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Multistatic Uniform Diffraction Tomography
Derived Structural-Prior in Bayesian Inversion

Framework for Microwave Tomography
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Abstract—In this work, a quantitative Bayesian inversion
framework for microwave tomography (MWT) is coupled with
a multistatic uniform diffraction tomography (MUDT) method
to improve the imaging quality. The method is applied for an
industrial use-case of MWT in which we estimate the 2-D spatial
distribution of moisture (in terms of dielectric constant) in a
polymer foam. In essence, we modify the prior information in
the single-frequency Bayesian inversion framework using high-
resolution complementary structural information of the imaging
domain from a qualitative approach MUDT utilizing broadband
frequency-domain data. This way of obtaining structural prior
information is effective as it utilizes the data from the same
microwave sensor setup in contrast to the frequency-hopping
approach, priors derived for other imaging modalities or radar-
based techniques with the co-located sensor using, for example,
uniform diffraction tomography (UDT) inversion framework.
Proposed algorithm performance is tested for different moisture
scenarios in the polymer foam with 3D numerical and experi-
mental data from our developed MWT system. It is shown that
the proposed approach significantly improves the reconstruction
accuracy for the considered cases over just using the Bayesian
inversion approach.

Index Terms—microwave tomography, non-linear optimiza-
tion, statistical inverse problems, structural prior, multistatic
uniform diffraction tomography, Green’s function

I. INTRODUCTION

M ICROWAVE tomography in industrial process appli-
cations [1] includes food inspection [2], detection of

multi-phase flow [3], monitoring of moisture in stored grain
bin [4], among many other. A new application of MWT is
in the industrial microwave heating system known as HEP-
HAISTOS [5] for the purposes of monitoring and intelligent
control of distributed microwave power sources (magnetrons).
Applications of this microwave heating technology is in the
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areas of drying porous and non-porous materials, sintering
of ceramics and processing of carbon fibers [6]. In drying
applications, the goal is to maintain a stable product output
moisture level.

Generally, in this system, feedback control allows manipu-
lation of the temperature distribution in the material to prevent
over-heating and thermal-runaway situation [5]. However, tem-
perature based feedback control may not provide sufficient and
stable control in drying applications as the loss factor of the
material is also dependent on moisture content [7] that may
result in uneven levelling and undesired moisture level at the
the output. More so, non-uniform moisture distribution (i.e.,
wet-spots surrounded by low moisture areas) may aggravate
the situation of uneven drying. The process efficiency can
be improved by use of the spatial moisture distribution as
measured and controlled variable in the intelligent controller
design [8]. Therefore, integration of MWT operating in X-
band (from 8 GHz to 12 GHz) was proposed [9], [10]. Based
on the estimated spatial moisture information from MWT, the
control unit can tune the power of the distributed microwave
sources, pulse duration and achieve desired uniform moisture
level. In this article, the focus is on assessing the feasibility of
the MWT reconstruction algorithm and hence related control
strategies are not discussed.

Our goal is to estimate both location and dielectric value
of the moisture wet-spot(s) in a polymer foam using a MWT
sensor setup. For image reconstruction, we propose a coupled
approach in which, at the first step, a qualitative framework
based on an extended version of uniform diffraction tomogra-
phy (UDT), called multistatic uniform diffraction tomography
(MUDT) [11], is performed with multi-view, multistatic and
multifrequency scattering data obtained in X-band to localize
the wet-spots. In MUDT, the location of an object inside
the imaging domain is determined by the linear relationship
between the relative complex permittivity function and the
received signal in the spectral domain. And in comparison
to UDT [12], [13], the MUDT approach i) eliminates the
need for mechanical scanning of the sensor, ii) provides
aliasing-free images by following Nyquist sampling criteria,
and can resolve multiple targets with significant improvement
in the spatial resolution. At the second step, the retrieved
information from MUDT is segmented into regions of dry
part and approximate moisture wet-spot(s) and used to form
prior covariance structure in qualitative Bayesian inversion
framework operating with single frequncy data. The prior
model is also known as structural prior information [14]–
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Fig. 1: General framework of the proposed method.

[16]. Figure 1 represents the idea of the proposed method
in a nutshell. Proposed algorithm performance is tested for
different moisture scenarios in the polymer foam with 3-D
numerical and experimental data from our developed MWT
system. Results presented show the efficacy of this approach
over just the qualitative approach with smoothness prior [17]
to achieve good reconstruction accuracy.

In frequency-domain MWT, similar ideas on using structural
prior knowledge to improve the reconstruction accuracy are
reported in biomedical applications in [18]–[20]. In these
articles, the structural prior information is extracted from other
imaging modalities, say e.g. from ultrasound, MRI, etc, and
used in the construction of prior in MWT imaging algorithm.
In our industrial imaging case, considering overall system cost,
employing a dual-imaging modality can be critical. To avoid
dual imaging setup, alternative strategies based on radar-based
regional-imaging [21], [22] have been studied and have proven
very effective in improving the image quality. However, the
aforementioned technique utilises mono-static scanning con-
figuration for data acquisition which is again time-consuming.
Using the available electromagnetic measurements (i.e., the
same setup) to form structural prior information is gaining
pace and has been tested with algorithms in time-domain
[23], [24], and frequency-domain [25], [26]. Our work is a
contribution in this direction. This article is organized in the
following format. Section II details the MUDT qualitative
method, and quantitative Bayesian inversion framework. Sec-
tion III discusses the incorporating of structural smoothness
prior to the Bayesian framework. Section IV contains the
numerical assessment, and experiment results are provided in
section V. Finally, Section VI shows the concluding remarks.

II. THEORY

For simplicity, the formulation here is represented for a 2-
D case assuming no variation in x-direction ( ∂

∂x = 0). The
2-D configuration of the multistatic microwave tomography
system, studied in this work is illustrated in Fig. 2 with antenna
array located on top and bottom of the foam, respectively. The
free space is represented as layer 1 and 3 and the foam is
represented as layer 2 with a random embedded irregularities
denoted by Ωh. In free space, the relative dielectric constant is
denoted as ϵr,1 whereas the relative dielectric constant of the
foam is set to ϵr,2, and dielectric constant of the irregularity is
set to ϵr,i. The distance of the top and bottom antenna to
the top and bottom of the polymer foam is t1 = t3, and
layer 2 has thickness t2. Next, we discuss the qualitative
and quantitative reconstruction approaches in more detail.

Fig. 2: Schematic of the free-space MWT setup used in this
study.

Throughout the paper, harmonic time-convention e−jωt is
assumed and suppressed, where ω is the angular frequency,
and j =

√
−1.

A. Multistatic UDT: structural information of the target

Considering only the top antennas and under the assumption
of the point source as a transmitter, the scattered electric field
at the receiver position due to the irregularities in the layer
2 , can be modeled in the following integral form [27]

Esct(r⃗r, r⃗t, k) =

k20

∫
Ωfoam

G
(21)
eb (r⃗r, r⃗

′, k)O2(r⃗
′, k)Etot

2 (r⃗ ′, r⃗t, k)dr⃗
′, (1)

where Etot
2 (r⃗ ′, r⃗t, k) is the total electric field in layer 2 and

Esct(r⃗r, r⃗t, k) represents the received scattered at the antennas
position. The vectors r⃗r = (yr, zr) and r⃗t = (yt, zt) represent
the observation and source points, respectively. O2(r⃗

′, k) =
(ϵr,i(r⃗

′) − ϵr,2) is the relative dielectric constant of the
irregularity. ϵr,i(r⃗ ′) is the profile of the dielectric constant of
the irregularity (wet-spots) and k0 is the wavenumber in the
free space. Ωfoam ⊂ R2 is the region of interest which is in our
case layer 2 and r⃗ ′ ∈ Ωfoam. G(21)

eb (r⃗r, r⃗t, k) is the electric
background (media without any irregularities inside) Green’s
function. The superscript (21) denotes that the source point is
located in layer 1 and the observation point is in layer 2 .

By applying the first-order Born approximation [28], the
total electric field Etot

2 can be replaced by the background
electric field of the layer 2 . Due to the excitation by a
point source the electric field can be replaced by the Green’s
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function [29] and also using the symmetry property of Green’s
function [30], a multistatic model for the scattering electric
field can be expressed as

Esct(r⃗r, r⃗t, k) ≈

k20

∫
Ωfoam

G
(21)
eb (r⃗r, r⃗

′, k)O2(r⃗
′, k)G(21)

eb (r⃗ ′, r⃗t, k) dr⃗
′. (2)

The spectral representation of the Green’s function in layer 2
(modeled by the incident field in that layer) when the point
source is located in layer 1 is [27]

G
(21)
eb (r⃗, r⃗t, k) =

1

π

∫ +∞

−∞
T̃2(ky, kz)

e−jkz2z

kz1
e−jky(y − yt)dky, (3)

if z > 0 and Im (k22 − k2y)
1
2 < 0. T̃2(ky, kz) is the transmis-

sion coefficient in layer 2 and can be obtained by applying
the continuity conditions between layers for the transverse
magnetic field in x-direction (TMx) [27]. ky and kz are
wavenumbers in y and z-directions. The dispersion relation
in the layer l (l = 1, 2, 3) is expressed by kzl =

√
k2l − k2yl

and kl = k0
√
ϵr,l is the wavenumber in layer l while k0

is the free-space wavenumber. By substituting (3) in (2), the

2-D multistatic model for the received electric field can be
obtained as
Esct(r⃗r, r⃗t, k)

≈ k20
π2

∫
Ωfoam

O2(y
′, z′, k)

∫ +∞

−∞

∫ +∞

−∞
dkydk

′
y

|T̃2(ky)T̃2(k
′
y)|

kz1k′z1

· e−j
[
(ky + k′y)y

′ − kyyr − k′yyt
]

· e−j
[
(kz2 + k′z2)z

′ − ̸ T̃2(kz2)− ̸ T̃2(k
′
z2)
]
dΩ′

foam.

(4)

where ̸ is the phase. The relative complex permittivity
function can be determined from (4) by changing variables
to k′′y = ky + k′y and using 2-D spatial Fourier transform
definition for the received signal. After some straightforward
calculation, a closed form expression for O2 can be obtained
as given in (5) [12], [13].

In (5), Ẽsct(k′′y , ω) is the spatial Fourier transform of the
received scattered field. The relative complex permittivity
function gives the domain of the irregularities in the 2-
D cross-section of the imaging region of interest which
is the polymer foam denoted by Ωfoam. Spatial prior
information will be formed using this reconstructed image.

O2(y, z) ≈

∫
ω

∫ +∞

−∞

k′′z1
k22

1∣∣∣T̃2

∣∣∣2
k2

ωk′′z2
e
+j

[
k′′z2z + ̸ T̃2

(
k′′y
2
, k′′z2, tl

)
+

k′′y
2
(yt − yr) +

π

4

]
Ẽsct

2

(
k′′y , ω

)
ejk

′′
yydk′′ydω

2
√
π

∫
ω

∫ +∞

−∞

k2
ωk′′z2

1√√√√ k22
k3z2

z +
∂2

∂k2y

[̸
T̃2

]
|
ky=

k′′
y
2

dk′′ydω

(5)

B. Quantitative method: Bayesian inversion framework
Consider an inverse problem of identifying an unknown

parameter ϵr ∈ C given noisy measurement data Esct ∈ C
according to the observation model

Esct = F (ϵr) + ξ, (6)

where F : ϵr → Esct is the forward model as represented
by (1), that maps ϵr = ϵ′r − jϵ′′r to the measurement, and
ξ denotes the additive measurement noise component. The
unknown parameter and noise terms are considered mutually
independent. Note that the measurement data and unknown
parameters are complex quantities, therefore in the present
study the real and imaginary parts are treated as real variables
for the optimisation problem.

In the Bayesian framework the unknown parameters are
treated as random variables, and information about them
are expressed in terms of probability densities. The inverse
problem is then expressed as given the measured scattering
data, the task is to find the conditional probability density
π(ϵr | Esct) for the unknown parameter ϵr. The conditional
probability density is constructed using the Bayes’ theorem as

π(ϵr | Esct) =
π(Esct | ϵr)π(ϵr)

π(Esct)
∝ π(Esct | ϵr)π(ϵr), (7)

where π(ϵr | Esct) is the posterior density, π(Esct | ϵr) is
the likelihood density which represents the distribution of the
measured data if ϵr is known, and π(ϵr) is the prior density
which contains the prior information available for unknown
ϵr. The denominator is the marginal density of the measured
data and plays the role of normalization constant. It is often
ignored since it requires integration over all possible ϵr.

The likelihood density, if the noise is assumed to be additive
Gaussian with zero mean with the covariance matrix Γξ, can
be written as [31]

π(Esct | ϵr) ∝ exp

{
−1

2

∥∥Lξ(E
sct − F (ϵr))

∥∥2} , (8)

where Lξ is the Cholesky factor of the inverse of the noise
covariance matrix and (·)⊤ denotes the transpose operator. As
prior information, it is first assumed that the moisture variation
is smooth inside the foam. This indicates that unknowns have a
natural neighborhood structure i.e two adjacent values should
differ from each other only moderately. Such an assumption
can be encoded using a Gaussian prior model [32] with mean
ηϵrand covariance Γϵr as

πsmooth(ϵr) ∝ exp

{
−1

2
∥Lϵr (ϵr − ηϵr )∥2

}
. (9)
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Here, Lϵr is a Cholesky factor of the inverse of the prior
covariance matrix Γϵr . The prior covariance matrix encodes
the spatial smoothness knowledge of the unknowns.

The posterior density in (7) contains the complete solution
of the inverse problem in the Bayesian framework and can
be expressed by point estimates. One of the most common
point estimate is the maximum a posteriori (MAP). The MAP
estimate can be computed from the posterior as

ϵ̂rMAP = argmax
ϵr

π(ϵr | Esct). (10)

This problem is equivalent to the minimization problem [32],
[33], [34]

ϵ̂rMAP = argmin
ϵr

{∥Lξ(E
sct − F (ϵr))∥2+∥Lϵr (ϵr − ηϵr )∥2},

(11)
which is a regularized non-linear least square (LS) problem.
This minimization problem can be formally solved using
a gradient based optimization method. In the Newton type
method the minimum point is found iteratively by linearizing
the forward model, resulting in linear LS solution in each
iteration as

ϵrℓ+1
= ϵrℓ + αℓA

−1B, (12)

with,

A = (JT
ℓ Γ−1

ξ Jℓ + Γ−1
ϵr ), (13a)

B =
(
JT
ℓ Γ−1

ξ (Esct − F (ϵrℓ))− Γ−1
ϵr (ϵrℓ − ηϵr )

)
, (13b)

where αℓ is the step length parameter, index ℓ is the iteration
number. The term J is a Jacobian matrix (its derivation can
be found in [35]) which is decomposed in real and imaginary
parts as

J =

[
JR JI
−JI JR

]
2S×2Nn

(14)

where S is the total number of measurements and Nn is the
total number of unknowns in the cross-section of the foam
domain.

1) Noise model: Let us denote the noise standard deviation
(STD) of the real and imaginary parts of the complex-valued
scattered field data to be σR and σI, respectively. Under
the assumption that noise between measurement points are
independent and not correlated, the noise covariance is then
given as

Γξ =

[
σ2
R ⊙ IS 0S
0S σ2

I ⊙ IS

]
, (15)

where IS is an S × S identity matrix and 0S is an S × S
zero matrix and ⊙ is the Hadamard operator. In the case of
real measurements, the noise covariance can be estimated by
performing repeated measurements [36].

2) Smoothness Prior: In this case the moisture field varia-
tion in the entire foam is assumed to be smooth. Here, such a
random field is generated using a multivariate Gaussian distri-
bution with anisotropic covariance structure C [17] which can
account for the inhomogeneities in the unknown in terms of the
characteristic length parameter. In practice, the characteristic

length affect the moisture distribution in y, and z-directions.
The elements of the covariance C can be calculated as

Cij = exp

(
−∥yi − yj∥2

c2y
− ∥zi − zj∥2

c2z

)
, (16)

where i, j = 1, . . . , Nn and cy, cz are the characteristic lengths
(CL) components . If real and imaginary parts of the dielectric
constant are assumed uncorrelated, the prior covariance matrix
can be written as

Γϵr =

(
Γϵ′r

0
0 Γϵ′′r

)
=

[
σ2
ϵ′r
C 0Nn

0Nn
σ2
ϵ′′r
C

]
2Nn×2Nn

, (17)

where 0Nn
is an Nn ×Nn zero matrix, and σϵ′r

, and σϵ′′r
are

the standard deviations for the real and imaginary parts of
dielectric constant, respectively. Note here that the standard
deviations terms control the amplitude of real and imaginary
parts of dielectric constant in the prior covariance matrix.
These values can be determined using the dielectric character-
isation of the foam which is described in details in [31], [37].
The moisture field variation in terms of real part of dielectric
constant can be expressed as [38]

ϵ′r = ηϵ′r1+ σϵ′r
LZ, (18)

where 1 is all-ones vector, L is the lower triangular matrix
of the Cholesky factorization of the covariance C, and Z is a
standard normal random vector. Similarly, imaginary part can
also be expressed.

III. STRUCTURAL SMOOTHNESS PRIOR

In the smoothness priors, generally it is assumed that the
coupling between the neighboring entries is same everywhere.
It is not uncommon, however, to have spatial structural infor-
mation about the unknown; this information can be encoded
into the prior by accounting for the fact that the solution may
jump across structure boundaries, while being smooth within
each structure. Knowledge about the structure may come from
different sources [15] carrying complementary information
about the structure of the scatterers or their location inside
the imaging domain.

In the present study, we propose to use the structural knowl-
edge about the domain from MUDT that conveys the location
of moisture wet-spots inside the foam. In order to encode this
structural information in the existing smoothness prior model,
varying degree of smoothness is applied in different regions
i.e., in the dry part and inside the support domain of the wet-
spots. Here, the approximate support domain of the moisture
wet-spots and the dry region are deduced using K-means
segmentation. To achieve different degree of smoothness,
CL components and standard deviations terms are chosen
separately for dry and wet-spots regions. Therefore, the prior
covariance matrix is modified as

Cij =

{
Cij(cy1

, cz1) ∀ i, j ∈ Ωd

Cij(cy2
, cz2) ∀ i, j ∈ Ωh,

(19)

where Ωh and Ωd represent approximated wet-spot and dry
part regions, respectively. Large CL along with small am-
plitude (standard deviation) in the dry part will constraint
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Fig. 3: (i) A sample realization from the structural-prior model
derived using MUDT. (ii) Effect of values of σϵ′r

∈ Ωd in the
sample realization.

the estimate to have constant neighbourhood structure in the
domain. This is equivalent of assuming that pixel elements are
more correlated in the dry regions.

Sample realization from the structural prior model using
(18), when one wet-spot is assumed to be detected from the
MUDT reconstruction, is shown in Fig. 3 (i). More details of
the MUDT reconstruction are provided in the next Section,
see Fig. 4(i). For the drawn sample, in the dry part domain
(Ωd), CL of cy1 = 30 cm, and cz1 = 8 cm and σϵ′r

= 0.15 are
assumed and for the wet-spot a CL cy2 = 3 cm, and cz2 =
3 cm and σϵ′r

= 0.5 are assumed with a mean value of ηϵr′ =
1.16. As can be clearly seen, in the dry part the smoothness
is varying slowly due to the large CL and in the approximate
wet-spots region the variation is approximately constant. Also,
we have plotted the data on the cross-section line z = 0 cm
for different variance terms and constant correlation lengths
in the dry part and is shown in Fig. 3 (ii). It can be seen that
a smaller variance provides a more realistic coupling between
the neighboring entries in the Ωfoam. The above strategy to
generate the structural prior can be extended to N numbers of
scatterers (wet-spots) in the domain.

IV. NUMERICAL ASSESSMENT

This section is devoted to first numerically evaluate the
performance of the proposed coupled imaging algorithm in
terms of reconstruction accuracy when dealing with different
moisture scenarios and levels.

A. 3-D simulated array measurements and moisture model

To generate the synthetic measurement data from the MWT
setup shown in Fig. 2, the 3-D time-domain solver of the
commercial software CST Studio Suite is used. The compu-
tational domain consists of a porous foam Ωfoam = [0, 25]×
[−15, 15] × [−4, 4] cm are surrounded by air Ωair, see Fig.
2. For the air sub-domain, we set ϵ′r = 1 and ϵ′′r = 0 whereas
for the foam the moisture areas and the dry part values are
chosen based on the dielectric characterisation data discussed
earlier. Antennas are positioned with their open-ended center
points located at −15 cm to 15 cm with 5 cm center to center
distance along the y-axis. The scattering data is generated in

X-band range and uniformly sampled with a frequency step
of 5MHz and stored in terms of a scattering matrix of size
14× 14 (N = 7).

Although the moisture shapes can be arbitrary in practi-
cal cases but for simplicity of modelling, the wet-spots are
given a spherical and cubic shapes with the defined dielectric
constant corresponding to the different moisture levels. Here,
the dielectric constant value of the foam is known a-priori
which was determined through the dielectric characterization
of the polymer foam using a cavity perturbation technique at
room temperature [37]. From the dielectric characterization,
the real part of relative dielectric constant was found to be in
the range of 1.164 - 3.255 and imaginary part varying between
0.017 - 0.276 for wet basis moisture content from 0% to 80%,
respectively.

B. Inversion algorithm implementation

To obtain the qualitative image using the MUDT, only
the diagonal elements and the S(i+1)i, (i = 1, 2, . . . , 6) of
scattering matrix, measured with the top antennas are used in
the image reconstruction. Full details of the MUDT imple-
mentation are provided in [10].

In the Bayesian framework, we chose the method of moment
(MoM) [39] with pulse basis for the forward model, and point-
matching testing function. In the forward model, the antennas
are modeled as point sources and the electric field data EMoM
is converted to equivalent scattering matrix (in terms of S-
parameter) SMoM through calibration with respect to dry foam
response as

SMoM =
Ssctdry

EMoMdry

⊙ EMoM, (20)

where Ssctdry and EMoMdry are the responses under the dry foam
condition, respectively. For the MoM computation, 8.3GHz
frequency point was chosen as it offers less degree of non-
linearity than higher frequency points in the X-band [40],
[41]. Further, we assume that the imaging domain Ωfoam is
discretized into m × n = 80 × 20 uniform rectangular pixels
along the y and z-directions, respectively. Here, the pixel
size are chosen to be of size λ/6 so as to achieve sufficient
numerical accuracy for the MoM solver. Thus, total number of
unknowns in the imaging domain i.e., the real and imaginary
part of the dielectric constant, for estimation becomes 3200.
Note that a different solver is chosen for synthetic data
generation to ignore “inverse crime” [32]. To start the iteration
the value of ϵr0 is set to the dielectric constant of the dry
foam i.e. ϵr0 = 1.16 − 0.01j and α = 0.25 is set for all
the reconstructions. The iterations are terminated, following
the stopping criteria Q(ϵrℓ+1

) < Q(ϵrℓ) where Q(ϵrℓ) is
the norm term defined in (18). The reconstruction algorithm
is implemented in MATLAB 2018b and all computations
were performed on a computer with the configuration of
32 GB random access memory, Intel Core(TM) i7-7820HQ
central processing unit, and Nvidia Quadro M2200 graphics
processing unit.
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Fig. 4: MUDT and MAP estimates for the (i) one hot-spots case , (ii) piece-wise homogeneous moisture distribution, and (iii)
two wet-spots with different moisture case where red dashed shapes indicate the true position of the target. For each case,
the bottom figure shows the comparison of MAP with structural and smoothness prior model with the true case for the pixel
values located at data line z = 0 cm.

C. Noise and error metrics

The noise is added (following [42]) to each response of the
complex electric field of the dataset as

Esct
noise = Esct + max(Esct)

β√
2
(δ1 + jδ2), (21)

where max(Esct) is the absolute maximum value of the scat-
tered electric field, δ1 ∼ U(−1, 1) and δ2 ∼ U(−1, 1) are
two real vectors whose elements are sampled from uniform
distribution. The term β denotes the noise level. In all the
simulated data, a 3% noise is added which corresponds to
β = 0.03 and SNR of 30 dB. Also, for the noise variances
in the MAP computation, Gaussian noise of STD 3% of the
peak value of the measurements is considered in both real and
imaginary parts of the measurement data.

The reconstruction accuracy has been evaluated by consider-
ing the relative reconstruction errors on the contrast function in
the imaging domain Ωfoam. These errors are measured using the
root mean square error (RMSE) percentage and resemblance
coefficient (RC). Specifically, the RC is computed as

RCϵr =

∫ ∫
Ωfoam

ϵMAP
r ϵTrue

r dxdy√∫ ∫
Ωfoam

(ϵMAP
r )2dxdy

√∫ ∫
Ωfoam

(ϵTrue
r )2dxdy

,

(22)
where ϵMAP

r = ϵMAP
r −

〈
ϵMAP
r

〉
, and ϵTrue

r = ϵTrue
r −

〈
ϵTrue
r

〉
, and

⟨·⟩ is the mean operator. For the RC, its values vary between
0 and 1. As the RC gets closer to 1, the MAP estimation is
closer to the true profile.

D. Imaging scenario

1) One Dominant wet-spot: The first scenario is to ob-
tain the location and level of one dominant wet-spot in the
polymer foam. Assume a spherical wet-spot with a radius
of 0.67λc located at the center of the polymer foam, i.e.,
(12.5 cm, 0 cm, 0 cm) with 35% moisture level (ϵr ≈ 1.7 −
0.068j) and surrounded by the dry part. The top figure in Fig.
4 (i) shows the reconstructed image using the MUDT imaging
algorithm. As can be perceived from this figure, the location
of the wet-spot is correctly obtained with the normalized value
of the object function.

To calculate the MAP estimate, information from MUDT
with K-means segmentation is used in the structural smooth-
ness prior model. In the structural prior, the CL are set to
cy1 = 30 cm, and cz1 = 8 cm for the dry part (with very low
STD values set for σϵr′ , and σϵr′′ ) and for the supported
domain of wet-spot, CL of cy2

= 3 cm, and cz2 = 3 cm (with
STD values set for σϵr′ = 1, and σϵr′′ = 0.075) are chosen.
The sigma values in the wet-spots regions are selected based
on the dielectric characterisation data and ±3σ can account
for 99% of the dielectric values in the prior from the set mean
value of ηϵr = 1.16− 0.01j. The aforementioned STD values
in both the prior models are used in the remaining cases as
well.

Also, we evaluated the MAP estimates with smoothness
prior model with a CL of cy = 8 cm, and cz = 4 cm. In
the smoothness prior, we set σϵr′ = 1, σϵr′′ = 0.075 and
ηϵr = 1.16 − 0.01j. The MAP estimates with smoothness
prior model and structural prior model are shown in Fig. 4
(i). With the smoothness prior, the location of wet-spot is
somewhat enlarged and real part of its dielectric value is
underestimated. With the structural smoothness prior, MAP
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estimate for the real part of the dielectric constant is very
close to true case and also the wet-spot is recovered within
the correct domain. Further, for easier quantitative comparison,
pixel values at data line z = 0 cm are compared against the
true case and shown in the last figure of Fig. 4 (i). The
structural prior follows the discontinuities and aligns closer
to the real value than the smoothness prior case. The RC
and RMSE values for this case are given in third row of
Table I which depicts the accuracy of the structural prior over
smoothness prior. In both MAP estimates, imaginary part is
overestimated or underestimated and hence not shown. Note
that improvement in the image reconstruction is envisaged to
be linked to the structural information that is the information
of the discontinuities in the solution. Therefore, efforts to study
the performance of the MAP solution in respect to different
characteristics lengths in the moisture regions are subdued.

2) Piece-wise homogeneous moisture distribution: In this
scenario, a rectangular distribution for the wet-spot is consid-
ered with a moisture content of 30% (ϵr ≈ 1.58− 0.06j) and
dimension 2.6λc × 1.3λc × 6.5λc located at the center of the
foam. The reconstructed image using MUDT is shown in Fig.
4 (ii). As can be seen from this figure, the exact boundary of
the distribution is not reconstructed. Although, the K-means
segmentation has resulted in covering a slightly bigger domain.

The MAP estimates are calculated based on the parameter
set in the previous case. The results are shown in Fig. 4
(ii). The corners/discontinuities are difficult to estimate with
the smoothness prior and more so the estimation shows an
irregularity with stretched boundaries and incorrect amount
of moisture. As can be seen, the structural prior detects the
irregularity and locate it more accurately than the smoothness
prior. Overall, its performance is more accurate as evident from
line graph in the last figure of Fig. 4 (ii) and the RC and RMSE
values for this case as provided in fourth row of Table I. Note
that even thought the CL in the structural prior are set to the
previous case, which does not match with the actual changes,
the result is still better.

3) Wet-spots with different moisture: In the drying process,
i) non-uniform microwave heating during the drying process
or ii) non-uniform impregnation, may produce wet-spots with
different moisture levels. Hence, in a more pragmatic case,
two spherical moisture wet-spots with different moisture levels
and with radii of 0.67λc are assumed. The location of the first
wet-spot is (12.5 cm, 0 cm, 0 cm) with 35% moisture level and
the second wet-spot is centered at (12.5 cm, 10 cm, 0 cm) with
25% moisture level (ϵr ≈ 1.48− 0.056j).

The dominant wet-spot is clearly detected by the MUDT,
however, the weaker wet-spot is also visible but not as strong
as the other one, as represented by the red dashed circle in top
of the Fig. 4 (iii). Following K-means segmentation (not shown
here), for the two moisture regions (Ωh1

(middle wet-spot),
Ωh2

(right wet-spot)) the CL are set to cy1
= cy2

= 3 cm,
and cz1 = cz2 = 3 cm. With the smoothness model, it is
clear that it can indicate the stronger and weaker wet-spots
but with underestimated real part of the dielectric value and
over-shaped domain. However, with the structural prior, MAP
estimate for the real part of the dielectric constant is very
close to true case for the weaker wet-spot and quite close for

TABLE I: RMSE and RC parameter.

Prior smoothness structural
Error metric RMSE RC RMSE RC

Case1: one wet-spot 6.33 0.73 4.23 0.88
Case2: rectangular
wet-spot

9.03 0.59 5.57 0.91

Case3: wet-spots
(different moisture)

7.40 0.59 4.41 0.90
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Fig. 5: (i) first singular vectors of the matrix pair (J, L)
computed with the smoothness prior, and (ii) first singular
vectors of the matrix pair (J, L) computed with the structural
prior model.

the stronger wet-spot. Also, both the wet-spots are recovered
within the correct domain. Further, to assess the closeness of
the estimate from two prior models, pixel values at data line
z = 0 cm are compared against the true case and shown in the
last figure of Fig. 4 (iii). Again, the reconstruction accuracy
is better with the combined approach. The corresponding RC
and RMSE values are provided in the last row of Table I.

E. GSVD analysis

The reason for improvement in the image quality with
structural prior can be analyzed using the generalized singular
value decomposition (GSVD) analysis of the pair (J, L) [43]
where J is the Jacobian matrix (see (16)) and L is the
Cholesky factorisation of the prior covariance matrix. Let
J ∈ R2S×2Nn and L ∈ R2Nn×2Nn and N (J)∩N (L), where
N (·) is a null space. Then, there exist matrices U and V with
the orthonormal columns and non-singular matrix X such that

J = U

(
Ψ 0
0 In−p

)
X−1, (23)

and
L = V

(
Υ 0

)
X−1. (24)

The term Ψ and Υ are the diagonal matrices that is given as

Ψ = diag(λ1, λ2, . . . , λp) where 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λp,

and

Υ = diag(γ1, γ2, . . . , γp) where γ1 ≥ γ2 ≥ . . . ≥ γp ≥ 0.
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Fig. 6: MWT experimental setup. The MWT system consists
of X-band open-ended waveguide antennas as sensors.

The sum of the diagonal matrix must satisfy the relation λ2
i +

γ2
i = 1. Then, the generalised singular values for the matrix

pair (J, L) can be defined as

σi =
λi

γi
∀ i = 1, 2, . . . , p (25)

The generalised singular values σi values appear in non-
increasing order and show the ill-posedness of the problem
by rapidly decaying to zero with the increasing index. Thus,
the role of the matrix pair (J, L) can be understood as to
basically regularise the inversion by suppressing the singular
vectors associated with the small singular values [14], [44].
The first singular vectors xi from the smoothness prior model
and structural prior model are shown in Fig. 5 (i) and (ii). It
can be seen that the smoothness prior presents a smoothing
solution everywhere with no sharp discontinuities but the
structural prior offers less fluctuations in the dry part and is
also discontinuous. It implies that the structural information
emerges to having been inserted in the singular vectors xi.

V. MWT SYSTEM CONFIGURATION AND INVERSION
RESULTS

In this section, we evaluate the performance of the de-
veloped algorithm on MWT data from our developed MWT
system. The testing and validation phase is carried out at lab-
oratory scale in which specific test cases of moisture scenarios
are considered inside the foam under static conditions.

A. Imaging domain, antennas, and data acquisition

Figure 6 shows is the prototype MWT setup and its trans-
mitting/receiving 12 WR90 open-ended (Tag 1) waveguide
antennas (VSWR 1.03 : 1) connected (with the phase stable
cables with phase stability 3◦ at maximum frequency) to
the Agilent N5224A VNA (Tag 5) with a P9164C 2 × 16
USB Solid state switch matrix (Tag 4). We acquire the back-
scattered data from 8 GHz to 12 GHz with frequency step
of 5MHz. It should be noted that a waveguide calibration is
performed to remove the unwanted reflections. Communica-
tion between the VNA, switch, and the controlling computer

is accomplished through the local area network (LAN). The
data acquisition process is entirely automated using MATLAB
R2018b. Antennas are resided in semi-infinite free-space from
−12.5 cm to 12.5 cm along the y-axis and the distance of the
top and bottom antennas to the top and bottom of the polymer
foam is 12 cm, and the center to center distance between two
adjacent antennas is 5 cm. In addition, absorbers (Tag 3) are
placed around the MWT sensor array. To compute the MAP
estimate (i) the standard deviations of the measurement noise
(see (15)) is calculated for 8.3GHz frequency point following
the approach used in [36], and (ii) scattered electric field of
the dry foam case is also measured to perform the calibration
steps (see (20)) in order to eliminate multiplicative systematic
errors, such as a phase shifts.

B. Foam embedded with one and two wet-spots

To create the one moisture irregularity, a spherical shaped
foam of diameter 2.5 ± 0.1 cm and with 45% wet-basis
moisture level (ϵr ≈ 2.0−0.092j) is chosen and placed inside
the foam (see number Tag 2 in Fig. 6) through incision. An
approximate location of the irregularity inside the foam is
centered at (0 cm,−9 cm, 1.55 cm). The image obtained using
MUDT is shown in Fig. 7 (i). As can be seen, location of the
wet-spots is correctly estimated but with a slightly elongated
domain for the wet-spot. More so, the dry and moisture areas
are clearly discernible.

From the MUDT image, the structural information is ex-
tracted using K-means segmentation (not shown here) and
utilised to form the structural prior model in which the CL
of cy1 = 25 cm, and cz1 = 7 cm for the dry part and
for the supported domain of wet-spot, CL of cy2

= 3 cm,
and cz2 = 3 cm are chosen. Also, we evaluated the MAP
estimates with smoothness prior model only with a CL of
cy = 8 cm, and cz = 4 cm. The MAP estimates are shown
in middle and last row of Fig. 7 (i). Although the wet-spot is
somewhat correctly located in both priors, it is the structural
prior that has estimated the moisture levels (represented here
in terms of real part of the dielectric constant) more accurately
than the smoothness prior solution. In addition, false artifacts
are also visible in the MAP solution with smoothness prior.
Improvement in the image quality with structural prior can be
speculated to be due to suppression of smooth variations in
the background (i.e. the dry part).

In the second experiment, we inserted two wet-spots with
moisture percentage of 50% (ϵr ≈ 2.2 − 0.1j) and 45%
(ϵr ≈ 1.98−0.076j), respectively. The location of the wet-spot
with 50% is centered at (0 cm,−3.6 cm, 1.55 cm) and location
of the wet-spot with 45% is same as in the previous case. The
MUDT image for this case is shown in Fig. 7 (ii). The wet-spot
on left is located correctly but a shift is seen for the second
irregularity. In the K-mean segmentation, the two regions got
merged as the two irregularities are close and share same
neighbourhood; it then results in forming a nearly ellipsoid
region which is then used in the structural prior. To evaluate the
MAP estimate the characteristics length parameters are kept
same as in the previous case. From the MAP estimates in Fig. 7
(ii), even though the structural information from segmentation



9

−10−50510
y (cm)

−3.8

0

3.8

z
(c

m
)

45%

MUDT

0.0

0.2

0.4

0.6

0.8

1.0

−10−50510
y (cm)

−3.8

0

3.8

z
(c

m
)

MAP with smoothness prior

1.0

1.2

1.4

1.6

1.8

ε′r

−10−50510
y (cm)

−3.8

0

3.8

z
(c

m
)

(i)

MAP with structural prior

−10−50510
y (cm)

−3.8

0

3.8

z
(c

m
)

45% 50%

MUDT

0.0

0.2

0.4

0.6

0.8

1.0

−10−50510
y (cm)

−3.8

0

3.8

z
(c

m
)

MAP with smoothness prior

1.0

1.2

1.4

1.6

1.8

2.0

2.2
ε′r

−10−50510
y (cm)

−3.8

0

3.8

z
(c

m
)

(ii)

MAP with structural prior

−10−50510
y (cm)

−3.8

0

3.8

z
(c

m
)

50% 55%

MUDT

0.0

0.2

0.4

0.6

0.8

1.0

−10−50510
y (cm)

−3.8

0

3.8

z
(c

m
)

MAP with smoothness prior

1.0

1.2

1.4

1.6

1.8

2.0

2.2

ε′r

−10−50510
y (cm)

−3.8

0

3.8

z
(c

m
)

MAP with structural prior

(iii)

Fig. 7: MUDT and MAP estimates for cases (i) one wet-spot with 45% moisture, (ii) two wet-spots with 45% moisture and
50% moisture, respectively and (iii) moisture in cubic inclusions. The dashed shapes indicate the true positions of the wet-spots.

indicated a wider domain, the two wet-spots are retrieved more
accurately than with the smoothness prior.

C. Moisture in cubic inclusions

In this case, two cubic shape pieces are cut out from the
foam and infused with moisture levels of 50% (ϵr ≈ 2.2−0.1j)
and 55% (ϵr ≈ 2.4 − 0.16j) in its full volume, respectively.
After moisture infusion, the respective pieces are placed on
the cut out location. The MUDT image for this case is shown
in Fig. 7 (iii) in which the inclusion on left is indicating a
presence of moisture, though not in full volume, and inclusion
in middle indicates a presence of multiple wet-spots. Thus, the
localisation information from MUDT is seen to be slightly
decreased in this case may be due to limited view and limited
independent data. In the structural prior, we have set the same
CL in both the moisture regions. From the MAP estimates in
Fig. 7 (iii), although the structural information from segmenta-
tion was somewhat inaccurate as it includes multiple wet-spots
in the middle inclusion, a clear presence of higher moisture is
still indicated, though not in full volume, in the MAP solution
with structural prior model in comparison to the smoothness
based solution that can only locate moisture presence in the
middle inclusion. The false solution in the smoothness prior
model can be speculated to be due to over-regularisation or
smoothing effect. Overall, incorporating structural prior model
has improved the accuracy of estimated moisture location and
its dielectric properties. We also noticed that even with change
in CL to larger values the results show significantly no change.

VI. CONCLUSION AND DISCUSSION

A new coupled MWT imaging method is proposed for ob-
taining the location of the moisture and their dielectric constant
values in the polymer foam. The idea is to improve the recon-
struction quality of the Bayesian inversion algorithm by incor-
porating structural prior information derived from the MUDT
qualitative imaging algorithm. The structural smoothness prior
model strongly encodes the structural changes inside the foam
based on the localisation information from the MUDT. This

way of obtaining structural prior information is effective as
it utilizes the data from the same microwave sensor setup in
contrast to the priors derived for other imaging modalities or
radar-based techniques. The validity of the proposed approach
is tested with 3-D synthetic data for pragmatic moisture cases
and positively compared with that of solution from smoothness
prior. In the final steps, the proposed imaging algorithm is
verified with experimental data from the developed MWT
setup and results show that there is a significant increase in
accuracy and in overall image quality.

We observed a decrease in spatial resolution in range direc-
tion when target size greater than maximum achievable spatial
resolution [45] were considered. Thus, it can be deduced that
with increase in the size of the target the spatial resolution
will decrease as caused due to the filtering effects introduced
by the scattering operator under Born approximation [46].
Also, with large displacement in the target with respect to the
sensor apparatus artifacts are observed in the reconstructed
image. Furthermore, in this work, isolated regions of moisture
as considered in the numerical and experimental study are
likely to occur in practice. These situations arises especially
at the outlet stage in the drying process since the foam has
been partially dried due to the heating operation. Therefore,
beneficial would be to integrate MWT at the outlet rather than
inlet to fully justify for the use of structural prior knowledge.
Future work will be related to doing dynamic measurements
where the foam will be under movement. To further reduce
the data acquisition time from MWT sensor setup, limited-
view MWT setup has been in testing phase. In general,
the proposed method can be extended for the through-the-
wall radar imaging (TWRI) applications, ground penetrating
radar (GPR) applications and even with the media with rough
surfaces.
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