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Abstract

Patients affected by atrial fibrillation are exposed to a fivefold increased risk of ischemic
stroke. An early detection and diagnosis of the arrhythmia would therefore set the course
for timely intervention to prevent potentially occurring comorbidities. A dilation of the left
atrium as well as the presence of fibrotically infiltrated atrial tissue are risk factors for atrial
fibrillation as they provide the necessary substrate for the maintenance of electrical reentrant
activity. Identifying fibrotic atrial cardiomyopathy and left atrial enlargement based on
machine learning techniques applied to P waves representing the atrial activity in the 12-lead
electrocardiogram in sinus rhythm could thus be an important means for a non-invasive
and remote risk stratification of new-onset atrial fibrillation episodes and the selection of
appropriate subjects for in-depth screening.

For this purpose, it was investigated if simulated atrial electrocardiogram data added
to a clinical training dataset of a machine learning model could contribute to an improved
classification of the above mentioned diseases. Two virtual cohorts characterized by both
anatomical and functional variability were compiled and served as a basis for generating
large-scale and unbiased datasets of P waves with exactly known ground truth labels of the
underlying pathology. In this way, the simulated data fulfilled the essential requirements
for the development of a machine learning algorithm what sets them apart from clinical
data usually not available in large numbers in evenly distributed classes and labels possibly
affected by inadequate expert annotations.

A shallow feature-based feedforward neural network was set up to perform the regression
task of predicting the tissue volume fraction of left atrial fibrosis. Compared to training the
model only on clinical data, training on a hybrid dataset led to a reduction of the absolute
estimation error from 17.5 % fibrotic volume on average to 16.5 % evaluated on a clinical
test set. A long short-term memory network tailored at performing the binary classification
task between P waves of healthy subjects and left atrial enlargement patients yielded an
accuracy on a clinical test set of 0.95 when trained on a hybrid dataset, of 0.91 when trained
on clinical data only comprising samples with 100 % label certainties and of 0.83 when
trained on clinical data including all samples independent on their label certainties.

The results of the studies presented in this thesis demonstrate that electrocardiogram
data resulting from electrophysiological modeling and simulations on virtual patient cohorts,
covering relevant variability aspects complying with real-world observations, can be a
valuable data resource for improving automated atrial fibrillation risk stratification. In this
regard, the drawbacks of clinical datasets for developing machine learning models can be
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compensated for. This ultimately leads to an enhanced early detection of the arrhythmia,
which allows for choosing appropriate treatment strategies in due time and thus, reduces the
risk of stroke in affected patients.



Zusammenfassung

Patienten mit Vorhofflimmern sind einem fünffach erhöhten Risiko für einen ischämischen
Schlaganfall ausgesetzt. Eine frühzeitige Erkennung und Diagnose der Arrhythmie würde ein
rechtzeitiges Eingreifen ermöglichen, um möglicherweise auftretende Begleiterkrankungen
zu verhindern. Eine Vergrößerung des linken Vorhofs sowie fibrotisches Vorhofgewebe
sind Risikomarker für Vorhofflimmern, da sie die notwendigen Voraussetzungen für die
Aufrechterhaltung der chaotischen elektrischen Depolarisation im Vorhof erfüllen. Mithilfe
von Techniken des maschinellen Lernens könnten Fibrose und eine Vergrößerung des linken
Vorhofs basierend auf P Wellen des 12-Kanal Elektrokardiogramms im Sinusrhythmus
automatisiert identifiziert werden. Dies könnte die Basis für eine nicht-invasive Risikostrat-
ifizierung neu auftretender Vorhofflimmerepisoden bilden, um anfällige Patienten für ein
präventives Screening auszuwählen.

Zu diesem Zweck wurde untersucht, ob simulierte Vorhof-Elektrokardiogrammdaten, die
dem klinischen Trainingssatz eines maschinellen Lernmodells hinzugefügt wurden, zu einer
verbesserten Klassifizierung der oben genannten Krankheiten bei klinischen Daten beitra-
gen könnten. Zwei virtuelle Kohorten, die durch anatomische und funktionelle Variabilität
gekennzeichnet sind, wurden generiert und dienten als Grundlage für die Simulation großer
P Wellen-Datensätze mit genau bestimmbaren Annotationen der zugrunde liegenden Patholo-
gie. Auf diese Weise erfüllen die simulierten Daten die notwendigen Voraussetzungen für
die Entwicklung eines Algorithmus für maschinelles Lernen, was sie von klinischen Daten
unterscheidet, die normalerweise nicht in großer Zahl und in gleichmäßig verteilten Klassen
vorliegen und deren Annotationen möglicherweise durch unzureichende Expertenannotierung
beeinträchtigt sind.

Für die Schätzung des Volumenanteils von linksatrialem fibrotischen Gewebe wurde ein
merkmalsbasiertes neuronales Netz entwickelt. Im Vergleich zum Training des Modells mit
nur klinischen Daten, führte das Training mit einem hybriden Datensatz zu einer Reduzierung
des Fehlers von durchschnittlich 17,5 % fibrotischem Volumen auf 16,5 %, ausgewertet
auf einem rein klinischen Testsatz. Ein Long Short-Term Memory Netzwerk, das für
die Unterscheidung zwischen gesunden und P Wellen von vergrößerten linken Vorhöfen
entwickelt wurde, lieferte eine Genauigkeit von 0,95 wenn es auf einem hybriden Datensatz
trainiert wurde, von 0,91 wenn es nur auf klinischen Daten trainiert wurde, die alle mit 100 %
Sicherheit annotiert wurden, und von 0,83 wenn es auf einem klinischen Datensatz trainiert
wurde, der alle Signale unabhängig von der Sicherheit der Expertenannotation enthielt.
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In Anbetracht der Ergebnisse dieser Arbeit können Elektrokardiogrammdaten, die aus
elektrophysiologischer Modellierung und Simulationen an virtuellen Patientenkohorten resul-
tieren und relevante Variabilitätsaspekte abdecken, die mit realen Beobachtungen übereinstim-
men, eine wertvolle Datenquelle zur Verbesserung der automatisierten Risikostratifizierung
von Vorhofflimmern sein. Auf diese Weise kann den Nachteilen klinischer Datensätze für
die Entwicklung von Modellen des maschinellen Lernens entgegengewirkt werden. Dies
trägt letztendlich zu einer frühzeitigen Erkennung der Arrhythmie bei, was eine rechtzeitige
Auswahl geeigneter Behandlungsstrategien ermöglicht und somit das Schlaganfallrisiko der
betroffenen Patienten verringert.
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Chapter 1
Introduction

1.1 Motivation

In addition to numerous technical advances and public debates in the last decade, the global
COVID-19 pandemic has most recently again brought the need for and benefits of digitaliza-
tion in healthcare and the rollout of telemedicine services into focus. These technologies
call for artificial intelligence and machine learning solutions [1] supporting clinical decision
making and remote patient monitoring, guiding therapy and predicting clinical outcome.
High throughput as well as the ability to discern patterns by examining multivariate feature
combinations and detecting signal or image characteristics not conceivable for a human
observer are among the advantages of machine learning-based analysis tools in medicine.

As a non-invasively acquirable, easily accessible, inexpensive and widely available sys-
tem in hospitals worldwide, the 12-lead electrocardiogram (ECG) is a powerful diagnostic
tool in clinical practice to monitor and evaluate the cardiac function. As such, it can be
an alternative to intracardiac signals recorded during invasive procedures or to expensive
imaging techniques requiring trained personnel and entailing potential exposure to radiation.
Thus, the automated analysis of ECG data has great potential as a preventive screening
tool for cardiovascular diseases [2, 3], which are the leading cause of death in most de-
veloped countries [4]. In particular, patients affected by atrial fibrillation (AF), the most
common sustained cardiac arrhythmia [5–9], would benefit from remote ECG monitoring
and automated analysis software [10–12] as a considerable percentage of AF patients remain
asymptomatic [13]. If left untreated, silent and sub-clinical AF can lead to unexpected and
life-threatening thromboembolic events and ischemic stroke [14, 15].

However, progress in developing ECG-based computer assisted diagnostic tools is
hampered due to limited supply of appropriate patient datasets. High-quality data curation,
collection and preparation is time-consuming and involves considerable effort and expenses
preventing open data sharing across centers and research groups. Furthermore, patient
data is highly sensitive explaining the strict regulations in sharing and reuse of medical
datasets. In the few open [16] or gated access [17] ECG databases available online, data
samples usually stem from only a limited number of sources. Thus, patient enrollment in
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2 Chapter 1. Introduction

single center studies may not only cause an imbalance among the classes to be distinguished
by the machine learning model, but may also introduce a bias in both demographic, as
for example gender [18–20], age or ethnicity [21], and technical aspects, such as device
manufacturer or acquisition site [22]. To avoid a distorted prediction adversely discriminating
under-represented groups and to prevent overfitting of the model to the given input samples,
datasets employed for machine learning models must not only be as large, but also as diverse
as possible [23]. Moreover, inter- and intra-observer variability clearly impairs expert signal
annotation certainty and quality [24] impeding the training of a supervised learning algorithm
from the outset.

Computational models of the heart have contributed to elucidating fundamental cardiac
disease mechanisms in various previous studies. In contrast to data-driven synthetic ECG
generators based on generative adversarial networks [25, 26], mechanistic electrophysiologi-
cal models underlying the simulation do not only allow for composing large-scale, unbiased,
noise-free and reliably labeled cardiac signals, but also provide a well-controlled framework
to identify the mechanisms driving and terminating cardiac arrhythmias. Recently, personal-
ized multiscale modeling of cardiac electrophysiology demonstrated added clinical value
for example in the fields of ventricular tachycardia [27–29] and AF [30–32]. To generate
mechanistic insight that is not only applicable to a single patient but to entire subgroups
of the population as a complementary source of evidence and data for automated signal
analysis and disease classification, cohort based modeling capturing relevant anatomical,
disease-specific and functional variability occurring in clinical practice is warranted.

In contrast to cardiac digital twins [33, 34], where a personalized model of a patient’s
heart is replicated in silico to allow for patient-specific therapy guidance, cohort modeling
aims at predicting risk and investigating the efficacy of different therapy options on a
population basis and derive specific treatment criteria applicable to entire subgroups of the
population. Covering variability in a virtual population is key for generating large-scale
synthetic ECG datasets encompassing a wide range of signal variation prevailing also in
clinical cohorts [35, 36]. These cohorts of computational models can form the basis for
large-scale mechanistic simulations of cardiac signals in a well-controlled environment
enriching and extending clinically recorded datasets for machine learning applications to
investigate the potential of the 12-lead ECG for non-invasive, automated and remote AF risk
stratification.

1.2 State of the Art

Since AF is the most frequently clinically diagnosed supraventricular tachycardia worldwide
and is associated with an increased risk of stroke, various clinical studies have focused
on individual risk stratification to allow for timely and appropriate intervention or prevent
new-onset AF episodes altogether [37–40]. Among them is the Apple Heart Study, where
a smartwatch worn by >400,000 participants was meant to release a notification in case
of irregular pulse occurrence [41] detected using photoplethysmography. Upon receiving
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the notification, eligible patients were mailed an ECG patch to be worn for up to 7 days
so that trained physicians could inspect the long-term recordings and possibly confirm
the AF diagnosis. During a period of about 4 months, 0.52 % of the participants received
an irregular pulse notification. Among the patients returning the ECG patch, the positive
predictive value of AF actually being detectable in the ECG was 0.84. Attia et al. [42]
applied a convolutional neural network to 10 second 12-lead ECG traces in normal sinus
rhythm and succeeded in identifying AF patients with an accuracy of 79.4%. Kurshid et
al. [43] showed that fitting a hazard model not only with the clinical CHARGE-AF risk
score [44, 45] but additionally with the 5-year AF probability predicted by a convolutional
neural network trained with clinical 12-lead ECGs yielded superior results than using clinical
risk scores alone. Eichenlaub et al. [46] showed that patients in whom AF recurs after
ablation therapy can be identified based on non-invasively recorded body surface potential
maps with 91.3% sensitivity and 93.7% specificity. Thus, different previous studies have
confirmed that machine learning enabled algorithms are suitable for an early identification
of AF patients based on sinus rhythm ECGs of different clinical cohorts. To address and
overcome the shortcomings of clinical ECG data as elaborated on in section 1.1, numerous
simulation studies have been carried out predominantly for optimizing AF therapy planning.

Regarding AF treatment by ablation, Luongo et al. [47] showed that a prediction of acute
pulmonary vein isolation success based on the ECG is possible with a specificity of 82%
and a sensitivity of 73% on a clinical test set of 46 AF patients. Importantly, this classifier
was trained exclusively on synthetic data (1,128 ECGs) and tested on clinical data [47]. By
drawing on simulations, the vulnerability of the atria for developing new-onset AF episodes
can be evaluated [48]. Thereafter, the suitability of pharmaceutical agents [49, 50] or virtual
ablation lines [30, 31, 51] regarding termination of rotational activity can be assessed using
computational models. However, a major challenge in previous simulation studies focusing
on therapy planning for entire subpopulations of patients usually lies in the generation of
large populations of atrial models.

To create a patient-specific computational atrial model, a geometrical representation of
the atria obtained from tomographic imaging or electroanatomical mapping studies serves
as a basis to replicate a patient’s heart in silico [52]. The process of segmenting tomo-
graphic images and building a simulation-ready atrial geometrical model from the resulting
endocardial wall, requires time and rule-based augmentation tools [53]. Thus, most of the
simulation studies mentioned before were conducted by employing only a limited number
of patient-specific geometries. This is acknowledged as a limitation in these publications,
as observing only few patients might not be sufficient to thoroughly represent anatomical
variability of the atria across a population. However, large populations of ionic models
have been compiled in previous studies by varying conductances of several ion channels in
the cell model to represent the biological variability observed in experimental studies [54].
These populations of models have been used to study drug-induced effects on different action
potential and ionic current biomarkers to predict either the risk of cardiotoxicity in the field
of safety pharmacology [55–58] or to determine the efficacy of different channel blockers
and their doses on anti-arrhythmic properties in the field of precision medicine [50, 59–63].
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It has been shown that these in silico drug testing methods can predict cardiotoxicity more
accurately than animal trials [55].

These populations of cell models aim at capturing the cellular electrophysiological
variability. To cover the aspect of cardiac shape and anatomical variability in cohorts of
computational models, statistical shape models (SSMs) provide the basis to generate a
large variety of geometrical models representing atrial anatomy and its clinically observed
statistical variability [64]. SSMs of the human heart have previously been constructed for the
purpose of active shape modeling segmentation approaches or to investigate the suitability of
left atrial shape scores as a predictor for AF [65, 66].

In consequence, addressing the disadvantages of clinically recorded ECG data for AF
risk prediction by drawing on simulations is a promising approach. However, the lack of
comprehensive and calibrated datasets of atrial multiscale computational models bars the
way to progress for extensive atrial ECG simulations. Based on these aspects, the aim of this
thesis is defined as outlined in section 1.3.

1.3 Research Question and Hypothesis

The aim of this thesis is to simulate and validate large-scale synthetic ECG datasets covering
various types of underlying model variability applicable as an extension to clinical input data
for machine learning algorithms and in this way counteract the shortcomings of clinically
recorded patient data. Thereby, a particular focus is set on the application of machine learning
techniques for detecting risk markers for AF from 12-lead ECGs in normal sinus rhythm.
Specifically, the following research question and hypothesis are aimed to be answered and
put to test:

Research Question

Can modeling and simulation applied to populations of mul-
tiscale atrial models covering various types of variability con-
tribute to overcome the lack of high quality, unbiased, well-
controlled and large-scale clinical ECG datasets to identify AF
susceptible patients?

Hypothesis

It is hypothesized that the performance of machine learning algo-
rithms trained to identify patients with fibrotic atrial substrate and
enlarged left atrial volumes improves when adding simulated atrial
ECGs to the input dataset compared to using clinical data only
during training.
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The following methodological milestones relevant to answer the research questions pre-
sented above are addressed and implemented in this thesis:

• Assessing fidelity of simplified simulation models by evaluating the accuracy of
resulting action potential (AP) and ECG signals as well as local activation times
(LATs) compared to the simulation results obtained from the gold standard methods to
speed up the generation of large, yet physiologically accurate, simulated ECG datasets.

• Development and evaluation of a bi-atrial SSM as a basis to compile a wide range of
anatomical models applicable to electrophysiological simulations.

• Calibration of a large population of multiscale atrial computational models comprising
anatomical and functional variability to ensure realistic and representative phenotypic
variability of simulated ECGs comparable to clinical data variability.

• Generation of a simulated ECG dataset comprising 10,000 signals of 10 seconds length
representing a healthy cohort and selected pathologies.

• Application of simulated atrial ECGs as an additional input source to machine learning
algorithms to identify patients with fibrotic atrial substrate and enlarged left atrial
volumes at a higher accuracy than by using clinical data only for training the classifier.

Summarizing, the research presented in this thesis is meant to serve as groundwork to
support and contribute to the vision of an early and non-invasive identification of asymp-
tomatic AF patients via remote monitoring, selecting susceptible patients for in-depth AF
screening and in this way reduce their risk of stroke through timely intervention.

1.4 Structure of the Thesis

The thesis is structured as described below.

Part I outlines selected fundamentals relevant to the analysis in this work and the resulting
findings.

• In Chapter 2, the underlying physiological principles of the cardiac electrical excita-
tion system and the arrhythmogenesis of atrial fibrillation are described.

• Chapter 3 summarizes the mathematical underpinnings of electrophysiological cardiac
modeling and simulation, statistical shape modeling and machine learning.

In Part II, the drawback of biophysically detailed simulation approaches being demanding
in terms of computational resources to solve the model equations is addressed. Especially
for large-scale simulations of atrial electrophysiology, as they should be conducted for the
studies presented in this thesis, a fast and accurate simulation framework is indespensable.
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• In Chapter 4, the applicability of computationally less complex though also biophys-
ically less detailed simulation models is investigated by comparing the simulation
results between simplified and gold standard methods.

Part III describes the generation of computational atrial model cohorts.
• Chapter 5 details the construction and evaluation of an SSM of the human atria. In this

way, the limitation of small sample sizes of atrial geometries in previous simulation
studies is addressed which led to an insufficient capture of anatomical variability and
of resulting ECG morphology in these virtual multiscale model cohorts.

• In Chapter 6, the generation and calibration of a population of multiscale atrial models
built based on geometrical instances of the SSM combined with electrophysiological
variability on tissue and cellular scale are described.

• In Chapter 7, the generation of 10,000 12-lead ECGs is shown. These signals
comprise not only the atrial activity of a single heartbeat but represent instead a
complete 10 second time series of simulated cardiac signals for a healthy control group
and selected pathologies. In this way, the synthetic signals are of a comparable format
to actual clinical recordings without the need for preceding waveform delineation or
feature extraction and thus provide the necessary input for a potential application of
deep learning methods based on multi-dimensional time series signals.

Part IV refers to the aim of this thesis to identify patients at high risk for developing
new-onset AF episodes supported by simulated ECG signals. Thus, the generated model
populations were applied for large-scale simulations of atrial activity in sinus rhythm,
optionally considering anatomical, electrical and structural remodeling typically occurring
in AF patients. Machine learning techniques are applied to distinguish between healthy
individuals and patients with fibrotic atrial cardiomyopathy or left atrial enlargement, both
of which are reported to promote and contribute to the arrhythmogenesis of AF.

• In Chapter 8, P wave features were extracted from simulated and clinical ECG
datasets comprising healthy subjects and patients with fibrotic substrate patches in the
atria. These were subsequently used as input to a shallow neural network tailored at
detecting fibrotic atrial cardiomyopathy.

• In Chapter 9, the signals representing a healthy and a left atrial enlargement population
were fed into a long short-term memory network to distinguish between the two cohorts.
The study design was again translational to identify the added value that simulated
data can carry when extending clinically recorded ECGs as input for machine learning
techniques.

An outlook for future projects and a general conclusion drawn from the findings of the
research leading to this thesis are outlined in Chapter 10 and 11, respectively.



PART I

FUNDAMENTALS





Chapter 2
Medical Fundamentals

2.1 Cardiac Anatomy and Physiology

The human heart is located behind the sternum in the chest and consists of four chambers:
The left and the right atria are connected through the mitral and tricuspid valve to the left
and right ventricles below. The atrial and ventricular septal wall separate the left from the
right cardiac chambers (see Figure 2.1). [67–69]

Figure 2.1: Anatomy of the human heart.

The cardiac cycle starts with ventricular diastole. The left and the right atrium receive
blood through the pulmonary veins from the lungs and mostly through the venae cavae from

9
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the body periphery, respectively. The atria contract and pump blood through the valves into
the ventricles. During ventricular systole, the ventricles contract. Oxygenated blood from
the left ventricle is ejected through the aorta branching into different arteries connecting the
heart to other organs and systems in the human body. Right ventricular contraction initiates
the flow of oxygen-depleted blood through the pulmonary valve to the lungs where it is
reoxygenated. Thereafter, the ventricles relax again and the next cardiac cycle starts. [67–69]

2.2 Electrical Excitation System

Figure 2.2: Genesis of the electrocardiogram.

The contraction of the heart is caused and preceded by its electrical activation, which can
be measured non-invasively on the body surface via electrocardiography (see Figure 2.2).
For the acquisition of a 12-lead electrocardiogram (ECG), 9 electrodes are placed on the left
and right arm (LA, RA), the left leg (LL) and along the rib cage (v1-v6). In this way, the
ECG in 12 channels representing different axes of excitation propagation can be calculated
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as the difference in potential recorded at the electrode positions as:

I = LA−RA

II = LL−RA

III = LL−LA

aVR = RA− (LA+LL)/2

aVL = LA− (RA+LL)/2

aVF = LL− (LA+RA)/2

V1 = v1− (LL+LA+RA)/3

V2 = v2− (LL+LA+RA)/3

V3 = v3− (LL+LA+RA)/3

V4 = v4− (LL+LA+RA)/3

V5 = v5− (LL+LA+RA)/3

V6 = v6− (LL+LA+RA)/3

The excitation origin of the electrical activation in the heart is triggered by the sinoatrial node
located in the right atrium. It automatically releases electrical stimuli at a pace determining
the heart rate in physiological sinus rhythm scenarios [70]. The preferred direction of
activation in the right atrium is defined by rapid and anisotropic conduction via crista
terminalis and the pectinate muscles on the posterior wall and Bachmann’s bundle on the
anterior wall. As both atria are electrically isolated from one another at the septal wall,
the activation of the left atrium in the healthy sinus rhythm case takes place via interatrial
connections, such as Bachmann’s bundle on the anterior wall or posterior bridges and the
coronary sinus bridge. The activation of both atria is represented by the P wave in the ECG.
Following the atrial activation, the depolarization wavefront is delayed at the atrioventricular
node, which reflects in the PQ segment in the ECG. Subsequently, the ventricles are activated
through the bundle of His conducting electrical impulses to the terminal branches of the
Purkinje fibers from where the excitation transfers to the ventricular myocardial tissue
causing the QRS complex in the ECG. Atrial repolarization takes place simulateneously to
ventricular activation and thus, a supposedly occurring Ta wave does not show in the ECG
as it is burried within the QRS complex. Finally, the repolarization of the ventricles cause
an upright and concordant T wave in the ECG as tissue regions in close proximity to the
ventricular apex start to repolarize first before the repolarization wavefront traverses the
ventricular tissue mainly in apicobasal direction towards the valves. [71, 72]

The electrophysiological principles underlying the activation initiation and propagation
as well as the formation of cardiac electrical sources measurable on the body surface can
be explained on a cellular level. If a cell in the myocardial tissue is activated, an action
potential is triggered. The latter describes the time course of the difference in potential across
the cell membrane between the intra- and extracellular space of a single cell arising due to
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differences in ionic concentrations in both domains [71, 72]. The typical signal course of an
atrial action potential is depicted in Figure 2.3.

Figure 2.3: Time course of an atrial action potential. Phase 0-4 upstroke, peak, plateau phase, repolar-
ization, and resting membrane potential, respectively. APD = action potential duration, RP = refractory
periord

In phase 4, the cell is not yet depolarized and a resting membrane potential of approxi-
mately -80 mV prevails [73]. When triggered, e.g., by an action potential of a neighboring
cell, fast Na+ channels open causing an inflow of sodium to the intracellular space and
consequently, an increase in transmembrane voltage in phase 0. The peak conductance
of the Na+ channels coincides with the time step of the steepest action potential upstroke
denoting the activation time of the cardiomyocyte. The peak of the action potential in phase
1 is marked by a transmembrane voltage of approximately +20 mV and Na+ channels are
inhibited. In response to the change in transmembrane voltage, K+ and Ca2+ channels open.
Potassium outward and calcium inward currents electrically balance each other which reflects
in the plateau phase of constant voltage in phase 2. As the potassium outward current starts
to dominate in phase 3, the transmembrane voltage declines again during the repolarization
phase. During the refractory period (see Figure 2.3), Na+ channels remain closed, sodium
cannot leak in the intracellular space and thus, the cell would not respond with the initiation
of a new action potential when triggered in this interval. The refractory period of a cardiomy-
ocyte is a protective mechanisms to prevent rapid and recurring depolarization of the the
same cardiac tissue regions. The decline in voltage in the repolarization phase lasts until the
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resting membrane potential of approximately -80 mV is reached again marking the offset
of the action potential duration (APD). Sodium-calcium exchangers and sodium-potassium
pumps ensure a restoration of the initial ion distribution between the intra- and extracellular
space so that a new action potential can be triggered in the subsequent cardiac cycle. [71]

Moving from single cell to the excitation of an entire tissue patch, the action potential
is propagated via gap junctions connecting adjacent cells and thus cause the electrical
depolarization wave to advance across the myocardial tissue. The speed the activation
wavefront traverses the tissue with is commonly referred to as conduction velocity (CV). [71]

2.3 Atrial Fibrillation

Atrial fibrillation (AF) is the most frequently encountered cardiac arrhythmia and affects
2-3% of the population in Europe and North America [5]. Advanced age is one of the risk
factors for developing new-onset AF episodes. Therefore, even higher AF prevalence rates
are expected for the years to come due to the ongoing aging of the society in industrialized
countries. In contrast to normal sinus rhythm, AF episodes are characterized by disorganized
reentrant waves traversing the atrial tissue. The maintenance of the arrhythmia requires
either rapid foci firing or a remodeled substrate supporting the reentry, for example due
to fibrotic infiltrations that alter conduction and cellular electrophysiology facilitating the
formation of reentry circuits. Due to hemodynamic impairment and blood stasis induced by
the electrical disorganization, AF favors the formation of blood clots and therefore increases
the risk of ischemic stroke for individual patients as well as morbidity and mortality rates
on a population level. Consequently, the development of optimal treatment strategies is
crucial to not only reduce the enormous financial burden for the public health system of
45 billion C per year in the European Union [74] but also to improve the quality of life
for affected patients by achieving long-term freedom from arrhythmia recurrence. Anti-
arrhythmic drug therapy is one of the treatment options for AF to either control the heart
rate in rate control strategies or to restore and maintain sinus rhythm in rhythm control
strategies [75]. However, a patient-specific selection of the drug as well as a personalized
adjustment of the optimal drug dose is likely necessary to maximize therapeutic yield. An
alternative first-line therapy or follow-up treatment option for drug-resistant AF patients is
catheter ablation [75]. During the minimally invasive procedure, scars are created at selected
locations on the myocardial tissue, which aim at blocking pathological excitation pathways.
To treat substrate-based arrhythmia in persistent AF patients, a mapping procedure precedes
the intervention to localize the origin of the pathological excitation [76, 77]. However,
neither therapeutic option can provide permanent cure for AF as recurrence rates of 30-60%
prevail [78]. Recent work showed that a patient-specific ablation approach by targeting atrial
areas of high spatiotemporal dispersion in the electrograms arising due to locally reduced
conduction velocities can reduce arrhythmia recurrence rates to 14% whereas the patient
group undergoing pulmonary vein isolation alone was characterized by 41% recurrence [79].
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Moreover, Jadidi et al. [80] found that low voltage guided ablation procedures can help to
identify additional ablation targets for arrhythmia termination in persistent AF patients.

Structural and anatomical remodeling of the atria, as for example fibrotic substrate or
enlargement of the atrial chambers, frequently occurs together with AF and is commonly
referred to as atrial cardiomyopathy. Although it is still under debate whether remodeling is
a cause or a consequence of AF, the presence of atrial fibrosis and dilation of the left atrium
are known to set the stage for the development of reentrant activity as will be explained in
section 2.3.1 and 2.3.2.

2.3.1 Fibrotic Atrial Cardiomyopathy

Arrhythmogenic fibrotic atrial cardiomyopathy (FAM) manifests in the presence of fibrotic
substrate replacing and interfering with healthy myocardial tissue in the atria. The prolifera-
tion and activation of fibroblasts leads to an accumulation of collagen and other extracellular
matrix proteins in the interstitial space and cause neighboring cells to be electrically isolated
from one another impeding transverse wave propagation [81]. Furthermore, down-regulation
of gap junctions entails conduction slowing in fiber direction. Generally, the resulting re-
duced conduction velocity facilitates the formation of reentry circuits in AF patients. This
is because the time for a wavefront reaching excitable tissue regions after traversing an
anatomical or functional obstacle is increased. This comes along with an increased likelihood
that firstly, the effective refractory period of the cells in the vulnerable region has already
passed, secondly, a new action potential in these cells can be triggered and finally, a reentry
on a macroscopic level can occur. Ionic remodeling in fibrotic regions also contributes to
promoting AF as a reduction of GK1 and GCaL conductances in fibrotically infiltrated regions
cause a shortened refractory period [82]. The inhomogeneities in refractory period as well
as fibroblast-myocyte coupling can also lead to uni-directional conduction block increasing
reentry vulnerability.

State-of-the-art methods for identifying fibrosis in the atria comprise electroanatomical
voltage mapping and late Gadolinium enhancement magnetic resonance imaging (LGE-MRI).
The former is acquired during a minimally invasive procedure preceding catheter ablation.
Applying a threshold of 0.5 mV for bipolar electrograms recorded in sinus rhythm allows
for the identification of fibrotic areas [83, 84] serving as potential additional ablation targets
in recurrent AF after pulmonary vein isolation. LGE-MRI is an imaging technique with
Gadolinium-based contrast agents requiring expensive equipment and trained personnel
for segmenting areas of high intensity image ratios to be identified as fibrosis. However,
the spatial location of fibrosis found based on LGE-MRI and electroanatomical mapping
is reported to differ from one another. Furthermore, there is no clear consensus in the
community on the efficacy of choosing areas of anchoring rotors as additional targets for
catheter ablation up to date [31, 80, 85].
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2.3.2 Left Atrial Enlargement

Structural remodeling in AF patients comprise among others an enlargement of the left
atrium occurring as a consequence of chronic pressure overload. An enlargement of the left
atrial chamber leads to an increased path length of the reentrant wave in the atria resulting
in an increased likelihood that a reentrant wavefront hits excited and non-refractory tissue
in the critical temporal window of AF vulnerability [86, 87]. Thus, left atrial enlargement
(LAE) can be an independent predictor for AF [65] which is why an early detection of
LAE could contribute to effectively select asymptomatic individuals for in-depth screening
and thus mitigate or prevent severe disease progression. Trans-thoracic echocardiography
is a common diagnostic tool to identify LAE patients. Chamber quantification guidelines
recommend a threshold value of 34 ml/m2 for the atrial volume indexed to the body surface
area of the patient for a standardized diagnosis of LAE [88].





Chapter 3
Mathematical Fundamentals

3.1 Multi-scale Electrophysiological Modeling

Computational cardiac modeling and simulation carry the potential of providing profound
mechanistic insights into the properties underlying cardiac excitation initiation and propaga-
tion [89, 90]. As such, they can contribute to overcome the lack of experimental and clinical
signals of human cardiac action potentials, electrograms and electrocardiograms (ECGs) as
clinical data collection requires trained personnel, ideally extensive patient enrollment and
entails cumbersome and time-consuming laboratory work.

Figure 3.1: Bottom-up design of multi-scale cardiac electrophysiological modeling.

17
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Applying computational models under healthy and diseased conditions to electrophys-
iological simulations has been shown to reveal insights into the underlying principles of
cardiac (dys-)function and provide a framework for developing new therapy options on
multiple levels (see Figure 3.1): On cellular scale, cell models are built to replicate ionic
current flow in silico leading to the action potential of a cardiomyocyte and thus, can improve
the understanding of mechanisms underlying cellular pathophysiology and the impact of
pharmacological agents on them. The mathematical underpinnings in these cell models are
described in section 3.1.1.

On tissue scale, the spread of the electrical depolarization wave on the cardiac tissue as
well as the genesis of electrograms can be studied by employing propagation models (see
section 3.1.2). In this way, various disease phenomena, such as arrhythmia vulnerability or
rotor dynamics, could potentially be traced back to electrophysiological properties of the
heart in the computational model. Moreover, the impact of ablation lines or pharmacological
treatment on arrhythmia termination and recurrence can be investigated on tissue level.

By solving the forward problem of electrocardiography (see section 3.1.3), the electrical
source distribution in the heart can be projected onto the body surface. In this way, body
surface potential maps are obtained and from them, ECGs can be extracted. These provide
the basis for systematically and reliably investigating the impact of possible underlying
cardiac abnormalities on the ECG and in turn, stratifying arrhythmia risk by only employing
non-invasively measurable signals on the body surface.

3.1.1 Cell Models

In 1952, Hodgkin and Huxley developed the first mathematical model describing the electrical
behaviour of a cell. Since then, various different cellular models of atrial, ventricular, or
human-induced pluripotent stem cell-derived cardiomyocytes have been developed. An
established model for atrial electrophysiology is the Courtemanche et al. cell model [91].
With nonlinear-coupled ordinary differential equations, ionic currents and the transmembrane
voltage can be calculated by considering different ion channels, transporters and pumps. The
time dependent course of the transmembrane voltage Vm is calculated as

dVm

dt
=

−(Iion + Istim)

Cm
(3.1)

where Cm denotes the membrane capacity and Istim a stimulus current applied externally.
The ionic current across the membrane Iion is calculated as the sum of twelve single ionic
currents considered in the model. Each of them can be described by Ohm’s law and can
thus be calculated as the product of the ion channel conductivity and an ion specific voltage
multiplied by gating variables. The latter are introduced to describe the open probability of
an ionic channel in the cell membrane defining whether a specific ion can move from the
extra- to the intracellular space or vice versa.

By solving the ordinary differential equations, the time course of an action potential in
response to an externally applied stimulus can be calculated.
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Table 3.1: Inaccuracies and simplifications of different propagation drivers.

Monodomain Reaction-Eikonal Eikonal

Assumptions and
resulting inaccuracies
compared to the
bidomain model

bath loading effects
are ignored

bath loading effects
are ignored

bath loading effects
are ignored

assumption of equal
anisotropy ratio in
intra- and extracellu-
lar domain does not
hold in reality

no accurate repre-
sentation of high
wavefront curvatures,
reentry and wave
collisions

no accurate repre-
sentation of high
wavefront curvatures,
reentry and wave
collisions

computation of acti-
vation sequence only
and hence, no inter-
action of neighboring
cells during repolar-
ization

diffusion term is ig-
nored

Simplifications lead-
ing to reduced
computational costs

elliptical differential
equation omitted
or only solved at a
coarser time scale

less complex model
equations if not cou-
pled with bidomain
model

less complex model
equations

relaxed mesh resolu-
tion requirements

relaxed mesh resolu-
tion requirements

3.1.2 Propagation Models

Propagation models can be employed to calculate the spatio-temporal spread of the electrical
depolarization wavefront on the cardiac tissue either in form of transmembrane voltages
Vm and extracellular potential fields Φe (see section 3.1.2.1 and section 3.1.2.2) or local
activation times (see section 3.1.2.3). The optimal choice of which propagation model to
apply depends on the problem to be solved. In Table 3.1, simplifications and inaccuracies
of different methods are listed. Even though the bidomain model is biophysically the most
accurate description, is it computationally notably more expensive to solve compared to
simplified model solutions. Various assumptions summarized in Table 3.1 are necessary for
the latter to reduce computational cost and speed up simulations. Independent on the choice
of the propagation model, the domain has to be discretized in space to numerically solve
the model equations, for which different schemes, like for example finite differences, finite
elements or finite volumes [92], are applicable.
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3.1.2.1 Bidomain Model

The bidomain model presents the biophysically most detailed and accurate description of
cardiac excitation propagation on tissue level to date [93–95]. By solving the system of
partial differential equations 3.2 and 3.3, the potentials in the coupled intra- and extracellular
space Φi and Φe can be calculated:

−∇ · ((σi +σe)∇Φe) = ∇ · (σi∇Vm) (3.2)

∇ · (σi∇Vm)+∇ · (σi∇Φe) = β

(
Cm

∂Vm

∂ t
+ Iion − Is

)
(3.3)

In the equation system above, σi and σe denote the conductivity tensors in the intra- and
extracellular domain, β the surface-to-volume ratio of the cell, Cm the membrane capacitance.
Iion and Is describe the sum of all ionic and externally applied stimulus current densities
across the membrane, respectively. Vm is the difference in potential between the intra- and
extracellular space (equation 3.4), and is thus defined as the transmembrane voltage:

Vm = Φi −Φe (3.4)

Solving the partial differential equation system requires a specification of boundary and
initial conditions [96]. Homogeneous Neumann boundary conditions can be imposed for
the tissue-bath interface in the intra- and extracellular domain. No flux is assumed for the
normal current at the tissue-bath interface in the intracellular domain:

n⃗ ·σi ·∇Φi = 0 (3.5)

In the extracellular domain, no flux is also enforced for Φe at the boundary of the torso
not in contact with myocardial tissue:

n⃗ ·σb ·∇Φe = 0 (3.6)

whereby σb denotes the conductivity of the specific tissue type considered in a simulation
setup of a heterogeneous torso volume conductor. Furthermore, continuity of the potential in
the interstitial space (equation 3.7) as well as of the normal component of the extracellular
current at the myocardial tissue-bath interface (equation 3.8) are enforced:

Φe|e = Φe|b (3.7)

n⃗ ·σe ·∇Φe = n⃗ ·σb ·∇Φe (3.8)

State variables of the cell model described in section 3.1.1 paced to a limit cycle at 1 Hz
account for the initial conditions of the model.
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3.1.2.2 Monodomain Model

The monodomain model constitutes a simplification of the bidomain formulation [94, 95, 97,
98]. Under the assumption of equal anisotropy ratios in the intra- and extracellular domain,
the bidomain model can be reduced to the following non-linear partial differential equation:

∇ · (σm∇Vm) = β

(
Iion +Cm · ∂Vm

∂ t

)
(3.9)

σm denotes the monodomain conductivity, which can be calculated as half of the harmonic
mean between intra- and extracellular conductivity:

σm =
σi ·σe

σi +σe
(3.10)

In the monodomain model, only the currents in the intracellular space and through gap
junctions are considered. Thus, the torso volume conductor does not have an impact on
the transmembrane voltage, which leads to bath loading effects being ignored. However,
an approximation of the extracellular potential Φe can still be obtained by a temporally
infrequent solve of the computationally expensive elliptical bidomain equation 3.2 [99].

When applying either of the mono- or bidomain model, strict requirements on the mesh
resolution need to be fulfilled to avoid the effect of a coarse mesh slowing down conduction
velocity or even breaking down wave propagation [100].

3.1.2.3 Eikonal Model

By solving the Eikonal equation, the activation time T for each node x in the spatial domain
of the cardiac model can be computed as√

∇T (x)⊤ ·M ·∇T (x) = 1 (3.11)

where M is the squared conduction velocity (CV) tensor. Defining a set of trigger points x ∈ Γ

where excitation is initiated is required to set up the initial conditions to solve equation 3.11:

T (x) = T0 for x ∈ Γ (3.12)

Methods for solving the Eikonal equation comprise for example the fast marching [101] or
the fast iterative method [102].

Unlike in biophysically detailed excitation propagation models (see section 3.1.2.1 and
3.1.2.2), solving the Eikonal equation only yields local activation times (LATs) on each node
belonging to the cardiac tissue. However, a complete representation of the transmembrane
voltage distribution would be required to further compute cardiac signals, such as for example
electrograms [103] or ECGs. Thus, the transmembrane voltage Vm(x, t) at each node x and
for each timestep t can be infered in a postprocessing step based on the calculated LATs as
follows:



22 Chapter 3. Mathematical Fundamentals

Vm(x, t) =U(x, t −T (x)) (3.13)

whereby U(x,t) is an action potential time course. It can be obtained for example based on a
mono- or bidomain simulation of a planar wave propagation in a tissue strand experiment
from which the time course of Vm was extracted at a node located in the center of the strand
mesh.

3.1.2.4 Reaction-Eikonal Model

In the reaction-Eikonal model, activation times are in the first place obtained by solving
the Eikonal equation and are used subsequently to allow for the application of biophysical
models, such as the bi- or monodomain formulation, to coarse meshes [104]. An I f oot current
is introduced to mimic the effect of the diffusion term and is applied at the activation time
obtained as the solution to the Eikonal equation 3.11. In the RE+ variant coupled to the
monodomain model, the respective equation (compare equation 3.9) is modified as follows:

∇ · (σm∇Vm)+ I f oot = β

(
Iion +Cm · ∂Vm

∂ t

)
(3.14)

In this way, a node can either be activated by the diffusion term or the I f oot current.
Furthermore, adjacent nodes also interact during the repolarization phase.

3.1.3 Forward Calculation Methods

By solving the forward problem of electrocardiography, the dipole sources of Vm in the
heart obtained from simulations of excitation propagation as explained in section 3.1.2
can be mapped onto the body surface [105]. In this way, body surface potential maps can
be generated or ECGs can be calculated by extracting the potentials at common electrode
positions on the upper body. Different methods to approach this problem are published and
are summarized in the following sections.

3.1.3.1 Finite Element Method

The term finite element method usually refers to solving the Poisson equation from the
parabolic bidomain equation 3.2 using a finite element discretization scheme [106]. Thus,
the entire torso domain must be discretized volumetrically with finite elements. The torso
together with all organs inside except for the heart are then modeled as a passive volume
conductor and the respective elements assigned conductivities σe. In this way, equation 3.2
can be solved numerically and the extracellular potential field Φe on the body surface can be
obtained.
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3.1.3.2 Boundary Element Method

The basic principle underlying the boundary element method (BEM) is that only equivalent
dipole sources on the cardiac surface are considered when calculating body surface potentials
and ECGs to reduce computational cost. To transfer a reduced set of dipole sources onto the
surfaces bounding organs of heterogeneous conductivity properties, isotropic myocardial
conduction properties in the extracellular space are assumed [106]. Applying Green’s
theorem and boundary conditions as well as assuming equal anisotropy ratios in the intra-
and extracellular space, equation 3.2 can be reformulated as follows for calculating the
extracellular potential field Φe at any point r⃗ on the surface Sl [107]:

Φe(⃗r) =
2σs

σ l
−+σ l

+

Φ
∞
e (⃗r)−

1
2π

K

∑
k=1

σ k
−−σ k

+

σ k
−+σ k

+

∫
Sk

Φ(⃗r′)
(⃗r− r⃗′)

|⃗r− r⃗′|
· d⃗S′, r⃗ /∈ Sk (3.15)

where σ k
− and σ k

+ denote the conductivities inside and outside of surface k. Φ∞ is the
potential that would be generated if the heart was immersed in an infinite, homogeneous
medium characterized by a conductivity of σs. The dipole sources can either be expressed as
transmembrane voltages on the cardiac surface [108] or volumetrically as primary impressed
currents J⃗p in the volume conductor Vh:

Φ
∞
e (⃗r) =

1
4πσs

∫
Vh

J⃗p · (⃗r− r⃗′)

|⃗r− r⃗′|
dVh (3.16)

3.1.3.3 Infinite Volume Conductor Method

The infinite volume conductor forward calculation method relies on the assumption that
the heart and thus all cardiac dipole sources are immersed in an unbounded, homogeneous
medium. Hence, the surface integral of the secondary sources introduced by the bounded
volume conductor in equation 3.15 are neglected and the extracellular potentials Φe are
calculated as follows:

Φe(⃗r)≈ Φ
∞
e (⃗r) =

1
4πσs

∫
Vh

J⃗p · (⃗r− r⃗′)

|⃗r− r⃗′|
dVh (3.17)

3.2 Statistical Shape Modeling

A statistical shape model (SSM) describes the variability in shape of a geometrical object in a
cohort of individual instances. Point distribution models constitute the most common subclass
of SSMs and aim at parameterizing shape deformations by describing the spatial movement
of a set of unique landmarks annotated on the surface of each individual instance [109]. The
processing steps preceding the acquisition of the coordinate vectors of these landmarks as
an input applicable to principal component analysis (PCA) to eventually evaluate the shape
statistics are shown along with the mathematical notation in Figure 3.2.
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Figure 3.2: Processing steps and mathematical notation for building a statistical shape model (SSM).
The red text and boxes indicate the changes applied to the shapes Γ and their vectorized surface point
representations sss in each step. The acquisition of the initial model population forms the basis for build-
ing the SSM and is explained in section 3.2.1. After aligning these instances in space (see section 3.2.2)
and establishing correspondence (see section 3.2.3), the shape vectors can be rearranged in a matrix
notation and are applicable as an input for principal component analysis to evaluate the shape statistics.

First, a set of N individual instances ΓΓΓ, the SSM will be built on, needs to be obtained.
In the field of medical engineering, it can either consist of anatomical maps of the organ of
interest recorded during minimally invasive catheter procedures or of tomographic image
segmentations (see section 3.2.1). Subsequently, all individual instances Γn,n ∈ [1, . . .N]

need to be aligned in space yielding a set of aligned geometries ΓΓΓ
A (see section 3.2.2).

Thereafter, correspondence among them has to be established to obtain a vectorized rep-
resentation xxxC for each instance n comprising MR homogeneously sampled surface points
sssC

n = [xC
n,1,y

C
n,1,z

C
n,1, . . . ,x

C
n,M,yC

n,M,zC
n,M]T with x, y and z denoting the Cartesian coordinates

of the surface nodes in instance n. Correspondence can be retrieved either manually by
relying on expert annotations or automatically through a generic and iterative deformation
process considered as an optimization problem (see section 3.2.3).

3.2.1 Acquisition of Individual Instances

A population of individual instances ΓΓΓ serves as a basis for statistically evaluating possible
real-world object deformations among them. If a human organ is the object the statistical
shape model should be built for, this initial cohort of individual instances can either be
obtained by segmenting tomographic images or as anatomical maps recorded in the course
of catheter interventions.

(Electro-)Anatomical maps of the cardiac chambers are for example recorded during
electrophysiological studies usually preceding ablation procedures to identify pathologi-
cal electrical excitation pathways, specify ablation targets and thus, guide the procedure.
Commercial mapping systems, such as CARTO (Biosense Webster, Irvine, CA, USA) or
RHYTHMIA HDx (Boston Scientific, Boston, MA, USA), are equipped with three orthogo-
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nal sensors at a catheter’s tip that is inserted by a clinician through a vein into the heart. When
moving the catheter along the endocardial wall of the cardiac chamber, the position of the
catheter can be tracked in real-time by evaluating the strength of a magnetic field generated
by magnetic coils in a locator pad placed beneath the patient. In this way, the catheter
position traced over time can be used to reconstruct the endocardial surface of the cardiac
chamber of interest. However, the intention when recording electro-anatomical maps is not
to obtain a detailed and exact representation of the cardiac anatomy, but rather to visualize
and analyze spatio-temporal information of the electrical depolarization wave. Thus, not all
anatomical structures are mapped accurately and dense enough, let alone examined during
the mapping process at all, and thus impede evaluating highly variable and localized shape
deformations in a cohort.

Thus, segmentation of tomographic images, such as magnetic resonance (MR) or com-
puted tomography (CT) recordings, are sometimes inevitable to obtain anatomically detailed
and high resolution geometries of the organ to be analyzed. The segmentation process can be
time-intensive and cumbersome when manually performed by trained personnel from scratch.
Algorithms based on edge detection or clustering techniques are capable of finding possible
contours of the organs in single image planes or across different planes automatically. These
can be applied to obtain a suggested segmentation subject to subsequent manual corrections
if necessary.

Independent on the modality for acquiring the initial model population, all instances
can be exported as triangular surface meshes comprising a point cloud bounding the surface
of the organ and a connectivity list containing information on the spatial arrangement and
linking of these surface vertices.

3.2.2 Spatial Alignment

The triangular meshes of the individual instances in the initial patient-specific model popula-
tion need to be spatially aligned to avoid a representation of translation and rotation of the
object in the shape statistics and ensure that only shape-related deformations are captured in
the eigenmodes of the SSM.

The set of spatially aligned geometries ΓΓΓ
A can be obtained either manually by annotating

landmarks on characteristic anatomical structures in each individual instance or automatically
using algorithms such as the iterative closest point algorithm [110] for example. In either
case, one geometry in the set of individual instances has to be chosen as a reference defining
the target orientation and position of all other instances in the cohort and thus of the SSM to
be constructed.

Whereas an alignment using a set of landmarks can be performed with a standard linear
least squares estimation, the iterative closest point algorithm iteratively translates and rotates
a target instance to minimize the vertex-to-nearest neighbor distance to the reference instance.
The former option comes along with the drawback of manual and expert input being required
whereas a robust performance of the iterative closest point algorithm hinges on the quality of
the initial estimate of the rigid transformation between each pair of instances to be aligned.
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3.2.3 Correspondence Retrieval

Having aligned all individual instances, correspondence between them needs to be estab-
lished, i.e., a set of points needs to be found located at the same anatomical position in
all geometries. Based on these, the point distribution model is constructed which will pro-
vide statistical information on how each of these vertices moves in space in the cohort of
individual instances.

These points can again be annotated manually by experts. However, in contrast to the
set of landmarks that are needed for the alignment described in section 3.2.2, a much larger
amount of surface nodes needs to be annotated for defining correspondence. This is because
only the spatial movement of these points are represented in the SSM entailing a low spatial
resolution and presumably an inaccurate representation of the final model as well as the need
to interpolate between sparsely sampled surface points to retrospectively increase the mesh
resolution of any SSM instance.

Thus, establishing dense point-by-point correspondence in the cohort of aligned indi-
vidual instances ΓΓΓ

A is usually preferable and can be performed using Gaussian process
morphable models (GPMMs) to not only automate the process but also to reduce the impact
of inter-observer variability on manually selected landmarks. An overview outlining the
automated correspondence retrieval process is depicted in Figure 3.3. Thereby, one geometry
in the set of aligned individual instances is chosen as a reference template ΓA

R (yellow surface
in Figure 3.3) and is subjected to a generic deformation defined by GPMMs. The latter are
defined by Gaussian kernels k which describe the spatial relationship between two surface
vertices vvv111 and vvv222 as:

k(vvv111,vvv222) = s · exp
(
−(vvv111 − vvv222)

2

l2

)
(3.18)

In equation 3.18, s denotes a linear scaling factor determining the height of the Gaussian bell
and l represents the width of the kernel. These Gaussian kernels with a predefined variance
modulated by the parameter l are applied to a subset of uniformly sampled vertices on the
reference shape ΓA

R. Approximating them with the leading eigenvectors of their Karhunen-
Loève transform yields a compact and low-rank description of the morphable reference
template (grey surface in Figure 3.3). Thereby, the weighting factors s in equation 3.18
introduce the free parameters affecting the generic deformation [111].

Each remaining individual instance other than the geometry selected as a reference
template is chosen as a target mesh ΓA

T at a time (green surface in Figure 3.3) and the weights
of the generically deformable reference template Γ̃A

R are iteratively optimized to minimize the
mean distance between each vertex in the deformed reference mesh and its nearest neighbor
in the current target mesh. The generic deformation manifests only in a universal movement
of the surface points but neither in a change in the amount of nodes MR in the deformed mesh
nor in any rearrangement or reindexing of vertices. Therefore, replacing each target mesh
with the deformed reference mesh leads to a set of homogeneously and densely sampled
surface meshes ΓΓΓ

C.
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Figure 3.3: Correspondence retrieval processOne geometry in the set of aligned instancesΓΓΓ
A is chosen

once as a reference ΓA
R (yellow surface) to generate the morphable model Γ̃A

R (grey surface) defined by
Gaussian processes. The morphing process can be regarded as an optimization during which the free
parameters in the morphable model are adjusted so that the surface-to-surface distance between the
deformed reference shape Γ̃A

R and the current target shape ΓA
T (green surface) is minimized. Replacing

the target shape ΓA
T with the deformed reference shape found during the optimization procedure yields

a representation of the target shape in correspondence with the reference geometry (ΓC
T ). Repeating

this procedure N −1 times while choosing another target shape ΓA
n ,{n ∈ [1,N]| n ̸= R} in each iteration,

results in a set of N geometries in correspondence ΓΓΓ
C .

Introducing the notation of a shape vector by stacking x-, y- and z-coordinates of the MR

surface node in one instance on top of each other yields a vectorized representation of the MR

surface points’ coordinates for each geometry ΓC
n as sssC

n = [xC
n,1,y

C
n,1,z

C
n,1, . . . ,x

C
n,M,yC

n,M,zC
n,M]T .

Horizontally concatenating all of these column vectors for all instances yields a matrix of
shape vectors. Rows in this matrix can be considered as different variables and columns
as different observations delivering the required input for applying PCA as described in
section 3.3. Thus, the final SSM consists of a set of eigenvectors and -values ordered by the
variance in the data they explain.

3.3 Principal Component Analysis

PCA is a technique to reduce dimensionality of datasets represented by many variables or
features. The aim is to find the directions of the maximum variance in the high-dimensional
feature space and project the original data onto this new subspace. By restricting the new
data representation to a reduced number of leading orthogonal basis vectors, the amount
of features or variables used to represent the single data samples can be decreased while
still preserving the maximum possible data variation [112]. This new orthogonal coordinate
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system can be obtained by eigendecomposition of the covariance matrix CCC ∈RD×D computed
from the data matrix XXX ∈ RN×D as

CCC =
1

N −1

N

∑
i=1

(XXX i −XXX)(XXX i −XXX)T (3.19)

where XXX denotes the mean of the datamatrix XXX . In case dimensionality reduction should
be performed for N shape vectors in correspondence sssC

n ,n ∈ [1, . . . ,N] represented by MR

three-dimensional coordinate pairs as described in section 3.2.3, the data matrix is of the
following form:

XXXSSM =



xC
1,1 xC

2,1 . . . xC
N,1

yC
1,1 yC

2,1 . . . yC
N,1

zC
1,1 zC

2,1 . . . zC
N,1

...
...

. . .
...

zC
1,MR

zC
2,MR

. . . zC
N,MR


(3.20)

where 3 ·MR = D for the calculation of the covariance matrix with equation 3.19. In case,
PCA should be performed on time series of D 12-lead ECGs, the samples can be arranged in
a data matrix as follows:

XXXECG =



I1(t1, . . . , tP) II1(t1, . . . , tP) . . . V61(t1, . . . , tP)

I2(t1, . . . , tP) II2(t1, . . . , tP) . . . V62(t1, . . . , tP)
...

...
. . .

...

ID(t1, . . . , tP) IID(t1, . . . , tP) . . . V6D(t1, . . . , tP)


(3.21)

whereby the ECG time trace comprising tP sampled time steps are concatenated horizontally
for each of the 12 leads in the order I, II, III, aVR, aVL, aVF, V1-V6. Thus, 12 ·P = N holds
for the calculation of the covariance matrix with equation 3.19.

Regardless of the entries in the data matrix XXX , diagonalizing the covariance matrix CCC
leads to a set of eigenvalues and eigenvectors

CCC =VVV LLLVVV T (3.22)

where each column in VVV represents an eigenvector vvviii, i ∈ [1, . . . ,N −1] and each entry in the
diagonal matrix LLL denotes an eigenvalue λi in decreasing order of the total variance. Thus,
the projection of each data sample x j, j ∈ [1, . . . ,D] onto the new feature subspace can be
expressed as:

x j = XXX +
N−1

∑
i=1

ri j ·λi · vvvi (3.23)

By reducing the number of eigenmodes N −1 in equation 3.23, the data sample x j can be
represented by the respective amount of the newly created, transformed variables rrr, which
are also referred to as principal component scores in the following.
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3.4 Machine Learning

A machine learning model aims at analysing data and identifying patterns among them.
During the development process, a statistical model is first trained on an explicit training set
and subsequently evaluated on an independent test set. This serves the purpose of ensuring
that the model learns to derive patterns from the training samples transferable to previously
unseen data instead of overfitting to the provided training data. Leaving only one fixed
subset of data out for the testing procedure is commonly referred to as hold out-validation.
Alternatively, k-fold cross-validation can be performed describing the process of subdividing
the total data available into k subsets, saving one subset at a time for testing while combining
the remaining ones for training. The network is repeatedly trained k times from scratch while
rotating the specific fold left out for testing, so that after all, each subset was used for testing
once. Most times, cross-validation is preferred over hold out-validation as the source of
evidence that the model is capable to generalize well to unseen data is increased by a factor
of k. [113]

In supervised learning, the network is fed with a set of input data and associated ground
truth annotations. Between these two entities, the network has to make connections and
learn relationships to perform the annotation task for the unseen data during testing itself. In
case the ground truth annotations are defined as discrete labels and can be summarized in a
dictionary, the network is meant to perform a classification task [114]. If the annotations are
continuous numbers instead, the network is denoted as a regression model. In unsupervised
learning, no ground truth annotations are provided. Instead, the model should find similarities
among the training data and derive rules to cluster them into appropriate groups itself.

The metrics to assess the performance of the network depend on the specific task it
should perform. For classification problems, confusion matrices can be specified visualizing
the relation between correctly labeled and misclassified data samples in the test set (see
Figure 3.4).

From the confusion matrix, accuracy (ACC), sensitivity (or true positive rate, T PR) and
specificity (or true negative rate, T NR) can be calculated class-wise as follows:

ACC =
T P+T N

T P+T N +FP+FN
(3.24)

T PR =
T P

T P+FN
(3.25)

T NR =
T N

T N +FP
(3.26)

with T P, T N, FP, FN being the rate of samples correctly classified as positive, correctly
classified as negative, wrongly classified as positive and wrongly classified as negative,
respectively, when considering the class of interest as positive. Especially for binary classifi-
cation problems, oftentimes a receiver operating characteristics (ROC) curve is constructed
by visualizing sensitivity over 1-specificity when varying the discrimination threshold of
the model. The area under the ROC curve (AUC) thus provides another metric to assess the
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Figure 3.4: Schematic representation of a confusion matrix to visualize (mis-)classification results.

network performance. Moreover, an optimal discrimination threshold as the best possible
trade-off between sensitivity and specificity performance can be chosen by selecting the point
on the ROC curve closest to the top left corner. For regression models, the mean squared
error (mse) or root mean squared error (rmse) can be calculated between the predicted (ŷ)
output and the target (y) annotation for all test samples N as:

mse =
1
N

N

∑
i=1

(ŷ− y)2 (3.27)

rmse =

√
1
N

N

∑
i=1

(ŷ− y)2 (3.28)

The set of input data provided to the network can be of different shapes and sizes. Deep
learning models are capable of directly extracting high-level features [115] from either
images in case of convolutional neural networks or multi-dimensional time series in case of
long short-term memory networks (see section 3.4.2) themselves. Shallow networks (see
section 3.4.1) instead require a distinct feature extraction step from the raw data prior to
providing them as input to the network tailored at performing the intended regression or
classification task.

Numerous types of machine learning models exist, two of which employed for studies
presented in this thesis are described in section 3.4.1 and 3.4.2.

3.4.1 Neural Networks

The topology of a neural network typically involves an input layer, one or more hidden layers
and an output layer. Each layer comprises multiple neurons that are linked to the neurons
in subsequent layers [116, 117] (see Figure 3.5). In a feedforward neural network, these
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connections exclusively point in the direction of the output layer and contain no feedback
loops as is the case in recurrent neural networks instead.

Figure 3.5: Schematic representation of the structure of a feedforward neural network (top panel)
and a neuron (bottom panel). An input, one or multiple hidden and an output layer comprise the basic
framework of the model. Each layer consists of multiple neurons, multiplying the input values h with
weighting factors wi j , combining them with the input function (∑) and passing them through an activa-
tion function (σ ) to the next layer.

Feature values extracted from the available dataset are propagated from the input to the
output layer. In each neuron j, the input values hi are multiplied with the weights wi j and
their sum is then passed on to an activation function to account for non-linearities between
data samples [118]. The resulting value is then propagated to a neuron in the successive
layer that processes it accordingly. Once the entity in the output layer is reached, an error
function determines the deviation between the ground truth annotation and the prediction
of the network. To minimize this error, the weights in each neuron are adjusted iteratively
through backpropagation. Thereby, the gradients of the error function with respect to the
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weights of the neurons are calculated in each layer and combined by the chain rule for partial
derivatives. Approaches like gradient descent or the ADAM procedure allow for updating the
weights until the error function converges to a minimum. Besides the weighting factors that
are implicitly optimized during the learning process, a neural network typically comprises
numerous other tunable hyperparameters. Among them are the number of layers or neurons
themselves or the learning rate, which governs the pace for optimizing the weights during
backpropagation.

3.4.2 Long Short-term Memory Networks

Whereas shallow feedforward neural networks rely on extracted features obtained from an
indispensable pre-processing step, deep neural networks, are capable of omitting this step and
process the data in a format of images or time series [115, 119, 120]. The latter constitute
the typical input format for long short-term memory (LSTM) networks, which evolved
from recurrent neural networks explained in section 3.4.1. By building on the concept of
recurrent neural networks, the LSTM network has memory capacity, i.e., the output from
previous time steps is taken into consideration for the computation of the current output.
This property makes it particularly suitable for time series input data where sequential data
samples are naturally related to one another. In contrast to vanilla recurrent neural networks,
the design of an LSTM avoids the problem of long-term gradients vanishing to zero during
backpropagation. Thus, the specific LSTM structure allows for considering both long and
short term memory during the learning process. Equivalent to neurons in feedforward neural
networks, the essential unit in an LSTM is called LSTM cell. It consists of an input, an
output and a forget gate. The input gate decides whether a specific input value is important
for learning the intended task by allocating weights and thus decides if the cell’s memory
is affected by that value. In contrast, the forget gate controls which details that are to be
discarded for the ongoing learning process. The output gate finally combines the information
from the input gate and the memory of the cell to determine the output value ht that is
not only propagated to the LSTM cell in the next layer but instead also to the cell of the
subsequent input data sample. A fully connected layer can be employed for pooling the
output values of the LSTM cells in the last layer and calculating the final classification result.

The training of an LSTM network can be performed by optimizing weights based on
error backpropagation as explained in 3.4.1.
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Chapter 4
Comparison of Propagation

Models and Forward Calculation
Methods

In this chapter, simulated atrial signals computed with different propagation models and
forward calculation methods are compared with respect to action potential duration (APD),
local activation time (LAT) and electrocardiogram (ECG) biomarkers. This serves the pur-
pose to assess whether computational cost for large-scale simulations can be reduced by
resorting to simplified electrophysiological models without compromising the accuracy of
resulting signals.

The content of this chapter is taken and adapted from a paper that has been published open
access under licence CC-BY 4.0 in IEEE Transactions on Biomedical Engineering [121].
Most passages have been quoted verbatim from the publication.

4.1 Introduction

In computational cardiac modeling, the bidomain model (see section 3.1.2.1) is the biophysi-
cally most detailed formulation to compute the spread of the de- and repolarization wavefront
and the electrical source distribution throughout the cardiac tissue to date. Furthermore, the
finite element method (see section 3.1.3.1) is considered the gold standard for computing the
body surface potentials from a given distribution of the electrical sources in the heart to ex-
tract ECGs at standardized electrode positions. However, both methods are computationally
expensive and are thus suboptimal for generating large in silico datasets of cardiac signals for
machine learning applications [122, 123], or for efficiently simulating excitation propagation
in cardiac digital twins for certain clinical applications with real time requirements, such
as guiding ablation therapy [48] or parameter inference [124]. Hence, simplified models
with fast solution times are needed to speed up the generation of in silico datasets of cardiac
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signals, such as LATs, electrograms or ECGs by several orders of magnitude [103, 104, 125].
Yet, the signals obtained with these simplified methods need to be physiologically accurate
and have to highly resemble the results obtained with the gold standard methods for a
meaningful application of the former. It is therefore essential to quantify the inaccuracies
arising in simulated atrial signals when resorting to simplified computational methods to
demonstrate their possibilities and limitations for particular use cases. While comparisons of
this type have already been performed for the ventricles [99, 104, 126] and partly also for
four chamber heart models [127], a study focusing on atrial electrophysiology has not yet
been carried out to a sufficient extent. However, this is substantial since the atria stand out by
a highly complex myocardial fiber structure, locally heterogeneous properties regarding ion
channel and tissue conductivities and higher anisotropy ratios as compared to the ventricles.

The monodomain (see section 3.1.2.2), the reaction-Eikonal (RE) (see section 3.1.2.4),
and the Eikonal model (see section 3.1.2.3) solved by the fast iterative method constitute the
simplified propagation models investigated in the study presented in this chapter. Forward cal-
culation techniques applied in this study comprise the boundary element (see section 3.1.3.2)
and the infinite volume conductor (see section 3.1.3.3) methods. Simulations were carried
out in sinus rhythm with and without the inclusion of fibrotic tissue modeled as passive
conduction barriers [128], slow conducting tissue patches and rescaled ion channel con-
ductances representing cytokine effects [82, 129]. Errors were assessed between simplified
propagation models and forward calculation methods to the gold standard bidomain (see
section 3.1.2.1) and finite element formulations (see section 3.1.3.1) with metrics extracted
from the simulation results on cellular, tissue and organ scale comprising APDs, LATs, and
ECGs, respectively.

4.2 Methods

4.2.1 Atrial Model and Simulation Setups

An anatomically detailed model of the torso was obtained by multi-label magnetic resonance
image segmentation as described by Krueger et al. [130]. The contours of atria, ventricles,
lungs, liver and torso were exported as triangular surface meshes. These were smoothed
and resampled with an average edge length of 0.5 mm, 5 mm, 5 mm, 7 mm and 15 mm,
respectively, using Meshmixer (Autodesk, San Rafael, CA, USA) and InstantMeshes [131]
whereby details were corrected manually in Blender (Blender Foundation, Amsterdam, The
Netherlands) to avoid intersecting segments and ensure a sufficient mesh quality and topology.
The segmented atrial endocardial surfaces were fed into the pipeline described by Azzolin et
al. [52, 129, 132] to obtain a volumetric tetrahedral bi-atrial geometry with a homogeneous
wall thickness of 3 mm and an average edge length of 523 µm augmented with inter-atrial
connections, labels for anatomical structures and myocardial fiber orientation. In contrast to
fully personalized approaches where fiber orientation can be defined based on information
extracted from diffusion tensor imaging data [133, 134], myocardial fiber architecture was
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Figure 4.1: Torso model with the segmented organs and electrode positions. Transparent and clipped
views are shown from the anterior and posterior side in the top and bottom row, respectively. The
bottom panel shows the anatomically detailed atrial model that was augmented with fiber orientation
and labels for anatomical structures. Heterogeneous conductivity and ionic properties were assigned
to spatially distinct regions in the mesh. Resulting APs featuring ionic heterogeneity are depicted on
the right side in red together with the baseline Courtemanche et al. cellular model solution in blue.

defined in a rule-based way [52] building on the solution of Laplace’s equation [135, 136].
Meshtool [137] was used to generate a tetrahedral model of the full torso while preserving
the surfaces of the considered organs. Tags for the atrial and ventricular blood pools were
allocated to all elements in the volumetric torso model located inside the surfaces bounded
by the atrial and ventricular endocardial walls with closed valve and vein orifices. A detailed
view of the torso and the atrial model is depicted in Figure 4.1.

Isotropic conductivity of 0.0389 S/m, 0.028 S/m, 0.06 S/m, 0.7 S/m and 0.22 S/m was
assigned to lungs, liver, ventricles, atrial and ventricular blood pools and the remaining torso
tissue, respectively, as reported in previous work [34, 138, 139].

In order to conduct comparable experiments with the mono- or bidomain model that
require conductivities, and the Eikonal-based models that resort instead to conduction veloci-
tys (CVs), it is crucial to consistently associate conductivities and CVs for all heterogeneous
tissue regions in the atria (see Figure 4.2). Anisotropic and locally heterogeneous conduc-
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tivities were assigned to five different regions in the atria comprising regular bulk tissue,
crista terminalis, pectinate muscles, inferior isthmus, and inter-atrial connections. CVs
corresponding to the monodomain conductivities reported in [140] for 0.33 mm resolution
voxel models were therefore first calculated as described by Krueger et al. [141]. Using
tuneCV [98, 100], intra- (σi) and extracellular (σe) conductivities as well as the monodomain
conductivities (σm) were iteratively optimized for the tetrahedral mesh setup described above
while keeping the σi/σe ratio fixed. For this purpose, five strand geometries with a length of
10 cm were generated each characterized by a resolution corresponding to the average edge
length of one of the heterogeneous conductivity regions in the atria (see Figure 4.1, bottom
panel). Intra- and extracellular conductivities in longitudinal and transversal fiber direction
as reported by Clerc et al. [142] as well as by Roberts et al. [143] were initially assigned to
the elements in the slab meshes. In an iterative optimization procedure, the conductivities
were adjusted until the CVs converged to the target value derived from Loewe et al. [140].
In this way, the originally reported intra- and extracellular conductivity values were scaled
while the ratios between them were kept constant along the eigenaxes [100]. In the following,
the tuned conductivities obtained by iteratively scaling the values reported by Clerc [142]
and Roberts et al. [143] in the tuneCV setup are refered to as "Clerc" and "Roberts" con-
ductivities, respectively. The resulting heterogeneous and anisotropic conductivity setup
for each atrial region is summarized in Table 4.1. For the monodomain simulations, two
different cases were considered which are refered to as "monodomain with and without
explicit conductivity tuning". For the first one, the tuneCV optimization was repeated using
the monodomain propagation model and obtained the monodomain conductivities listed in
Table 4.1. In the second case, the monodomain conductivities were directly computed from
the tuned intra- and extracellular bidomain conductivities as half of their harmonic mean.
The final conduction velocities and conductivities are summarized in Table 4.1 and Table 4.2.

The Courtemanche et al. cell model [91] described in section 3.1.1 was used for the sim-
ulations in this study. To reflect regionally heterogeneous electrophysiology, maximum ion
channel conductances were rescaled compared to the baseline model as reported in previous
work [140, 144] and are summarized in Table 4.2. The final CVs values in longitudinal and
transversal fiber direction as used for the Eikonal and RE simulations were subsequently
calculated with tuneCV [98] based on the tissue and ion channel conductivity settings in
each atrial region.
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Figure 4.2: Workflow for tuning conductivities and conduction velocities with tuneCV. The mon-
odomain conductivities reported in Loewe et al. (2015) were transfered in conduction velocities using
the formulas reported by Krueger (2013). On a slab mesh with a resolution corresponding to the aver-
age edge length of the regions in the bi-atrial geometry, the initial intra- and extracellular conductivities
as reported by Clerc et al. as well as by Roberts et al. were assigned. In an iterative optimization pro-
cess, these conductivities were linearly scaled until the target conduction velocity was reached. In an
openCARP experiment, action potential templates were computed using the ionic remodeling settings
reported by Loewe et al. (2015) and the optimized conductivity settings on the same slab mesh.
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Table 4.2: Scaling factors for ion channel conductances with respect to the baseline Courtemanche et
al. cell model and resulting CVs in different atrial regions.

Atrial region Ionic heterogeneity CV (m/s)

gto gCaL gNa gK1 CV⊥ CV∥

Regular atrial myocardium 0.5905 1.2465

Atrial appendages 0.68 1.06 0.5950 1.2467

Atrio-ventricular rings 1.53 0.67 0.5965 1.2456

Crista terminalis 1.67 0.5911 1.6839

Pectinate muscles 0.4612 1.7435

Bachmann’s bundle 0.6450 2.1511

Inferior isthmus 0.5402 0.5402

Fibrosis (non conductive) 0 0

Fibrosis (slow conducting) 0.1181 0.6232

Fibrosis (ionic remodeling) 0.5 0.6 0.5 0.4812 1.0063

4.2.2 Simulation Scenarios

Simulations were carried out on the bi-atrial volumetric model described in section 4.2.1
in sinus rhythm with and without the inclusion of fibrotic tissue patches. For the former
case, several elliptically shaped patches with their principal axis aligned to the macroscopic
atrial fiber orientation were manually defined predominantly on the posterior wall of the
left atrium and the left pulmonary vein antrum as reported by Highuchi et al. [145]. These
regions extended transmurally and are shown in Figure 4.3. To not only account for the
patchiness of atrial fibrosis but also for its diffuse deposition, 80 % of the cells within the
elliptical candidate regions were defined as fibrotic. In this way, the volume fraction of left
atrial fibrosis quantified to 22 % of the total left atrial tissue volume. Remodeled conduction
properties were assigned to fibrotic regions in three different ways as shown in Figure 4.3
and described in the following.

In the first case, fibrotic elements were removed from the atrial mesh and instead assigned
to the extracellular domain following the concept of percolation [128, 146]. In this way,
passive conduction barriers were introduced that do not exhibit any transmembrane voltage
and thus do not contribute to the electrical source distribution on the myocardial tissue surface.
In the second case, fibrotic regions were characterized as slow conducting patches with CVs
reduced by 80 % in transversal and 50 % in longitudinal fiber direction compared to the
healthy baseline case [48, 141]. Conductivities in these regions were subsequently obtained
as described in section 4.2.1. In this way, anisotropy ratios were inherently increased by a
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Figure 4.3: Overview of the different propagation models, forward calculation methods, simulation
scenarios and evaluation metrics used in this work.

factor of 2.5 in fibrotic areas promoting wave propagation along myocardial fiber orientation
and thus forming the basis for functional reentry circuits [81]. In the third case, ionic
properties of the fibrotic cells were remodeled by rescaling the conductances of the sodium
(gNa), the L-type calcium (gCaL) and the inward rectifier potassium current (gK1) by a factor
of 0.6, 0.5 and 0.5, respectively, compared to the baseline conductances of the Courtemanche
et al. cell model to account for cytokine induced effects mediated by transforming growth
factor (TGF)-β1 [82, 147, 148].

Sinus rhythm simulations were initiated by triggering the activation propagation at a
sinoatrial node exit site located at the junction of crista terminalis and the superior vena
cava [149, 150]. The transmembrane voltage distribution for the LATs computed with the
Eikonal model was obtained as described in equation 3.13, whereby the respective ionic
model parameters in each region as listed in Table 4.2 were taken into account for calculating
the action potential (AP) templates.

The Cardiac Arrhythmia Research Package (CARP) [151] and openCARP [98] were
used for computing the spread of the depolarization wave with different propagation models
as well as ECGs with the finite element and the infinite volume conductor method. The
algorithms described by Stenroos et al. [107] were used for calculating ECGs with the
boundary element method. As recommended by Schuler et al. [152], the surface mesh
bounding the atria was downsampled to a resolution of 2.5 mm for computing the transfer
matrix. Furthermore, Laplacian smoothing was applied to the transmembrane voltage sources
to ensure a continuous wave propagation on the coarse mesh.

4.2.3 Evaluation Metrics

From the source distribution obtained from simulations using different propagation models,
APDs at 90 % repolarization (APD90) were calculated for each node in the mesh. Also at
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Figure 4.4: Local activation time (LAT) results in sinus rhythm for healthy (non-fibrotic) tissue for dif-
ferent propagation models. The top panel shows the distribution of the signed LAT differences taking
the bidomain simulations executed with the Clerc conductivity ratios as a reference. From left to right,
the violin plots show the results for the bidomain (Roberts conductivities), the monodomain (with and
without explicit conductivity tuning), the RE+ and the Eikonal simulations. The bottom panel shows
the signed LAT differences mapped on the atrial geometry for each propagation model in the above
order. Mean and standard deviation of the absolute LAT differences are shown in the bottom row for
each case.

each vertex in the geometry, LATs were extracted defined as the timestep with the steepest
AP upstroke. For both, APDs and LATs, the accuracy of each propagation model simulation
was quantified as the absolute difference to the respective value for each metric obtained
from the bidomain simulation with the Clerc conductivities.

To assess fidelity of simplified forward calculation methods along with different prop-
agation models, the Pearson correlation coefficient of the respective ECG results with the
ECGs obtained by solving the forward problem with the finite element method based on the
bidomain source distribution computed with the Clerc conductivities was evaluated.

4.3 Results

4.3.1 Propagation Models

The effect of different propagation models on the activation sequence (LATs) is visualized
in Figure 4.4. The maximum activation time in the healthy reference scenario solved with
the bidomain model was 102 ms. In the top panel, the distributions of the signed differences
between the examined propagation models’ LATs and the bidomain results obtained with
Clerc conductivity ratios evaluated at all mesh nodes are visualized as violin plots. In the
bottom panel, the difference to the bidomain results are mapped onto the atrial geometry.
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The mismatch in LATs was most pronounced for the bidomain scenario with Roberts
conductivities and much smaller for the simplified propagation models. For the Roberts
conductivity ratios, the LATs were systematically smaller than the ones resulting from the
reference bidomain simulation with the Clerc conductivity settings. Furthermore, the error
increased with the spread of the depolarization wave front leading to small deviations close
to the sinus node exit site, but errors of up to -14 ms at the latest activated areas at the
posterior wall of the left atrium and the coronary sinus in the right atrium. The mean and
standard deviation of the absolute errors between the bidomain and monodomain LATs with
and without explicit conductivitiy tuning were 0.93±0.61 ms and 1.02±0.64 ms. With the
temporal resolution of the sampled simulated myocyte APs being 1 ms and the LATs being
calculated as the point in time marking the steepest AP upstroke, in particular the LAT results
for the monodomain simulation with additional conductivity tuning were below the accuracy
with which the LATs were determined. RE+ and Eikonal LAT differences quantified to
1.37±1.16 ms and 1.43±1.17 ms, respectively. The signed LAT error to the bidomain results
was distributed similarly across the atrial tissue among these two propagation models (see
Figure 4.4 bottom panel).

The LAT results in the simulation scenarios involving fibrosis remodeling were only
slightly different (see Figure 4.5) compared to the sinus rhythm results depicted in Figure 4.4.
The largest differences occurred for the Eikonal propagation model in the simulation scenario
where fibrosis was modeled as slow conducting tissue. There, the absolute error to the
bidomain results quantified to 1.47±1.26 ms compared to 1.43±1.17 ms in sinus rhythm
without the inclusion of fibrosis.

APD90 results are visualized for the simulation scenario with fibrosis modeled as ionic
conductance rescaling in Figure 4.6. For the monodomain simulations, the mean and standard
deviation of the absolute APD90 discrepancies to the bidomain results obtained with Clerc
conductivity ratios were below the temporal resolution of the AP time course of 1 ms.
Absolute errors to the bidomain simulation with Roberts conductivity ratios and the RE+

results quantified to 2.92±3.07 ms and 1.35±1.69 ms, respectively. In both cases, the highest
errors occurred in regions around the fibrotic tissue patches. APD90 results for the Eikonal
simulation were characterized by an absolute error to the bidomain simulation results of
25.1±20.72 ms. Furthermore, the AP signal trace obtained from a tissue strand simulation
and used as a template to infer the transmembrane voltage distribution for the Eikonal LATs
is visually clearly distinguishable from the bidomain AP especially in fibrotic regions (see
Figure 4.6 bottom panel).

The APD results in the simulation scenarios involving other fibrosis remodeling method-
ologies as well as in the healthy control case are visualized in Figure 4.7. The largest
differences occurred for the Eikonal propagation model in the simulation scenario where
fibrosis was modeled as slow conducting tissue.

ECGs obtained from the transmembrane voltage distributions in the simulation scenario
with fibrosis modeled as ionic rescaling (as depicted for APD90 in Figure 4.6) and using
the boundary element forward calculation method are visualized in Figure 4.8. The 12-
lead ECG is displayed for a duration of 450 ms whereby the signal sections in the interval
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Figure 4.5: LAT differences between different propagation models and the bidomain simulation re-
sults obtained with the Clerc conductivities. The top row shows the mean± standard deviation of the
absolute differences to the bidomain LATs.

[0 ms, 150 ms] and [150 ms, 450 ms] represent the P wave (panel (a) in Figure 4.8) and the
atrial repolarization (panel (b) in Figure 4.8), respectively. The latter is typically not visible
in the clinical ECG of a full heartbeat since the repolarization phase of the atria temporally
coincides with the ventricular activation and the respective signal parts are thus buried within
the QRS complex.

The observed discrepancies in the AP signal course between the bidomain and Eikonal
simulation (see Figure 4.6) also reflect in the ECG. As can be seen in Figure 4.8, the
repolarization signal obtained with the Eikonal and bidomain propagation model differ
markedly. In lead aVL, the polarity of the repolarization wave was even inverted. Apart
from the atrial repolarization in case the ECG signal was obtained with the Eikonal model
and precomputed AP templates, the choice of the propagation model did not noticeably
influence the ECG as the remaining signals in Figure 4.8 show only minor differences to one
another. Furthermore, the correlation coefficients between the bidomain ECG obtained with
the Clerc conductivity ratios and the other examined propagation models are summarized in
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Figure 4.6: APD90 results in sinus rhythm with fibrotic substrate replacing 22% of the left atrial my-
ocardial tissue modeled as rescaled ionic conductances. The violin plots in the top panel represent the
distribution of APD90 discrepancies to the bidomain results for all investigated propagation models. In
the bottom panel, the signed APD90 differences are mapped onto the atrial geometry. Fibrotic regions
are encircled with black dashed lines. The APs are shown for one node within the fibrotic area on the
posterior left atrial wall. Bidomain APs are visualized in light blue, the other signal trace was obtained
with the respective propagation model. The numbers in the bottom line show the mean and standard
deviation of absolute APD90 differences with respect to the bidomain simulation results.

Table 4.3 for the intervals [0 ms, 150 ms] (P wave), [150 ms, 450 ms] (repolarization) and
[0 ms, 450 ms] (entire signal). The lowest correlation coefficient for the P wave occurred
for the bidomain simulation with Roberts conductivity ratios. For all simplified propagation
models, the P wave correlation coefficients were above 0.92. Except for the Eikonal model,
the correlation coefficient of the ECG signal sections representing the repolarization phase
wave was above 0.99.

ECGs only marginally differed between the investigated fibrosis remodeling scenarios as
shown in Figure 4.9. Also the comparison of ECG metrics in the other simulation scenarios
led to similar results compared to those visualized and described for the fibrosis case with
ionic conductance rescaling above. Resulting P waves, Ta waves and feature distributions
in the remaining simulation scenarios are shown for all propagation drivers and forward
calculation methods in the appendix (section A).

4.3.2 Forward Calculation Methods

ECGs calculated with different forward calculation methods based on the same source
distribution stemming from the bidomain simulation with Clerc conductivity ratios are
depicted in Figure 4.10 for the simulation scenario with fibrosis modeled as slow conducting
tissue.
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Figure 4.7: APD90 differences between the investigated propagationmodels and the bidomain simula-
tion results obtained with the Clerc conductivities. The top row shows the mean± standard deviation
of the absolute differences to the bidomain LATs.

The correlation coefficients covering the ECG signal parts of the P wave between the
gold standard finite element method (FEM) approach and each of the boundary element
method (BEM) and infinite volume conductor (IVC) method quantified to 0.98 and 0.83 for
fibrosis modeled as slow conducting tissue (see Table 4.4).

Especially the IVC method yielded too high ECGs amplitudes in the precordial leads
and inaccurately captured atrial repolarization in the inferior leads II, III and aVF.
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(a) P wave

(b) P wave and Ta wave

(c) Peak-to-peak amplitude features

Figure 4.8: ECGs calculated with the same forward calculation method (BEM) but different propaga-
tion models (color coded). Transmembrane voltages resulted from the simulation scenario with fibrosis
modeled as ionic conductivity rescaling. In panel (a) and (b) the P wave and P wave followed by a
Ta wave are shown, respectively. In panel (c), lead specific peak-to-peak amplitude features extracted
from the P wave signals are visualized.

4.4 Discussion

4.4.1 Main Findings

In this study, atrial APD90, LATs and ECGs computed with the bidomain, monodomain,
RE+ and the Eikonal propagation models as well as with the finite element, the boundary
element and the infinite volume conductor forward calculation methods were compared to
one another.
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Table 4.3: Correlation coefficients between the ECGs obtained with the bidomain and simplified prop-
agation models when solving the forward problem with BEM in the simulation scenario of fibrosis
modeled as ionic conductance rescaling. Columns represent depolarization (P wave), repolarization
(Ta wave) and the entire signal.

[0ms, 150ms] [150ms, 450ms] [0ms, 450ms]

Bidomain, Clerc 1 1 1

Bidomain, Roberts 0.8590 0.9904 0.9028

Monodomain 0.9942 0.9998 0.9961

Monodomain, no tuning 0.9931 0.9998 0.9954

Reaction-Eikonal 0.9211 0.9953 0.9428

Eikonal 0.9203 0.6233 0.8791

Table 4.4: Correlation coefficients between the ECGs obtained with the FEM and simplified forward
calculation methods when calculating the spread of the excitation wavefront with the bidomain model
in the simulation scenario of fibrosis modeled as slow conducting tissue. Columns represent depolar-
ization (P wave), repolarization (Ta wave) and the entire signal.

[0ms, 150ms] [150ms, 450ms] [0ms, 450ms]

Finite Element Method 1 1 1

Boundary Element Method 0.8507 0.9818 0.8947

Infinite Volume Conductor Method 0.8299 0.8107 0.8548

The largest deviations in LATs were observed between the bidomain simulations with
Clerc and Roberts conductivity ratios. As the absolute LAT errors increase with the prop-
agating wavefront, discrepancies in LATs can be traced back to more pronounced bath
loading effects occurring with the Roberts conductivity settings (compare Figure 4.11, left
panel). With a higher ratio between extracellular bulk and isotropic bath conductivities,
the depolarization wave propagates faster in close vicinity to the interface between blood
pool and endocardial wall leading to earlier LATs throughout the cardiac tissue. Due to the
thin atrial wall, the bathloading effect is visible transmurally and thus results in globally
faster conduction velocities in the bidomain simulations with the Roberts conductivity setup.
However, in this work, conductivities were tuned as described in section 4.2.1 without a bath
attached to one face of the strand meshes. Incorporating the bath already in the tuning process
would have led to more similar results between the bidomain simulation results obtained
with tuned Clerc and Roberts conductivities. This systematic underestimation of LATs also
reflects in the ECG. The bidomain simulation with the Roberts conductivity settings yielded
the smallest P wave correlation to the bidomain ECGs with the Clerc conductivity ratios
and markedly shorter P wave duration. Also Sebastian et al. [153] found that the choice
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(a) P wave

(b) P wave and Ta wave

Figure 4.9: ECGs resulting from a full bidomain simulation for different fibrosis modeling approaches.
Top panel: P wave, bottom panel: P wave and Ta wave. The blue, red, yellow and purple curve show
the 12-lead surface ECG for the healthy case (NSR) and the fibrotically infiltrated atrial geometry with
fibrosis modeled as slow conducting tissue (FIBSLOW), ionic conductance rescaling (FIBREMOD) and
the percolation approach (FIBEXTRA), respectively.

of conductivity ratios in the intra- and extracellular domain as well as in longitudinal and
transversal fiber direction had a marked effect on CV and LATs. Intra- and extracellular
conductivity values were derived by Clerc and Roberts et al. in animal experiments on
specimen from excised trabecular cardiac bundles. Measuring intra- and extracellular current
flow using microelectrodes allowed for a computation of the resistance and in turn the
conductivity in longitudinal and transversal fiber direction in both, the extra- and intracellular
space. Considering the complex and cumbersome in and ex vivo experiments to derive these
parameters, fixed ratios between σi and σe along and perpendicular to the myocardial fiber
orientation need to be assumed when personalizing computer models. As a consequence, the
high uncertainty of the ratio between σi and σe which cannot be measured patient-specifically
with reasonable efforts further justifies the application of simplified models that do not in-
volve uncertainties in non-measurable entities and only cause minor differences in LATs,
ECGs and APD90.
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(a) P wave

(b) P wave and Ta wave

(c) Peak-to-peak amplitude features

Figure 4.10: ECGs calculated with the same propagation driver (bidomain) but different forward cal-
culation methods for the simulation scenario with fibrosis modeled as slow conducting tissue. ECGs
calculated with FEM, BEM and IVC results are represented by the solid, dashed and dottes lines, re-
spectively. Peak-to-peak amplitude features extracted from the ECGs calculated with FEM, BEM and
IVC are represented with triangle, square and circle markers, respectively.

Among all investigated simplified model solutions, the monodomain model yielded the
most accurate results regarding activation times, repolarization behavior and ECGs. However,
explicit conductivity tuning for the monodomain model neither had a notable effect on LATs,
nor APD90, nor on the 12-lead ECG.

Mean and standard deviation of the absolute LAT differences to the bidomain results
quantified to 1.37±1.16 ms and 1.43±1.17 ms for the RE+ and the Eikonal model, re-
spectively, which differed only slightly due to numerical jitter. The distribution of LAT
discrepancies to the bidomain results mapped on the atrial geometry was similar for the
Eikonal and the RE+ model (see Figure 4.4). The LATs of the simplified propagation models
were especially higher compared to the bidomain results in regions on the posterior left atrial
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Figure 4.11: Visualization of LAT discrepancies between the bidomain results and other propagation
models. The left panel shows the wavefront position obtained with the bidomain simulation ran with
Roberts conductivities at t=22ms. The more pronounced bathloading effects for the Roberts conduc-
tivity ratios becomes visible by color coding the activation wave front with activation times obtained
with the bidomain simulation and Clerc conductivity settings. In this case, nodes along the wavefront at
the endocardium in close proximity to the interface between blood pool and myocardial tissue were ex-
cited at a later time than the ones at the epicardium. The right panel shows the signed LAT differences
between the Eikonal and the bidomain simulation. The top panel shows the atrial geometry from the
posterior view where wavefronts collide and cause an acceleration of the wavefront in the bidomain,
but not in the Eikonal model. The bottom panel shows the effect of convex wavefronts at the right
atrial appendage as well as at the connection between the Bachmann’s bundle and the left atrium.

wall. In these late activated areas, different wavefronts collide causing an acceleration of
the wave in the bidomain model, which is not captured in the mathematical description of
the (reaction-)Eikonal model. Source-sink mismatch effects caused by convex wavefronts
entailing conduction slowing in the bidomain model cause smaller LATs in the Eikonal
simulation results. This effect is especially visible in the area where Bachmann’s bundle
connects to the anterior wall of the left atrium (compare Figure 4.11, right panel), i.e. where
a small source (Bachmann’s bundle) meets a large sink (the left atrium). At the apex of the
right atrial appendage, two convex wavefronts traversing the tissue from the lateral and the
septal right atrial wall collide and cause Eikonal LATs to be smaller than the ones resulting
from the bidomain simulation. The P waves computed with the reaction-Eikonal and the
Eikonal source distribution showed similar correlation coefficients of 0.921 and 0.920 to the
bidomain results. However, when evaluating repolarization dynamics, RE+ clearly led to
more precise results than the Eikonal model. This reflects on the one hand in smaller APD90

discrepancies to the bidomain simulation results. The small APD90 discrepancies between
the monodomain and RE+ simulation results might have occurred due to differences in the
activation pattern or a mismatch between the diffusion term and the I f oot current in the case of
curved wavefronts or wave collisions causing different AP upstrokes and amplitudes which
subsequently lead to subtle APDs changes. On the other hand, the RE+ model is capable of
faithfully replicating both the P wave as well as the atrial repolarization phase in the ECG,
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whereas with the Eikonal model, only the P wave highly resembles the bidomain results.
Using precomputed AP templates to obtain the transmembrane voltage source distribution
for the Eikonal LAT results, APD90 results were systematically smaller compared to the
bidomain results in regular bulk tissue regions and systematically higher in fibrotic regions.
The more precise representation of repolarization behavior in simulation results using the
RE+ model is due to local APD balancing caused by the diffusion term. Consequently, also
the Ta wave in the ECG obtained with the source distribution derived from the Eikonal results
only showed a correlation coefficient of 0.62 to the bidomain ECG.

ECGs calculated with the BEM highly resembled the ECGs obtained with the FEM.
P wave correlation coefficients to the FEM approach quantified to 0.94 and 0.93 for the
simulation scenario with fibrosis modeled as slow conducting and non-conductive patches,
respectively. In the former scenario, surface transmembrane voltages can be used as a source
model for the forward calculation, whereas in the latter, volumetric sources such as primary
impressed currents were necessary to model the effect of passive conduction barrier not
contributing to the electrical source distribution in the heart. If the surface transmembrane
voltages had been used as sources for the forward calculation in this case as well, an artefact
in form of an offset in the isoelectric line in the P wave would have been induced. The IVC
method instead yielded more inaccurate ECGs results. Especially in the septal and anterior
leads, the ECG amplitudes were overestimated by a factor of >2 compared to the FEM
results. On the one side, this observation can be traced back to the method’s assumption that
the atria are immersed in an infinite medium of a homogeneous conductivity, which does
not allow considering a heterogeneous conductivity setup in the torso. On the other hand,
the high ECG errors occurred predominantly in leads measured at electrode locations on
the body surface in close proximity to the cardiac sources. Thus, neglecting the attenuating
effect that the bounded torso volume conductor introduces, causes a more pronounced effect
on the resulting ECGs in V1-V3.

Simulations were run on a 16 core CPU machine (Intel Xeon Gold 6230, 2.1 GHz). The
full bidomain and the pseudo-bidomain simulation of a duration of 450 ms were completed
in 25 and 1.5 hours, respectively. Computation time for the RE+ setup was 1.4 hours on
a 6 core machine. The computation of the transfer matrix for the BEM approach in the
case of a heterogeneous torso volume conductor with seven surfaces bounding the atria, the
torso and other organs took 2 hours on a 4 core CPU machine (Intel Core i5, 2.4 GHz). The
speed-up in computation times when using simplified propagation models is comparable
to a ventricular setup. Computational performance improved by one order of magnitude
when using the monodomain model [99] and up to three orders of magnitude when using
the Eikonal model [104, 125] compared to bidomain. However, increasing the number of
cores the simulations are ran on could change the results regarding algorithmic efficiency as
different models might exhibit different scalability properties when parallelized to multiple
threads or processes [154]. Solvers with strong scaling capabilities have been shown to
provide the basis for fast simulation runs of the biophysically detailed monodomain model
and of forward calculation methods without any cutbacks on anatomical and electrophys-
iological properties [155, 156]. In the simulations in this study, the degrees of freedom
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in terms of number of nodes and elements in the mesh was the same for all propagation
models. High resolutions in time and space are required for numerical convergence of the
bi- and monodomain solution [92]. As described by Woodworth et al. [157], a high mesh
resolution is a necessary requirement for CV convergence, especially for low conductivities
(see also Figure 4.12 and Figure 4.13). On the other side, (reaction)-Eikonal models are
capable of faithfully estimating activation time sequences on coarser meshes [104, 158].
The computational complexity of the Eikonal model depends on the method used to solve
it [159], but is approximately O(n log(n)) with n being the number of nodes in the mesh.
These properties could be taken advantage of to further reduce computational cost when
running simulations based on these simplified models. Computational savings using the BEM
approach are on the one hand due to the decreased problem complexity when discretizing the
domain with surface instead of volume elements [106]. On the other hand, coarser resolution
meshes can be applied which is the key influencing factor for an improved computational
efficiency over FEM [160].

4.4.2 Related work

In this study, the differences in activation and repolarization times were examined when using
different propagation models in atrial electrophysiology, which, to the best of our knowledge,
has not been done before in a comprehensive way. However, comparable studies have partly
already been conducted for the ventricles and four-chamber heart models. Potse et al. [127]
found that activation using bidomain was 2 % faster compared to the monodomain approach
for a complete cardiac cycle. Also in this study, the monodomain activation times were on
average 1 ms higher than those obtained from the bidomain simulation. Considering the
total time of 102 ms for a complete activation of both atria, the discrepancies between mono-
and bidomain resulting in this study correspond to a relative error of approximately 1 % ,
too. Pashaei et al. [161, 162] as well as Wallman et al. [125] found that the differences in
activation times are small for a ventricular simulation setup when comparing biophysically
detailed approaches and the Eikonal model. Neic et al. [104] compared extracellular potential
fields, electrograms and ECGs calculated with the RE and the bidomain model for the
ventricles and concluded that the simplified model can replicate the gold standard results
with high fidelity. The results in this work confirm the findings from previous studies mainly
conducted for ventricular simulation setups. Gassa et al. [163] investigated the suitability
of an RE model to generate re-entrant activity on a bi-atrial geometry and succeeded in
replicating the wave patterns resulting from a monodomain simulation. It was also shown in
a preceding study of this work that the Eikonal-based models can produce activation times
and ECGs resembling full bidomain simulation results with high fidelity in an atrial model
without cellular remodeling placed in a homogeneous torso volume conductor [164]. The
setup described in this chapter was extended to heterogeneous scenarios covering cellular and
conductivity heterogeneity in both the torso and the atria and similar results were obtained.

Previous studies have also investigated the application of simplified forward calculation
methods to computed ECGs. Schuler et al. [152] suggest the calculation of ECGs based on
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the BEM with coarse resolution surface meshes bounding the heart and the torso whereby
parameters to blur the cardiac sources are optimized beforehand to avoid discontinuous wave
propagation. In this way, they obtained body surface potentials in accurate accordance with
the bidomain simulation results for a ventricular setup. However, one major drawback of
the BEM approach is the impossibility of accounting for anisotropic conductivity in the
myocardium [106]. However, the P wave correlation coefficients was found to quantify to
>0.93 showing that the isotropic assumption yields similar ECGs compared to the bidomain
results. For the IVC method instead, not only the assumption of isotropic myocardial
conductivities but also of a homogeneous torso volume conductor has to be made. Moreover,
the simplified assumption that the atria is immersed in a medium of infinite spatial extent
does not hold true. Although the general P wave morphology was preserved, the ECG still
substantially differs regarding peak-to-peak amplitudes in the precordial leads and atrial
repolarization in the inferior leads as it reflects in the results of this study and was reported
in previous work [105]. For the application field of computing intracardiac electrograms, the
reader is referred to the review by Sánchez et al. [103].

4.4.3 Limitations

In this work, four different simulation scenarios were investigated comprising a healthy
baseline case and three atrial models infiltrated with fibrosis, which was modeled either as
slow conducting patches, non-conductive conduction barriers or ionic conductance rescaling.
For the spatially distributed fibrotic areas (patchy and diffuse), none of the fibrosis remodeling
scenarios had a marked effect on the ECG compared to the healthy baseline case. Ionic
conductance rescaling, slow conducting fibrotic patches and percolation reflect in the ECG
as a slight prolongation of the repolarization phase and an offset in the isoelectric line, a
prolongation of the P wave and a decrease in peak-to-peak P wave amplitudes, respectively.
Even though all these effects on the ECG are small, they would show up in a more pronounced
way if different fibrosis remodeling approaches were combined [122]. However, it was
intentionally decided to investigate the effect of different propagation models and forward
calculation methods in each of these simulation scenarios separately to shed light on which
fibrosis remodeling aspects can be accurately captured by the simplified model solutions.

In the simulation setup described above, neither motion nor contraction of the atria were
considered for the sake of reducing model complexity and computational cost. Moss et
al. showed that a fully coupled electro-mechanical model does not have any influence on
simulation results regarding atrial activation and that resulting P waves exhibit negligible
differences to the ones computed on a non-deforming model [165]. However, the atrial
repolarization results of this study might be affected to a larger extent by the lack of a
coupled model as previous studies reported a substantial impact of mechanical feedback on
electrophysiological behavior in the ventricles [166, 167], especially during the repolarization
phase [165, 168].

CVs were derived from the values reported in [140]. Based on them, conductivities were
computed using tuneCV [100] as described in section 4.2.1 using strand meshes. However,
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Figure 4.12: Experiment for quantifying the error in LATs due to a coarser mesh resolution in the bido-
main model. The top panel shows the 5 cm×2 cm×2.8mm block mesh with a resolution of 528 µm.
The mesh resolution on the same geometry was refined to 265 µm by linearly subdividing the tetrahe-
dral elements (top right panel). The excitation was initiated by pacing from the left side of the block.
When the planar wave passes through the isthmus, it propagates with a curved wavefront onwards.
The bottom panel shows the signed LAT differences between the nodes in the coarse and the fine
mesh. Two action potentials at nodes on the right and the left end of the block are visualized for the
fine and the coarse resolution mesh.

no bath loading effects, mesh and wavefront curvature were considered when tuning the CVs,
which might lead to mismatching CVs and conductivities assigned to different regions in the
more complex atrial geometry. Adding a bath in the experiments set up for the tuning process
could lead to more similar LAT and ECG results between the bidomain results with Clerc
and Roberts conductivities on the bi-atrial geometry. Moreover, performing the tuning with a
bath attached to the strand geometries would lead to different monodomain conductivities
for the setups without explicit conductivity tuning while the conductivity values in case
of explicit conductivity tuning for the monodomain simulation would remain unchanged.
Conductivities in transverse and longitudinal direction needed to be scaled by a factor of 54
and 12, respectively. The tuning procedure caused the original transversal vs. longitudinal
conductivity ratios reported by Clerc and Roberts et al. to change while keeping intra- vs.
extracellular conductivity ratios constant.

The average edge length of the atrial geometry was 523 µm. To quantify the numeri-
cal error arising due to the mesh resolution, additional experiments were conducted on a
5 cm×2 cm×2.8 mm block mesh with a resolution of 528 µm and a refined resolution of
265 µm by linearly subdividing the elements (see Figure 4.12, top panel).

Using the same numerical settings as for the experiments on the bi-atrial geometry,
a simulation of a planar wave passing through an isthmus and then propagating with a
curved wavefront was run. Conductivities were adjusted using tuneCV [100] as described in
section 4.2.1 to the CV in the regular atrial bulk tissue region. Maximum LAT differences



4.5. Conclusion 57

Figure 4.13: Experiment for quantifying the error in LATs due to a coarser mesh resolution in the
bidomain model in case of fibrotically infiltrated tissue. The left panel shows the model setup with a
fibrotic patch of 80% density and a planar wave propagating along the block. The right panel shows
the color-coded differences in LATs for the coarse and the fine mesh.

between the experiments on the coarse and the fine mesh were 1.2 ms. Considering the total
activation time in the block of 43 ms, the error introduced by the coarse mesh resolution
was 2%. The root mean squared errors between two APs resulting from the simulations on
the coarse and the fine mesh were 0.0186 mV and 0.0491 mV for the two nodes marked in
Figure 4.12. When adding a fibrotic region to the block, the maximum absolute LAT error
between the experiments on the fine and the coarse mesh was 1.2 ms (∼2 %) as well (see
Figure 4.13) for a planar wave propagating along fiber direction. The latter is approximately
also the case in the bi-atrial simulation setup where the depolarization wavefront traverses
the elliptically shaped fibrotic patches along their main axis growing predominantly in
fiber direction. However, if a notable transverse wave propagation had to be represented,
the chosen mesh resolution of 523µm would have been too coarse to capture the wave
propagation at a velocity of 0.15m/s. Thus, the mesh resolution chosen for the atrial model
in this study might introduce an error of 2 %, which is equivalent to an absolute LAT error of
∼2 ms on the bi-atrial mesh. Due to the small root mean squared error between the APs of
the coarse and the fine mesh, no additional discretization error affecting APD90 is expected.

4.5 Conclusion

The results presented in this chapter show that the Eikonal model is capable of faithfully
producing LATs and P waves compared to full bidomain simulations with a reduction of
computation times by a factor of up to three orders of magnitude. However, propagation
models neglecting diffusion terms lack the fidelity in terms of repolarization as shown
by APD90 deviations. Thus, RE models are needed, e.g., in cases where repolarization
dynamics are of significant importance such as e.g. for re-entry mechanism studies. ECGs
calculated with the BEM accurately resemble the FEM results for both P waves and the ECG
in the repolarization phase. When computing ECGs with the IVC method, the systematic
overestimation of peak-to-peak P wave amplitudes especially in the precordial leads should
be taken into account when evaluating P wave features.
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Chapter 5
Development and Evaluation of a

Bi-atrial Statistical Shape Model

In this chapter, the construction and evaluation of a bi-atrial statistical shape model (SSM) as
well as the generation of simulation-ready volumetric atrial geometries based thereon are
described.

The content of this chapter is taken from a paper that has been published open access
under licence CC-BY 4.0 in Medical Image Analysis [169]. Most passages have been quoted
verbatim from the publication.

5.1 Introduction

A wide range of machine learning approaches have already been proposed for classifying
cardiovascular pathologies based on the 12-lead electrocardiogram (ECG) [24, 170–172].
The limitations in clinically recorded data [21, 24, 173–175] for training purposes of such a
classifier as explained in section 1.1 call for simulated synthetic ECG as a source for large,
representative and well controlled datasets. These datasets can be used to directly deduce
diagnostic criteria visually [176] or to train machine learning classifiers to discriminate
between different cardiac diseases and healthy individuals [47, 177]. The advantage of
using simulated over clinical data lies not only in the precisely known ground truth of
the underlying pathology that was defined for the simulation, but also in the possibility to
generate a virtually infinite amount of signals for each pathology class.

Nevertheless, atrial, ventricular and thoracic geometrical models are needed for con-
ducting electrophysiological simulations to obtain the 12-lead ECG. In this regard, SSMs
allow to compile a wide range of realistic geometries that represent the variability observed
in the cohort used to build the model. While SSMs of the human ventricles [178] and
torsos [179] exist and are publicly available, an open shape model of both atria covering all
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relevant anatomical structures for electrophysiological simulations (atrial body, appendages,
pulmonary veins (PVs)) is still lacking to date to the best of our knowledge.
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Different statistical atlases of the human whole heart anatomy [185–191] have been
constructed for segmentation of magnetic resonance (MR) or computed tomography (CT)
images by means of active shape modeling approaches and are summarized in Table 5.1.
However, those models are usually built based on a small number of sample segmentations
or were not made publicly available. Furthermore, different SSMs of only the left atrium
(LA) have been presented in various studies either for the purpose of simulations [180] or for
characterizing changes in shape of the LA [66, 182–184] in patients with atrial fibrillation
(AF). These LA models are built based on a solid number of instances, but lack the right
atrium (RA) and often also the left atrial appendage (LAA). However, these anatomical
structures are not only indispensable for the use case of ECG simulations. They are also of
particular importance when investigating the mechanisms of typical atrial flutter in the RA or
bi-atrial flutter and fibrillation. Additionally, the LAA is highly relevant for studies examining
blood clot formation causing stroke [192], LAA occlusion as potential therapy [193] and the
role of the LAA in the onset and maintenance of AF [194].

Due to the lack of ready-to-use models of the atria, a bi-atrial SSM would cater the need of
generating geometrical atrial models representing inter-subject anatomical variability. These
could be employed to gain a comprehensive understanding of the underlying mechanisms of
the onset and perpetuation of re-entrant activity during atrial flutter and fibrillation not only
in personalized computer models [33, 195–197] but also in a large patient cohort [54, 198].
Thus, including the shape of the RA in the model as well as making the bi-atrial SSM
available to the community, enables large-scale simulation of atrial signals. Although the
focus of the work presented in this chapter is the application of the SSM for ECG simulations,
its field of application is not limited to this particular use case. The bi-atrial model can also
be exploited for other in silico approaches like continuum-mechanics and fluid simulations.
Furthermore, active shape modeling approaches [199] using the novel bi-atrial SSM could
facilitate automated segmentation of the atria from CT or MR datasets.

In this chapter, the development of an SSM comprising both atria based on manual
segmentations of 47 CT and MR scans is described. Furthermore, a workflow to generate a
volumetric atrial model based on an instance derived from the SSM is proposed. A major
added value of this work for the community is the provision of the bi-atrial SSM under
the creative commons license CC-BY 4.0 together with 100 exemplary volumetric models
derived from it including fiber orientation, inter-atrial bridges, material tags and solutions to
Laplace’s equation [200].

5.2 Methods

The geometric representation as well as the variation in shape among a set of individual
three dimensional objects can be described by SSMs (see section 3.2 and Figure 3.2). Point
distribution models [109] are the most common subclass of SSMs and require a vectorized
point-based representation sssn of any individual geometry ΓΓΓn comprising M consistently
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sampled surface points [xxxn,yyyn,zzzn]
T :

sssn = [xn,1,yn,1,zn,1, . . . ,xn,M,yn,M,zn,M]T (5.1)

Assuming that the spatial variations of the surface points follow a multivariate normal
distribution, a compact representation of the sample mean and sample covariance matrix
describing the shape variations can be obtained by applying a principal component analysis
(PCA) to the observations sss (see section 3.3 for further details). In this way, all N individual
shapes ΓΓΓ can be represented by a linear combination of N −1 basis functions vvv:

sssn = sss+
N−1

∑
k=1

rn,k ·σk · vvvk , (5.2)

with sss being the mean shape vector as well as σ and vvv representing the eigenvalues
and eigenvectors of the covariance matrix, respectively. rn,k represent the weighting co-
efficients for the individual eigenvectors. To obtain this parametric representation of the
shape variations from clinical MR or CT data, a number of preprocessing steps have to
be performed (see Figure 3.2 and Figure 5.1): i) segmenting the images, preferably in a
(semi-)automatic manner, ii) rigidly aligning the resulting shapes in space, iii) establishing a
dense correspondence between the individual shapes to obtain the shape vectors sssC that were
then subject to PCA.

Figure 5.1: Construction of a statistical shape model of the atria.

5.2.1 Acquisition of the Initial Model Population

Three independent multi-center, multi-vendor databases [201–203] were used to build the
SSM. Their properties are summarized in Table 5.2. The images originate either from healthy
subjects or from patients suffering from AF. Since all of the challenges focused on the
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Table 5.2: Summary of datasets used to generate the statistical shape model.

Dataset Source Number of
subjects

Voxel resolution

1 Left atrium segmentation challenge 30 MRI 1.25 x 1.25 x 2.7 mm

[203]

2 Left atrium fibrosis and scar segmenta-
tion challenge

8 MRI 1.25 x 1.25 x 2.5 mm

[201] 1.4 x 1.4 x 1.4 mm

3 Left atrial wall thickness challenge 9 CT 0.8 x 1 x 0.4 mm

[202]

segmentation of the LA, 23 of the originally available images had to be excluded due to an
incomplete capture of the inferior right atrial body or an inadequate signal-to-noise ratio.
Since a PCA description was relied on for representing the atrial shape variability with which
only continuous changes of vertex locations are representable, only subjects with 4 PVs were
considered. The number of PVs attached to a subject’s atrium is discrete and the absence
or the presence of an additional PV is not characterized by a continuous transition which
is why only data samples of patients with 4 PVs were included in this study. According to
Marom et al. [204], this PV configuration is representative for the majority of the population
with 71 % and 86 % of all subjects in their study exhibiting two ostia on the right and left
side of the LA body, respectively.

In order to obtain the individual instances of both atria, a semi-automatic segmentation
of the blood pool representing the endocardial surface of the left and the right atrium from
MR and CT images was performed using CemrgApp [205]. 2D region growing in several
selected slices as well as 3D interpolation were applied to each image stack. To reduce
the impact of noise or image artefacts on the segmentation outcome, details were manually
corrected. Figure 5.2 shows examples of incorrect segmentation results due to insufficient
region growing performance (left column) and 3D interpolation (middle column) that made
a manual correction indispensable. Automated segmentation with region growing especially
failed in 2D planes where both the LA and the left ventricle are visible, as the mitral valve
exhibits the same image intensity as the LA and the left ventricle. Therefore, a cutting plane
between atrium and ventricle was inserted manually. The drawbacks of 3D interpolation
were particularly affecting the areas around the PVs where the interpolated surface tends
to close small gaps between the PVs and the atrial body. For 20 images in dataset 2, a
segmentation of the LA was provided. However, the LAA was truncated in close proximity
to the left atrial body [203] in these segmentations. Since the variability of the LAA shape
was aimed to be incorporated in the model, the LA segmentations of dataset 2 were adapted
to include the full volume of the LAA as shown in Figure 5.2 (right column). The resulting
segmentations were exported as triangular meshes.
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Figure 5.2: Segmentation inaccuracy due to different automated segmentation methods. The different
rows represent the axial, sagittal and the coronal plane, respectively. The images in the left, middle
and right column show the segmentation errors due to region growing, 3D interpolation and a partly
excluded LAA in the ground truth data colored in red, respectively. The green contoursmark themanual
corrections tailored to the correction of inaccurately found automated segmentations.

5.2.2 Rigid Alignment

After segmenting the individual instances ΓΓΓnnn of the atria, the resulting isosurfaces exported
from CemrgApp were rigidly aligned in space to avoid a representation of translation and
rotation parameters in the eigenmodes of the SSM [206]. This was performed automatically
by means of the iterative closest point (ICP) algorithm that provides a solution to the
orthogonal Procrustes problem [110]. Surface-to-surface distances were calculated with
the vtkDistancePolyDataFilter (Kitware, Clifton Park, New York, USA) between each pair
of individual instances ΓΓΓnnn. The reference template was chosen as the surface holding the
smallest mean distance to all other instances (compare Figure 5.3).

In each iteration i, candidate correspondences [x̂xxn, ŷyyn, ẑzzn]
T
R,i between a target mesh ΓΓΓn

and the reference mesh ΓΓΓR were found by attributing the point with the smallest Euclidean
distance in ΓΓΓR to each node in ΓΓΓn. Procrustes analysis was then used to estimate the linear
transformation TTT i – consisting of rotation and translation – which yields the best match
of the candidate correspondence points [x̂xxn, ŷyyn, ẑzzn]

T
R,i with the reference points [xxxR,yyyR,zzzR]

T .
After applying the estimated transformation TTT i to the points in mesh ΓΓΓn:
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Figure 5.3: Surface-to-surface distance of each pair of individual instances. The green surface held
the smallest mean distance to the remaining atria in the dataset and was chosen as a reference for the
alignment and morphing process. The red boxed geometry outlines an example in three different views
of an instance holding a notably larger surface-to-surface distance to the other data samples.

Γ̃ΓΓn,i+1 = TTT i · Γ̃ΓΓn,i, with Γ̃ΓΓn,0 = ΓΓΓn , (5.3)

new candidate correspondences [x̂xxn, ŷyyn, ẑzzn]
T
R,i+1 are recursively found between the trans-

formed mesh Γ̃ΓΓn,i+1 and ΓΓΓR at each iteration i and used for solving the Procrustes problem.
If after several recursive calls of the function, either the maximum number of 150 iterations
is exceeded or the convergence criterion is fulfilled, an optimal transformation matrix for the
alignment of both shapes ΓΓΓn and ΓΓΓR is found resulting in a set of N rigidly aligned shapes
ΓΓΓ

A .

5.2.3 Dense Correspondence Retrieval

Each aligned individual instance n comprises Mn surface points [xA
n,1,y

A
n,1,z

A
n,1, . . . ,x

A
n,Mn

,

yA
n,Mn

,zA
n,Mn

]T . In order to describe the variations in shape of the aligned instances ΓΓΓ
A by

means of a point distribution model, correspondence between the vertex IDs among all
individual shapes have to be established. Establishing correspondence requires to retrieve
concordant points in all shapes ΓΓΓ

A, so that the N aligned shapes are not only represented
by the same amount of surface points M but also that each point [xA

n,m,y
A
n,m,z

A
n,m] with a

specific ID m represents the same morphological point in any arbitrary shape n. For this
purpose, Gaussian process morphable models (GPMMs) [111] available as a built-in library
in Scalismolab [207] were used to subject a reference shape ΓΓΓ

A
R to a generic deformation

in such a way that the deformed shape Γ̃ΓΓ
A
R,n matches the individual aligned shape ΓΓΓ

A
n in the

best possible way. This process then yields a set ΓΓΓ
C of aligned shapes that are characterized

by homologous, corresponding surface points. For this process, three independent generic
deformations were defined by Gaussian process (GP) models. Gaussian kernels described
the similarity between two distinct points xxx and xxx′′′:
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k(xxx,xxx′′′) = s · exp
(
−(xxx− xxx′′′)2

l2

)
(5.4)

The kernels were approximated by the leading eigenfunctions of their Karhunen-Loève
expansion as described in [111]. They were further employed to fit the orientation of the
left and right pulmonary veins (LPV, RPV), the atrial body, as well as the LAA and right
atrial appendage (RAA). The separation into three different models (atrial body, appendages,
PVs) served two different purposes. On the one hand, the high anatomical variability of
the appendages could be accounted for by allowing smaller inter-dependencies spanning
between the points located on the appendages. On the other hand, the generic model
varying the points located on the PVs was designed such that only the orientation of the
PV ostia but not their length was affected. Built-in functions of Scalismo [207] were
used to successively fit the three anatomical regions of each aligned observation ΓΓΓ

A
n with

a custom PV model and a generic deformation for the appendages and the atrial body.

The optimization problem of fitting the GP model Γ̃ΓΓ
A
R,n to the individual aligned shapes

ΓΓΓ
A
n was solved using the Registration built-in class in Scalismo with a limited-memory

Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimization [208, 209] minimizing the

mean squared error between the vertex coordinates of the deformed model Γ̃ΓΓ
A
R,n and the

target shape ΓΓΓ
A
n . To accurately fit the PVs, a kernel representing the orientation of the four

PVs in anterior-posterior direction in its first four eigenvectors was constructed (Figure 5.4).
This custom kernel was built by manually moving each of the four PVs of the reference
shape ΓΓΓ

A
R in two different directions at a time using Meshmixer (Autodesk, San Rafael,

CA, USA). Disabling the mesh refinement option during this process ensured that the
resulting eight shapes differed from one another only in their PV orientation and were in
correspondence. Therefore, they could directly be applied to construct the custom PV model
(Figure 5.4). The length of the PVs was intentionally not fitted since this quantity highly
depends on the segmentation approach and does therefore not represent a proper observed
anatomical variation considering the heterogeneous input data used in this study. A low
rank approximation of a GP model was realized using the LowRankGaussianProcess class
in Scalismo with an empirically chosen variance of sb = 50, lb = 40 at points representing
the general atrial body (b) and sa = 20, la = 20 at the appendages to account for the higher
anatomical variability in the appendage (a) regions.

5.2.4 Principal Component Analysis

The vertices at the distal parts of the superior and inferior caval veins, the coronary sinus,
the PVs, as well as the mitral valve and the tricuspid valve were discarded from the N
aligned shape vectors in correspondence sssC to limit the model creation to atrial components
relevant for electrophysiological simulations. Applying a PCA to these cut shape vectors in
correspondence sssC yields their mean shape sss and N −1 basis functions vvv along with their
respective variances σ2. In this way, an exact reconstruction of any individual shape instance
ΓΓΓ

C
n is feasible by determining the coefficients rrrn in equation 5.2 with an ordinary least squares



70 Chapter 5. Development and Evaluation of a Bi-atrial Statistical Shape Model

Figure 5.4: Morphable model for establishing correspondence at the PVs. The arrows indicate the
movement of the respective vertices in the model for a variation of the four leading eigenvectors by
−3σ and +3σ . The LA body and the RA shape are not affected by this PV model and are visualized in
a semi-transparent manner.

estimation. Furthermore, additional arbitrary variation shapes ΓΓΓvar in the span of the N −1
basis vectors vvv can be derived by varying rrr. Under the assumption that the values of rrr are
normally distributed among the observed instances ΓΓΓ

C
n , keeping rrr in the interval [−3,+3]N−1

yields realistic artificially generated shapes within the empirically observed variability.

5.2.5 Generation of Arbitrary Volumetric Atrial Models

The bi-atrial SSM represents the mean shape of the atrial endocardial surface and the variation
of all point coordinates in space so that any arbitrary variation mesh ΓΓΓvar can be derived
from it. However, a volumetric model of the atria, including inter-atrial bridges, anatomical
labels and fiber orientations is required to perform electrophysiological simulations and
to obtain realistic body surface P waves. A workflow was developed (see Figure 5.5) to
fully automatically create a volumetric model based on an arbitrary endocardial surface.
Since a segmentation of the epicardial surface from conventional MR images is usually
not feasible due to an insufficient spatial resolution and a limited signal to noise ratio, the
epicardial surface was augmented in a postprocessing step assuming a homogeneous atrial
wall thickness.

To approximate the epicardial surface, the endocardial surface of the variation mesh ΓΓΓvar

was dilated by 3 mm [210] at each point along the normal direction calculated as the mean
of the adjacent triangle normals. Both surfaces were merged and intersections and holes
between epi- and endocardium were corrected and closed automatically using the iso2mesh
toolbox [211]. The closed surface was afterwards remeshed using Instant Meshes [131]
and transformed into a volumetric tetrahedral mesh with an average edge length of 1 mm
using Gmsh [212]. Contact and integrity between left and right atrium were preserved by
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Figure 5.5: Workflow for augmenting an endocardial surface derived from the statistical shapemodel
with tags for anatomical structures, interatrial connections and myocardial fiber orientation.

duplicating the epicardial nodes belonging to the septum in regions where the left and the right
epicardial surfaces spatially overlapped. The affected endocardial nodes were subsequently
moved in negative direction of the surface normals to ensure a homogeneous wallthickness of
3 mm. The algorithms described by Azzolin et al. [195], Piersanti et al. [135] and Wachter et
al. [213] were used to automatically augment the models with Bachmann’s bundle, a coronary
sinus and an upper and middle posterior inter-atrial connection between the LA and RA
as well as myocardial fiber orientation and anatomical labels. The augmented anatomical
structures are visualized in Figure 5.5. The only manual input required for augmenting the
volumetric geometry with the aforementioned structures consists of 4 seed points defining
the tips of the appendages and landmarks for the Bachmann’s bundle connection. They were
defined once on the mean shape and were tracked through the deformations for any arbitrary
variation mesh. In this way, it was ensured that the seed points were consistently chosen
among all variation meshes.

5.2.6 Parameterization of Electrophysiological Simulations

100 random instances were derived from the bi-atrial SSM by drawing the eigenvector
coefficients r of Eq. 5.2 from a Gaussian distribution in the [-3, +3]σ range. A fast iterative
simulation was carried out for solving the Eikonal equation on these 100 geometries to
obtain the spread of electrical activation and derive local electrical activation times for each
node. Sinus rhythm activation was initiated from a sinus node exit site located at the junction
of the superior caval vein and the RAA [149]. The atrial wall was separated into seven
different anatomical regions: regular right and left atrium, inter-atrial connections, valve
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Table 5.3: Conduction velocity (CV) along the transversal fiber direction in mm/s and anisotropy ratios
(AR) in different atrial regions.

Atrial Region CV⊥ (mm/s) AR

Right atrium 739 2.11

Left atrium 946 2.11

Inter-atrial connections 1093 3.36

Valve rings 445 2.11

Pectinate muscles 578 3.78

Crista terminalis 607 3.0

Inferior isthmus 722 1

rings, pectinate muscles, crista terminalis and inferior isthmus. The conduction velocity
(CV) along the fiber directions and the anisotropy ratio in the different regions were chosen
as reported previously [149] and are given in in Table 5.3.

5.3 Results

The bi-atrial SSM is provided under the Creative Commons license CC-BY 4.0 together
with 100 exemplary volumetric models derived from it including fiber orientation, inter-
atrial bridges and anatomical labels [200]. Furthermore, solutions to Laplace’s equation with
various boundary conditions as proposed by Piersanti et al. [135] are provided to facilitate the
derivation of universal atrial coordinates [214]. The SSM is available as an h5 file encoding
information about the mean shape’s spatial vertex locations and their triangulation. Also the
eigenvectors and -values resulting from applying the PCA are included. The 100 geometries
were generated by sampling the eigenvector coefficients r from a Gaussian distribution in
the [−3,+3]σ range. These anatomical models are provided in VTK file format including
fiber orientation as 3D vectors and material tags as scalar values in the cell data section.

The shape statistics in the SSM resulting from applying PCA to the individual instances
in correspondence are quantitatively shown in section 5.3.1. Furthermore, three standard
evaluation criteria for evaluating the SSM quality proposed by Davies et al. [64] were con-
sidered: generalization, specificity, and compactness. The generalization metric addressed
in section 5.3.3 refers to the ability of the SSM to recreate an instance whose shape vector
was excluded from the dataset used to create the SSM. The specificity metric (section 5.3.4)
assesses the goodness of the model in terms of generating realistic shapes. Furthermore, the
compactness (section 5.3.5) metric of the model increases the more the set of eigenvectors
can be reduced while still being able to describe the majority of the total shape variance
present in the dataset.
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Table 5.4: Summary of datasets used to generate the statistical shape model.

Eigenmode Most prominent shape changes

1 total volume for both atria

2 asymmetric prominence of both appendages

asymmetry of the left and right atrial volume

relative position of the left and right atrium towards each other

3 relative orientation of the left pulmonary veins towards each other

relative orientation of the left and right atrium towards each other

4 distance between the left and right atrium

tilt angle of the appendages

5 symmetric prominence of both appendages

pointedness of the right appendage

6 orientation of the right superior pulmonary vein

volume of the left atrium

7 volume of the left atrial appendage

8 orientation of the right pulmonary veins

5.3.1 Shape Statistics

Applying a PCA to the cut shape vectors in correspondence sC as described in section 5.2.4
yields their mean shape s comprising 62,818 triangular cells and 31,745 vertices with an
average edge length of 0.929 mm. Furthermore, the eigenvectors and eigenvalues of the
bi-atrial model were obtained. Figure 5.6 shows the shape changes caused by varying the
coefficients of the first eight eigenvectors. A qualitative description of the most prominent
shape changes encoded in each of the eigenmodes – as outlined in grey in Figure 5.6 – is
listed in Table 5.4.

5.3.2 Correspondence

The quality of the bi-atrial SSM was evaluated by assessing the mean vertex-to-nearest
neighbor distances between the meshes in correspondence and their respective original node
locations. For the 47 meshes used to build the SSM, this mean distance across the dataset was
1.60±0.25 mm. The mean vertex-to nearest neighbor distance per atrial region is visualized
for all instances in Figure 5.7. The smallest morphing errors occurred in the appendages.
In the bottom panel of Figure 5.7, two examples for a small and a large surface-to-nearest
neighbor distance in the left atrium are visualized.
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Figure 5.6: Eigenmodes of the bi-atrial shape model. The eight leading eigenmodes are displayed.
The different colors represent the applied eigenvector coefficients which were varied for each mode
independently.

5.3.3 Generalization

To evaluate the generalization quality of the SSM, leave-one-out cross-validation was used
and N datasets with N −1 meshes each were defined by leaving out the final observation.
Each of those was used to compute a reduced SSM. The excluded shape was reconstructed
with the reduced SSM by determining the eigenvector coefficients using ordinary least
squares. The similarity between the original excluded shape and the approximated one was
assessed in terms of the Euclidean distance between the corresponding vertices. Figure 5.8
shows the distribution of this error metric for all instances in the dataset. The median of
the vertex to vertex distance was below 1.56 mm among all shapes which compares to
the order of magnitude of the MRI cross-plane resolution (0.4 mm - 2.7 mm). Instance
4, 11 and 43 hold the lowest Euclidean distances between the vertices of its original and
reconstructed shape, whereas instance 47 is characterized by considerably high error values.
Especially the 75th and the 95th percentile bounds comprise large vertex to vertex distances.
Vertices showing larger deviations were located predominantly on the anterior wall and the
appendages of both atria (compare Figure 5.8).

5.3.4 Specificity

The specificity of the bi-atrial model was evaluated by generating 1000 random shapes
according to Eq. 5.2 by uniformly sampling r in the interval [−3,3]. The similarity between
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Figure 5.7: Correspondence results. Surface-to-nearest neighbor distance in mm evaluated per region
between the surfaces in correspondence and the original segmentation. Two examples for large and
small correspondence retrieval errors (red and green boxes, respectively) are visualized in the bottom
panel for the segmented left atrium (blue surface) and the morphed template (yellow surface). RA: right
atrium, RAA: right atrial appendage, LA: left atrium, RPV: right pulmonary veins, LPV: left pulmonary
veins.

these random shapes and the respective closest shapes in the underlying dataset ΓΓΓ
C used to

build the SSM was assessed in terms of the root mean squared error (rmse) of all vertex-to-
vertex distances between the randomly generated and the original shape. The rmse ranged
from 4.65 to 10.83 mm among all 1000 random instances with a mean ± standard deviation
of 7.79±1.00 mm.

5.3.5 Compactness

Figure 5.9 depicts the total variance of the dataset explained by the model when including
only a limited number of leading eigenvectors. 90 and 95% of the total shape variance in the
individual segmented shapes can be covered by the SSM when considering only the first 18
and 24 eigenvectors, respectively.
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Figure 5.8: Euclidean distance between vertices of the original and reconstructed shapes in mm. Two
examples for small and large Euclidean distances (green and red box, respectively) are shown in the
bottompanel. The blue surface represents the instance approximatedwith a reduced SSMbuilt without
this particular shape, the yellow surface the original correspondence results.

Figure 5.9: Cumulative variance covered for different numbers of leading eigenvectors included.

5.3.6 Validation with Electrophysiological P wave
Simulations

Calculating the P wave on the 100 random geometries derived from the constructed SSM
as described in section 5.2.6 yields the signals for the Einthoven, Goldberger and Wilson
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Figure 5.10: P waves of the 12-lead ECG calculated on 100 geometries derived by modifying the eigen-
vector coefficients of the constructed bi-atrial shape model.

leads shown in Figure 5.10. The P wave duration was extracted for each of the 12-lead
ECGs simulated on 100 random instances as the mean P wave durations across all 12 leads.
The values of the P wave durations - arising from simulations in which only the atrial
anatomy was varied - ranged from 85 ms to 186 ms with a mean and standard deviation
of 114.82± 20.19 ms. The probability density of the P wave durations extracted from
the simulation results are visualized in Figure 5.11 in yellow. The distribution of P wave
durations in the Copenhagen ECG study was reconstructed based on the values reported
in Nielsen et al. [215] and are shown in blue in Figure 5.11. The interval of 90-111 ms
characterizing P wave durations of subjects stratified with a low AF risk is marked in red.

5.4 Discussion

The main result of this study is a point distribution model incorporating the shape variations
of the right and the left atrium as well as their appendages and the PVs. Moreover, a workflow
was proposed for building a volumetric atrial model from an endocardial surface derived
from the SSM. Together with 100 example volumetric geometries generated by a Gaussian
variation of the principal component coefficients in the [−3,+3]σ range including fiber
orientation, inter-atrial bridges and anatomical labels, the SSM is openly available [200].
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Figure 5.11: Probability density functions of P wave durations in the Copenhagen ECG study (blue)
and in the simulation study (yellow). The area highlighted in red represents the value range of patients
holding a low AF risk (90-111ms) as reported by [215].

Electrophysiological simulations covering atrial excitation spread and propagation of
electrical potentials to the body surface were conducted on these 100 example shapes. The
resulting P wave durations obtained with the proposed SSM of 114.82± 20.19 ms are in
agreement with the P wave durations of 100-105 ms reported for individuals with a very
low AF risk in an extensive cohort study based on 285,933 ECGs [215]. On the one hand,
this suggests that the constructed model is capable of producing a large variety of variation
shapes leading to realistic ECG feature values when compared to clinical recordings. On the
other hand, it implies that the additional P wave duration variability observed in individuals
with increased AF risk (92-116 ms range covering 20-80% percentiles in Nielsen et al. [215])
is either due to pathological anatomical variability not represented in the healthy dataset used
to build this SSM or due to non-anatomical, functional changes such as CV slowing due to
fibrotic infiltration of the atrial tissue [216].

In the constructed model, 24 eigenvectors are necessary to explain 95% of the total
variance of the dataset. In the LA-only SSM built by Corrado et al. [180], the first 15
eigenmodes cover 95% of the entire shape variance. Cates et al. [182] reported that only 8
eigenvectors account for 95% of the total variance. However, these two models do neither
consider the LAA nor the RA which explains the higher complexity of this model and
in turn the need to include more eigenvectors to cover the majority of the shape variance.
By allowing only a variation of the PVs orientation in anterior-posterior direction during
correspondence retrieval, changes in the PV lengths and diameters were prevented to be
reflected in the model’s eigenmodes, which was reported as a possible limitation of the model
by Cates et al. [182].

Varying the first eigenvector in the LA SSM published by Varela et al. [184] causes
a variation of the total LA volume as it is also the case in this model (Figure 5.6). Also
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Corrado et al. [180] and Cates et al. [182] reported a change of the total LA size in the
first eigenmode. In the latter, the first mode represents a dilation of the LA mainly in
anterior-posterior direction, which is also the case for the third eigenmode of the SSM built
by Corrado et al. [180], where the first eigenmode rather represents an elongation of the LA
in medial-lateral direction. Cates et al. [182] also constructed a separate SSM of the LAA
and found that its first shape parameter corresponds to a change in the LAA length which is
as well described by the third eigenmode of the constructed model in this work.

The shape variations encoded in the leading eigenmodes of the novel bi-atrial SSM are
consistent with previously published LA-only SSMs as far as the LA is concerned. This
demonstrates that the model is able to reflect the same main shape variations even though it
is based on a dataset of less than half the size compared to the other models. The second
eigenmode of the model represents the asymmetry between right and left atrial volume. This
further manifests the novel insights into inter-subject atrial geometry variations revealing
with the constructed model since this shape change cannot be captured with two separate RA
and LA SSMs.

The generalization results demonstrate that this model is able to accurately predict the
shape of a previously unseen atrial geometry. The specificity results of 7.79±1.00 mm leave
room for improvement. However, the low specificity scores do not result from unanatomical
characteristics of the generated shapes. They occur rather due to the small dataset of 47
instances available for selecting the closest shape during evaluation. Considering the MR slice
thickness of predominantly 2.7mm (Tab. 5.2), a specificity rmse of 7.79 mm is in the range of
less than 2 voxel diameters with segmentation uncertainty adding to it [202]. The specificity
evaluation of the model therefore indicates that randomly generated shapes produce valid
shapes with an accuracy in the range of the error susceptibility during segmentation.

The atria segmented for this study originate from datasets comprising images of not
only healthy subjects but also patients with a known history of AF. LA enlargement has
been linked with an increased risk for this arrhythmia [176, 217, 218]. To ensure that
the model is not based on a biased dataset with predominantly enlarged left atria, the LA
volume (excluding LAA and PV ostia) of the N segmented geometries (82.16±19.16 ml)
was compared to reference values. Pritchett et al. [219] considered all age and BMI groups
in healthy individuals. Translating their 2D measurements to 3D volumes as suggested by Al
Mohaissen et al. [220] yields a [−3,+3]σ range of 10-130 ml with the largest LA volume
in this dataset (122 ml) being within that range. In this way, the dataset could have been
kept as large as possible. For the same reason, no geometries segmented from different
image modalities or different spatial resolutions were excluded, which might however
impact the shape statistics of the SSM. The largest slice thickness (2.7 mm) is in the range
recommended in Salerno et al. [221] and relied on in previous studies [180, 182]. This
indicates that the coarsest spatial resolution in the training dataset was still sufficient to allow
covering all relevant anatomical structures during segmentation. Regarding segmentation, the
ground truth LA shapes provided publicly available along with the datasets and the automated
segmentation workflows in CemrgApp were relied on to the furthest extent possible. However,
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Figure 5.12: Examples from the dataset used in this work assigned to the different LAA shape clusters
as proposed by [222]. The ChickenWing type differs from the other types by a sharp bend, the Wind-
Sock type is characterized by secondary lobes only in inferior direction, the Cactus type in inferior and
superior direction. The Cauliflower type doesn’t exhibit any clear primary lobe.

since manual corrections were indispensable in some cases (see Figure 5.2), inter- and intra-
observer variabilities might still have had an impact on the final segmentation outcome.

Due to the highly complex shape and the natural clustering of the LAA, the shape of this
structure was categorized for all 47 subjects into four classes as proposed by Wang et al. [222].
11 %, 47 %, 36 % and 6 % of the segmented shapes were assigned to the ChickenWing,
WindSock, Cauliflower and Cactus morphology classes, respectively. Examples from this
dataset assigned to each of the four shape clusters are shown in Figure 5.12. The distribution
of the LAA shape in the four categories are in accordance with the frequency of occurrence
of the 612 LAA shapes studied by Wang et al. [222] in each class. This demonstrates that
the dataset used in this work also exhibits similar variability concerning the LAA shape as
observed in larger cohort studies.

PCA representation was chosen to describe the atrial shape variability and thereby
assumed the changes in the atrial shape to be Gaussian distributed which does not hold true
for the entire inter-patient shape variability [66, 222]. For the sake of comparability with
previously published models and for reproducibility, it was intentionally decided to follow
this state-of-the-art approach. Furthermore, the reference shape for the rigid alignment and
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the correspondence retrieval was chosen to be the geometry with the smallest mean vertex
to nearest neighbor distance to the other shapes. The choice of the reference mesh for ICP
only influences the alignment results regarding the final orientation of all aligned meshes.
Since the mean vertex-to-nearest neighbor distances between the meshes in correspondence
and the original instances quantified to 1.60 ± 0.25 mm, it can be inferred that the fitting
algorithm for correspondence retrieval performed sufficiently well. Therefore, the choice of
the reference shape should not have any major influence on the correspondence estimate. In
contrast, with the particular choice of the reference mesh, it was facilitated that the deformed
atlas is still capable of representing finer structural changes present in other models and
prevent that finer structures that would only be present in the atlas are over-represented in
the final SSM.

To showcase a potential application, multiscale electrophysiological simulations were
conducted on 100 instances of the shape model. This proof of concept was deliberately based
on a simple model not considering locally heterogeneous atrial wall thickness [202, 210, 223],
disease-induced remodeling of membrane dynamics [224] or diffusive aspects during cardiac
depolarization. Also only one torso shape and no rotation and translation of the atria within
the torso are considered. The pipeline to generate volumetric models and simulation setups
from the SSM is prepared for such extensions, though. Even though the shape variability
covered by the model only comprises anatomical variants that were present in the dataset, i.e.
healthy and AF patients without considerably enlarged left atrial volumes, the geometries
can still be used for simulations of pathologies not affecting the atrial anatomy but reflecting
in non-healthy functional anomalies, for example conduction blocks or ionic remodeling
processes. Future studies focusing on repolarization could replace the simplistic Eikonal
coupling employed here with a reaction-Eikonal scheme as suggested by Neic et al. [104].

The main advantage of the novel bi-atrial SSM consists in the automated generation of a
large number of atrial geometries. In this way, the cumbersome and time-consuming process
of anatomical model generation involving MRI segmentation and defining bundles and fiber
orientation can be facilitated and expedited.

Potse et al. [225] examined the influence of electrical and structural remodeling on
the maintenance of complex reentrant activitiy. With the proposed bi-atrial SSM, also the
influence of the general atrial anatomy on the perpetuation and initialization of AF can be
quantified.

Saha et al. [226] investigated the effect of endo-epicardial activation delay on the P wave
morphology. However, only one atrial geometry was used to deduce models of different atrial
wall thicknesses in this study and the authors state the lack of using different geometries as a
limitation of their work. The same limitation is listed in the study of Pezzuto et al. [227]
aiming at quantifying the beat-to-beat variability of P waves in patients with AF. With the
SSM, a larger number of different volumetric atrial models is easily acquirable.

By means of the bi-atrial SSM, scale-large cohort studies using computer models for
simulating atrial activity become feasible. Luongo et al. [228, 229] found a significant
influence of the number of atrial anatomies included on the classification of different types
of atrial flutter with a machine learning approach. With the proposed SSM, a large number
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of geometries can be deduced and used as a basis for in silico big data approaches such as to
produce extensive datasets for machine learning applications. The provided instances are
ready to be used off the shelf in available computational simulation environments such as
openCARP for electrophysiology [98, 230], openFOAM for fluid dynamics [231], FEniCS
for continuum-mechanics [232] or lifex for coupled electro-mechanical simulations [136,
233].



Chapter 6
Generation and Calibration of a

Multiscale Population of Atrial
Models

In this chapter, the generation and subsequent calibration of atrial computational models
comprising anatomical variability of the atria as well as electrophysiological variability on
cellular and tissue scale are explained.

This project was carried out during a research stay at University of Oxford, Oxford, UK,
in collaboration with Albert Dasí, Alfonso Bueno-Orovio and Blanca Rodriguez. Albert
Dasí designed and conducted the study for generating and calibrating the population of cell
models and provided all data used to enrich the atrial computational models with cellular
variability. Blanca Rodriguez and Alfonso Bueno-Orovio provided guidance and supervision
on all aspects of the project.

6.1 Introduction

Large-scale datasets of cardiac signals obtained through multiscale electrophysiological
simulations carry the potential to provide systematic insights into vulnerability, maintenance
and termination of cardiac arrhythmias in entire subpopulations of patients. As such, they
have been applied in various previous studies as an underlying database for e.g. disease
classification and prediction with machine learning algorithms [47, 229] or for developing
new pharmacological therapy options in in silico clinical trials [54, 198]. In these fields of
applications, simulated datasets are particularly preferable over clinical data as they can
represent a wide range of inter-patient variability and are not affected by ground truth label

83



84 Chapter 6. Population of Multiscale Models

and signal quality distortions arising due to expert annotation uncertainties or interfering
noise sources.

For single-cell simulations, populations of candidate cellular models are typically gen-
erated by varying cell model parameters within wide ranges [54, 234]. Subsequently, a
calibration of this initial model cohort is indispensable to not only ensure that the virtual
cohort is composed of an extensive amount of instances, but also that the simulated signals
comply with real-world inter-subject variability from experimental findings [235]. In this
regard, biomarkers are extracted from both the simulated and experimental action poten-
tials and calcium transients and are used to prune model instances not in line with clinical
observations.

For 3D geometries representing atrial anatomy, statistical shape models can form the
basis for sampling various anatomical endocardial instances representing the variability in
shape encoded in the atlas [169]. Augmenting these models with a homogeneous wall thick-
ness, tags for anatomical structures, rule-based myocardial fiber orientation and interatrial
connections allows for generating 3D atrial models ready to use for electrophysiological
simulations [52].

A combination of electrophysiological variability in form of populations of cell models
and anatomical variability presents a promising approach to compose a large and diverse
cohort of atrial models. As reported by Rodero et al. [185], only considering anatomical
variability for cohort simulations is insufficient for representing the entire signal variabil-
ity occurring in clinical practice. Thus, it is advisable to additionally include functional
variability, for example in the form of conduction velocity (CV) and anisotropy changes,
for compiling an initial model cohort (see section 6.2.1). In a step-wise approach, clinical
reference ranges for anatomical properties as well as local activation times (LATs) and action
potential and electrocardiogram (ECG) biomarkers are employed to exclude parameter com-
binations yielding simulation results that do not comply with the signal variability observed
in clinical recordings [236] (see section 6.2.2).

6.2 Methods

6.2.1 Generation of the Initial Candidate Model
Population

Figure 6.1 shows an overview of different types of electrophysiological and anatomical
variability that were considered to compile the initial candidate model cohort.

Cellular electrophysiological variability was realized by scaling maximum ionic conduc-
tances of 12 key parameters in the Courtemanche et al. [91] cell model by up to ±50 % of
their baseline value [237]. These parameters include the ultrarapid, rapid and slow delayed-
rectifier K+ current density (GKur, GKr and GKs), transient outward K+ current density (Gto),
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GK1, GCaL, GNa, Na+/K+ pump (GNaK), Ca2+/Na+ exchanger (GNCX) and the sarcoplasmic
reticulum Ca2+ release (Grel), leak (Gleak) and uptake (Gup) currents.

To include atrial anatomical variability in the population, 4,000 atrial endocardial surfaces
were derived by varying the leading 24 eigenmodes of the bi-atrial statistical shape model
(SSM) (see chapter 5) with a latin hypercube sampling scheme. By including 24 eigenmodes,
95 % of the total atrial shape variation in the SSM were accounted for (see section 5.3.5). An
interposed calibration step ensuring realistic left and right atrial volumes (see section 6.2.2)
preceded the selection of 100 distinct atrial shapes that were continued to use for generating
the volumetric instances constituting the anatomical basis for the initial candidate model
population.

On tissue scale, 15 spatially distinct atrial regions could be robustly annotated on the
geometrical models using the pipeline developed by Azzolin et al. [52] to which hetero-
geneous conduction properties in terms of CVs and anisotropy ratios can be assigned (see
Figure 6.3). A sensitivity analysis was carried out to identify key CV parameters affecting the
body surface P wave [238] and in turn, reduce the number of CV and anisotropy parameters
to be varied for generating the cohort. In table 6.1, the ranges, in which CV and anisotropy
were varied for the sensitivity analysis, are summarized. As an input for sensitivity analysis,
a set of 17,280 combinations of different regional CVs and anisotropy ratios was compiled
using latin hypercube sampling. The Eikonal equation was solved using the Fast Marching
method and the sinus rhythm ECG was subsequently obtained as described in section 3.1.2.3.
In contrast to the simulations covering cellular electrophysiological variability for the gener-
ation of the candidate population, only the baseline Courtemanche et al. [91] action potential
was used as a template in all atrial regions for the sensitivity analysis. The forward problem
was solved using the boundary element method (BEM) (see section 3.1.3.2). Additionally,
a baseline 12-lead ECG P wave was calculated by applying the reference set of CVs and
anisotropy ratios as summarized in table 6.1. For each of the 17,280 P waves resulting from
the latin hypercube CV and anisotropy sampling, the L2 norm of the difference to the baseline
ECG was calculated. This value was used as an output parameter for the sensitivity analysis
to examine which regional CV and anisotropy parameters can cause a marked change in
the ECG compared to baseline model parameters. Sensitivity was quantified by calculating
correlation coefficients between the input model parameters (CV and anisotropy ratios in 15
atrial regions) and the cost function (L2 norm distance to the baseline P wave).

CV and anisotropy parameters with a sensitivity coefficient above 0.1 were selected to
generate a set of 2,000 CV and anisotropy combinations using latin hypercube sampling to
be combined with cellular and anatomical variability as will be explained in section 6.2.2.
Functional parameters in regions with lower sensitivity coefficients were kept constant at
their reference value listed in Table 6.1.

Each of the 100 volumetric atrial instances were randomly joined with 20 combinations of
cell models and CV settings. Thus, the initial candidate population counted 2,000 multiscale
model instances that were subject to additional calibration steps based on LATs as well as
ECG biomarkers and morphology.
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Figure 6.1: Electrophysiological and anatomical variability characterizing the initial candidate model
cohort.
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Table 6.2: Scaling factors for Gto, GCaL and GKr in 6 different atrial regions to account for spatially
heterogeneous ionic properties in the 3D simulations.

Atrial Region Gto GCaL GKr

Right atrium 1 1 0.625

Left atrium 1 1 1

Crista terminalis 1.35 1.6 0.9

Pectinate muscles 1.05 0.95 0.9

Left atrial appendage 0.65 1.05 2.75

valve rings 1.05 0.65 3

6.2.2 Calibration of the Initial Model Population

Instances of the cell model were calibrated against experimental data obtained from patients
under sinus rhythm and atrial fibrillation (AF) [198]. The retained ionic models were em-
ployed as baseline models for generating the multiscale population of atrial computational
models. When coupling an ionic model with an anatomical geometry, selected ionic conduc-
tances were additionally scaled in different atrial areas to account for region-wise cellular
heterogeneities (see Table 6.2).

References ranges for left and right atrial volumes were taken from literature reports
based on large cohort studies analyzing extensive patient datasets [17, 248]. Likewise,
threshold values for atrial volumes associated with an increased risk for AF were extracted
from previous studies. The generated 4,000 atrial shapes were compared to the reference
volume ranges and only instances with left and right atrial volumes inside these ranges were
retained for the selection of 100 instances with maximum Dice coefficients to each other.
The Dice coefficient served as a similarity metric to chose the most distinct instances for
which 3D atrial volumetric geometries were created as described by Azzolin et al. [195].

To compile an initial population of 2,000 atrial models covering the different types of
above mentioned variability, each atrial geometrical model was randomly combined with 20
calibrated cellular models and CV settings.

Monodomain simulations were carried out to calculate the spread of the electrical depo-
larization wavefront and to derive LATs from them. The approach described in section 4.1
was relied on to convert the chosen CVs into conductivities defined based on the intra- vs.
extracellular conductivity ratios reported by Clerc [142]. Thereby it is important to note,
that the monodomain conductivities were calculated based on the baseline Courtemanche et
al. [91] cell model without taking ionic variability resulting from including cellular hetero-
geneity in the population into account. Thus, the effective CV in each tissue region could
deviate by up to around ±70 mm/s from the chosen target CV on tissue level mainly driven
by marked in- or decreased sodium conductances. Subsequently, the forward problem was
solved with the infinite volume conductor method (see section 3.1.3.3), using the electrode
positions defined on the mean shape of the human body SSM developed by Pishchulin et
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al. [179]. Calibration on tissue level was performed by comparing the simulated activation
times at 22 anatomical landmarks (see Figure 6.2) in both atria to clinical reference ranges
reported by Lemery et al. [249]. Additionally, the maximum activation times in both the left
and right atrium were added for the calibration on tissue scale based on LATs.

Figure 6.2: Landmarks for calibration of the candidatemultiscale model population based on LATs. 22
landmarks were selected on the left and right atrium. For these, clinical reference intervals of activation
times in normal sinus rhythmwere reported. They were employed to exclude model combinations with
LAT values outside these ranges.

Finally, the forward calculated ECGs were employed for a final calibration step to
exclude model instances out of range regarding P wave duration and ECG morphology. A
principal component analysis (PCA)-based approach was used to identify multiscale model
instances leading to unrealistic ECG morphology which is explained in greater detail in the
following.

The PTB-XL dataset [16] served as the reference for clinical ECG signals. For each of
the 9,528 healthy subjects in this database, a representative P wave template was calculated
by averaging all detectable P waves over the entire recording time as described by Pilia et
al. [250]. These P wave templates of all 12 leads were then concatenated to one signal
vector (see Figure 6.8) as implemented by Welle et al. [251]. These signal vectors were
subsequently subject to a PCA yielding a mean vector µ⃗clin and eigenvalues and -vectors
λclin and v⃗clin. These quantities span an eigenspace representing the P wave morphology
occurring in the clinical signals (compare Figure 6.8). The P waves of all retained simulated
signals were concatenated likewise and approximated with the first 48 eigenvectors v⃗clin

accounting for 95% of the total variance in the clinical dataset using least squares estimation
to obtain c⃗sim:

ˆECGsim = µ⃗clin +
48

∑
i=1

ci,sim ·λi,clin · v⃗i,clin (6.1)
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Afterwards, the reconstruction errors ε of the approximated and the actual simulated
signals were evaluated by the root mean squared error (rmse) between them as

ε =

√
1
N

N

∑
i=1

( ˆECG(ti)−ECG(ti))2 (6.2)

with ti being the discretized time step values, N the total number of sampled values in the
concatenated ECG vectors, ˆECG the approximated and ECG the actually simulated signal
vector (compare Hotelling filter [252]). Simulation runs leading to an error ε > 0.1 were not
accepted in the final population (see Figure 6.11 for an example).

6.3 Results

6.3.1 Sensitivity Analysis for Tissue-scale
Electrophysiological Model Parameters

In Figure 6.3 (b), the absolute sensitivity coefficients for regionally heterogeneous CV and
anisotropy ratios are visualized. It is apparent that CV variation in left atrial bulk tissue, right
atrial bulk tissue (lateral and septal wall) and crista terminalis had the most pronounced effect
on the ECG. Anisotropy ratios played a minor role and did not cause as much of a change in
the ECG as CV. CV in the four above mentioned regions were considered to compile a set
of 2,000 CV variations by latin hypercube sampling their values in the ranges reported in
Table 6.1. CV in the remaining 11 and anisotropy values in all 15 regions were kept constant
at their baseline values.

6.3.2 Cohort Calibration

6.3.2.1 Atrial Volumes

Applying the clinical reference indices of [26 ml, 112 ml] and [34 ml, 148 ml] [248] for the
left and the right atrial volumes, respectively, as lower and upper bounds to calibrate the
anatomical model population leaves 3,925 out of the initially generated 4,000 endocardial
surfaces fulfilling the clinical volume requirements (black enclosed areas in Figure 6.4).
Dividing the atrial volumes bounded by the endocardial surface by the body surface area of
the mean torso that was used for the ECG calculation in this study (1.9 m2), allows for their
comparison with clinical thresholds for identifying patients with enlarged atrial volumes
associated with an increased AF risk. Out of the retained 3,925 calibrated endocardial shapes,
739 models were characterized by both left and right atrial volumes above the threshold
of 34 ml/m2 and 42 ml/m2 [88], respectively, and could thus be considered predisposed to
develop AF based on their anatomical properties.
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(a) Tags for locally heterogeneous conductivity regions.

(b) Sensitivity coefficients for conduction velocity and anisotropy variation in 15 different anatomical
regions.

Figure 6.3: Absolute correlation coefficients between CVs and anisotropy ratios in 15 different atrial
regions and the L2-norm to the baseline ECG.

Calculating the Dice coefficient as a similarity metric between each pair of the retained
3,925 anatomical instances leads to the selection of 100 endocardial surfaces to be further
processed through the pipeline developed by Azzolin et al. [195] to obtain simulation-
ready volumetric atrial geometries (see Figure 6.3). Figure 6.5 depicts 5 examples of fully
processed atrial anatomical models from the dataset of 100 volumetric instances. Each of
these were subsequently paired randomly with 20 cell models and 20 sets of regionally
heterogeneous CVs and employed to conduct monodomain simulations (see section 3.1.2.2)
to obtain LATs and transmembrane voltage distributions. The latter were further projected
onto the body surface using the infinite volume conductor method 3.1.3.3 to obtain the
12-lead (pseudo-)ECG.

6.3.2.2 Local Activation Times

Evaluating the LAT results from the 2,000 simulations (100 geometries × 20 cell models
and 20 CV settings) with respect to clinically reported ranges for LATs in normal sinus
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Figure 6.4: Left (top panel) and right atrial volumes (bottom panel) for an anatomical model cohort
comprising 4,000 endocardial surface instances derived from the SSM. The red curve represents a fit-
ted normal distribution on the data samples. The black intervals indicate value ranges of atrial volumes
occurring in clinical practice. The volume intervals shaded in blue visualize the ranges that are reported
to be associated with an increased risk for AF.

rhythm [249], resulted in 1,652 model combinations with LAT results inside the clinical
reference intervals. In Figure 6.6, the distribution of LATs at each of the landmarks are shown
for all 20 CV and cell model combinations paired with one specific geometry (atriaID_062).
For this atrial anatomical model, one of the 20 simulation runs yielded an LAT at the left
superior pulmonary vein and a latest left atrial activation time above the clinically measured
upper bound. This multiscale model was subsequently excluded for the calibrated population,
the remaining 19 instances were accepted.

Figure 6.7 shows the percentage of the entire 2,000 simulation results that are distributed
inside the clinical µ ±σ , µ ± 2σ and µ ± 3σ (from top to bottom) ranges mapped on 22
regions around each of the considered landmarks (compare Figure 6.2) on the mean shape.
It is apparent that the highest percentage of model combinations had to be pruned due to
LAT simulation results outside the clinically reported intervals at the RA mid posterior wall,
the LA mid anterior wall, the left pulmonary veins, the mitral valve (septal wall) and the
sinoatrial node. However, the percentage of model instances with LATs outside the µ ±3σ

range is small and quantified to only 17.4 % (348 out of 2,000).
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Figure 6.5: 5 exemplary simulation-ready volumetric instances of the atria. In each row, one atrial
anatomical model is shown from the anterior, roof and posterior point of view in the right, middle
and left column, respectively. The colors represent the regions that can be allocated heterogeneous
conduction properties as explained in Figure 6.3.

6.3.2.3 P wave Features and Morphology

Mean and standard deviation of the P wave duration for the multiscale model instances
passing the LAT calibration step was 126.55±27.78 ms. Applying the interval of [78, 144] ms
as lower and upper bound for the P wave duration calibration step [215, 253], leads to 1,435
remaining model instances provisionally accepted into the population.

Lastly, P wave morphology was analyzed in a final calibration iteration. In Figure 6.8,
the mean P wave in all 12-leads in the clinical dataset is shown in red. The [-3σ , +3σ ] range
of the first, second and third eigenmode are visualized in grey. They account for 15 %, 14 %
and 12 % of the total signal variance in the clinical dataset. The first eigenmode mostly
represents a change in the P wave amplitude in lead II, aVR and V5 as well as a change in
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Figure 6.6: Calibration of multiscale model combinations of one exemplary geometry based on LATs
on predefined atrial landmarks. 22 landmarks and the latest activation times in the left and right atrium
are shown in each row. The clinically measured µ ±σ , µ ± 2σ and µ ± 3σ ranges are shown with the
solid, dashed and dotted line, respectively. LATs simulated for accepted and rejected instances are
visualized in black and red, respectively. RA = right atrium, LA = left atrium, LAT = local activation time

polarity in lead III, aVL and aVF. The second and third eigenmode predominantly affect the
amplitude and morphology of lead V5 and V6, respectively.

The reconstruction errors ε (equation 6.2) are depicted for each lead separately in
Figure 6.9. Marked reconstruction errors only occurred for the precordial leads V1, V2 and
V3 (Figure 6.9). A simplified forward calculation method was chosen to generate the large
scale dataset of 2,000 simulated ECGs in a reasonable amount of time. As this approach
is known to overestimate amplitudes in the ECG leads measured in close proximity to the
sources (see chapter 4, in particular Figure 4.10c), a threshold ε for the rmse averaged over
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Figure 6.7: Statistics of calibrating all 2,000 multiscale model combinations based on LATs. The rows
show the percentage of simulated LATs inside the clinical reference ranges (from top to bottom: µ ±σ ,
µ ±2σ , µ ±3σ ) for each landmark (yellow dots) represented as a region around it on the mean shape
geometry.

all leads except for V1-V3 of 0.1 was chosen:

ε =
1
9 ∑

i
ε(i), i ∈ [I, II, III,aVR,aVL,aVF,V3−V6] (6.3)

In this way, 764 of the up until this point remaining 1,435 multiscale model combinations
were accepted in the population.

In Figure 6.10, 20 12-lead ECGs calculated for the 20 different CV and ionic model
setups in one of the 100 atrial geometries are visualized. The signal traces in black passed all
calibration steps and were accepted in the final population of multiscale models. The blue,
cyan and red curves represent instances that were rejected due to nonfulfilling LAT, P wave
duration and P wave morphology criteria, respectively.

Table 6.3 summarizes the number of model instances generated for the initial candidate
population and the amount that has passed each individual calibration step.
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Figure 6.8: Concatenated P waves of the 12-lead ECG. The mean of the clinical dataset is shown in
red, the [-3, +3]σ range of the first, second in third principle component from top to bottom row,
respectively, is exemplary shaded in grey.

Table 6.3: Number of candidate models and accepted instances for each calibration step. Anatomical
and ionic models were generated and calibrated independently from each other. Calibration based on
local activation times, P wave duration and P wave morphology was performed consecutively leaving
764 accepted instances out of 2,000 initially generated candidate models.

Calibration step Candidate population Accepted Rejected

Action potential biomarkers 275 200 75

Atrial volumes 4,000 3,925 75

Local activation times 2,000 1,652 348

P wave duration 1,652 1,435 217

P wave morphology 1,435 764 671
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Figure 6.9: Lead-wise root mean squared errors (rmse) between simulated and approximated signals
in a reduced eigenspace derived from PCA on clinical ECGs. The thin solid line shows the threshold
of 0.1 applied for excluding model instances exhibiting ECG characteristics not complying with typical
clinical ECG morphology.

6.4 Discussion

6.4.1 Main findings

In the work presented in this chapter, a cohort of atrial models comprising anatomical and
functional variability on both tissue and cellular scale was generated and calibrated. 100
atrial geometries with calibrated left and right atrial volumes were each paired with 20 CV
settings and 20 cellular models to generate a candidate model population consisting of 2,000
instances. Calibrating this candidate cohort based on LATs and ECG biomarkers leaves
a total of 764 multiscale models to be used in future for electrophysiological simulations
focusing e.g., on in silico drug trials on 3D atrial models. The variability encoded in this
population account for three key parameters that are known to contribute to the initiation,
maintenance and termination of AF, as the condition for a re-entry to be sustained reads as
follows [254]:

PL ≥ CV ·ERP (6.4)

with PL being the path length, CV the conduction velocity and ERP the effective
refractory periord. In the calibrated population of models, these quantities are modulated by
a change of the atrial anatomy, CV variation itself and different ionic conductances driving
the repolarization behavior of the cell, respectively.

Sensitivity analysis of CV and anisotropy ratio in 15 spatially distinct regions revealed
that three out of the four regions where a change in CV had a pronounced effect on the ECGs
were located in the right atrium (RA). This is in line with the findings from Loewe et al. [140]
reporting that around 70 % of the total P wave integral is attributable to electrical activation of
the RA. Furthermore, the left atrium (LA) was subdivided into spatially coarser regions, i.e.,
the majority of the tissue volume was allocated only to the LA bulk tissue class, whereas the
RA was additionally also composed of a septal region and crista terminalis which account for
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Figure 6.10: 12-lead ECGs calculated on the anatomical model instance atriaID_070 combined with
20 different CV and ionic model combinations. ECGs that were rejected for the final population based
on LATs, P wave duration and ECG morphology are visualized in blue, cyan and red, respectively. ECGs
of multiscale models passing all calibration steps are shown in black.

large fractions of the total RA myocardial tissue volume themselves. Sensitivity analysis also
highlighted that anisotropy plays a minor role compared to longitudinal CV in the genesis of
the ECG. This could potentially be traced back to the fact that longitudinal CVs were defined
and divided by the prescribed anisotropy ratios to obtain transversal CVs. Furthermore,
conduction in the atria is in any case already highly anisotropic, so that longitudinal CVs
clearly dominate the preferred direction of wave propagation and transversal CV mediated
by varying anisotropy ratios does not have a strong influence on the depolarization spread.

Out of the initially generated 4,000 instances of the endocardial wall, the largest left
atrial volume was 125 ml and was in the same ballpark as the largest volume of the individual
segmented MR instances based on which the atrial SSM was built (compare chapter 5).
However, when indexing the atrial volumes to the body surface area (BSA) calculated
analytically for the torso geometry used to compute the ECGs in this study, a total of 739
models had LA volumes above the threshold for diagnosing left atrial dilation associated
with an increased AF risk. However, using a different torso geometry and thus another
resulting BSA or accounting for under- or overestimation when approximating BSA with
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only height, weight and gender as it is clinically routinely done, the number of anatomical
models characterized by an increased AF risk based on volume properties could deviate
markedly.

A total of 348 out of the 2,000 multiscale model combinations were excluded due
to non-fulfilled LAT calibration requirements, whereas additional 671 were pruned due
to non-realistic ECG morphology. After the LAT calibration, 217 additional models had
P wave durations outside the clinical reference ranges. The highest percentage of model
combinations not accepted in the population during this calibration step exhibited LATs in the
RA mid posterior wall. The exact position of this landmark is not specified in more detail by
Lemery et al. [249] and thus, a slightly different placement of this point in the in silico model
cohort could have led to different results. The relatively low number of models leading to
non-realistic P wave durations could be traced back to the fact that latest right and left atrial
activation times were already considered in the course of the LAT-based calibration step. In
this way, models potentially leading to too long simulated P wave durations were already
excluded by the time ECG biomarkers were computed for the ongoing calibration process.
Usually, other ECG biomarkers for which clinical reference ranges are reported comprise
peak-to-peak amplitudes and P wave terminal force in V1. However, both of these features
are amplitude based and heavily depend on the signal acquisition procedure, electrode contact
and the torso shape. As too many confounding factors affect these biomarkers, they were not
employed in any of the calibration steps in this study.

A novel approach for calibrating computational models particularly based on the ECG
morphology was presented. In this calibration step, the largest number of model instances
were rejected for the population (617 rejected instances compared to 348 and 217 rejected
instances after LAT and P wave duration calibration). This highlights the importance of
considering the entire P wave morphology in addition to only selected ECG biomarkers, such
as P wave duration. Even though model combinations could lead to P wave durations inside
clinical reference ranges, they do not necessarily exhibit typical ECG signal time courses
provoked potentially through unrealistic CV combinations in different atrial regions. This
might indicate that even if CV values are globally selected in reasonable intervals, certain
local and region-wise CV distributions could still lead to unrealistic ECG phenotypes which
are identifiable with the novel P wave morphology calibration procedure. To understand why
and which certain model instances were not accepted into the final population, a clustering
approach could reveal whether specific anatomical or functional parameters yield unrealistic
ECG signals. Interpreting the eigenmodes resulting from applying PCA to clinical ECGs
disclose the most prominent signal variability occurring in clinically measured ECGs. The
first eigenmode affected the polarity of lead III, aVL and aVF while the morphology in the
remaining limb and augmented leads remained unchanged, indicating that the first eigenmode
could represent a change of the electrical heart axis among different patients. The amplitude
change in V2 in the third eigenmode could besides physiological reasons also be caused by
inconsistent electrode placement for different patients. The striking amplitude variation in
V5 for eigenmode 1 and 2 as well as in V6 for eigenmode 3 was surprising and could have
been arisen due to incorrectly delineated P waves in these leads.
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The evaluation of the coefficients ci,sim (see equation 6.1) opens up new possibilities for
future work. By comparing them to the distribution of the scores resulting from PCA on
clinical ECGs, one could assess if the simulated ECGs are representative for a wide range of
clinical signals or if a certain type of ECG morphology is not covered by the variability in
the virtual cohort so far.

The monodomain propagation model (see section 3.1.2.2) was used to calculate the
LATs and the transmembrane voltage distribution for the 2,000 model instances of the
candidate population. The Eikonal model has been shown to reproduce LAT results with
high fidelity compared to biophysically more detailed models (see chapter 4) in normal sinus
rhythm simulations. For the 17,280 simulations carried out for the sensitivity analysis (see
Figure 6.3), these properties were made use of to allow for an efficient computation of the
resulting ECGs. However, the simulations for the 2,000 candidate model instances were
intentionally carried out using the computationally more expensive monodomain model to
ensure that the mesh quality is sufficiently high for simulations with propagation models
capable of producing re-entry simulations. In this way, the proposed calibrated model
population is ready to use for the intended purposes comprising testing the efficacy of
different channel blockers or ablation targets on arrhythmia termination in silico.

Future work could also comprise separating the retained and calibrated multiscale atrial
models extended with fibrotic tissue variants into a healthy and AF cohort. In this way, an
ensuing validation step regarding arrhythmia vulnerability of both subpopulations could
be conducted by evaluating dominant frequency maps after inducing reentry. Another
application of the proposed population could be to identify key model properties contributing
to arrhythmia susceptibility in the cohort and evaluate whether either slow conduction
velocity, ionic remodeling, enlarged atrial volumes or a combination of them is the main
driver for rotational activity.

6.4.2 Related work

Several previous studies have focused on generating, calibrating and validating populations
of cellular models. Muszkiewicz et al. [237] showed that calibrated cell model populations
yielded action potentials which biomarkers overlapped with those obtained from clinical
experiments. They concluded that the population of ionic models are thus representative
for a wide range of action potential morphology. Furthermore, they highlighted the need of
a calibration step as cell models with ionic conductances set to their baseline values were
not able to reproduce action potential biomarkers within experimental ranges, in contrast to
other instances of the model population even characterized by substantial parameter varia-
tions. Britton et al. [255] generated a large population of human ventricular computational
cell models to identify key ionic properties leading to abnormal repolarization behavior.
Sánchez et al. [198] calibrated populations of cell models under sinus rhythm and chronic
AF conditions. They identified key ionic conductances underlying the inter-patient vari-
ability of action potential biomarkers in both populations aiming at a better understanding
towards the mechanisms behind differences in arrhythmogenesis and response to treatment
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of both cohorts. Vagos et al. [256] followed a similar approach and found that the healthy
and chronic AF populations exhibit substantial deviations in sensitivity of the ionic current
parameters to pro-arrhythmic action potential biomarkers. In contrast to the generation and
calibration of the multiscale model population presented in this chapter, a large number of
ionic model instances had to be excluded in the calibration steps of the above mentioned
studies. Britton et al. [54] reported that only 213 out of 10,000 initially generated cell model
instances exhibited action potential biomarkers complying with experimental results when
varying ionic conductances by ±100 % of their baseline values. In the study presented
in this chapter, a larger fraction of the candidate population (764 out of 2,000 multiscale
models) passed the LAT and ECG calibration steps. This relates to the fact that cell model
populations have to be created assuming a large variation of ionic conductance parameters as
these quantities cannot be measured in vivo or are affected by the isolation process during
voltage clamp experiments [255]. In contrast, CV can be directly derived from clinical
LAT measurements and therefore, more precise clinical intervals are available to draw the
parameter values for the initial model population from. Even more straight forward is the
generation of anatomical models. The SSM was built based on 47 patient-specific atrial
models. Thus, selecting the PCA coefficients in the [-3σ , +3σ ] interval leads to endocardial
geometries within the eigenvector space of the SSM, theoretically exhibiting already realistic
atrial geometrical variations as they also occur in the 47 underlying SSM geometries.

The latin hypercube sampling scheme was used to generate the model parameters for the
ionic and anatomical models as well as for generating locally heterogeneous CV variations.
This approach is well established and has been used in various previous studies [54, 255].
However, more sophisticated approaches for generating in silico populations exhibiting
coinciding biomarker distributions with clinical data have been published. Lawson et
al. [257] proposed a method to iteratively tune model parameters such that the resulting
computed biomarker distribution can be compared to a set of measured values in a step-wise
approach. This method is computationally more efficient than brute force sampling and
calibration until in silico and in vivo data distributions match. Even though this sampling
technique will lead to a more representative population of models for actual clinical data, it
will also imply an under-representation of rare and unusual action potential morphologies.
However, the ability to investigate the mechanisms in outlier models is one of the main
advantages of using simulated over clinical data where these morphologies do not occur in
sufficient numbers to infer statistical information, e.g. regarding drug response. For this
reason, model parameters were sampled using the established latin hypercube approach for
generating the multiscale population of models.

Regarding tissue scale atrial electrophyiology, only a limited number of previous studies
have focused on the generation and validation of virtual cohorts covering various types of
variability. In these, the generated populations usually either consisted of only a small amount
of anatomical instances as they had to be built based on patient-specific segmentations or
lacked a validation step. In the work from Corrado et al. [258], 10 atrial anatomical models
were generated and validated against LATs acquired during an S1-S2 pacing protocol.
Roney et al. [259] generated 100 patient-specific anatomical models of only the left atrium
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with the aim to predict long-term AF recurrence after catheter ablation for each individual
patient. However, no explicit validation step of the computer models with clinically measured
biosignals, such as LATs or ECGs, was presented. Rodero et al. [185] showed that only
modifying anatomical properties in a four chamber human heart model was not sufficient
to explain the entire range of variability regarding electromechanical function occurring in
clinical data. Therefore, the multiscale population of models presented in this chapter was
generated by additionally incorporating functional variability on tissue and cellular scale.

6.4.3 Limitations

Sensitivity analysis on CV and anisotropy model parameters was performed based on
simulations with the baseline Courtemanche cell model on the mean shape geometry. Other
anatomical shapes of the atria, e.g., with bigger appendages, might have led to different
results as sensitivity analysis might have identified different CV regions affecting the P wave.
However, the CV variation in the four regions chosen based on the sensitvity results in
this study is consistent with spatially heterogeneous conducting regions considered in other
studies (compare chapter 9 and chapter 8).

For the multiscale population of atrial models, only one torso geometry and no additional
variation in terms of the atrial rotation angles were considered. When including thoracic shape
variability, a variation of the first two eigenmodes of the SSM developed by Pishchulin et
al. [179] would be sufficient to describe a large cohort. These two eigenmodes reflect in
torso shape changes associated with height, weight and gender differences. The ensuing
eigenmodes represent a change in body posture which are not particularly relevant for
the simulation outcomes and do not represent pertinent variability in a large population.
Furthermore, no fibrotic remodeling was included in selected tissue regions on the atria up
until now which are indeed crucial to assess arrhythmia vulnerability and to test the efficacy
of different channel blockers.

The forward calculation was performed using the infinite volume conductor method
which was shown to cause a prominent amplitude overestimation in lead V1-V3 (see chap-
ter 4). Consequentially, these leads were not considered when calibrating the population
based on the ECG simulation results. However, applying instead the boundary element
method (see section 3.1.3.2) would allow for using all 12 leads as an additional source of
evidence for accepting only model instances with morphology and biomarkers in the entire
12-lead ECG within clinical ranges. A threshold of 0.1 for the averaged rmse ε was applied
to decide between accepted and rejected model instances during the P wave morphology
calibration step. This threshold was chosen empirically based on exemplary reconstructed
simulated signals in the clinical ECG eigenspace. In Figure 6.11, two examples for an ac-
cepted and rejected (ε = 0.08 and ε = 0.12) simulation run are shown. Choosing a different
threshold for ε would clearly have led to a different number of instances retained for the
final multiscale model population.
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Figure 6.11: Two examples of simulated signals (blue lines) and their least squares reconstructionwith
in the clinical ECG eigenspace. The example in the top panel shows an ECG of a model instance that
was accepted in the population as ε < 0.1, the example in the bottom panel was rejected.





Chapter 7
Simulation of a Large-scale ECG
Dataset of Healthy Subjects and

Selected Pathologies

In this chapter, the simulation of 10,000 12-lead electrocardiogram (ECG) signals of
10 seconds length for healthy subjects and patients with selected cardiac pathologies is
presented. These are of a comparable format to clinically measured ECGs and could there-
fore be directly employed as an extension to clinically recorded signals for deep learning
applications.

This study was carried out within the scope of a project supported by the EMPIR pro-
gramme co-financed by the participating states and from the European Union’s Horizon
2020 research and innovation programme under grant MedalCare 18HLT07. Methodology
and results were developed, generated and discussed in close collaboration with Karli
Gillette, Matthias Gsell and Gernot Plank from Medical University of Graz, Graz, Austria.
Karli Gillette simulated and provided the QRST segments for the healthy cohort and all
ventricular pathologies.

7.1 Introduction

Unless a four chamber heart model constitutes the underlying geometry for electrophysiolog-
ical simulations, basic simulation protocols applied for example within the openCARP [98]
simulation framework allow for generating single beat P waves or QRS(T) complexes and
lack the possibility to represent intra-patient variability in the ECG over time. This im-
pedes the direct and straight forward usage of simulated ECGs as an extension to clinically
measured datasets in the machine learning context since the simulated single beat ECG
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waveforms are not of a comparable format to clinically recorded ECG time series of at least
multiple seconds.

Thus, a synthesization pipeline was developed to stitch P waves and QRST segments
simulated independently of one another together. The synthesized heartbeat was then
extended to a 10 s ECG time series while accounting for heart rate variability within a
patient or subject. In this way, a dataset of 10,000 simulated ECGs was generated with
samples equally distributed among a healthy control group and patients with each of the
following cardiac pathologies: interatrial conduction block (IAB), left atrial enlargement
(LAE), arrhythmogenic fibrotic atrial cardiomyopathy (FAM), 1st degree atrioventricular
block (AVB), right bundle branch block (RBBB), left bundle branch block (LBBB) and
myocardial infarction (MI).

7.2 Methods

7.2.1 Simulation Protocol and Parameter Settings

The simulation parameters for P wave simulations of the healthy cohort and the atrial
pathologies (FAM, LAE and IAB) are explained in detail in chapter 8, chapter 9 and by
Bender et al. [260]. For the ventricular pathologies (LBBB, RBBB, MI) and AVB, P waves
of the healthy sinus rhythm control group were used in the subsequent synthesization
process (see section 7.2.2). Parameter ranges and modeling methodology for the ventricles
are described by Gillette et al. [34, 261]. For the healthy control group and each of the
pathologies listed above, 1,300 synthetic ECGs were simulated and synthesized, summing
up to a total of 10,400 in silico ECGs.

80 geometrical models of the atria underlain the simulation of the healthy control group,
as well as the FAM and IAB cohorts. They were generated by drawing the eigenvector
coefficients of the bi-atrial statistical shape model (SSM) (see chapter 5) from a Gaussian
distribution in the [-3σ , +3σ ] interval (see chapter 8). For the LAE cohort, 45 additional
anatomical models were generated by optimizing the SSM’s eigenvector coefficients such
that the left atrial volumes were uniformly distributed between 48 and 65 ml which is
explained in greater detail in chapter 9. Conduction velocity was assigned to different atrial
regions and varied within physiological intervals for all pathology classes and the control
group. Fibrosis was modeled as described in chapter 8, key parameters considered in fibrotic
remodeling scenarios are summarized in section 8.2.1.2. The atria were placed in a torso
volume conductor for which geometrical models were also derived from a human body
SSM [179]. The reference position of the atria inside the thorax was defined based on the
mean location and orientation of eight patient-specific atrial models in their respective torso
geometry [141]. The rotation angle and translation parameters of the heart within the torso
around and along all three coordinate axes were varied relative to the reference position
in ranges of [-15 ◦, +15 ◦] and [15 mm, +15 mm], respectively. The Eikonal model was
solved with the Fast Iterative (for LAE, FAM and the healthy control group) and the Fast
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Marching method (for IAB) to calculate local activation times (LATs) and based thereon,
the transmembrane voltage distribution with a Courtemanche et al. [91] action potential
template as described in section 3.1.2.3. The forward problem was solved with the boundary
element method (BEM) (for LAE and IAB) and the infinite volume conductor method (for
FAM and the healthy control group) to obtain P waves of the 12-lead ECG. Further details
on the simulation protocol and parameter settings for the FAM and healthy cohort, the LAE
cohort and the IAB cohort are elaborated on in chapter 8, chapter 9 and in the study from
Bender et al. [260].

7.2.2 Synthesization of P waves and QRST segments

The pipeline for synthesizing single beat P waves and QRST segments from individual
simulation runs is outlined in Figure 7.1. ECG segments of atrial and ventricular activity

Figure 7.1: Synthesization pipeline for stitching P waves and QRST segments from separate simula-
tions runs together and generate a 10 s ECG time segment. Multivariate normal distributions (MVDs)
were set up using ECG timing and amplitude features extracted from clinical signals. In this way, R peak
amplitudes were first scaled to match the simulated P wave amplitude, a realistic PQ segment was cho-
sen complying with the simulated P wave duration and a mean heart rate was defined based on the
QT interval of the simulated QRST segment. An RR time series was generated based on a heart rate
variability model to concatenate the resulting single heartbeat to a 10 s signal trace which can option-
ally be superimposed with realistic ECG noise and band-pass filtered using the recommended cut-off
frequency settings.

were generated in separate simulation runs independently from one another. Thus, it was
not explicitly ensured that heart and torso geometries for the resulting atrial and ventricular
signals are compatible. In particular, P wave and R peak amplitudes were likely to mismatch
since also different forward calculation methods were employed for atrial and ventricular
simulations. Thus, an amplitude scaling step marked the beginning of the synthesization
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process. For that purpose, a multivariate normal distribution (MVD) was set up for P wave
amplitude and R peak amplitude extracted from 918 ECGs of healthy subjects in the Phys-
ionet Computing in Cardiology 2020 Challenge Database [262] as described previously [263].
The resulting distribution is visualized in Figure 7.2.

Figure 7.2: Multivariate normal distribution for R peak and P wave amplitudes. The left panel shows
the probability of specific combinations of R peak and P wave amplitudes in lead II. The right panel
represents the same information as a 2D projection with probability densities color coded in the same
way as in the figure on the left hand side.

From the P wave simulation result to be synthesized with a QRST segment, the P wave
amplitude in lead II was calculated and in this way, a realistic scaling factor for multiplying
the respective simulated QRST segment was drawn from the MVD. Likewise, an MVD
for P wave duration and PQ interval extracted using ECGdeli [250] from the same clinical
database [262] was constructed to sample a time interval for the PQ segment matching the
simulated P wave duration. For the AVB pathology class, the PQ segment was constrained to
be sampled so that the PR interval quantified to at least 200 ms. The scaled QRST segment
could be stitched together with the simulated P wave by inserting a sigmoid function of a
length determined by the PQ segment in between. This single simulated heartbeat was then
further processed and extended to a 10 s ECG time series as explained in section 7.2.3.

7.2.3 Realizing Beat-to-beat Variability Through a Heart
Rate Variability Model

Building on an MVD of QT intervals and mean RR intervals, the mean heart rate of the
simulated and synthesized ECG signal was determined based on the QT interval extracted
from the ventricular simulation outcome. This mean RR interval was used to generate a
time series of RR intervals with the heart rate variability model proposed by Kantelhardt et
al. [264]. Their model considers transient correlation of successive heartbeats and stochastic
variation underlying the regulation and change in heart rate over time. By scaling the
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QRST segment so that the QT interval matches the single RR interval for every heartbeat
and adding a sigmoid TP segment to fill up the remaining ECG samples in between two
beats, the 10 s time series of the ECG was constructed. This was subsequently superimposed
with realistic ECG noise [265] and filtered with a low- and high-pass filter with their cut-off
frequencies set to 150 Hz and 0.5 Hz, respectively.

7.2.4 Assessing Fidelity of Simulated Signals

6 timing features (P wave duration, PR interval, QRS duration, QT interval, T wave duration
and RR interval) and 5 amplitude features in each lead (P wave amplitude, Q-, R- and
S peak amplitudes, T wave amplitudes) were extracted from the resulting simulated database
comprising 1,300 signals per pathology class or healthy control group. The same features
were extracted from the PTB XL database [16]. This dataset has neither been used before
in any calibration step preceding the P wave and QRST simulations in this study nor in the
generation of the MVDs and could thus serve as an independent validation resource to assess
fidelity of the simulated signals by comparing the resulting feature distributions.

7.3 Results

Example ECGs of the in silico cohorts for the healthy control group (red curves) and the atrial
pathologies (blue curves) are shown in Figure 7.3. Examples for ventricular pathological
signals are to be found in appendix B in Figure B.1. Simulated signals exhibit P wave
alterations compared to the healthy case characteristic for the specific disease: In LAE
signals, the overall P wave duration is slightly prolonged and also P wave terminal force,
calculated in clinical practice as the product of interval and amplitude of the negative
deflection in lead V1, is increased compared to the healthy control group. Also in IAB
signals, P wave duration is increased. Additionally, a change in morphology, polarity and
amplitude is visible especially in lead III and aVL. Signal variations in FAM ECGs are more
subtle and comprise a marginal increase of P wave duration and a small decrease in P wave
amplitude, mostly visible in the anterolateral leads V5 and V6.

The feature distributions for all timing features and the amplitude features in lead II for
the simulated and clinical healthy control group are depicted in Figure 7.4. It gets apparent
from Figure 7.4, that the features extracted from the simulated cohort lie within the ranges of
those extracted from clinical signals. Large deviations, however, are visible in the T wave
amplitude that ranged until 1 mV in the simulated cohort, whereas the largest values in the
clinical signals did not exceed 0.5 mV.

In Figure 7.5, the distributions of characteristic features used for a diagnosis of each
atrial disease are compared to the respective distribution of the healthy control group. It is
evident, that the trend in feature shifts between healthy control and the pathological cases is
consistent between the simulated and clinical LAE cohorts. In the IAB cohort, amplitudes
in the lateral limb leads tend to be smaller compared to the respective quantities in the
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Figure 7.3: Example 12-lead P waves for the atrial pathology classes. Red and blue curves represent
simulated signals of the healthy control and the LAE, IAB and FAM pathologies from top to bottom
row.

healthy control group. Characteristic features for the FAM class comprise P wave amplitude
in the anterolateral leads that statistically exhibit smaller values than the ones extractable
from the healthy cohort. However, for FAM and IAB, no clinical signals were available in
PTB XL. A comparison with measured P wave features from another clinical data source
is shown in detail for the FAM class in section 8.3.2. A quantitative validation of IAB
P wave timing, amplitude and morphology features was carried out by Bender et al. [260]
(see section 7.4). Feature distributions for the AVB class and the ventricular pathologies are
shown in appendix B in Figure B.2.

7.4 Discussion

In the study presented in this chapter, a large scale dataset of 10,000 simulated 12-lead
ECGs each of 10 s length was compiled and validated against clinical signals. The synthetic
database will be published and made openly available to the community together with a
complete list of parameters underlying the generation of each signal. Besides a healthy
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Figure 7.4: Feature distributions for the healthy control group. Red and blue curves represent the
probability density of the extracted feature values from the simulated and clinical ECGs, respectively.
The top row shows the interval features, the bottom row the amplitude features calculated in lead II.

Figure 7.5: Feature distributions for the atrial pathologies compared to the healthy control group. Red
and blue curves represent the probability density of the extracted feature values from the simulated
and clinical ECGs, respectively. Dashed and solid lines show the distributions of the pathologies (from
left to right: LAE, IAB, FAM) and healthy control, respectively.

control group, pathologies covered in this in silico dataset comprise FAM, LAE and IAB as
examples for atrial diseases, AVB as an example for atrioventricular conduction disorders, as
well as LBBB, RBBB and MI as examples for ventricular pathologies. These pathologies
reflect in altered ECG signal characteristics of different degrees. Thus, the generated ECGs
are particularly suitable as a benchmark dataset to develop machine learning algorithms for
automated signal analysis and arrhythmia classification, even for difficult classification tasks
requiring the detection of subtle signal variations. The simulated dataset fulfills important
properties essential for developing such ECG-based computer assisted diagnostic tools: It
contains a large number of signals in contrast to most data sources of clinically recorded
ECGs [262], the number of samples per pathology class is equally distributed and the ground
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truth of the underlying pathology did not need to be annotated by cardiologists, but was
instead defined by parameter changes in the underlying simulation run and are thus precisely
known. As such, the presented dataset can be employed for transfer learning tasks, i.e., to pre-
train a machine learning classifier on simulated data and fine-tuning it using the actual clinical
ECGs. In this way, the learning process can be considerably expedited and streamlined, as
the network can build on prior knowledge and experience instead of learning dependencies
in the input data from scratch. However, an important prerequisite for successful pre-training
of a network is a small domain gap between the dataset for initializing the network’s weights
and the actual data the network’s performance should be optimized for. Therefore, an explicit
validation step ensuring that the in silico ECGs are representative and realistic compared to
clinically measured signals is indispensable. Moreover, the presented database allows for
full traceability of altered ECG characteristics with regard to underlying cellular, anatomical
and tissue properties, as parameter sets defined for each simulation run are are available for
each ECG signal.

In the study presented in this chapter, the validation of the simulated ECGs was performed
by annotating fiducial points in the 12-lead signal, delineating single waveforms and extract-
ing common timing and amplitude features therefrom. The comparison with clinical ECG
features extracted in the same way showed that simulated ECG features lied mostly within
the range of the clinical intervals in the healthy case. However, simulated T waves showed
too high amplitudes compared to clinical feature statistics, most likely having occurred due
to too high action potential duration gradients in apico-basal direction mapped onto the τclose

parameter in the Mitchell-Schaeffer ionic model [266]. The comparison of feature statistics
also shows that the simulated data do not cover the full range of the feature variation in the
clinical case. Especially RR intervals exhibited a much more narrow distribution around a
mean of 750 ms compared to clinical features. However, the mean RR interval in the in silico
dataset was defined using an MVD based on the simulated QT interval, for which the feature
distribution was also smaller and shifted to smaller time values compared to the clinical case.
It can thus be concluded that the simulated feature statistics are consistent in themselves and
do not exhibit unrealistic feature combinations within the same signal. Simulated signals not
covering the entire range of clinically measurable feature values might have occurred due to
insufficient simulation parameter variation not exploiting the full physiological ranges.

In the pathological cases, the shift and change of feature statistics compared to the
healthy control case was compared among simulated and clinical data. For all pathologies
where corresponding data was available in the clinical PTB XL dataset, the changes in
feature statistics were consistent between in silico and clinically measured ECGs (compare
Figure 7.5 and Figure B.2). PTB XL lacked the respective signals for the FAM and the
IAB pathology class, inhibiting a similar approach for the ECGs in these classes. However,
a detailed comparison of simulated and clinical P wave features for the FAM class was
carried out using a different clinical datset in chapter 8. The change in P wave amplitude in
V6 as shown in Figure 7.5 (left panel) can be attributed to the chosen fibrosis remodeling
methodology, as 50 % of the elements in fibrotic patches were modeled as passive conduction
barriers not contributing to the overall source distribution in the heart and thus causing a
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decreased P wave amplitude on the body surface. Bender et al. [260] presented the generation
and validation of simulated P waves for the IAB pathology class and discussed the resulting
feature variations in detail. They found that P wave amplitude variation in lead aVL as visible
in Figure 7.5 (middle panel) arose specifically due to conduction blockage in Bachmann’s
bundle and the accompanying retrograde activation of the left atrium.

The 10 s time series of synthetic ECGs were generated by concatenating P waves and
QRST segments simulated independently from one another. Different methods for solving
the forward problem of electrocardiography were employed for the atrial and ventricular
simulations and moreover, different torso volume conductors were used in the simulation
runs of atrial and ventricular signals which were later concatenated to the ECG time series.
Even though an amplitude scaling step was introduced to prevent the generation of an ECG
heartbeat exhibiting non-matching amplitudes of P waves and QRS complexes, it is not
ensured that the chosen atrial and ventricular anatomical and electrophysiological parameters
underlying the generation of one specific ECG signal are compatible.

Anzlinger [267] presented a different approach for synthesizing single beat P waves and
QRST segments to a time series of 10 s ECGs. They extracted intra-patient variability in
various ECG features from clinical data and sampled scaling factors for amplitude and time
intervals to vary single P waves and QRST segments to be concatenated to the resulting
time series signal. However, this approach lacks the possibility of representing correlating
RR intervals of subsequent beats. Furthermore, mutually dependent ECG features, e.g. QT-
and RR intervals, were not accounted for, potentially leading to inconsistent ECG feature
distributions within the same patient or subject. Therefore, the heart rate variability model
developed by Kantelhardt [264] was implemented for this study to generate realistic RR in-
terval time series and MVD feature distributions were generated based on an independent
clinical ECG dataset to take dependencies of intra-patient feature variations into account.
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Chapter 8
Estimation of Left Atrial Fibrosis

In this chapter, the capability of neural networks applied to simulated and clinical P waves to
estimate the volume fraction of fibrotic substrate in the atria is examined. In this way, the
potential of the 12-lead electrocardiogram (ECG) as a non-invasive and cost-effective tool
for the early detection of fibrotic atrial cardiomyopathy can be gauged to ultimately stratify
atrial fibrillation (AF) propensity.

The content of this chapter is taken from a paper and two conference proceedings that have all
been published open access under licence CC-BY 4.0 in Journal of Clinical Medicine [122],
Current Directions in Biomedical Engineering [268], and Computing in Cardiology [269].
Most passages in this chapter have been quoted verbatim from the publications.

8.1 Introduction

The clinical picture of AF is characterized by disorganized reentrant waves traversing the
atrial tissue and causing an irregular heart rhythm (see section 2.3). The maintenance of
the arrhythmia requires either sustained rapid ectopic foci firing or a single ectopic focus
acting as an AF driver in regions of vulnerable atrial substrate. Hence, fibrotic tissue having
undergone structural and electrical remodeling processes provides the necessary substrate
to contribute to the perpetuation of AF [270, 271]. Disease mechanisms contributing to
fibrotic remodeling of atrial tissue include an increased deposition of collagen strands and
other extracellular matrix proteins in the interstitial space. The accumulation of collagenous
septa implies the separation and electrical decoupling of myocytes and thus restricts the
electrical depolarization wave to propagate via alternate conduction pathways. With increased
conduction anisotropy, slowed conduction due to down-regulated gap junction proteins, and
the formation of unidirectional conduction blocks, fibrotic patches provide an arrhythmogenic
substrate for the initiation and maintenance of functional and anatomical re-entry patterns.

Quantifying the amount of these arrhythmogenic substrate areas could thus be an impor-
tant means for individual risk stratification of new-onset AF and arrhythmogenic fibrotic
atrial cardiomyopathy (FAM) [272, 273]. Moreover, it could serve as a basis for suggest-
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ing susceptible patients for AF screening, choosing an appropriate treatment strategy, and
reducing the risk of accompanying co-morbidities [81].

Catheter ablation is a common treatment option in clinical practice for the purpose of
blocking certain conduction pathways in the atria that are suspected to contribute to the
onset and maintenance of the arrhythmia. However, the optimal choice of these ablation
targets beyond pulmonary vein isolation is challenging and calls for a personalized approach.
AF recurrence rates between 20 and 60% in patients with large arrhythmogenic substrate
areas in the atria [274] underline the need to tailor therapy to the substrate [275–278].
Accordingly, scarring of additional targets in those patients was suggested to improve the
ablation outcome [31, 279–281]. Quantifying the amount of atrial fibrosis non-invasively
using the ECG could thus contribute to select patients suitable for ablation and contribute to
a more effective treatment of AF [279].

High intensity areas on late Gadolinium enhancement magnetic resonance imagings
(LGE-MRIs) as well as low bi- and unipolar electrogram voltages [80, 216, 282] recorded
during electrophysiological studies are currently drawn on to identify the amount and
spatial location of scars and fibrosis on the atrial endocardial wall. However, LGE-MRI
is a cost-intensive imaging technique for which technical parameters have to be carefully
selected. Additionally, segmentation of magnetic resonance (MR) images is cumbersome
and challenging [201]. Furthermore, electroanatomical mapping is an invasive and time-
consuming procedure with inter-electrode spacing and electrode sizes being additional
confounding factors influencing electrogram voltages [283].

To circumvent these shortcomings, the 12-lead ECG as a commonly available and easily
usable tool in clinical practice could feature a way to quantify the fibrotic left atrial volume
fraction and in consequence predict the propensity to future AF incidents [284]. The duration
of the P wave in the 12-lead ECG has been shown to correlate with the amount of left atrial
(LA) low-voltage substrate in AF patients if a low threshold for determining P wave on- and
offsets are chosen [273, 285–287]. P wave terminal force in V1 (PTF V1) has been identified
as sensitive to a change in conduction velocity in the atria [176], which is typically caused
by fibrotic substrate in AF patients. Also P wave dispersion, i.e., the difference between
latest and earliest detectable P wave offset across all 12 ECG leads, has been shown to be
a measure for locally heterogeneous conducting tissue regions [272]. Other ECG-based
predictors for the onset of AF and for the presence of low-voltage areas include P wave
amplitude [288, 289], P wave area in V3 [290] and root mean squared (rms) voltage in the
terminal P wave signal parts [291].

However, these P wave-derived features are not only affected by fibrotic infiltration
of atrial tissue. P wave duration (PWd) and dispersion are also influenced by changes in
conduction velocity and atrial anatomy [169] that both vary between different subjects within
healthy reference ranges [215, 292, 293]. Furthermore, PTF V1 is highly dependent on
the placement of the electrodes on the thorax [294]. Lastly, different thoracic geometries
yield different P wave amplitudes, which might additionally be impaired by loose electrode
contact.
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Therefore, the aim of the study presented in this chapter was to quantify which changes
in P wave morphology, amplitude and duration can be attributed specifically to fibrotic
infiltration of atrial tissue. Furthermore, it was investigated if these effects on the P wave can
be separated from confounding changes induced by healthy anatomical variation of the atria
and the thorax as well as different electrode positions. For that purpose, various anatomical
model combinations were composed constituting of different geometries for atria and torsos
as well as different orientation angles of the atria within the torso. Electrophysiological
simulations with inclusion of fibrotic regions in the atria of different volume fraction were
conducted in sinus rhythm wherefore a set of different baseline conduction velocitys (CVs)
in healthy reference ranges were imposed to also account for functional variation within the
virtual cohort. Subsequently, changes in P wave features caused by geometry and rotation
angle variations (section 8.3.1) were compared to those caused by local atrial substrate
modifications (section 8.3.2). The results thereof were employed to estimate the fibrotic LA
volume fraction from simulated P wave features with neural networks in section 8.2.4.

For a successful clinical translation of the proposed ECG-based fibrosis estimation
method, the network needs to fulfill the requirement of low sensitivity to inaccurately
extracted feature values which is addressed in section 8.3.3.4. This is because the proposed
regression model would rely on features extracted from simulated P waves of the 12-lead
ECG. Those features might be easily and robustly extractable from noise-free simulated
signals, but their values are subject to several disturbances in the clinical use case. It was
therefore quantified how sensitive the network would be towards inaccurately determined
feature values and to what extent the network’s estimation of the fibrotic volume fraction
would still be reliable if the feature values were superimposed with noise (see section 8.3.3.4).

Finally, to investigate the expediency and applicability of the proposed methods in a
realistic clinical use case, the developed network is applied to measured clinical ECGs (see
section 8.2.2).

8.2 Methods

8.2.1 In silico Database

8.2.1.1 Virtual Patient Cohort

In order to generate a large-scale dataset of P waves representing a virtual patient cohort
characterized by different anatomical properties, various atrial and thoracic geometries were
derived from statistical shape models (SSMs). The bi-atrial SSM described in detail in
chapter 5 [169] was used to generate 80 random volumetric instances of the atria augmented
with homogeneous wall thickness, rule-based fiber orientation [213], tags for anatomical
structures and inter-atrial connections [200]. An exemplary instance is shown in Figure 5.5.
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Furthermore, 25 thoracic geometries were generated by varying the two leading eigen-
vectors of the model developed by Pishchulin et al. [179] systematically in the [−2,2]σ
range. The first two eigenvectors account for approximately 80% of the total shape variance.
The first two eigenmodes, i.e., the shape variability resulting from a variation of only the
respective eigenvector, are visualized in Figure 8.1. A variation of both of them reflects in a
change of the torso size in superior-inferior direction and in anterior-posterior direction in
both the chest and the abdominal regions. In this way, height, weight and gender variation
could be accounted for in the virtual cohort.

Figure 8.1: Representation of eigenmodes of the upper body statistical shape model. The first eigen-
mode (top row) reflects in a change of the torso size predominantly in the abdominal region, the second
one (bottom row) in the chest region.

Each of the 80 atrial geometries were rotated by -20◦, 0◦ and +20◦ around the x-, y- and
z-axes [295] leading to 27 permutations of different orientation angles for each individual
atrial geometry. Combinations of every rotated atrial geometry placed in each of the 25
thoracic geometries were realized and thus a set of 54,000 anatomical models were obtained.
The different model and parameter combinations are illustrated in Figure 8.2. For each of
these combinations, electrophysiological simulations were conducted in sinus rhythm and
the 12-lead ECG was extracted at the standardized electrode positions. The sinus rhythm
simulations were repeated with electrical and structural remodeling of different degrees for
all model combinations. For that purpose, the ionic and tissue parameters were modified
as described in section 8.2.1.2 in selected tissue patches covering 0%, 5%, 10%, 15%,
20%, 25%, 30%, 35%, 40% and 45% of the total LA myocardial volume. In this way, the
virtual cohort comprised a total of 540,000 (80 atria geometries × 25 torso geometries × 27
rotation angles × 10 volume fractions covered by fibrosis) anatomical model combinations of
healthy subjects and FAM patients. These were subject to the electrophyiological simulations
described in section 8.2.1.3 to finally obtain 642,400 12-lead ECG signals evaluated and
processed for the analysis described in sections 8.2.3 and 8.2.4.
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Figure 8.2: Representation of the different model combinations. A total of 642,400 P waves were
simulated for a virtual patient cohort characterized by anatomical and functional variability as well as
fibrosis covering different volume fractions of the atrial tissue.

8.2.1.2 Modeling Methodology of Fibrotic Tissue

For each atrial model, variants with fibrosis covering 0%, 5%, 10%, 15%, 20%, 25%, 30%,
35%, 40% and 45% of the total LA myocardium volume were created. Subsequently, the
volume fraction of right atrial fibrosis was defined for each case according to the findings
from Akoum et al. [296] (Table 8.1).

Table 8.1: Volume fraction of fibrosis in the right atrium for each Utah stage as reported by Akoum et
al. [296].

Utah Stage Fibrotic LA volume fraction Fibrotic RA volume fraction

Utah I 0 - 5% 1.27 ± 0.38%

Utah II 5 - 20% 4.65 ± 0.70%

Utah III 20 - 35% 9.40 ± 2.16%

Utah IV >35% 12.66 ± 3.0%

Considering the patchiness of fibrosis observed in AF patients [297], several disconnected
patches on the atrial surface were defined as fibrotic accumulating to the total left atrium
(LA) volume fraction of fibrosis. Each of these individual fibrotic patches was defined by
a center seed point and a radius around it. The total number of seed points and the sizes
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Figure 8.3: Definition of the spatial distribution of fibrotic tissue. The atrial geometry was first sep-
arated into 6 subregions for the left and 2 subregions for the right atrium as reported by Akoum et
al. [296] and Higuchi et al. [145] indicated by the black separation lines. The stage of fibrosis to be
modeled was then set (15% in this example) and the number of seed points and radii around them
were chosen pseudo-randomly by ensuring that within each of these subregions, the total volume of
fibrotic elements accumulated to the spatial fibrosis distribution found in clinical studies [145, 296].
80% of the cells in these candidate regions were defined as fibrotic (middle column) and this process
was repeated for all subregions (right column).

of the radii were chosen depending on the total volume fraction of fibrosis to be covered.
The positions of the seed points for the patchy fibrotic regions were defined by taking the
spatial distribution of fibrotic atrial substrate as reported by Higuchi et al. [145] for the
left and Akoum et al. [296] for the right atrium into account. Radii randomly chosen in a
range of [3, 6] mm around these seed points determined the candidate regions of fibrosis
in the atria. To not only account for the patchy nature of fibrotic tissue, but also for its
diffuse appearance, around 80% of the cells within the candidate regions defined above were
assigned to the fibrotic substrate (compare Figure 8.3 (middle and left column)). In these
substrate regions, the simulation parameters were adjusted as described in the following to
account for structural and electrical fibrotic remodeling.

Fibrosis infiltrating the regular myocyte tissue structure cause adjacent myocytes to
be electrically decoupled and thus act as passive barriers to the propagating wavefront.
The concept of percolation [128] was drawn on to account for this phenomenon in the
simulations. 50% of the cells within the fibrotic regions were therefore defined as belonging
to the extracellular matrix. Hence, these cells impair the normally straight conduction across
the tissue and constrain the intracellular depolarization wave to pass around the fibrotic
barriers [81]. In the remaining 50% of the cells belonging to the fibrotic regions, maximal
ionic conductances were rescaled as suggested by Roney et al. [82] to account for cytokine-
induced remodeling (50% gK1 , 60% gNa, 50% gCaL) [48]. Furthermore, conduction velocities
were reduced by 80% in transversal and 50% in longitudinal direction, which in turn caused
anisotropy ratios to be increased by a factor of 2.5. In this way, local CV heterogeneities and
anisotropic wavefront propagation was accounted for facilitating functional reentry in AF
patients [298].
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8.2.1.3 Electrophysiological Simulations

For each atrial model and volume fraction covered by fibrosis, simulations were performed
by solving the anisotropic Eikonal equation with the fast iterative method [158]. For all
simulations, excitation was initiated from a sinus node trigger located at the junction of the
superior caval vein and the right atrial appendage [149]. The atrial wall was separated into
five different anatomical regions: bulk right and left atrium, inter-atrial connections, pectinate
muscles, crista terminalis and inferior isthmus. For each of these regions, the anisotropy ratio
and baseline (B) conduction velocity in transversal (⊥) fiber direction CV⊥,B were chosen as
reported previously [149] (Table 8.2). For simulations involving fibrotic tissue areas, two
additional anatomical regions were included as described in section 8.2.1.2: Non-conductive
elements were characterized by a conduction velocity of CV⊥ = 0 mm/s and CV was reduced
by 80% in slow conducting cells. Anisotropy ratio in slow conducting tissue was increased
by a factor of 2.5 compared to baseline.

Table 8.2: Conduction velocities in transversal fiber direction and anisotropy ratios.

Tissue region CV⊥,B in m/s Anisotropy ratio

Bulk right and left atrium 0.591 2.090

Crista terminalis 0.591 2.843

Pectinate muscles 0.461 3.780

Inter-atrial connections 0.645 3.339

Inferior isthmus 0.540 1

Fibrosis (non-conductive) 0 NA

Fibrosis (slow conducting) 0.2· CV⊥ 2.5 · AR

To additionally account for functional variability within the virtual cohort, 1-3 different
CV values in the interval [-20 %, +20 %] · CV⊥,B were sampled in each region assuming a
uniform distribution for each of the 540,000 anatomical model combinations described in
section 8.2.1.1.

By solving the Eikonal equation, the spread of electrical activation in sinus rhythm was
computed and local activation times (LATs) were obtained at each node. By shifting a
Courtemanche et al. [91] action potential template in time according to the calculated LATs
as proposed by Kahlmann et al. [299], the transmembrane voltage distribution on the atria
was obtained. A remodeled Courtemanche action potential as described in section 8.2.1.2 was
used for cells in slow conducting fibrotic areas representing cytokine-induced remodeling.

For each model combination explained in section 8.2.1, the atria were assumed to be em-
bedded in an infinite volume conductor of conductivity σs = 0.2 S/m [139]. The extracellular
potentials were extracted at the respective electrode positions [300] and used to derive the
P wave of the standard 12-lead ECG. For analyzing the influence of the V1 electrode position
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on PTF V1, the 12-lead ECG was also extracted from the electrophysiological simulations
with the reference atria and torso geometry for varying positions of the V1 electrode. The
latter was varied within a radius of 6 cm around the standard V1 electrode position.

The raw ECGs simulated in this way were subject to feature extraction (see section 8.2.3)
to systematically evaluate the influence of healthy anatomical, functional and pathological
variation on ECG features (see sections 8.3.1 and 8.3.2) and assess whether these features
carry diagnostically relevant information to estimate the LA volume fraction of fibrosis
with neural networks (see section 8.3.3). To systematically investigate the influence of
inaccurately extracted features, Gaussian noise was added directly to the extracted feature
values as described in detail in section 8.3.3.4. For the translational study described in
section 8.2.2, realistic ECG noise as generated by Petrenas et al. [265] was added to the
simulated signals before applying high- and lowpass filters with cut-off frequencies of 0.5 Hz
and 150 Hz as recommended by Kligfield et al. [301], respectively.

8.2.2 Clinical Database

From 27 AF patients who underwent an electroanatomical mapping procedure at Städtisches
Klinikum Karlsruhe and University Hospital Essen, bipolar electrograms as well as 12-lead
ECGs in sensed paced rhythm were recorded (see Figure 8.4, left panel). The patients’ age
ranged between 49 and 84 years (67.19±8.64 years) and 11 out of the 27 patients were
women. Patients provided informed consent and the study was approved by the institutional
review boards. Detecting the activity at the pacing site from the electrograms allowed to
select time windows of normal sinus rhythm activity in the ECG traces (green highlighted
intervals in Figure 8.4). ECGdeli [250] was applied to automatically delineate the P waves
in the 12-lead ECGs in sinus rhythm. Furthermore, the fraction of fibrotic substrate in the
left atrial endocardium was calculated for each patient by identifying the areas where bipolar
peak-to-peak voltage in the intracardiac electrograms was below 0.5 mV. P waves were also
delineated using ECGdeli in the 12-lead sinus rhythm ECGs of 7,185 healthy subjects from
the public PTB-XL dataset [16] (see Figure 8.4, right panel).

In this way, a total of 68,282 single clinical P waves from 7,185 subjects in the control
group and 42,227 single P waves from 27 patients with an extent of fibrotic left atrial areas
between 7.05 % and 77.28 % were used as clinical input for the machine learning classifiers.
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Figure 8.4: Clinical ECG data from 27 AF patients and 7,185 healthy individuals applied for clinical
translation of the fibrosis estimation methods. Time periods of normal sinus rhythm activity were
extracted from the ECG recordings in sensed paced rhythm (green intervals in the left panel) and ground
truth fibrotic volume fraction was calculated as the surface area fraction where bipolar voltage was
below a threshold of 0.5mV. The delineation tools from ECGdeli allowed to extract P waves from the
AF and healthy ECG recordings which were subsequently fed into the feature extraction pipeline (right
panel).

8.2.3 ECG Analysis and Feature Extraction

For each of the resulting 642,400 simulated and 110,509 clinical P waves of the 12-lead ECG,
the following features were calculated: duration, dispersion, terminal force in V1, peak-to-
peak amplitude in each lead, P wave integral as well as the rms voltage in the entire signal
and terminal 20, 30 and 40 ms of the ECG signal trace. These features have been shown to
correlate with the presence of fibrotic atrial tissue in previous work [176, 273, 288–291] and
are visualized in Figure 8.5.

In some of these previous studies, it was also shown that not only fibrosis but also
antomical and functional variability prevailing in a healthy cohort have an impact on ECG
features. Therefore, the network performance was anticipated to decrease for samples
with extraordinary high and low LA volumes. Thus, 5 additional non-invasive features
representing LA and RA volume, torso volume and torso diameter in anterior-posterior
direction in the chest and the abdominal region were optionally included when training the
network.
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PWd was calculated as the time difference between the latest detectable P wave offset and
the earliest detectable P wave onset across all 12 leads. For that purpose, the P wave onset
and offset was retrieved for each channel individually. In simulated signals, only the actual
electrical activity originating from the depolarization of the atria reflects in the simulated
P waves and no interfering noise sources superimpose the simulation outcome. Therefore,
the P wave endings and beginnings were annotated with simple thresholds defined above the
isolelectric line for the simulated cohort. ECGdeli [250] annotations for retrieving P wave on-
and offsets had to be relied on for the clinical dataset. P wave dispersion was subsequently
derived by computing the time difference between the latest and earliest detected P wave
ending across all 12 leads. To calculate PTF V1, the time difference between the detected
P wave ending in V1 and the signal crossing the isolelectric line between positive and
negative deflection was multiplied with the minimum amplitude in V1. The peak-to-peak
amplitudes were obtained by subtracting the minimum from the maximum P wave signal
value in all 12 leads individually. P wave integral in each lead was approximated with the
trapezoidal rule. The root mean square voltages were calculated as the square root of the
accumulated squared voltage values in the respective time interval extending in negative
time direction from the individually detected P wave offset in each lead. Features that were
extracted from only selected or all leads at once are visualized in Figure 8.5 (left panel),
along with features that were extracted for each of the 12 leads individually (right panel) and
anatomical measures (bottom panel).
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(a) P wave features extracted from all leads at once or only for selected leads (left) and from all leads
separately (right).

(b) Features for anatomical measures of the atria (left) and the torso (right).

Figure 8.5: Feature extraction. The top panel shows the P wave derived features (purple) that were
extracted from the simulated and clinical ECGs. Blue marked samples represent characteristic bounds
automatically detected in the ECG trace as a basis to compute the Pwave derived features. The bottom
panel shows the additional features representing anatomical atrial and thoracic measures.

8.2.4 Regression using Neural Networks

To evaluate whether and to what extent the influence of healthy inter-individual anatomical
variability on the P wave can be separated from changes caused by atrial fibrosis, a regression
neural network was set up. The built-in function fitting neural network in MATLAB was
used with 2 hidden layers comprising 10 and 5 neurons each. The network’s dimensions
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were increased compared to the algorithms applied in Nagel et al. [122] to account for the
increased problem complexity arising from providing 60 additional features as input parame-
ters to the network. In total, 75 P wave-derived features described in detail in section 8.2.3
and optionally 5 additional features for anatomical measures could serve as input for the
network:

• P wave features extracted from only selected or all leads at once
– P wave terminal force in V1
– P wave duration
– P wave dispersion

• P wave features extracted for all 12 leads individually
– P wave integral
– root mean squared voltage in terminal 40 ms
– root mean squared voltage in terminal 30 ms
– root mean squared voltage in terminal 20 ms
– root mean squared voltage in the entire signal
– peak-to-peak amplitudes

• Anatomical measures
– left atrial volume
– right atrial volume
– torso volume
– torso diameter in anterior-posterior direction in the abdominal region
– torso diameter in anterior-posterior direction in the chest region

Bayesian regularization was chosen as a training algorithm to predict the volume fraction
of LA fibrosis as an output. To evaluate the network’s performance, 6-fold cross validation
was applied wherefore P wave feature data were split into 6 subsets. P waves generated
with one specific atrial geometry (in case of simulated data) or extracted from the ECG
of one specific patient (in case of clinical data) were never assigned to different training
and testing sets in one split but instead kept all in the same set (’pseudo-random split’) as
proposed by Luongo et al. [228]. This procedure ensured that the network is blinded to
previously unseen atrial geometries and patient data during testing and does not link P wave
features in the test set to nearly the same feature values seen in the training set caused, e.g.,
only by a slight rotation of the atria in case of simulated data. Luongo et al. [228] also
found that excluding thoracic instead of atrial geometries during training still leads to good
generalization results, which is why it was decided to allocate the pseudo-random splits
using certain atrial geometries exclusively during testing.
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For each split, the simulated and clinical data were divided into 6 sets by combining
clinical P wave features of 1796-1797 healthy subjects and 4-5 AF patients with features
extracted from the simulated dataset generated based on 13-14 different atrial geometries.
Thus, the entire dataset was divided into groups of 67%, 17% and 17% for training, validation,
and testing, respectively. 6-fold cross-validation was performed by employing one of these
subsets at a time as a test set and using the remaining 5 sets for training and validation.
Through this procedure, it was ensured that P wave features extracted from one patient are
only included in either of the training, validation or test set, and that the testing of the trained
network is only performed based on the P waves from patients the network has never seen
before.

The network was trained 10 times for each of the 6 pseudo-random train-validation-test
configurations for a maximum of 1000 epochs each. Its performance was assessed by taking
the mean of the absolute root mean squared error (rmse) between the predicted and the actual
volume fraction of LA fibrosis among all 10 training iterations.

The network was trained and tested using different input feature and data source configu-
rations to shed light on the following research questions:

RESEARCH QUESTIONS

A: Does the network benefit from being provided simulated data as
an additional input data source when estimating the atrial fibrotic
extent with clinical ECGs?

B: Does the addition of realistic ECG noise and the applica-
tion of different low-pass filter settings on simulated training data
have an impact on the network performance when trained on a
hybrid dataset?

C: Do anatomical measures of the atria and the torso comple-
menting P wave-derived features as additional input data contribute
to an improved network performance?

D: To what extent is the network’s estimation of fibrotic vol-
ume fraction still reliable if input feature values are corrupted by
noise?

To quantify the added value that simulated data can contribute to improving the estimated
fibrotic volume fraction (A), the machine learning regression model outcome was compared
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when trained once by only using features from the clinical ECGs and once by additionally
providing simulated data during training.

The influence of filter settings and the preceding superposition of simulated data with
realistic ECG noise (B) was assessed by comparing the network output on the same clinical
test set when either trained with only clinical data or with a hybrid dataset for which the
simulated data were subject to different preprocessing steps (noise-free and without filtering,
addition of noise and 150 Hz low-pass filtering, addition of noise and 40 Hz low-pass
filtering).

The impact of additional input data consisting of anatomical measures (C) on the network
performance was evaluated by training the network once by only using simulated P wave-
derived features and once by extending these simulated features with the anatomical measures
from the geometries that were employed for the respective simulation run. Building on the
analysis described in section 8.3.1, it could be reasonable to assume that specific P wave
features are highly dependent on the anatomical properties of the (virtual) patient and thus,
the network’s performance would decrease systematically for samples with extraordinary
high and low atrial volumes or anatomical torso measures. It was therefore evaluated if
a potential systematic under- and overestimation for data samples of low and high atrial
and torso sizes can be avoided and compensated for by additionally providing features
representing anatomical measures as input to the network. As values for the anatomical
measures were not available for the clinical ECG data, the analysis was carried out on
simulated data only.

An important aspect for a successful clinical translation consists of the network’s sensi-
tivity towards inaccurately determined feature values. Although the ECG features are easily
and robustly extractable from noise-free simulated signals, their values are subject to several
disturbances in the clinical use case. Especially determining PWd is prone to errors since
sensitive thresholds are necessary to accurately capture all signal parts belonging to the
ECG [122]. Also measuring the volume of the atria, potentially serving as an additional
input feature quantifiable non-invasively via echocardiography, is oftentimes inaccurate [88].
It was therefore investigated to what extent the network’s estimation of fibrotic volume
fractions is still reliable if the feature values were corrupted by noise (D). Furthermore, the
analysis could shed light on key features that require accurate feature extraction methods for
reliably estimating the amount of fibrosis with the proposed network. To recreate the clinical
use case of inaccurately extracted features in a systematic way and controlled environment,
the simulated P wave features and the anatomical measures were superimposed with noise.
For each feature, 11 noise vectors were realized consisting of Gaussian noise with zero mean
and a standard deviation (σN) set to different fractions n with n ∈ [0, 0.05, 0.1, ..., 0.5] of the
standard deviation of the respective feature distribution (σS). By choosing Gaussian noise, it
was possible to account for different levels of imprecisely extracted values occurring when
applying automated feature extraction software.

The different network configurations set up to address the different aspects described
above are summarized in Table 8.3.
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8.3 Results

The resulting P wave features were analyzed regarding three different aspects: First, the
influence of anatomical variability and electrode positions on the P wave features were
compared to those caused by the presence of atrial fibrosis (section 8.3.1). Afterwards, it was
investigated to what extent the volume fraction of fibrotic substrate resulted in altered P wave
features (section 8.3.2). In section 8.3.3, it was analyzed if the effect of healthy anatomical
variations on P wave features can be separated by a neural network from the feature changes
resulting from the presence of fibrosis.

8.3.1 Influence of Geometries, Rotation Angles and
Electrode Positions on P wave Features

Figure 8.6: Exemplary ECGs resulting from a variation of anatomical and functional simulation param-
eters. From left to right: atrial geometry (small to large LA volumes range from light to dark blue), torso
size (small to large torso diameters range from light to dark red), rotation angle (small to large rotation
angles around the z axis range from light to dark orange), conduction velocity (small to large values
range from light to dark blue) and fibrotic LA volume fraction (small to large LA fibrotic volume frac-
tions range from light to dark turquoise).

.

Exemplary P waves (lead II and V1) for systematic variations of the atrial and thoracic
geometry, the rotation angle, conduction velocity and fibrotic volume fraction are shown
in Figure 8.6. The color code represents the dominant change underlying a variation of the
respective factor, e.g., LA volume as a key property of atrial geometry alterations. The other
dominant properties were the torso size in anterior-posterior direction, the rotation angle
around the z-axis, conduction velocity and fibrotic LA volume fraction for the torso geometry,
orientation angles, tissue-scale functional variability and fibrotic infiltration, respectively.
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The atrial geometry caused the largest deviations in P wave morphology. A change in torso
size reflects predominantly in a variation of P wave amplitudes. Increasing CV values caused
PWd to decrease.

The visual observations above based on exemplary simulated P waves were extended by
systematically evaluating P wave features of the complete in silico dataset. The individual
influence of anatomical variations and the placement of electrodes on these features was
assessed by varying one of these factors at a time while keeping the remaining ones constant
at their reference value. In this way, the variance of each P wave feature resulting from a
change of the atrial geometry, the torso geometry, the atrial rotation angle and in the case of
PTF V1 also the position of the V1 electrode was analyzed quantitatively.

Figure 8.7 shows the P wave feature distributions. To gauge the potential of one specific
P wave feature to be a predictor for the fibrotic atrial volume fraction, also the P wave feature
values resulting from fibrotic infiltration in the reference geometry are shown aside.
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(a) Influence of anatomical factors on P wave derived timing features (duration and disper-
sion).

(b) Influence of anatomical factors on PTF V1 and P wave amplitude in lead V6.

Figure 8.7: Influence of anatomical variations and electrode position on P wave features. The effect
of atrial geometry, thoracic geometry, atrial rotation angles, V1 electrode placement and the fibrotic
LA volume fraction on (a) PWd (top left), P wave dispersion (top right) and (b) PTF-V1 (bottom left), P
wave amplitude in V6 (bottom right). The colored sample points indicate one major change resulting
from a variation of the respective influencing factor which consist of the total LA volume (small to
large LA volume from light to dark blue), the torso diameter in anterior-posterior direction (small to
large diameter from light to dark red), the rotation angle around the z-axis (small to large angle from
light to dark orange), the position of the V1 electrode along the inferior-superior direction (inferior to
superior direction from light to dark purple) and the fibrotic LA volume fraction (0%-45% from light to
dark turquoise).
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Figure 8.7b reveals that all examined factors have an impact on the value of PTF V1. The
largest variance is however caused by a change in the torso geometry. Thoracic variations
characterized by a low diameter in anterior-posterior direction and atrial variations holding
large LA volume values yielded increased PTF V1 values, with some of them even above the
threshold of 4 mV·ms which is typically used when diagnosing structural heart abnormalities.
The influence of the exact V1 electrode position on PTF V1 is visualized directly on the top
right hand corner of Figure 8.7b. A rather superior placement of the V1 electrode on the
thorax caused increased PTF V1 values. The interquartile ranges in Figure 8.7b show that the
fibrotic LA volume fraction had a smaller effect on PTF V1 than any anatomical variation.
PWd was not affected by torso size and rotation angle (Figure 8.7a, left panel). On the
other hand, large LA volumes yielded P waves with durations up to 130 ms. Electrical and
structural remodeling of fibrotic tissue resulted in PWds up to 160 ms. Due to the proximity
of the V6 electrode to the LA lateral wall characterized by a high probability for the presence
of fibrosis [145], the peak-to-peak amplitude is shown for lead V6 in Figure 8.7b. All four
analyzed factors affected this feature, while the torso geometry caused the largest variation.
P wave dispersion was mostly affected by the atrial geometry (Figure 8.7a, right panel).
The maximum dispersion was 11 ms for the healthy anatomical variations and 13 ms in the
presence of fibrosis.

8.3.2 Effect of the Fibrotic LA Volume Fraction on P wave
Features

To examine to which extent the specific volume fraction of local atrial substrate modification
causes graded changes in the P wave features, each set of 12-lead ECGs belonging to one
particular volume fraction of fibrosis was analyzed at a time. As an example for the group of
lead independent features, the distribution of PWd among the simulated and clinical cohort
is shown in Figure 8.8a. When considering all anatomical and functional variations in the
simulated dataset of 642,400 ECGs as it is the case in Figure 8.8a, the value ranges of all
features overlap between the healthy and all diseased cohorts. Of the three lead independent
features (PWd, dispersion and PTF V1), PWd was the most discriminative single feature.

As an example for the lead dependent set of P wave features, the rms voltage values in the
terminal 20ms of the P wave in lead I are shown in Figure 8.8b for each patient and degree of
fibrosis. Feature values systematically decrease in the simulated cohort for an increasing left
atrial fibrotic extent. In the clinical cohort a similar trend, albeit less pronounced, is visible.



136 Chapter 8. Estimation of Left Atrial Fibrosis

(a) Distribution of P wave duration among the clinical (top panel) and simulated cohort (bottom panel).

(b)Distribution of Pwave amplitude in lead I among the clinical (top panel) and simulated cohort (bottom
panel).

Figure 8.8: Influence of left atrial fibrotic extent on P wave derived features.
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8.3.3 Estimating the Amount of Fibrosis with Neural
Networks

The network set up as explained in section 8.2.4 was trained for the four different scenarios
explained in section 8.2.4. In Table 8.4, the rmse values of the regression model for the
different training scenarios summarized in Table 8.3 are outlined. The results for these
training options, each designed to address the individual research questions, are unraveled in
detail in the following sections.
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8.3.3.1 Impact of Hybrid Training Data on Fibrosis Estimation Accuracy on
Clinical Data

When providing the regression neural network with all 75 extracted P wave features, the LA
fibrotic volume fraction on a clinical test set was estimated with an absolute rmse averaged
over all 6 cross-validation runs of 16.57% and 17.56% in case the network was trained on a
hybrid and only on a clinical dataset, respectively.

Figure 8.9 shows the distribution of predicted volume fraction of fibrosis for the test sets
included in the different cross-validation runs when trained on a hybrid (bottom panel) and
only on a clinical dataset (top panel).

When trained on a hybrid dataset, the network performance was increased especially for
patients with a fibrotic extent in the range of [0%, 45%] which corresponds to the interval of
fibrotic volume fraction that was defined for the simulations (compare data samples outlined
in green in Figure 8.9). On the contrary, training on clinical data only yielded superior results
for patients with an extraordinary high extent of fibrosis outside the ranges that were included
in the simulated dataset (compare data samples outlined in red in Figure 8.9). When only
considering clinical data with a low voltage area fraction <45 % as in the simulated dataset,
the network performance error was comparable to the results in the simulated test sets and
quantified to 12.28 %.

The performance metric of the neural network is shown in Figure 8.10 when trained
on a hybrid dataset (dots) or on clinical data only (triangles). The marker color indicates
whether the ECGs in the test set for performance evaluation were extracted as a subset of the
simulated (cyan) or the clinical (magenta) ECGs.

In any case except for split 6, the estimation of the fibrotic extent was more accurate if
simulated data were additionally included in the training set. The improvement when training
the network with the hybrid dataset averaged over all clinical test sets was around 1%.

8.3.3.2 Influence of Noise and Filter Settings Applied to Simulated Data on
Network Performance

The influence of adding realistic ECG noise [265] to the simulated data and subsequently
filtering the signals choosing different cut off frequencies for the low-pass filter is shown for
the test sets of all 6 cross-validation runs in Figure 8.11. The solid line represents the turning
point for which training on a hybrid dataset yielded improved regression results over training
on clinical data only.

Adding noise and selecting a low-pass cut off frequency of 150 Hz yielded the best
performance for 3 out of 6 test sets each belonging to one cross-validation run (green boxes
in Figure 8.11). As these filter settings were also applied for the analysis described in
section 8.3.3.1, it was shown that these filter settings also yielded improved results for 2
further test sets over the case where only clinical data was used. Only for split 6, training
on clinical data resulted in a smaller rmse. Out of the three low-pass filter options, a cut off
frequency of 40 Hz applied to the simulated data led to the poorest performance (compare
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Figure 8.9: Network performance for predicting the volume fraction of atrial fibrosis evaluated on a
clinical test set when trained only on clinical data (top panel). The distribution of predicted vs. ground
truth left atrial fibrotic extent when trained on a hybrid dataset is shown in the bottom panel in case
of clinical (magenta) and simulated test data (cyan).

dark pink dots in Figure 8.11), as the averaged rmse over all 6 test sets was 17.51% in
contrast to 16.57% when setting the cut-off frequency to 150 Hz and 17.56% when only
training on clinical data.

8.3.3.3 Added Value of Anatomical Measures as Additional Input Data

In Figure 8.12, the estimated and ground truth fibrotic volume fraction output by a network
trained with and evaluated on the simulated data are shown when only providing 75 P wave
derived features as input to the network. The scatter points represent selected samples in the
test splits and their face colors encode their respective total LA volume (top panel) and torso
volume (bottom panel).
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Figure 8.10: Performance of a neural network trained on a hybrid dataset (dots) and on clinical data
only (triangle) when evaluated separately on a simulated (cyan) and clinical test set (magenta).

Figure 8.11: Influence of superimposed noise and low-pass filter cut off frequencies on network per-
formance. The difference in the network’s rmse between training on clinical data and on a hybrid
dataset is shown for all 6 cross-validation runs for different filter configurations applied to simulated
data (faded pink: noise-free, without filtering; pink: superimposed noise and subsequent low-pass fil-
tering with 150Hz, purple: superimposed noise and subsequent low-pass filtering with 150Hz).

The visualization indicates that the prediction performance decreased for samples with
extraordinary high and low LA and torso volumes. Especially, a systematic under- and
overestimation for low and high LA volumes, respectively, prevailed. Thus, 5 additional
non-invasively measurable features representing LA and RA volume, torso volume and torso
diameter in anterior-posterior direction in the chest and the abdominal region were included
for training the network. In this case, the rmse between the predicted and ground truth
volume fractions covered by fibrosis decreased from 8.69% to 7.92% .
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Figure 8.12: Network performance for predicting the volume fraction of atrial fibrosis only based on
P wave derived features. The color code represents the LA volume (top) and torso volume (bottom) of
each individual sample point (light: small volume; dark: high volume). The solid black line represents
perfect prediction.

8.3.3.4 Network Sensitivity to Inaccurately Extracted Features

Figure 8.13 shows the rmse of the network output averaged over all cross-validation test
sets depending on the applied noise level n to the input feature values. The decrease of the
network performance is depicted for 10 out of the 80 input features for which the network’s
rmse was affected the most. The absolute rmse estimated by the network increased by 1%
compared to the noise-free baseline case for a noise level of σN / σS = 0.2 for the torso
volume (corresponding to an absolute noise standard deviation of σN = 0.0028 m2) and
a noise level of σN / σS ≈ 0.3 for the torso diameter in anterior-posterior direction in the
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Figure 8.13: Sensitivity of the network towards inaccurately extracted features. The rmse of the
network is shown for different levels of noise added to the specific feature values one at a time. The
solid horizontal line represents a drop of the network performance of 1% compared to the noise-free
baseline case.

abdominal region (σN = 14.36 mm). Besides the anatomical measures, a distortion of rms
voltage features predominantly in the terminal 30 ms of the P wave caused the most marked
decrease in network performance compared to the noise-free baseline case.

8.4 Discussion

8.4.1 Main Findings

In this work, a total of 642,400 simulated 12-lead ECGs of healthy subjects and patients
with different LA volume fractions covered with fibrosis were generated. Different atrial and
thoracic anatomical models derived from SSMs as well as varying orientation angles of the
atria within the torso are hallmarks of the virtual cohorts. Additionally, different regionally
heterogeneous sets of CVs were applied representing inter-individual CV variation in healthy
subjects causing additional P wave feature variability in all model cohorts. P wave features
including duration, PTF V1, peak-to-peak amplitudes, rms voltages in the terminal 40, 30
and 20 ms, P wave integral and dispersion were calculated for each signal. The influence of
anatomical properties on these features’ variances was compared to the variance caused by
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fibrotic infiltration of the atrial tissue of various degrees. None of the investigated features
showed distinct ranges for the diseased cohort and different healthy anatomical variations.

The intervals of all feature values occurring from anatomical and functional variations
were greater than or equal to the variability in case of fibrotic infiltration of atrial tissue
(compare Figure 8.7). The atrial geometry variation caused altered P wave morphologies
resulting in varying values for all features, whereas the torso geometry variation mainly
affected P wave amplitudes. Nevertheless, all investigated features were characterized by a
systematic change in their values for an increasing volume fraction of fibrotic atrial tissue
(compare Figure 8.8a and 8.8b).

The electrodes for the lateral ECG leads V5 and V6 are located closest to the LA lateral
wall. According to the findings reported by Highuchi et al. [145], which the distribution
of fibrosis in the computational models was based on, the presence of fibrotic tissue in this
region holds a considerable high probability. Therefore, the amplitude decrease in V5 and
V6 [122] that were found for an increasing volume fraction of LA fibrosis can be explained
by a growing amount of passive fibrotic elements not contributing to the overall source
distribution in the left pulmonary vein (PV) antrum and the LA lateral wall. Rms voltages
in the terminal 40, 30 and 20 ms systematically decreased for an increasing extent of atrial
fibrosis which occurs due to delayed activation of fibrotic patches causing low voltage ECG
signal parts ensuing the normal depolarization of healthy myocardial tissue. Accordingly,
also PWd systematically increased with the amount of LA fibrosis. Thereby, a careful choice
of the threshold for detecting the P wave ending in each lead is crucial as already reported by
Jadidi et al. [273]. In this simulation study, a simple amplitude threshold of 1.5 ·10−4 mV
could have been chosen. However, when changing this threshold value to 3 ·10−3 mV, PWd
doesn’t show the steady increase for different fibrotic LA volume fractions as shown in
Figure 8.8a. In this case, the low voltage signal parts at the end of the P wave caused by
delayed activation of fibrotic regions in the LA are ignored, which results in underestimation
of PWd. This implies that a sufficiently high signal-to-noise ratio is required for clinically
recorded signals in order to apply sensitive thresholds to accurately measure PWd.

A neural network provided with the aforementioned features of the simulated data
succeeded in estimating the volume fraction of atrial fibrosis with an average error of
8.69% fibrotic LA volume. When also including anatomical measures for atria or torso,
the rmse of the regression network could be improved and decreased to 7.92% fibrotic
volume. Thus, the results of this simulation study suggest that it is beneficial to provide the
network with additional anatomical measures non-invasively acquirable by estimating the
torso volume with measurements of the torso perimeter and the atrial diameter based e.g. on
echocardiographic recordings to further increase the prediction accuracy. By comparing the
overlapping interquartile ranges in Figure 8.8a to those in Figure 8.12, it can be inferred that
the volume fraction of fibrotic substrate can be estimated more accurately with ECG-based
machine learning approaches than by isolatedly considering single P wave features, such as
e.g., P wave duration. Therefore, the network indeed seems to be capable of separating the
effects of anatomical variability from the influence of fibrotic substrate on the P wave.
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The impact of inaccurately determined features – as it is likely the case in a clinical
setting – was investigated by adding Gaussian noise to the robustly and accurately extractable
feature values from simulated data. It was found that the network’s rmse increased the most
if noisy values for the torso volume, torso diameter and the rms voltages in the terminal
sections of the P wave were provided to the network independent on how the data were
split for training, testing and validation. Likely reasons for these findings could involve
that the presence of fibrotic tissue reflects in a decrease of the P wave amplitudes that are
also affected by the torso volume and could not be properly compensated for if this entity
was extracted inaccurately. Furthermore, the reduced CV in the fibrotic regions causes rms
voltages in the terminal P wave intervals to decrease. For this reason, these features are
important to separate the changes in P wave features resulting from fibrotic infiltration of
atrial tissue from those caused by healthy anatomical variations and thus must be accurately
measured. The network was able to generalize well to ECGs simulated with unseen atrial
and torso geometries if ECGs generated with different geometries, but similar atrial and
thoracic volumes were included during training [122].

Moreover, the feasibility of non-invasively estimating the amount of fibrosis in the
atria by using features from clinical 12-lead ECGs as an input to a feedforward neural
network was demonstrated. The rmse between the estimated and the ground truth fibrotic
volume fraction on a test set composed of clinical signals was 17.56% when using only
clinically recorded ECGs during training of the network. The error was reduced to 16.57% by
additionally including simulated data during training. Non-matching absolute values in the
feature distributions between the simulated and clinical cohort, for example in case of PWd
(compare Figure 8.8a) could likely be a reason for the limited, though visible, added value that
simulated data carry when used as an additional input dataset. However, measuring P wave
duration automatically in clinical data remains challenging, especially in FAM patients where
low voltage signal parts are not uncommon to occur after the presumably detected P wave
ending. Averaging multiple P waves of the same patient could provide a possibility to reduce
noise in the signal and to potentially more accurately determine the P wave ending. However,
as ECGs of only 27 patients were available in the clinical dataset of this study, averaging
over multiple beats was not performed for the sake of keeping the P wave dataset as large as
possible. An incorrectly detected P wave offset also affects other P wave features in the set
of network input data. Among them are the rms voltages in the terminal P wave intervals
which also turned out to impair the network performance notably if not assigned their correct
values (compare section 8.3.3.4). Compared to current state-of-the-art methods to quantify
the fibrotic extent in the atria, the ECG-based estimation can be a reasonable indicator for
fibrosis infiltrating the atrial myocardium, but does not provide quantitatively as accurate
results as invasive mapping procedures or expensive imaging techniques.

Adding noise to the simulated data prior to feature extraction was important to reduce
the estimation error with the hybrid training dataset as this seems to contribute to closing
the domain gap between clinical and simulated ECGs. When including features directly
extracted from the raw simulated ECGs during training, the network’s performance declined
from 16.57% (150 Hz low-pass cut off frequency) to 17.10% (without added noise and
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filtering) which is comparable to the performance in case the network is only trained on
clinical data. Furthermore, choosing appropriate filter settings for all signals was necessary
for a successful fibrosis estimation. Applying a low-pass filter with a cut-off frequency of
40 Hz instead of the chosen 150 Hz, the network performance could only be improved for 2
out of 6 splits when additionally providing simulated data for training. This highlights the
need of preserving subtle ECG characteristics that might arise due to delayed and scattered
depolarization of the tissue in fibrotic areas and the necessity of recording clinical signals of
high quality.

8.4.2 Related Work

Yoshizawa et al. [272] reported that new-onset AF could be estimated using P wave amplitude
in lead II and P wave dispersion features with a sensitivity of 69.1 % and specificity of 88.2 %
in their clinical study comprising 68 AF patients and the same number of controls. Lankveld
et al. [289] drew on several time- and frequency domain features to predict AF recurrence
rates after pulmonary vein isolation (PVI) in 93 patients with an area under the curve (AUC)
of 0.76. In the clinical study conducted by Nakatani et al. [288], a combination of several
P wave amplitudes led to a sensitivity of 69 %, a specificity of 88 % and an AUC of 0.77 for
predicting the presence of low voltage areas ≥10 % in 50 AF patients. Jadidi et al. [273]
found that a PWd above 150 ms – provided a very low threshold is set for detecting the
P wave offset – was a predictor for advanced LA low voltage substrate with a sensitivity
of 94.3 % and a specificity of 91.7 %. Conte et al. [302] report that PWd and beat-to-beat
variability of P wave morphologies held the highest discriminative power to identify patients
holding an increased risk of AF occurrence.

Especially sensitivity and AUC results for discriminating between the healthy and the
FAM group were higher in this simulation study compared to the findings in previous
clinical studies [122]. Possible reasons could involve the number of P waves included in this
work (642,400 simulated P waves compared to ≤100 ECG recordings in clinical studies)
leading to a larger database for the network to learn relations between P wave features and
fibrotic LA volume fraction. Moreover, it was found that additional anatomical measures
improve the estimation outcome. On the other hand, it was investigated in this study whether
detecting fibrotic substrate extent in the atria is feasible, whereas most clinical studies
focused on predicting AF recurrence rates and new-onset AF episodes. Even though the
latter are reported to correlate with the amount of the fibrotic LA volume fraction, there is
no clear 1:1 relation between them complicating the comparison between this study and
those conducted by Yoshizawa et al. [272] and Lankveld et al. [289]. Besides that, the
chosen set of investigated P wave features in this study resembles but does not exactly equal
the one used in previous clinical studies. The set of features was indeed chosen based on
previous findings, but a combination of a vast number of features was used compared to
clinical studies [272, 289]. In contrast, beat-to-beat alterations were not evaluated in this
study as proposed by Conte et al. [302] since the simulation setup only allows for a single
beat analysis.
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8.4.3 Limitations

The analyses and results of this study are to large parts based on simulated data. Even though
an established modeling methodology for fibrotic tissue was chosen covering versatile aspects
of electrical and structural remodeling on cell and tissue level, other modeling methods could
have led to different results [82]. In this context, future directions could involve to examine
if the proposed method is capable of detecting fibrotic tissue in signals generated with
any fibrosis remodeling methodology or if it is particularly sensitive towards either ionic
remodeling, locally heterogeneous conduction velocities or percolation effects. Further future
directions could include an investigation of how the specific location of fibrotic patches
influences the accuracy of the estimation of left and right atrial fibrosis.

To generate simulated signals at scale, yet at a reasonable computational cost, the Eikonal
model (see section 3.1.2.3) as a propagation driver and the infinite volume conductor (see
section 3.1.3.3) as a simplified forward calculation method was drawn on. On the one hand,
the Eikonal model is capable of faithfully reproducing LATs obtained with the bidomain
model for sinus rhythm simulations on fibrotically infiltrated atrial models. Building on
the analyses described in chapter 4, no substantial error is expected to have impaired the
computed activation sequence and the ECGs derived therefrom. However, full bidomain,
pseudo-bidomain or reaction-Eikonal [104] simulations could account for diffusion effects
neglected when deriving the source distribution by only solving the Eikonal equation and
shifting pre-computed action potentials in time. On the other hand, the infinite volume
conductor was found to systematically overestimate P wave amplitudes in leads V1-V3
compared to the finite element method [303] (compare chapter 4). As this affects most of the
features extracted from V1-V3 that were employed for the neural network, especially the
amplitudes, a domain shift between the simulated and the clinical data for the affected features
might have limited the benefits of providing more input variability through simulated signals
during training. However, more sophisticated modeling approaches require considerable
longer computation times compared to the methods employed in this study. The latter
were therefore intentionally chosen for the sake of reducing computational cost to make the
generation of a large database feasible.

The fibrosis distribution in the virtual patient cohort was set based on a spatial histogram
of high image intensity ratios in late Gadolinium enhanced magnetic resonance images [145].
Thus, the simulation dataset is mainly characterized by fibrotic patches on the posterior
left atrial wall. Opposite to this, the clinical electroanatomical voltage maps employed for
extracting the ground truth fraction of fibrosis on the endocardium mainly exhibit low voltage
areas on the anterior left atrial wall [304]. Furthermore, the fibrotic volume fractions defined
for the virtual patient cohort ranged only up to 45 %, whereas the maximum surface area
fraction of low voltage electrograms in the clinical dataset was 77.28 %. Therefore, the lack
of P wave features pertaining to high fibrotic extents in the in silico training set could have
caused the underestimation of fibrotic volume fractions in patients characterized by large low
voltage areas in the clinical test set and therefore reduced the overall network performance.
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This is also visible in Figure 8.9 as the estimated fibrotic extent complies with the ground
truth values to a markedly higher degree for patients with low voltage areas <45 %.

Moreover, the impact of noise being added to simulated data was studied with regard to
the added value that simulated signals can carry to enrich a clinical dataset on the one hand
(also compare section 8.2.2) and regarding the sensitivity of the network output towards
inaccurate feature values on the other hand. However, in the simulation study, only the
network’s sensitivity in case of noise being added to a single input feature was analyzed. In
clinical practice though, measurement uncertainty usually affects multiple features at once.
Therefore, clinical ECG recordings as input for the network require robust signal processing
methods for extracting key features accurately. However, the impact of noise on robust and
accurate feature extraction [305] was not particularly analyzed in this study. While noise
and a QRS complex immediately following the P wave will definitely impede the feature
extraction if averaging over several beats is not feasible, the focus of this study was not
to develop robust feature extraction and signal processing methods. Instead, the intention
was to probe the general potential of P wave features as predictors for the presence of atrial
fibrosis provided that their values can be accurately extracted from the ECG.

Since a large-scale database of more than 700,000 12-lead ECG P waves from healthy
and diseased simulated and clinical cohorts is now available, it could also be worth to use the
signals directly as an input for a deep learning network to estimate the fibrotic LA volume
fraction without prior feature extraction. Thereby, the network could directly learn relations
between the different cohorts and derive rules to distinguish between them. Additionally,
the effect of different ablation strategies (PVI vs. additional ablation targets) and their effect
on the 12-lead ECG could be examined in a future study and reveal new insights regarding
individual therapy planning on a sub-population level.

8.5 Conclusion

Given the results of the study presented in this chapter, the ECG constitutes a non-invasive
and widely available tool in clinical practice to indicate left atrial volume fraction of fibrotic
tissue up to an uncertainty of around 16 %. Moreover, simulated signals of a virtual patient
cohort covering anatomical, functional and pathological variability can contribute to reduce
the estimation error.



Chapter 9
Detection of Left Atrial

Enlargement

In this chapter, the benefits of extending clinical electrocardiograms (ECGs) by simulated
training data derived from a bi-atrial statistical shape model (SSM) to improve the automated
detection of left atrial enlargement (LAE) based on P waves of the 12-lead ECG are demon-
strated.

The content of this chapter is taken from conference proceedings that have been published
in Lecture Notes in Computer Science (LNCS) [121]. Most passages in this chapter have
been quoted verbatim from the publication and are adapted or reprinted by permission from
Springer Nature Customer Service Centre GmbH: Springer Nature, Statistical Atlases
and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center
Right Ventricular Segmentation in Cardiac MRI Challenge (A Bi-atrial Statistical Shape
Model as a Basis to Classify Left Atrial Enlargement from Simulated and Clinical 12-Lead
ECGs, C. Nagel, M. Schaufelberger, O. Doessel, A. Loewe), Copyright: Springer Nature
Switzerland AG (2022).

9.1 Introduction

LAE is not only among the risk factors and an indicator for hypertensive heart disease [87,
306], but contributes also to the arrhythmogenesis and maintenance of atrial fibrillation
(AF) [65, 86, 218]. Thus, an established LAE diagnosis could serve as a valuable risk marker
for the early detection of AF which is crucial for choosing the appropriate patient-specific
treatment therapy.

As an alternative to cardiac chamber size measurements with imaging techniques, a
clinical diagnosis of LAE could initially also be informed by an evaluation of the 12-lead
ECG [307–310]. The altered ECG signal characteristics in LAE patients comprise on one
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side an increased duration and absolute amplitude in the negative deflection of the P wave in
lead V1 [308, 309]. Furthermore, a dilation of the left atrium also reflects in an increased
overall duration of the P wave in all leads since the depolarization wavefront needs to
traverse a larger surface area [308]. Additionally, a bifid P wave with an interval ≥40 ms
between both peaks in lead II is an indicator for P mitrale [310]. In contrast to imaging
techniques applied to quantify the atrial chamber sizes, the ECG features an inexpensive,
easily accessible and widely available tool in clinical practice. An automated analysis of
ECG signals with e.g. machine learning techniques could facilitate the early diagnosis of
LAE and in turn contribute to a proper risk stratification for AF [311, 312].

However, the application of machine learning algorithms to clinical ECGs for an au-
tomated disease classification entails several challenges. On the one hand, large clinical
datasets are rarely available and also the diagnostic classes of interest are usually not bal-
anced [313–315]. In spite of being the largest publicly available online ECG database to
date, PTB-XL [16] comprises 9,528 12-lead ECGs from healthy individuals, but yet only 421
signals of LAE patients. A failure to meet the requirement of evenly distributed samples in
the classes to be distinguished by the machine learning model, a classification bias is likely
to be introduced at the expense of prediction accuracy for the minority class. Moreover,
ground truth labels marking the underlying cardiac pathology have to be set manually by
cardiologists. However, expert annotations are inevitably subject to inter- and intra-observer
variabilities contributing to unreliably and inconsistently labeled signals that can severely
impair the performance of a machine learning classifier [24].

These limitations call for simulated ECG signals as an additional data source with pre-
cisely known ground truth labels and arbitrarily selectable class distributions to overcome
the above mentioned drawbacks of clinical signals. Especially for the use case of identifying
LAE, a bi-atrial SSM carries the potential to produce a vast amount of atrial geometries
with predefined and equally distributed left atrial volumes that can be employed for electro-
physiological simulations to obtain simulated P waves of the 12-lead ECG. It was therefore
investigated if synthetic P waves resulting from simulations carried out on anatomical models
derived as instances from a bi-atrial SSM can improve the detection of clinical LAE ECGs.

9.2 Methods

9.2.1 Database

9.2.1.1 Simulated Data

The bi-atrial SSM described in chapter 5 [169] was used to generate 95 anatomical models
of the atria augmented with fiber orientation, inter-atrial connections and tags for anatomical
structures. These models were made publicly available [200]. The eigenmode coefficients of
the SSM were chosen such that the left atrial volumes of the 95 geometries were uniformly
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distributed in a range of 30 - 65 ml, covering the left atrium (LA) volume range reported in a
large clinical cohort study including a healthy control group and LAE patients [219]. For
the computer models, left atrial volumes (LAVs) were calculated as the volume bounded by
the surface of the left atrial body as shown in Fig. 9.1. The left atrial appendage as well as
the pulmonary vein ostia were excluded for the volume assessment. The atrial SSM was
built based on magnetic resonance (MR) and computed tomography (CT) segmentations
but clinical LAV reference values are usually specified based on 2D echocardiography data.
Therefore, each initially calculated LAV value of the virtual cohort was multiplied with a
correction factor of 0.75 to account for the systematic underestimation of the atrial size using
echocardiography compared to MR and CT measurements [316]. Examples of three atrial
instances with a left atrial volume of 31 ml, 47 ml and 65 ml are shown in Fig. 9.1.

Figure 9.1: Examples of three atrial geometries (endo- and epicardium) derived from the SSM with
different LAV values. Anterior and posterior point of views are shown in the top and bottom panel,
respectively. The LAV is marked in blue and was calculated as the volume enclosed by the surface
of the left atrial body excluding the left atrial appendage area and the pulmonary vein ostia. Figure
adapted from Nagel et al. [121] with permission from the publisher.

For each atrial model, a baseline conduction velocity (CV) was assigned based on the
values reported in [245] to 4 different atrial regions as listed in Table 9.1 and depicted in
Figure 9.2. Nine variants of this CV setup were defined by modifying the velocities randomly
in the interval [80 %, 120 %] of the baseline CV in each region. For each model and each
CV setup, the Eikonal equation was solved using a mesh resolution of 1.22 mm with the
Fast Iterative Method to obtain local activation times (LATs). Excitation was initiated at a
sinus node exit site located at the junction of the right atrial appendage and the superior vena
cava. Shifting a precomputed Courtemanche et al. [91] action potential in time according to
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the resulting LATs yielded the spatio-temporal distribution of the transmembrane voltage
in the atria [299]. Each atrial geometry was rotated by a random rotation angle drawn from
a uniform distribution in a range of [-15, 15]◦ around the x-, y- and z-axis [295] and were
placed in two different torso geometries (see Fig. 9.4) derived from a human body SSM [179].
Torso 1 represents a male subject (body surface area (BSA) = 1.7 m2) and torso 2 a female
subject (BSA = 1.2 m2). The ECG forward problem was solved by means of the boundary
element method as implemented by Stenroos et al.[107] and 12-lead ECGs were extracted
at the standardized electrode positions. In this way, 1900 (95 atrial geometries × 2 torso
geometries × 10 CV settings) simulated ECGs were generated .

Table 9.1: Conduction velocities in transversal fiber direction (CV⊥) and anisotropy ratios (AR) for the
baseline CV setup.

Atrial Region CV⊥ in m/s AR = CV∥/CV⊥

Bulk tissue 0.59 2.11

Bachmann’s bundle 0.64 3.33

Crista terminalis 0.59 2.84

Pectinate muscles 0.46 3.78

Figure 9.2: Example atrial geometry with three regions that are assigned different conduction velocities
and anisotropy ratios. The bulk tissue makes up for the remaining areas in the left and right atrium.
Figure adapted from Nagel et al. [121] with permission from the publisher.

Ground truth labels for the simulated dataset were set based on the left atrial volume
indexed to the body surface area (LAV/BSA). Applying the cutoff value for LAV/BSA of
34 ml/m2 as recommended in the cardiac chamber size quantification guidelines [88] for
2D echocardiography derived data resulted in 1,050 healthy and 850 LAE signals in the
simulated database. Left and right atrial volumes indexed to the body surface area are
visualized in Fig. 9.4 for both torso models and all 95 atrial geometries.
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Figure 9.3: Examples for the P waves of the 12-lead ECG resulting from electrophysiological simula-
tions conductedon the threemodelswith different left atrial volumes as shown in Figure 9.1 calculated
using constant rotation angles and the same torso model. Figure adapted from Nagel et al. [121] with
permission from the publisher.

9.2.1.2 Clinical Data

Clinical ECGs of 10 seconds length from 9,485 healthy subjects and 421 LAE patients
sampled at 500 Hz were extracted from the publicly available PTB-XL ECG database [16].
For 7,168 healthy and 309 LAE signals in this database, the certainty with which the expert
cardiologist labeled the respective pathology, was specified as 100%. ECGdeli [250] was
applied to extract the P waves from the time series of all healthy and LAE signals and to
build a mean P wave template for each subject (see Figure 9.5)

9.2.2 Machine Learning Classifier

A long short-term memory (LSTM) network was trained to perform the binary classification
between the healthy control group (NORM) and the left atrial enlargement cohort (LAE).
The simulated P waves and the clinical P wave templates were filtered (0.5 Hz highpass
cutoff frequency, 60 Hz lowpass cutoff frequency) and cut 40 samples (equivalent to 80 ms)
before and 40 samples after the P wave peak in lead II occurred. In this way, it was ensured
that the P waves are robustly and consistently extracted throughout the simulated and clinical
dataset. The resulting time series signals of all 12 leads served as an input to the network.
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Figure 9.4: Left (blue) and right (red) atrial volumes indexed to the respective body surface area (BSA)
for both torso models. Torso model 1 and 2 had a BSA of 1.7m2 and 1.2m2, respectively, and are
depicted together with the positions of the attached electrodes from the anterior and lateral view.
Applying a threshold value of 34ml/m2 to the LAV/BSA values yields the ground truth labels for the
healthy (NORM) and the left atrial enlargement (LAE) cohorts. Figure adapted from Nagel et al. [121]
with permission from the publisher.

70 %, 15 % and 15 % of the ECGs in both classes were split into a training, validation and
test set, respectively. Three different training scenarios were considered. For scenario 1, only
clinical signals with ground truth labels annotated with a certainty of 100 % were considered.
For training scenario 2, the 1900 simulated P waves were additionally used as an input
data source during training. The validation and test sets remained unchanged compared to
scenario 1. In scenario 3, also the clinical NORM and LAE signals annotated with a certainty
<100 % by the expert cardiologist were added to the training split. The train, validation and
test compositions for all training scenarios are summarized in Table 9.2. Accuracy, sensitivity,
specificity metrics were calculated to evaluate the network performance of each training
scenario, whereby the LAE signals were considered positive samples and the NORM signals
negative samples (see section 3.4 and Figure 3.4). To avoid a bias of the network due to the
larger number of samples in the NORM class in all training scenarios, the cross-entropy loss
function was weighted by the inverse of the respective class support.

9.3 Results

Figure 9.6 depicts the confusion matrix for all training scenarios evaluated on the test set.
Sensitivity, specificity and accuracy obtained for training scenario 1 were 0.83, 0.92 and 0.91,
respectively. When additionally including simulated ECGs during training, as was the case
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Figure 9.5: Averaging single beat P waves for each 12-lead ECG in the clinical dataset. This procedure
was performed to obtain a mean P wave per subject and patient. An exemplary clinical 12-lead ECG is
visualized in blue along with the ECGdeli annotations for P wave on- and offset in each beat. Averaging
over all P waves detected in the signal trace resulted in a mean P wave template for each subject.

in scenario 2, the results for sensitivity, specificity and accuracy quantified to 0.87, 0.95 and
0.95, respectively. Thus, all three performance metrics improved when including simulated
data for the training of the classifier. When extending the clinical training dataset of scenario
1 with additional clinical signals labeled with a certainty <100 % in scenario 3, sensitivity,
specificity and accuracy decreased to 0.78, 0.84 and 0.83 compared to the training scenario
comprising only reliably labeled data.

9.4 Discussion

9.4.1 Main Findings

It was investigated whether the application of a bi-atrial SSM for generating a large synthetic
ECG database can yield valuable additional input data for the training of a machine learning
classifier to distinguish between clinical healthy and LAE ECGs. It was shown that the
performance metrics of the network increased if simulated ECGs were added to reliably
labeled clinical training data. The lowest scores for sensitivity, specificity and accuracy were
achieved when additional clinical data with uncertain ground truth labels were included
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Table 9.2: Number of samples in the healthy (NORM) and the left atrial enlargement (LAE) classes
for different training scenarios. In scenario 1, a subset of the reliably labeled clinical data is used for
training. For training scenario 2, simulated ECGs served as an additional input to the clinical training
data from scenario 1. In scenario 3, clinical ECGs for which ground truth labels were specified with a
certainty <100% by the expert cardiologist were added to the training data. For all three cases, the
same validation set and a test set comprising each 15% of the reliably labeled clinical data was used.

Training Scenario 1 Training Scenario 2 Training Scenario 3 Validation Test

clinical
NORM: 5018

LAE: 216

NORM: 5018

LAE: 216

NORM: 7335

LAE: 328

NORM: 1075

LAE: 47

NORM: 1075

LAE: 46

simulated -
NORM: 1050

LAE: 850
- - -

total
NORM: 5018

LAE: 216

NORM: 6068

LAE: 1066

NORM: 7335

LAE: 328

NORM: 1075

LAE: 47

NORM: 1075

LAE: 46

Figure 9.6: Confusion matrices and performance metrices resulting from predicting the labels of the
test set with the network trained with each of the three training sets summarized in Table 9.2. Figure
adapted from Nagel et al. [121] with permission from the publisher.

during training. Thus, expanding a clinical training dataset with simulated data can be
preferable to either resigning oneself to a smaller clinical training split or extending the latter
with additional unreliably tagged clinical data.

The advantage of deriving various in silico models of the atria from a SSM is on the one
hand, that an arbitrary amount of geometries can be generated representing a large virtual
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patient cohort. In this way, a large number of simulated ECGs can be generated contributing
to the extension of the training data which otherwise typically only consist of a small amount
of clinical signals. In this study, not only anatomical variability was incorporated by varying
the atrial and thoracic geometries but also functional variability was added consisting of
10 different CV setups for each atrial model to capture inter-patient ECG variabilities to
an even greater extent. On the other hand, the shape of the individual instances can be
freely chosen by optimizing the eigenvector coefficients of the SSM. This implies that in
the particular use case of identifying LAE based on 12-lead ECGs with machine learning
techniques, the geometries can hold uniformly distributed left atrial volumes. In this way,
the ground truth of the underlying pathologies for each signal is precisely known and also
the distribution of the signals in the two classes can be chosen a priori. In doing so, the class
imbalance for the training set was substantially reduced from 1:23 to 1:6. Furthermore, two
different torso geometries were derived, representing a male and a female geometry. In this
way, a one-to-one distribution of male and female ECGs in the simulated dataset prevailed
contributing to a compensation of the gender bias in medical datasets.

The class imbalance during training was addressed by multiplying the cross-entropy
loss function with the inverse of the class support. Considering sensitivity and specificity
metrics in addition to evaluating the network’s accuracy performance demonstrated that the
class-wise accuracy was above 0.8 in all scenarios and thus, no notable overfitting towards
the over-represented NORM class, especially in those scenarios where the classifier was only
trained on clinical data, occurred.

9.4.2 Related Work

One key aspect for a successful and meaningful application of simulated ECGs to classifica-
tion problems with clinical signals is assessing fidelity and comparability of the simulated
data to the clinical ECGs and previously published simulation studies. In chapter 5 [169] it
was shown that the P wave duration distribution originating from simulations on instances of
the SSM with Gaussian distributed eigenvector coefficients is in accurate accordance with
P wave durations reported in large clinical cohort studies of healthy subjects. The altered
ECG signal characteristics in LAE patients reported in clinical studies and comprising an
increased duration and absolute amplitude in the negative deflection of the P wave in lead
V1 as well as an increased overall duration of P wave in all leads were also reflected in the
simulation results (see Figure 9.3). However, a data-driven comparison between the synthetic
and the clinical dataset for the healthy and LAE cases would further help to assess fidelity of
the simulated ECGs (compare chapter 6).

In this study, the absolute amplitude and the duration of both, the positive and the
negative deflection of the P wave in lead V1 increased with the left atrial volume (see
Fig. 9.3). Andlauer et al. [176, 317] reported that left atrial concentric hypertrophy causes
an increase in the absolute P wave amplitude of the negative deflection in V1, whereas
left atrial dilation with a constant myocardial volume does not have a marked effect on
the ECG morphology in V1. In contrast to the work presented in this chapter, the shape
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of the right atrium remained constant which might explain the additional alterations in the
positive deflection in V1 for the simulation results. Furthermore, for any stage of left atrial
dilation, the myocardial volume was kept constant in the study conducted by Andlauer et
al. [176], implying that the wall thickness decreased with an increasing left atrial volume. In
the study shown in this chapter, a constant wall thickness of 3 mm was ensured for all atrial
geometries, i.e. the myocardial volume increases with the left atrial size. This could thus
explain the absolute increase of the negative amplitude in V1 for increasing LAV values as
seen in Fig. 9.3 and reported for left atrial hypertrophy by Andlauer et al. [176].

9.4.3 Limitations

The network used for the classification was not explicitly optimized. A standard setup was
used for a binary LSTM classifier. Tuning the network’s hyperparameters or using a different
network architecture might further improve the results. However, in this work, the focus
was not on developing a robust classification method for healthy and LAE patients in the
first place. Instead, the hypothesis that applying a bi-atrial SSM as a basis to generate a
large database of synthetic simulation-derived electrophysiological signals with a predefined
class distribution and precisely known ground truth labels can improve real-world classifier
performance was put to test. It was shown that this approach can help to overcome the
drawbacks of only using clinically recorded ECGs as the classifier performance improved
when a combination of clinical and simulated data was employed during training.

Resorting to the Eikonal model and the boundary element method as simplified model
solutions for normal sinus rhythm simulations has been shown to yield P waves of the 12-lead
ECG resembling the full bidomain simulation results to a high degree [164, 303]. In this
study, two torso models were used for the generation of the in silico database. As shown
previously [122] and reported in chapter 8, the torso geometry mainly has an influence on
the ECG amplitudes, whereas the P wave morphology is primarily dependent on the atrial
geometry and functional variability. Therefore, 95 atrial geometries were considered with 10
different conduction velocity settings and only 2 different torso models representing a male
and a female thoracic geometry were used. Since the torso models were derived from an SSM
[179], the location of the electrodes could be consistently defined on both models and no
electrode placement variability is reflected in the simulated dataset. Future directions could
include the consideration of further patient characteristics such as the age, sex, weight and
accompanying pathologies for an improved classification result [318]. Furthermore, adding
more simulated data covering a larger torso variability and electrode placement variations to
the training dataset could also yield improved results.

Even though the latest recommendations for diagnosing LAE were complied with by
assessing LAV indexed to the BSA for each model combination to define the ground truth
labels for the virtual patient cohort, these values are determined with approximation formulas
in clinical practice and are therefore prone to errors. By including a multiplication factor in
the analytical LAV calculation to account for the systematic underestimation of the atrial
volume with 2D echocardiography compared to MR measurements, it was intended to correct
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for the inaccuracies and establish comparability to the clinical reference volumes. However,
this correction factor itself and also the calculation of the BSA might still not lead to the
exact same values that would have been set in clinical practice. Thus, even though the ground
truth labels in the simulation dataset are analytically correct, they could have varied if the
volume indexed to the BSA was calculated with the clinical approximation functions based
on height, weight and gender of the patient.

9.5 Conclusion

In conclusion, it was shown that the application of a bi-atrial SSM as a basis for generating
synthetic ECGs can help to overcome the main drawbacks of clinically recorded signals for an
automated classification of healthy and LAE ECGs with machine learning techniques: Firstly,
an arbitrary number of atrial geometries can be derived leading in combination with functional
electrophysiological variability to synthetic ECG signals representing a large virtual patient
cohort. Secondly, the distribution of the synthetic ECGs in the different pathology classes can
be freely chosen by drawing the eigenvector coefficients of the shape model from a custom
statistical distribution so that left atrial volumes in the virtual cohort are uniformly distributed.
Thirdly, reliable ground truth labels can be assigned to the simulated signals since diagnostic
values for left atrial volumes and body surface areas are analytically calculable for the atrial
and thoracic finite element models. These advantages finally contribute to an improved
classification result of clinical healthy and left atrial enlargement ECGs when simulated data
is added to the training set.
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FINAL REMARKS





Chapter 10
Outlook

10.1 Application and Validation of Multiscale
Populations of Atrial Models

Ideas for future projects involve applying an extensive population of atrial models for in silico
clinical trials or for atrial fibrillation (AF) vulnerability studies. For this purpose, the model
cohort presented in chapter 6 could be extended to systematically study differences in disease
and treatment response among different cohorts, for example male vs. female subjects,
or different age groups. Subsequently, vulnerability studies could reveal arrhythmogenic
propensity of different subpopulations and unravel key model characteristics responsible for
initiating and maintaining AF not only on a patient-specific level, but for entire subgroups
of patients. Finally, the efficacy of different therapy options can be studied to investigate
whether specific treatment strategies are particularly suitable for a specific subpopulation.

10.1.1 Extension of the Model Population

The construction of separate atrial statistical shape models (SSMs) representing for example
healthy and AF patients or male and female subjects can provide a means to particularly derive
instances known to reflect specific shape characteristics of the respective group. Furthermore,
mapping a scalar field showing the probability of low-voltage being present in different atrial
regions across a clinical population onto the SSM as proposed by Nairn et al. [84, 304],
could allow for directly generating endocardial instances with local arrhythmogenic substrate
areas to be remodeled in the course of the simulations. To further enlarge the cohort,
different torso shapes and rotation angles of the atria could be included into the population
of models as explained in chapter 6. Thus, various cohorts of multiscale atrial computational
models representing a wider range of variability can be derived, calibrated and grouped into
different subpopulations based on various properties, as for example AF history, anatomical
characteristics, age or gender.
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Age is one of the major risk markers for AF development [319], which is why an
independent analysis of AF inducibility for an advanced age group could provide mechanistic
insights into the driving forces for AF in affected subjects. Likewise, AF incidence rates are
reported to be higher in men than in women [320]. Predominantly, more round left atrial
shapes are observed in men, potentially representing one of the causes for increased AF
onsets in male patients [318]. A separate shape analysis for male and female AF patients
could therefore contribute to systematically investigate the impact of gender-related atrial
shape variability on the onset and termination of AF. Also for the cellular model population,
a gender-specific analysis regarding their risk of AF development can be carried out as done
in previous work [321]. Ionic parameters for the cell model population can be chosen to
capture female and male electrophysiology, so that a sex-specific evaluation regarding their
AF vulnerability can be carried out. The feasibility of generating atrial instances randomly
(see chapter 6 and chapter 8) and with systematic constraints regarding atrial volumes (see
chapter 9) as demonstrated in this thesis can be built on for generating and calibrating
different multiscale model populations.

10.1.2 Vulnerability Study

By applying an arrhythmia inducibility protocol, such as the one proposed by Azzolin et
al. [48] for example, AF vulnerability for each model in all subgroups can be studied
systematically and comprehensively. Arrhythmia propensity can be quantified by the number
of pacing sites from which reentry patterns could be induced, the dynamics of the induced
episodes (duration and complexity) and the areas in which arrhythmia drivers anchor. The
results of the arrhythmia vulnerability study can be evaluated to investigate whether there
are specific subgroups that have an increased pro-arrhythmic risk compared to others. Work
by Vagos et al. [256] suggests that ionic remodeling parameters are independent predictors
for AF propensity. Furthermore, Jia et al. [65] showed that left atrial shape is associated
with AF susceptibility. Both of these properties provide the necessary requirements for an
arrhythmia to be sustained, namely a reduced conduction velocity, a shortened refractory
period and an increased path length. With a population of multiscale models comprising
the relevant variability, a fully integrated approach becomes feasible. Screening cohorts
characterized both by different anatomical and functional properties systematically allows
for identifying key remodeling parameters driving the arrhythmia and potentially dominate
other factors. Subgroups more prone to arrhythmia development could be identified e.g. by
means of fuzzy C-means or by Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) methods based on the arrhythmia propensity quantification results. Further
methods to divide the model cohorts into subgroups characterized by their AF vulnerability
could include decision trees as applied by Jia et al. [65] or sensitivity analysis as done by
Vagos et al. [256]. Furthermore, electrocardiograms (ECGs) of the atrial normal sinus rhythm
(P waves) and re-entry activity (f waves and F waves for fibrillation and flutter, respectively)
can be computed for all instances in the model cohort. P waves could then serve as an input
to machine learning techniques, taking either the raw ECG signals or selected features as an
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input. The algorithms could be trained to estimate the number of inducing points and other
arrhythmia markers found for the respective model in the course of the vulnerability study as
a surrogate for the patient’s individual risk to develop new-onset AF.

10.1.3 Treatment Efficacy Assessment

Based on the reentry simulations, the two major rhythm control options for treating AF can
be applied. On the one hand, the efficacy of different pharamacological ion channel blockers
and their doses [60, 322–324] for terminating reentry in all models can be investigated. On
the other hand, it can be examined if there are systematic rules to place ablation lesions
for different subgroups in the cohort to successfully terminate the arrhythmia and prevent
recurrence. Ablation strategies to be tested could include pulmonary vein isolation or ablation
of fibrotic areas with and without connection to non-conducting anatomical structures and a
combination of the above. In this way, systematic rules for ablation target selection depending
on anatomical and functional characteristics of the patients represented by the models could
be retrieved. Furthermore, it can be investigated if the optimal ablation lines and drug doses
can be identified based on the f waves computed for each individual model using similar
machine learning strategies as described above. In this way, a non-invasive prediction of the
optimal treatment strategy could precede catheter ablation and reduce procedure times.

10.2 ECG-based Differential Diagnosis of Atrial
Fibrillation Related Pathologies

The ECGs generated in the studies and described in this thesis are representative for a
healthy cohort (see chapter 6 and chapter 8) and patients with arrhythmogenic fibrotic atrial
cardiomyopathy (FAM) (see chapter 8), left atrial enlargement (LAE) (see chapter 9) and
interatrial conduction block (IAB) (see chapter 7). The changes in ECG characteristics
between the healthy control group and each of the cohorts representing the above mentioned
atrial pathologies, have been examined in detail and could individually be discriminated
from the healthy signals using machine learning techniques. However, all of the examined
atrial pathologies reflect partly in similar ECG changes, as for example P wave duration is
increased in patients of all three above listed diseases. Thus, future projects could focus
on investigating whether a differential diagnosis of healthy, FAM, LAE and IAB ECGs is
feasible. In this way, risk stratification of AF can be performed more comprehensively and
unveil the specific remodeling aspect driving the arrhythmia, whether it being structural (in
case of FAM or IAB) or anatomical (in case of LAE). Thus, therapy planning can be further
optimized and procedure times can be notably reduced by pointing towards the underlying
arrhythmogenic mechanism prior to the actual intervention. For this purpose, the P wave
databases generated in chapter 8, chapter 9 and by Bender et al. [260] could be employed
initially to compute atrial ECG biomarkers without a necessary preprocessing step to delimit
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the single waveforms of the 12-lead ECG affecting the accuracy of extracted P waves and
features. Following, the 12-lead ECG curves described in chapter 7 could be used to train
the machine learning algorithm directly to investigate if a differential diagnosis can be made
automatically without extensive feature extraction steps preceding the development of the
machine learning model. Also in this regard, the explicit benefit of simulated data in this
multi-class classification task could be assessed by quantifying the improvement or decline
in prediction accuracy in case the model is trained only on clinical data or on a hybrid ECG
dataset.



Chapter 11
Conclusion

In summary, the main focus of this thesis was the large- and multiscale generation of atrial
computational models for electrophysiological simulations leading ultimately to P waves of
the 12-lead electrocardiogram (ECG). These are for example applicable as an extension to
clinical signals in the machine learning context. To accelerate the generation of large syn-
thetic P wave datasets, simplified propagation models and forward calculation methods were
examined to later on choose the most appropriate simulation approach ensuring physiological
accuracy of the resulting signals, yet at reasonable computational cost. To overcome the lack
of anatomical variability in recent atrial cohort simulation studies, a bi-atrial statistical shape
model (SSM) was developed and evaluated. Based thereon, a multiscale population of atrial
computer models comprising not only anatomical variability, but also functional variability
on both tissue and cellular scale, was compiled and calibrated. Two large-scale simulation
studies were performed to investigate the added value of simulated ECG data enriching
clinically recorded signals for classification and regression tasks with machine learning
algorithms. These served the purpose to answer the overall research question underlying this
thesis (see section 1.3), namely, whether the performance of a machine learning model for
atrial fibrillation (AF) risk stratification trained on a hybrid dataset leads to improved results
compared to training on clinical data only. The former training scenario yielded improved
results for the ECG-based detection of both left atrial enlargement (LAE) and arrhythmogenic
fibrotic atrial cardiomyopathy (FAM), with details outlined below. In this regard, it was
investigated whether the inherent properties of electrophysiological simulations comprising
the generation of large, balanced and reliably annotated data samples, can counteract the
typical shortcomings prevailing in clinical datasets. Hence, two computational model cohorts
were employed to generate P waves characterized by the presence of fibrotic substrate in
the atria as well as by an enlarged left atrial volume. Both were used for the training of a
machine learning model to predict the underlying structural and anatomical alterations in
the atria which are predisposing factors for the development of AF. The main conclusion
drawn from the studies conducted within the scope of this thesis and summarized above are
as follows.

For simulations of normal sinus rhythm in atrial electrophysiology with and with-
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out the inclusion of fibrotic tissue, the Eikonal model and the boundary element method
(BEM) can be employed to simulate P waves of a comparable accuracy to the gold
standard simulation approaches at a reduced computational cost.
Independent on the methodology to model fibrotic tissue, the Eikonal model combined with
the BEM yielded P waves exhibiting correlation coefficients above 0.9 to the gold standard
full-blown bidomain simulation. Pseudo-ECGs generated with the infinite volume conductor
method failed to accurately reproduce P waves in the precordial leads and led to amplitude
overshoot mainly visible in lead V1-V3. Only in simulation scenarios where repolarization
dynamics are of significant importance, e.g., for reentry simulations, the diffusion term in
simplified propagation models can no longer be neglected as this assumption resulted in
action potential durations notably deviating from the bidomain results.

A bi-atrial SSM can serve as a basis for including atrial anatomical variability in
populations of computer models contributing to represent variability in ECG biomark-
ers and P wave morphology occurring also in large clinical cohorts.
The atrial SSM was built using automatically found corresponding landmarks on 47 individ-
ual atrial image segmentations. It allows for deriving various endocardial surfaces that can
be augmented to simulation-ready volumetric geometries representing atrial anatomy in a
population. Atrial anatomy was shown to be a main contributing factor to varying P wave
morphology in ECG simulations of virtual cohorts.

If properly processed, simulated data can contribute to improve the prediction of
fibrotic tissue volume fractions on clinical ECGs when provided as additional input to
a shallow feature-based feedforward neural network.
The fraction of left atrial fibrotic tissue can be estimated based on extracted P wave biomark-
ers from clinical signals with an absolute error of 17.5 % fibrotic volume by a shallow neural
network. When adding simulated P wave features to the clinical training set, the estimation
error can be reduced to 16.5 % fibrotic volume. In this way, adding features of simulated sig-
nals during training counteracted the disadvantages of small and imbalanced clinical datasets.
It was also found that the degree of pre-processing the simulated signals, i.e. the addition
of noise and the chosen cutoff frequency of a low-pass filter, was decisive for the quality of
the network outcome. This is because the addition of noise and a high cutoff frequency for
the lowpass-pass filter strike a balance in closing the domain gap to clinical signals and pre-
serving subtle ECG characteristics attributable to the presence of fibrotic substrate in the atria.

Key P wave biomarkers for estimating the volume fraction of left atrial fibrosis com-
prise mainly features relying on the detection of the P wave offset. This indicates that
robust feature extraction methods are required for delineating the P wave ending in
clinical signals.
When adding noise directly to the extracted P wave features in the simulated database, the
prediction accuracy of the neural network was impaired the most for biomarkers whose cal-
culation was based on the P wave offset, such as P wave duration and the root mean squared
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voltage in the terminal signal parts of the P wave in individual leads. Thus, the delineation
of P waves, especially the detection of the P wave ending in clinical ECGs, requires robust,
sophisticated and reliable methods to ensure an accurate calculation of P wave biomarkers
for training the network.

A deep learning network tailored at detecting LAE from clinical ECGs benefits from
being provided simulated signals as an additional input data source during training. In
contrast, adding further clinical data during training of which pathology labels were
annotated with less than 100% certainty was detrimental to network performance.
The accuracy of a long short-term memory (LSTM) network for performing the binary
classification task between clinical healthy and LAE ECGs quantified to 0.95 when trained
on a hybrid dataset, to 0.91 when trained on clinical data with 100 % label certainty, and to
0.83 when trained on clinical data with all label certainties. Thus, adding simulated data
for the training process of the classifier actually contributed to an improved performance,
potentially due to the added signal variability of a more heterogeneous and diverse simulated
dataset the network can be trained on. In contrast, extending the clinical dataset with further
clinical ECGs of unreliably annotated ground truth labels was rather confounding and led to
a declined classification outcome. Ultimately, this highlights the benefit of accurately known
ground truth pathology labels for simulated signals definable by adjusting parameter settings
in the underlying simulation run.





Appendix A
P waves and Amplitude Features
in Fibrosis Remodeling Scenarios

The following figures complement the results for P waves and peak-to-peak amplitude
features computed with different propagation drivers and forward calculation methods in the
remaining simulation scenarios not included in section 4.3.

(a) P wave

(b) Peak-to-peak amplitude features

Figure A.1: ECGs (P waves) calculated with the same forward calculation method (BEM) but different
propagation models (color coded) with the transmembrane voltages resulting from the simulation sce-
nario with fibrosis modeled as slow conducting tissue. Peak-to-peak amplitude features extracted from
the ECGs calculated with BEM and the respective propagation driver are represented with the colored
triangle.
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(a) P wave

(b) Peak-to-peak amplitude features

Figure A.2: ECGs (P waves) calculated with the same forward calculation method (BEM) but different
propagation models (color coded) with the transmembrane voltages resulting from the simulation sce-
nario with fibrosis modeled as slow conducting tissue. Peak-to-peak amplitude features extracted from
the ECGs calculated with BEM and the respective propagation driver are represented with the colored
triangle.
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(a) P wave

(b) Peak-to-peak amplitude features

Figure A.3: ECGs (P waves) calculated with the same forward calculation method (BEM) but different
propagation models (color coded) with the transmembrane voltages resulting from the simulation sce-
nario with fibrosis modeled as slow conducting tissue. Peak-to-peak amplitude features extracted from
the ECGs calculated with BEM and the respective propagation driver are represented with the colored
triangle.
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(a) P wave

(b) Peak-to-peak amplitude features

Figure A.4: ECGs (P waves) calculated with the same propagation driver (bidomain) but different for-
ward calculation method for the healthy control simulation scenario. ECGs calculated with FEM, BEM
and IVC results are represented by the solid, dashed and dottes lines, respectively. Peak-to-peak ampli-
tude features extracted from the ECGs calculated with FEM, BEM and IVC are represented with square,
triangle and circle markers, respectively.

(a) P wave

(b) Peak-to-peak amplitude features

Figure A.5: ECGs (P waves) calculated with the same propagation driver (bidomain) but different for-
ward calculation method for the simulation scenario with fibrosis modeled as ionic conductance rescal-
ing. ECGs calculated with FEM, BEM and IVC results are represented by the solid, dashed and dottes
lines, respectively. Peak-to-peak amplitude features extracted from the ECGs calculated with FEM,
BEM and IVC are represented with square, triangle and circle markers, respectively.
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(a) P wave

(b) Peak-to-peak amplitude features

Figure A.6: ECGs (P waves) calculated with the same propagation driver (bidomain) but different for-
ward calculation method for the simulation scenario with fibrosis modeled as passive conduction bar-
riers. ECGs calculated with FEM, BEM and IVC results are represented by the solid, dashed and dottes
lines, respectively. Peak-to-peak amplitude features extracted from the ECGs calculated with FEM,
BEM and IVC are represented with square, triangle and circle markers, respectively.





Appendix B
Ventricular Pathologies in
Large-scale ECG Dataset

Figure B.1 exemplarily shows lead II of one simulated and synthesized 10 s electrocardiogram
(ECG) belonging to the healthy control, the right bundle branch block (RBBB), left bundle
branch block (LBBB), atrioventricular block (AVB) and the myocardial infarction (MI)
pathology class.

Figure B.2 shows the distributions of characteristic features extracted from ECGs of the
RBBB, the LBBB, the AVB and the MI simulated and clinical cohort.

177



Figure B.1: Exemplary simulated and synthesized ECGs for ventricular pathologies and the healthy
control.
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Figure B.2: Feature distributions compared between the ventricular pathology classes and the healthy
control.
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