Improved Accuracy of the Power Hardware-in-the-Loop Modeling using Multirate Discrete Domain

Fargah Ashrafidehkordi
Institute for Technical Physics
Karlsruhe Institute of Technology
Karlsruhe, Germany
ID 0000-0003-1885-3573

Giovanni De Carne
Institute for Technical Physics
Karlsruhe Institute of Technology
Karlsruhe, Germany
ID 0000-0002-3700-2902

Abstract—Power Hardware-in-the-Loop (PHIL) enables realistic hardware testing interfacing with a simulated environment. The PHIL nature calls for power interfaces, such as analog-to-digital converters, the power amplifier, and sensors, containing latency and noise. These elements are non-ideal, leading to inaccuracies and even instability. Accordingly, accurate modeling of a PHIL setup has become a challenging research topic. This paper presents accurate modeling of a PHIL setup approaching the actual hybrid analog/digital PHIL characteristics to ensure high accuracy in a wide frequency spectrum range. The proposed technique applies multirate discrete modeling, considering digital/analog sections as if in an actual setup. The accuracy is defined and evaluated over the frequency range of interests. The prominent voltage-type ideal transformer method (V-ITM) is employed as the interface algorithm. The proposed multirate discrete modeling is compared with purely continuous and single-rate discrete modeling approaches, considering all interface delays and dynamics while operating different hardware, namely, RL and RLC load. Frequency responses reveal a significant accuracy improvement in the proposed method. The step response similarly confirms the better performance of the proposed model in replicating the transients. The modeling methods are simulated using Simulink/MATLAB to confirm the validity of the proposed model.

Index Terms—Power hardware in the loop simulation, PHIL accuracy, continuous, single-rate discrete, multirate discrete

I. INTRODUCTION

The augmentation of leading-edge renewables based on power electronics (PE) converters in the electric networks are ever-increasing promptly. Power technologies such as smart transformers, photovoltaic resources, energy storage, and electric vehicles are indispensable in shifting to modern power networks [1]–[3]. The behavior of these novel actual power technologies must be realistically evaluated before the final implementation to the main grid to guarantee safe and stable operation. The Power Hardware-in-the-Loop (PHIL) concept has been introduced to avoid the hazard of field testing while not merely depending on simulation results [4], [5]. In a PHIL system, the Hardware under Test (HuT) is interfaced with a simulated network in a Digital Real-Time Simulator (DRTS) (Fig. 1a). In an actual setup, power interfaces such as power amplifier (PA), A/D, D/A converters, and sensors are essential to joint HuT to the DRTS (Fig. 1b). These power interfaces introduce noises and latencies to the system, originating inaccuracy and even instability. Several interface algorithms are defined to improve the stability and accuracy of PHIL [6]–[8]. The Ideal Transformer Method (ITM) is reputed as an accurate and straightforward interface algorithm [9], [10]. Besides selecting an appropriate interface algorithm, precise modeling of the PHIL system is essential to avoid inexact outcomes. A PHIL setup consists of a digital system, solving the equations in the discrete-time (DT) domain, and the HuT as an analog system, usually simulated as a continuous-time (CT) system. Although authors in [11] approximate the whole system in CT, it has been shown that the DT assumption is more accurate in imitating the transients since the discretization effects are well-captured as well as delays [12]. However, single-rate DT may fail to accurately mimic the existing analog (hardware) section. The idea of specifying a shorter sampling time for modeling
the hardware part as a multirate discrete-time domain (MDT) model is examined in [13] to achieve stability enhancement; yet, the accuracy analysis of PHIL in a wide range frequency is overlooked.

This paper presents the MDT approach to model a PHIL setup with the voltage-type ideal transformer method (V-ITM), considering the dynamics and delays of power interfaces. A methodical definition of the accuracy based on the closed-loop transfer function is provided. The calculation of three different modeling approaches, CT, DT, and MDT, is calculated and compared in the overall frequency spectrum. It is indicated that the MDT model leads to significantly more accurateness, particularly in phase than the complete CT and single-rate DT models. The accuracy analysis of PHIL in a wide range frequency spectrum, the mean error is selected and expressed as follows:

\[AVG_{gain} = \frac{\sum_{i=1}^{N} \left| G_{act}(j\omega) - G_{model}(j\omega) \right|}{\left| G_{act}(j\omega) \right|} \times 100 \] (1)

\[AVG_{phase} = \frac{\sum_{i=1}^{N} \left| \angle G_{act}(j\omega) - \angle G_{model}(j\omega) \right|}{\left| G_{act}(j\omega) \right|} \times 100 \] (2)

Where \(|G_{act}| \) and \(\angle G_{act} \) are the gain and phase of the closed-loop system, chosen as a reference system and simulated in Simulink/MATLAB. \(|G_{model}| \), and \(\angle G_{model} \) implies the closed-loop transfer function of each CT, DT, and proposed MDT model of the V-ITM PHIL, with the physical sense of the closed-loop system, chosen as a reference system and simulated in Simulink/MATLAB. \(|G_{act}| \), and \(\angle G_{act} \) are delays introduced by DRTS, A/D and D/A conversions, sensors, and DRTS are considered in addition to the PA and low-pass filter dynamics.

A. Continuous

According to Fig. 2a, the translated hardware current to the software environment \(i_{s,HuT} \), over the input voltage \(v \), defines the admittance of the whole setup and is chosen as the closed-loop transfer function of the system. The CT closed-loop transfer function is defined as:

\[G_{cl}(s) = G_{fw}(s)/(1 + G_{ol}(s)) \] (5)

\[G_{cl}(s) = G_{fw}(s) \times G_{fw}(s) \] (6)

\[G_{fw}(s) = G_{Filter} \times G_{s}(s) \times e^{-T_{d,DRTS}}s \] (7)

\[G_{Filter}(s) = \omega_c/(s + \omega_c) \] (8)

\[G_{s}(s) = L_s s + R_s \] (9)

\[G_{fw}(s) = G_{PA}(s) \times G_{HuT}(s) \times e^{-T_{d,fw}}s \] (10)

\[G_{PA}(s) = \frac{a_1 s + b_1}{c_1 s^2 + d_1 s + e_1} \times e^{-T_{d,Amp}}s \] (11)

\[G_{HuT}(s) = 1/Z_{HuT}(s) \] (12)

\[T_{d,fw} = T_{d,DRTS} + T_{d,D/A} + T_{d,Sensor} + T_{d,A/D} \] (13)

Where \(G_{fw}(s) \) is the transfer function of the forward path from input to \(i_{s,HuT} \), and \(G_{cl}(s) \) is the open-loop transfer function. \(T_{d,DRTS}, T_{d,D/A}, T_{d,Sensor}, \) and \(T_{d,A/D} \) are delays introduced by DRTS, A/D and D/A conversions, sensor measurements, and power amplifier respectively. Parameters for the exclusive second-order transfer function of the switching-mode amplifier, \(G_{PA}(s) \), are given in Table III, and \(\omega_c \) is the cutoff frequency of the low-pass filter. The impedances of the hardware, \(Z_{HuT}(s) \), for RL and RLC cases are:

\[Z_{HuT,RL}(s) = R_{HuT} + L_{HuT} s \] (14)

\[Z_{HuT,RL}(s) = Z_{HuT,RL}(s) + 1/(C_{HuT} s) \]

B. Discrete

Respectively, Fig. 2b represents the discredted model of the same system. The Zero-Order Hold (ZOH) method is chosen to discretize the continuous \(G_{cl}(s) \), where its transfer function is assumed as \((1 - e^{-(T_{s1})s})/s \). Applying it to the derived \(G_{cl}(s) \) from section III-A and performing the \(z \)-transformation, the closed-loop DT transfer function of the system becomes:

\[G_{cl}(z) = z \{1 - e^{-(T_{s1})s}\} G_{cl}(s)/s \] (15)

\[= (1 - z^{-1})z G_{cl}(s)/s \]
C. Multirate Discrete

The MDT model is a DT model with two different sampling times. The smaller sampling time, blue line in Fig. 2c, is assigned to the hardware model since it is relatively tight to the actual CT domain. Hence, CT parts, in reality, are represented here in DT equations but with a relatively shorter sampling time, $T_{s2} << T_{s1}$:

$$G_{cl}(z) = G_{fw}(z)/(1 + G_{cl}(z))$$

$$G_{PA}(z) = \frac{a_{2}z + b_{2}}{c_{2}z^{2} + d_{2}z + e_{2}} \times z^{-\left(T_{s2}/T_{s1}\right)}$$

$$G_{HuT}(z) = 1/Z_{HuT}(z)$$

$$Z_{HuT,RL}(z) = R_{HuT} + L_{HuT}(z - 1)/(T_{s2}z)$$

$$Z_{HuT,RLC}(z) = Z_{HuT,RL}(z) + T_{s2}z/(C_{HuT}(z - 1))$$

Where $G_{fw}(z)$ and $G_{cl}(z)$ can be derived by following the same approach in section III-A, and III-B and using the given discrete transfer function of each component in Fig. 2c. Parameters of $G_{PA}(z)$ are given in Table III, illustrating affiliated discretized transfer function with the new sampling time.

IV. Simulation Results

With the closed-loop transfer function of the three models discussed above, the bode diagram is applied to attain a graphical understanding of accuracy comparisons in the frequency domain. The parameters for simulating the PHIL setup are given in Table IV. The gain and phase for each CT, DT, and MDT model are calculated and depicted in Fig. 3 and Fig. 6, respectively, when using RL and RLC load as HuT. The references of accuracy analysis (G_{ref}), shown in red color, are the measured gain and phase at the frequency range from 50Hz to 4.5kHz using the Simulink/MATLAB. Accuracy calculation outcomes based on for RL and RLC load are elaborated as follows:

A. RL Load

As it is transparent in Fig. 3, and its zoomed plot on the frequency at 2.5 Hz, Fig. 4, the cyan color belonging to the MDT model is well-matched with the reference. As the frequency increases, phase deviations in the CT and DT model from the reference intensify, while the MDT sticks firmly to the reference throughout the spectrum. The accuracy is also calculated using (1) to (4), and compared in Table I, in line with the bode diagram outcomes. The DT method achieves the smallest AVG_{gain} error by 0.5%; however, $\text{AVG}_{\text{phase}}$ reveals considerable error by 5.98%. The average MDT error is only about 0.2% more than DT in gain but around 5.9% lesser in phase. In other words, considering both gain and phase errors, achievements in MDT are triumphing. The $WAVG$ statistics of MDT display an error of less than 0.03% in gain and relatively negligible in phase, while CT and DT numbers stand above 0.1% and 0.4%, respectively, both in gain and phase. Furthermore, the step response shown in Fig. 5 depicts the MDT model replicates the transients better than the two others.

B. RLC Load

The MDT accuracy is examined under the resonance condition with an RLC load where the resonance frequency is 4kHz. While the overall performance in Fig. 6 may only demonstrate
the higher-ranking of the MDT method in phase, a meticulous attention to the Fig. 7 reveals better execution of MDT for both gain and phase at the resonance frequency. Table I accredits the enhanced accurateness of MDT for the whole frequency spectrum. Indicators AVG_{gain} and $WAVG_{\text{gain}}$ are considerably improved from CT to DT model where error decreases from 3.7% to less than 1% in AVG_{gain} and by 0.01% in $WAVG_{\text{gain}}$, yet not more profitable than MDT. The artistic production of MDT can be seen according to AVG_{phase} and $WAVG_{\text{phase}}$, where the accuracy is improved by 7% and 0.05% compared with CT, though CT may be preferred over DT.

TABLE I: RL Accuracy Calculation

<table>
<thead>
<tr>
<th>error(%)</th>
<th>model</th>
<th>MDT</th>
<th>CT</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AVG_{gain}</td>
<td>0.6976</td>
<td>3.2370</td>
<td>0.5083</td>
</tr>
<tr>
<td></td>
<td>AVG_{phase}</td>
<td>0.0678</td>
<td>4.2215</td>
<td>5.9873</td>
</tr>
<tr>
<td></td>
<td>$WAVG_{\text{gain}}$</td>
<td>0.0023</td>
<td>0.0143</td>
<td>0.0565</td>
</tr>
<tr>
<td></td>
<td>$WAVG_{\text{phase}}$</td>
<td>0.0004</td>
<td>0.0194</td>
<td>0.0458</td>
</tr>
</tbody>
</table>

TABLE II: RLC Accuracy Calculation

<table>
<thead>
<tr>
<th>error(%)</th>
<th>model</th>
<th>MDT</th>
<th>CT</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AVG_{gain}</td>
<td>0.7850</td>
<td>3.7505</td>
<td>0.9250</td>
</tr>
<tr>
<td></td>
<td>AVG_{phase}</td>
<td>0.1088</td>
<td>7.0069</td>
<td>10.2232</td>
</tr>
<tr>
<td></td>
<td>$WAVG_{\text{gain}}$</td>
<td>0.0033</td>
<td>0.0138</td>
<td>0.0037</td>
</tr>
<tr>
<td></td>
<td>$WAVG_{\text{phase}}$</td>
<td>0.0008</td>
<td>0.0530</td>
<td>0.0765</td>
</tr>
</tbody>
</table>

TABLE III: PA transfer function coefficients

<table>
<thead>
<tr>
<th>index</th>
<th>coefficients</th>
<th>a_i</th>
<th>b_i</th>
<th>c_i</th>
<th>d_i</th>
<th>e_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 1$</td>
<td>-263.1</td>
<td>1.836×10^5</td>
<td>1</td>
<td>234.5</td>
<td>1.841×10^5</td>
<td></td>
</tr>
<tr>
<td>$i = 2$</td>
<td>-1.315×10^{-4}</td>
<td>1.3160×10^{-5}</td>
<td>1</td>
<td>-2</td>
<td>0.9999</td>
<td></td>
</tr>
</tbody>
</table>

TABLE IV: PHIL simulation parameter

<table>
<thead>
<tr>
<th>setup</th>
<th>T_{s_1}</th>
<th>T_{s_2}</th>
<th>$T_{d,DRTS}$</th>
<th>$T_{d,D/A}$</th>
<th>$T_{d,A/D}$</th>
<th>$T_{d,Sens}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit</td>
<td>[μs]</td>
<td>[μs]</td>
<td>[μs]</td>
<td>[μs]</td>
<td>[μs]</td>
<td>[μs]</td>
</tr>
<tr>
<td>value</td>
<td>50</td>
<td>0.5</td>
<td>50</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>setup</td>
<td>ω_c</td>
<td>L_s</td>
<td>L_{HuT}</td>
<td>C_{HuT}</td>
<td>R_s</td>
<td>R_{HuT}</td>
</tr>
<tr>
<td>unit</td>
<td>[kHz]</td>
<td>[mH]</td>
<td>[mH]</td>
<td>[mF]</td>
<td>[Ω]</td>
<td>[Ω]</td>
</tr>
<tr>
<td>value</td>
<td>2</td>
<td>0.4</td>
<td>4</td>
<td>0.4</td>
<td>0.06</td>
<td>0.6</td>
</tr>
</tbody>
</table>

V. CONCLUSION

The PHIL is a potent tool for testing energy technologies in a flexible low-risk environment. Despite the potential, non-idealities, noises, and inevitable delays arise from connecting the software and hardware parts of the experimental setup, and they demand accurate modeling to avoid inaccuracies. This paper examines the accuracy of a V-ITM PHIL by testing simple RL and RLC loads as HuT to compare the modeling with the simulation results. In addition to continuous-time and discrete modeling methods, which are classical approaches for this analysis, a multirate discrete method is proposed and compared in the [50Hz - 4.5kHz] frequency range concerning detailed Simulink/Matlab simulations. According to the Simulink output as a reference, gain and phase errors of three noted
modelings are calculated based on the admittance of HuT. Concerning the frequency of interest, the MDT method gives the smallest errors, outperforming the CT and DT modelings for both HuT cases. Furthermore, the step response ensures the high accuracy of the proposed MDT model, enabling a better replica of the transients.

REFERENCES