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A B S T R A C T   

Injection molding is one of the most important processes for manufacturing discontinuous fiber reinforced 
polymers (FRPs). The matrix of FRPs shows a transient chemo-thermomechanical behavior and the fibers create 
anisotropy influencing physical properties. Hence, FRPs are complex materials, but also likely used in volume 
production. In this work, the fiber-induced anisotropic behavior during mold filling is modelled with an 
anisotropic fourth order viscosity tensor. The viscosity tensor takes second and fourth order fiber orientation 
tensor, fiber length and non-Newtonian matrix viscosity into account. In this way, the macroscopic simulation 
captures the influence of the flow field on the fiber re-orientation and vice versa. The fiber orientation tensor is 
used to determine reference fibers in every element for calculation of hydrodynamic forces. This information is 
used in a novel fiber breakage model, based on buckling of fibers in Jeffery’s orbit. The result is a macroscopic 
molding simulation with not only transient fiber orientation distribution, but also fiber length distribution. Due 
to the anisotropic viscosity tensor, the predicted fiber breakage influences the material’s viscosity and flow 
behavior, which is also visible in the simulated cavity pressure. The results are validated with injection molding 
experiments, performed with a glass fiber reinforced phenolic compound, showing good agreement.   

1. Introduction 

Today’s injection molded parts are often made with discontinuous 
fiber reinforced polymers (FRPs), especially if the mechanical properties 
are important. The presence of fibers causes anisotropic material prop
erties in the final part, but also during mold filling. Furthermore, the 
matrix material has a non-Newtonian viscosity behavior, which is also 
influenced by a phase change, being curing in case of thermoset mate
rials and crystallization or solidifying in case of thermoplastics. The 
combination of transient matrix viscosity and anisotropy due to fibers 
leads to complex material behavior, which is hard to handle and to 
simulate. However, adequate process simulations are needed to ensure 
and optimize the production and determine the fiber orientation for 
ongoing structural analysis [1]. 

For flow modeling, the viscosity is the most important material 
property. Polymer matrices show temperature- and shear-thinning 
behavior. Since the focus of this work is on reactive injection molding 
and hence thermoset materials, the curing kinetics and the accompa
nying influence on viscosity are also important [2]. For thermoset ma
trix materials, the mostly used approach for viscosity modeling is the 

one presented by Castro and Macosko [3]. As mentioned, besides the 
matrix, fibers also influence the viscosity of the material during pro
cessing. Therefore, the FRP melt is anisotropic with respect to fiber 
volume fraction Φf , length Lf and orientation [4–6]. Similar to solid 
mechanics, the anisotropy can be represented by a fourth order tensor. 
However, most state-of-the-art simulation software uses scalar viscos
ities, and represent the viscosity non-Newtonian and isotropic. Fourth 
order tensors have for example been used by Sommer et al. [5] for SMC 
process simulation or in the authors’ previous works [7,8] for injection 
molding simulation. Besides the usage of tensors, there are other ap
proaches to describe the anisotropic character of FRPs during process
ing. Meyer et al. [9,10] present a meso‑scale approach for SMC 
processing, where the fiber-bundles are represented by solid 1D-ele
ment-chains, which interact with the liquid matrix. The fiber orienta
tion and anisotropic stress is thus directly captured by the 
fluid-structure-interaction of the bundles and the matrix. Furthermore, 
Favaloro et al. [11] present their IISO-viscosity approach, using fiber 
orientation tensors and strain rates to calculate a scalar viscosity. 
Although the viscosity within one element is scalar and therefore 
isotropic, the anisotropy is considered indirectly due to the dependence 
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of the scalar viscosity on the different orientation states and strain rates 
within different elements. 

During processing, the fibers orientate depending on the flow field 
and material behavior. This orientation state is not only important for 
the final properties of the part, but also for the material behavior during 
mold filling [7]. In fact, the orientation influences the flow field and vice 
versa. A first step to determine the fiber (re-)orientation state is the 
pioneering work of Jeffery [12], describing the motion of ellipsoidal 
particles in a Newtonian shear flow. Based on this, many different 
models with different focuses and material aspects for fiber orientation 
have been published. The most used are the Folgar-Tucker model, 
introducing an interaction coefficient to enable steady state orientations 
[13], the reduced strain closure (RSC) model for highly filled materials 
[14] and the anisotropic rotary diffusion (ARD) model for long fiber 
materials [15]. Simulating all fibers separately is numerically not sus
tainable, therefore, most approaches today describe the fiber orientation 
with orientation tensors, as described by Advani and Tucker [16]. To 
describe the evolution of an even-order orientation tensor, the orienta
tion tensor of next higher even order is needed, which is determined 
with a closure approximation [17]. Different approaches with different 
advantages and disadvantages have been developed in the last decades. 
Within this work, the so-called IBOF5 closure approximation is used, 
being a good compromise of accuracy and efficiency [18]. 

During processing, forces act on fibers, which may lead to fiber 
breakage. These forces have different sources like for example other fi
bers (contact forces) and the surrounding fluid (hydrodynamic forces). 
To model fiber breakage, not only the forces are important but also the 
mechanisms, which lead to fiber breakage. In literature, the buckling of 
fibers (due to longitudinal forces) is named as the most important 
mechanism for fiber breakage [19–21]. Of course, fiber bending (due to 
transversal forces) is also a mechanism which may lead to fiber 
breakage, or at least benefits fiber buckling. 

One of the first approaches to describe fiber shortening during pro
cessing is given by Shon et al. [22], describing the change of fiber length 
as function of time and an equilibrium fiber length. However, since no 
process conditions or material properties are considered, this approach 
is not well suited for injection molding simulation, having a wide range 
of possible process parameters, materials and mold geometries, influ
encing the fiber breakage. Two newer approaches by Phelps et al. [21] 
and Durin et al. [20], consider important aspects like fiber attributes, 
shear rate and matrix viscosity. 

Since the focus of [21] is on injection molding, the present work 
builds on [21] and combines it with a macroscopic approach for hy
drodynamic forces acting on reference fibers in a homogenized material 
with information provided by the second order orientation tensor [23]. 
Due to the anisotropic viscosity tensor according to Wittemann et al. [7], 
the fiber breakage directly influences the viscosity and hence the flow 
behavior, which is also visible in the predicted cavity pressure. The 
simulations are carried out with the finite volume based open-source 
software OpenFOAM. 

2. Theory 

This section describes the theory and methodology for the novel fiber 
breakage modeling approach. Section 2.1 describes the modeling of the 
FRP’s viscosity as an forth order anisotropic tensor, based on our pre
vious work [7]. Section 2.2 described the approximation for the hy
drodynamic drag and lift force in case of an homogenized material 
approach, based on our previous work [23]. Section 2.3.1 shortly de
scribes the fiber breakage modeling approach by Phelps et al. [21]. The 
novel modeling approach of the present work is the usage of hydrody
namic forces and eigenvectors as reference fibers for fiber breakage 
modeling, which is described in Section 2.3.2. The main aspect of the 
present work is the combination of the fiber breakage modeling and the 
anisotropic flow modeling, so the fiber shortening directly influences the 
flow modeling. 

2.1. Transient non-Newtonian anisotropic viscosity 

To model the viscosity of an FRP, the matrix viscosity ηM is described 
non-Newtonian and with respect to curing kinetics. Therefore, the 
approach of Castro and Macosko [3] is used within this work, describing 
ηM with a combination of a Cross type equation for shear dependency 
and an Arrhenius equation for temperature dependency as well as an 
additional term for curing dependency so 

ηM =
η0

1 +
(η0 γ̇

τ∗
)1− nCM

(
cg

cg − c

)(c1+c2c)

η0 = BCMexp
(

TB

T

)

,

(1)  

where nCM, τ∗, BCM, TB, c1 and c2 are material specific constants. γ̇ 
represents the scalar shear rate, being the scalar magnitude of the strain 
rate tensor D, T the temperature, c the degree of cure and cg the gelation 
conversation point. The curing kinetics are described with the Kamal- 
Malkin (or Kamal-Sourour) approach [2] within this work. This empir
ical approach, describes the change rate of cure only as function of time, 
temperature and actual curing state. There are mechanistic approaches, 
which describe chemical processes more detailed, but need 
material-specific information, which requires high experimental effort 
[24]. The Kamal-Malkin approach is well established and has been 
successfully used in several scientific publications [7,23,25–27]. 

For the influence of fibers, one of the first descriptions of anisotropic 
fluids is given by Gibson [28], presenting the fluidity tensor of a trans
versely isotropic material. In ongoing studies, Pipes et al. [4] determined 
the viscosity tensor of a fully aligned FRP as function of fiber volume 
fraction Φf , fiber aspect ratio rf and matrix viscosity ηM, based on 
micro-mechanic models. The viscosity is represented by the elongational 
viscosity η11, axial shear viscosity η12 and transverse shear viscosity η23, 
defined as 

η11 =
ηMΦf

2
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η23 =
ηM

(
1 − Φf

/
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)2

(2)  

with Φmax being the maximum possible fiber volume fraction, assumed 
to be π/

̅̅̅̅̅̅
12

√
(hexagonal packing) [4]. Since hexagonal packing repre

sents a stable equilibrium, it is the more realistic case than square 
packaging. Within [4] the assumption of incompressibility is made, 
therefore the parameters mentioned in Eq. (2) fully describe the trans
versely isotropic fluid. In 2018, Sommer et al. [5] combined the results 
of Pipes et al. [4] with the orientation averaging approach of Advani and 
Tucker [16] to fully describe the fourth order viscosity tensor ηIV of an 
FRP with Newtonian matrix by 

ηIV = (η11 − 4η12 + η23)A

+
(
−

η11

3
+ η23

)
(A ⊗ I + I ⊗ A)

+(η12 − η23)
(
AI + (AI)TR + IA + (IA)TR

)

+
(η11

9
− η23

)
(I ⊗ I)

+η23
(
I I + (I I)TR

)
,

(3)  

where A and A are the second and fourth order orientation tensor and I 
represents the second order unity tensor. The operators are the dyadic 
product ⊗ ((A ⊗ B)ijkl = AijBkl) and the box product ((A B)ijkl = AikBlj). 
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With this formulation of the viscosity tensor, the viscous stress tensor of 
the momentum equation τ is given by 

τ = ηIVD. (4) 

In our previous work [7], Eq. (3) is used for the FRP phase in a 
multiphase injection molding simulation, considering isotropic air and 
anisotropic FRP with non-Newtonian matrix behavior. This simulation 
approach is also used within the present work to model the material’s 
viscosity. 

2.2. Calculation of hydrodynamic forces 

Several studies in scientific publications offer approaches to model 
hydrodynamic forces from liquid matrix on fibers. A few examples are 
Meyer et al. [9], Dinh and Amstrong [29], Phan-Thien et al. [30] as well 
as Lindström and Uesaka [31]. In the present work, the hydrodynamic 
forces in the homogenized material are approximated according to the 
approach presented in our previous work [23], which is briefly 
described in the following. 

2.2.1. Hydrodynamic forces on a fiber 
The hydrodynamic force Fhyd is split into a drag part Fd and a lift part 

Fli. The drag force is a type of fluid friction force, acting on an arbitrary 
inclusion (a fiber in this case) from a surrounding fluid (matrix) due to 
relative motion. Unlike most approaches for dry friction, the drag force 
depends on the relative velocity between inclusion and fluid. The di
rection is always parallel to the relative velocity. Since fibers are non- 
spherical bodies, the surrounding fluid also applies a lift force on the 
inclusion, similar to the aerodynamic force in aeronautics. This force 
always acts perpendicular to the relative velocity and in a plane defined 
by the inclusion and relative velocity. Due to the high viscosities and the 
thin-wall character of the parts, the Reynold’s number in injection 
molding is low in most cases. Therefore, the drag force can be described 
by Stokes law, determining the drag force on a spherical object in 
viscous fluid, derived by Stokes in the mid of the nineteenth century. 
According to Stokes law, the drag force on a spherical body is given by 

Fd sp = 3πηMdspΔU, (5)  

where dsp is the diameter of the spheroid and ΔU is the relative velocity 
between the inclusion and the surrounding fluid, being fibers and matrix 
in this case. According to Batchelor [32], the absolute hydrodynamic 
resistance is proportional to ηMdsp‖ ΔU ‖ and independent of the body’s 
shape, therefore Meyer et al. [9] present an approximation for cylin
drical bodies (fibers) with a dimensionless correction coefficient kd, 
being defined as function of fiber aspect ratio and relative angle between 
fiber and relative velocity ϕ, so 

kd = 1 − α
(
rf − 1

)
cos(2ϕ) + β

(
rf − 1

)
, (6)  

with α = 0.09 and β = 0.3125. Finally, the drag force for fibers is 
defined as 

Fd = 3πηMkd
(
rf ,ϕ

)
dfΔU. (7) 

Similar to the drag force, Meyer et al. [9] approximate the lift force 
by 

Fli = 3πηMkli
(
rf ,ϕ

)
df‖ ΔU ‖[[q]], (8)  

with 

kli = α
(
rf − 1

)
sin(2ϕ). (9) 

The vector q defines the direction of the lift force and the brackets [[⋅]]
indicate that the vector is normed. The definitions of kd and kli represent 
a best fit for numerical experiments. Within [9], mesoscopic simulations 
of simple shear flows with different fiber orientations and different 

aspect ratios are performed to compute the stress on the fiber surface. 
The resulting forces are set in relation to Eq. (7) and Eq. (8) to determine 
kd and kli. 

Finally, the complete hydrodynamic force acting from the liquid 
matrix on a fiber is given by 

Fhyd = Fd + Fli = 3πηMdf
(
kd
(
rf ,ϕ

)
ΔU+ kli

(
rf ,ϕ

)
‖ ΔU ‖[[q]]

)
. (10)  

2.2.2. Hydrodynamic forces for homogenized material 
According to Eq. (10), the information needed to calculate Fhyd are, 

among others, the relative velocity between the fibers and the fluid, and 
the according angle between the fiber and the relative velocity, which 
are both not directly available in a homogenized material approach with 
orientation tensors, since no exact fiber orientation is given. In our 
previous work [23], we present an approach to determine the average 
hydrodynamic forces with information provided by the second order 
orientation tensor. The eigenvectors ν are regarded as reference fibers, 
so there are always three reference fibers νk separated by the index k ∈

{1,2,3} in each cell, with an explicit, individual and known orientation 
direction. 

Based on the eigenvectors, the angle between the relative velocity 
and the fiber is given by 

ϕk = arccos
(

ΔU⋅νk

‖ ΔU ‖

)

. (11) 

The vector q, representing the direction of the lift force is given by 

qk = (νk × [[ΔU]]) × [[ΔU]]. (12) 

Both quantities are calculated three times in each cell, once for each 
eigenvector νk. 

To approximate the relative velocity, it is assumed, that all fibers 
within one cell have on average the velocity of the cell center. This 
assumption is supported by the fact, that otherwise fiber matrix sepa
ration would occur, which is neglected within the simulation [23]. The 
relative velocity can be approximated by 

ΔU =
∑lmax

l

wlo

Wo
(Ul − Uo), (13)  

with wlo = exp(− (9d2
lo) /(2(L

f)
2
)) and Wo =

∑lmax
l wlo. Here, the index o 

represents the regarded origin cell, l represents the l-th of the lmax 

regarded neighbor cells and Lf is the fiber length. dlo is the distance 
between the cell centers of cells o and l. Hence, ΔU is calculated with the 
velocities Ul of the lmax considered neighbor cells. The number of 
regarded neighbors is chosen so the average distance is 
1/lmax

∑lmax
l dlo ≥ 1.5 Lf

n. The index n indicates different fiber lengths. 
This formulation is identical to [9,23] since the hydrodynamic force is a 
kind of long range interaction and a satisfactory number of surrounding 
cells should be taken into account, especially when the considered fiber 
length extend cell sizes. Therefore, the velocity gradient would not be 
representative, but it can be used to model short range interactions, 
acting on a smaller scale like fiber-fiber friction and lubrication force, as 
shown in our previous work [23]. 

This approach to approximate the hydrodynamic force was verified 
with numerical experiments in [23]. The hydrodynamic force was 
determined for 22 different orientation states and relative velocities of 
500 randomly created fibers and the corresponding orientation tensor. 
The average force of every orientation state is given correctly by 
regarding only the eigenvectors of the orientation tensor as reference 
fibers. However, there is no possibility on macroscopic scale to infer the 
individual forces acting on single fibers, when using the orientation 
tensor. 

2.3. Fiber breakage modeling 

The hydrodynamic forces are used for fiber breakage modeling. 
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Although approaches exist to approximate the fiber-fiber friction and 
lubrication force [23], the exact mechanisms of these forces in highly 
filled materials are not well understood at this point of time. Therefore, 
they are neglected within this work. The assumptions for the fiber 
breakage model are in accordance with the model of Phelps et al. [21]:  

• Fibers break only due to buckling  
• Fibers break only in one point, so one fiber breaks only in two parts  
• Until buckling, fibers are perfect, rigid cylinders  
• There is a defined minimum fiber length, which cannot be undercut  
• There is a defined number of possible fiber lengths. 

The following Section 2.3.1 briefly describes the fiber breakage 
modeling approach of Phelps et al. [21]. The ongoing Section 2.3.2 
describes the novel fiber breakage modeling approach of the present 
work, which is based on [21], but with force calculation based the hy
drodynamic force approximation explained Section 2.2 and the usage of 
eigenvectors and eigenvalues to determine the breakage probability to 
create a more orientation dependent calculation. 

2.3.1. Fiber breakage modeling in injection molding simulations with 
homogenized material approach 

Phelps et al. [21] assume that fibers break in only two parts. They 
further consider buckling as the only mechanism for fiber breakage and 
buckling due to the Euler buckling theory, so critical force for buckling 
Fbu by 

Fbu =
π3Efd4

f

64
(
Lf
)4, (14)  

with Ef , Lf and df being the elastic modulus, length and diameter of the 
fiber. Based on the slender body analysis of Dinh and Armstrong [29], a 
force Ff acting on the fibers is given by 

Ff =
ζηM γ̇

(
Lf
)2

8
( − D : (p ⊗ p)), (15)  

where ζ is a dimensionless and empirical drag coefficient and p is a 
single fiber orientation direction. For fiber breakage, a so called buck
ling index Bbu

n is defined as 

Bbu
n =

Ff

Fbu
=

4ζηM γ̇
(
Lf

n

)4

π3Efd4
f

, (16)  

by assuming ( − 2D : (p⊗ p))/γ̇ = 1. The index n indicates different fiber 
lengths Lf

n, which may occur. To model the fiber shortening, Phelps et al. 
define a breakage probability 

Pbr
n =

{
0 for Bbu

n < 1
Cbr γ̇

(
1 − exp

(
1 − Bbu

n

))
for Bbu

n ≥ 1
(17)  

for every fiber length, where Cbr is an empirical breakage coefficient. 
The breakage of fibers creates new, shorter fibers. Therefore, Phelps 

et al. [21] define a child generation rate Rbr
nm with a Gaussian probability 

function (PDF), which also describes the breakage point along the fiber 
so 

Rbr
nm = ϱbr

m PDF
(

Lf
n,

Lf
m

2
, Sbr

)

, (18)  

with standard deviation Sbr and mean value Lf
m/2. The scaling factor ϱbr

m 

is defined to fulfill a continuity condition, defined in [21]. It is Rbr
nm =

Rbr
(m− n)m since the lengths of one child n and the parent fiber m define the 

length of the other child fiber. For example, it is Rbr
25 = Rbr

35 representing 
the probability, that a fiber of length Lf

5 breaks into two children with 
the lengths Lf

2 and Lf
3. Furthermore, it is Rbr

nm = 0 for Lf
n ≥ Lf

m, so short 

fibers cannot recombine to longer fibers again. 
Finally, Phelps et al. describe the evolution of fiber lengths by 

∂Nf
n

∂t
+ Ui

∂Nf
n

∂xi
= − Pbr

n Nf
n +

∑

m
Rbr

nmNf
m, (19)  

where Nf
n represents the number of fibers with length Lf

n and Ui is the 
velocity vector. 

2.3.2. Novel breakage modeling approach based on hydrodynamic forces 
In a first step, it is determined, if the reference fiber is under 

compression, so buckling is possible, or under tension. For the latter case 
no fiber damage is considered. The identification of the fiber being 
under compression (Fig. 1 blue region) or tension (Fig. 1 red region) is 
depending on the orientation of the fiber and the flow field, presented by 
Jeffery in 1922 [12]. Fig. 1 visualizes whether the fibers is under 
compression or tension on a unity sphere for a normed shear flow. The 
fiber (or eigenvector in this case) is under compression and able to 
buckle if 

D : (ν ⊗ ν) < 0. (20) 

In a second step, the force acting on the reference fiber is determined. 
For Euler buckling theory, only the force component in fiber direction is 
relevant and the forces only act at the fiber ends, so the force is given by 

F̂
hyd
kn = νk : Fhyd

n . (21) 

The buckling criterion is reached if 

Bhyd
kn =

F̂
hyd
kn

Fbu
n

≥ 1, (22)  

with Fbu
n being the critical force for a fiber with length Lf

n and defined in 
Eq.(14). 

Afterwards, a breakage probability Pbr
kn is determined for every 

eigenvector νik and fiber length Lf
n by 

Phyd
kn =
⎧
⎨

⎩

0, Bhyd
kn < 1 or D : (ν ⊗ ν) ≥ 0

Cbr γ̇
(
1 − exp

(
1 − Bhyd

kn

))
, Bhyd

kn ≥ 1 and D : (ν ⊗ ν) < 0
.

(23) 

The definition Pkn is similar to the one given by Phelps et al. [21] (Eq. 
(17)), but calculated three times within one cell in this work, once for 
every eigenvector and depending on the orientation of the eigenvector. 
To sum up the breakage probability for one fiber length within one cell, 
the individual Pkn are weighted with the eigenvalues of the orientation 
tensor, representing the amount of fibers with the corresponding 
orientation state, so 

Phyd
n = λkPhyd

kn , (24)  

where λk are the eigenvalues. 
The ongoing fiber breakage modeling is similar to the method of 

Phelps et al. [21]. The child generation is given by Eq. (18) and the 
evolution is given by Eq.(19). 

3. Results, experimental validation and discussion 

3.1. Orientation dependency of the novel approach 

To highlight the orientation dependency of the novel approach, a 
simple shear flow is simulated and the approach is compared to the 
state-of-the-art approach presented in [21]. However, the two ap
proaches are not directly comparable, since the force calculation is 
different and the state-of-the-art approach needs an empirical parameter 
to determine the force acting on the fibers. Therefore, the focus of 
comparison will be orientation dependency and the results are normed, 
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which is an idealized and theoretical case. 
The parameters needed for the simple shear flow simulation are 

given in Table 1, to keep the case as simple as possible, the viscosity is 
represented isotropic and Newtonian by the value ηc. The values are 
chosen to correspond to a real injection molding process, the fiber 
orientation is modeled with the RSC-model [14], and the parameters are 
identical to the values used in the experimental validation. 

According to the parameters given in Table 1 the fibers will orientate 
slightly in flow direction (x3-direction) over time, where most of the 
fibers are under tension and not able to buckle [21]. Fig. 2, shows the 
amount of fibers, being able to buckle in the corresponding orientation 
state and flow field. This amount is calculated by summing up the ei
genvalues of A, if the corresponding eigenvector fulfills the condition in 
Eq. (20). This amount decreases over time due to higher amount of fibers 
with orientation steady-state orientation. 

Additionally, Fig. 2 shows the normed breakage probability of the 
novel, orientation dependent approach, based on hydrodynamic forces 
as well as the normed breakage probability of the state-of-the-art 
approach. The values are normed since their absolute value is not 
directly comparable due to the different force calculation and the focus 
is to highlight the orientation dependency of the novel approach. 

Due to the constant strain rate tensor and corresponding constant 
scalar shear rate γ̇0 = 100 1/s, the breakage probability in the state-of- 
the-art approach (Eq. (16) and Eq. (17)) is constant over time and the 
change of orientation is not captured. In the hydrodynamic based 
approach, the force calculation (Eq. (10)) and breakage probability (Eq. 
(24)) depend on orientation and therefore the breakage probability 
decreases over time due to the smaller amount of buckling fibers and 
computed acting force. The change of the breakage probability is more 

sensitive towards the change of orientation compared to the amount of 
buckling fibers, due to the non-linear dependence of force calculation to 
orientation. Fig. 2 highlights the orientation dependency of the novel 
approach which is the main benefit compared to the state-of-the-art. 

3.2. Experimental setup and simulation model 

The fiber breakage and flow modeling are validated with injection 
molding experiments of a 480 mm x 190 mm x 4 mm rectangle plate. The 
material enters the plate via a cone sprue in the center, having a start 
diameter of 9 mm, an end diameter of 15.5 mm and a length of 185 mm. 
For validation, two sensors measure the cavity pressure during mold 
filling and specimens are taken for fiber length measurement. The cavity 
with a part of the screw chamber and the positions of the sensors is 
shown in Fig. 3. 

The experiments are performed by Maertens et al. [33]. The used 
injection molding machine is a KraussMaffei 550/2000 GX with a 

Fig. 1. Unity sphere in simple shear flow, whether the fibers is under compression (blue regions) or tension (red regions) by values of D : (ν⊗ ν).

Table 1 
Parameters for simulating the simple shear flow.  

Parameter Value Unit 

ηc 500 Pa•s 
D23 , D32 100 1/s 
D11 , D12, D13 . D21, D22 , D31, D33 0 1/s 
Initial orientation state   
A11, A22 , A33 1/3 – 
A12, A13 . A21, A23, A31 , A32 0 –  

Fig. 2. Amount of fibers able to buckle (rad, dotted), normed breakage prob
ability with state-of-the-art model (black, solid) and normed breakage proba
bility with novel approach (green, dashed) over time in simple shear flow with 
parameters given in Table 1. 
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standard 60 mm screw. The used material is a phenolic molding com
pound of novolac type, filled with 55%-weight glass fibers, named 
Porophen GF9201L12a by Sumitomo Bakelite Co., Ltd. The initial fiber 
length in material is Lf0 = 12 mm. 

For fiber length measurement, specimens are extracted from the 
plate (Fig. 3 position Lf) and from the frontal part of the screw chamber. 
The latter ones are extracted to get the fiber length distribution after 
plastification, directly before the material enters the cavity, since sig
nificant proportion of fiber shortening happens during plastification, 
when the material is transported by the screw. As described in [33], after 
the specimens are extracted, the matrix is removed by pyrolysis and the 
residue is transferred into an aqueous solution for dilution. Samples of 
the dilution are measured by optical fiber detection of the commercially 
available FASEP system by IDM Systems, Darmstadt, Germany. 

For the simulation, the complete cavity with a small part of the screw 
chamber is modeled, as illustrated in Fig. 3. The whole model is meshed 
with hexahedral elements. For the plate, the cell size is of 2.3 mm in x1-, 
1.75 mm in x2- and 0.4 mm in x3-direction. The nozzle and sprue are 
discretized with 32 cells along the circumference, 24 along the diameter 
and 140 in x3-direction. For the screw chamber, 64 cells along the 
circumference and 72 cells in radial direction are used, with a 
x3-dimension of the cells of 1.57 mm. 

The foremost section of the screw chamber is part of the simulation 
model to create a more realistic material state at the beginning of the 
sprue with respect to fiber orientation, temperature distribution and of 
course, fiber length distribution. Therefore, the specimens taken from 
the screw chamber are used to determine the initial fiber length distri
bution in the simulation. The matrix viscosity is modeled with Eq. (1), 
the corresponding parameters are given in Table 2. 

The compound viscosity is given by the fourth order viscosity tensor 
(Eq. (3)) and the fiber orientation is calculated with the RSC model. A 

detailed description and validation of the anisotropic viscosity model is 
presented in the previous work [7]. To calculate the viscosity tensor in a 
simulation with fiber length distribution, the average fiber length in the 
cell is used. 

The parameters for fiber breakage modeling according to Eq. (18) 
and Eq. (23) are given in Table 3. The material is injected with a con
stant volume flow of 150 cm3/s and has a melt temperature of 120 ◦C. 
The temperature at the walls is constant 175 ◦C. 

3.3. Results 

3.3.1. Fiber length distribution 
The results of the fiber length distribution are shown in Fig. 4. The 

possible fiber lengths Lf
n in the simulation are chosen in 0.25 mm steps. 

Hence the possible lengths in the simulation are between 0.25 mm 
(shortest) and 12 mm (longest), resulting in 48 possible fiber lengths. 
The experimental data is clustered so the mean values of the cluster fits 
to the possible fiber lengths of the simulation. The results are shown 
with standard deviation in Fig. 4. 

The illustration of the results is separated in two graphs, one with 
fiber lengths from 0.25 mm to 5 mm (Fig. 4a) and one with lengths from 
5 mm to 12 mm (Fig. 4b), with different scales on the ordinate axis. The 
ordinate axis represents the amount of the corresponding fiber length, 
weighted by length. The results are shown weighted by length only due 
to visualization. All other average values and calculated average lengths 
presented by the number average, which is also used in the simulation. 
Only a small amount of about 4% of the fibers with 11.75 mm or 12 mm 
remains after plastification. There are some higher values with lengths 
about 6.25 mm to 8.25 mm. In summary, about 13.6% of the fibers 
remain with a length > 5 mm, but the majority of the fibers (about 72%) 
has already broken down to lengths of 1 mm or less before entering the 
mold (Fig. 4, black curve). 

However, there is further fiber breakage during mold filling, shown 

Fig. 3. Cavity with positions of pressure sensors p1 and p2, position for fiber length evaluation Lf for validation. Inlet area in red and outlet in orange.  

Table 2 
Used parameters of the Castro-Macosko model for matrix viscosity.  

Parameter Value Unit 

τ∗ 0.0018 Pa 
nCM 0.54 – 
c1 5 – 
c2 5 – 
BCM 1.123•10− 7 Pa•s 
TB 13,750 K 
cg 0.4 –  

Table 3 
Used parameters for fiber breakage modeling.  

Parameter Value Unit 

Ef 73 GPa 
df 17⋅10− 6 m 
Cbr 0.05 – 
S 1 –  
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by the experimental results, extracted from the plate (Fig. 4, orange). 
Only about 3% of the fibers at the measure area have a length of > 5 mm, 
and about 81.3% have broken to lengths of 1 mm or less. 

The simulation results (Fig. 4, blue) fit well to the experimental re
sults, but slightly overestimate the fiber breakage at low fiber lengths 

and underestimate the fiber breakage at fiber lengths > 5 mm. About 
85.5% of the fibers have a length of 1 mm or less at the end of the 
simulation and about 5.6% with a length > 5 mm remain. Especially the 
amount of fibers remaining at 11.75 mm is overestimated in the simu
lation, while the amount of fibers with intermediate lengths between 1 
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Fig. 4. Fiber length distribution, weighted by length. Comparison of experimental results (screw chamber in black, plate in orange) and simulation (plate in blue) for 
fiber lengths from 0.25 to 5 mm (a) and 5 to 12 mm (b). 
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mm and 5 mm is underestimated. Weighted by number and with respect 
to the measurement area, the average fiber length reduces from 0.452 
mm to 0.398 mm in the experiments, while it reduces from 0.452 mm to 
0.383 mm in the simulation, being a difference of about 4%. For most 
fiber lengths, the simulation results are within the process and measure 
uncertainties, shown by the standard deviation in Fig. 4. 

Fig. 5 shows the average fiber length and corresponding magnitude 
of ΔU in the simulation at the x2-plane of symmetry. A detailed view on 
the nozzle and the transition from sprue to the plate is given, being 
critical positions for fiber breakage due to the high changes in velocity, 
as highlighted by the magnitude of ΔU. 

The average length reduces from the initial value of 0.452 mm to 
about 0.42 mm in the area directly after the screw chamber. Therefore, 
the fiber length is already reduced by about 7.6% before reaching the 
sprue. At the transition from the sprue to the plate, the average fiber 
length reduces from about 0.42 mm to 0.404 mm, being again about 4%. 
After the transition into the plate, the average fiber length stays nearly 
the same, hence, not many fibers break within the plate, due to the 
simple geometry and flow field. The magnitude of ΔU fits to these re
sults, being high in regions where fibers break and the average fiber 
length is reduced and low in regions where less fibers break. 

3.3.2. In-mold pressure 
The experimental pressure at two points in the mold is shown in 

Fig. 6. The measurement points are highlighted in Fig. 3. Two simula
tions are performed, one with fiber breakage modeling (Fig. 6, green) 
and one without (Fig. 6, red). For the simulation without fiber breakage 
a constant fiber length of 0.452 mm is assumed, being the average fiber 
length of the measurements taken from the screw chamber. The simu
lation with fiber breakage predicts the pressure at position p1 well and 
slightly too high at position p2, but within the process and measuring 
scatter. 

The simulation without fiber breakage predicts a too high pressure at 
both positions, due to the longer fibers, rising the modelled viscosity. 
Besides the fiber length, both simulations are completely identical. The 
parameters given in Table 2 have been identified to fit for the simulation 
with fiber breakage. Of course, there exists also a parameter set for 
which the simulation without fiber breakage fits better to the experi
mental data, but the simulation is performed to be set in relation to the 
simulation with breakage, not to fit to the experimental results. At the 
end of filling, the simulation with fiber breakage predicts a pressure of 
3.74 MPa at position p1 and 1.96 MPa at position p2. The simulation 
without breakage predicts 5.04 MPa at position p1 and 2.63 MPa at 

position p2, being a difference of about 25.8% and 25.5% at these 
positions. 

Fig. 7 shows the simulated pressure distribution in the nozzle and 
sprue for both simulations, just before the end of filling. As mentioned in 
Section 3.3.1, most of the fiber breakage takes place within this part of 
the mold. For the simulation with fiber breakage, the pressure changes 
from about 30 MPa at the inlet to about 3.85 MPa at the end of the sprue, 
being a change of 26.15 MPa (87.17%). For the simulation without fiber 
breakage, the pressure changes from 36.7 MPa to 5 MPa, being a change 
of about 31.7 MPa (86.4%). Similar to the positions of the sensors the 
pressure in the simulation is continuously higher, due to the higher 
viscosity. At the inlet the pressure is 6.7 MPa (18.2%) higher for the 
simulation with constant fiber length, at the end of the sprue it is 1.15 
MPa (23%) higher. 

3.4. Discussion 

3.4.1. Fiber length distribution and breakage modeling 
The fiber breakage modeling, based on eigenvectors and hydrody

namic forces predicts the fiber length distribution in the part well, 
having a deviation of about 4% for the average fiber length compared to 
the experimental results. One negative aspect of the model is the high 
amount of fibers remaining with a length of 11.75 mm. One reason 
might be the homogenization. In the real process, for fibers with 
dimension greater than the part dimension (plate thickness: 4 mm) 
phenomena like interaction with the wall become very important and 
may lead to fiber damaging. Furthermore, an out-of-plane orientation 
for such long fibers is impossible in the real mold. Both aspects are not 
captured in the simulation at this moment. Only one orientation tensor is 
determined within a cell and the average fiber length is used to calculate 
it. Thus, out-of-plane orientation is possible in the simulation, although 
the values are small. The consideration of wall interactions affects the 
breaking behavior for every fiber length and is an important aspect for 
future works. 

Fig. 5 identifies the transition between screw chamber and nozzle as 
well as between sprue and plate as critical areas for fiber breakage. This 
highlights the importance of considering the screw chamber in the 
simulation model. In a state of the art simulation, the model would begin 
at the beginning of the sprue, where an amount of fibers have already 
been broken. In the simulation, the average fiber length reduces by 
about 7.6% in this area, so even if the length distribution after plastifi
cation is known, this distribution is no longer accurate at the beginning 
of the sprue. 

Fig. 5. Average fiber length and magnitude of ΔU at the x2-plane of symmetry in the simulation model. Detailed illustration of the nozzle and the transition from 
sprue to plate. 
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3.4.2. In-mold pressure modeling 
The simulation with fiber breakage predicts the pressure well at both 

positions. Although the pressure is slightly too high at position p2, it is 
within the process and measuring scatter over the whole time. This 
validates the approach to simulate the mold filling process with tran
sient fiber length and orientation-dependent viscosity modeling. The 
comparison of the simulations with and without fiber breakage 
modeling highlights the influence of the fiber length on the flow 
behavior. In the simulation with constant fiber length, the pressure is 
higher at every point, since the longer fibers rise the viscosity, by rising 
the parameter η11 as given by Eq. (2). In the simulation with fiber 
breakage, the shortening of fibers lowers the viscosity, and therefore the 
absolute pressure as well as the pressure drop decrease. At the end of 
filling, the two simulations deviate by about 25.8% and 25.5% at the 
sensor positions. The deviation is quite similar, since not much fiber 
breakage occurs in the area between the two pressure sensors. As shown 
in Fig. 5 and explained in Section 3.3.1 the majority of fiber breakage is 
happening before the material enters the plate, where also a difference 
in pressure between the simulations is detectable (cf. Fig. 7). As given in 
Eq. (2), the fiber lengths influence the calculation of η11 by second order 
and therefore the viscosity and hence the predicted pressure are 

sensitive towards the fiber length. Older studies like the one from 
Brodnyan [34] and Ziegel and Eirich [35] also report a non-linear 
relation between effective viscosity and the aspect ratio of inclusions. 
Kitano et al. [36] also report a second order correlation between the 
effective viscosity of an FRP and the aspect ratio of the fibers. At the end 
of filling, the average fiber length in the whole model is 0.396 mm, while 
it is still 0.452 mm in the simulation without fiber breakage. The squares 
of these two values deviate by 23.3%. At the end of the sprue, the 
squares of the fiber lengths differ by about 20.1%, while the pressure 
difference is 23%. At the sensor positions the squares of fiber lengths 
differ by about 28.2% and the pressure by 25.5%. Of course, the devi
ation of fiber length cannot be set in direct correlation to the modeled 
pressure, but it is in a meaningful magnitude. 

The difference between both simulations highlights the benefit and 
importance of fiber breakage modeling for accurate injection molding 
process simulations. The material behavior is sensitive towards fiber 
length, not only for the structural behavior of the final part, but also 
during processing. Besides the more adequate flow and mold filling 
modeling, the process-induced fiber length distribution is an important 
input for ongoing analysis of warpage and structural behavior. 

Fig. 6. In-mold pressure during filling over time for experiment (black), simulation with fiber breakage (green, squares) and without fiber breakage (red, triangles). 
Solid lines represent position p1, dashed lines position p2 (cf. Fig. 3). 

Fig. 7. Simulated pressure distribution in the nozzle and sprue for simulation with fiber breakage (top) and without fiber breakage (bottom).  
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4. Conclusion and outlook 

A novel simulation approach for fiber-dependent flow modeling in 
injection molding simulation is presented. The approach uses a fourth- 
order viscosity tensor, considering matrix viscosity as well as fiber vol
ume fraction, fiber orientation and length to model the viscosity of the 
FRP. This approach is combined with a novel approach for fiber 
breakage modeling, based on the calculation of hydrodynamic forces, 
acting from the fluid on the fibers. The approach is based on the work of 
Phelps et al. [21] with two main differences. One is a different force 
calculation, reducing the need of model parameters by one. The other 
difference is the relation of force and breakage probability to the ei
genvectors and eigenvalues, enabling orientation-dependent calculation 
of these two values and the possibility, that only a part of the fibers 
within one cell buckles and breaks. Due to the consideration of the fiber 
length in the flow modeling, the fiber breakage directly influences the 
viscosity and hence flow modeling. The complete simulation can be 
performed with information provided by the second order orientation 
tensor. 

The approach is validated with experimental data of reactive injec
tion molding trials with a long glass fiber filled phenolic compound. The 
predicted fiber length distribution and in-mold pressure of the simula
tion model fit well to the experimental results. Furthermore, the simu
lation is compared to a simulation with constant fiber length, 
highlighting the influence of fiber breaking on the flow modeling and 
the importance of fiber breakage modeling for accurate injection 
molding process simulations. The deviation of the predicted pressure of 
the two simulations is in a meaningful magnitude compared to the 
shortening of fibers. Besides the more adequate flow and mold filling 
modeling, the process-induced fiber length distribution is an important 
input for warpage and structural simulations. 

Although the results fit well to experimental data, the modeling 
approach and results can still be improved by considering further phe
nomena. One aspect is the consideration of wall interaction, which has a 
high impact especially for behavior of longer fibers. This may improve 
the simulation results, since breakage of longer fibers in the simulation is 
too low compared to the experimental results. Another aspect are further 
investigations in interaction and contact forces between fibers, which 
are especially relevant in concentrated suspensions, where fibers could 
have multiple contact points to other fibers. Friction, lubrication and 
normal force appear at these contact points and influence the rheolog
ical behavior of the material as well as the fiber orientation and 
breakage evolution. However, the influence of these forces on the ma
terial behavior is not well understood at this point of time. More 
investigation needs to be done on the experimental and numerical side. 
Microscopic simulation, considering single fibers may give more infor
mation about the impact of fiber-fiber forces and contacts on the 
macroscopic behavior of the material. Within this work, the number 
average is used to determine the average fiber length, which is used to 
determine the viscosity tensor. Studies of Pipes et al. [37] and Shuler 
et al. [38] show that the rheological behavior of an FRP with multiple 
fiber lengths can be adequately represented by the average, but already 
small amounts of long fibers in a suspension have high impact on the 
materials rheological behavior. Therefore, further investigations on the 
usage of the fiber length distribution for viscosity modeling within the 
presented approach are also an interesting aspect. 
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