In both cases, the hypergraph is partitioned into k = 4 blocks with ε = 0 via
recursive bipartitioning. Thus, the weight of heaviest block must be smaller or
equal to L4 = 6 and for the first bipartition, we use L2 = 12 as an upper bound.

w.r.t. k′, if the subhypergraphs HV1 and HV2 are deeply balanced with respect to dk
′

2 e
resp. bk

′

2 c.

If a subhypergraph HV ′ is deeply balanced with respect to k′, there always exists a
k′-way partition Πk′ of HV ′ such that weight of the heaviest block satisfies the original
balance constraint Lk imposed on the partition of the input hypergraph H. Moreover,
there also always exists a deeply balanced bipartition Π2 := {V1, V2} (V1 is the union
of the first dk

′

2 e and V2 of the last bk
′

2 c blocks of Πk′). Hence, a RB-based partitioning
algorithm that is able to compute deeply balanced bipartitions on deeply balanced
subhypergraphs will always compute ε-balanced k-way partitions (assuming the input
hypergraph is deeply balanced).

Deep Balance and Adaptive Imbalance Adjustments. Computing deeply bal-
anced bipartitions in the RB setting guarantees that the resulting k-way partition is
ε-balanced. Thus, the concept of deep balance could replace the adaptive imbalance
ratio ε′ employed in KaHyPar [Sch+16a] (see Equation 9.1). However, as we will
see in the following example, combining both approaches gives the partitioner more
flexibility (in terms of feasible node moves during refinement). Assume that we want
to compute a 4-way partition via recursive bipartitioning and that the first bipartition
Π2 := {V1, V2} is deeply balanced with c(V1) = (1 + ε)d c(V)

2 e. The deep-balance
property ensures that we can further partition V1 into two blocks such that the weight
of the heavier block is smaller than L4. However, this bipartition has to be perfectly
balanced:

L2 = (1 + ε)
⌈c(V1)

2

⌉
= (1 + ε)

⌈ (1 + ε)d c(V)
2 e

2

⌉
≤ (1 + ε)

⌈c(V)

4

⌉
= L4 ⇒ ε ≈ 0.

If we would have computed the first bipartition with an adjusted imbalance ratio
ε′, then max(Π2) ≤ (1 + ε′)d c(V)

2 e =
√
1 + εd c(V)

2 e – providing more flexibility for

181

9 Multilevel Hypergraph Partitioning with Node Weights

subsequent bipartitions. In the following, we therefore focus on computing deeply
ε′-balanced bipartitions.

9.2.2 Sufficiently Balanced Bipartitions
In general, computing a deeply balanced bipartition Π2 := {V1, V2} w.r.t. k is NP-
hard, as we must show that there exists a k-way partition Πk of H with max(Πk) ≤
Lk, which can be reduced to the most balanced partition problem presented in
Section 9.1. However, we can first compute a k-way partition Πk := {V ′

1 , . . . , V
′
k} using

the LPT algorithm, thereby approximating an optimal solution. If max(Πk) ≤ Lk,
we can then construct a deeply balanced bipartition Π2 = {V1, V2} by choosing
V1 := V ′

1 ∪ . . . ∪ V ′
d k

2 e
and V2 := V ′

d k
2 e+1

∪ . . . ∪ V ′
k. Unfortunately, this approach

completely ignores the optimization of the objective function – yielding balanced
partitions of low quality. If such a bipartition were to be used as initial solution in
the multilevel setting, the objective could still be optimized during the refinement
phase. However, this would necessitate that refinement algorithms are aware of the
concept of deep balance and that they only perform node moves that do not destroy
the deep-balance property of the starting solution. Since this is infeasible in practice,
we propose a different approach that involves fixed nodes.

The key idea of our approach is to compute a prepacking Ψ = {P1, P2} of the
|P1|+ |P2| heaviest nodes of the hypergraph and to show that this prepacking suffices
to ensure that each ε′-balanced bipartition Π2 = {V1, V2} with P1 ⊆ V1 and P2 ⊆ V2

is deeply balanced. Note that the upcoming definitions and theorems are formulated
from the perspective of the first bipartition of the input hypergraph H to simplify
notation. They can be generalized to subhypergraphs HV ′ in a similar fashion as
was done in Definition 9.1. Furthermore, we say that the bipartition Π2 = {V1, V2}
respects a prepacking Ψ = {P1, P2}, if P1 ⊆ V1 and P2 ⊆ V2, and that the bipartition
is balanced, if max(Π2) ≤ L2 := (1+ ε′)d c(V1∪V2)

2 e (with ε′ as defined in Equation 9.1).
The following definition formalizes our idea.

Definition 9.2 (Sufficiently Balanced Prepacking)
Let H = (V,E, c, ω) be a hypergraph for which we want to compute an ε-balanced
k-way partition via recursive bipartitioning. We call a prepacking Ψ of H sufficiently
balanced if every balanced bipartition Π2 respecting Ψ is deeply balanced with respect to
k.

Our approach to compute ε-balanced k-way partitions is outlined in Algorithm 9.1.
We first compute a bipartition Π2. Before recursing on each of the two induced
subhypergraphs, we check if Π2 is deeply balanced using the LPT algorithm in a
similar fashion as described in the beginning of this section. If it is not deeply balanced,
we compute a sufficiently balanced prepacking Ψ and re-compute Π2 – treating the
nodes of the prepacking as fixed nodes. If this second bipartitioning call was able to
compute a balanced bipartition, we found a deeply balanced partition and proceed to
partition the subhypergraphs recursively.

182

9.2 Balanced Recursive Bipartitioning

Note that, in general, we may not detect that Π2 is deeply balanced or fail to find
a sufficiently balanced prepacking Ψ or a balanced bipartition Π2, since all involved
problems are NP-hard. However, as we will see in the experimental evaluation,
Algorithm 9.1 computes balanced partitions for all instances of our large real-world
benchmark set. This indicates that the above-mentioned problems only happen rarely
in practice.

Algorithm 9.1: Recursive Bipartitioning Algorithm
Input: Hypergraph H for which we seek an ε-balanced k-way partition and

subhypergraph HV ′ of H which is to be bipartitioned recursively into
k′ ≤ k blocks.

Output: k′-way partition Πk′ of HV ′

1 L2 ← (1 + ε′)d c(V
′)

2 e // with ε′ as defined in Equation 9.1
2 Π2 := {V1, V2} ← multilevelBipartitioning(HV ′ , L2)
3 if k′ = 2 then return Π2

4 else if Π2 is not deeply balanced w.r.t. k′ then
5 Ψ← sufficientlyBalancedPrepacking(H, k, ε,HV ′ , k′) // see Algorithm 9.2
6 Π2 ← multilevelBipartitioning(HV ′ , L2,Ψ) // treating Ψ as fixed nodes
7 Πk1

← recursiveBipartitioning(H, k, ε,HV1
, k1) with k1 := dk

′

2 e
8 Πk2 ← recursiveBipartitioning(H, k, ε,HV2 , k2) with k2 := bk

′

2 c
9 return Πk′ ← Πk1

∪Πk2

The prepacking Ψ is constructed by incrementally assigning nodes to Ψ in decreasing
order of weight and checking a property P after each assignment that, if satisfied,
implies that the current prepacking is sufficiently balanced. In the proof of property
P, we will extend a k-way prepacking Ψk to an ε-balanced k-way partition Πk using
the LPT algorithm and use the following upper bound on the weight of the heaviest
block of Πk.

Lemma 9.3 (The LPT Bound)
Let H = (V,E, c, ω) be a weighted hypergraph, Ψk be a k-way prepacking for a set
of fixed nodes P ⊆ V , and let O := 〈v1, . . . , vm | vi ∈ V \ P 〉 be the sequence of all
ordinary nodes of V \P sorted in decreasing order of weight. If we assign the remaining
nodes O to the blocks of Ψk by using the LPT algorithm, we can extend Ψk to a k-way
partition Πk of H such that the weight of the heaviest block is bounded by:

max(Πk) ≤ max{1
k
c(P) + hk(O),max(Ψk)}

with hk(O) := max
i∈{1,...,m}

c(vi) +
1

k

i−1∑
j=1

c(vj).

Proof. We define Ψk := {P1, . . . , Pk} and Πk := {V1, . . . , Vk}. Let assume that the
LPT algorithm assigned the i-th node vi of O to block Vj ∈ Πk. We define V (i)

j as

183

9 Multilevel Hypergraph Partitioning with Node Weights

a subset of block Vj that only contains nodes of 〈v1, . . . , vi〉 ⊆ O and P . Since the
LPT algorithm always assigns a node to a block with the smallest weight, the weight
of V (i−1)

j must be smaller or equal to 1
k (c(P) +

∑i−1
j=1 c(vj)) (average weight of all

previously assigned nodes), otherwise V (i−1)

j would be not the block with the smallest
weight.

⇒ c(V (i)

j) = c(V (i−1)

j) + c(vi) ≤
1

k
(c(P) +

i−1∑
j=1

c(vj)) + c(vi) ≤
1

k
c(P) + hk(O)

We can establish an upper bound on the weight of all blocks to which the LPT algorithm
assigns a node to with 1

k c(P)+hk(O). If the LPT algorithm does not assign any node
to a block Vj ∈ Πk, its weight equals c(Pj) ≤ max(Ψk).

⇒ max(Πk) ≤ max{1
k
c(P) + hk(O),max(Ψk)} �

O is sorted in decreasing order of weight because for any permutation O′ of O, it
holds that hk(O) ≤ hk(O

′) – resulting in the tightest bound for max(Πk).
Assuming that the number k of blocks is even (i.e., k1 = k2 = k/2) to simplify

notation, the balance property P is defined as follows (for the generalized version we
refer the reader to Ref. [HMS21a]):

Definition 9.4 (Balance Property P)
Let H = (V,E, c, ω) be a hypergraph for which we want to compute an ε-balanced
k-way partition and let Ψ be a prepacking of H for a set of fixed nodes P ⊆ V .
Furthermore, let Ot := 〈v1, . . . , vt〉 be the sequence of the t heaviest ordinary nodes
of V \ P sorted in decreasing order of weight such that t is the smallest number that
satisfies max(Ψ) + c(Ot) ≥ L2. We say that the prepacking Ψ satisfies the balance
property P if the following two conditions hold:

(i) the prepacking Ψ is deeply balanced

(ii) 1
k/2 max(Ψ) + hk/2(Ot) ≤ Lk.

In the following, we will show that the LPT algorithm can be used to construct a
k/2-way partition Πk/2 for both blocks of any balanced bipartition Π2 = {V1, V2} that
respects Ψ, such that the weight of the heaviest block can be bound by the left term
of Condition (ii). This implies that max(Πk/2) ≤ Lk (right term of Condition (ii)) and
thus proofs that any balanced bipartition Π2 respecting Ψ is deeply balanced. Note
that choosing t as the smallest number that satisfies max(Ψ) + c(Ot) ≥ L2 minimizes
the left term of Condition (ii) (since hk(Ot) ≤ hk(Ot+1)).

Theorem 9.5
A prepacking Ψ of a hypergraph H = (V,E, c, ω) that satisfies the balance property P
is sufficiently balanced with respect to k.

184

9.2 Balanced Recursive Bipartitioning

Proof. For convenience, we use k′ := k/2. Let Π2 = {V1, V2} be an abitrary balanced
bipartition that respects the prepacking Ψ = {P1, P2} with max (Π2) ≤ L2. Since
Ψ is deeply balanced (see Definition 9.4(i)), there exists a k′-way prepacking Ψk′ of
P1 such that max(Ψk′) ≤ Lk. We define the sequence of the ordinary nodes of block
V1 sorted in decreasing weight order with O1 := 〈v1, . . . , vm | vi ∈ V1 \ P1〉. We can
extend Ψk′ to a k′-way partition Πk′ of V1 by assigning the nodes of O1 to the blocks
in Ψk′ using the LPT algorithm. Lemma 9.3 then establishes an upper bound on the
weight of the heaviest block.

max(Πk′)
Lemma 9.3
≤ max{ 1

k′
c(P1) + hk′(O1),max(Ψk′)}

max(Ψ
k′)≤Lk

≤ max{ 1
k′
c(P1) + hk′(O1), Lk}

Let Ot be the sequence of the t heaviest ordinary nodes of V \ P with P := P1 ∪ P2

as defined in Definition 9.4.

Claim 9.6
It holds that: 1

k′ c(P1) + hk′(O1) ≤ 1
k′ max(Ψ) + hk′(Ot).

Proof. see Section 9.4 �

We can conclude that

1

k′
c(P1) + hk′(O1)

Claim 9.6
≤ 1

k′
max(Ψ) + hk′(Ot)

Definition 9.4(ii)
≤ Lk.

This proves that the subhypergraph HV1
is deeply balanced. The proof for block V2

can be done analogously, which then implies that Π2 is deeply balanced. Since Π2 is an
abitrary balanced bipartition respecting Ψ, it follows that Ψ is sufficiently balanced. �

9.2.3 The Prepacking Algorithm
Algorithm 9.2 outlines our approach to efficiently compute a sufficiently balanced
prepacking Ψ. In Line 5, we compute a k′-way prepacking Ψk′ of the i heaviest nodes
with the LPT algorithm and if Ψk′ satisfies max(Ψk′) ≤ Lk, then Line 6 constructs
a deeply balanced prepacking Ψ (which fullfils Condition (i) of Definition 9.4). We
store the blocks P ′

j of Ψk′ together with their weights c(P ′
j) as key in an addressable

priority queue such that we can determine and update the block with the smallest
weight in time O(log k′) (Line 5). In Line 8, we compute the smallest t that satisfies
max(Ψ)+ c(Ot) ≥ L2 via a binary search in logarithmic time over an array containing
the node weight prefix sums of the sequence O, which can be precomputed in linear
time. Furthermore, we construct a range maximum query data structure over the array
Hk′/2 = 〈c(v1), c(v2)+ 1

k′/2
c(v1), . . . , c(vn)+

1
k′/2

∑n−1
j=1 c(vj)〉. Caculating hk′/2(Ot) then

corresponds to a range maximum query in the interval [i+1, i+ t] in Hk′/2, which can
be answered in constant time after Hk′/2 has been precomputed in time O(n) [BF00].

185

9 Multilevel Hypergraph Partitioning with Node Weights

Algorithm 9.2: Prepacking Algorithm
Input: Hypergraph H = (V,E, c, ω) for which we seek an ε-balanced k-way

partition and subhypergraph HV ′ = (V ′, E′, c, ω) of H which is to be to
bipartitioned recursively into k′ ≤ k blocks.

Output: Sufficiently Balanced Prepacking Ψ of V ′

1 Ψ = 〈P1, P2〉 ← 〈∅, ∅〉 and Ψk′ = 〈P ′
1, . . . , P

′
k′〉 ← 〈∅, . . . , ∅〉 // Initialization

2 L2 ← (1+ ε′)d c(V
′)

2 e and Lk ← (1+ ε)d c(V)
k e // with ε′ as defined in Equation 9.1

3 O ← 〈v1, . . . , vn | vi ∈ V ′〉 //V ′ sorted in decreasing order of weight ⇒ O(n log n)
4 for i = 1 to n do
5 Add vi ∈ O to bin P ′

j ∈ Ψk′ with smallest weight //LPT algorithm
6 Ψ← {P ′

1 ∪ . . . ∪ P ′
x, P

′
x+1 ∪ . . . ∪ P ′

k′} with x := dk
′

2 e
7 if max(Ψ) ≤ L2 and max(Ψk′) ≤ Lk then //⇒ Ψ is deeply (ε′-)balanced
8 t← min({t | max(Ψ) + c(Ot) ≥ L2}) //Ot := 〈vi+1, . . . , vi+t〉
9 if 2

k′ max(Ψ) + hk′/2(Ot) ≤ Lk then // Condition (ii) of Definition 9.4
10 return Ψ //⇒ Ψ is sufficiently balanced (Theorem 9.5)

11 return Ψ // No sufficiently balanced prepacking found ⇒ treat all nodes as fixed nodes

In total, the running time of the algorithm is O(n(log k′ + log n)). Note that if the
algorithm reaches Line 11, we could not prove that any of the intermediate constructed
prepackings were sufficiently balanced, in which case Ψ represents a bipartition of HV ′

computed by the LPT algorithm.

9.3 Experiments
We integrated the prepacking technique (see Algorithms 9.1 and 9.2) into the recursive
bipartitioning algorithm of the sequential hypergraph partitioner KaHyPar. Our
implementation is available from http://www.kahypar.org. The code is written in
C++17 and compiled using g++9.2 with the flags -mtune=native -O3 -march=native.
Since KaHyPar offers both a recursive bipartitioning and direct k-way partitioning
algorithm (which uses the RB algorithm in the initial partitioning phase), we refer
to the RB-version using our improvements as rKaHyPar-BP and to the direct k-way
version as kKaHyPar-BP (BP = Balanced Partitioning).

Instances. The following experimental evaluation is based on a benchmark set
that consists of 50 hypergraphs originating from the VLSI design and scientific
computing domain. It contains instances from the ISPD98 VLSI Circuit Benchmark
Suite [Alp98] (18 instances), the DAC 2012 Routability-Driven Placement Benchmark
Suite [Vis+12] (9 instances), 16 instances from the Stanford Network Analysis (SNAP)
Platform [LK14], and 7 highly asymmetric matrices of Davis et al. [DDN20] (referred
to as ASM). For VLSI instances (ISPD98 and DAC), we use the area of a circuit

186

http://www.kahypar.org

9.3 Experiments

ASM SNAP

ISPD98 DAC

1 2.5 5 10 15 20 1 2.5 5 10 15 20

0

102

104

106

0

102

104

106

Vertex Weight / Total Hypergraph Weight [%]

N
o.

of
V
er

ti
ce

s

Figure 9.2: Distributions of node weights for different instance types in our
benchmark sets. Each bucket of a histogram shows the number of nodes (y-axis)
that contribute x% to the total weight of the corresponding hypergraph.

element as the weight of its corresponding node. We translate sparse matrices (SNAP
and ASM instances) to hypergraphs using the row-net model [CA99] and use the
degree of a node as its weight. The node weight distributions of the individual instance
types are depicted in Figure 9.2.

System and Methodology. All experiments are performed on a single core of a
cluster with Intel Xeon Gold 6230 processors running at 2.1 GHz with 96GB RAM.
We partition each hypergraph into k ∈ {2, 4, 8, 16, 32, 64, 128} blocks, and use
ε ∈ {0.01, 0.03, 0.1} and ten repetitions using different seeds for each combination
of k and ε, and a time limit of eight hours. We call a combination of a hypergraph
H = (V,E, c, ω), k, and ε an instance.

We compare rKaHyPar-BP and kKaHyPar-BP with the latest recursive bipartitioning
(rKaHyPar) and direct k-way version (kKaHyPar) of KaHyPar [Sch+16a; Akh+17a;
Got+20], the default (PaToH-D) and quality preset (PaToH-Q) of PaToH 3.3 [CA99], as
well as with the recursive bipartitioning (hMetis-R) and direct k-way version (hMetis-K)
of hMetis 2.0 [Kar+99; KK00]. We also include the default (Mt-KaHyPar-D) and
quality preset (Mt-KaHyPar-Q-F) of our new shared-memory hypergraph partitioner
Mt-KaHyPar (using 10 threads). Each partitioner minimizes the connectivity metric.

187

9 Multilevel Hypergraph Partitioning with Node Weights

9.3.1 The LPT Balance Constraint
A k-way partition of a weighted hypergraph H = (V,E, c, ω) is balanced, if the
weight of each block is below some predefined upper bound. In the literature, the
most commonly used bounds are Lk := (1 + ε)d c(V)

k e (standard definition) and
Lmax
k := Lk +maxv∈V c(v) [FM82; Sch13; Sch20]. The latter was initially proposed

by Fiduccia and Mattheyses [FM82] for bipartitioning to ensure that the highest gain
node can always be moved to the opposite block.

Both definitions exhibit shortcomings in the presence of heavy nodes: As soon as the
hypergraph contains even a single node with c(v) > Lk, no feasible solution exists when
the block weights are constrained by Lk, while for Lmax

k it follows that Lmax
k > 2Lk

– allowing large variations in block weights even if ε is small. In the following, we
therefore propose a new balance constraint that (i) guarantees the existence of an
ε-balanced k-way partition and (ii) avoids unnecessarily large imbalances.

While the optimal solution of the most balanced partition problem would yield a
partition with the best possible balance, it is not feasible in practice to use LOPT

k :=
(1 + ε)OPT(H, k) as balance constraint, because finding such a k-way partition is
NP-hard [GJ79]. Hence, we propose to use the bound provided by the LPT algorithm
instead:

LLPT
k := (1 + ε) LPT(H, k) ≤

(
4

3
− 1

3k

)
LOPT
k . (9.2)

If the hypergraph is unweighted, the LPT algorithm will always find an optimal
solution with OPT(H, k) = d |V |

k e and thus, LLPT
k equals Lk.

Note that since all evaluated partitioners internally employ Lk as balance constraint,
we initialize each partitioner with a modified imbalance factor ε̂ instead of ε which is
calculated as follows:

Lk = (1 + ε̂)

⌈
c(V)

k

⌉
= (1 + ε)LPT(H, k) = LLPT

k ⇒ ε̂ =
LLPT
k

d c(V)
k e
− 1.

We consider the resulting k-way partition Πk to be imbalanced, if it is not ε̂-balanced.
Furthermore, we remove all nodes v ∈ V from H with a weight greater than Lk =

(1 + ε)d c(V)
k e as proposed by Caldwell et al. [CKM00b] and adapt k to k′ := k − |VR|,

where VR represents the set of removed nodes. We repeat that step recursively until
there is no node with a weight greater than Lk′ := (1 + ε)d c(V \VR)

k′ e. The input for
each partitioner is the subhypergraph HV \VR

of H for which we compute a k′-way
partition with LLPT

k′ as maximum allowed block weight.

9.3.2 Balanced Partitioning
In Table 9.1, we report the percentage of imbalanced instances produced by each
partitioner for each instance type and ε. Both kKaHyPar-BP and rKaHyPar-BP
compute balanced partitions for all tested instances. For the remaining partitioners,
the number of imbalanced solutions increases as the balance constraint becomes

188

9.3 Experiments

Table 9.1: Percentage of imbalanced instances produced by each partitioner for
each combination of instance type and ε.

ISPD98 DAC ASM SNAP
ε 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1

kKaHyPar-BP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rKaHyPar-BP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

kKaHyPar 6.3 5.6 0.8 9.5 7.9 6.3 4.1 4.1 2.0 0.9 0.9 0.0
rKaHyPar 10.3 8.7 7.1 19.0 19.0 14.3 6.1 4.1 4.1 6.2 2.7 0.9

Mt-KaHyPar-D 4.0 7.1 1.6 11.1 9.5 4.8 4.1 4.1 2.0 3.6 2.7 0.0
Mt-KaHyPar-Q-F 5.6 5.6 1.6 11.1 12.7 4.8 4.1 4.1 2.0 3.6 1.8 0.0

hMetis-R 17.5 15.1 7.1 20.6 15.9 12.7 8.2 6.1 4.1 15.2 10.7 4.5
hMetis-K 43.7 22.2 9.5 33.3 22.2 11.1 67.3 32.7 4.1 33.9 20.5 3.6
PaToH-Q 15.9 11.1 5.6 23.8 17.5 9.5 24.5 6.1 4.1 33.9 8.0 1.8
PaToH-D 9.5 7.9 3.2 20.6 17.5 9.5 28.6 6.1 4.1 22.3 11.6 2.7

Table 9.2: Percentage of imbalanced instances produced by each partitioner for
each combination of k and ε.

k ∈ {2, 4, 8} k ∈ {16, 32} k ∈ {64, 128} All
ε 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1 0.01 0.03 0.1

kKaHyPar-BP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rKaHyPar-BP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

kKaHyPar 0.7 0.0 0.0 5.0 6.0 2.0 11.1 9.1 4.0 4.9 4.3 1.7
rKaHyPar 2.0 0.7 0.7 11.0 9.0 7.0 21.0 18.0 13.0 10.0 8.0 6.0

Mt-KaHyPar-D 0.7 0.7 0.0 6.0 8.0 3.0 11.0 11.0 3.0 5.1 5.7 1.7
Mt-KaHyPar-Q-F 0.0 0.0 0.0 7.0 8.0 3.0 13.0 11.0 3.0 5.7 5.4 1.7

hMetis-R 2.7 2.0 0.0 18.0 14.0 7.0 34.0 27.0 17.0 16.0 12.6 6.9
hMetis-K 12.0 2.0 0.0 53.0 21.0 11.0 76.0 57.0 14.0 42.0 23.1 7.1
PaToH-Q 15.3 2.7 0.7 28.0 11.0 5.0 34.0 22.0 11.0 24.3 10.6 4.9
PaToH-D 9.3 2.7 0.7 18.0 11.0 4.0 32.0 22.0 10.0 18.3 10.6 4.3

tighter. For the previous KaHyPar versions, the number of imbalanced partitions is
most pronounced on VLSI instances: For ε = 0.01, kKaHyPar and rKaHyPar compute
infeasible solutions for 6.3% (10.3%) of the ISPD98 and for 9.5% (19.0%) of the DAC
instances. Comparing the distribution of node weights reveals that these instances
tend to have a larger proportion of heavier nodes compared to the ASM and SNAP
instances (see Figure 9.2).

We also see that the number of imblanced partitions of both variants of Mt-KaHyPar
is comparable to that of kKaHyPar, while both version of PaToH and hMetis-R produce
a similar number of infeasible solutions than rKaHyPar with a notable exceptions:
PaToH and hMetis-K compute significantly fewer feasible solutions on sparse matrix
instances (ASM and SNAP) for ε = 0.01. Out of all partitioners, hMetis-K yields the
most imbalanced instances across all instances types. As can be seen in Table 9.2, the
number of imbalanced partitions produced by each competing partitioner increases
with deceasing ε and increasing k.

189

9 Multilevel Hypergraph Partitioning with Node Weights

Table 9.3: Occurrence of prepacked nodes (i.e., nodes that are fixed to a specific
block during partitioning) for each combination of k and ε when using rKaHyPar-
BP and kKaHyPar-BP: Minimum/average/maximum percentage of prepacked
nodes (left), and percentage of instances for which the prepacking is executed at
least once (right).

ε = 0.01 ε = 0.03 ε = 0.1 Prepacking Triggered
k Min Avg Max Min Avg Max Min Avg Max ε = 0.01 ε = 0.03 ε = 0.1

rK
aH

yP
ar

-B
P

2 - - - - - - - - - 0.0 0.0 0.0
4 - - - - - - - - - 0.0 0.0 0.0
8 ≤ 0.1 ≤ 0.1 0.2 ≤ 0.1 ≤ 0.1 ≤ 0.1 - - - 5.0 1.7 0.0

16 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 8.3 5.0 3.3
32 ≤ 0.1 8.1 59.0 ≤ 0.1 6.2 68.4 ≤ 0.1 1.9 14.7 20.0 18.3 10.0
64 ≤ 0.1 23.2 87.7 ≤ 0.1 17.3 90.9 ≤ 0.1 2.7 35.9 18.3 13.3 10.0

128 ≤ 0.1 67.9 100.0 ≤ 0.1 42.0 96.3 ≤ 0.1 15.4 97.0 26.7 20.0 15.0

k
K

aH
yP

ar
-B

P

2 - - - - - - - - - 0.0 0.0 0.0
4 - - - - - - - - - 0.0 0.0 0.0
8 6.7 17.1 41.6 0.4 0.5 0.6 2.3 2.3 2.3 5.0 3.3 1.7

16 3.1 15.6 34.0 0.2 2.0 7.2 1.9 2.1 2.3 8.3 6.7 3.3
32 0.3 29.9 56.0 0.1 11.7 42.3 0.2 3.4 26.3 13.3 15.0 6.7
64 0.2 54.4 94.3 0.3 23.0 69.3 0.4 6.6 94.7 21.7 10.0 8.3

128 0.5 76.5 100.0 0.4 42.4 91.0 0.3 15.7 59.8 28.3 21.7 11.7

Table 9.3 shows (i) how often our prepacking algorithm is triggered at least once in
rKaHyPar-BP and kKaHyPar-BP (see Line 4 in Algorithm 9.1) and (ii) the percentage
of nodes that are treated as fixed nodes. In rKaHyPar-BP, except for k = 128, on
average less than 25% of the nodes are treated as fixed nodes (even less than 10%
for k < 64), which provides sufficient flexibility to optimize the connectivity metric
on the remaining ordinary nodes. However, in a few cases there are also runs where
almost all nodes are added to the prepacking. As expected, the triggering frequency
and the percentage of fixed nodes increases for larger values of k and smaller ε. The
percentage of prepacked nodes in kKaHyPar-BP is larger than in rKaHyPar-BP on
average. Here, we use the prepacking algorithm in the initial partitioning phase where
node weights tend to be larger than on the input hypergraph.

9.3.3 Solution Quality and Running Times
In Figure 9.3, we compare the solution quality of KaHyPar-BP to the different parti-
tioners for ε = 0.01. The performance profiles look similar for ε ∈ {0.03, 0.1} and are
therefore omitted. Comparing the different KaHyPar configurations in Figure 9.3 (top-
left), we can see that our new configurations provide the same solution quality as their
non-prepacking counterparts. Furthermore, we see that, in general, the direct k-way
algorithm still performs better than its RB counterpart (on par with Ref. [Sch20]).
The other performance profiles in Figure 9.3 therefore compare the strongest configu-
ration kKaHyPar-BP with Mt-KaHyPar (top-right), hMetis (bottom-left) and PaToH
(bottom-right). We see that kKaHyPar-BP performs considerably better than the

190

9.3 Experiments

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

ti
on

of
In

st
an

ce
s

1 1.05 1.1 1.5 2 101 102 7 U
Quality Relative to Best [τ]

kKaHyPar-BP
rKaHyPar-BP

kKaHyPar
rKaHyPar

1 1.05 1.1 1.5 2 101 102 7 U
Quality Relative to Best [τ]

kKaHyPar-BP
Mt-KaHyPar-D 10

Mt-KaHyPar-Q-F 10

1 1.05 1.1 1.5 2 101102 7 U
Quality Relative to Best [τ]

kKaHyPar-BP
hMetis-R

hMetis-K

1 1.05 1.1 1.5 2 101 102 7 U
Quality Relative to Best [τ]

kKaHyPar-BP
PaToH-Q

PaToH-D

Figure 9.3: Performance profiles comparing the solution quality of KaHyPar-BP
to KaHyPar (top-left), Mt-KaHyPar (top-right), hMetis (bottom-left), and PaToH
(bottom-right) for ε = 0.01.

competitors with the notable exception of Mt-KaHyPar-Q-F that only produces slightly
worse partitions than kKaHyPar-BP. For unweighted instances, Mt-KaHyPar-Q-F and
kKaHyPar compute partitions with comparable solution quality (see Figure 8.9). We
assume that the loss of quality is due to the rebalancing component that we run
on the input hypergraph in Mt-KaHyPar when we detect that the final partition is
imbalanced, which is more often triggered for weighted instances and smaller imbalance
ratios. If we compare kKaHyPar-BP with each partitioner individually (for ε = 0.01),
kKaHyPar-BP produces on a majority of the instances partitions with higher quality
than rKaHyPar-BP (on 70.3% of the instances), kKaHyPar (54%), rKaHyPar (73.1%),
Mt-KaHyPar-D (85.7%), Mt-KaHypar-Q-F (59.4%), hMetis-R (61.7%), hMetis-K (82%),
PaToH-Q (85.7%) and PaToH-D (96.9%).

The running time plots in Figure 9.4 (top-left) show that our new approach does not
impose any additional overheads in KaHyPar. For ε = 0.01 (and also for ε ∈ {0.03, 0.1}),
kKaHyPar-BP (geometric mean running time is 42.89s) and rKaHyPar-BP (29.61s) are
slightly faster than their counterparts kKaHyPar (46.91s) and rKaHyPar (30.09s) as our

191

9 Multilevel Hypergraph Partitioning with Node Weights

101

10−2

10−1

1

7
U

R
el

.
sl

ow
do

w
n

to
k
K

aH
yP

ar
-B

P

1

10−5

10−4

10−3

10−2

10−1

7
U

R
el

.
sl

ow
do

w
n

to
k
K

aH
yP

ar
-B

P
101

10−2

10−1

1

7
U

R
el

.
sl

ow
do

w
n

to
k
K

aH
yP

ar
-B

P

101

10−4

10−3

10−2

10−1

1

7
U

R
el

.
sl

ow
do

w
n

to
k
K

aH
yP

ar
-B

P

0 100 200 300 350
Instances

0 100 200 300 350
Instances

0 100 200 300 350
Instances

0 100 200 300 350
Instances

kKaHyPar-BP
rKaHyPar-BP
kKaHyPar

rKaHyPar
Mt-KaHyPar-D 10
Mt-KaHyPar-Q-F 10

PaToH-Q
PaToH-D
hMetis-R

hMetis-K

Figure 9.4: Running times of the different configurations of KaHyPar (left),
hMetis (right), and PaToH (right) relative to kKaHyPar-BP for ε = 0.01.

new algorithm has replaced the previous balancing strategy in KaHyPar (restarting the
bipartition with an tighter bound on the weight of the heaviest block if the bipartition
is imbalanced). The running time difference is less pronounced for rKaHyPar-BP and
rKaHyPar. This can be explained by the fact that, in rKaHyPar-BP, our prepacking
algorithm is executed on the input hypergraph, whereas it is executed on the coarsest
hypergraph in kKaHyPar-BP. The running time of all KaHyPar configurations increases
with larger imbalance ratios (kKaHyPar: 56.69s for ε = 0.03 and 75.26s for ε = 0.1).
This is expected since the running time of the flow-based refinement algorithm used in
KaHyPar [HSS19a; Got+20] depends on ε. The running times of all other partitioners
do not differ significantly with varying ε except for Mt-KaHyPar-Q-F (3.25s for ε = 0.01,
3.88s for ε = 0.03, and 4.39s for ε = 0.1) that also uses flow-based refinement. For
ε = 0.01, kKaHyPar-BP (42.89s) is faster than hMetis-R (62.07s) and hMetis-K (54.04s)
but slower than PaToH-Q (18.65s), Mt-KaHyPar-Q-F (3.25s), PaToH-D (0.88s), and
Mt-KaHyPar-D (0.75s).

192

9.4 Proof of Claim 9.6

9.4 Proof of Claim 9.6
Lemma 9.7
Let L = 〈a1, . . . , an〉 be a sequence of elements sorted in decreasing weight order with
respect to a weight function c : L→ R≥0 (for a subsequence A := 〈a1, . . . , al〉 of L, we
define c(A) :=

∑l
i=1 c(ai)), L′ be an abitrary subsequence of L sorted in decreasing

weight order and Lm = 〈a1, . . . , am〉 the subsequence of the m ≤ n heaviest elements
in L. Then the following conditions hold:

(i) If c(L′) ≤ c(Lm), then hk(L
′) ≤ hk(Lm)

(ii) If c(L′) > c(Lm), then hk(L
′)− 1

k c(L
′) ≤ hk(Lm)− 1

k c(Lm)

Proof. For convenience, we define L′ := 〈b1, . . . , bl〉. Note that ∀i ∈ {1, . . . ,min(m,
l)} : c(ai) ≥ c(bi), since Lm contains the m heaviest elements in decreasing order. We
define i := argmaxi∈{1,...,l} c(bi) +

1
k

∑i−1
j=1 c(bj) (index that maximizes hk(L

′)).
(i) + (ii): If i ≤ m, then

hk(L
′) = c(bi) +

1

k

i−1∑
j=1

c(bj)
∀j∈[1,i]: c(bj)≤c(aj)

≤ c(ai) +
1

k

i−1∑
j=1

c(aj) ≤ hk(Lm)

(i): If m < i ≤ l, then

hk(L
′) = c(bi) +

1

k

i−1∑
j=1

c(bj) = c(bi)−
1

k

n∑
j=i

c(bj) +
1

k
c(L′) ≤

(
1− 1

k

)
c(bi) +

1

k
c(L′)

c(bi)≤c(am)
c(L′)≤c(Lm)

≤
(
1− 1

k

)
c(am) +

1

k
c(Lm) = c(am) +

1

k

m−1∑
j=1

c(aj) ≤ hk(Lm)

(ii): If m < i ≤ l, then

hk(L
′)− 1

k
c(L′) = c(bi) +

1

k

i−1∑
j=1

c(bj)−
1

k
c(L′) = c(bi)−

1

k

n∑
l=i

c(bl) ≤
(
1− 1

k

)
c(bi)

c(bi)≤c(am)

≤
(
1− 1

k

)
c(am) = c(am) +

1

k

m−1∑
j=1

c(aj)−
1

k
c(Lm) ≤ hk(Lm)− 1

k
c(Lm)�

Claim (9.6)
It holds that: 1

k′ c(P1) + hk′(O1) ≤ 1
k′ max(Ψ) + hk′(Ot).

Proof. Remember, Ψ = {P1, P2}, Π2 = {V1, V2} with P1 ⊆ V1 and P2 ⊆ V2, O1 is
equal to V1 \ P1 and Ot represents the t heaviest nodes of (V1 ∪ V2) \ (P1 ∪ P2) with

193

9 Multilevel Hypergraph Partitioning with Node Weights

max(Ψ) + c(Ot) ≥ L2 as defined in Definition 9.4. The following proof distingush two
cases based on Lemma 9.7.

If c(O1) ≤ c(Ot), then

1

k′
c(P1) + hk′(O1)

Lemma 9.7(i)
≤ 1

k′
c(P1) + hk′(Ot)

c(P1)≤max(Ψ)

≤ 1

k′
max(Ψ) + hk′(Ot)

If c(O1) > c(Ot), then

1

k′
c(P1) + hk′(O1) =

1

k′
c(P1) + hk′(O1)−

1

k′
c(O1) +

1

k′
c(O1)

Lemma 9.7(ii)
≤ 1

k′
(c(P1) + c(O1)) + hk′(Ot)−

1

k′
c(Ot)

c(P1)+c(O1)=c(V1)
=

1

k′
(c(V1)− c(Ot)) + hk′(Ot)

c(V1)≤L2

≤ 1

k′
(L2 − c(Ot)) + hk′(Ot)

max(Ψ)+c(Ot)≥L2

≤ 1

k′
max(Ψ) + hk′(Ot) �

194

10Chapter 10

Conclusion

In this dissertation, we implemented the first shared-memory multilevel hypergraph
partitioner that achieves the same solution quality as the highest-quality sequential
algorithms while being an order of magnitude faster with ten threads. This was made
feasible by carefully analyzing the core components of the best sequential systems
and translating techniques essential for high solution quality into the parallel context.
We engineered different scalable refinement algorithms and presented several novel
concurrent gain computation techniques. We integrated the refinement algorithms into
two parallel multilevel algorithms: a traditional multilevel partitioner that contracts
clusters of nodes on each level and a novel parallelization of the n-level partitioning
scheme that contracts only a single node on each level. We further presented several
optimizations for graph partitioning that accelerated our overall partitioning algorithm
by almost a factor of two for graphs. In a large experimental evaluation with 25
different sequential and parallel partitioning algorithms, we showed that our new shared-
memory (hyper)graph partitioner Mt-KaHyPar outperforms most existing partitioning
algorithms for optimizing the connectivity metric and can partition extremely large
(hyper)graphs very fast with high solution quality.

We started this work with fundamental techniques to accurately compute gain
values. This is especially challenging in the parallel setting as the gain of a node
move can change between its initial calculation and actual execution due to concurrent
node moves in its neighborhood. To this end, we introduced the attributed gain
value technique that recomputes the gain of a node move based on synchronized
data structure updates. We further presented a concurrent data structure for caching
gain values that enables faster retrieval of the best possible move for a node. For
maintaining the gain values in the setting where each node is moved at most once,
we showed that our proposed gain table provides a better asymptotic worst-case
complexity than the gain table used in KaHyPar [Akh+17a].

Based on this, we have implemented three parallel refinement algorithms: a label
propagation refinement and highly-localized direct k-way FM algorithm, and a novel
parallelization of flow-based refinement. In our multilevel algorithms, we first run
the label propagation algorithm to find all simple node moves and then use the FM
algorithm and flow-based refinement focussing on non-trivial improvements. Our
highly-localized direct k-way FM algorithm improves an existing implementation used
in the shared-memory graph partitioner Mt-KaHIP [ASS17] in several ways. In the
previous algorithm of Mt-KaHIP, the threads perform node moves only locally and
at the end of a refinement pass, the move sequences of the different threads are

195

10 Conclusion

concatenated to a global move sequence, for which gains are recomputed sequentially.
In our implementation, the threads search for improvements in small non-overlapping
regions of the (hyper)graph, and once they find an improvement, they immediately
apply it to the global partition such that other threads can see these changes. We
further implemented an algorithm to recompute the gain values of all node moves in
the global move sequence in parallel.

We also presented a novel parallelization of flow-based refinement, which is consid-
ered the most powerful improvement heuristic for (hyper)graph partitioning at the
moment. It parallelizes the approach used in the sequential hypergraph partitioner
KaHyPar [HSS19a; Got+20]. The original algorithm works on pairs of blocks, for which
we implemented an algorithm that schedules the bipartitioning routine on adjacent
block pairs of the partition in parallel. We additionally integrated a parallel maximum
flow algorithm to increase the scalability of flow-based refinement in situations where
the number of adjacent block pairs does not suffice to achieve reasonable speedups.
Furthermore, we proposed several optimizations that substantially accelerate the
algorithm in practice.

We then integrated the refinement algorithms into a parallel multilevel partitioning
algorithm. The coarsening algorithm finds and contracts clusters of nodes on each
level in parallel, and is guided by a parallel community detection algorithm [HS17a].
For initial partitioning, we use parallel recursive bipartitioning with a work-stealing
approach to account for load imbalances within the recursive partitioning calls. We
further use a portfolio of different bipartitioning techniques to find an initial solution
of the coarsest (hyper)graph [Heu15a; Sch+16a]. Each algorithm in this portfolio
is executed several times independently in parallel, while we adjust the number of
repetitions dynamically, meaning that algorithms that produce better bipartitions
than others run more often. We then use the best bipartition out of all runs as
initial solution. In the uncoarsening phase, we use our parallel refinement algorithms
to improve the solution on each level. The overall parallel algorithm achieves good
speedups with 24.7 for 64 threads on average (without flow-based refinement).

Moveover, we presented a novel parallelization of the n-level partitioning scheme
used in the highest-quality sequential hypergraph partitioner KaHyPar [Sch20]. This
scheme takes the multilevel paradigm to its most extreme version by only contracting
a single node on each level. Correspondingly, in the uncoarsening phase, only a single
node is uncontracted, allowing a highly-localized search for improvements. Although
this approach seems inherently sequential, we showed that the n-level scheme can be
parallelized efficiently under certain relaxations without comprises in solution quality.
A key observation for our parallel implementation was that any valid sequence of
contractions forms a forest (contracting a node v onto another node u induces an
arc (v, u) in the forest). We then presented a concurrent construction algorithm
of the contraction forest that we used to derive a parallel schedule of contractions
in the coarsening phase. These contractions are then applied to our new dynamic
hypergraph data structure in parallel. In contrast to the hypergraph data structure
used in KaHyPar, contracting two nodes does not require to allocate additional memory,
which makes the approach applicable for very large hypergraphs. In the uncoarsening

196

phase, we assemble independent contractions in batches, each having roughly the
same size. Each batch is uncontracted in parallel, and uncontracting a batch resolves
the last dependencies required to uncontract the next batch. After uncontracting
a batch, we run a highly-localized version of label propagation and FM refinement
around the nodes contained in the batch. Our n-level partitioning algorithm achieves
similar speedups to our multilevel partitioner (25.9 for 64 threads on average) and
produces better partitions without flow-based refinement (median improvement is
2%). However, in the setting where two algorithms are given the same amount of time
to find a solution or when flow-based refinement is used, our multilevel and n-level
partitioner produces partition with comparable solution quality.

In contrast to the prevalent perception that hypergraph partitioning is “inherently
more complicated” [Kay+12] than graph partitioning and thus more complex “in
terms of implementation and running time” [Bul+16], we showed that the main
differences between both are in the implementation of the (hyper)graph data structure
and how gain values for node moves are computed. We then implemented simplified
data structures for graph partitioning that we used as drop-in replacement in our
partitioning algorithms. As a result, the optimizations accelerated our multilevel and
n-level partitioning algorithms by almost a factor of two for graphs.

We also revisited the balanced hypergraph partitioning problem for weighted hy-
pergraphs in the sequential setting. We showed that existing sequential partitioning
algorithms considerably struggle to find balanced solution for weighted real-world
instances. To this end, we presented a technique that enables partitioners based on
recursive bipartitioning to reliably compute balanced partitions. The proposed method
balances the partition by pre-assigning a small portion of the heaviest nodes to the
two blocks of each bipartition and optimizes the objective function on the remaining
nodes. We further established a balance property for the pre-assigned nodes that is
verifiable in polynomial time and, if fulfilled, leads to provable balance guarantees
for the resulting partition obtained via recursive bipartitioning. We integrated the
balancing technique into the sequential hypergraph partitioner KaHyPar [Sch20]. In
the experimental evaluation, we showed that our new approach computes balanced
partitions on all tested instances without negatively affecting the solution quality and
running time of KaHyPar.

In our experimental evaluation, we evaluated 25 different sequential and parallel
(hyper)graph partitioning algorithms on over 800 graphs and hypergraphs. We com-
pared our parallel multilevel partitioner without flow-based refinement (Mt-KaHyPar-D)
to fast sequential and parallel partitioners. For comparison to the highest-quality
sequential partitioner, we used our parallel n-level partitioner with flow-based refine-
ment (Mt-KaHyPar-Q-F). Mt-KaHyPar-D was already able to outperform almost all
existing partitioning algorithms in terms of solution quality and running time. On
large hypergraphs, the partitions produced by Mt-KaHyPar-D are better than those of
the state-of-the-art distributed-memory hypergraph partitioner Zoltan [Dev+06] by
23% in the median, while it is also faster by a factor of 2.72 on average. Out of all
evaluated partitioners, only the shared-memory graph partitioner KaMinPar [Got+21e]
was faster than Mt-KaHyPar-D, but the computed partitions of KaMinPar are 10%

197

10 Conclusion

worse in the median. Our highest-quality configuration Mt-KaHyPar-Q-F achieves the
same solution quality as the best sequential hypergraph partitioner KaHyPar, while
being an order of magnitude faster with ten threads. For graph partitioning, only
KaFFPa-StrongS was able to produce better partitions than Mt-KaHyPar-Q-F (median
improvement is 1%), but it is more than an order of magnitude slower.

The main contribution of this work is a partitioning algorithm that can compute high
quality solutions extremely fast for very large graphs and hypergraphs. This opens up
new opportunities for applications that previously relied on fast and medium-quality
partitioning methods. For applications where quality is more important than speed,
we provide a system that can cope with ever growing problem sizes, as Mt-KaHyPar has
proven effective in partitioning (hyper)graphs with more than one billion edges/pins.

Future Challenges. In our experimental evaluation in Chapter 8, we briefly dis-
cussed what we consider a significant improvement in running time and solution quality.
Our approach was to look at improvements that were considered as significant in
the past, which were a few percent for solution quality and an order of magnitude
for running times. A more natural way to assess improvements is to evaluate their
impact for applications of hypergraph partitioning. However, due to the versatility of
(hyper)graph partitioning, researchers often do not have the required domain-specific
knowledge to setup appropriate benchmarks. Conversely, practitioners do not have a
comprehensive overview of the (hyper)graph partitioner landscape and often stick to
tools that worked well in the past [Cur+10; Kum+14] or develop their own solutions
because existing algorithms do not support some constraints required by the appli-
cation [ABM16; Kab+17]. A study evaluating the impact of different partitioning
algorithms for several applications would provide valuable insights for both sides.

Although our shared-memory partitioner can partition very large (hyper)graphs,
there exist instances that do not fit into the main memory of a single machine. Thus,
future research should focus on translating the techniques presented in this work into
the distributed-memory setting. A possible implementation of the multi-try k-way
FM algorithm could compute small regions around a predefined set of seed nodes in
a preprocessing step and distribute them to the PEs that then run highly-localized
FM searches on them sequentially. The parallel scheduling scheme of our flow-based
refinement algorithm can be integrated into distributed-memory partitioners similarly
as already done for 2-way FM refinement [CP08; HSS10]. The PEs can collaborate
in extracting a flow network, which is then copied to one PE performing flow-based
refinement sequentially.

Since the number of available machines in data centers and high-performance
computing clusters increases, partitioning (hyper)graphs into a large number of blocks
(e.g., k ≥ 1000) becomes increasingly important. However, since the complexity and
memory overhead of some techniques used in Mt-KaHyPar depends on k (e.g., the gain
table stores nk entries), it is currently not well-suited for the large k setting. During
our work on Mt-KaHyPar, we were also involved in developing the shared-memory
graph partitioner KaMinPar [Got+21e], specifically tailored for partitioning graphs
into a large number of blocks. In an ongoing bachelor thesis, we study the performance

198

of several advanced refinement techniques in this setting. Here, it turns out that
FM refinement only leads to marginal improvements compared to label propagation
refinement, while flow-based refinement can still improve the solution quality by a few
percentages. However, the improvements are not as pronounced as for smaller values
of k. Thus, further research is required to understand why these techniques are less
effective in this case.

Our experimental results suggest that traditional multilevel partitioners can achieve
the same solution quality as n-level partitioners when both are given the same amount
of time to compute a solution or when flow-based refinement is used. We have presented
a simple optimization improving the running time of the overall n-level partitioning
algorithm by almost 60% by always selecting the node with the lower degree as the
contraction partner. However, this also negatively affected the solution quality, which
we could not explain. Moreover, a version of flow-based refinement running on each
level might be attractive to further improve the solution quality (currently, it only
runs on an approximately logarithmic number of levels). A concrete implementation
could construct small flow problems around the nodes contained in each batch and
then solve them in parallel. An alternative could be to perform the uncontraction
directly on the flow network and use the flow from the previous level to augment it
again to a maximum flow on the current level.

We found some instances where we could show that multilevel partitioning algorithms
produce partitions of poor quality (not published). Here, we compared several existing
multilevel partitioners to a simple heuristic: sort the nodes in increasing order of their
node degrees and then cut the sorted order into two equally-sized blocks to obtain a
bipartition. Surprisingly, this algorithm produced bipartitions with better edge cuts
than all evaluated multilevel algorithms by more than a factor of two for some graphs
(we found ten instances in set MG). These graphs have the property that they consist
of a small and dense core of highly connected nodes, while other nodes are only loosely
connected to them. A good bipartition places the dense core (or the high-degree nodes)
into one block. In multilevel algorithms, the low-degree nodes are contracted onto
the high-degree nodes. This increases their node weight, forcing initial partitioning
to cut the dense core due to the balance constraint. As one might assume that these
are just some obscure instances not relevant in practice, we found that the Twitter
graph (≈ 1.2 billion edges) actually suffers from this problem. In an ongoing master
thesis, we currently work on adapting coarsening and initial partitioning to deal with
such graphs. The idea is to remove or ignore low-degree nodes in the coarsening phase
and then use a specialized packing algorithm to assign them to the blocks after initial
partitioning.

199

201

Appendix

List of Algorithms

4 Parallel Improvement Algorithms
4.1 Moves a node u from block Vi to Vj . 62
4.2 Computes the highest gain move for a node u 64
4.3 Gain Table Update . 65
4.4 Parallel Gain Recalculation . 68
4.5 The Parallel Label Propagation Algorithm 69
4.6 Multi-Try k-Way FM Algorithm . 71
4.7 Highly-Localized k-Way FM Algorithm 72
4.8 Parallel Flow-Based Refinement . 75
4.9 The FlowCutter Algorithm . 79

5 Parallel Multilevel Hypergraph Partitioning
5.1 Parallel Multilevel Hypergraph Partitioning 86
5.2 Clustering Algorithm . 90

6 Parallel n-level Hypergraph Partitioning
6.1 Parallel n-level Hypergraph Partitioning 122
6.2 Contraction Operation . 126
6.3 Uncontraction Operation . 127
6.4 Uncontraction Gain Table Update . 133

7 From Hypergraphs to Graphs
7.1 Moving a node u from block Vi to Vj 147

9 Multilevel Hypergraph Partitioning with Node Weights
9.1 Recursive Bipartitioning Algorithm . 183
9.2 Prepacking Algorithm . 186

205

List of Figures

1 Introduction
1.1 The graph and hypergraph model of the relationships between a set of

authors and their publications. 2

2 Preliminaries
2.1 Example of a 4-way partition of a hypergraph. 10
2.2 The bipartite graph representation and Lawler expansion. 12
2.3 The RAM and PRAM model. 17
2.4 The TBB task scheduler. 19
2.5 Speedups of different parallel algorithms used in this work. 20
2.6 Basic properties of the graphs and hypergraphs in our benchmark sets. 22
2.7 Example of a performance profile plot and effectiveness tests. 26
2.8 Example of a relative running time and speedup plot. 27

3 Related Work
3.1 The bucked priority queue used in the FM algorithm. 33
3.2 Illustration of a situation where the FM algorithm makes a suboptimal

decision. 36
3.3 Example of one iteration of the FBB algorithm. 38
3.4 The multilevel scheme. 40
3.5 The dynamic hypergraph data structure used in KaHyPar. 42
3.6 Performance profiles comparing KaFFPa-StrongS to Metis-K, and kKa-

HyPar to PaToH-D. 48
3.7 Different types of concurrent move conflicts. 50
3.8 The deep multilevel scheme. 56
3.9 Performance profiles comparing KaFFPa-StrongS to Mt-KaHIP, and

kKaHyPar to Zoltan. 58

4 Parallel Improvement Algorithms
4.1 The partition data structure. 61
4.2 Example of our parallel scheduling scheme for flow computations on

adjacent block pairs. 76
4.3 Illustration of the flow network construction algorithm. 78
4.4 Example of a push-relabel conflict in the parallel discharge routine. . . 81

207

List of Figures

5 Parallel Multilevel Hypergraph Partitioning
5.1 The hypergraph data structure used in our multilevel hypergraph par-

titioner. 88
5.2 The different types of conflicts occuring in our parallel clustering algo-

rithm and their resolutions. 89
5.3 Effects of the maximum number of runs per flat initial bipartitioning

algorithm on the solution quality. 101
5.4 Performance profiles comparing different refinement configurations in

the initial partitioning phase. 101
5.5 Performance profiles comparing the effects of repeated executions of

the label propagation and FM algorithm on the solution quality. . . . 102
5.6 Effects of the flow region scaling factor on the solution quality. 102
5.7 Effects of restricting the distance of each node to the cut hyperedges in

our flow-based refinement algorithm on the solution quality. 103
5.8 Frequency of search conflicts in our different parallel refinement algo-

rithms. 105
5.9 Performance profile comparing the solution quality and running times

of Mt-KaHyPar-D with and without thread-local partitions. 107
5.10 Frequency of search conflicts in the flow-based refinement algorithm for

different values of τ . 108
5.11 Performance profile comparing the solution quality and running times

of Mt-KaHyPar-D-F for different values τ 108
5.12 Component effectiveness tests for our multilevel partitioner. 110
5.13 Performance profiles and running times comparing Mt-KaHyPar-D and

Mt-KaHyPar-D-F on set MHG. 111
5.14 Performance profiles and running times comparing Mt-KaHyPar-D and

Mt-KaHyPar-D-F on set LHG. 111
5.15 Performance profiles comparing the solution quality of different config-

urations with (+) and without (-) community-aware coarsening (CD),
flow-based refinement (F), and with one (+1V) and three V-cycles (+3V).112

5.16 Speedups of Mt-KaHyPar-D and its different algorithmic components. . 114
5.17 Performance profiles comparing the solution quality of Mt-KaHyPar-D

with an increasing number of threads on set LHG. 115
5.18 Speedups of Mt-KaHyPar-D-F and the flow-based refinement routine for

different values of k. 116
5.19 Performance profiles comparing the solution quality of Mt-KaHyPar-D-F

with increasing number of threads on set LHG. 117
5.20 Running time shares of different components on the total execution

time of Mt-KaHyPar-D and Mt-KaHyPar-D-F. 118
5.21 Running time shares of different components on the total execution

time of the flow-based refinement routine. 119

208

List of Figures

6 Parallel n-level Hypergraph Partitioning
6.1 Contraction and uncontraction operations applied on the dynamic

hypergraph data structure. 124
6.2 Example of an uncontraction that increases the cut size. 130
6.3 Performance profiles and running times comparing Mt-KaHyPar-Q with

different batch size values bmax. 135
6.4 Speedups of Mt-KaHyPar-Q and its different algorithmic components. . 136
6.5 Performance profiles comparing the solution quality of Mt-KaHyPar-Q

with an increasing number of threads on set LHG. 137
6.6 Running time shares of different components on the total execution

time of Mt-KaHyPar-Q. 138
6.7 Slowdowns of our new dynamic hypergraph data structure compared

to KaHyPar’s hypergraph data structure. 139
6.8 Performance profiles comparing Mt-KaHyPar-D(-F) and Mt-KaHyPar-

Q(-F) on set MHG. 141
6.9 Performance profiles comparing Mt-KaHyPar-D(-F) and Mt-KaHyPar-

Q(-F) on set LHG. 142
6.10 Running times of Mt-KaHyPar-D-F and Mt-KaHyPar-Q(-F) relative to

Mt-KaHyPar-D on set MHG and set LHG. 142
6.11 Effectiveness tests comparing Mt-KaHyPar-D(-F) and Mt-KaHyPar-Q(-

F)) on set MHG. 143
6.12 Effects of always choosing the node with larger degree as the repre-

sentative of a contraction on the solution quality and running time of
Mt-KaHyPar-Q. 143

7 From Hypergraphs to Graphs
7.1 The graph data structure used in our multilevel graph partitioner. . . 148
7.2 Contraction and uncontraction operations applied on the dynamic graph

data structure. 152
7.3 Performance profiles comparing the solution quality Mt-KaHyPar-D/-Q

with and without our new graph data structure. 155
7.4 Running time improvements of different algorithmic components for

Mt-KaHyPar-D/-Q when we use our new graph data structure. 156

8 A Comparison of Partitioning Algorithms
8.1 Performance profile comparing Mt-KaHyPar to different sequential par-

titioning algorithms on set MHG and on the same benchmark set where
we excluded the instances of our parameter tuning benchmark set MP. 160

8.2 Performance profile and running times comparing PaToH-D and Mon-
driaan on set MHG. 162

8.3 Performance profile and running times comparing different configura-
tions of KaHyPar and hMetis on set MHG. 162

8.4 Performance profile and running times comparing Zoltan and BiPart on
set LHG. 163

209

List of Figures

8.5 Performance profile and running times comparing Metis-K to Metis-R,
KaFFPa and Scotch on set MG. 164

8.6 Performance profile and running times comparing the social configura-
tions of KaFFPa to their non-social counterparts on set MG. 165

8.7 Performance profile and running times comparing different parallel
graph partitioners on set LG. 166

8.8 Performance profile and running times comparing Mt-KaHyPar-D and
PaToH on set MHG. 168

8.9 Performance profile and running times comparing Mt-KaHyPar-Q-F and
KaHyPar on set MHG. 168

8.10 Performance profile and running times comparing Mt-KaHyPar-D to
PaToH-D and Zoltan on set LHG. 169

8.11 Performance profile and running times comparing Mt-KaHyPar-D and
Metis-K on set MG. 170

8.12 Performance profile and running times comparing Mt-KaHyPar-Q-F and
KaFFPa on set MG. 170

8.13 Performance profile and running times comparing Mt-KaHyPar-D to
KaMinPar and Mt-KaHIP on set LG. 171

8.14 Performance profile comparing Mt-KaHyPar-Q-F and KaSPar strong on
the benchmark set from Ref. [OS10]. 172

8.15 Summary of the experimental results. 173

9 Multilevel Hypergraph Partitioning with Node Weights
9.1 Example of a deeply and non-deeply balanced bipartition. 181
9.2 Distributions of node weights for different instance types in our bench-

mark sets. 187
9.3 Performance profiles comparing the solution quality of KaHyPar-BP to

KaHyPar, Mt-KaHyPar, hMetis, and PaToH for ε = 0.01. 191
9.4 Running times of the different configurations of KaHyPar, hMetis, and

PaToH relative to kKaHyPar-BP for ε = 0.01. 192

210

List of Tables

2 Preliminaries
2.1 The number of hypergraphs included from the different sources and the

largest instance of each benchmark set. 23
2.2 The number of graphs included from the different sources and the

largest instance of each benchmark set. 23
2.3 Default partitioning setup for experiments. 25

3 Related Work
3.1 Algorithmic components of existing sequential partitioning algorithms. 44
3.2 Listing of different rating functions used in coarsening algorithms. . . 45
3.3 Algorithmic components of existing parallel partitioning algorithms. . 53

5 Parallel Multilevel Hypergraph Partitioning
5.1 Algorithm configuration of Mt-KaHyPar-D(-F). 98
5.2 Average percentages of different search conflicts occuring in our parallel

refinement algorithms. 106
5.3 Geometric mean speedups for different algorithmic components of Mt-

KaHyPar-D(-F). 113

6 Parallel n-level Hypergraph Partitioning
6.1 Geometric mean speedups for different algorithmic components of Mt-

KaHyPar-Q. 137

8 A Comparison of Partitioning Algorithms
8.1 Listing of partitioning algorithms included in the experimental evaluation.158

9 Multilevel Hypergraph Partitioning with Node Weights
9.1 Percentage of imbalanced instances produced by each partitioner for

each combination of instance type and ε. 189
9.2 Percentage of imbalanced instances produced by each partitioner for

each combination of k and ε. 189
9.3 Occurrence of prepacked nodes for each combination of k and ε when

using rKaHyPar-BP and kKaHyPar-BP. 190

211

Bibliography

[Aad+15] Georges Aad et al. „Combined Measurement of the Higgs Boson Mass in pp
Collisions at

√
s = 7 and 8 TeV with the ATLAS and CMS Experiments“.

In: Physical Review Letters 114.19 (2015). [see page 1]

[AB12] Bas Fagginger Auer and Rob H. Bisseling. „Abusing a Hypergraph Par-
titioner for Unweighted Graph Partitioning“. In: Graph Partitioning and
Graph Clustering, 10th DIMACS Implementation Challenge Workshop.
Volume 588. Contemporary Mathematics. American Mathematical Society,
2012, pages 19–36. [see page 145]

[Aba+02] Cristinel Ababei, Navaratnasothie Selvakkumaran, Kia Bazargan,
and George Karypis. „Multi-Objective Circuit Partitioning for Cut-
size and Path-Based Delay Minimization“. In: International Confer-
ence on Computer-Aided Design (ICCAD). 2002, pages 181–185. doi:
10.1145/774572.774599. [see page 14]

[ABM16] Kevin Aydin, Mohammad H. Bateni, and Vahab S. Mirrokni. „Distributed
Balanced Partitioning via Linear Embedding“. In: 9th ACM Interna-
tional Conference on Web Search and Data Mining (WSDM). ACM, 2016,
pages 387–396. doi: 10.1145/2835776.2835829. [see pages 29, 49, 198]

[ACU08a] Cevdet Aykanat, Berkant Barla Cambazoglu, and Bora Uçar. „Multi-level
Direct k-Way Hypergraph Partitioning With Multiple Constraints and
Fixed Vertices“. In: Journal of Parallel Distributed Computing 68.5 (2008),
pages 609–625. doi: 10.1016/j.jpdc.2007.09.006. [see page 87]

[ACU08b] Cevdet Aykanat, Berkant Barla Cambazoglu, and Bora Uçar. „Multi-level
Direct k-way Hypergraph Partitioning With Multiple Constraints and
Fixed Vertices“. In: Journal of Parallel and Distributed Computing 68.5
(2008), pages 609–625. doi: 10.1016/j.jpdc.2007.09.006.

[see pages 14, 15, 41, 44–46, 78, 85, 180]

[AH19] Pablo Andres-Martinez and Chris Heunen. „Automated Distribution of
Quantum Circuits via Hypergraph Partitioning“. In: Physical Review A
100.3 (2019), pages 1–11. [see page 2]

[AHK97] Charles J. Alpert, Jsen-Hsin Huang, and Andrew B. Kahng. „Multilevel
Circuit Partitioning“. In: 34th Conference on Design Automation (DAC).
June 1997, pages 530–533. doi: 10.1145/266021.266275.

[see pages 2, 39, 41, 121]

213

https://doi.org/10.1145/774572.774599
https://doi.org/10.1145/2835776.2835829
https://doi.org/10.1016/j.jpdc.2007.09.006
https://doi.org/10.1016/j.jpdc.2007.09.006
https://doi.org/10.1145/266021.266275

Bibliography

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley, 1974. isbn: 0-201-
00029-6. [see page 31]

[AK06] Amine Abou-Rjeili and George Karypis. „Multilevel Algorithms for Parti-
tioning Power-Law Graphs“. In: 20th International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2006. doi: 10.1109/IPDPS.2006.
1639360. [see pages 43–45, 85]

[AK95] Charles J. Alpert and Andrew B. Kahng. „Recent Directions in Netlist
Partitioning: A Survey“. In: Integration: The VLSI Journal 19.1-2 (1995),
pages 1–81. doi: 10.1016/0167-9260(95)00008-4.

[see pages 2, 14, 29, 30, 39, 177]

[Akh+17a] Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and Sebastian Schlag.
„Engineering a Direct k-way Hypergraph Partitioning Algorithm“. In:
19th Workshop on Algorithm Engineering & Experiments (ALENEX).
SIAM, Jan. 2017, pages 28–42. doi: 10 . 1137 / 1 . 9781611974768 . 3.

[see pages 4, 6, 9, 41, 42, 44, 45, 47, 59, 64, 71, 121, 139, 159,
180, 187, 195]

[Akh19] Yaroslav Akhremtsev. „Parallel and External High Quality Graph Parti-
tioning“. Dissertation. Karlsruhe Institute of Technology, 2019.

[see pages 24, 52, 94, 159]

[AL08] Reid Andersen. and Kevin J. Lang. „An Algorithm for Improving Graph
Partitions“. In: Proceedings of the 19th SIAM Journal on Discrete Math-
ematics. SIAM. 2008, pages 651–660. doi: 10.5555/1347082.1347154.

[see page 38]

[Alp98] Charles J. Alpert. „The ISPD98 Circuit Benchmark Suite“. In: Interna-
tional Symposium on Physical Design (ISPD). Apr. 1998, pages 80–85.
doi: 10.1145/274535.274546. [see pages 21, 23, 177, 186]

[AMS04] Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. „MINCE: A Static
Global Variable-Ordering Heuristic for SAT Search and BDD Manipula-
tion“. In: The International Journal of Universal Computer Science 10.12
(2004), pages 1562–1596. doi: 10.3217/jucs-010-12-1562. [see page 2]

[Ang+19] Eugenio Angriman, Alexander van der Grinten, Moritz von Looz, Henning
Meyerhenke, Martin Nöllenburg, Maria Predari, and Charilaos Tzovas.
„Guidelines for Experimental Algorithmics: A Case Study in Network
Analysis“. In: Algorithms 12.7 (2019), page 127. doi: 10.3390/a12070127.

[see page 28]

[AR04] Konstantin Andreev and Harald Räcke. „Balanced Graph Partitioning“. In:
16th Symposium on Parallelism in Algorithms and Architectures (SPAA).
ACM, June 2004, pages 120–124. doi: 10.1145/1007912.1007931.

[see page 16]

214

https://doi.org/10.1109/IPDPS.2006.1639360
https://doi.org/10.1109/IPDPS.2006.1639360
https://doi.org/10.1016/0167-9260(95)00008-4
https://doi.org/10.1137/1.9781611974768.3
https://doi.org/10.5555/1347082.1347154
https://doi.org/10.1145/274535.274546
https://doi.org/10.3217/jucs-010-12-1562
https://doi.org/10.3390/a12070127
https://doi.org/10.1145/1007912.1007931

Bibliography

[Arm+10] Ed Armstrong, Gary William Grewal, Shawki Areibi, and Gerarda A.
Darlington. „An Investigation of Parallel Memetic Algorithms for VLSI
Circuit Partitioning on Multi-Core Computers“. In: Proceedings of the 23rd
Canadian Conference on Electrical and Computer Engineering (CCECE).
IEEE, 2010, pages 1–6. doi: 10.1109/CCECE.2010.5575207. [see page 29]

[AS95] Richard J. Anderson and João C. Setubal. „A Parallel Implementation of
the Push-Relabel Algorithm for the Maximum Flow Problem“. In: Journal
of Parallel and Distributed Computing 29.1 (1995), pages 17–26. doi:
10.1006/jpdc.1995.1103. [see page 80]

[ASS17] Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. „High-Quality
Shared-Memory Graph Partitioning“. In: European Conference on Parallel
Processing (Euro-Par). Springer, Aug. 2017, pages 659–671. doi: 10.1007/
978-3-319-96983-1_47.

[see pages 3, 5, 26, 51, 52, 54–59, 68, 70, 73, 94, 149, 159, 195]

[ASS18] Robin Andre, Sebastian Schlag, and Christian Schulz. „Memetic Multilevel
Hypergraph Partitioning“. In: Genetic and Evolutionary Computation
Conference (GECCO). ACM, July 2018, pages 347–354. doi: 10.1145/
3205455.3205475. [see pages 22, 29, 43, 158]

[AV93] Shawki Areibi and Anthony Vannelli. „Circuit Partitioning Using a Tabu
Search Approach“. In: International Symposium on Circuits and Systems
(ISCAS). IEEE, 1993, pages 1643–1646. [see page 158]

[Axt+22] Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders.
„Engineering In-place (Shared-memory) Sorting Algorithms“. In: ACM
Transaction on Parallel Computing 9.1 (2022), 2:1–2:62. doi: 10.1145/
3505286. [see page 19]

[AY04] Shawki Areibi and Zhen Yang. „Effective Memetic Algorithms for VLSI
Design = Genetic Algorithms + Local Search + Multi-Level Clustering“.
In: Evolutionary Computation 12.3 (2004), pages 327–353. doi: 10.1162/
1063656041774947. [see page 29]

[Bad+13] David Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner,
editors. Graph Partitioning and Graph Clustering, 10th DIMACS Imple-
mentation Challenge Workshop. Volume 588. Contemporary Mathematics.
American Mathematical Society, Feb. 2013. [see page 23]

[Bar82] Earl Barnes. „An Algorithm for Partitioning the Nodes of a Graph“. In:
SIAM Journal on Algebraic Discrete Methods 3.4 (1982), pages 541–550.

[see page 29]

[BB87] Marsha J. Berger and Shahid H. Bokhari. „A Partitioning Strategy for
Nonuniform Problems on Multiprocessors“. In: IEEE Transactions on
Computers 100.5 (1987), pages 570–580. [see page 29]

215

https://doi.org/10.1109/CCECE.2010.5575207
https://doi.org/10.1006/jpdc.1995.1103
https://doi.org/10.1007/978-3-319-96983-1_47
https://doi.org/10.1007/978-3-319-96983-1_47
https://doi.org/10.1145/3205455.3205475
https://doi.org/10.1145/3205455.3205475
https://doi.org/10.1145/3505286
https://doi.org/10.1145/3505286
https://doi.org/10.1162/1063656041774947
https://doi.org/10.1162/1063656041774947

Bibliography

[BBS15] Niklas Baumstark, Guy E. Blelloch, and Julian Shun. „Efficient Imple-
mentation of a Synchronous Parallel Push-Relabel Algorithm“. In: 23rd
European Symposium on Algorithms (ESA). Volume 9294. Springer, 2015,
pages 106–117. doi: 10.1007/978-3-662-48350-3_10.

[see pages 80–82, 116]

[BC09] Michael J Barber and John W Clark. „Detecting Network Communities
by Propagating Labels Under Constraints“. In: Physical Review E 80.2
(2009). [see page 41]

[BD19] Daniel Berrar and Werner Dubitzky. „Should significance testing be aban-
doned in machine learning?“ In: International Journal of Data Science
and Analytics" 7.4 (June 2019), pages 247–257. [see page 28]

[Bel+14] Anton Belov, Daniel Diepold, Marijn Heule, and Matti Järvisalo. The
SAT Competition 2014. http://www.satcompetition.org/2014/. 2014.

[see pages 21–23, 117]

[BF00] Michael A. Bender and Martin Farach-Colton. „The LCA Problem Revis-
ited“. In: Latin American Symposium on Theoretical Informatics. Springer.
2000, pages 88–94. [see page 185]

[BH11a] Una Benlic and Jin-Kao Hao. „A Multilevel Memetic Approach for Im-
proving Graph k-Partitions“. In: IEEE Transactions on Evolutionary
Computation 15.5 (2011), pages 624–642. [see page 29]

[BH11b] Una Benlic and Jin-Kao Hao. „An Effective Multilevel Tabu Search Ap-
proach for Balanced Graph Partitioning“. In: Computers & Operation Re-
search 38.7 (2011), pages 1066–1075. doi: 10.1016/j.cor.2010.10.007.

[see page 158]

[Bin18] Timo Bingmann. „Scalable String and Suffix Sorting: Algorithms, Tech-
niques, and Tools“. PhD thesis. Karlsruhe Institute of Technology, 2018.

[see pages 3, 16]

[Bis+12] Rob H. Bisseling, Bas O. Auer Fagginger, A. N. Yzelman, Tristan van
Leeuwen, and Ümit V. Çatalyürek. „Two-Dimensional Approaches to
Sparse Matrix Partitioning“. In: Combinatorial Scientific Computing
(2012), pages 321–349. [see page 177]

[BJ93] Thang N. Bui and Curt Jones. „A Heuristic for Reducing Fill-In in Sparse
Matrix Factorization“. In: 6th SIAM Conference on Parallel Processing
for Scientific Computing (PPSC). 1993, pages 445–452. url: https://
www.osti.gov/biblio/54439. [see page 40]

[Blo+08] Vincent D. Blondel, Jean Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. „Fast Unfolding of Communities in Large Networks“. In: Journal
of Statistical Mechanics: Theory and Experiment 10 (2008).

[see pages 45, 92, 93]

216

https://doi.org/10.1007/978-3-662-48350-3_10
http://www.satcompetition.org/2014/
https://doi.org/10.1016/j.cor.2010.10.007
https://www.osti.gov/biblio/54439
https://www.osti.gov/biblio/54439

Bibliography

[BLV14] Florian Bourse, Marc Lelarge, and Milan Vojnovic. „Balanced Graph Edge
Partition“. In: 20th International Conference on Knowledge Discovery
and Data Mining (KDD). ACM, 2014, pages 1456–1465. doi: 10.1145/
2623330.2623660. [see page 14]

[BM94] Thang Nguyen Bui and Byung Ro Moon. „A Fast and Stable Hybrid
Genetic Algorithm for the Ratio-Cut Partitioning Problem on Hyper-
graphs“. In: 31st Conference on Design Automation (DAC). IEEE, 1994,
pages 664–669. doi: 10.1145/196244.196607. [see page 29]

[Bon+06] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh,
and George Varghese. „An Improved Construction for Counting Bloom
Filters“. In: 14th European Symposium on Algorithms (ESA). Volume 4168.
Springer, 2006, pages 684–695. doi: 10.1007/11841036_61. [see page 88]

[Bra+08] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoe-
fer, Zoran Nikoloski, and Dorothea Wagner. „On Modularity Clustering“.
In: IEEE Transactions on Knowledge and Data Engineering 20.2 (2008),
pages 172–188. doi: 10.1109/TKDE.2007.190689. [see page 92]

[BS11] Charles-Edmond Bichot and Patrick Siarry. Graph Partitioning. John
Wiley & Sons, 2011. [see page 29]

[BS93] Stephen T. Barnard and Horst D. Simon. „A Fast Multilevel Implementa-
tion of Recursive Spectral Bisection for Partitioning Unstructured Prob-
lems“. In: 6th SIAM Conference on Parallel Processing for Scientific
Computing (PPSC). Mar. 1993, pages 711–718. [see pages 3, 29, 40, 158]

[Bui+87] Thang Nguyen Bui, Soma Chaudhuri, Frank Thomson Leighton, and
Michael Sipser. „Graph Bisection Algorithms with Good Average Case
Behavior“. In: Combinatorica 7.2 (1987), pages 171–191. doi: 10.1007/
BF02579448. [see page 39]

[Bui+89] Thang Nguyen Bui, C. Heigham, Curt Jones, and Frank Thomson Leighton.
„Improving the Performance of the Kernighan-Lin and Simulated Annealing
Graph Bisection Algorithms“. In: 26th Conference on Design Automation
(DAC). June 1989, pages 775–778. doi: 10.1145/74382.74527.

[see page 39]

[Bul+16] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian
Schulz. „Recent Advances in Graph Partitioning“. In: Algorithm Engineer-
ing - Selected Results and Surveys. Volume 9220. 2016, pages 117–158. doi:
10.1007/978-3-319-49487-6_4. [see pages 14, 29, 145, 197]

[ÇA01a] Ümit V. Çatalyürek and Cevdet Aykanat. „A Fine-Grain Hypergraph
Model for 2D Decomposition of Sparse Matrices“. In: 15th International
Parallel and Distributed Processing Symposium (IPDPS). 2001, page 118.
doi: 10.1109/IPDPS.2001.925093. [see page 2]

217

https://doi.org/10.1145/2623330.2623660
https://doi.org/10.1145/2623330.2623660
https://doi.org/10.1145/196244.196607
https://doi.org/10.1007/11841036_61
https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1007/BF02579448
https://doi.org/10.1007/BF02579448
https://doi.org/10.1145/74382.74527
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1109/IPDPS.2001.925093

Bibliography

[ÇA01b] Ümit V. Çatalyürek and Cevdet Aykanat. „A Hypergraph-Partitioning
Approach for Coarse-Grain Decomposition“. In: ACM/IEEE Conference
on Supercomputing. ACM, 2001, page 28. doi: 10.1145/582034.582062.

[see page 2]

[ÇA11] Ümit V. Çatalyürek and Cevdet Aykanat. PaToH: Partitioning Tool for
Hypergraphs. 2011. [see pages 46, 95, 96]

[ÇA96] Ümit V Çatalyürek and Cevdet Aykanat. „Decomposing Irregularly Sparse
Matrices for Parallel Matrix-Vector Multiplication“. In: International Work-
shop on Parallel Algorithms for Irregularly Structured Problems. Springer.
1996, pages 75–86. doi: 10.1007/BFb0030098. [see page 177]

[CA99] Ümit V. Catalyurek and Cevdet Aykanat. „Hypergraph-Partitioning-Based
Decomposition for Parallel Sparse-Matrix Vector Multiplication“. In: IEEE
Transactions on Parallel and Distributed Systems 10.7 (1999), pages 673–
693. doi: 10.1109/71.780863.

[see pages 2, 7, 13, 21, 39, 44, 46, 85, 95, 145, 149, 159, 161, 177,
180, 187]

[Çat+12a] Ümit V. Çatalyürek, Mehmet Deveci, Kamer Kaya, and Bora Uçar. „Mul-
tithreaded Clustering for Multi-level Hypergraph Partitioning“. In: 26th In-
ternational Parallel and Distributed Processing Symposium (IPDPS). 2012,
pages 848–859. doi: 10.1109/IPDPS.2012.81. [see pages 52, 53, 85, 88]

[Çat+12b] Ümit V. Çatalyürek, Mehmet Deveci, Kamer Kaya, and Bora Uçar. „UMPa:
A Multi-Objective, Multi-Level Partitioner for Communication Minimiza-
tion“. In: Graph Partitioning and Graph Clustering, 10th DIMACS Im-
plementation Challenge Workshop. Feb. 2012, pages 53–66. url: http:
//www.ams.org/books/conm/588/11704. [see page 14]

[Çat+22a] Ümit V. Çatalyürek, Karen D. Devine, Marcelo Fonseca Faraj, Lars
Gottesbüren, Tobias Heuer, Henning Meyerhenke, Peter Sanders, Sebas-
tian Schlag, Christian Schulz, Daniel Seemaier, and Dorothea Wagner.
„More Recent Advances in (Hyper)Graph Partitioning“. In: Computing
Research Repository (CoRR) abs/2205.13202 (2022). arXiv: 2205.13202.

[see pages 9, 29, 30]

[CG12] K Santle Camilus and VK Govindan. „A Review on Graph Based Segmen-
tation“. In: International Journal of Image, Graphics and Signal Processing
4.5 (2012), page 1. [see page 1]

[CG97] Boris V. Cherkassky and Andrew V. Goldberg. „On Implementing the
Push-Relabel Method for the Maximum Flow Problem“. In: Algorithmica
19.4 (1997), pages 390–410. doi: 10.1007/PL00009180. [see pages 81, 82]

[CKM00a] Andrew E. Caldwell, Andrew B. Kahng, and Igor L. Markov. „Improved
Algorithms for Hypergraph Bipartitioning“. In: Asia South Pacific Design
Automation Conference (ASP-DAC). 2000, pages 661–666. doi: 10.1145/
368434.368864. [see pages 141, 157, 178]

218

https://doi.org/10.1145/582034.582062
https://doi.org/10.1007/BFb0030098
https://doi.org/10.1109/71.780863
https://doi.org/10.1109/IPDPS.2012.81
http://www.ams.org/books/conm/588/11704
http://www.ams.org/books/conm/588/11704
https://arxiv.org/abs/2205.13202
https://doi.org/10.1007/PL00009180
https://doi.org/10.1145/368434.368864
https://doi.org/10.1145/368434.368864

Bibliography

[CKM00b] Andrew. E. Caldwell, Andrew B. Kahng, and Igor L. Markov. „Optimal
Partitioners and End-Case Placers for Standard-Cell Layout“. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits & Systems
19.11 (2000), pages 1304–1313. doi: 10.1109/43.892854.

[see pages 178, 188]

[CL20] Chandra Chekuri and Shi Li. „On the Hardness of Approximating the
k-Way Hypergraph Cut Problem“. In: Theory of Computing 16 (2020),
pages 1–8. doi: 10.4086/toc.2020.v016a014. [see page 15]

[CL98] Jason Cong and Sung Kyu Lim. „Multiway Partitioning with Pairwise
Movement“. In: International Conference on Computer-Aided Design (IC-
CAD). 1998, pages 512–516. doi: 10.1145/288548.289079. [see page 34]

[CP08] Cédric Chevalier and François Pellegrini. „PT-Scotch: A Tool for Efficient
Parallel Graph Ordering“. In: Parallel Computing 34.6-8 (2008), pages 318–
331. doi: 10.1016/j.parco.2007.12.001.

[see pages 52, 54–56, 94, 158, 198]

[CRX03] Jason Cong, Michail Romesis, and Min Xie. „Optimality, Scalability and
Stability Study of Partitioning and Placement Algorithms“. In: Interna-
tional Symposium on Physical Design (ISPD). Apr. 2003, pages 88–94.
doi: 10.1145/640000.640021. [see page 157]

[CS09] Michael J. Campbell and Thomas D.V. Swinscow. Statistics at Square
One. BMJ Publishing Group, 2009. [see page 28]

[CS93] Jason Cong and M’Lissa Smith. „A Parallel Bottom-Up Clustering Algo-
rithm with Applications to Circuit Partitioning in VLSI Design“. In: 30th
Conference on Design Automation (DAC). June 1993, pages 755–760. doi:
10.1145/157485.165119. [see pages 39, 40, 46]

[CSZ93] Pak K. Chan, Martine D. F. Schlag, and Jason Y. Zien. „Spectral k-Way
Ratio-Cut Partitioning and Clustering“. In: 30th Conference on Design
Automation (DAC). June 1993, pages 749–754. doi: 10.1109/43.310898.

[see page 14]

[Cur+10] Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. „Schism:
A Workload-Driven Approach to Database Replication and Partitioning“.
In: Proceedings of the VLDB Endowment 3.1 (2010), pages 48–57. doi:
10.14778/1920841.1920853. [see pages 2, 198]

[DDN20] Timothy A. Davis, Iain S. Duff, and Stojce Nakov. „Design and Implemen-
tation of a Parallel Markowitz Threshold Algorithm“. In: SIAM Journal
on Matrix Analysis and Applications 41.2 (Apr. 2020), pages 573–590. doi:
10.1137/19M1245815. [see page 186]

[Del+11] Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F.
Werneck. „Graph Partitioning with Natural Cuts“. In: 25th International
Parallel and Distributed Processing Symposium (IPDPS). 2011, pages 1135–
1146. doi: 10.1109/IPDPS.2011.108. [see pages 1, 38, 172]

219

https://doi.org/10.1109/43.892854
https://doi.org/10.4086/toc.2020.v016a014
https://doi.org/10.1145/288548.289079
https://doi.org/10.1016/j.parco.2007.12.001
https://doi.org/10.1145/640000.640021
https://doi.org/10.1145/157485.165119
https://doi.org/10.1109/43.310898
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.1137/19M1245815
https://doi.org/10.1109/IPDPS.2011.108

Bibliography

[Dev+06] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Rob H. Bisseling,
and Ümit V. Çatalyürek. „Parallel Hypergraph Partitioning for Scientific
Computing“. In: 20th International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2006. doi: 10.1109/IPDPS.2006.1639359.

[see pages 7, 51, 52, 54, 55, 58, 94, 159, 180, 197]

[Dev+15] Mehmet Deveci, Kamer Kaya, Bora Uçar, and Ümit V. Çatalyürek. „Hy-
pergraph Partitioning for Multiple Communication Cost Metrics: Model
and Methods“. In: Journal of Parallel and Distributed Computing 77 (2015),
pages 69–83. doi: 10.1016/j.jpdc.2014.12.002. [see page 14]

[Dev+16] Mehmet Deveci, Sivasankaran Rajamanickam, Karen D. Devine, and Ümit
V. Çatalyürek. „Multi-Jagged: A Scalable Parallel Spatial Partitioning
Algorithm“. In: IEEE Transactions on Parallel and Distributed Systems
27.3 (2016), pages 803–817. doi: 10.1109/TPDS.2015.2412545.

[see page 29]

[DH03] Doratha E. Drake and Stefan Hougardy. „A Simple Approximation Algo-
rithm for the Weighted Matching Problem“. In: Information Processing
Letters 85.4 (2003), pages 211–213. doi: 10.1016/S0020-0190(02)00393-
9. [see page 43]

[DH11] Timothy A. Davis and Yifan Hu. „The University of Florida Sparse Matrix
Collection“. In: ACM Transactions on Mathematical Software 38.1 (Nov.
2011), 1:1–1:25. doi: 10.1145/2049662.2049663. [see pages 21–23, 171]

[DH72] William E. Donath and Alan J. Hoffman. „Algorithms for Partitioning
Graphs and Computer Logic Based on Eigenvectors of Connection Matri-
ces“. In: IBM Technical Disclosure Bulletin 15.3 (1972), pages 938–944.

[see page 29]

[Din+95] Pedro C. Diniz, Steve Plimpton, Bruce Hendrickson, and Robert W. Leland.
„Parallel Algorithms for Dynamically Partitioning Unstructured Grids“.
In: 7th SIAM Conference on Parallel Processing for Scientific Computing
(PPSC). SIAM, 1995, pages 615–620. [see page 50]

[Din70] Yefim Dinitz. „Algorithm for Solution of a Problem of Maximum Flow in
a Network with Power Estimation“. In: Soviet Mathematics Doklady 11.5
(Sept. 1970), pages 1277–1280. [see page 37]

[DK85] Alfred E. Dunlop and Brian W. Kernighan. „A Procedure for Placement of
Standard-Cell VLSI Circuits“. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits & Systems 4.1 (1985), pages 92–98. doi:
10.1109/TCAD.1985.1270101. [see pages 2, 31]

[DKÇ13] Mehmet Deveci, Kamer Kaya, and Ümit V. Çatalyürek. „Hypergraph
Sparsification and Its Application to Partitioning“. In: 42nd International
Conference on Parallel Processing (ICPP). 2013, pages 200–209. doi:
10.1109/ICPP.2013.29. [see pages 78, 87]

220

https://doi.org/10.1109/IPDPS.2006.1639359
https://doi.org/10.1016/j.jpdc.2014.12.002
https://doi.org/10.1109/TPDS.2015.2412545
https://doi.org/10.1016/S0020-0190(02)00393-9
https://doi.org/10.1016/S0020-0190(02)00393-9
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1109/TCAD.1985.1270101
https://doi.org/10.1109/ICPP.2013.29

Bibliography

[DM02] Elizabeth D. Dolan and Jorge J. Moré. „Benchmarking Optimization
Software with Performance Profiles“. In: Mathematical Programming 91.2
(2002), pages 201–213. doi: 10.1007/s101070100263. [see page 25]

[DT97] S. Dutt and H. Theny. „Partitioning Around Roadblocks: Tackling Con-
straints with Intermediate Relaxations“. In: International Conference
on Computer-Aided Design (ICCAD). Nov. 1997, pages 350–355. doi:
10.1109/ICCAD.1997.643546. [see pages 177, 178]

[Dut93] Shantanu Dutt. „New Faster Kernighan-Lin-Type Graph-Partitioning
Algorithms“. In: International Conference on Computer-Aided Design
(ICCAD). 1993, pages 370–377. doi: 10 . 1109 / ICCAD . 1993 . 580083.

[see page 31]

[EK72] Jack R. Edmonds and Richard M. Karp. „Theoretical Improvements in
Algorithmic Efficiency for Network Flow Problems“. In: Journal of the
ACM (JACM) 19.2 (1972), pages 248–264. doi: 10.1145/321694.321699.

[see page 37]

[Fel13] Andreas E. Feldmann. „Fast Balanced Partitioning is Hard Even On Grids
and Trees“. In: Theoretical Computer Science 485 (2013), pages 61–68.
doi: 10.1016/j.tcs.2013.03.014. [see pages 2, 16]

[FF15] Andreas E. Feldmann and Luca Foschini. „Balanced Partitions of Trees
and Applications“. In: volume 71. 2. 2015, pages 354–376. doi: 10.1007/
s00453-013-9802-3. [see page 16]

[FF56] Lester Randolph Ford and Delbert R Fulkerson. „Maximal Flow Through
a Network“. In: Canadian Journal of Mathematics 8 (1956), pages 399–404.
doi: 10.4153/CJM-1956-045-5. [see pages 12, 15, 36, 74]

[Fie+12] Jonas Fietz, Mathias J. Krause, Christian Schulz, Peter Sanders, and
Vincent Heuveline. „Optimized Hybrid Parallel Lattice Boltzmann Fluid
Flow Simulations on Complex Geometries“. In: European Conference on
Parallel Processing (Euro-Par). Volume 7484. Springer, 2012, pages 818–
829. doi: 10.1007/978-3-642-32820-6_81. [see page 1]

[FM82] Charles M. Fiduccia and Robert M. Mattheyses. „A Linear-Time Heuristic
for Improving Network Partitions“. In: 19th Conference on Design Au-
tomation (DAC). 1982, pages 175–181. doi: 10.1145/800263.809204.

[see pages 2, 5, 14, 29, 30, 32–34, 38, 65, 95, 96, 188]

[FPZ19] Kyle Fox, Debmalya Panigrahi, and Fred Zhang. „Minimum Cut and
Minimum k-Cut in Hypergraphs via Branching Contractions“. In: 30th
ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2019,
pages 881–896. doi: 10.1137/1.9781611975482.54. [see page 15]

[FS21] Marcelo Fonseca Faraj and Christian Schulz. Buffered Streaming Graph
Partitioning. Technical report. 2021. arXiv: 2102.09384. [see page 29]

221

https://doi.org/10.1007/s101070100263
https://doi.org/10.1109/ICCAD.1997.643546
https://doi.org/10.1109/ICCAD.1993.580083
https://doi.org/10.1145/321694.321699
https://doi.org/10.1016/j.tcs.2013.03.014
https://doi.org/10.1007/s00453-013-9802-3
https://doi.org/10.1007/s00453-013-9802-3
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1007/978-3-642-32820-6_81
https://doi.org/10.1145/800263.809204
https://doi.org/10.1137/1.9781611975482.54
https://arxiv.org/abs/2102.09384

Bibliography

[Fun+18] D. Funke, S. Lamm, P. Sanders, C. Schulz, D. Strash, and M. von Looz.
„Communication-free Massively Distributed Graph Generation“. In: 32nd
International Parallel and Distributed Processing Symposium (IPDPS).
2018, pages 336–347. doi: 10.1109/IPDPS.2018.00043. [see page 23]

[GH94] Olivier Goldschmidt and Dorit S. Hochbaum. „A Polynomial Algorithm for
the k-Cut Problem for Fixed k“. In: Mathematics of Operations Research
19.1 (1994), pages 24–37. doi: 10.1287/moor.19.1.24. [see page 15]

[GHR+95] Raymond Greenlaw, H James Hoover, Walter L Ruzzo, et al. Limits to
Parallel Computation: P-Completeness Theory. Oxford University Press,
1995. [see page 51]

[GHS22a] Lars Gottesbüren, Tobias Heuer, and Peter Sanders. „Parallel Flow-Based
Hypergraph Partitioning“. In: 20th International Symposium on Exper-
imental Algorithms (SEA). Volume 233. LIPIcs. Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 5:1–5:21. doi:
10.4230/LIPIcs.SEA.2022.5. [see pages 4, 30, 60, 104, 113, 157]

[GHS22c] Lars Gottesbüren, Tobias Heuer, and Peter Sanders. Parallel Flow-Based
Hypergraph Partitioning. Technical report. 2022. arXiv: 2201.01556.

[see pages 4, 30, 60, 157]

[GHW19] Lars Gottesbüren, Michael Hamann, and Dorothea Wagner. „Evaluation
of a Flow-Based Hypergraph Bipartitioning Algorithm“. In: 27th European
Symposium on Algorithms (ESA). 2019, 52:1–52:17. doi: 10.4230/LIPIcs.
ESA.2019.52. [see pages 37, 38, 74, 77, 80, 157]

[Gib89] Phillip B. Gibbons. „A More Practical PRAM Model“. In: 1st Symposium
on Parallelism in Algorithms and Architectures (SPAA). ACM, 1989,
pages 158–168. doi: 10.1145/72935.72953. [see page 17]

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Volume 174. W. H. Freeman,
1979. [see pages 178, 179, 188]

[GJS76] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. „Some
Simplified NP-Complete Graph Problems“. In: Theoretical Computer Sci-
ence 1.3 (1976), pages 237–267. doi: 10.1016/0304-3975(76)90059-1.

[see pages 2, 15]

[GK21] Johnnie Gray and Stefanos Kourtis. „Hyper-Optimized Tensor Network
Contraction“. In: Quantum 5 (2021), page 410. doi: 10.22331/q-2021-
03-15-410. [see page 2]

[GL81] Alan George and Joseph W Liu. Computer Solution of Large Sparse
Positive Definite. Prentice Hall Professional Technical Reference, 1981.

[see page 95]

222

https://doi.org/10.1109/IPDPS.2018.00043
https://doi.org/10.1287/moor.19.1.24
https://doi.org/10.4230/LIPIcs.SEA.2022.5
https://arxiv.org/abs/2201.01556
https://doi.org/10.4230/LIPIcs.ESA.2019.52
https://doi.org/10.4230/LIPIcs.ESA.2019.52
https://doi.org/10.1145/72935.72953
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.22331/q-2021-03-15-410
https://doi.org/10.22331/q-2021-03-15-410

Bibliography

[GMR94] P Gibbons, Y Matias, and V Ramachandran. „The QRQW PRAM: Ac-
counting for Contentionin Parallel Algorithms“. In: 6th Symposium on
Parallelism in Algorithms and Architectures (SPAA). 1994, pages 638–648.

[see page 17]

[Gon+12] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. „PowerGraph: Distributed Graph-Parallel Computation on Nat-
ural Graphs“. In: 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI). USENIX Association, 2012, pages 17–30.

[see page 14]

[Got+20] Lars Gottesbüren, Michael Hamann, Sebastian Schlag, and Dorothea
Wagner. „Advanced Flow-Based Multilevel Hypergraph Partitioning“. In:
18th International Symposium on Experimental Algorithms (SEA) (2020).
doi: 10.4230/LIPIcs.SEA.2020.11.

[see pages 5, 9, 36, 38, 41, 42, 47, 59, 74, 77, 79, 140, 159, 187,
192, 196]

[Got+21a] Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag.
„Scalable Shared-Memory Hypergraph Partitioning“. In: 23rd Workshop on
Algorithm Engineering & Experiments (ALENEX). SIAM, 2021, pages 16–
30. doi: 10.1137/1.9781611976472.2. [see pages 4, 30, 60, 86, 113, 157]

[Got+21c] Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag.
Shared-Memory n-level Hypergraph Partitioning. Technical report. 2021.
arXiv: 2104.08107. [see pages 4, 30, 60, 86, 123, 157]

[Got+21e] Lars Gottesbüren, Tobias Heuer, Peter Sanders, Christian Schulz, and
Daniel Seemaier. „Deep Multilevel Graph Partitioning“. In: 29th European
Symposium on Algorithms (ESA). Volume 204. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, 48:1–48:17. doi: 10.4230/LIPIcs.
ESA.2021.48.

[see pages 7, 23, 51, 52, 54–56, 59, 68, 149, 159, 175, 178, 197,
198]

[Got+22a] Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag.
„Shared-Memory n-level Hypergraph Partitioning“. In: 24th Workshop
on Algorithm Engineering & Experiments (ALENEX). SIAM, Jan. 2022,
pages 131–144. doi: 10.1137/1.9781611977042.11.

[see pages 4, 30, 60, 86, 123, 135, 157]

[Gra+79] Ronald L. Graham, Eugene L. Lawler, Jan K. Lenstra, and Rinnooy
Kan. „Optimization and Approximation in Deterministic Sequencing and
Scheduling: A Survey“. In: Annals of Discrete Mathematics. Volume 5.
Elsevier, 1979, pages 287–326. [see page 179]

[Gra69] Ronald L. Graham. „Bounds on Multiprocessing Timing Anomalies“. In:
SIAM Journal on Applied Mathematics 17.2 (1969), pages 416–429.

[see page 179]

223

https://doi.org/10.4230/LIPIcs.SEA.2020.11
https://doi.org/10.1137/1.9781611976472.2
https://arxiv.org/abs/2104.08107
https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://doi.org/10.1137/1.9781611977042.11

Bibliography

[GSS82] Leslie M. Goldschlager, Ralph A. Shaw, and John Staples. „The Maximum
Flow Problem is Log Space Complete for P“. In: Theoretical Computer
Science 21 (1982), pages 105–111. doi: 10.1016/0304-3975(82)90092-5.

[see page 51]
[GT88] Andrew V. Goldberg and Robert Endre Tarjan. „A New Approach to the

Maximum-Flow Problem“. In: Journal of the ACM (JACM) 35.4 (1988),
pages 921–940. doi: 10.1145/48014.61051. [see pages 37, 80]

[GZ87] John R. Gilbert and Earl Zmijewski. „A Parallel Graph Partitioning
Algorithm for a Message-Passing Multiprocessor“. In: International Journal
of Parallel Programming 16.6 (1987), pages 427–449. doi: 10 . 1007 /
BF01388998. [see page 34]

[Hau95] S. A. Hauck. „Multi-FPGA Systems“. PhD thesis. 1995. [see page 177]
[HB95] Scott Hauck and Gaetano Borriello. „An Evaluation of Bipartitioning

Techniques“. In: 16th Conference on Advanced Research in VLSI (ARVLSI).
Mar. 1995, pages 383–403. [see pages 2, 3, 40, 161]

[HB97] Scott Hauck and Gaetano Borriello. „An Evaluation of Bipartitioning Tech-
niques“. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits & Systems 16.8 (1997), pages 849–866. doi: 10.1109/43.644609.

[see pages 35, 40, 157]
[Heu15a] Tobias Heuer. „Engineering Initial Partitioning Algorithms for direct k-

way Hypergraph Partitioning“. Bachelor Thesis. Karlsruhe Institute of
Technology, Aug. 2015. [see pages 42, 45, 85, 96, 196]

[Heu18a] Tobias Heuer. „High Quality Hypergraph Partitioning via Max-Flow-Min-
Cut Computations“. Master Thesis. Karlsruhe Institute of Technology, Jan.
2018. [see pages 12, 42]

[HHK97] Lars W. Hagen, Dennis J.-H. Huang, and Andrew B. Kahng. „On Imple-
mentation Choices for Iterative Improvement Partitioning Algorithms“.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
& Systems 16.10 (1997), pages 1199–1205. doi: 10.1109/43.662682.

[see page 35]
[HL95] Bruce Hendrickson and Robert W. Leland. „A Multi-Level Algorithm

For Partitioning Graphs“. In: Supercomputing. ACM, 1995, page 28. doi:
10.1145/224170.224228. [see pages 3, 34, 35, 39, 40, 43, 46, 158]

[HM85] T. C. Hu and K. Moerder. „Multiterminal Flows in a Hypergraph“. In:
VLSI Circuit Layout: Theory and Design. IEEE, 1985. Chapter 3, pages 87–
93. [see page 10]

[HMS21a] Tobias Heuer, Nikolai Maas, and Sebastian Schlag. „Multilevel Hypergraph
Partitioning with Vertex Weights Revisited“. In: 19th International Sym-
posium on Experimental Algorithms (SEA). Volume 190. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 8:1–8:20. doi: 10.4230/
LIPIcs.SEA.2021.8. [see pages 4, 30, 178, 184]

224

https://doi.org/10.1016/0304-3975(82)90092-5
https://doi.org/10.1145/48014.61051
https://doi.org/10.1007/BF01388998
https://doi.org/10.1007/BF01388998
https://doi.org/10.1109/43.644609
https://doi.org/10.1109/43.662682
https://doi.org/10.1145/224170.224228
https://doi.org/10.4230/LIPIcs.SEA.2021.8
https://doi.org/10.4230/LIPIcs.SEA.2021.8

Bibliography

[HNS20] Alexandra Henzinger, Alexander Noe, and Christian Schulz. „ILP-Based
Local Search for Graph Partitioning“. In: ACM Journal of Experimental
Algorithmics (JEA) 25 (2020), pages 1–26. doi: 10.1145/3398634.

[see pages 43, 158]

[HO92] Jianxiu Hao and James B. Orlin. „A Faster Algorithm for Finding the
Minimum Cut in a Graph“. In: 4th ACM-SIAM Symposium on Discrete
Algorithms (SODA). ACM/SIAM, 1992, pages 165–174. url: http://dl.
acm.org/citation.cfm?id=139404.139439. [see page 15]

[HS17a] Tobias Heuer and Sebastian Schlag. „Improving Coarsening Schemes for
Hypergraph Partitioning by Exploiting Community Structure“. In: 16th
International Symposium on Experimental Algorithms (SEA). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, June 2017, 21:1–21:19. doi:
10.4230/LIPIcs.SEA.2017.21.

[see pages 5, 9, 22, 41, 45, 85, 88, 92, 93, 140, 149, 159, 177, 196]

[HS18] Michael Hamann and Ben Strasser. „Graph Bisection with Pareto Opti-
mization“. In: ACM Journal of Experimental Algorithmics (JEA) 23 (2018).
doi: 10.1145/3173045. [see pages 1, 37, 38, 74, 79, 80]

[HSS10] Manuel Holtgrewe, Peter Sanders, and Christian Schulz. „Engineering a
Scalable High Quality Graph Partitioner“. In: 24th International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2010, pages 1–12.
doi: 10.1109/IPDPS.2010.5470485.

[see pages 43, 50, 54–56, 59, 75, 94, 198]

[HSS19a] Tobias Heuer, Peter Sanders, and Sebastian Schlag. „Network Flow-Based
Refinement for Multilevel Hypergraph Partitioning“. In: ACM Journal of
Experimental Algorithmics (JEA) 24.1 (Sept. 2019), 2.3:1–2.3:36. doi: 10.
1145/3329872. [see pages 5, 36–38, 41, 42, 47, 59, 74, 76, 77, 159, 192, 196]

[IKS75] Tadakatsu Ishiga, Tokinori Kozawa, and Shoji Sato. „A Logic Partitioning
Procedure by Interchanging Clusters“. In: 12th Conference on Design
Automation (DAC). June 1975, pages 369–377. url: http://dl.acm.org/
citation.cfm?id=809089. [see page 39]

[JSA21] Nazanin Jafari, Oguz Selvitopi, and Cevdet Aykanat. „Fast Shared-Memory
Streaming Multilevel Graph Partitioning“. In: Journal of Parallel and
Distributed Computing 147 (2021), pages 140–151. doi: 10.1016/j.jpdc.
2020.09.004. [see page 29]

[Kab+17] Igor Kabiljo, Brian Karrer, Mayank Pundir, Sergey Pupyrev, Alon Shalita,
Yaroslav Akhremtsev, and Alessandro Presta. „Social Hash Partitioner: A
Scalable Distributed Hypergraph Partitioner“. In: Proceedings of the VLDB
Endowment 10.11 (2017), pages 1418–1429. doi: 10.14778/3137628.
3137650. [see pages 2, 51, 94, 157, 198]

225

https://doi.org/10.1145/3398634
http://dl.acm.org/citation.cfm?id=139404.139439
http://dl.acm.org/citation.cfm?id=139404.139439
https://doi.org/10.4230/LIPIcs.SEA.2017.21
https://doi.org/10.1145/3173045
https://doi.org/10.1109/IPDPS.2010.5470485
https://doi.org/10.1145/3329872
https://doi.org/10.1145/3329872
http://dl.acm.org/citation.cfm?id=809089
http://dl.acm.org/citation.cfm?id=809089
https://doi.org/10.1016/j.jpdc.2020.09.004
https://doi.org/10.1016/j.jpdc.2020.09.004
https://doi.org/10.14778/3137628.3137650
https://doi.org/10.14778/3137628.3137650

Bibliography

[Kam+19] Bogumi Kamiski, Valérie Poulin, Pawe Praat, Przemysaw Szufel, and
François Théberge. „Clustering via Hypergraph Modularity“. In: PLOS
One 14.11 (2019), pages 1–15. doi: 10.1371/journal.pone.0224307.

[see page 92]

[Kar+99] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar.
„Multilevel Hypergraph Partitioning: Applications in VLSI Domain“. In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 7.1
(1999), pages 69–79. doi: 10.1109/92.748202.

[see pages 39, 43, 45, 46, 85, 95, 149, 159, 177, 180, 187]

[Kar13] George Karypis. METIS: A Software Package for Partitioning Unstruc-
tured Graphs, Partitioning Meshes, and Computing Fill-Reducing Order-
ings of Sparse Matrices. 2013. [see page 163]

[Kar74] Alexander V. Karzanov. „Determining the Maximal Flow in a Network
by the Method of Preflows“. In: Soviet Mathematics Doklady. Volume 15.
1974, pages 434–437. [see page 80]

[KAV04] Dorothy Kucar, Shawki Areibi, and Anthony Vannelli. „Hypergraph Parti-
tioning Techniques“. In: Dynamics of Continuous, Discrete and Impulsive
Systems Series A: Mathematical Analysis 11.2-3 (2004), pages 339–367.

[see page 29]

[Kay+12] Enver Kayaaslan, Ali Pinar, Ümit V. Çatalyürek, and Cevdet Aykanat.
„Partitioning Hypergraphs in Scientific Computing Applications through
Vertex Separators on Graphs“. In: SIAM Journal on Scientific Computing
34.2 (2012). doi: 10.1137/100810022. [see pages 6, 145, 197]

[KGB15] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. „Scalable SIMD-
Efficient Graph Processing on GPUs“. In: International Conference on
Parallel Architectures and Compilation (PACT). 2015, pages 39–50. doi:
10.1109/PACT.2015.15. [see page 23]

[KK00] George Karypis and Vipin Kumar. „Multilevel k-way Hypergraph Parti-
tioning“. In: VLSI Design 2000.3 (2000), pages 285–300. doi: 10.1155/
2000/19436. [see pages 14, 41, 44, 46, 85, 159, 180, 187]

[KK96] George Karypis and Vipin Kumar. „Parallel Multilevel k-way Partitioning
Scheme for Irregular Graphs“. In: ACM/IEEE Conference on Supercom-
puting. 1996, page 35. doi: 10.1109/SC.1996.32.

[see pages 3, 49–52, 54–56, 59, 68, 94, 159]

[KK98a] George Karypis and Vipin Kumar. „A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs“. In: SIAM Journal on Scientific
Computing 20.1 (1998), pages 359–392. doi: 10.1137/S1064827595287997.

[see pages 43, 46, 95, 159]

[KK98b] George Karypis and Vipin Kumar. hMETIS: A Hypergraph Partitioning
Package, Version 1.5.3. 1998. [see page 98]

226

https://doi.org/10.1371/journal.pone.0224307
https://doi.org/10.1109/92.748202
https://doi.org/10.1137/100810022
https://doi.org/10.1109/PACT.2015.15
https://doi.org/10.1155/2000/19436
https://doi.org/10.1155/2000/19436
https://doi.org/10.1109/SC.1996.32
https://doi.org/10.1137/S1064827595287997

Bibliography

[KK98c] George Karypis and Vipin Kumar. „Multilevel k-way Partitioning Scheme
for Irregular Graphs“. In: Journal of Parallel and Distributed Computing
48.1 (1998), pages 96–129. doi: 10.1006/jpdc.1997.1404.

[see pages 35, 41, 43, 45, 46, 57, 159]

[KK98d] George Karypis and Vipin Kumar. „Multilevel Algorithms for Multi-
Constraint Graph Partitioning“. In: ACM/IEEE Conference on Supercom-
puting. 1998, page 28. doi: 10.1109/SC.1998.10018. [see page 14]

[KKM04] Jong-Pil Kim, Yong-Hyuk Kim, and Byung Ro Moon. „A Hybrid Genetic
Approach for Circuit Bipartitioning“. In: Genetic and Evolutionary Com-
putation Conference (GECCO). Volume 3103. Springer, 2004, pages 1054–
1064. doi: 10.1007/978-3-540-24855-2_116. [see page 29]

[KL70] Brian W. Kernighan and Shen Lin. „An Efficient Heuristic Procedure for
Partitioning Graphs“. In: The Bell System Technical Journal 49.2 (Feb.
1970), pages 291–307. doi: 10.1002/j.1538-7305.1970.tb01770.x.

[see pages 14, 29–32, 36, 38, 39]

[KÖ19] Gökçehan Kara and Can C. Özturan. „Graph Coloring Based Parallel Push-
relabel Algorithm for the Maximum Flow Problem“. In: ACM Transactions
on Mathematical Software 45.4 (2019), 46:1–46:28. doi: 10.1145/3330481.

[see pages 80, 81]

[KR13] Shad Kirmani and Padma Raghavan. „Scalable Parallel Graph Parti-
tioning“. In: International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). ACM, 2013, 51:1–51:10. doi:
10.1145/2503210.2503280. [see page 52]

[Kra21a] Robert Krause. „Community Detection in Hypergraphs with Application
to Partitioning“. Bachelor Thesis. Karlsruhe Institute of Technology, Apr.
2021. [see page 92]

[Kri84] Balakrishnan Krishnamurthy. „An Improved Min-Cut Algorithm for Parti-
tioning VLSI Networks“. In: IEEE Transactions on Computers 33.5 (1984),
pages 438–446. doi: 10.1109/TC.1984.1676460. [see page 14]

[Kum+14] K. Ashwin Kumar, Abdul Quamar, Amol Deshpande, and Samir Khuller.
„SWORD: Workload-Aware Data Placement and Replica Selection for
Cloud Data Management Systems“. In: The VLDB Journal 23.6 (2014),
pages 845–870. doi: 10.1007/s00778-014-0362-1. [see pages 2, 198]

[KW19] Todd A. Kuffner and Stephan G. Walker. „Why are p-Values Controver-
sial?“ In: The American Statistician 73.1 (2019), pages 1–3. [see page 28]

[KW96] R. Klimmek and F. Wagner. A Simple Hypergraph Min Cut Algorithm.
Technical report B 96-02. FU Berlin, 1996. [see page 15]

[Lab] University of Milano Laboratory of Web Algorithms. Datasets. url: http:
//law.di.unimi.it/datasets.php. [see page 23]

227

https://doi.org/10.1006/jpdc.1997.1404
https://doi.org/10.1109/SC.1998.10018
https://doi.org/10.1007/978-3-540-24855-2_116
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1145/3330481
https://doi.org/10.1145/2503210.2503280
https://doi.org/10.1109/TC.1984.1676460
https://doi.org/10.1007/s00778-014-0362-1
http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php

Bibliography

[LaS+15] Dominique LaSalle, Md. Mostofa Ali Patwary, Nadathur Satish, Narayanan
Sundaram, Pradeep Dubey, and George Karypis. „Improving Graph Par-
titioning For Modern Graphs and Architectures“. In: 5th Workshop on
Irregular Applications - Architectures and Algorithms IA3. 2015, 14:1–14:4.
doi: 10.1145/2833179.2833188. [see pages 52, 55, 94, 159]

[Lau21a] Moritz Laupichler. „Asynchronous n-Level Hypergraph Partitioning“. Mas-
ter Thesis. Karlsruhe Institute of Technology, Nov. 2021. [see page 136]

[Law73] Eugene L. Lawler. „Cutsets and Partitions of Hypergraphs“. In: Networks
3.3 (1973), pages 275–285. doi: 10.1002/net.3230030306.

[see pages 12, 15, 37, 150]

[Len90] Thomas Lengauer. Combinatorial Algorithms for Integrated Circuit Layout.
John Wiley & Sons, 1990. doi: 10.1017/S0263574700015691.

[see pages 2, 13]

[Li+17] Lingda Li, Robel Geda, Ari B. Hayes, Yan-Hao Chen, Pranav Chaudhari,
Eddy Z. Zhang, and Mario Szegedy. „A Simple Yet Effective Balanced
Edge Partition Model for Parallel Computing“. In: Proceedings of the
ACM on Measurement and Analysis of Computing Systems (POMACS)
1.1 (2017), 14:1–14:21. doi: 10.1145/3084451. [see page 14]

[LK13] Dominique Lasalle and George Karypis. „Multi-Threaded Graph Parti-
tioning“. In: 27th International Parallel and Distributed Processing Sym-
posium (IPDPS). 2013, pages 225–236. doi: 10.1109/IPDPS.2013.50.

[see pages 50–52, 56, 57, 159]

[LK14] J. Leskovec and A. Krevl. SNAP Datasets: Stanford Large Network Dataset
Collection. http://snap.stanford.edu/data. 2014. [see pages 23, 171, 186]

[LK16] Dominique LaSalle and George Karypis. „A Parallel Hill-Climbing Refine-
ment Algorithm for Graph Partitioning“. In: 45th International Conference
on Parallel Processing (ICPP). 2016, pages 236–241. doi: 10.1109/ICPP.
2016.34. [see pages 3, 52, 57, 58, 159]

[LLC95] Jianmin Li, John Lillis, and Chung-Kuan Cheng. „Linear Decomposition
Algorithm for VLSI Design Applications“. In: International Conference
on Computer-Aided Design (ICCAD) (Nov. 1995), pages 223–228. doi:
10.1109/ICCAD.1995.480016. [see page 37]

[Low+12] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. „Distributed GraphLab: A Frame-
work for Machine Learning in the Cloud“. In: Proceedings of the VLDB
Endowment 5.8 (2012), pages 716–727. doi: 10.14778/2212351.2212354.

[see page 1]

228

https://doi.org/10.1145/2833179.2833188
https://doi.org/10.1002/net.3230030306
https://doi.org/10.1017/S0263574700015691
https://doi.org/10.1145/3084451
https://doi.org/10.1109/IPDPS.2013.50
https://doi.org/10.1109/ICPP.2016.34
https://doi.org/10.1109/ICPP.2016.34
https://doi.org/10.1109/ICCAD.1995.480016
https://doi.org/10.14778/2212351.2212354

Bibliography

[LR04] Kevin J. Lang and Satish Rao. „A Flow-Based Method for Improving
the Expansion or Conductance of Graph Cuts“. In: 10th International
Integer Programming and Combinatorial Optimization Conference (IPCO).
Volume 3064. 2004, pages 325–337. doi: 10.1007/978-3-540-25960-2_25.

[see page 38]

[LTM18] Moritz von Looz, Charilaos Tzovas, and Henning Meyerhenke. „Balanced
k-means for Parallel Geometric Partitioning“. In: 47th International Con-
ference on Parallel Processing (ICPP). ACM, 2018, 52:1–52:10. doi: 10.
1145/3225058.3225148. [see pages 29, 49]

[Lum+07] Andrew Lumsdaine, Douglas P. Gregor, Bruce Hendrickson, and Jonathan
W. Berry. „Challenges in Parallel Graph Processing“. In: Parallel Processing
Letters 17.1 (2007), pages 5–20. doi: 10.1142/S0129626407002843.

[see page 3]

[LW98] Huiqun Liu and D. F. Wong. „Network-Flow-Based Multiway Partitioning
with Area and Pin Constraints“. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits & Systems 17.1 (1998), pages 50–59.
doi: 10.1109/43.673632. [see page 38]

[Maa20a] Nikolai Maas. „Multilevel Hypergraph Partitioning with Vertex Weights
Revisited“. Bachelor Thesis. Karlsruhe Institute of Technology, 2020.

[see pages 7, 178]

[Mal+21] Sepideh Maleki, Udit Agarwal, Martin Burtscher, and Keshav Pingali. „Bi-
Part: A Parallel and Deterministic Hypergraph Partitioner“. In: 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP). 2021, pages 161–174. doi: 10.1145/3437801.3441611.

[see pages 51, 52, 56, 59, 68, 159, 178]

[Mar+17] Claudio Martella, Dionysios Logothetis, Andreas Loukas, and Geor-
gos Siganos. „Spinner: Scalable Graph Partitioning in the Cloud“.
In: 33rd IEEE International Conference on Data Engineering ICDE.
2017, pages 1083–1094. doi: 10.1109/ICDE.2017.153. url: https:
//doi.org/10.1109/ICDE.2017.153. [see pages 29, 51, 157]

[May+18] Christian Mayer, Ruben Mayer, Sukanya Bhowmik, Lukas Epple, and Kurt
Rothermel. „HYPE: Massive Hypergraph Partitioning With Neighborhood
Expansion“. In: IEEE International Conference on Big Data. IEEE Com-
puter Society, 2018, pages 458–467. doi: 10.1109/BigData.2018.8621968.

[see page 157]

[Mey12] Henning Meyerhenke. „Shape Optimizing Load Balancing for MPI-Parallel
Adaptive Numerical Simulations“. In: Graph Partitioning and Graph
Clustering, 10th DIMACS Implementation Challenge Workshop. 2012,
pages 67–82. url: http : / / www . ams . org / books / conm / 588 / 11699.

[see pages 29, 158]

229

https://doi.org/10.1007/978-3-540-25960-2_25
https://doi.org/10.1145/3225058.3225148
https://doi.org/10.1145/3225058.3225148
https://doi.org/10.1142/S0129626407002843
https://doi.org/10.1109/43.673632
https://doi.org/10.1145/3437801.3441611
https://doi.org/10.1109/ICDE.2017.153
https://doi.org/10.1109/ICDE.2017.153
https://doi.org/10.1109/ICDE.2017.153
https://doi.org/10.1109/BigData.2018.8621968
http://www.ams.org/books/conm/588/11699

Bibliography

[MK98] T Minyard and Y Kallinderis. „Octree Partitioning of Hybrid Grids for
Parallel Adaptive Viscous Flow Simulations“. In: International Journal for
Numerical Methods in Fluids 26.1 (1998), pages 57–78. [see page 29]

[MMS08] Henning Meyerhenke, Burkhard Monien, and Thomas Sauerwald. „A New
Diffusion-Based Multilevel Algorithm for Computing Graph Partitions
of Very High Quality“. In: 22nd International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2008, pages 1–13. doi: 10.1109/
IPDPS.2008.4536237. [see pages 29, 43, 158]

[MMS09] Henning Meyerhenke, Burkhard Monien, and Thomas Sauerwald. „A New
Diffusion-Based Multilevel Algorithm for Computing Graph Partitions“.
In: Journal of Parallel Distributed Computing 69.9 (2009), pages 750–761.
doi: 10.1016/j.jpdc.2009.04.005. [see pages 29, 158]

[MP14] Zoltán Á. Mann and Pál A. Papp. „Formula Partitioning Revisited“. In:
5th Pragmatics of SAT Workshop. 2014, pages 41–56. doi: 10.29007/9skn.

[see page 22]
[MSS14] Henning Meyerhenke, Peter Sanders, and Christian Schulz. „Partitioning

Complex Networks via Size-Constrained Clustering“. In: 13th International
Symposium on Experimental Algorithms (SEA). Volume 8504. Springer,
2014, pages 351–363. doi: 10.1007/978-3-319-07959-2_30.

[see pages 14, 41, 44, 46, 69, 96, 149]
[MSS17] Henning Meyerhenke, Peter Sanders, and Christian Schulz. „Parallel Graph

Partitioning for Complex Networks“. In: IEEE Transactions on Parallel
and Distributed Systems 28.9 (2017), pages 2625–2638. doi: 10.1109/
TPDS.2017.2671868. [see pages 49, 51, 52, 55, 56, 59, 68, 149, 159]

[MWS17] Robert Matthews, Ron Wasserstein, and David Spiegelhalter. „The ASA’s
p-value statement, one year on“. In: Significance 14.2 (Apr. 2017), pages 38–
41. [see page 28]

[Neu45] John von Neumann. First Draft of a Report on the EDVAC. 1945.
[see page 16]

[NG04] Mark E. J. Newman and Michelle Girvan. „Finding and Evaluating Com-
munity Structure in Networks“. In: Physical Review 69 (2 Feb. 2004).

[see page 92]
[NI92] Hiroshi Nagamochi and Toshihide Ibaraki. „Computing Edge-Connectivity

in Multigraphs and Capacitated Graphs“. In: SIAM Journal on Discrete
Mathematics 5.1 (1992), pages 54–66. doi: 10.1137/0405004. [see page 15]

[Nuz14] Regina Nuzzo. „Scientific Method: Statistical Errors“. In: Nature 506.7487
(2014), pages 150–152. doi: 10.1038/506150a. [see page 28]

[OS10] Vitaly Osipov and Peter Sanders. „n-Level Graph Partitioning“. In: 18th
European Symposium on Algorithms (ESA). Springer. 2010, pages 278–289.
doi: 10.1007/978-3-642-15775-2_24.

[see pages 34, 35, 41, 42, 46, 47, 70, 71, 153, 171, 172]

230

https://doi.org/10.1109/IPDPS.2008.4536237
https://doi.org/10.1109/IPDPS.2008.4536237
https://doi.org/10.1016/j.jpdc.2009.04.005
https://doi.org/10.29007/9skn
https://doi.org/10.1007/978-3-319-07959-2_30
https://doi.org/10.1109/TPDS.2017.2671868
https://doi.org/10.1109/TPDS.2017.2671868
https://doi.org/10.1137/0405004
https://doi.org/10.1038/506150a
https://doi.org/10.1007/978-3-642-15775-2_24

Bibliography

[PGK19] Md Anwarul K. Patwary, Saurabh K. Garg, and Byeong Kang. „Window-
based Streaming Graph Partitioning Algorithm“. In: Proceedings of the
Australasian Computer Science Week Multiconference ACSW. ACM, 2019,
51:1–51:10. doi: 10.1145/3290688.3290711. [see page 29]

[Phe08] Chuck Pheatt. „Intel Threading Building Blocks“. In: Journal of Computing
Sciences in Colleges 23.4 (2008), pages 298–298. [see pages 18, 24, 95, 97]

[Pin12] Michael Pinedo. Scheduling. Volume 29. Springer, 2012. [see page 179]

[Pip79] Nicholas Pippenger. „On Simultaneous Resource Bounds“. In: 20th Annual
Symposium on Foundations of Computer Science. 1979, pages 307–311.
doi: 10.1109/SFCS.1979.29. [see page 51]

[PM03] Joachim Pistorius and Michel Minoux. „An Improved Direct Labeling
Method for the MaxFlow MinCut Computation in Large Hypergraphs and
Applications“. In: International Transactions in Operational Research 10.1
(2003), pages 1–11. doi: 10.1111/1475-3995.00389. [see page 37]

[PM07] David A. Papa and Igor L. Markov. „Hypergraph Partitioning and Clus-
tering“. In: Handbook of Approximation Algorithms and Metaheuristics.
2007. doi: 10.1201/9781420010749.ch61. [see pages 22, 29, 34]

[PQ80] Jean-Claude Picard and Maurice Queyranne. „On the Structure of All Mini-
mum Cuts in a Network and Applications“. In: Combinatorial Optimization
II (1980), pages 8–16. doi: 10.1007/BF01581031. [see pages 38, 80]

[PR96] François Pellegrini and Jean Roman. „SCOTCH: A Software Package
for Static Mapping by Dual Recursive Bipartitioning of Process and
Architecture Graphs“. In: High-Performance Computing and Networking
(HPCN). Volume 1067. Springer, 1996, pages 493–498. doi: 10.1007/3-
540-61142-8_588. [see pages 46, 55, 159]

[PZZ13] Bo Peng, Lei Zhang, and David Zhang. „A Survey of Graph Theoretical
Approaches to Image Segmentation“. In: Pattern Recognition 46.3 (2013),
pages 1020–1038. doi: 10.1016/j.patcog.2012.09.015. [see page 1]

[Räc08] Harald Räcke. „Optimal Hierarchical Decompositions for Congestion Mini-
mization in Networks“. In: 40th ACM Symposium on Theory of Computing
(STOC). ACM, 2008, pages 255–264. doi: 10.1145/1374376.1374415.

[see page 15]

[Rah+13] Fatemeh Rahimian, Amir H. Payberah, Sarunas Girdzijauskas, Márk
Jelasity, and Seif Haridi. „JA-BE-JA: A Distributed Algorithm for Bal-
anced Graph Partitioning“. In: 7th IEEE International Conference on
Self-Adaptive and Self-Organizing Systems (SASO). 2013, pages 51–60.
doi: 10.1109/SASO.2013.13. url: https://doi.org/10.1109/SASO.
2013.13. [see pages 29, 157]

231

https://doi.org/10.1145/3290688.3290711
https://doi.org/10.1109/SFCS.1979.29
https://doi.org/10.1111/1475-3995.00389
https://doi.org/10.1201/9781420010749.ch61
https://doi.org/10.1007/BF01581031
https://doi.org/10.1007/3-540-61142-8_588
https://doi.org/10.1007/3-540-61142-8_588
https://doi.org/10.1016/j.patcog.2012.09.015
https://doi.org/10.1145/1374376.1374415
https://doi.org/10.1109/SASO.2013.13
https://doi.org/10.1109/SASO.2013.13
https://doi.org/10.1109/SASO.2013.13

Bibliography

[RAK07] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. „Near Linear
Time Algorithm to Detect Community Structures in Large-Scale Networks“.
In: Physical Review E 76.3 (2007), page 036106. doi: 10.1103/PhysRevE.
76.036106. [see page 41]

[RSS18] Harald Räcke, Roy Schwartz, and Richard Stotz. „Trees for Vertex Cuts,
Hypergraph Cuts and Minimum Hypergraph Bisection“. In: 30th Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA). ACM, 2018,
pages 23–32. doi: 10.1145/3210377.3210398. [see page 15]

[Saa95] Youssef Saab. „A Fast and Robust Network Bisection Algorithm“. In:
IEEE Transactions on Computers 44.7 (1995), pages 903–913. doi: 10.
1109/12.392848. [see pages 36, 39, 41, 74, 121]

[San+19] Peter Sanders, Kurt Mehlhorn, Martin Dietzfelbinger, and Roman Demen-
tiev. Sequential and Parallel Algorithms and Data Structures - The Basic
Toolbox. Springer, 2019. isbn: 978-3-030-25208-3. doi: 10.1007/978-3-
030-25209-0. [see pages 17, 25]

[San93] Laura A. Sanchis. „Multiple-Way Network Partitioning with Different Cost
Functions“. In: IEEE Transactions on Computers 42.12 (1993), pages 1500–
1504. doi: 10.1109/12.260640. [see page 34]

[Sch+16a] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter
Sanders, and Christian Schulz. „k-way Hypergraph Partitioning via n-
Level Recursive Bisection“. In: 18th Workshop on Algorithm Engineering
& Experiments (ALENEX). SIAM. 2016, pages 53–67. doi: 10.1137/1.
9781611974317.5.

[see pages 6, 9, 34, 41, 42, 44–46, 64, 85, 94, 95, 121, 129, 139,
145, 159, 179–181, 187, 196]

[Sch+19] Sebastian Schlag, Christian Schulz, Daniel Seemaier, and Darren Strash.
„Scalable Edge Partitioning“. In: 21st Workshop on Algorithm Engineer-
ing & Experiments (ALENEX). 2019, pages 211–225. doi: 10.1137/1.
9781611975499.17. [see page 14]

[Sch13] C. Schulz. „High Quality Graph Partitioning“. PhD thesis. Karlsruhe
Institute of Technology, 2013. [see pages 43–46, 95, 159, 188]

[Sch20] Sebastian Schlag. „High-Quality Hypergraph Partitioning“. PhD thesis.
Karlsruhe Institute of Technology, 2020. doi: 10.5445/IR/1000105953.

[see pages 3, 6–9, 29, 34, 35, 40–42, 46, 47, 64–66, 94, 95, 98, 121,
123, 129, 141, 145, 157, 177, 188, 190, 196, 197]

[Ser+16] Marco Serafini, Rebecca Taft, Aaron J Elmore, Andrew Pavlo, Ashraf
Aboulnaga, and Michael Stonebraker. „Clay: Fine-Grained Adaptive Par-
titioning for General Database Schemas“. In: Proceedings of the VLDB
Endowment 10.4 (2016), pages 445–456. doi: 10.14778/3025111.3025125.

[see page 2]

232

https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1145/3210377.3210398
https://doi.org/10.1109/12.392848
https://doi.org/10.1109/12.392848
https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.1109/12.260640
https://doi.org/10.1137/1.9781611974317.5
https://doi.org/10.1137/1.9781611974317.5
https://doi.org/10.1137/1.9781611975499.17
https://doi.org/10.1137/1.9781611975499.17
https://doi.org/10.5445/IR/1000105953
https://doi.org/10.14778/3025111.3025125

Bibliography

[Sim91] Horst D. Simon. „Partitioning of Unstructured Problems for Parallel
Processing“. In: Computing Systems in Engineering 2.2 (1991), pages 135–
148. [see page 29]

[SK03] Navaratnasothie Selvakkumaran and George Karypis. „Multi-Objective
Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain
Degree Minimization“. In: International Conference on Computer-Aided
Design (ICCAD). 2003. doi: 10.1109/ICCAD.2003.1257889. [see page 14]

[SK72] Daniel G. Schweikert and Brian W. Kernighan. „A Proper Model for
the Partitioning of Electrical Circuits“. In: 9th Conference on Design
Automation (DAC). ACM, 1972, pages 57–62. doi: 10.1145/800153.
804930. [see pages 2, 10, 31, 92]

[SKK00] Kirk Schloegel, George Karypis, and Vipin Kumar. „Graph Partitioning
for High-Performance Scientific Simulations“. In: Sourcebook of Parallel
Computing. Morgan Kaufmann, 2000, pages 491–541. [see page 1]

[Slo+17] George M. Slota, Sivasankaran Rajamanickam, Karen D. Devine, and
Kamesh Madduri. „Partitioning Trillion-Edge Graphs in Minutes“. In: 31nd
International Parallel and Distributed Processing Symposium (IPDPS).
2017, pages 646–655. doi: 10.1109/IPDPS.2017.95. url: https://doi.
org/10.1109/IPDPS.2017.95. [see pages 29, 49, 51, 157]

[Slo+20] George M. Slota, Cameron Root, Karen D. Devine, Kamesh Madduri,
and Sivasankaran Rajamanickam. „Scalable, Multi-Constraint, Complex-
Objective Graph Partitioning“. In: IEEE Transactions on Parallel and
Distributed Systems 31.12 (2020), pages 2789–2801. doi: 10.1109/TPDS.
2020.3002150. [see pages 14, 49, 51, 157]

[SM16] Christian L. Staudt and Henning Meyerhenke. „Engineering Parallel Algo-
rithms for Community Detection in Massive Networks“. In: IEEE Transac-
tions on Parallel and Distributed Systems 27.1 (Jan. 2016), pages 171–184.
doi: 10.1109/TPDS.2015.2390633. [see pages 54, 93]

[SMR16] George M. Slota, Kamesh Madduri, and Sivasankaran Rajamanickam.
„Complex Network Partitioning Using Label Propagation“. In: SIAM
Journal of Scientific Computing 38.5 (2016). doi: 10.1137/15M1026183.

[see pages 29, 51]

[SS10] Peter Sanders and Christian Schulz. Engineering Multilevel Graph Parti-
tioning Algorithms. Technical report. 2010. arXiv: 1012.0006.

[see pages 34–38, 43–46]

[SS11] Peter Sanders and Christian Schulz. „Engineering Multilevel Graph Parti-
tioning Algorithms“. In: 19th European Symposium on Algorithms (ESA).
Springer, 2011, pages 469–480. doi: 10.1007/978-3-642-23719-5_40.

[see pages 5, 7, 34–38, 43, 47, 57, 59, 70, 74, 75, 77, 80, 158]

233

https://doi.org/10.1109/ICCAD.2003.1257889
https://doi.org/10.1145/800153.804930
https://doi.org/10.1145/800153.804930
https://doi.org/10.1109/IPDPS.2017.95
https://doi.org/10.1109/IPDPS.2017.95
https://doi.org/10.1109/IPDPS.2017.95
https://doi.org/10.1109/TPDS.2020.3002150
https://doi.org/10.1109/TPDS.2020.3002150
https://doi.org/10.1109/TPDS.2015.2390633
https://doi.org/10.1137/15M1026183
https://arxiv.org/abs/1012.0006
https://doi.org/10.1007/978-3-642-23719-5_40

Bibliography

[SS12] Peter Sanders and Christian Schulz. „Distributed Evolutionary Graph
Partitioning“. In: 12th Workshop on Algorithm Engineering & Experiments
(ALENEX). 2012, pages 16–29. doi: 10 . 1137 / 1 . 9781611972924 . 2.

[see pages 29, 43, 55, 158, 159]
[SS13] Peter Sanders and Christian Schulz. „Think Locally, Act Globally: Highly

Balanced Graph Partitioning“. In: 12th International Symposium on Ex-
perimental Algorithms (SEA). Volume 7933. Springer, 2013, pages 164–175.
doi: 10.1007/978-3-642-38527-8_16. [see page 175]

[SS15] Aaron Schild and Christian Sommer. „On Balanced Separators in Road
Networks“. In: 14th International Symposium on Experimental Algorithms
(SEA). Springer. 2015, pages 286–297. [see page 38]

[SS63] John C. Shepherdson and Howard E. Sturgis. „Computability of Recursive
Functions“. In: Journal of the ACM (JACM) 10.2 (1963), pages 217–255.

[see page 16]
[ST97] Horst D. Simon and Shang-Hua Teng. „How Good is Recursive Bisection?“

In: SIAM J. Sci. Comput. 18.5 (1997), pages 1436–1445. doi: 10.1137/
S1064827593255135. [see page 46]

[SV82] Yossi Shiloach and Uzi Vishkin. „An O(n2 log n) Parallel Max-Flow Al-
gorithm“. In: Journal of Algorithms 3.2 (1982), pages 128–146. doi: 10.
1016/0196-6774(82)90013-X. [see page 80]

[SV95] Huzur Saran and Vijay V. Vazirani. „Finding k Cuts within Twice the
Optimal“. In: SIAM Journal on Computing 24.1 (1995), pages 101–108.
doi: 10.1137/S0097539792251730. [see page 15]

[SW91] John E. Savage and Markus G. Wloka. „Parallelism in Graph-Partitioning“.
In: Journal of Parallel and Distributed Computing 13.3 (1991), pages 257–
272. doi: 10.1016/0743-7315(91)90074-J. [see page 51]

[SW97] Mechthild Stoer and Frank Wagner. „A Simple Min-Cut Algorithm“. In:
Journal of the ACM (JACM) 44.4 (1997), pages 585–591. doi: 10.1145/
263867.263872. [see page 15]

[SWC04] Alan J. Soper, Chris Walshaw, and Mark Cross. „A Combined Evolutionary
Search and Multilevel Optimisation Approach to Graph-Partitioning“. In:
Journal of Global Optimization 29.2 (2004), pages 225–241. doi: 10.1023/
B:JOGO.0000042115.44455.f3. [see pages 29, 171]

[SWZ02] Frank Schulz, Dorothea Wagner, and Christos D. Zaroliagis. „Using Multi-
level Graphs for Timetable Information in Railway Systems“. In: 4th Work-
shop on Algorithm Engineering & Experiments (ALENEX). Volume 2409.
Springer, 2002, pages 43–59. doi: 10.1007/3-540-45643-0_4. [see page 1]

[Tho08] Mikkel Thorup. „Minimum k-Way Cuts via Deterministic Greedy Tree
Packing“. In: 40th ACM Symposium on Theory of Computing (STOC).
ACM, 2008, pages 159–166. doi: 10.1145/1374376.1374402.

[see page 15]

234

https://doi.org/10.1137/1.9781611972924.2
https://doi.org/10.1007/978-3-642-38527-8_16
https://doi.org/10.1137/S1064827593255135
https://doi.org/10.1137/S1064827593255135
https://doi.org/10.1016/0196-6774(82)90013-X
https://doi.org/10.1016/0196-6774(82)90013-X
https://doi.org/10.1137/S0097539792251730
https://doi.org/10.1016/0743-7315(91)90074-J
https://doi.org/10.1145/263867.263872
https://doi.org/10.1145/263867.263872
https://doi.org/10.1023/B:JOGO.0000042115.44455.f3
https://doi.org/10.1023/B:JOGO.0000042115.44455.f3
https://doi.org/10.1007/3-540-45643-0_4
https://doi.org/10.1145/1374376.1374402

Bibliography

[TK04a] Aleksandar Trifunovic and William J. Knottenbelt. „Parkway 2.0: A
Parallel Multilevel Hypergraph Partitioning Tool“. In: 19th International
Symposium on Computer and Information Sciences (ISCIS). Volume 3280.
Springer, 2004, pages 789–800. doi: 10.1007/978-3-540-30182-0_79.

[see pages 50–52, 54–56, 59, 68, 94, 158]

[TK04b] Aleksandar Trifunovic and William J. Knottenbelt. „Towards a Parallel
Disk-Based Algorithm for Multilevel k-way Hypergraph Partitioning“. In:
18th International Parallel and Distributed Processing Symposium (IPDPS).
2004. doi: 10.1109/IPDPS.2004.1303286. [see pages 55, 94]

[TN94] Valerie E. Taylor and Bahram Nour-Omid. „A Study of the Factorization
Fill-In for a Parallel Implementation of the Finite Element Method“. In:
International Journal for Numerical Methods in Engineering 37.22 (1994),
pages 3809–3823. [see page 29]

[Tso+14] Charalampos E. Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and
Milan Vojnovic. „FENNEL: Streaming Graph Partitioning for Massive
Scale Graphs“. In: 7th ACM International Conference on Web Search
and Data Mining (WSDM). ACM, 2014, pages 333–342. doi: 10.1145/
2556195.2556213. [see page 29]

[VAR19] Michael Voss, Rafael Asenjo, and James Reinders. Pro TBB: C++ Parallel
Programming with Threading Building Blocks. Springer, 2019. [see page 18]

[VB05] Brendan Vastenhouw and Rob H. Bisseling. „A Two-Dimensional
Data Distribution Method for Parallel Sparse Matrix-Vector Multipli-
cation“. In: SIAM Review 47.1 (2005), pages 67–95. doi: 10 . 1137 /
S0036144502409019. [see pages 43, 46, 95, 159, 180]

[Vis+12] Natarajan Viswanathan, Charles J. Alpert, Cliff C. N. Sze, Zhuo Li, and
Yaoguang Wei. „The DAC 2012 Routability-Driven Placement Contest
and Benchmark Suite“. In: 49th Conference on Design Automation (DAC).
ACM, June 2012, pages 774–782. doi: 10.1145/2228360.2228500.

[see pages 21, 23, 186]

[Wal04] C. Walshaw. „Multilevel Refinement for Combinatorial Optimisation Prob-
lems“. In: Annals of Operations Research 131.1–4 (2004), pages 325–372.
doi: 10.1023/B:ANOR.0000039525.80601.15. [see pages 43, 112]

[Wan+14] Lu Wang, Yanghua Xiao, Bin Shao, and Haixun Wang. „How to Partition
a Billion-Node Graph“. In: 30th International Conference on Data Engi-
neering (ICDE). 2014, pages 568–579. doi: 10.1109/ICDE.2014.6816682.

[see page 1]

[WC00a] Chris Walshaw and Mark Cross. „Mesh Partitioning: A Multilevel Bal-
ancing and Refinement Algorithm“. In: SIAM Journal on Scientific Com-
puting 22.1 (2000), pages 63–80. doi: 10 . 1137 / S1064827598337373.

[see pages 43, 46]

235

https://doi.org/10.1007/978-3-540-30182-0_79
https://doi.org/10.1109/IPDPS.2004.1303286
https://doi.org/10.1145/2556195.2556213
https://doi.org/10.1145/2556195.2556213
https://doi.org/10.1137/S0036144502409019
https://doi.org/10.1137/S0036144502409019
https://doi.org/10.1145/2228360.2228500
https://doi.org/10.1023/B:ANOR.0000039525.80601.15
https://doi.org/10.1109/ICDE.2014.6816682
https://doi.org/10.1137/S1064827598337373

Bibliography

[WC00b] Chris Walshaw and Mark Cross. „Parallel Optimisation Algorithms for Mul-
tilevel Mesh Partitioning“. In: Parallel Computing 26.12 (2000), pages 1635–
1660. doi: 10.1016/S0167-8191(00)00046-6.

[see pages 3, 50, 52, 54–56, 59, 94]

[WC89] Yen-Chuen A. Wei and Chung-Kuan Cheng. „Towards Efficient Hier-
archical Designs by Ratio Cut Partitioning“. In: International Confer-
ence on Computer-Aided Design (ICCAD). 1989, pages 298–301. doi:
10.1109/ICCAD.1989.76957. [see page 14]

[WC91] Yen-Chuen A. Wei and Chung-Kuan Cheng. „Ratio Cut Partitioning
for Hierarchical Designs“. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits & Systems 10.7 (1991), pages 911–921. doi:
10.1109/43.87601. [see page 14]

[WCE97] Chris Walshaw, Mark Cross, and Martin G. Everett. „Parallel Dynamic
Graph Partitioning for Adaptive Unstructured Meshes“. In: Journal of
Parallel and Distributed Computing 47.2 (1997), pages 102–108. doi: 10.
1006/jpdc.1997.1407. [see pages 50, 51, 54, 56, 59, 68, 178]

[Wil+07] Samuel Williams, Leonid Oliker, Richard W. Vuduc, John Shalf, Katherine
A. Yelick, and James Demmel. „Optimization of Sparse Matrix-Vector Mul-
tiplication on Emerging Multicore Platforms“. In: International Conference
for High Performance Computing, Networking, Storage and Analysis (SC).
ACM Press, 2007, page 38. doi: 10.1145/1362622.1362674. [see page 23]

[Wil91] Roy D. Williams. „Performance of Dynamic Load Balancing Algorithms
for Unstructured Mesh Calculations“. In: Concurrency: Practice and Ex-
perience 3.5 (1991), pages 457–481. doi: 10 . 1002 / cpe . 4330030502.

[see page 29]

[Wil92] Frank Wilcoxon. „Individual Comparisons by Ranking Methods“. In: Break-
throughs in Statistics. Springer, 1992, pages 196–202. doi: 10.1007/978-
1-4612-4380-9_16. [see page 28]

[WL16] Ronald Wasserstein and Nicole Lazar. „The ASA Statement on p-Values:
Context, Process, and Purpose“. In: The American Statistician 70.2 (2016),
pages 129–133. [see page 28]

[WW93] Dorothea Wagner and Frank Wagner. „Between Min Cut and Graph
Bisection“. In: 18th International Symposium on Mathematical Foundations
of Computer Science (MFCS). Volume 711. Springer, 1993, pages 744–750.
doi: 10.1007/3-540-57182-5_65. [see page 15]

[Yan+18a] Wenyin Yang, Li Ma, Ruchun Cui, and Guojun Wang. „Hypergraph Parti-
tioning for Big Data Applications“. In: IEEE SmartWorld, Ubiquitous Intel-
ligence & Computing, Advanced & Trusted Computing, Scalable Computing
& Communications, Cloud & Big Data Computing, Internet of People
and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBD-

236

https://doi.org/10.1016/S0167-8191(00)00046-6
https://doi.org/10.1109/ICCAD.1989.76957
https://doi.org/10.1109/43.87601
https://doi.org/10.1006/jpdc.1997.1407
https://doi.org/10.1006/jpdc.1997.1407
https://doi.org/10.1145/1362622.1362674
https://doi.org/10.1002/cpe.4330030502
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1007/3-540-57182-5_65

Bibliography

Com/IOP/SCI). IEEE, 2018, pages 1705–1710. doi: 10.1109/SmartWorld.
2018.00289. [see page 14]

[Yan+18b] Wenyin Yang, Guojun Wang, Kim-Kwang Raymond Choo, and Shuhong
Chen. „HEPart: A Balanced Hypergraph Partitioning Algorithm for Big
Data Applications“. In: Future Generation Computer Systems 83 (2018),
pages 250–268. doi: 10.1016/j.future.2018.01.009. [see page 2]

[YP15] Boyang Yu and Jianping Pan. „Location-Aware Associated Data Placement
for Geo-Distributed Data-Intensive Applications“. In: IEEE Conference
on Computer Communications (INFOCOM). IEEE. 2015, pages 603–611.
doi: 10.1109/INFOCOM.2015.7218428. [see page 2]

[YW96] Hannah H. Yang and D. F. Wong. „Efficient Network Flow Based Min-
Cut Balanced Partitioning“. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits & Systems 15.12 (1996), pages 1533–1540.
doi: 10.1007/978-1-4615-0292-0_41. [see pages 36, 37, 74, 79, 80]

[ZCS97] Jason Y. Zien, Pak K. Chan, and Martine D. F. Schlag. „Hybrid Spectral/It-
erative Partitioning“. In: International Conference on Computer-Aided
Design (ICCAD). 1997, pages 436–440. doi: 10.1109/ICCAD.1997.643572.

[see pages 34, 158]

[ZG02] Xiaojin Zhu and Zoubin Ghahramani. Learning from Labeled and Unlabeled
Data with Label Propagation. Technical report. Carnegie Mellon University,
2002. [see page 41]

[ZHS06] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. „Learning with
Hypergraphs: Clustering, Classification, and Embedding“. In: 20th Annual
Conference on Neural Information Processing Systems. MIT Press, 2006,
pages 1601–1608. [see page 1]

237

https://doi.org/10.1109/SmartWorld.2018.00289
https://doi.org/10.1109/SmartWorld.2018.00289
https://doi.org/10.1016/j.future.2018.01.009
https://doi.org/10.1109/INFOCOM.2015.7218428
https://doi.org/10.1007/978-1-4615-0292-0_41
https://doi.org/10.1109/ICCAD.1997.643572

List of Publications

Journal Articles
[1] Sebastian Schlag, Tobias Heuer, Lars Gottesbüren, Yaroslav Akhremtsev, Chris-

tian Schulz, and Peter Sanders. „High-Quality Hypergraph Partitioning“. In:
ACM Journal of Experimental Algorithmics (JEA) (Mar. 2022). Just Accepted.
doi: 10.1145/3529090.

[2] Tobias Heuer, Peter Sanders, and Sebastian Schlag. „Network Flow-Based
Refinement for Multilevel Hypergraph Partitioning“. In: ACM Journal of Ex-
perimental Algorithmics (JEA) 24.1 (Sept. 2019), 2.3:1–2.3:36. doi: 10.1145/
3329872.

Conference Publications
[1] Lars Gottesbüren, Tobias Heuer, and Peter Sanders. „Parallel Flow-Based

Hypergraph Partitioning“. In: 20th International Symposium on Experimental
Algorithms (SEA). Volume 233. LIPIcs. Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022, 5:1–5:21. doi: 10.4230/LIPIcs.SEA.
2022.5.

[2] Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. „Shared-
Memory n-level Hypergraph Partitioning“. In: 24th Workshop on Algorithm
Engineering & Experiments (ALENEX). SIAM, Jan. 2022, pages 131–144. doi:
10.1137/1.9781611977042.11.

[3] Lars Gottesbüren, Tobias Heuer, Peter Sanders, Christian Schulz, and Daniel
Seemaier. „Deep Multilevel Graph Partitioning“. In: 29th European Symposium
on Algorithms (ESA). Volume 204. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021, 48:1–48:17. doi: 10.4230/LIPIcs.ESA.2021.48.

[4] Tobias Heuer, Nikolai Maas, and Sebastian Schlag. „Multilevel Hypergraph
Partitioning with Vertex Weights Revisited“. In: 19th International Symposium
on Experimental Algorithms (SEA). Volume 190. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, 8:1–8:20. doi: 10.4230/LIPIcs.SEA.
2021.8.

239

https://doi.org/10.1145/3529090
https://doi.org/10.1145/3329872
https://doi.org/10.1145/3329872
https://doi.org/10.4230/LIPIcs.SEA.2022.5
https://doi.org/10.4230/LIPIcs.SEA.2022.5
https://doi.org/10.1137/1.9781611977042.11
https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://doi.org/10.4230/LIPIcs.SEA.2021.8
https://doi.org/10.4230/LIPIcs.SEA.2021.8

List of Publications

[5] Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias
Heuer, Jonas Spinner, Christopher Weyand, and Marcus Wilhelm. „PACE
Solver Description: The KaPoCE Exact Cluster Editing Algorithm“. In: 16th
International Symposium on Parameterized and Exact Computation (IPEC).
Volume 214. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021,
27:1–27:3. doi: 10.4230/LIPIcs.IPEC.2021.27.

[6] Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias
Heuer, Jonas Spinner, Christopher Weyand, and Marcus Wilhelm. „PACE
Solver Description: KaPoCE: A Heuristic Cluster Editing Algorithm“. In: 16th
International Symposium on Parameterized and Exact Computation (IPEC).
Volume 214. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021,
31:1–31:4. doi: 10.4230/LIPIcs.IPEC.2021.31.

[7] Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. „Scalable
Shared-Memory Hypergraph Partitioning“. In: 23rd Workshop on Algorithm
Engineering & Experiments (ALENEX). SIAM, 2021, pages 16–30. doi: 10.
1137/1.9781611976472.2.

[8] Niklas Baumstark, Simon Gog, Tobias Heuer, and Julian Labeit. „The Quantile
Index - Succinct Self-Index for Top-k Document Retrieval“. In: 16th Inter-
national Symposium on Experimental Algorithms (SEA). Volume 75. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 15:1–15:14. doi:
10.4230/LIPIcs.SEA.2017.15.

[9] Niklas Baumstark, Simon Gog, Tobias Heuer, and Julian Labeit. „Practical
Range Minimum Queries Revisited“. In: 16th International Symposium on
Experimental Algorithms (SEA). Volume 75. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017, 12:1–12:16. doi: 10.4230/LIPIcs.SEA.2017.12.

[10] Tobias Heuer, Peter Sanders, and Sebastian Schlag. „Network Flow-Based
Refinement for Multilevel Hypergraph Partitioning“. In: 17th International
Symposium on Experimental Algorithms (SEA). Volume 103. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 1:1–1:19. doi: 10.4230/
LIPIcs.SEA.2018.1.

[11] Tobias Heuer and Sebastian Schlag. „Improving Coarsening Schemes for Hyper-
graph Partitioning by Exploiting Community Structure“. In: 16th International
Symposium on Experimental Algorithms (SEA). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, June 2017, 21:1–21:19. doi: 10.4230/LIPIcs.SEA.
2017.21.

[12] Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and Sebastian Schlag.
„Engineering a Direct k-way Hypergraph Partitioning Algorithm“. In: 19th
Workshop on Algorithm Engineering & Experiments (ALENEX). SIAM, Jan.
2017, pages 28–42. doi: 10.1137/1.9781611974768.3.

240

https://doi.org/10.4230/LIPIcs.IPEC.2021.27
https://doi.org/10.4230/LIPIcs.IPEC.2021.31
https://doi.org/10.1137/1.9781611976472.2
https://doi.org/10.1137/1.9781611976472.2
https://doi.org/10.4230/LIPIcs.SEA.2017.15
https://doi.org/10.4230/LIPIcs.SEA.2017.12
https://doi.org/10.4230/LIPIcs.SEA.2018.1
https://doi.org/10.4230/LIPIcs.SEA.2018.1
https://doi.org/10.4230/LIPIcs.SEA.2017.21
https://doi.org/10.4230/LIPIcs.SEA.2017.21
https://doi.org/10.1137/1.9781611974768.3

List of Publications

[13] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter
Sanders, and Christian Schulz. „k-way Hypergraph Partitioning via n-Level Re-
cursive Bisection“. In: 18th Workshop on Algorithm Engineering & Experiments
(ALENEX). SIAM. 2016, pages 53–67. doi: 10.1137/1.9781611974317.5.

Survey Articles
[1] Ümit V. Çatalyürek, Karen D. Devine, Marcelo Fonseca Faraj, Lars Gottes-

büren, Tobias Heuer, Henning Meyerhenke, Peter Sanders, Sebastian Schlag,
Christian Schulz, Daniel Seemaier, and Dorothea Wagner. „More Recent Ad-
vances in (Hyper)Graph Partitioning“. In: Computing Research Repository
(CoRR) abs/2205.13202 (2022). arXiv: 2205.13202.

Technical Reports
[1] Lars Gottesbüren, Tobias Heuer, and Peter Sanders. Parallel Flow-Based Hy-

pergraph Partitioning. Technical report. 2022. arXiv: 2201.01556.
[2] Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Shared-

Memory n-level Hypergraph Partitioning. Technical report. 2021. arXiv: 2104.
08107.

[3] Lars Gottesbüren, Tobias Heuer, Peter Sanders, Christian Schulz, and Daniel
Seemaier. Deep Multilevel Graph Partitioning. Technical report. 2021. arXiv:
2105.02022.

[4] Tobias Heuer, Nikolai Maas, and Sebastian Schlag. Multilevel Hypergraph
Partitioning with Vertex Weights Revisited. Technical report. 2021. arXiv:
2102.01378.

[5] Tobias Heuer, Peter Sanders, and Sebastian Schlag. Network Flow-Based Re-
finement for Multilevel Hypergraph Partitioning. Technical report. 2018. arXiv:
1802.03587.

[6] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter
Sanders, and Christian Schulz. k-way Hypergraph Partitioning via n-Level
Recursive Bisection. Technical report. 2015. arXiv: 1511.03137.

Theses
[1] Tobias Heuer. „High Quality Hypergraph Partitioning via Max-Flow-Min-Cut

Computations“. Master Thesis. Karlsruhe Institute of Technology, Jan. 2018.
[2] Tobias Heuer. „Engineering Initial Partitioning Algorithms for direct k-way

Hypergraph Partitioning“. Bachelor Thesis. Karlsruhe Institute of Technology,
Aug. 2015.

241

https://doi.org/10.1137/1.9781611974317.5
https://arxiv.org/abs/2205.13202
https://arxiv.org/abs/2201.01556
https://arxiv.org/abs/2104.08107
https://arxiv.org/abs/2104.08107
https://arxiv.org/abs/2105.02022
https://arxiv.org/abs/2102.01378
https://arxiv.org/abs/1802.03587
https://arxiv.org/abs/1511.03137

List of Publications

Supervised Theses
[1] Moritz Laupichler. „Asynchronous n-Level Hypergraph Partitioning“. Master

Thesis. Karlsruhe Institute of Technology, 2021.
[2] Manuel Haag. „Engineering of Algorithms for Very Large k Partitioning“. Master

Thesis. Karlsruhe Institute of Technology, 2021.
[3] Robert Krause. „Community Detection in Hypergraphs with Application to

Partitioning“. Bachelor Thesis. Karlsruhe Institute of Technology, 2021.
[4] Lukas Reister. „A Parallel Network Flow-Based Refinement Techinque for

Multilevel Hypergraph Partitioning“. Master Thesis. Karlsruhe Institute of
Technology, 2020.

[5] Tobias Fuchs. „Machine-Learning based Hypergraph Pruning for Partitioning“.
Bachelor Thesis. Karlsruhe Institute of Technology, 2020.

[6] Nikolai Maas. „Multilevel Hypergraph Partitioning with Vertex Weights Revis-
ited“. Bachelor Thesis. Karlsruhe Institute of Technology, 2020.

[7] Patrick Firnkes. „Throughput Optimization in a Distributed Database System
via Hypergraph Partitioning“. Master Thesis. Karlsruhe Institute of Technology,
2019.

242

	Abstract
	Table of Contents
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Preliminaries
	2.1 Definitions and Notations
	2.2 The Balanced Hypergraph Partitioning Problem
	2.3 Shared-Memory Programming
	2.3.1 The Theoretical Machine Model
	2.3.2 The Parallelization Library

	2.4 Experimental Design
	2.4.1 Benchmark Sets
	2.4.2 Methodology
	2.4.3 Visualizing Solution Quality
	2.4.4 Visualizing Running Times and Speedups
	2.4.5 Statistical Significance Tests

	3 Related Work
	3.1 Iterative Improvement Algorithms
	3.1.1 Kernighan-Lin Algorithm
	3.1.2 Fiduccia-Mattheyses Algorithm

	3.2 Flow-Based Refinement
	3.3 The Multilevel Scheme
	3.3.1 The Label Propagation Algorithm
	3.3.2 n-Level Hypergraph Partitioning
	3.3.3 Algorithmic Components of Sequential Partitioners

	3.4 Parallel (Hyper)Graph Partitioning
	3.4.1 Parallelization Challenges
	3.4.2 Algorithmic Components of Parallel Partitioners

	4 Parallel Improvement Algorithms
	4.1 Parallel Gain Calculation
	4.1.1 The Partition Data Structure
	4.1.2 The Gain Table
	4.1.3 Parallel Gain Recalculation

	4.2 Label Propagation Refinement
	4.3 Direct k-Way FM Local Search
	4.3.1 Multi-Try k-Way FM Algorithm
	4.3.2 Highly-Localized k-Way FM Search

	4.4 Flow-Based Refinement
	4.4.1 Parallel Active Block Scheduling
	4.4.2 Network Construction
	4.4.3 The FlowCutter Algorithm
	4.4.4 Parallel Maximum Flow Algorithm
	4.4.5 Intricacies with Preflows and FlowCutter
	4.4.6 Implementation Details

	5 Parallel Multilevel Hypergraph Partitioning
	5.1 The Hypergraph Data Structure
	5.2 Coarsening
	5.2.1 Rating Function Evaluation
	5.2.2 Clustering Algorithm
	5.2.3 Contraction Limit
	5.2.4 Community Detection Enhancement

	5.3 Initial Partitioning
	5.3.1 Parallel Recursive Bipartitioning
	5.3.2 Flat Initial Bipartitioning

	5.4 Refinement
	5.5 Engineering Aspects
	5.6 Algorithm Configuration
	5.7 Insights into Multilevel Partitioning
	5.7.1 Analysis of Search Conflicts
	5.7.2 Effectiveness Tests
	5.7.3 Scalability
	5.7.4 Running Times of Components

	6 Parallel n-level Hypergraph Partitioning
	6.1 The Dynamic Hypergraph Data Structure
	6.1.1 Remove and Restore Incident Nets
	6.1.2 Contraction Operation
	6.1.3 Uncontraction Operation

	6.2 Parallel n-level Coarsening
	6.2.1 Contraction Forest
	6.2.2 Handling Contraction Dependencies
	6.2.3 Removing Identical Nets

	6.3 Parallel n-level Uncoarsening
	6.3.1 Sibling Uncontraction Dependencies
	6.3.2 Batch Construction Algorithm
	6.3.3 Refinement
	6.3.4 Gain Table Maintenance

	6.4 Insights into n-Level Partitioning
	6.4.1 Algorithm Configuration
	6.4.2 Scalability
	6.4.3 Running Times of Components
	6.4.4 Comparison to Multilevel Partitioning

	7 From Hypergraphs to Graphs
	7.1 Partition Data Structure
	7.1.1 The Gain Table
	7.1.2 Attributed Gains

	7.2 Multilevel Graph Partitioning
	7.2.1 The Graph Data Structure
	7.2.2 Peculiarities for Graph Partitioning

	7.3 n-Level Graph Partitioning
	7.3.1 Contraction and Uncontraction Operation
	7.3.2 Remove and Restore Selfloops and Identical Edges

	7.4 Experiments

	8 A Comparison of Partitioning Algorithms
	8.1 Included Partitioning Algorithms
	8.2 Identifying Competitors
	8.3 Comparison to Other Systems
	8.3.1 Hypergraph Partitioning
	8.3.2 Graph Partitioning

	8.4 Summary

	9 Multilevel Hypergraph Partitioning with Node Weights
	9.1 Definitions and Notations
	9.2 Balanced Recursive Bipartitioning
	9.2.1 Deeply Balanced Bipartitions
	9.2.2 Sufficiently Balanced Bipartitions
	9.2.3 The Prepacking Algorithm

	9.3 Experiments
	9.3.1 The LPT Balance Constraint
	9.3.2 Balanced Partitioning
	9.3.3 Solution Quality and Running Times

	9.4 Proof of Claim 9.6

	10 Conclusion
	Appendix
	List of Algorithms
	List of Figures
	List of Tables
	Bibliography
	List of Publications

