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ABSTRACT

A statistical indicator for dynamic stability, known as the ϒ indicator, is used to gauge the stability and, hence, detect approaching tipping
points of simulation data from a reduced five-box model of the North Atlantic Meridional Overturning Circulation (AMOC) exposed to a
time-dependent hosing function. The hosing function simulates the influx of fresh water due to the melting of the Greenland ice sheet and
increased precipitation in the North Atlantic. The ϒ indicator is designed to detect changes in the memory properties of the dynamics and is
based on fitting auto-regressive moving-average models in a sliding window approach to time series data. An increase in memory properties
is interpreted as a sign of dynamical instability. The performance of the indicator is tested on time series subject to different types of tipping,
namely, bifurcation-induced, noise-induced, and rate-induced tipping. The numerical analysis shows that the indicator indeed responds to
the different types of induced instabilities. Finally, the indicator is applied to two AMOC time series from a full complexity Earth systems
model (CESM2). Compared with the doubling CO2 scenario, the quadrupling CO2 scenario results in stronger dynamical instability of the
AMOC during its weakening phase.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0089694

A statistical indicator for dynamic stability is applied to sim-

ulation data from an ocean circulation model. The indicator

assesses the stability of the time series data and gives indication

of approaching tipping points. Three different types of tipping,

defined by their causing mechanism, are explored. In addition,

the indicator’s reaction to the application of colored, as opposed

to white, noise is assessed. Finally, the indicator is compared to

other statistical early-warning indicators.

I. INTRODUCTION

Tipping points, or critical transitions, are sudden, drastic
changes in a system resulting from initial small perturbations. The
study of tipping points is of particular interest to climate scientists
and ecologists, as several theoretical studies highlight such tipping
for an assortment of climatic and ecological systems, and obser-
vations also indicate that abrupt changes are, indeed, common in
nature.1
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Ashwin et al.2 classified tipping points according to the causing
mechanism, yielding three classes of tipping points. Bifurcation-
induced tipping, or B-tipping, occurs when a steady change in a
parameter past a threshold induces a sudden qualitative change in
the system’s behavior. Noise-induced tipping, or N-tipping, occurs
when short-timescale internal variability causes the system to tran-
sition between different co-existing attracting states. Finally, rate-
induced tipping, or R-tipping, occurs when the system fails to track
a continuously changing attractor and, hence, abruptly leaves the
attractor.

Of these three, rate-induced tipping is certainly the least stud-
ied; however, as demonstrated by Scheffer et al.,3 Wieczorek et
al.,4 and, more recently, O’Keeffe and Wieczorek,5 it is an impor-
tant tipping mechanism that cannot be explained through classical
bifurcation theory. Indeed, when the system is unable to track a con-
tinuously available quasi-stable state due to the system parameters
changing too quickly, it might shift to another available equilib-
rium state without crossing a bifurcation boundary. There are a
few methods available for estimating what exactly “too quickly”
means; see Wieczorek and Perrymann,6 Ashwin et al.,7 Vanselow
et al.,8 and OKeeffe and Wieczorek,5 but they depend strongly on
the time-dependent parameter function, in particular, its asymptotic
properties. Finding generalizable methods for determining the rate
of the parameter drift that induces tipping will be of great interest
going forward. Another issue of great practical importance is the
question of how to obtain early warnings for such tipping points,
in particular, if classical methods for stability analysis also remain
valid in the regime of rapid parameter changes.

Ritchie and Sieber9 showed that for rate-induced tipping, the
most commonly used early-warning indicators, namely, an increase
in variance and an increase in autocorrelation, occur not when the
equilibrium drift is the fastest but with a delay. This suggests that
these indicators might not be able to detect tipping before it has
already occurred, although their analysis does give indication that
the theory behind these indicators, the so-called critical slowing
down, may still hold for rate-induced tipping.

In this paper, we study an indicator for dynamic stability, from
now on referred to as the ϒ indicator, initially proposed by Faranda
et al.10 The ϒ indicator uses auto-regressive moving-average or
ARMA(p,q) models to estimate how close a system is to an equi-
librium. It is based on the observation that the dynamics of an
observable arising from a potentially complex system very close to
a stable equilibrium will appear like a random walk with a tendency
to be attracted to a well-defined equilibrium. When discretized, such
dynamics can be well represented by an ARMA(1,0) process. When
approaching a transition, however, the system may experience crit-
ical slowing down and diverging memory properties. The trajectory
of the observable, hence, experiences new timescales, which can be
detected even with a limited dataset through an increase in the nec-
essary memory lags of fitted ARMA(p,q) models.11 Theϒ indicator,
thus, defines a distance from the limiting random walk-like behavior
as a way to assess the dynamical stability properties of an observ-
able. The indicator was applied to atmospheric boundary layer data
by Nevo et al.12 and Kaiser et al.13 and to atmospheric circulation
data by Faranda and Defrance.14 They successfully demonstrated
the indicator’s ability to both gauge the stability of a time series
and detect tipping points. However, the indicator requires some

additional testing, in particular, concerning its performance for rate-
induced tipping, which, thus, far has not been explored. It should
be noted that several different early-warning indicators based on
ARMA models have been proposed. In fact, in Faranda et al.,11 the
authors propose the sum of the p and q orders of the model as well
as the sum of the model coefficients as potential indicators. The sum
of the order parameters then gives an estimate for the memory lag
of the process, while the sum of the model coefficients gives the
persistence of this memory lag.

To further test the indicator, we have chosen the global oceanic
three-box model studied by Alkhayuon et al.,15 which, in turn, is
based upon the five-box model of Wood et al.16 The model rep-
resents a simplified Atlantic Meridional Overturning Circulation
(AMOC), which transports warm surface water from the tropics to
North America and Europe, resulting in a milder climate in these
regions than what would otherwise be expected. Since the current
is density driven, a large influx of freshwater due to the melting of
land ice or increased precipitation in the North Atlantic would be
expected to result in a reduction in the AMOC flow strength. The
question of whether the AMOC could undergo a sudden transition
from a high flow strength state (the “on” state) to a state with weak
or no overturning (the “off” state) is still debated. The latest assess-
ment report of the International Panel for Climate Change (IPCC
AR6) concludes that the AMOC strength will very likely decline in
the future but states with medium confidence that an abrupt col-
lapse will not occur in the next century.17 Simple box models, such
as the one presented in this paper, show bi-stability, while more
realistic models, such as the global atmosphere-ocean general cir-
culation models (AOGCMs), are largely mono-stable, implying that
they do not exhibit the abrupt transition to an “off”-state so char-
acteristic of the simpler models. However, there is limited evidence
that the more complex models may be too stable (Weijer et al.,18

Hofmann and Rahmsdorf,19 and Liu et al.20), in particular, that they
mis-represent the direction of AMOC-induced freshwater transport
across the southern boundary of the Atlantic (Liu et al.,20 Huisman et
al.,21 Liu et al.,22 and Hawkins et al.23). Liu et al.20 demonstrated that
by introducing a flux-correction term into the National Center for
Atmospheric Research (NCAR) Community Climate System Model
version 3 (CCSM3), they could make the formerly mono-stable
system bi-stable.

In addition, it has been suggested that paleoclimate data are
consistent with abrupt changes in the surface temperature in the
North Atlantic region in the past, as might be expected with a
collapse of the AMOC. Boers24 applied a statistical early-warning
indicator on Earth System Model (ESM) outputs and found sig-
nificant early-warning signals in eight independent AMOC indices.
This was interpreted as a sign that the AMOC is not only a bistable
system, but one approaching a critical transition.

Previously, the potential collapse of the AMOC has largely been
attributed to the crossing of a bifurcation boundary in the bi-stable
system. However, more recent analysis, see, in particular, Lohman
and Ditlevsen,25 demonstrate the possibility of tipping before the
bifurcation boundary is reached through the mechanism of rate-
induced tipping. In addition, Lohman and Ditlevsen,25 demonstrate
that due to the chaotic nature of complex systems, a well-defined
critical rate, i.e., the rate of parameter change at which the system
tips, cannot be obtained, which, in turn, severely limits our ability
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to predict the long-term behavior of the system. They conclude that
due to this added level of uncertainty, it is possible that the safe oper-
ating space with regard to future emissions of CO2 might be smaller
than previously thought. This suggests that proper evaluation of
the probability of rate-induced tipping in the different tipping ele-
ments of the Earth System is of utmost importance in assessing the
likelihood of dramatic future changes.

Regardless of whether the AMOC in actuality is bi-stable or
mono-stable, the reduced five-box model of Alkhayuon et al.15 is the
perfect test case for the ϒ indicator as it exhibits both bifurcation-
induced and rate-induced tipping, provided a time-dependent hos-
ing function is applied. The hosing function represents the influx of
fresh water into the ocean due to increased precipitation and melt-
ing of land and sea ice in the North Atlantic region. Alkhayuon et
al.15 provide an extensive analysis of the tipping mechanisms present
in the model. Armed with such a well studied theoretical model,
we will be able to systematically study the indicator’s ability to not
only detect bifurcation-induced and noise-induced, but also rate-
induced tipping. We will additionally assess the indicator’s ability
to deal with colored noise, something that is known to cause issues
for other early-warning indicators, such as the increase in variance
and auto-correlation.24

In reality, the ocean system has many more degrees of freedom
than those included in the box models, and ultimately, a mixture
of different processes is likely to trigger tipping, if occurring. The
Coupled Model Intercomparison Project (CMIP6), with the Com-
munity Earth System Model (CESM2),26 provides an alternative
AMOC model with many more degrees of freedom. Two scenarios
where the atmospheric CO2 concentration is abruptly increased will
be considered, providing monthly outputs of geographical density
differences on which the ϒ indicator will be applied. In these model
scenarios, the abrupt change in CO2 is followed by a response of the
Earth system, and after two to three decades, freshwater eventually
circulates in the sub-polar gyre.27 This response, hence, offers simi-
larities with the hosing experiments done in the box models. While
the two scenarios are insufficient to assess the potential bistability
of the AMOC, the ϒ indicator will be used to assess the dynamical
stability of the AMOC during its weakening phase.

II. THE ϒ-INDICATOR FOR EARLY-WARNING SIGNALS

In what follows, we will briefly outline the method used to
determine the stability of the time series data. Further details can
be found in Faranda et al.,10 Faranda and Defrance,14 Nevo et al.,12

and Kaiser et al.13

The method relies on an accurate representation of a complex
dynamical system close to a metastable state by a random walk-
like behavior with a tendency to be attracted to the metastable
state. Changes in the system’s stability are then characterized as
statistically significant deviations from that local behavior, indicat-
ing that the system currently does not reside close to a metastable
state. Indeed, the local dynamics of a continuous-time random
dynamical system (i.e., a stochastic differential equation) near a
metastable state come close to the dynamics of a stochastic spring
(i.e., an Ornstein–Uhlenbeck process), whose discrete-time obser-
vations are well approximated by an ARMA (1,0) process. Here,
ARMA denotes the space of autoregressive moving-average models,

with the numbers in parentheses denoting the order of the model.
A time series x(t), t ∈ Z, is an ARMA(p,q) process if it is stationary
and can be written as

x(t) = ν +

p
∑

i=1

φixt−i +

q
∑

j=1

θjwt−j + wt, (1)

with constant ν, coefficients φi, θj, and {wt} being white noise with
positive variance σ 2 (see Brockwell and Davis28 for an introduc-
tory text). In addition, constraints are imposed on the coefficients
φi and θj to ensure that the process in (1) is stationary and satis-
fies the invertibility condition. Intuitively, the variables p and q say
something about the memory lag of the process, while the pref-
actors φi and θj relate to the persistence of the said memory lag.
One expects that the higher the values for q and p, the longer the
system, once perturbed from its equilibrium state, would need to
return to equilibrium. It is this intuitive notion that the statistical
indicator denoted ϒ takes advantage of. Indeed, when approach-
ing a critical transition, the response of the system to perturbations
can become increasingly long (referred to as a critical slow down),
and this translates into diverging memory properties of the statisti-
cal signal. Hence, an ARMA(p,q) model will require higher orders
to incorporate the memory effects. By fitting the model (1) repeat-
edly to a time series data set for varying values of p and q, one can,
through application of an appropriate information criterion, obtain
the values of p and q that best represent the time series data. For this
purpose, we choose the Bayesian information criterion, BIC,

BIC = −2 ln L(β̂)+ ln(τ )(p + q + 1), (2)

where β̂ denotes the maximum likelihood estimator of
β = (ν,φ1, . . . ,φp, θ1, . . . , θq), which is obtained by maximizing the
likelihood function L associated with the ARMA(p,q) model (1)
for a given time series; see Brockwell and Davis28 for details. The
best-fitting ARMA(p,q) model is then determined as the one that
minimizes the BIC. The second term in Eq. (2) punishes complex
models with high p and q values and is the reason why we prefer to
use the BIC over other criteria, such as perhaps the more familiar
Akaike information criterion. Here, τ denotes the number of dis-
crete points in the time series to which the ARMA model is fitted.
We refer to τ as the window length.

Finally, the stability indicator is defined as

ϒ(p, q; τ) = 1 − exp

(

−
∣

∣BIC(p̄, q̄)− BIC(p, q)
∣

∣

τ

)

, (3)

where p̄ and q̄ indicate the order of what we refer to as the theo-
rized base model. This is the ARMA(p,q) model, characterized by
a specific value of q = q̄ and p = p̄, to which the chosen best fit is
compared. The ϒ-indicator takes on values between 0 and 1, where
lower values imply a higher degree of stability. The intuition behind
using the difference in BIC values between the chosen “best” model
and a base model is that this quantity assesses just how much bet-
ter the model with the lower BIC value approximates the fitted data
compared to the other. The significance threshold for deviations in
the BIC values between an ARMA(p,q) and the base model, sim-
ply denoted as |1BIC|, is |1BIC| > 2. The differences in BIC values
can be directly related to the Bayes factor; see Preacher and Merkle,29
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which is another way of quantifying the likelihood of one model over
another.

For the data sets analyzed by Faranda et al.,10 it was determined
that the appropriate base model is the ARMA(1,0) model, i.e., p̄ = 1
and q̄ = 0, which can be viewed as a time discretized Langevin pro-
cess. In the later work by Nevo et al.12 and Kaiser et al.,13 the authors
continued to rely on ARMA(1,0) as the base model. While Faranda
et al.10 used a statistical argument to justify the choice of the base
model, Nevo et al.12 and Kaiser et al.13 argued, as already noted
above, that the dynamics near a stable state can be approximated
as that of a stochastic spring, further strengthening the case for
ARMA(1,0) as the general choice of the base model. However, due to
the additional well-posedness constraints on the autoregressive and
moving-average coefficients φi and θj in (1), depending on the treat-
ment of constraints by the fitting routine, one can have cases where
the BIC value of the ARMA(1,0) process is smaller than the corre-
sponding value for the chosen ARMA(p,q) model. In these cases,
the ARMA(1,0) process is rejected as the best fit, despite having
the lowest BIC value, due to violating the stationarity or invertibil-
ity conditions required for a numerically well behaved fit. Thus, in
this scenario, it becomes unclear how to determine the “distance”
between the states. To overcome this issue, we have chosen to mod-
ify the ϒ indicator to allow for a second base state, namely, the
ARMA(0,0) model. This model is just white noise, possibly with a
drift, and is guaranteed to satisfy all the auxiliary conditions for the
obvious reasons that there are no coefficients available to violate
them. We consider ARMA(0,0) as a special case of ARMA(1,0) in
which φ1 = 0. The use of the ARMA(1,0) process as a base model
was partly justified by the image of a particle trapped in a potential
well, where a restoring force keeps the particle oscillating around the
equilibrium. The justification for including ARMA(0,0) as a poten-
tial base model follows a similar argument except that in this case,
the noise amplitude is too low compared to the width of the poten-
tial well to feel the restoring force. To use both base models, we first
introduce

1BIC0(p, q) := BIC(0, 0)− BIC(p, q) (4)

and

1BIC1(p, q) := BIC(1, 0)− BIC(p, q). (5)

With this, the modified ϒ-indicator for the extended base model
class can be written as

ϒ(p, q; τ) = 1 − exp

(

−min
{

|1BIC0(p, q)|, |1BIC1(p, q)|
}

τ

)

. (6)

In addition, it must be specified that in the cases where the con-
strained fitting failed for the ARMA(1,0) model so that1BIC1(p, q)
may be negative, 1BIC0(p, q) is automatically chosen in practice.
For obvious reasons, there cannot be a case where 1BIC0(p, q) is
itself negative.

Furthermore, following Faranda et al.,11 we define the order, O ,
and persistence, R, of an ARMA(p, q) process as

O = p + q, (7)

R =

p
∑

i=1

|φi| +

q
∑

i=1

|θj|, (8)

where φi and θj denote the autoregressive and moving-average coef-
ficients, respectively. While the order relates to the memory lag of
the process, the persistence relates to the persistence of the said mem-
ory lag, hence the name. When approaching a tipping point, one
would expect one out of two things to happen: either both the per-
sistence and the order increase significantly, due to the increased
memory of the process, or the order remains constant, and the per-
sistence approaches the value of the order O , indicating a loss of
stationarity. According to Faranda et al.,11 the latter alternative cor-
responds to a case in which the potential landscape of the system
does not change considerably when approaching the transition.

This observation strengthens the case for the modified ϒ indi-
cator in contrast to excluding windows of the time series where
1BIC1(p, q) is negative, as these periods are indicative of an insta-
bility resulting from the loss of stationarity of the ARMA(1,0)
process.

To apply the method to a time series data set, one first has to
ensure stationarity of the data. This can be done in two ways depend-
ing on the nature of the time series. In some cases, it is sufficient to
split the time series into small enough intervals so that within each
interval, the time series is approximately stationary. To check for
stationarity, one runs Kwiatkowski–Phillips–Schmidt–Shin (KPSS)
tests on the intervals. This way, one also obtains an upper bound on
the length of the intervals; see Kaiser et al.13 The other option is to
not assume stationarity from the outset and instead allow for appli-
cation of a differencing routine to the separate intervals, achieving
stationarity that way. In that case, a KPSS test is run on each inter-
val, and if the interval is found to not be stationary, differencing is
applied. This process is then repeated until stationarity is achieved.
The KPSS test is to be preferred over the unit root test due to the dan-
ger of over-differencing (Hyndman and Khandakar30). As we wish
to study rate-induced tipping phenomena, which yield highly non-
stationary time series even for very small interval lengths, the latter
method is to be preferred. By this choice, we go from an ARMA to
an ARIMA model, in which the I stands for “integrated” in reference
to the differencing routine used to ensure the stationarity of the time
series.

Provided one can select sufficiently long time series inter-
vals where the process is approximately stationary, one can fit
ARMA(p,q) models to available observations during these intervals,
and through the ϒ indicator, one can obtain an estimate for how
close any given interval is to an equilibrium state. To determine
the best fit, we use the auto.arima function found in the FORE-
CAST R package, setting BIC as the information criterion used for
model selection. Since we will not assume stationarity of the time
series, auto.arima first determines the correct differencing order
before continuing with the fitting procedure; the details of the said
procedure can be found in Hyndman and Khandakar.30

It is clear that the method is strongly dependent upon the size of
the intervals, which we will refer to as the window length, τ . This is
not only due to the inclusion of the 1/τ factor in the exponential, but
also due to the inherent τ -dependence of BIC(p, q) and BIC(1, 0). In
fact, the rationale for including the 1/τ factor in the definition of ϒ
is to attempt to remove or reduce this dependence. From equation
(2), one might conclude that the correct scaling would be 1/ ln(τ ),
as opposed to 1/τ . However, we do not only want to remove the
dependence on τ , but also include the significance threshold for
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FIG. 1. Sketch of the five-box model for the Atlantic Meridional Overturning Cir-
culation (AMOC). Here, light gray coloring is used to denote the two boxes whose
salinities do not change as well as all the arrows, indicating terms that do not
appear in the equations describing the dynamics of the three-box model. Adapted
from Alkhayuon et al., Proc. R. Soc. A 475, 20190051 (2019). Copyright 2019 The
Royal Society.15

1BIC such that the ϒ value of any point where 1BIC is below 2
is suppressed relative to other points.

III. APPLICATION TO THE GLOBAL OCEANIC

THREE-BOX MODEL

To determine the validity of the ϒ-indicator as a measure of
stability as well as its ability to detect different types of tipping
points, we start by applying the method to the global oceanic three-
box model discussed by Alkhayuon et al.15 The three-box model
of Alkhayuon et al.15 is a simplification of the five-box model of
Wood et al.16 in which the salinity of the Southern Ocean (S) and
the Bottom waters (B) is assumed to be approximately constant.
The model, thus, consists of five separate boxes, of which only three
boxes, namely, the North Atlantic (N), the Tropical Atlantic (T), and
the Indo-Pacific (IP) boxes have varying salinities S. A schematic
illustration of the model is shown in Fig. 1. See Alkhayuon et al.15

or Wood et al.16 for a detailed exposition of the box model. We note
that the parameters of the box model are tuned using the full com-
plexity FAMOUS AOGCM model, with varying levels of CO2. The
parameters used in this paper are for the case 2 × CO2 as compared
to pre-industrial times.

We denote salinity by Si, the volume by Vi, and the fluxes by Fi,
where i ∈ {N, T, S, IP, B} denotes the respective boxes.

Let 0 denote the AMOC flow defined by

0 = λ

[

α(TS − T0)+
β

100
(SN − SS)

]

. (9)

The model approximates a buoyancy-driven flow, with a transport
proportional to the density difference between the boxes, assum-
ing a linearized equation of state. The evolution equations for the

TABLE I. Numerical values for volume, salinity and fluxes as used in the 3-box model.

Adapted from Alkhayuon et al., Proc. R. Soc. A 475, 20190051 (2019). Copyright 2019

The Royal Society.15

Volume (m3) Salinity Flux (Sv)

North
Atlantic

VN = 0.3683 × 107 SN = 0.034 912 FN = 0.486

Tropical
Atlantic

VT = 0.5418 × 107 ST = 0.035 435 FT = −0.997

Southern
Ocean

VS = 0.6097 × 107 SS = 0.034 427 FS = 1.265

Indo-Pacific VIP = 1.4860 × 107 SIP = 0.034 668 FIP = −0.754
Bottom

Ocean
VB = 9.9250 × 107 SB = 0.034 538

salinities SN and ST are

VN

Y

dSN

dt
= 0(ST − SN)+ KN(ST − SN)− 100FNS0, (10)

VT

Y

dST

dt
= 0 [γ SS + (1 − γ )SIP − ST] + KS(SS − ST)

+ KN(SN − ST)− 100FTS0 (11)

for 0 ≥ 0 and

VN

Y

dSN

dt
= |0|(SB − SN)+ KN(ST − SN)− 100FNS0, (12)

VT

Y

dST

dt
= |0|(SN − ST)+ KS(SS − ST)+ KN(SN − ST)− 100FTS0

(13)

for 0 < 0, where SB and SS are regarded as fixed parameters and
Y = 3.15 × 107, which converts the time unit from seconds to years.
S0 is a reference salinity, and Ki are coefficients associated with the
gyre strengths. We note that all the salinity values are given as per-
turbations from a background state; see Appendix A of Alkhayuon
et al.15 for details on the transformation. Since the total salinity is
assumed to be conserved, the salinity of the Indo-Pacific (IP) box,
SIP, can be computed from SN and ST.

The values of the assorted parameters can be found in Tables I
and II.

TABLE II. Numerical values for the parameters used in the 3-box model. Adapted

from Alkhayuon et al., Proc. R. Soc. A 475, 20190051 (2019). Copyright 2019 The

Royal Society.15

Name
Default
value Units Name Default value Units

α 0.12 kg/(m3 ◦C) KN 1.762 Sv
β 790.0 kg/m3 KS 1.872 Sv
S0 0.035 λ 1.62 × 107 m6/(kg s)
TS 7.919 ◦C γ 0.36
T0 3.870 ◦C
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The fluxes, FN and FT, are linear functions of the hosing func-
tion H(t), which simulates the influx of fresh water. In the case of
2 × CO2, the fluxes are (see Wood et al.16)

FN = 0.486 × 106 + H(t) 0.1311 × 106, (14)

FT = −0.997 × 106 + H(t) 0.6961 × 106, (15)

where all fluxes are given in units of Sverdrup (Sv).
The values for the case of 1 × CO2 can be found in Table 5 of

Alkhayuon et al.15

Figure 3 shows the bifurcation diagram for SN; for ST, we refer
to Alkhayuon et al.15 The bifurcation diagram for the flow strength
0 is qualitatively similar since all other parameters in Eq. (9) are
kept constant. The diagram clearly shows that this is a bi-stable
system with two stable equilibrium branches connected by an unsta-
ble branch. The upper equilibrium branch loses stability, not at the
saddle-node bifurcation, but rather due to a Hopf bifurcation, indi-
cated by a red diamond in the diagram. Thus, part of the upper
equilibrium branch, denoted in black, is, in fact, unstable.

To simulate the influx of fresh water, we apply a time-
dependent, piece-wise linear hosing function, H(t) (see Fig. 2), to
Eqs. (10)–(13). Here,

H(t) =



























H0 t < 0,

H0 + α(t), t ∈ [0, Trise],

Hpert, t − Trise ∈ [0, Tpert],

Hpert − β(t), t − Trise − Tpert ∈ [0, Tfall],

H0, t ≥ Trise + Tpert + Tfall,

(16)

where α(t) and β(t) are linear functions ensuring continuity of H(t).
If we define the rise and fall rates as

rrise =
|Hpert − H0|

Trise

and rfall =
|Hpert − H0|

Tfall

, (17)

then

α(t) = rriset and β(t) = rfall(t − Trise − Tpert). (18)

As demonstrated by Alkhayuon et al.,15 whether the system under-
goes a transition from one stable state to the other is dependent not
only on the value of Hpert, but on the rise and fall rates, rrise and rfall,
as well as the perturbation time Tpert. In particular, they demonstrate
that even when Hpert is above the bifurcation value that destabi-
lizes the upper equilibrium branch, the system may still return to
this equilibrium, provided Tfall is short enough; a process that they
termed avoided B-tipping. In addition, they showed that if Tpert is too
short, the system will not tip, but return to the initial equilibrium
branch.

In what follows, we will apply the ϒ indicator as described
in Sec. II to time series data generated by the three-box model.
We will separately study time series undergoing rate-, noise-, and
bifurcation-induced tipping, while attempting to assess the indica-
tor’s ability to gauge the stability of the time series as it approaches
the tipping point. Before proceeding, we should clarify one point
regarding noise-induced tipping and what is meant by an early-
warning indicator in this context. Noise-induced tipping is inher-
ently unpredictable, and hence, one might conclude that any attempt
at predicting such transitions is doomed to fail based on a single

FIG. 2. Schematic illustration of the piece-wise linear hosing function used to
simulate the influx of fresh water. Adapted from Alkhayuon et al., Proc. R. Soc. A
475, 20190051 (2019). Copyright 2019 The Royal Society.15

time series. In contrast, assuming the underlying model is known,
one could use ensembles of realizations to estimate the likelihood of
noise-induced transitions. Examples of these statistical approaches
are discussed in Thompson and Sieber.31

Although one cannot expect to develop an early warning
indicator for these types of transitions, one should at the very
least be able to tell, from time series data, once such a transi-
tion has occurred, i.e., when the unstable equilibrium branch has
been crossed and the system is approaching a different equilib-
rium. The objective should then be to develop an indicator that is
able to identify this induced instability as soon as possible after the
transition.

Finally, we note that, while it is possible to extend ARMA fitting
to multivalued time series data, we have chosen to not go down that

FIG. 3. Bifurcation diagram for SN for the three-box model of the AMOC. The
dashed line denotes the unstable equilibrium branch. The red diamond denotes
the location of the Hopf-bifurcation.
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FIG. 4. Bifurcation-induced tipping, color coded according to the value of ϒ with window length, τ = 350. The gray lines denote the equilibrium branches, with the dashed
line corresponding to the unstable branch. We clearly see several brightly colored points corresponding to high values of ϒ , which should be indicative of a high degree of
instability and an approaching tipping point.

route and instead only apply the indicator to a single time series
for the salinity values from the North Atlantic basin, SN. The rea-
son for choosing SN over ST is that within the three-box model, the
equilibrium branches of SN are that much further apart, making the
transitions easier to see. Such a simplification might at first glance
seem rather contrived; however, we argue that, as the goal of any
indicator is to be used on real-world time series data in which the
connection to other time series is largely unknown, it is reasonable
to only concentrate on one time series despite the underlying system
being multidimensional.

A. Bifurcation-induced tipping

To induce B-tipping in the three-box model, we gradually
change H(t) according to equation (16), with H0 = 0, Hpert = 0.5,
Trise = 1000. This corresponds to an increase in the freshwater fluxes
FT and FN, corresponding to the flux into the tropical and North
Atlantic boxes, by approximately 34% and 13%, respectively. This,
in turn, corresponds to roughly a 0.1–0.2 Sv increase, in line with
freshwater “hosing” experiments of the North Atlantic, e.g., Ref. 32.
We let Tpert go to infinity such that H(t) never returns to its ini-
tial value. As H(t) changes, SN follows the upper equilibrium branch
as sketched in Fig. 3, until it reaches the Hopf bifurcation (around
H = 0.4), at which point the upper equilibrium branch becomes

unstable, and SN starts approaching the lower equilibrium branch.
We choose a window length of 350 points corresponding to about
70 years.

Figure 4 shows the time series of SN color coded according to
the value of ϒ , with brighter colors corresponding to higher values
ofϒ and, hence, a greater degree of instability. Figure 5 showsϒ as a
function of time, with clear peaks corresponding to brightly colored
points in Fig. 4.

It should be noted that low amplitude white noise is also
applied to facilitate ARIMA model fitting. The noise intensity is kept
small enough to avoid noise-induced tipping.

Figures 4 and 5 clearly indicate that there are several points on
the time series as it approaches the transition, which are deemed to
have a high degree of instability. We further note that, although the
result is not shown here, the high ϒ values in Figs. 4 and 5 cor-
respond to intervals for which 1BIC1(p, q) is negative, indicating
that, as discussed previously, the ARMA(1,0) model would, when
only considering BIC values, be the better fit, but it violates the aux-
iliary conditions, indicating a loss of stationarity. Hence, at these
points, ARMA(1,0) is excluded as a possible model, implying that
ARMA(0,0) is the chosen base model.

In addition, we look at the order of the best-fit ARMA model,
namely, the q and p values, as well as the persistence, to gain fur-
ther insight into the stability properties of the time series. Figure 6

FIG. 5. ϒ as a function of time for a time series of SN undergoing B-tipping.
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FIG. 6. Bifurcation-induced tipping of SN(t), color coded according to the value
of the best-fit ARMA model orders (a) q and (b) p (scatterplot). The line plots
additionally show the same values for q and p as functions of time in (a) and (b),
respectively.

shows the time series of SN color coded according to the values of
q and p. When comparing with Fig. 4, this seems to indicate that
the high values of ϒ appearing before the transition are primarily
associated with an increase in the q-values. This is not unexpected,
as it is primarily the change in the properties of the noise, which is
expected to give an indication of an approaching transition. Figure 7
shows the persistence plotted as a function of time t. We see a
clear increase in the persistence directly preceding the tipping point
around t = 1000.

We make a final comment regarding Fig. 6 and its relation
to our choice of ARMA(1,0) and ARMA(0,0) as base models. In
Faranda et al.,10 this choice was guided by the fact that for the time
series under consideration, the order, i.e., p + q, of the intervals
was clustered around 1, and as the authors explicitly excluded pure
moving-average processes, they concluded that ARMA(1,0) was the
appropriate base model. However, from Fig. 6, we see that for the

time series currently under consideration, the order is clustered
around 0. This observation further strengthens the case for using
ARMA(0,0) as an additional base model. We hypothesize that the
dominance of ARMA(0,0) is related to the low degree of noise in
the system, which makes the restoring force that returns the sys-
tem to equilibrium less prominent, hence obscuring tendency of the
random walk to be attracted to a metastable state.

B. Noise-induced tipping

To induce N-tipping, we fix the hosing parameter H and apply
additive white noise to all the equations equally. The noise term is
added equally to (10)–(13), with the same noise amplitude in all
cases. We look at transitions from the upper branch to the lower
branch and vice versa. In either case, it is convenient to choose a
value for H that is close to the bifurcation point, as the probabil-
ity of transitioning is much higher in these regions, and hence, one
does not need high amplitude noise to induce transitions between
the branches.

Figures 8 and 9 show two time series undergoing noise-induced
tipping, one going from the lower to the upper branch, while the
other going the other way around. In the first case, H = −0.25, while
in the second, H = 0.24. The amplitude of the additive white noise
is the same in both cases. For the window length τ , we have cho-
sen a length of 350 and 200 points, corresponding to about 70 and
41 years, respectively. The window length is chosen so that it is at
most half as long as the transition time, which is taken to be the
time for the system to arrive at the other equilibrium once it has
crossed the unstable branch. Of course, when dealing with simula-
tion data, such as these, we have the advantage of knowing where the
stable and unstable branches are, which is an advantage that anyone
dealing with real-world data does not have. In principle, one could
use the clustering methods proposed by Kaiser et al.13 to approxi-
mate the window length, although this method also requires that one
knows how many clusters, i.e., equilibrium states, one should look
for. The clustering method works particularly well for noise-induced
transitions, as one can repeatedly induce transitions back and forth
to gain an ensemble of transitions, yielding a higher degree of
accuracy.

In previous works, the choice of τ has largely been guided by
a desire to ensure the stationarity of the time series intervals. How-
ever, as we are not requiring the individual time series segments to
be stationary a priori, we are permitted to use much longer time

FIG. 7. Plot of the persistence R [Eq. (8)] as a function of time for a time series of SN undergoing B-tipping.
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FIG. 8. (a) Noise-induced tipping, color coded according to the value of ϒ . The
gray lines denote the equilibria, with the dashed line denoting the unstable equilib-
rium branch. Transition from the lower to upper equilibrium branch forH = −0.25,
τ = 350. (b) Plot of ϒ as a function of time. Note how the peaks correspond to
the brightly colored points in (a).

series intervals. In the world of ARIMA fitting, a time series of length
above 200 points would generally be considered a very long series;
however, we should keep in mind that the sampling frequency of
our simulated data is quite high; in fact, there are 5 points per time

FIG. 9. (a) Noise-induced tipping, color coded according to the value of ϒ . The
gray lines denote the equilibria, with the dashed line denoting the unstable equilib-
rium branch. Transition from the upper to lower equilibrium branch for H = 0.24,
τ = 200. (b) Plot of ϒ as a function of time. Note how the peaks correspond to
the brightly colored points in (a).

FIG. 10. Noise-induced tipping of SN(t) for H = −0.25, τ = 350, color coded
according to the value of (a) p and (b) q. For clarity, we have also plotted p and q
as functions of time in (a) and (b), respectively.

unit (i.e., year), yielding a total of 10 000 points for the 2000 years
of simulations. An interval consisting of 200 points corresponds to
around 40 years, which is not an unreasonably long time interval
for the dynamics of the AMOC. When fitting an ARIMA model
to a time series, one wishes to avoid too long time series to avoid,
including events from the past that no longer have any relevance
for the future. This, and not the inherent inaccuracy of the fit
itself, is the primary reason for limiting the length of a time
series.

Returning to Figs. 8 and 9, we note that there are a few brightly
colored points indicating a high degree of instability. There are,
for example, in both cases, several points in the middle of the gap
between the two stable branches, indicated by solid gray lines in the
figure. This is consistent with the results of Kaiser et al.13 In addi-
tion, for the transition from the lower to upper branch, Fig. 8, there
are several brightly colored points just after the system has reached
the upper equilibrium branch. Although it is not so clear in the
figure due to the presence of noise, any time SN returns to the upper
equilibrium branch it initially overshoots and then oscillates around
the equilibrium value with continuously decreasing amplitude (see
Fig. 13 for a clearer example of this behavior). This is probably due
to the presence of an unstable limit cycle and the aforementioned
sub-critical Hopf bifurcation. Hence, we see it as an encouraging
sign that the indicator seems to be able to identify these points as
well. We further note that, although the result is not shown, the
high ϒ value points in Figs. 8 and 9 correspond to points where
11BIC(p, q) is negative, as was the case for the B-tipping example in
Sec. III A.

Looking at the p and q values in Figs. 10 and 11, it is clear
that high values of ϒ correspond to high values of q, while the
connection between p and ϒ remains uncertain. However, we note
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FIG. 11. Noise-induced tipping of SN(t) for H = 0.24, τ = 200, color coded
according to the value of (a) p and (b) q. For clarity, we have also plotted p and q
as functions of time in (a) and (b), respectively.

that the high ϒ values appearing around the transition correspond
to high values of both p and q and consequently also of persistence
(result not shown).

C. Rate-induced tipping

To induce R-tipping, we fix Hpert below the bifurcation value,
ensuring that both equilibria still exist and are stable and vary
Tfall. We set Trise = 100 and Tpert = 400, while Hpert = 0.37. This
corresponds to an increase in the freshwater fluxes FT and FN, cor-
responding to the flux into the tropical and North Atlantic boxes,
by approximately 25% and 10%, respectively. Next, we observe that
for Tfall = 280, the system returns to the upper equilibrium branch,
while for Tfall = 320, the system transitions to the lower branch. The
transition happens even though the bifurcation boundary has not
been crossed. Again, we note that some additive white noise has been
applied to allow for ARIMA fitting.

FIG. 12. Rate-induced tipping ofSN , color coded according to the value ofϒ . The
moving equilibria are plotted in gray, with the dashed line denoting the unstable
branch. Compare this figure to Fig. 14(a), which shows the same time series, but
color coded according to the value of q.

FIG. 13. SN as a function of time, color coded according to the value of ϒ for
Tfall = 280. With these parameter values, the system does not tip but returns
to the upper equilibrium branch after some time. Note that the system initially
overshoots the stable branch upon return. This is probably due to the presence
of the unstable limit cycle. The equilibrium branches are plotted in gray, with the
dashed line denoting the unstable branch.

Figure 12 shows a time series undergoing rate-induced tipping,
with the color coding corresponding to the values of ϒ . Again, we
have chosen τ = 350 points, corresponding to 70 years. We see
several brightly colored points, indicating a high degree of insta-
bility, before the system transitions. These points occur initially as
the system approaches the unstable branch (between approximately
t = 350 and t = 500). These points do not appear for the time series
that does not tip, Fig. 13, despite the fact that within this time inter-
val, the two time series are virtually identical and could, therefore,
be an indication of an approaching tipping point. However, again
looking at Fig. 13, we see some brightly colored points, correspond-
ing to large ϒ , in the interval t = 600 to t = 750, and it is unclear
what approaching instability these points would be indicative of and,
thus, might be regarded as false signals.

Looking at Fig. 14, it becomes clear that the high values of ϒ
found in Fig. 12 correspond to high values of q, while a compar-
ison with Fig. 16 gives the same indication for the persistence. In
other words, high values of ϒ primarily correspond to high values
of persistence and q.

From Fig. 13, we can also see how the indicator correctly iden-
tifies the unstable limit cycle, which we have argued causes the over-
shoot when returning to the upper equilibrium branch. Figure 15
shows the same time series as in Fig. 13, color coded according to
the values of q and p. While high values of q seem to be associated
with increased instability, the high values of p primarily occur as the
system returns to the equilibrium. We would, therefore, suggest that
high values of the autoregressive order, p, should be interpreted as an
indication that the system is following a moving equilibrium branch.
Comparing Figs. 16 and 14(a), it becomes clear that the points with a
high q value around t = 1000 correspond to particularly high values
of persistence, even when compared to other points of similar order.
We also note, as in the previous two tipping scenarios, the high ϒ
values or, equivalently, high p values.

We end this section with a brief comment on the rate-induced
tipping example presented in this section. In this example, the
system is, as it undergoes rate-induced tipping, approaching a bifur-
cation boundary. It would be instructive to study a case in which this
is not the case to ensure that the detected instability is not merely due
to the approaching bifurcation boundary. However, as one would
need to look at different model examples than those presented here,
this is outside the scope of the current work.
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FIG. 14. Rate-induced tipping of SN(t), color coded according to the value of (a)
q and (b) p. The values for q and p are also plotted as functions of time in (a) and
(b), respectively.

IV. COMPARISON WITH OTHER EARLY-WARNING

INDICATORS

As briefly alluded to in Sec. I, it is well established that
bifurcation-induced tipping is generally preceded by an increase in
lag 1 autocorrelation and variance (Lenton et al.,33 Dakos et al.,34 and

FIG. 15. SN as a function of time, color coded according to the value of (a) q
and (b) p for Tfall = 280. For these parameter values, the system does not tip
but returns to the initial equilibrium after some time t. For clarity, p and q are also
plotted as functions of time in (a) and (b), respectively. It is instructive to compare
these plots to Fig. 13.

Boers24). The intuition behind this is that as the system approaches a
bifurcation point, the potential well flattens out, reducing the speed
at which the system recovers from a perturbation, so-called critical
slowing down, which should manifest as an increase in the variance
and autocorrelation of the time series. However, the variance and
autocorrelation might also increase for other reasons, in particular,
if the properties of the noise change. What happens to the autocor-
relation and variance when the system approaches a rate-induced
tipping point is, thus, far unclear, although it is conceivable that the
“critical slowing down” hypothesis still holds for this type of tip-
ping; see Ritchie and Sieber.9 Obviously, it does not hold true for
time series undergoing purely noise-induced tipping, as there is no
change in the potential well. However, the autocorrelation and vari-
ance of the time series will dramatically change as the system crosses
the unstable equilibrium branch and enters a different potential well.

In what follows, we will compare these classical indicators to
the ϒ indicator for rate-induced and bifurcation-induced tipping
in the AMOC three-box model. It is instructive to just look at the
part of the time series prior to the transition, as in general, one
wishes to be able to detect early signs of the transition before it
happens. For the time series undergoing bifurcation-induced tip-
ping (Fig. 4), we chose a segment consisting of the points between
approximately t = 200 and t = 1100. For the time series undergo-
ing rate-induced tipping (Fig. 13), we choose a segment consisting of
the points between t = 200 and t = 700. This segment is in all prob-
ability too long, meaning that it also contains the transition itself,
as opposed to only points prior to the transition. However, this is
the inherent difficulty with rate-induced tipping; there is currently
no way to analytically determine when the transition happens, and
one largely has to guess. Based on Figs. 12 and 13, one could poten-
tially conclude that the tipping point is found somewhere between
t = 400 and t = 600, but this is pure guess work. For this reason, we
have included points up until t = 700.

Given a set of measurements Y1, Y2, . . . , YN, the sample vari-
ance is defined as

σ 2 =
1

N

N
∑

i=1

(

Yi − Y
)2

, (19)

FIG. 16. Persistence of a time series undergoing rate-induced tipping, plotted as
a function of time. The underlying series is the time series shown in Fig. 12. We
see several high persistence values, corresponding with a high value for the order,
q + p (compare with Fig. 14), appearing before the potential tipping point around
t = 500.
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FIG. 17. Autocorrelation, variance, and ϒ plotted as functions of time for a time series undergoing B-tipping. The increase in the variance as one approaches the tipping
point is clear, while the increase in autocorrelation is less clear.

while the lag k autocorrelation is given by

rk =
1

Nσ 2

N−k
∑

i=1

(

Yi − Y
) (

Yi+k − Y
)

, (20)

where Y denotes the sample mean of the series Y1, Y2, . . . , YN (see,
for example, Chap. 2 of Box et al.35). Although time does not enter
explicitly in the formulas, it is assumed that the measurements are
taken at regular intervals.

When computing the variance and autocorrelation, it is essen-
tial that the signal is properly detrended; otherwise, any trend will
immediately obscure the relevant dynamics. As for the ϒ indicator,
one generally employs a rolling window approach, with an appro-
priately chosen window length τ . Lenton et al.33 demonstrated that
detrending can be done within each time window, as opposed to
on the whole time series at once, without significantly changing the
result. We have chosen this same approach, using linear detrend-
ing, as opposed to quadratic or higher order detrending methods,
to remove the trend. The window length τ was set to 350 points,
corresponding to 70 years.

Figures 17 and 18 show the autocorrelation, variance, and ϒ
plotted as functions of time. The peaks inϒ preceding the transition
are clear, as is the increase in variance and autocorrelation, at least

in the case of R-tipping, provided the tipping point is approximately
at t = 450. For B-tipping, there appears to be a clear increase in
the variance preceding the tipping point, provided the tipping point
happens around t = 850 (see Fig. 4 for comparison). The expected
increase in autocorrelation is, however, less clear.

It is possible that the high degree of autocorrelation in
the three-box model, as observed in Figs. 17 and 18, is corre-
lated to the frequent failure of the ARMA(1,0) model, whereby
failure we mean that the autoregressive coefficient, sometimes
referred to as the AR1 coefficient, violates the stationarity condi-
tion, resulting in ARMA(1,0) being excluded as a possible candidate
model.

As already noted, the upper equilibrium branch does not lose
stability due to a saddle-node bifurcation, but rather loses stability
due to a sub-critical Hopf bifurcation. It is possible that classical
indicators are struggling to pick up on this. Furthermore, the noise
amplitude is kept low to avoid noise-induced tipping, which might
make it difficult for the indicators to pick up on changes in the
dynamics.

The autocorrelation and variance of a time series can increase
for reasons that have nothing to do with an approaching tipping
point. Hence, we wish to see how the ϒ indicator responds to col-
ored noise, whose variance and autocorrelation increases with time

FIG. 18. Autocorrelation, variance, and ϒ plotted as functions of time for a time series undergoing R-tipping. Assuming that the tipping point is around t = 450, one can
clearly see an increase in both autocorrelation and variance prior to the tipping point.
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FIG. 19. Time series with colored noise but no tipping points, color coded
according to the value of ϒ .

t. To this end, we construct an artificial time series of the form

dx

dt
= −5x + ξ(t), (21)

where ξ(t) is the autocorrelated colored noise. ξ(t) is in effect mod-
eled as an ARMA(1,0) process whose AR1 coefficient increases lin-
early in time. In addition, the variance of this process also increases
linearly in time. This is equivalent to the example presented in
Boers.24 Applying theϒ indicator to this time series yields the result
shown in Fig. 19. Figure 20 shows a comparison between the auto-
correlation, variance, and value of ϒ for the same time series. All
three indicators show a dramatic increase despite there being no
approaching tipping point. However, looking at the plot of the time
series when color coded according to the values of p and q, Fig. 21, a
curious pattern emerges: the increase in ϒ is largely associated with
an increased p value. Looking at Fig. 22, the trend becomes even
clearer: here, we have computed the rolling average of the p and q
values with a window length of 50 points corresponding to 25 non-
dimensional time units. We see that while the average value of q goes
toward zero for large t, the average value of p settles around one.
The general trend is independent of the choice of window length,
provided the window length is between 30 and 300 points.

This behavior is unlike what was observed for the three-box
model. The high values of ϒ were associated with a high value of q.
We, thus, argue that high values of q were associated with increased

FIG. 21. Time series with colored noise and no tipping points, corresponding to
equation (21), color coded according to the value of (a) q and (b) p.

instability, while high values of p were more indicative of the system
following a moving equilibrium.

Thus, one would, through the distinction between q and p val-
ues, potentially have a way of distinguishing the effect of colored
noise from real early-warning signals. However, it is conceivable
that the result for the artificial colored noise time series is a con-
sequence of how we have constructed the colored noise; therefore,
further studies on this are warranted.

Finally, we note that the constructed colored noise time series
is a very artificial example of colored noise, as the noise amplitude
increases by a probably unrealistic amount, and when applied to any
reasonable time series, it would obscure the dynamics altogether.
This is to say that although we can likely assume that the noise in
real-world data is autocorrelated, it will be much more subtle and
not result in equally high values of ϒ .

FIG. 20. Autocorrelation, variance, andϒ plotted as functions of time for a time series with colored noise but no tipping points. All three indicators show a dramatic increase,
falsely suggesting an upcoming tipping point.
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FIG. 22. The values of p and q for the colored noise time series, averaged with a
window length of 50 points, corresponding to 25 non-dimensional time units.

V. APPLICATION TO SIMULATION DATA FROM CESM2

So far, we have only applied the dynamic stability indicator to
data from a very simplified model. The actual ocean has many more
degrees of freedom, and the response could be quite different. Nev-
ertheless, it is of interest to see how the indicator responds when
applied to such a system. To this end, we employ data from the
earth systems model CESM2 under two climate scenarios: one in
which the atmospheric CO2 concentration is abruptly doubled and
another in which it is abruptly quadrupled. Both simulations were
initialized using a pre-industrial control run (piControl) and then
run for 500 years. The CO2 was then increased at t = 6000 months.
The data were saved at monthly intervals, and the seasonal cycle was
removed prior to the analysis. Such an abrupt change in CO2 repre-
sents an extreme forcing and contrasts with the ramped-up hosing
employed with the idealized model. However, the oceanic response
is not instantaneous, but requires two to three decades for freshwater
to circulate in the model’s sub-polar gyre.27 We consider this more
hereafter.

A. Abrupt 4×CO 2

The time series of a monthly-mean density difference, δρ, and
AMOC strength, ψAMOC, are shown in Fig. 23 for the case of abrupt
4 × CO2. The density difference, a measure dynamically linked to
the AMOC strength (Madan et al.27), is calculated from the dif-
ference in surface densities averaged in boxes to the north and
south of the North Atlantic Current. The surface density is cal-
culated using the thermodynamic equation of state of seawater as
per the UNESCO 1983 Report.36 The AMOC strength is calculated

FIG. 23. CESM2 model with abrupt 4 × CO2, where the monthly density differ-
ence (blue) is plotted together with the maximum AMOC flow strength (red). Note
that the CO2 was increased at t = 6000 months.

FIG. 24. Time series of monthly density changes for abrupt 4 × CO2, color coded
according to the value of ϒ . The window length is 250 points, corresponding to
exactly 20 years. The dashed line indicates the point when the CO2 concentration
abruptly changes.

as the monthly maxima of meridional overturning stream function
between 20◦N and 60◦N and below 450 m depth.

Shortly after the quadrupling of CO2, there is an abrupt transi-
tion followed by a dramatic increase in the variance. We will apply
the indicator to the density difference time series, although one
could of course apply the same analysis to the AMOC strength.

We choose a window length of 250 data points, correspond-
ing to exactly 20 years of monthly data. Figure 24 shows the density
difference, δρ, color coded according to the values of ϒ . We only
display the part of the time series close to the transition, as this is
of primary interest. The point at which the CO2 concentration is
abruptly increased, at t = 6000 months, is indicated by a dashed line.

The increase in ϒ during the early part of the AMOC weak-
ening process is apparent. Note, in particular, the three sharp peaks
shortly after time t = 6000. Figure 25 again shows the time series,

FIG. 25. Time series of monthly density changes for abrupt 4 × CO2, color coded
according to the value of (a) q and (b) p. The values for q and p are also plotted
as functions of time in (a) and (b), respectively.
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FIG. 26. Autocorrelation, variance, and ϒ plotted as functions of time for the case of abrupt 4 × CO2.

now color coded according to the values of q and p. The latter are
also plotted for further clarification. From this plot, it becomes clear
that the most common fit prior to the transition is the ARMA(1,0)
process, which aligns with the observations of Faranda et al.10 After
the weakening phase, the value of p is generally an order higher, pre-
sumably related to the dramatic increase in the variance. The three
sharp peaks in the plot of ϒ appearing around time t = 6300 cor-
respond to high values of q. The gradual increase in ϒ preceding
these peaks is presumably due to the increase in the persistence (not
shown). The q component exhibits peaks prior to t = 6000 when
the forcing is applied, and these are reflected in small peaks in ϒ .
These are obviously not connected to the AMOC weakening. Fol-
lowing the initial weakening phase, the value for ϒ remains high,
probably a result of the increase in the p value. However, the values
ofϒ do not go above 0.4, which is considerably smaller than the val-
ues found for the three-box model. In addition, from our previous
discussion on the response of the ϒ indicator to colored noise, it is
conceivable that the increase in ϒ observed from the CESM2 data
is primarily caused by changes in the noise amplitude and not as a
consequence of inherent instability of the underlying dynamics.

Furthermore, we note that, although the result is not explicitly
shown, for the CESM2 data, 1BIC1 is always smaller than 1BIC0,
and the 1BIC1 values are at no point negative, implying that the
autoregressive coefficient in the ARMA(1,0) model always satisfy the
stationarity constraints. This differs from what was observed in the
three-box model and is presumably related to the difference in the
observed ϒ values.

FIG. 27. CESM2 model with abrupt 2 × CO2, where the monthly density differ-
ence (blue) is plotted together with the maximum AMOC flow strength (red).

However, we emphasize that it is not clear if one, in actuality,
can compare values of ϒ between datasets. For the autocorrelation
and the variance, it is typically assumed that it is the change within
the dataset that is significant, rather than the absolute numerical
values.

For completeness, we have included a comparison between ϒ
and two other statistical early-warning indicators, namely, autocor-
relation and variance. This is shown in Fig. 26. In all cases, the
window length is 250 points, corresponding to approximately 20
years. All three indicators show a clear increase shortly after time
t = 6000.

B. Abrupt 2×CO 2

The time series of the monthly density difference, δρ, and
AMOC strength, ψAMOC, in the case of abrupt 2 × CO2 is shown in
Fig. 27. Again, we only apply the indicator to the density difference
data and choose the same window length as in the case of abrupt
4 × CO2. Figure 28 shows an excerpt of the density difference time
series close to the initial weakening, as well as a plot of theϒ values.
A weakening is clearly seen in the model’s own AMOC measure and
is also accurately captured with the measure based on the density
difference across the Gulf Stream (Fig. 27).

The first thing to note is how small the ϒ values are compared
to what we have seen previously—on the order of 10−2. It should,
however, be noted that the 1BIC values are well above the signifi-
cance threshold.29 Figure 29 shows the density difference time series
color coded according to the value of q and p. From this, we again

FIG. 28. Monthly density changes, δρ, for abrupt 2 × CO2 (blue) and the value of
ϒ (green) plotted as functions of time. The dashed line indicates the point when
the CO2 concentration abruptly changes.
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FIG. 29. Time series of monthly density changes for abrupt 2 × CO2, color coded
according to the value of (a) q and (b) p. The values for q and p are also plotted
as functions of time in (a) and (b), respectively.

see that prior to the increase in CO2, the most common fit is the
ARMA(1,0) process, while after the initial weakening phase, the p
values show a clear increase. The q value, on the other hand, does
not exceed 2, indicating a very low degree of memory in the noise
term. Since we have by now clearly demonstrated a correlation with
the value of ϒ and the value of q, this should provide an explana-
tion as to why we see such low values of ϒ . From this analysis, one
would conclude that the system does not appear to be approaching
a tipping point. Indeed, the measure suggests that the weakening in
the overturning in this case with reduced forcing is not associated
with a loss of dynamical stability. Once more, we have, as shown in
Fig. 30, included a comparison with other early-warning indicators.
The autocorrelation and variance show a dramatic increase around
time t = 6000, which corresponds to the appearance of the cluster of
sharp peaks in the time series plot for ϒ .

VI. DISCUSSION

In summary, we analyzed an indicator for dynamical stability
based on ARMA modeling as a way to detect transitions in complex

FIG. 30. Autocorrelation, variance, andϒ plotted as functions of time for the case
of abrupt 2 × CO2.

systems. A detected need for higher order terms in the ARMA model
fitted to moving windows of a time series is related to diverging
memory properties, which are expected to arise when approaching
a transition to a new equilibrium state. The rationale behind this
indicator is that it uses a broad family of linear statistical models
that can be fitted even on short time series and which have proven
their utility in many contexts (see Brockwell and Davis28). That the
underlying models do not require long time series is an advantage
when employing a sliding window approach on limited data sets.
The method generalizes classical metrics of instability and allows
one to extract more global dynamical information from the time
series data.

The indicator was tested on time series data from a three-box
model of the AMOC, where three categories of critical transitions,
namely, B-, N-, and R-tipping, were explored. In all cases, the tran-
sition is identified by the indicator, albeit it is not always easy to
interpret the signal. In the rate-induced tipping scenario, a com-
parison between the avoided tipping and the tipping cases shows a
response of the indicator prior to the transition only in the tipping
case, although the time series are nearly identical at this stage. The
indicator also successfully identifies the unstable limit cycle when
returning to the upper equilibrium branch. We similarly see fairly
clear signals in the bifurcation-induced tipping scenario prior to the
transition. For the case of noise-induced tipping, the signal is less
clear, obscured by the high amplitude noise. However, when going
from the lower to upper equilibrium branch, the indicator signals an
increased degree of instability in accordance with the presence of the
unstable limit cycle.

The primary drawback of the ϒ indicator is that it is compu-
tationally quite expensive, at least compared to the autocorrelation
and variance, and that, due to its complexity, the results can be
harder to interpret. We, therefore, suggest that the indicator should
be applied with care and preferably in combinations with other mea-
sures of instability, such as the increase in the order, p + q, and
the persistence. Although the current scaling with τ , see equation
(3), seems to yield reasonable results, it is certainly possible that
another scaling would be preferred. It is also possible that this is
problem-dependent. This uncertainty regarding the correct scaling
is certainly a drawback, but we argue that this problem can largely
be circumvented by including an examination of the persistence and
order values. However, it would still be advantageous to have an
indicator whose values were to have a clear meaning in terms of
the stability of the system, and it is not clear if the ϒ indicator as
it stands achieves this, partly due to the aforementioned issue with
the choice of the correct scaling. Although we have attempted to
make some comparison to other early-warning indicators, such as
the increase in autocorrelation and variance, we are not claiming
that the ϒ indicator is in any way better than these other indica-
tors, rather that it can act as a complementary approach, as it can
allow one to extract more information from time series data. For
example, we have suggested that it might be helpful in identifying
the effects of colored noise, something the other indicators struggle
with.

Furthermore, we note that it is conceivable that one would
wish to exclude white noise and pure moving-average, MA(1), pro-
cesses when doing the fitting, as was done in the earlier studies by
Faranda et al.10 In such a scenario, the modified definition of the ϒ
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indicator would of course no longer be valid, as the ARMA(0,0) pro-
cess is excluded, and, therefore, cannot be used as a base model. In
this case, one might argue that the points where11BIC are negative
should either be ignored completely or one should assume that the
best fit is, in fact, the ARMA(1,0) process and the algorithm is being
too strict in its enforcement of the auxiliary conditions on the fitting
parameters. This would of course lead to different results than what
has been presented here and is an option worth considering.

When considering a full complexity AMOC model as aris-
ing from a global climate model (CESM2), many more degrees of
freedom are involved. This has two consequences: first, the pure
categories of tipping cannot really be expected anymore, and sec-
ond, the tipping behavior might disappear altogether as the added
degrees of freedom may stabilize the system.

When applied to the CESM2 data, the results were mixed. The
measure exhibited a significant increase inϒ under the more severe
4 × CO2 forcing but much less variability with the weaker 2 × CO2

forcing. Hence, the measure only registers larger changes in AMOC
as associated with dynamically unstable behavior. Indeed, it is possi-
ble that the model AMOC experiences a continuously shifting steady
state, rather than making a transition between two distinct states
as in low dimensional models. The results from the doubling CO2

experiment seem to support this hypothesis. Other members of the
CMIP6 ensemble exhibit very different AMOC weakening from the
same forcing, with some declining by only 15% and others falling by
80%,27 and this suggests a continuum of different responses.

While the results for 4 × CO2 suggest a loss of dynamical stabil-
ity during the AMOC weakening phase, concluding on the tipping
behavior would require a more in depth analysis along the lines done
in Hawkins et al.;23 in this paper, the bi-stability is clearly demon-
strated by exploring a range of hosing experiments. Although we
are confident that the ϒ indicator can be used to assess the stability
of such complex systems, as was already demonstrated in previous
works by Nevo et al.,12 concluding on the ability to detect critical
transitions would require a full analysis of the hysteresis behavior of
the system.23
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