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A B S T R A C T   

Distributed scatter (DS) interferometric synthetic aperture radar is a powerful technology for analyzing dis
placements of the earth’s surface. Unfortunately, the preparatory step of DS pre-processing is enormously time 
consuming. The present research puts forward a deep learning-based approach called Distributed Scatterers 
Prediction Net (DSPN), that can reduce the computational load considerably. DSPN is a convolutional neural 
network, which generates DS candidate masks based on nine input layers. Masked pixels with low prospect of 
being DS are omitted during DS pre-processing. Tests on 6 different terrains in North Rhine-Westphalia and Sicily 
with Sentinel-1 data show that DSPN saves 11% to 87% computation time depending on the scene without 
significantly reducing coverage with information. Our experiments show that the proposed approach can 
effectively predict DS candidates and speeds up processing, indicating its potential for analyzing the big data of 
remote sensing. To the best of our knowledge, this is the first attempt to do a classification in DS candidates and 
non-DS candidates as a preparatory step to DS pre-processing.   

1. Introduction 

Distributed scatterer (DS) pre-processing based on grouping statis
tically homogeneous pixels, estimating the coherence matrix and 
extracting the optimized phase history has been an object of research 
efforts of the InSAR community since more than a decade now (De Zan 
and Rocca, 2005; Guarnieri and Tebaldini, 2007; Samiei-Esfahany et al., 
2016; Jiang et al., 2017; Lin and Perissin, 2017; Ansari et al., 2018; Even 
and Schulz, 2018; Michaelides et al., 2019; Zhao et al., 2019; Even, 
2021; Ansari et al., 2021; Even, 2022; Ferretti et al., 2011; Zheng et al., 
2022; Zwieback and Meyer, 2022; Perissin and Wang, 2012; Rocca et al., 
2013; Jiang et al., 2014; Jiang et al., 2015; Fornaro et al., 2015; Zwie
back, 2016; Wang and Zhu, 2016; Jiang and Guarnieri, 2020; Ansari 
et al., 2017). A review is (Even and Schulz, 2018). Put in a nutshell, one 
might think of it as transforming DS into persistent scatterers (PS), 
which then can be used together with actual PS in any PS algorithm. It 
allows, depending on the physical characteristics of the earth’s surface, 
to increase significantly the coverage with valuable information. But the 
benefits of DS pre-processing are paid with an enormous computational 
load, in particular considering that data stacks become ever bigger due 
to, e.g., the Sentinel-1 mission. Hence, ways to accelerate processing are 
sought. On the technical side, more powerful computers, parallelization, 

and optimized implementations help to achieve that. On the side of 
selection of building blocks of the DS pre-processing algorithm, 
grouping methods like FSHP (Jiang et al., 2015) or the likelihood ratio 
test used in (Jiang and Guarnieri, 2020) outperform the Kolmgorov- 
Smirnov two sample test regarding speed and quality of results and 
the Eigendecomposition-based Maximum-likelihood-estimator of Inter
ferometric phase (EMI) (Ansari et al., 2018) allows for a fast estimation 
of the DS signal, while retaining good quality of the estimation. In 
addition, sequential estimation is an innovative algorithm, which uses 
subdivision and compression of mini-stacks (Ansari et al., 2017) and is 
able to speed up processing significantly. Trivially, also parameter set
tings influence processing time. An obvious example is the size of the 
search window. In the present work, a new approach to accelerate DS 
pre-processing by DS Candidates (DSC) pre-selection is proposed. The 
idea is to employ deep learning in order to predict which pixels are non- 
DS before DS pre-processing is performed. As during DS pre-processing 
each pixel is analyzed separately, the non-DS identified beforehand do 
not need to be analyzed and their processing time can be saved. 
Depending on the data stack, this can significantly reduce the compu
tational load and justify the costs of a classification step. The prediction 
does not have to be perfectly precise to be useful. It only needs to avoid 
discarding DS and needs to discard sufficiently many non-DS. Even the 
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loss of DS pixels can be tolerated if the spatial coverage is not signifi
cantly affected. Indeed, because DS pixels naturally occur in groups, it is 
common to thin out pixels after combining PS and DS in order to reduce 
the computational load during subsequent processing steps. 

Although important characteristics (e.g. phase triangulation coher
ence γpt (Ferretti et al., 2011) and size of neighborhood) that serve to 
identify good DSC are only available after DS pre-processing and 
although information from all possible interferograms is used to deter
mine them, it is not necessary to feed the complete data stack in the deep 
artificial neural network (ANN). A selection of a modest number of input 
layers will be sufficient for two reasons: First, important classes of land 
cover, e.g. forest or water, will never constitute DS, at least not for 
smaller wavelengths as X- or C-band. Second, land cover classification 
(LCC) based on SAR data is a well-developed field of research that 
achieves good results; all the more, as deep learning approaches have 
lately set new standards in SAR image processing (Zhu et al., 2021). 

Hence it should be possible to recognize at least those non-DS pixels 
associated with land cover classes that can be successfully discerned like 
forest (Geng et al., 2017; Mazza et al., 2019; Ban et al., 2020), and water 
(Chen et al., 2020; Mayer et al., 2021; Guo et al., 2022). While LCC is 
related to this work, our goal is a direct classification in DSC and non- 
DSC that does not require a LCC as intermediate result. Only the selec
tion of some of the input layers is motivated by work on LCC. The input 
layers will be discussed in section 2.2.2 in more detail. 

Deep learning is a machine learning technique that uses deep Arti
ficial Neural Networks (ANN). With the development of GPU technology 
and parallel computing, it has become successful in computer vision, 
speech recognition and other domains (Lecun et al., 2015; Goodfellow 
et al., 2016), often representing the state of the art in these fields. Since 
several years, also the remote sensing community is increasing research 
activity regarding deep learning (Zhu et al., 2021; Zhu, 2017; Yuan 
et al., 2020). In particular, deep learning has been applied to SAR data 
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Fig. 1. The general flow chart of DSPN approach.  
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for different purposes: to SAR intensities for speckle filtering, e.g. (Lat
tari et al., 2019; Cozzolino et al., 2020), for image classification (Geng 
et al., 2017), for vegetation mapping (Ho Tong Minh et al., 2018), 
waterline detection (Zhang et al., 2022), to PolSAR data for LCC, e.g. 
(Xie et al., 2014; D. Ho Tong Minh, E. Ndikumana, N. Baghdadi, D. 
Courault, and L. Hossard, “Applying deep learning for agricultural 
classification using multitemporal SAR Sentinel-1 for Camargue, 
France,” vol., 2018; Ma et al., 2019; Parikh et al., 2020)characterizing 
arctic tundra hydro-ecological conditions (Merchant et al., 2022), or for 
near real time wildfire monitoring (Ban et al., 2020), for road extraction 
e.g. (Henry et al., 2018; Zhang et al., 2019), to InSAR data for detection 
of deformation, e.g. (Gaddes et al., 2019; Sun et al., 2020; Anantrasir
ichai et al., 2021), for phase filtering and coherence estimation, e.g. (Sun 
et al., 2020; Pu et al., 2020; Mukherjee et al., 2021), for PS selection 
(Tiwari et al., 2020), and for removing atmospheric phase from InSAR 
time series (Zhao et al., 2021). 

Deep learning means that a function, which performs a certain task, 
is obtained by approximately presenting it as ANN with many weights/ 
parameters that are determined by training with example data. For the 
DS Prediction Network (DSPN) proposed in this paper, supervised 
learning was applied. This means that the training data consisted of 
input data plus (as ground truth) the wished output of the ANN. During 
training, a so-called loss function measures how well the prediction of 
the ANN agrees with the ground truth for the training data. The training 
is formally a mathematical optimization that adjusts the weights of the 
ANN until the loss function attains small values. However, other than for 
optimization problems, the goal of training is not to find the minimum 
loss, but instead to perform reliably on new, unseen inputs. 

In our case, we want to approximate a function that is hard to be 
formulated in simple mathematical terms. It would make the decision DS 
or non-DS based on the chosen input layers. Nevertheless, we can make 
DSPN an approximation to this function via the training data based on 
γpt . The calculation of γpt with the DS pre-processing algorithm itself can 
be seen as an inspiration for such a function that uses the whole data 
stack as input. As volume and variability of number of layers makes the 
whole data stack unsuitable for our purpose, we restrict the input to 
some selected layers. Above, we argued that these should suffice to 
discern DS and non-DS. 

For this work, the ground truth is produced based on DS pre- 
processing results. This requires an answer to the question which 
pixels are considered being a DSC. We decided to solely use phase 
triangulation coherence γpt as the basis of characterization, from which 
the ground truth is generated using K-means clustering. Nevertheless, γpt 

alone is not sufficient to characterize DS. Presumably, this is the cause 
that a considerable number of false negatives are observed. When 
plotted in Google Earth, most of them appear over vegetated areas and 
are hence unlikely to be DS. But what matters in the end regarding 
applicability of DSPN, is the loss of coverage of an InSAR result gener
ated discarding non-DS according to DSPN compared to a result, where 
DS pre-processing was run on the full dataset. In order to evaluate the 
loss of coverage due to discarding false negatives, such InSAR analyses 
were performed with a modified version of StaMPS (Even et al., 2020) 
which allows to jointly process PS Candidates and DS Candidates. 

In chapter 2, the formal framework of DSPN, coarse label learning, 
training of the network and coarse label correction are explained. 
Furthermore, data and the computing environment are described. 
Chapter 3 analyses the results obtained for several test cases from North 
Rhine-Westfalia (Germany) and Sicily (Italy) regarding quality and 
runtime, showing a significant gain in speed. The discussion in chapter 4 
is devoted to the question of efficiency, an analysis of false negatives, 
and possible future work. The efficiency proves to be good and an 
acceptable loss in coverage of less than 3 % is observed. Finally, our 
conclusions are presented. 

2. Material and methods 

2.1. Formal framework of DSPN 

The framework of DSPN contains three parts, which are “training set 
preparation”, “training DSPN”, and “mask prediction“, as shown in 
Fig. 1. In section 2.2, the method for preparing the training set will be 
explained. The composition of the input layers and the generation of 
coarse labels (ground truth) are the focus of this part of the research. 
Then the DSPN is trained iteratively as step 2 showed in Fig. 1; the ar
chitecture of DSPN, training strategy, and loss function are provided in 
section 2.3. When the training is finished, the model can be used to 
predict the mask of DSC. The approach for converting the output of 
DSPN into the mask available for StaMPS is called coarse label correc
tion. It is given in section 2.4. 

2.2. Coarse label learning 

2.2.1. Label generation 
Since there is currently no dataset that provides supervised infor

mation for DS recognition, this research proposes a method of clustering 
γpt to generate labels for training. The label of a pixel contains the in
formation of whether this pixel belongs to DSC or not. Even though 
setting γpt as the label directly or setting a hard threshold of γpt as the 
label is an uncomplicated way, experiments prove the network will 
hardly converge or it will overfit if the value of γpt is used as the label and 
will also miss details with low γpt like roads or motorways (Appendix B). 
After investigating the γpt distribution in four different regions (Ruhr
gebiet, Saarland, Ibbenbüren and Sicily), a hypothesis is worth to 
consider: It is supposed that the patterns of DSC follow a similar dis
tribution for different scenarios. For example, DSCs can be roughly 
classified into weak DS (road, motorway, etc.) and strong DS (urban 
area) according to their γpt values. Although the γpt value of the same 
type of DSCs from different stacks and different parameters are variable, 
their quantile values are close to each other. 

Based on this hypothesis, an idea is to let the network learn the 
categories of DSCs but not the value of γpt . The categories of DSC are 
derived from γpt maps. From prior experience, for points with γpt less 
than a threshold (here 0.4), the possibility of becoming DSCs is very 
small (Even and Schulz, 2018), section 3.3. So an idea is to set such 
points as non-DS labels and eliminate them in the mask. For those DSCs 
(γpt > 0.4), the K-means algorithm was used to generate multi-category 
coarse labels for training because we want the network to learn a de
cision hyperplane as clearly as possible to classify the diverse types of 
DSCs and enhance the robustness and the sensitivity to weak DSCs. 
Although the threshold 0.4 is a bit low, it is appropriate for this setting 
because more DSC is unharmful, while losing coverage is harmful for 
post-processing in StaMPS. 

Since K-means is a non-convex algorithm, the best categories number 
K is found by a systematic “trial and error” approach. For γpt , it will 
hardly converge if the cluster number K is higher than a threshold Kmax 
(from experiment we recommend Kmax ≤ 6). Hence, the best K can be 
searched from 2 to Kmax. In order to determine the best K, we applied 
three cluster evaluation methods: Calinski-Harabasz index (Caliñski and 
Harabasz, 1974), Silhouette analysis (Rousseeuw, 1987), and Elbow 
Curve Method (Ketchen and Shook, 1996). In case that the best K from 
different cluster evaluation methods is different, we selected the K, for 
which the histogram counting points in the classes retains best the shape 
of the distribution of values of γpt . Furthermore, if the size of a cluster is 
much smaller than that of the others, it is merged into the nearest one. 
This is helpful for the neural network to fully learn the features of 
different classes. 

2.2.2. Input layers 
The Distributed Scatterers Prediction Net (DSPN) learns the DS 
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patterns from the statistical characteristics of the raw signal. In the 
beginning, an initial choice of candidate input layers for DSPN was done, 
inspired by the input layers that other authors used for similar tasks. E. 
g., (Mestre-Quereda et al., 2020; Nikaein et al., 2021) compare different 
constellations and come to the conclusion that coherence and back
scatter are complementary and that use of dual-polarization yields 
better results than only single polarization. Both papers concern crop 
classification and use time series to achieve multi-class categorization. 
Another type of land cover that is relevant with regard to DSCs are roads. 
They often provide DSCs of lower quality that nevertheless are valuable 
as they often provide additional coverage, e.g. in Central Europe. (Zhang 
et al., 2019) found that the use of dual-pol data can also improve road 
extraction. (Xiao et al., 2019) used the coefficient of variation as one of 
the input layers for this purpose. For such candidate input layers, we 
experimented with expert rules to distinguish between different types of 
land cover (having in mind the generation of training data). Based on 
this experience, the final selection for DSPN comprised the following 
nine input layers: speckle filtered intensities of the master regarding VV 
and VH; real and imaginary parts of coherences from an acquisition of a 
month with low coherence and a month with high coherence; median 
amplitude over the stack; filtered amplitude dispersion image of the 

stack; and coefficient of variation of median amplitude. 
The intensities are the output of the polarimetric speckle filtering 

function of the Sentinel 1 toolbox (Improved Lee Sigma filter using 
default parameters one look, window size 7 × 7, sigma 0.9, target 
window size 3 × 3). The coherences were calculated for each acquisition 
from a month with low coherence (strong vegetation) and a month with 
high coherence (weak vegetation, short temporal baseline). For the 
calculation of the coherences, an 11 × 3 window was used. The median 
amplitude and the amplitude dispersion image of the stack do not pose 
an additional computational burden as they are used as the background 
image for plotting or are required for PS selection and are calculated 
either way. The median amplitude gives a low noise version of back
scatter. We intended a pan-sharpening effect in connection with the 
ANN. Low amplitude dispersion is often used as an indicator of phase 
stability that helps detect PSC. Higher amplitude dispersion is found in 
fields and meadows. In order to obtain a layer with easier to classify 
information a median filter (window size 5 × 3) that exempts pixels with 
amplitude dispersion smaller than 0.4 was applied. The size of the me
dian filter is a trade-off between losing resolution and being large 
enough to observe the desired smoothing effect. The coefficient of 
variation of median amplitude (7 × 3 window) was calculated to high
light in particular roads. 

2.3. Training DSPN 

2.3.1. Distributed scatterers prediction Net architecture 
Since the network needs to identify the class of each pixel and its 

contribution to the loss function, the use of an Encoder-Decoder network 
structure is self-evident. The structure of DSPN is composed of two parts, 
the encoder branch, and the decoder branches. For the encoder, the 
backbone of a convolutional network with multiple level feature ex
tractors can be considered used such as AlexNet (Krizhevsky et al., 
2017); GoogLeNet (Szegedy, et al., 2015), or VGG (Simonyan and Zis
serman, 2015). We recommend to use ResNet (He et al., 2016) as the 
backbone of the feature extractor because it provides four different 
levels of features from global to local by four ResBlocks (implemented 

Fig. 2. DSPN structure. The number below each block indicates the input channel for that block.  

Table 1 
SAR images stacks details for North Rhine-Westphalia and Sicily.  

Dataset Path Master date Period Low coherence date High coherence date Size 

North Rhine-Westphalia 15 Ascending 2018.3.01 2018.1.6–2021.3.21 2017.5.11 2018.2.17 4000*9000 
Sicily 44 Ascending 2017.1.07 2017.10.08–2018.9.29 2017.4.19 2017.1.13 15000*11750  

Table 2 
Test regions details for North Rhine-Westphalia and Sicily.  

Dataset Test region Topography Size 

North Rhine- 
Westphalia 

Wickede (Ruhr) River, Countryside 500*1000 

North Rhine- 
Westphalia 

Hamm Urban 500*2000 

North Rhine- 
Westphalia 

Münster Motorways 500*1000 

Sicily Arenella Urban, Harbor, Beach, Sea 1500*500 
Sicily South side of 

Etna 
Crater-volcano (slope and 
shadow) 

3500*3000 

Sicily Rocche 
d’Argimusco 

Forests (slope and shadow) 1500*1500  
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Fig. 3. The clustering result for North Rhine-Westphalia; the white rectangle marks the test region in city Hamm, the cyan rectangle marks the test region in the 
motorway intersection near Münster and the purple rectangle marks the test region in Wickede (Ruhr). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 4. The clustering result for Sicily; the white rectangle marks the test region in Arenella, the cyan rectangle marks the test region in the south side of Etna and the 
brown rectangle marks the test region in Riserva Naturale Orientata Bosco di Malabotta. Rocche d’Argimusco. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Table 3 
Evaluation results of North Rhine-Westphalia.  

Region TP TN FP FN Accuracy(%) Precision 
(%) 

Recall 
(%) 

NPV (%) FNR 
(%) 

Wickede (Ruhr) 172,830 295,501 0 31,669  93.67 100  84.51  90.32  15.49 
Münster 181,097 292,371 0 26,532  94.69 100  87.22  91.68  12.78 
Hamm 743,338 240,795 0 15,867  98.41 100  97.91  93.82  2.09  
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with Bottleneck (He et al., 2016), which mitigate the vanishing gradient 
problem. The decoding path consists of several decoding units, each of 
which consists of a set of 3*3 convolutions and an up-sampling unit. 
Since up-sampling with deconvolution will cause “checkerboard arti
facts” (Odena et al., 2017), we use bilinear interpolation and a 1*1 
convolutional layer instead of deconvolution to construct the up- 
sampling unit. Different from V-net (Milletari et al., 2016) and U-net 
(He et al., 2015), we use dense concatenate (Zhou et al., 2018) to merge 
the features from different decoding units in different decoding paths 
but not concatenate them directly. Since the features used by different 
decoding paths have different receptive fields, using dense skipping to 
merge decoding results can more completely use the encoding infor
mation of different scales to improve the network’s ability to perceive 
details (e.g. small roads or motorways). The structure of DSPN was 
shown in Fig. 2 and the detail of the layers was listed in the Appendix A. 

2.3.2. Training strategy and optimizer 
The DSPN is trained by the Back Propagation algorithm (Rumelhart 

and Hintont, 1986), which uses the gradient information from loss to 
update the weight of each layer of the network. For the optimizer se
lection, (Keskar and Socher, 2017) provides a good strategy to combine 
the advantage between Adam (Kingma and Ba, 2015) and SGD 
(Rumelhart and Hintont, 1986). Although the adaptive learning rate 
allows the loss function to converge quickly, some experiments from 
(Keskar and Socher, 2017) showed that the generalization ability of 
Adam is not better than SGD. Hence, in the early stage of training, we 
use the Adam optimizer for warm-up, then we use Momentum SGD 
(Rumelhart and Hintont, 1986) to do the fine tuning in order to get 
better accuracy and better generalization performance. If a pre-trained 
model is available, just use SGD for transfer learning without having 
to reinitialize the network and retrain when a new region needs to be 
processed. Compared to retraining, transfer learning only requires less 
time to converge. This improves the generalization ability of the DSPN 

while reducing the training time. 

2.3.3. Loss function 
The cross-entropy loss function has shown its success in image 

classification tasks, but this loss function cannot distinguish the contri
bution from different labels. The purpose of the network is to classify 
whether the point belongs to DSCs, but for the coarse label generated by 
section 2.2.1 that belong to DSCs, misclassifying them to another cate
gory that also belongs to DSCs does not affect the result. Therefore, this 
research puts forward weighted coarse label cross-entropy as the loss 
function for coarse label learning: 

Hw(p, q) = −
1
N
∑N

i=1

∑K

c=1
p(xi, c) • wc • logq(xi, c) (1)  

wc =

⎧
⎪⎪⎨

⎪⎪⎩

1 if c = 1(non − DS)

Nc
∑K

k=2
Nk

else
(2) 

where p(xi, c) refers to the ground truth probability of xi belonging to 
DS generated from the K-means clustering, and q(xi, c) refers to the 
predicted probability of xi belonging to class c from the network, Nc is 
the number of points belonging to category c and class c = 1 denotes the 
non-DSCs. By using binarization encoding, the p(xi, c) has been encoded 
to binarization label yi,c, as Equation (3) shows: 

yi,c =

{
1 (p(xi, c) = 1 ∧ c = 1 ) ∨ c > 1

0 otherwise
, (3) 

and the predicted probability q(xi, c) can be written as the output of 
the network with a SoftMax operator: 

q(xi, c) = ŷi,c = SoftMax(fw(xi) )c (4) 

Fig. 5. γpt after pre-processing in Hamm – (a) without DSPN; (b) with DSPN.  
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Since the sample contributes to the loss function only when the in
dicator function is 1, the weighted coarse label cross-entropy Hw(p, q)
can be simplified as: 

Hw(p, q) = −
1
N
∑N

i=1
hw(xi, yi) (5)  

hw(xi, yi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− logŷi,1 yi = 1

−
∑K

c=2

Nc
∑K

k=2
Nk

logŷi,c yi > 1
(6)  

2.4. Coarse label correction 

After training, the network can make predictions for unknown 
scenes. The output of DSPN is an M*N*K tensor P, where P[m, n, k] is the 
probability for pixel [m, n] to be in class k. Since we only need to filter out 
non-DSC points, rather than the coarse label classification map, the mask 
can be obtained from the tensor P with coarse label correction. The 
approach of coarse label correction is as follows: 

Mask[m, n] =

⎧
⎨

⎩

0 P[m, n, 1]〉
∑K

i=2
P[m, n, i]

1 otherwise
(7) 

Since the DSC is composed of a set of points sharing the scattering 
mechanism, the mask obtained by Equation (7) also needs to be 
morphologically corrected. For the real DS point, the number of 
neighborhoods should be 20 or higher (Ferretti et al., 2011), which 
means that isolated points with small neighborhoods will hardly become 
DS. In order to keep coverage, the threshold of the neighborhood for the 
DSPN mask is set as 5, and points with neighborhoods smaller than 5 will 
be set as non-DS. After that, a dilate operation will be used for the mask 
to avoid the loss of DSC near the edges. 

2.5. Data and experiment environment 

To validate the proposed method, two datasets built from Sentinel-1 
IWS mode with different topography were used to compare the perfor
mance and generalization ability of our approach, those are North 
Rhine-Westphalia in Germany and Sicily in Italy. Six test regions were 

Fig. 6. γpt after pre-processing in Münster – (a) without DSPN; (b) with DSPN; the white rectangle marks the overpass between Highway 1 and Highway 43.  
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selected from those two datasets to evaluate the performance of DSPN in 
a variety of complex terrains. The details of the data sets and test regions 
are shown in Table 1 and Table 2. The patches cropped for training were 
taken from the whole scenes exempt the test regions. 

The DS pre-processing was performed with the following choices of 
parameters or sub-algorithms: For grouping, a search window of size 21 
pixels times 21 pixels was used. As criterion of similarity, the general
ized likelihood ratio test with confidence level 99 % was applied (cp. 
(Jiang and Guarnieri, 2020) for some theory). The phase history was 
estimated with help of phase triangulation coherence maximization 
(Ferretti, 2011) from the coherence matrix, which was obtained from 

the sample covariance matrix. In order to mitigate biases, the entries of 
the coherence matrix were taken to the power of two (Ferretti, 2011). 
Furthermore, sequential estimation with a mini stack size of 20 acqui
sitions was employed (Ansari et al., 2017). Our choices were based on a 
study in two parts on how to tune DS pre-processing (Even, 2021; Even, 
2022). 

The proposed method above was implemented on a deep learning PC 
with a single NVIDIA RTX 3090 GPU and Intel(R) Core i7-10700 CPU, 8 
threads. The DS pre-processing and coarse label generation was imple
mented by using MATLAB R2020b. The DSPN, weighted coarse label 
cross-entropy, and coarse label correction were implemented by using 

Fig. 7. γpt after pre-processing in Wickede (Ruhr) – (a) without DSPN; (b) with DSPN; the white rectangle marks the airport Arnsberg Menden.  

Table 4 
Evaluation results of Sicily.  

Region TP TN FP FN Accuracy(%) Precision 
(%) 

Recall 
(%) 

NPV(%) FNR 
(%) 

Arenella 86,778 661,978 0 1244  99.83 100  98.59  99.81  1.41 
South side of Etna 7,369,239 2,962,704 0 168,057  98.40 100  97.78  94.63  2.23 
Rocche d’Argimusco 880,722 1,281,276 0 88,002  96.09 100  90.92  93.57  9.08  
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Pytorch 1.7.0 build-in operators. Considering the GPU memory con
straints, the input layers and corresponding ground truth labels were 
cropped into 500*500 pixel-sized patches subset stacks. 

For North Rhine-Westphalia dataset, the model of DSPN was trained 
with 2000 epochs. The learning strategy was: Use of Adam optimizer 
with 0.001 initial learning rate, and for every 500 iterators, the learning 

Fig. 8. γpt after pre-processing in Arenella – (a) without DSPN; (b) with DSPN.  

Fig. 9. γpt after pre-processing in South side of Etna – (a) without DSPN; (b) with DSPN.  
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rate will decay by multiplying 0.7. Training North Rhine-Westphalia 
model required approximately 49 h of our environment. For each test 
regions, the mask generating time was no higher than one minute. 
Although SAR images in Sicily are susceptible to complex terrain such as 
slope shadows, the generalization ability of DSPN enables the network 
to work well with only transfer learning. To evaluate the generalization 
ability of DSPN, we use the fine-tuning strategy, that is: using North 
Rhine-Westphalia model as initial weight and fine-tune training 500 
epochs with SGD, 0.0005 initial learning rate and decay to 0.0001 after 
250 epochs. Although the fine-tuning training nearly took 15 h, again 
the mask was generated in one minute when the training finished. 

3. Results 

3.1. Results of coarse label generation 

After searching, the best K for North Rhine-Westphalia is 3, and the 
best K for Sicily is 5, a higher value will cause the algorithm to fail to 
converge. The clustering result is shown in Fig. 3 and Fig. 4. 

3.2. Evaluation of DSPN 

To evaluate the performance, the numbers of true positives, false 
positives, true negatives, and false negatives samples are denoted as TP, 
FP, TN, and FN. Accuracy, precision, recall, Negative Predictive Value 
(NPV), and False Negative Rate (FNR) are adopted as the metrics of 
mask quality: 

accuracy =
TP+ TN

TP+ TN + FP+ FN
(8)  

precision =
TP

TP+ FP
(9)  

recall =
TP

TP+ FN
(10)  

NPV =
TN

TN + FN
(11)  

FNR =
FN

FN + TP
(12) 

Fig. 10. γpt after pre-processing in Riserva Naturale Orientata Bosco di Malabotta. Rocche d’Argimusco – (a) without DSPN; (b) with DSPN.  

Table 5 
The comparison of real-runtime Tr and the total computation time Tt in test regions.  

Region Tr(ours)/sec Tr(withoutours)/sec Tt(ours)/sec Tt(withoutours)/sec 

Wickede (Ruhr) 9861 14,076 48,089 90,018 
Münster 9633 14,222 57,783 88,043 
Hamm 19,207 22,405 117,603 133,245 
Arenella 7663 13,303 8358 66,271 
South side of Etna 80,585 96,596 1,392,960 1,606,706 
Rocche d’Argimusco 40,549 48,349 218,120 293,939  

Table 6 
The comparison between the percentage of Non-DSC and the speed up rate Rsp in test 
regions.  

Region Non − DSC(%) Rsp(%)

Wickede (Ruhr)  42.93  46.58 
Münster  38.68  34.37 
Hamm  9.12  11.74 
Arenella  83.63  87.39 
South side of Etna  11.28  13.3 
Rocche d’Argimusco  23.86  25.79  
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Since our purpose is to create a mask for speeding up DS pre
processing, the type II error (Identify the DSCs as non-DSCs, represent
ing as FN) is more harmful than the type I error (Identify non-DSCs as 
DSCs, representing as FP). The type I error will only add some unnec
essary computation, but the type II error will discard DS points and 

continue to affect DS processing. The mask without coarse label 
correction still has some FP points, and those FP points tend to appear as 
independent noise points rather than a group of scatterers with similar 
properties. After morphological postprocessing, the remaining FP points 

Fig. 11. False Negative points of test regions in North Rhine-Westphalia. (a1) Wickede (Ruhr) taken on March (a2) Wickede (Ruhr) taken on May (b1) Münster taken 
on March (b2) Münster taken on May. (c1) Hamm taken on January. (c2) Hamm taken on May. 

Fig. 12. False Negative points of test regions in Sicily. (a1) Arenella taken on March (a2) Arenella taken on June (b1) South side of Etna taken on January (b2) South 
side of Etna taken on May. (c1) Rocche d’ Argimusco taken on March. (c2) Rocche d’ Argimusco taken on June. 

Table 7 
Percentage of lost coverage caused by FN in test regions.   

Wickede 
(Ruhr) 

Münster Hamm Arenella South 
side of 
Etna 

Rocche 
d’Argimusco 

LC(%) 3.0 %  2.7 %  0.6 %  0.2 %  0.5 %  0.7 %  

Table 8 
Complexity comparison: DSPN vs U-Net.   

Parameters Training 
time 

GPU memory 
needed 

Prediction 
time 

DSPN 68,003,831 49 h 6843.00 MB/batch 56 s 
U- 

Net 
51,538,466 27 h 3382.60 MB/batch 43 s  
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were corrected in subsequent DS preprocessing. In order to evaluate the 
impact of those errors, the metric FNR is used for evaluating the loss rate 
(type II error), it reflects the proportion of missing points in DSC points. 

3.3. Evaluation result of North Rhine-Westphalia 

The evaluation result of three test regions in North Rhine-Westphalia 
is shown in Table 3. The proposed DSPN achieved a better performance 
in the urban area (Hamm), which has 98.41 % accuracy and only 2.09 % 
FNR. The detail of γpt after DS pre-processing with or without our 
approach is shown in Figs. 5 to 7. Even though in the rural area or 
suburban highway (Wickede (Ruhr) and Münster) the accuracy of the 
proposed approach was lower than in the urban area, our approach still 
performs well in identifying important objects (airports, rivers, roads, 
etc.) as shown in Fig. 6b and Fig. 7b. 

3.4. Evaluation result of Sicily 

The evaluation results of the test regions in Sicily shown in Table 4 
and Figs. 8-10. After 500 epochs fine tuning training, DSPN also pre
dicted well on the sea – a surface class not appearing in North Rhine- 
Westphalia (achieved 99.83 % accuracy and 1.41 % FNR in Arenella). 
For mountain areas with complex terrain, the mask can still retain most 
of the DSC points (achieved 98.40 % accuracy and 2.23 % FNR in the 
South side of Etna). 

3.5. Time costing of DSPN 

As the acceleration performance of DSPN varies according to its 
application scenarios, it is necessary to investigate how faster it boosts. 
Considering that multi-threading technology is usually used for parallel 
computing in DS pre-processing, we measure the real-runtime Trand the 
total computation time Tt(sum of all thread computation time) of DS 
pre-processing with or without our approach, the result is shown in 
Table 5. The given times include that for coarse label correction. From 
the comparison of the six test regions, it can be seen that the more non- 
DSC the scene has, the faster our approach boosts. 

4. Discussion 

4.1. Acceleration efficiency 

Since the real-runtime Tr is affected by the bottleneck of data loading 
and by the parallel computing scheduling, our method can save about 
14.27 % (Hamm, with only 9.12 % non-DSC) to 42.40 % (Arenella, with 
83.63 % non-DSC) of the real processing time. Excluding the data 
loading factor, the main reason for the inconsistency between the actual 
acceleration effect and the percentage of non-DSC is that the amount of 
computation in the MATLAB parallel computing mechanism is not 
evenly distributed in each thread. The real computing time Trdepends on 
the slowest thread. In order to measure the performance improvement 
by DSPN, the total computation time Tt can reflect the computation 
amount we saved. By comparing the total computation time Tt , our 
method can save 8.68 % (Hamm) to 84.10 % (Arenella) of computation 
costs depending on the scenes Table 6. This shows a good correspon
dence between the percentage of non-DSC und speed up ratio Rsp as 
defined in formula 13. This also means that if only one thread is used for 
pre-processing, our approach will yield an efficiency gain close to the 
percentage of non-DSC. 

Rsp =
Tt(withoutours) − Tt(ours)

Tt(withoutours)
(13)  

4.2. Analysis of the false Negative points 

The study demonstrates that the deep learning approach DSPN can 
generate a high accuracy mask for predicting the DSCs after training. 
However, as the DS points cannot be determined only by the γpt , it is 
valuable to investigate what those False Negative points are like, and the 
potential reason that caused the misclassification. From the visual in
spection of two optical images taken near the high coherence and low 
coherence date provided by Google Earth, it can be seen that most of the 
misclassification happened in the areas covered by deciduous and herbal 
plants such as fields, forests, street trees, etc. as shown in Figs. 11 and 12. 
Since the inputs of DSPN are from two acquisitions, these two acquisi
tions usually correspond to different seasons, spring to summer or 
autumn to winter. This can lead to the situation that one acquisition 

Table 9 
Evaluation results of North Rhine-Westphalia with U-Net by using traditional cross-entropy.  

Region TP TN FP FN Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

NPV 
(%) 

FNR 
(%) 

Wickede (Ruhr) 110,849 257,913 31,671 99,567  73.75  77.78  52.68  72.19  47.32 
Münster 129,703 244,547 39,692 86,058  74.85  76.57  60.11  73.97  39.89 
Hamm 688,498 149,810 54,718 106,974  83.83  92.64  86.55  58.34  13.45  

Table 10 
Evaluation results of North Rhine-Westphalia with U-Net by using weighted coarse label cross-entropy.  

Region TP TN FP FN Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

NPV 
(%) 

FNR 
(%) 

Wickede (Ruhr) 142,779 234,415 55,169 67,637  75.44  72.13  67.85  77.61  32.14 
Münster 153,780 220,077 64,162 61,981  74.77  70.56  71.27  78.03  28.73 
Hamm 727,578 124,226 80,302 67,894  85.18  90.06  91.47  64.66  8.54  

Table 11 
Evaluation results of North Rhine-Westphalia with DSPN by using traditional cross-entropy.  

Region TP TN FP FN Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

NPV 
(%) 

FNR 
(%) 

Wickede (Ruhr) 142,289 295,474 27 62,210  87.55  99.98  69.58  82.61  30.42 
Münster 165,169 292,287 84 42,460  91.49  99.95  79.55  87.32  20.45 
Hamm 727,201 240,674 121 32,004  96.79  99.98  95.79  88.26  4.22  

D. Wang et al.                                                                                                                                                                                                                                   



International Journal of Applied Earth Observation and Geoinformation 115 (2022) 103112

13

yields a better and the other one a worse coherence. The variation of 
radar reflection patterns of deciduous and herbal plants in different 
seasons is one of the potential causes of misclassification. Different 
growth and development stages of plants will change the amplitude and 
coherence of the polarized radar signal, which makes it possible for 
DSPN to make confused judgements on the plant coverage area. 

After DS pre-processing, the displacement analysis is performed with 
help of the Stanford Method for PS (StaMPS). Those points found in 
fields or forests usually are filtered out through the selection step by 
StaMPS. By using the modified version of StaMPS from (Even et al., 
2020) with the predicted mask, the error caused by FN can be evaluated 
by the percentage of lost coverage LC, which is calculated in the 
following way: Gridding the scene into approximately 200 m by 200 m 
cells, and counting the number CDS of cells that contain DS for the result 
that was obtained without considering a mask and the number Cm of 
these cells, where DS were missing after a mask was applied. Then the 
percentage of lost coverage is 

LC =
Cm

CDS
(15) 

The lost coverage for the six test regions is shown in Table 7. 

4.3. Network complexity analysis 

In order to investigate the complexity of DSPN, we compare for DSPN 
and U-Net the number of parameters, training time, GPU memory 
needed, and prediction time on North Rhine-Westphalia. The results are 
shown in Table 8. In addition, using U-Net as a benchmark, we also 
investigate the performance improvement brought by the DSPN network 
structure and weighted coarse label cross-entropy loss function, the 
result shown in Tables 9–11. 

Since the structure of DSPN has multiple decoding paths, it has a 
better ability for perceiving details. Its improvement in performance 
mainly comes from the reduction of FP (caused by more accurate 
perception of details). When the traditional cross entropy is used, each 
label contributes to the loss with the same weight and the network will 
try equally hard to separate between different classes of DSC as between 
any class of DSC and the non-DSC class. By weighting the loss, it will be 
still sensitive to misclassification between DSC and non-DSC, but much 
less sensitive to misclassifications between different DSC labels. Pre
sumably, this emphasis of the difference between DSC and non-DSC 
allows the network to learn separating them cleaner then with the 
traditional loss function. The gain brought by weighted coarse label 

Fig. 13. Comparison between the quick previews and the ground truths. (a) Quick preview of Ibbenbüren by using North Rhine-Westphalia model. (b) Ground Truth 
of Ibbenbüren. (c) Quick preview of Arenella by using North Rhine-Westphalia model. (d) Ground Truth of Arenella. 
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cross-entropy is mainly derived from the reduction of FN, that is, the 
probability of occurrence of Type II errors is reduced. 

Compared with U-Net, the DSPN has 24.21 % more parameters, 
which means it needs more time and memory for training. However, 
considering the gain in accuracy and that the prediction only needs 
minutes, we think the cost of adding complexity to the network is 
acceptable. In addition, the reduction of FP will save time in DS pre- 
processing stage. In the meanwhile, as the weighted coarse label cross- 
entropy can be implemented by a Pytorch function, it is supported by 
GPU parallel computing from CUDA. Using this loss does not signifi
cantly increase computation time. 

4.4. Generalization ability and future works 

This study proposes a faster way of DS pre-processing by using DSPN 
to generate masks. In addition, DSPN also offers the generation of DSC 
quick previews as a potential application. If the scene to be processed 
has a similar land cover as an already trained model, just doing the 
forward propagation of DSPN allows the user to get a preview of DSC 
distribution in minutes. Fig. 13 compares the predicted mask of Ibben
büren in Germany and Arenella in Italy generated by using the North 
Rhine-Westphalia model and their corresponding ground truth. From 
the results, the general distribution of DSCs in those two areas can still 
be identified, although the land cover in Sicily is distinctly different. 

While previews can be generated quickly using a trained model from 
a similar scene, transfer learning is still necessary if high-accuracy masks 
are needed. In future work, we will study more deeply the generalization 
ability of DSPN and explore the possibility of general models. To this 
end, the consideration of additional input layers, e.g. generated from 
digital elevation models or polarized data might enhance the accuracy 
and the generalization ability. 

5. Conclusion 

In this study, we propose the deep learning-based DS pre-processing 
network DSPN. It constitutes a new approach to accelerate DS pre- 
processing by telling if a pixel is a DSC or not before DS pre- 
processing is performed. By only applying DS pre-processing to pixels 
classified as DSC, DSPN will achieve a boost in speed close to the non-DS 
rate. Importantly, we saw that this involves no significant loss of 
coverage. For six different test regions, our approach saved 11.74 % to 
87.39 % computation time depending on the scene with an acceptable 
maximum loss in DS coverage of 3 %. 

Currently, the presented approach does not allow obtaining a 
broadly applicable model that performs well on arbitrary Sentinel-1 
data, because the number and character of classes of the training data 
are scene-specific. Vice versa, a definition of classes that are homoge
neous regarding γpt and is valid for all Sentinel-1 data or at least for those 
covering certain regions would hypothetically allow to train DSPN such 
that it is generally applicable. In the future, we intend to develop a more 
generally applicable version of DSPN with the help of improved training 
data and input layers. Finally, our approach is capable of generating 
quick views of DSC distribution if a trained model from an area with 
similar land cover is available. 
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