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Abstract
We provide theoretical investigations and empirical evidence that the effec-
tive stresses in computational homogenization of inelastic materials converge
with a higher rate than the local solution fields. Due to the complexity of
industrial-scale microstructures, computational homogenization methods often
utilize a rather crude approximation of the microstructure, favoring regular grids
over accurate boundary representations. As the accuracy of such an approach
has been under continuous verification for decades, it appears astonishing that
this strategy is successful in homogenization, but is seldom used on component
scale. A part of the puzzle has been solved recently, as it was shown that the
effective elastic properties converge with twice the rate of the local strain and
stress fields. Thus, although the local mechanical fields may be inaccurate, the
averaging process leads to a cancellation of errors and improves the accuracy
of the effective properties significantly. Unfortunately, the original argument is
based on energetic considerations. The straightforward extension to the inelas-
tic setting provides superconvergence of (pseudoelastic) potentials, but does not
cover the primary quantity of interest: the effective stress tensor. The purpose
of the work at hand is twofold. On the one hand, we provide extensive numer-
ical experiments on the convergence rate of local and effective quantities for
computational homogenization methods based on the fast Fourier transform.
These indicate the superconvergence effect to be valid for effective stresses, as
well. Moreover, we provide theoretical justification for such a superconvergence
based on an argument that avoids energetic reasoning.

K E Y W O R D S

computational homogenization, effective properties, FFT-based computational micromechanics,
Galerkin discretization, superconvergence

1 INTRODUCTION

1.1 State of the art

Computational micromechanics1 has been firmly established as a link between material models of the constituent
phases and the effective material behavior of microheterogeneous materials, in particular for rather complex material
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2 SCHNEIDER and WICHT

behavior and industrial-scale microstructures, see Matouš et al.2 for an overview. Modern computational homogenization
methods need to account for these challenges, in particular involving the mesh generation for microstructures, for
example, provided from digital volume-image techniques, and the rather high stresses emerging on the microscopic
scale.

Methods tailored to regular grids3-6 turned out to be quite successful, as they avoid the meshing procedure altogether
and because the discretization on a regular grid enables code optimizations7-9 unavailable for heterogeneous meshes. Yet,
at second glance, their success comes with an element of surprise, as the accuracy of the local fields is well-known to
be suboptimal. Still, such methods have been around for at least 25 years, and have been subject to a number of critical
assessments.10-12

Within the community, it has been known that the computed effective properties can oftentimes be trusted despite a
lacking fidelity in the local solution fields. For instance, Schneider et al.13, section 4.1.2, state that “the error (of the effective
stresses) decreases linearly with the grid spacing (… ) This superconvergence behavior is quite surprising, as the local error
||u − uh||H1 is only of order h1∕2 for voxel-FEM.” Only recently, this superconvergence of the effective stresses has been
investigated from a theoretical point of view. Ye-Chung14 showed that, for a general microstructure, the effective elastic
properties converge with twice the rate of the local strain field in the L2-norm. A related statement had been proved earlier
for the iteration error by Bellis et al.15 In fact, the techniques used by Bellis et al.15 could be used to improve the result of
Ye-Chung14 to show that, for a general microstructure, the effective (free) energy of a (small-strain) hyperelastic composite
material converges with twice the L2-rate of the local strain field, provided the (free) energy has a Lipschitz-continuous
gradient.

These results provide the theoretical underpinnings for the unreasonable effectiveness of voxel-based methods in
computational homogenization. Indeed, despite their rather crude approximation of the microstructure geometry, the
effective properties may be computed with reasonable accuracy. Indeed, suppose for a moment that, instead of the familiar
convergence proportional to h, the voxel edge-length, the effective properties would converge with h1∕2. Then, roughly
speaking, decreasing the error in the effective properties by a factor of two would require to consider 64 = 82 times as
many degrees of freedom in three spatial dimensions. Instead, an h-convergence dictates that considering eight times as
many degrees of freedom is sufficient to decrease the error by a factor of two.

As stated in the beginning, computational micromechanics has evolved rapidly in the last two decades, and rather
complex inelastic constitutive models may be treated on long time scales.16-18 Thus, there is an immediate interest whether
the confidence in regular-grid-based homogenization methods is justified when inelastic materials are considered. Math-
ematically speaking, this entails the question of superconvergence of the effective stresses under inelastic homogenization
and computationally feasible approximations. Yet, the existing theoretical arguments14,15 are based on an energetic rea-
soning. In particular, they provide a superconvergence result for the (free) energy, but their argument does not readily
permit to draw conclusions about the effective stress, that is, the partial derivative of the effective (free) energy w.r.t. the
macroscopic strain tensor. Only in the context of linear elasticity, where the (free) energy is quadratic, results for the
effective stress may be extracted readily.

1.2 Contributions

The article at hand investigates two research questions, which are of independent interest but whose joint treatment
comes with synergy effects. As pointed out earlier, there is a variety of works investigating discretization schemes and
convergence rates for linear computational homogenization problems. However, thorough computational investigations
on the accuracy of discretizations and convergence rates of both effective and local quantities is lacking for inelastic
homogenization in solid mechanics. This defect is completely reasonable, because there is a significant effort involved in
such studies, in particular when sufficiently converged reference quantities are desired. The work at hand provides such
benchmarks for state-of-the-art computational methods based on the fast Fourier transform (FFT), including quasi-static
computational experiments for polymers with glass reinforcements, a metal-matrix composite and a polycrystalline
microstructure, see Section 3. The computational results show empirically that the local stress and strain fields converge,
in the L2-norm, with a rate h1∕2 in the voxel edge-length h, whereas the Cauchy stress converges (at least) with an order
h. Thus, there is reason to expect the effective Cauchy stress to converge with a higher rate when homogenizing certain
classes of inelastic materials, as well.

Independent of the computational investigations, we investigate the convergence behavior of the effective stresses
from a theoretical point of view. Restricted to an isothermal, small-strain and quasi-static framework, we uncover the
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SCHNEIDER and WICHT 3

basic mechanisms responsible for the superconvergence behavior of the effective stresses in a Galerkin setting and with
an implicit time discretization of inelastic problems in mind. We present a number of assumptions in Section 2.1 which
are sufficient to derive superconvergence results. Before discussing those assumptions further, we wish to comment on
the proof technique, as it is interesting in itself. Instead of the (free) energy, we consider the mechanical work as the
bilinear quantity of interest. Indeed, the arguments of Bellis et al.15 could be used to show a superconvergence behavior
of the effective (incremental) energy, but we are not aware of a corresponding result for the effective Cauchy stress, that
is, the derivative of the effective energy.

On second thought, considering the mechanical work is quite natural in view of the Hill–Mandel condition.19,20

Working in a time discretization permits us to instead consider inner products between local strain and stress fields, not
necessarily related by the constitutive law, and their macroscopic equivalents. As the stress field satisfies the balance
equation, we are free to choose the local strain “test field” as desired. From the theoretical arguments it becomes apparent
that choosing the tangent corrector is most convenient in this setting, see Section 2.2.

We consider two classes of assumptions. The first category works with minimal assumptions on the constitutive law,
but permits to conclude only superconvergence per se, that is, improving the big-O convergence rate of the local stresses to
a small-o convergence rate of the effective stresses. Moreover, we consider more restrictive assumptions, that is, Lipschitz
continuity of the algorithmic tangent and boundedness of the linearized corrector, which are rather restrictive, but permit
us to double the convergence rate of the local stress field upon averaging.

Although we started our argument with the computational experiments, we decided to discuss the theoretical
developments first in order to maintain a smoother reading experience for the reader.

Some caution has to be taken, as the computational experiments should not be considered as a validation of the
theoretical arguments or as an investigation of their sharpness. Indeed, there are certain discrepancies that we will
briefly discuss. For a start, fully integrated finite elements on regular grids can be handled by FFT-based methods,21-23

but do not give rise to the best compromise between accuracy and computational effort. Indeed, fully integrated
elements require either a higher computational effort or an increased memory footprint, and computational experi-
ments suggest their accuracy is not superior compared to more traditional discretizations (Reference 24, section 1.2).
Thus, we decided to investigate the most popular discretizations employed in FFT-based methods instead. More-
over, we did not focus on which materials satisfy the assumptions required by the theory. Rather, we investigate
material models of broad practical interest, where an empirical confirmation of superconvergence properties is also
of interest.

Thus, there is a significant gap between the theoretical results—which cover a Galerkin setting and strongly monotone
material models whose solutions enjoy judicious regularity properties—and the computational experiments, where full
integration is usually avoided and the material models may not satisfy the requirements for the theory to hold. Closing
this gap requires further ideas.

Last but not least we wish to discuss the connection to superconvergence of finite element methods, a subject
with a long history. In this context, the order of convergence of finite element approximations of partial differen-
tial equations may be improved via postprocessing. Typically, local techniques may be used, which employ weighted
averages of the finite element solution at special points, for example, via edge averages25,26 or nodal averages,27,28

see also Babuška et al.29,30 for more background. Alternatively, global postprocessing techniques are based on solv-
ing an additional finite element problem, which may be used to improve the accuracy significantly but comes at
a low computational expense. Such global approaches may, for instance, utilize different resolutions in time31-33

or space.34-36

The approach considered in this article is different in spirit, as no additional computations are necessary. Rather, the
ideas underlying the described techniques may be used for theoretical convergence analysis. Indeed, for a fixed solu-
tion to the nonlinear or inelastic unit-cell problem we use the solution to an auxiliary problem to show an improved
convergence behavior of the effective, that is, averaged, stresses. Actually, for each individual component of the effec-
tive Cauchy stress tensor (six independent ones in three spatial dimensions) an auxiliary field is used based on solving
the linearized corrector equation. In this way, an bilinear quantity is set up as the basis for the improved convergence
analysis.

Another difference is that the problems we consider are highly heterogeneous, whereas the convergence improvement
techniques discussed earlier are typically restricted to homogeneous problems. For the problem at hand, the linearized
corrector equation should be thought of as a natural “filter” weighting the local stress field in an advantageous way. This
phenomenon may also be used to postprocess inaccurate solutions to increase their accuracy, see Schneider37 for the
linear elastic case.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7149 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [25/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 SCHNEIDER and WICHT

2 THEORETICAL CONSIDERATIONS

2.1 Background and assumptions

We are concerned with a rectangular unit cell

Q = [0,L1] × [0,L2] × · · · × [0,Ld], (1)

in d dimensions and we suppose that a nonlinear elastic stress function

 ∶ Q × Sym(d) → Sym(d) (2)

is given, where Sym(d) denotes the space of symmetric d × d-tensors. At every continuum point x ∈ Q and for every strain
𝜀 ∈ Sym(d), the quantity (x, 𝜀) provides the current stress at point x for prescribed strain 𝜀. The setting (2) includes
inelastic materials when considering an incremental framework in a quasi-static setting, that is, statically condensing the
internal variables for a fixed time step, see Ortiz-Stainier38 or Miehe.39

For the succeeding arguments, we impose the following restrictions40 on the local stress operator (2):

1. The field(⋅, 0) is essentially bounded, that is,(⋅, 0) ∈ L∞(Q; Sym(d)).
2. For any strain 𝜀 ∈ Sym(d), the field(⋅, 𝜀) is measurable.
3. There is a constant 𝛼+ > 0, s.t. the Lipschitz condition

||(x, 𝜀1) −(x, 𝜀2)|| ≤ 𝛼+ ||𝜀1 − 𝜀2||, (3)

holds for all 𝜀1, 𝜀2 ∈ Sym(d) and almost every x ∈ Q.
4. There is a constant 𝛼− > 0, s.t. the strong monotonicity condition

((x, 𝜀1) −(x, 𝜀2)) ∶ (𝜀1 − 𝜀2) ≥ 𝛼− ||𝜀1 − 𝜀2||
2
, (4)

holds for all 𝜀1, 𝜀2 ∈ Sym(d) and almost every x ∈ Q.
5. For almost any x, the function Sym(d) ∋ 𝜀 → (x, 𝜀) is continuously differentiable. We denote the derivative, that is,

the algorithmic tangent in an incremental pseudo-elastic setting,38,39 by

A(x, 𝜀) ≡ 𝜕

𝜕𝜀

(x, 𝜀), x ∈ Q, 𝜀 ∈ Sym(d). (5)

For the improved convergence estimate, it is moreover required that the algorithmic tangent is Lipschitz continuous,
that is, there is a constant M > 0, s.t. the estimate

‖A(x, 𝜀1) −A(x, 𝜀2)‖ ≤ M ‖𝜀1 − 𝜀2‖ , x ∈ Q, 𝜀1, 𝜀2 ∈ Sym(d), (6)

holds.

For the inequalities (3) and (4), we use the Frobenius norm

||𝜀|| ≡
√
𝜀 ∶ 𝜀 ≡

√
√
√
√

d∑

i,j=1
𝜀

2
ij, 𝜀 ∈ Sym(d), (7)

and the Frobenius inner product

𝜀 ∶ 𝜉 ≡
d∑

i,j=1
𝜀ij𝜉ij, 𝜀, 𝜉 ∈ Sym(d). (8)
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SCHNEIDER and WICHT 5

The norm in the left-hand side of inequality (6) refers to the induced operator norm, that is,

||L|| ∶= sup
{

||L ∶ 𝜀|| ||
|
𝜀 ∈ Sym(d) with ||𝜀|| ≤ 1

}

, (9)

for any linear operator L on Sym(d) and where the norm in brackets refers to the Frobenius norm (7). Actually, the mono-
tonicity condition (4) can be significantly weakened to include porous materials of practical interest, see Schneider.40 To
avoid some of the inherent technicalities, we restrict to the coercive setting (4). Let us record for later use that continuous
differentiability statement for the operator 𝜀 → (x, 𝜀), a part of assumption 5., implies the identity

(x, 𝜉) −(x, 𝜀) =
∫

1

0
A(x, 𝜀 + s(𝜉 − 𝜀)) ∶ (𝜉 − 𝜀) ds ≡

∫

1

0
A(x, 𝜀 + s(𝜉 − 𝜀)) ds ∶ (𝜉 − 𝜀), (10)

as a direct consequence of the fundamental theorem of calculus. The conditions 1–3. ensure that the constitute law (2)
may be extended viz-a-viz to a well-defined operator on Lebesgue spaces, the so-called Nemytskii operator (Reference 41,
section 10.3.4),

𝜎 ∶ L2(Q; Sym(d)) → L2(Q; Sym(d)), 𝜀 → (⋅, 𝜀(⋅)). (11)

The condition (3) implies that the stress operator is Lipschitz continuous

||𝜎(𝜀1) − 𝜎(𝜀2)||L2 ≤ 𝛼+ ||𝜀1 − 𝜀2||L2 , 𝜀1, 𝜀2 ∈ L2(Q; Sym(d)), (12)

whereas condition (4) ensures a strong monotonicity condition

(𝜎(𝜀1) − 𝜎(𝜀2), 𝜀1 − 𝜀2)L2 ≥ 𝛼− ||𝜀1 − 𝜀2||
2
L2 , 𝜀1, 𝜀2 ∈ L2(Q; Sym(d)), (13)

for the Frobenius-based L2-inner product

(𝜀, 𝜉)L2 = ⟨𝜀 ∶ 𝜉⟩Q , 𝜀, 𝜉 ∈ L2(Q; Sym(d)), (14)

and the averaging integral

⟨f ⟩Q =
1

L1 · · ·Ld ∫Q
f (x) dx, f ∈ L1(Q). (15)

In (periodic) homogenization at small strains and in a quasi-static framework, for prescribed macroscopic strain 𝜀 we are
concerned with finding a solution u ∈ H1

#(Q;R
d) to the corrector equation

div 𝜎(𝜀 + ∇su) = 0, (16)

where H1
#(Q;R

d) is the H1-closure of mean-free fields which are Q-periodic together with their first derivatives, and the
symmetrized gradient operator

∇s ∶ H1
#(Q;R

d)→ L2(Q; Sym(d)), (17)

as well as its negative adjoint

div ∶ L2(Q; Sym(d))→ H−1
# (Q;R

d) ≡
(

H1
#(Q;R

d)
)′
, (18)

both extending the corresponding differential operators defined on smooth fields. In a finite-element framework, it is
often more convenient to rewrite Equation (16) in a weak form

⟨
∇sw ∶ 𝜎(𝜀 + ∇su)

⟩

Q = 0 for all w ∈ H1
#(Q;R

d), (19)
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6 SCHNEIDER and WICHT

using integration by parts. Under the assumptions, in particular the inequalities (12) and (13), it is straightforward to
show existence and uniqueness of a solution u to the corrector equation (16). With this solution at hand, the effective
stress 𝜎(𝜀) response, the primary quantity of interest, may be computed via

𝜎(𝜀) =
⟨
𝜎(𝜀 + ∇su)

⟩

Q , (20)

as the spatial average of the local stress field.
With obtaining computable approximations to the effective stress in mind, (conforming) Galerkin methods select a

closed subspace Vh ⊆ H1
#(Q;R

d), typically corresponding to linear combinations of ansatz functions, and seek a solution
uh ∈ Vh subject to the condition

⟨
∇swh ∶ 𝜎(𝜀 + ∇suh)

⟩

Q = 0 for all wh ∈ Vh, (21)

which approximates the continuous condition (19). Due to the subspace property, the monotonicity and Lipschitz conti-
nuity properties are inherited, and existence and uniqueness of a solution uh to equation (21) is immediate. In a Galerkin
framework, and under the conditions (12) and (13), the a priori estimate

||∇su − ∇suh||L2 ≤
𝛼+

𝛼−
||∇su − ∇swh||L2 , (22)

holds for all wh ∈ Vh. In particular, one may select the best approximation wh = Phw with the orthogonal projector

Ph ∶ H1
#(Q;R

d) → Vh, Phu = arg minwh∈Vh
||∇su − ∇swh||L2 , (23)

to obtain the bound

||u − uh||H1
0
≤

𝛼+

𝛼−
||u − Phu||H1

0
, (24)

involving the inner product

(u, v)H1
0
≡ ⟨∇su ∶ ∇sv⟩Q , u, v ∈ H1

#(Q;R
d). (25)

Let us emphasize again that the effective stress (20) is the basic quantity of interest in (nonlinear) homogenization which
is approximated by

𝜎h(𝜀) =
⟨
𝜎(𝜀 + ∇suh)

⟩

Q , (26)

where uh ∈ Vh solves Equation (21). With the representation

𝜎 − 𝜎h =
⟨
𝜎(𝜀 + ∇su) − 𝜎(𝜀 + ∇suh)

⟩

Q , (27)

it is elementary to estimate

‖
‖𝜎 − 𝜎h‖‖ ≤ ‖

‖𝜎(𝜀 + ∇
su) − 𝜎(𝜀 + ∇suh)‖‖L2

≤ 𝛼+ ‖∇su − ∇suh‖L2

≤
𝛼

2
+

𝛼−
‖u − Phu‖H1

0
,

(28)

where we used the Lipschitz continuity (12) and the a priori estimate (24). Thus, the bound (28) shows that the effective
stresses converge at least as fast as the H1

0-norm of the local displacement field. Put differently, if the regularity of the
solution u and the used Galerkin space Vh leads to a convergence behavior

‖u − Phu‖H1
0
= O(hp), (29)

for a power p > 0, the estimate (28) entails
‖
‖𝜎(𝜀) − 𝜎h(𝜀)‖‖ = O(hp). (30)
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SCHNEIDER and WICHT 7

Please note that, for general microstructures, and discontinuous coefficients, p = 1∕2 is the highest power expected in
the estimate (29) for finite elements on a regular grid, independent of the order of the finite elements. This is readily seen
by examining, for instance, a two-phase laminate. Moreover, Ye-Chung14 show that the estimate (29) holds for p = 1∕2
under specific assumptions on the stiffness distribution. More precisely, they critically rely on the Li-Nirenberg42 estimates
which show that the local strain field solving the corrector equation (21) is essentially bounded provided the stiffness
distribution is sufficiently smooth on a tessellation of the microstructure, and the interfaces between the individual tiles
(or “phases”) is smooth enough. In particular the latter condition is rather restrictive for practical materials. For instance,
fiber-reinforced materials which model the fibers as cylinders lead to non-smooth interfaces, as do the grains in a Voronoi
or Laguerre tessellation. For such problems, estimates in weighted spaces may be useful, see Mazzucato-Nistor43 and
references therein.

The starting point of this article was the fact that if the constitutive law is linear, that is, Hooke’s law

(x, 𝜀) = C(x) ∶ 𝜀, x ∈ Q, 𝜀 ∈ Sym(d), (31)

is valid in terms of a suitable heterogeneous field of stiffness tensors C, the estimate

‖
‖𝜎(𝜀) − 𝜎h(𝜀)‖‖ = O(h2p), (32)

holds, see Ye-Chung,14 theorem 5. In particular, the effective stresses converge with twice the rate as the local fields. A
natural question emerges whether a similar superconvergence result is also valid for more general constitutive laws than
linear elasticity (31).

2.2 Superconvergence of effective stresses

For the following considerations, we suppose that the macroscopic strain 𝜀 ∈ Sym(d) is fixed, together with the solutions
u ∈ H1

#(Q;R
d) and uh ∈ Vh of Equations (19) and (21), respectively. To keep the notation concise, we introduce the fields

𝜀 = 𝜀 + ∇su ∈ L2(Q; Sym(d)) and 𝜀h = 𝜀 + ∇suh ∈ L2(Q; Sym(d)). (33)

For fixed 𝜉 ∈ Sym(d), we make use of the (transposed) linearized corrector v ∈ H1
#(Q;R

d) which solves the equation
⟨

∇sw ∶ A(⋅, 𝜀)T ∶ (𝜉 + ∇sv)
⟩

Q
= 0 for all w ∈ H1

#(Q;R
d). (34)

Here, transposition refers to major transposition, that is,
(
A(x, 𝜀)T

)

ijkl = (A(x, 𝜀))klij , x ∈ Q, 𝜀 ∈ Sym(d), (35)

in component notation. It is immediate to see that the field A(⋅, 𝜀)T is 𝛼−-strongly monotone and 𝛼+-Lipschitz continuous,
implying the existence and uniqueness of a solution to Equation (34). Let us write

𝜉 = 𝜉 + ∇sv ∈ L2(Q; Sym(d)) and 𝜉h = 𝜉 + ∇svh ∈ L2(Q; Sym(d)) for vh = Phv. (36)

Let us investigate the quantity

⟨(𝜉 − 𝜉h) ∶ (𝜎(𝜀) − 𝜎(𝜀h))⟩Q = ⟨(𝜉 − 𝜉h) ∶ 𝜎(𝜀)⟩Q − ⟨(𝜉 − 𝜉h) ∶ 𝜎(𝜀h)⟩Q . (37)

By the corrector equation (16), the first term

⟨(𝜉 − 𝜉h) ∶ 𝜎(𝜀)⟩Q ≡ ⟨∇s(v − vh) ∶ 𝜎(𝜀)⟩Q = 0, (38)

vanishes. Thus, we may write

⟨(𝜉 − 𝜉h) ∶ (𝜎(𝜀) − 𝜎(𝜀h))⟩Q = − ⟨(𝜉 − 𝜉h) ∶ 𝜎(𝜀h)⟩Q

= ⟨𝜉h ∶ 𝜎(𝜀h)⟩Q − ⟨𝜉 ∶ 𝜎(𝜀h)⟩Q

= ⟨𝜉h ∶ 𝜎(𝜀h)⟩Q − ⟨𝜉 ∶ 𝜎(𝜀)⟩Q + ⟨𝜉 ∶ (𝜎(𝜀) − 𝜎(𝜀h))⟩Q ,

(39)

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7149 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [25/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 SCHNEIDER and WICHT

where we added a zero for our convenience. Using the balance equations (19) and (21), respectively, we notice

⟨𝜉 ∶ 𝜎(𝜀)⟩Q =
⟨

𝜉 ∶ 𝜎(𝜀)
⟩

Q
+ ⟨∇sv ∶ 𝜎(𝜀)⟩Q = 𝜉 ∶ 𝜎(𝜀), (40)

and

⟨𝜉h ∶ 𝜎(𝜀h)⟩Q =
⟨

𝜉 ∶ 𝜎(𝜀h)
⟩

Q
+ ⟨∇svh ∶ 𝜎(𝜀h)⟩Q = 𝜉 ∶ 𝜎h(𝜀). (41)

We thus obtain an expression for the 𝜉-component of the difference in the effective stresses (20) and (26)

𝜉 ∶ 𝜎h(𝜀) − 𝜉 ∶ 𝜎(𝜀) = ⟨(𝜉 − 𝜉h) ∶ (𝜎(𝜀) − 𝜎(𝜀h))⟩Q + ⟨𝜉 ∶ (𝜎(𝜀) − 𝜎(𝜀h))⟩Q . (42)

We have just derived the most fundamental formula of the paper at hand. It expresses the difference between the effective
stress and its Galerkin approximation in the strain direction 𝜉 exactly in terms of a quadratic expression involving the
differences in stresses and strain directions as well as a linear term in the stress difference. Let us remark at this point that
the representation (42) of the error is exact. To proceed, some estimates are necessary, which may or may not be sharp,
and which require suitable assumptions. To be more precise, we consider two classes of assumptions. We will start with
minimal assumptions which are typically satisfied, but lead to rather conservative conclusions. Then, we will consider
more restrictive assumptions, which are hard to verify for practical materials, but which allow us to draw rather strong
conclusions.

We will start with the minimal assumptions, as introduced in the previous section. The fundamental Theorem of
calculus (10) serves as our departure, s.t. we may write

𝜎(𝜀h) − 𝜎(𝜀) =
∫

1

0
A(⋅, 𝜀 + s(𝜀h − 𝜀)) ∶ (𝜀h − 𝜀) ds. (43)

As the field 𝜉 was selected to solve the linearized problem (34), we obtain the expression

0 =
⟨
∇s(uh − u) ∶ A(⋅, 𝜀)T ∶ 𝜉

⟩

Q =
⟨
𝜀h − 𝜀 ∶ A(⋅, 𝜀)T ∶ 𝜉

⟩

Q = ⟨𝜉 ∶ A(⋅, 𝜀) ∶ (𝜀h − 𝜀)⟩Q . (44)

Inserting this equation into the 𝜉-filtered expansion (43) via

⟨𝜉 ∶ (𝜎(𝜀h) − 𝜎(𝜀))⟩Q =
⟨

𝜉 ∶
∫

1

0

[
A(⋅, 𝜀 + s(𝜀h − 𝜀)) −A(⋅, 𝜀)

]
∶ (𝜀h − 𝜀) ds

⟩

Q
, (45)

we end up with the following improvement

𝜉 ∶ 𝜎h(𝜀) − 𝜉 ∶ 𝜎(𝜀) = ⟨(𝜉 − 𝜉h) ∶ (𝜎(𝜀) − 𝜎(𝜀h))⟩Q

+
⟨

𝜉 ∶
∫

1

0

[
A(⋅, 𝜀 + s(𝜀h − 𝜀)) −A(⋅, 𝜀)

]
∶ (𝜀h − 𝜀) ds

⟩

Q
.

(46)

of Equation (42). The Cauchy–Schwarz inequality and the Lipschitz continuity (12) imply the estimate

|
|
|
𝜉 ∶ 𝜎h(𝜀) − 𝜉 ∶ 𝜎(𝜀)||

|
≤ 𝛼+||𝜉 − 𝜉h||L2 ||𝜀 − 𝜀h||L2

+
‖
‖
‖
‖
‖
∫

1

0

[
A(⋅, 𝜀 + s(𝜀h − 𝜀)) −A(⋅, 𝜀)

]T
𝜉 ds

‖
‖
‖
‖
‖L2

||𝜀 − 𝜀h||L2

≤
𝛼

2
+

𝛼−
||v − Phv||H1

0
||u − Phu||H1

0

+ 𝛼+

𝛼−

‖
‖
‖
‖
‖
∫

1

0

[
A(⋅, 𝜀 + s(𝜀h − 𝜀)) −A(⋅, 𝜀)

]T
𝜉 ds

‖
‖
‖
‖
‖L2

||u − Phu||H1
0
,

(47)

where we used the a priori estimate (24) and the definition (36) of the field 𝜉h. This estimate has a few direct implications
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SCHNEIDER and WICHT 9

1. If the algorithmic tangent A is independent of 𝜀, the second term (47) vanishes. Thus, we obtain the estimate

|
|
|
𝜉 ∶ 𝜎h(𝜀) − 𝜉 ∶ 𝜎(𝜀)||

|
≤

𝛼

2
+

𝛼−
||v − Phv||H1

0
||u − Phu||H1

0
. (48)

In particular, for the asymptotic behaviors

||u − Phu||H1
0
= O(hp) and ||v − Phv||H1

0
= O(hp), (49)

we deduce the convergence behavior
|
|
|
𝜉 ∶ 𝜎h(𝜀) − 𝜉 ∶ 𝜎(𝜀)||

|
= O(h2p). (50)

Thus, we recover the result (32) reported by Ye-Chung,14 theorem 5 for linear elasticity. Moreover, as a result of using
nonenergetic arguments, our particular result includes affine-linear constitutive behavior, for example, linear ther-
moelasticity and linear viscoelasticity. The Li-Nirenberg estimates42 are applicable in this case, as well, and p = 1∕2
holds in the estimates (49) and (50) under appropriate regularity conditions on the data.

2. Due to the estimate
‖
‖
‖
‖
‖
∫

1

0

[
A(⋅, 𝜀 + s(𝜀h − 𝜀)) −A(⋅, 𝜀)

]T ∶ 𝜉 ds
‖
‖
‖
‖
‖L2

≤ 2 𝛼+ ||𝜉||L2 , (51)

and the assumed continuity of the algorithmic tangent A in the second variable, Lebesgue’s dominated convergence
theorem implies

‖
‖
‖
‖
‖
∫

1

0

[
A(⋅, 𝜀 + s(𝜀h − 𝜀)) −A(⋅, 𝜀)

]T ∶ 𝜉 ds
‖
‖
‖
‖
‖L2

→ 0 as ||𝜀 − 𝜀h||L2 → 0. (52)

Thus, under the asymptotic conditions (49), we obtain the result

|
|
|
𝜉 ∶ 𝜎h(𝜀) − 𝜉 ∶ 𝜎(𝜀)||

|
= o(hp). (53)

As a consequence, the effective stresses do in fact converge faster than predicted by the conservative estimate (30),
even in this rather general case.

The purpose of the estimate (53) was to state that some kind of superconvergence is expected, even under minimal
hypotheses. From the point of view of numerical analysis it would be interesting to study whether the estimate (53) is
sharp, that is, by exposing suitable examples, or to improve the estimate via more sophisticated techniques.

3. With the help of the Lipschitz condition (6) on the algorithmic tangent, we observe

‖
‖
‖
‖
‖
∫

1

0

[
A(⋅, 𝜀 + s(𝜀h − 𝜀)) −A(⋅, 𝜀)

]T ∶ 𝜉 ds
‖
‖
‖
‖
‖L2

≤
∫

1

0

‖
‖
‖

[
A(⋅, 𝜀 + s(𝜀h − 𝜀)) −A(⋅, 𝜀)

]T ∶ 𝜉‖‖
‖L2

ds

≤ ||𝜉||L∞
∫

1

0

‖
‖
‖

[
A(⋅, 𝜀 + s(𝜀h − 𝜀)) −A(⋅, 𝜀)

]T‖
‖
‖L2

ds

≤ ||𝜉||L∞
∫

1

0
Ms ‖𝜀h − 𝜀‖L2 ds

= M
2

||𝜉||L∞ ‖𝜀h − 𝜀‖L2 ,

(54)

using Hölder’s inequality. Thus, inequality (47) becomes

|
|
|
𝜉 ∶ 𝜎h(𝜀) − 𝜉 ∶ 𝜎(𝜀)||

|
≤

𝛼

2
+

𝛼−
||v − Phv||H1

0
||u − Phu||H1

0
+

M 𝛼

2
+

2 𝛼

2
−
||𝜉||L∞ ||u − Phu||2H1

0
. (55)

Thus, we may draw similar conclusions as in item 1. provided the linearized corrector 𝜉, defined via Equation (36),
is essentially bounded. This is true under suitable hypotheses on the coefficient field A(⋅, 𝜀), see Li-Nirenberg,42
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10 SCHNEIDER and WICHT

proposition 1.4. Please notice that the Li-Nirenberg result deals with linear elastic problems, possibly with eigenstrains,
only. Thus, it is only applicable to the linearized corrector.

We wish to stress that we are not aware of a general result leading to a bounded linearized corrector field 𝜉. Thus,
the boundedness of the field 𝜉 may be treated as an additional assumption, as previously announced.

4. We restricted to the (fully integrated) Galerkin setting to clearly expose the ideas. Indeed, for linear elasticity, the
quadratic rate estimate (32) follows from Galerkin orthogonality, and is, thus, essentially a consequence of the
Pythagorean theorem.

For the nonlinear case, this kind of route is blocked, and an alternative had to be found. Our strategy relied on find-
ing an appropriate bilinear quantity which expresses the difference between the exact and the approximated effective
stress tensor up to an explicit error term. The leading contribution could be shown to vanish by choosing the field 𝜉

appropriately.
Although fully integrated elements can be handled, nonconforming discretizations are the most popular in

FFT-based computational homogenization44 for performance reasons. Analyzing their convergence behavior requires
handling the consistency error, and requires additional arguments. Unfortunately, we are not aware of a general argu-
ment akin to estimate (32) in the underintegrated setting extending the analysis of Bellis et al.15 for laminates, even
for the linear elastic case.

5. For inelastic materials, we are not aware of a general reference which provides the convergence rates

||u − Phu||H1
0
= O(h1∕2) and ||v − Phv||H1

0
= O(h1∕2), (56)

observed empirically in computational experiments, see Section 3. There is a deeper mathematical reason for this
shortcoming. In contrast to scalar elliptic equations, the regularity theory of elliptic systems (i.e., with vector-valued
unknown) is less good-natured. To be more precise, both scalar and vector-valued elliptic systems share the higher reg-
ularity theory, but the partial regularity properties of solutions are in stark contrast. Higher regularity entails estimates
for weak solutions of elliptic systems in Sobolev spaces under the requirement that the solution is essentially bounded.
Partial regularity concerns deriving such a boundedness statement, typically in a Hölder norm, for weak solutions that
are merely in a natural Sobolev space. For scalar (uniformly) elliptic equations, the celebrated results of De Georgi45

and Nash46 cover partial regularity for rough coefficients. In contrast, for elliptic systems, explicit counterexamples
to partial regularity are known (in dimension 3 and higher). We refer to Giaquinta,47 chapter II, for background and
discussion.

With this knowledge in mind, the results of Li-Nirenberg42 are even more remarkable. Unfortunately, we are not
aware of extensions of the Li-Nirenberg results to general nonlinear elastic models at small strains. Therefore, we
consider the estimates (49) with rates p = 1∕2 as empirical.

6. If only an approximate solution �̃�h of the corrector equation (21) is available, the following estimate

|
|
|
𝜉 ∶ ⟨𝜎(�̃�h)⟩Q − 𝜉 ∶ 𝜎(𝜀)||

|
≤ 𝛼+||𝜉 − 𝜉h||L2 ||𝜀 − �̃�h||L2 + |

|
|
⟨vh ⋅ div 𝜎(�̃�h)⟩Q

|
|
|

+
‖
‖
‖
‖
‖
∫

1

0

[
A(⋅, 𝜀 + s(�̃�h − 𝜀)) −A(⋅, 𝜀)

]T
𝜉 ds

‖
‖
‖
‖
‖L2

||𝜀 − �̃�h||L2

, (57)

may be readily established in place of inequality (47). Thus, solving the corrector equation (21) to high accuracy is
necessary to exploit superconvergence of the effective stresses.

Please note that computational experiments15 for linear elastic composites report that the effective stresses only
converge linearly during iterative schemes, whereas the effective energy shows a quadratic convergence behavior. The
caveat here is that these results use volume averaging to estimate the effective stresses, whereas energy equivalence has
to be used to obtain a quadratic convergence behavior, see Schneider.37

3 COMPUTATIONAL INVESTIGATIONS

3.1 Setup

In this section, we would like to investigate the convergence rate of both the local stress and strain fields as well as the
effective stresses upon grid refinement. More precisely, we investigate discretizations on regular (periodic) grids that
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SCHNEIDER and WICHT 11

F I G U R E 1 Microstructures considered in this article. (A) Single spherical inclusion; (B) Planar short-fiber composite; (C)
Metal-matrix composite; (D) Polycrystalline microstructure

are amenable to FFT-based computational micromechanics.44 As our reference, we consider the Moulinec–Suquet dis-
cretization,7,48 which may be interpreted as an underintegrated Fourier–Galerkin discretization.49,50 However, we will also
consider alternative discretizations in Section 3.2. For elastic material behavior and for microstructures without pores,
different computational experiments13,21,51 revealed that the convergence rates of the different used discretizations are
the same and only differ by the prefactor.

The experiments were run with an in-house FFT-based computational homogenization code.52 For every level of
discretization, the corrector equation (16) was solved to an accuracy of 10−5 using the convergence criterion described in
Schneider,44 section 3.6. Then, the effective stresses were computed by volume averaging.

We used a workstation with two AMD EPYC 7642 with 48 physical cores each as our hardware. The investigated
microstructures are shown in Figure 1, and the subsequent sections provide details on the microstructures, also including
both the constitutive models and the material parameters.

3.2 Spherical inclusion

As our first example, we consider a rather simple microstructure with only a single spherical inclusion placed at the
center of the microstructure, with a volume fraction of 6.54%. We consider resolutions N3 with N = 8, 16, … , 1024. At
the highest resolution, the microstructure is shown in Figure 1A.

We furnish the inclusion with the material parameters of E-glass, whereas the matrix is governed by J2-elastoplasticity
with exponential-linear hardening

𝜎0(𝜀eq) = 𝜎Y + k1 𝜀eq + k2(1 − exp(−m 𝜀eq)). (58)
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12 SCHNEIDER and WICHT

T A B L E 1 Material parameters for the short glass fiber reinforced polyamide, see Doghri et al.53

Fibers E = 72 GPa 𝜈 = 0.22

Matrix E = 2.1 GPa 𝜈 = 0.3 𝜎Y = 29 MPa, k1 = 139 MPa k2 = 32.7 MPa m = 319.4

(A) (B) (C)

F I G U R E 2 Relative error and convergence rates for a single load step and the spherical inclusion, see Figure 1A. (A) Relative error of
effective stress and of local strain field; (B) Relative error of effective stress for different discretizations; (C) Influence of the edge resolution
Nref on effective-stress error

Thus, after an implicit discretization in time and in view of the pseudo-elastic setting,38,39 which is standard in
computational mechanics, the considered material model satisfies the prerequities required by the theory in Section 2.1.
Indeed, due to the exponential-linear hardening (58), the statically condensed stress function (2) is strongly monotone
and Lipschitz continuous. Moreover, the interface between the spherical inclusion and the matrix is smooth, and the
Li-Nirenberg estimates42 apply, at least for linear elasticity. Let us again emphasize that the theory developed in Section 2
only covers the Galerkin setting, whereas our computational investigations deal with a nonconforming setting, which is
not covered by the theory.

The employed material parameters are summarized in Table 1. As our first setup, we consider 5% shear strain in
the 2-3-plane, that is, 𝜀23 = 5%, applied in a single load step. The results are summarized in Figure 2. For a start, we
investigate the relative error in the effective stress and in the local strain field, measured in the L2-norm, see Figure 2A.
The computation on the 10243-structure serves as our reference, that is, the ground truth. We observe that the local strain
error is more than one magnitude larger than the error in the effective stress. For the finest discretization, the difference
amounts to about two orders of magnitude. Moreover, the local strain error in L2 closely follows the rate h1∕2, where h is
the voxel size. In contrast, the effective stresses converge with the rate h, that is, with the quadratic rate of the local strain
error. Thus, these investigations suggest that the theory presented in Section 2 is not restricted to the Galerkin setting,
but holds for suitable underintegrated discretizations, as well.

To increase the confidence in our results, we investigate possible sources of error or deviation to some extent. In
Figure 2B, we considered the discretization on a rotated staggered grid,54,55 introduced into the FFT-based community by
Willot56 and identified as an underintegrated hexahedral trilinear finite element,21 and the discretization on a staggered
grid,13 a finite-volume discretization that is particularly robust for porous microstructures.40

We observe that the three considered discretizations do not differ significantly in terms of the predicted effective
stresses for the considered resolutions. Indeed, the differences are about an order of magnitude smaller than the relative
errors.

Moreover, we consider the influence of the considered ground truth, that is, the reference resolution, in Figure 2C.
Relative to a edge-length element-count Nref, we observe that the relative errors are comparable if N < Nref∕2, that is,
only the result for N = Nref∕2 should be considered with care.
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SCHNEIDER and WICHT 13

(A) (B) (C)

F I G U R E 3 Relative error and convergence rates for 25 load steps and the spherical inclusion, see Figure 1A. (A) ||𝜎 − 𝜎ref||∕||𝜎ref|| in %;
(B) ||𝜀 − 𝜀ref||L2∕||𝜀||L2 in %; (C) Convergence-rate exponents

After investigating a single load step, we move on to consider a scenario with multiple load steps. More precisely,
we retain both the microstructure and the material models/parameters, but impose the 5% shear strain in
25 equidistant load steps. The results are recorded in Figure 3, where the microstructure with 5123 voxels
serves as the reference. Figure 3A shows the relative error in the effective stress as a function of the applied
strain. We observe a decrease of this relative error up to 1.5% shear loading, consistently at every resolution.
For higher loading, the errors are increasing again, but remain strictly below the levels reached in the initial
elastic step.

Considering the local strain error in Figure 3B, we observe that the error level is about an order of magnitude
larger than the relative error of the effective stress. Moreover, we observe that this error remains approximately constant
throughout the deformation history.

We complement these investigations with estimates on the convergence rates, see Figure 3C, obtained by a linear
regression of the respective curves in log-space. Please keep in mind that for this kind of computational experiment, slight
over- and underestimations may not be excluded due to the low number of measurements. This is, however, a result of
limited computational resource, in particular for nonlinear constitutive laws. We observe that both the local stress and
stress errors converge with a rate of roughly h1∕2 for throughout the deformation history. In contrast, the effective stress
converges at a higher rate, that is, h.

3.3 Planar glass-fiber reinforced polyamide

After the initial, rather simple, example we turn our attention to more complex microstructures. We retain the material
models and parameters of the previous section, but investigate a short-fiber reinforced microstructure. More precisely,
we consider a structure reinforced by 20% E-glass fibers with an aspect ratio of 10 and a second-order fiber-orientation
tensor57,58

A = diag(0.45, 0.45, 0.1), (59)

that describes a slight deviation from a planar isotropic fiber-orientation state. As the fibers are described by cylinders,
the interface between matrix and inclusions does not satisfy the C1,𝛼-condition required for the Li-Nirenberg estimates,42

in contrast to the spherical inclusion considered in Section 3.2.
The microstructure with dimensions 256 × 256 × 64 𝜇m3, shown in Figure 1B, contains 106 fibers and was generated

by the SAM59 algorithm and the exact closure approximation.60

We consider resolutions N × N × N∕4 with N in the range 64,128, … , 1024. We apply 1.5% shear strain in the
1-2-plane, that is, in the fiber plane, distributed over 30 equidistant load steps. The computation with N = 1024 serves as
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14 SCHNEIDER and WICHT

(A) (B) (C)

F I G U R E 4 Relative error and convergence rates for 30 load steps and the planar glass-fiber reinforced polyamide, see Figure 1B. (A)
||𝜎 − 𝜎ref||∕||𝜎ref|| in %; (B) ||𝜀 − 𝜀ref||L2∕||𝜀||L2 in %; (C) Convergence-rate exponents

our the ground truth. Figure 4A shows the evolution of the relative effective-stress errors. For the coarse resolutions, the
errors increase with increasing loading. For the two finest discretizations, this kind of error remains constant throughout
the deformation. Thus, in contrast to the simple spherical inclusions, we do not observe a decrease of the error upon load-
ing. However, such a scenario might happen for much finer resolutions which appear beyond reach of industrial-scale
microstructures.

For the two finest discretizations, the effective stresses are approximated with a fidelity of 1%. However, the local
strain fields, see Figure 4B, come with an error that exceeds 20%. We will take a closer look at this phenomenon
later.

To close up the discussion, we investigate the convergence rates in Figure 4C. We notice that the local strains and
stresses converge with a rate h1∕2, whereas the effective stresses converge (at least as fast as) as h.

With these investigations at hand, we take a closer look at the local fields. Figure 5 shows the local von-Mises
equivalent strain fields in a special region at the final load step. At first glance, the different resolutions give rise to
qualitatively similar local fields where high strains are observed around the fiber tips and between close fibers. Indeed
for resolutions beyond 2563, the difference to the reference field may appear rather small to the naked eye. However,
the naked eye is a bit misled here as the strain levels are thresholded at 5% strain. Taking a look at the local relative
error, we observe rather high errors around the fibers. Indeed, the error level exceeds 50%, and does not significantly
decrease upon mesh refinement. Rather, the width of the error zone is decreasing, leading to a decrease of the L2

error, but not the maximum error. Such a behavior does not come unexpected for the Moulinec–Suquet discretiza-
tion,7,48 as it is prone to the well-known ringing artifacts characteristic for Fourier-type discretizations. Please keep
in mind that other popular discretizations in FFT-based computational micromechanics, see Schneider24 for a recent
overview, are also characterized by high errors at interfaces, essentially due to the jagged interfaces resulting from voxel
discretizations.

The accuracy of the effective stresses, however, is not impaired by these high errors of the local fields due to favorable
cancellations upon averaging.

3.4 Metal matrix composite

We wish to investigate whether the results obtained for polyamide with E-glass reinforcements remain valid for different
classes of composites. Therefore, we study a metal-matrix composite, that is, an aluminum alloy reinforced with stiff
ceramic particles. More precisely, we consider a microstructure with 50 spherical inclusions of identical radius, filling
30% of the microstructure volume, see Figure 1C. For the generation procedure, we relied on the mechanical contraction
method of Williams–Philipse.61
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SCHNEIDER and WICHT 15

F I G U R E 5 Close-up of the local von-Mises equivalent strain and the relative strain error ||𝜀 − 𝜀ref||∕||𝜀|| in the final load step for the
planar glass-fiber reinforced polyamide, see Figure 1B. (A) 1283; (B) 2563; (C) 5123; (D) 10243

T A B L E 2 Material parameters for the metal-matrix composite, see Segurado et al.62

Inclusions E = 400 GPa 𝜈 = 0.2

Matrix E = 75 GPa 𝜈 = 0.3 𝜎Y = 75 MPa, k = 416 MPa m = 0.3895

The ceramic particles are assumed to behave as an isotropic linear elastic medium, and the aluminum matrix follows
a J2 elastoplastic model with power-law hardening

𝜎0(𝜀eq) = 𝜎Y + k 𝜀

m
eq. (60)

After an implicit Euler discretization in time, the statically condensed stress function (2) is Lipschitz continuous, but
merely strictly monotone, as a consequence of the power-law hardening (60).

The material parameters62 are summarized in Table 2. We consider resolutions N3 with N = 16, 32, … , 512, and the
computation with N = 512 serves as our reference. The microstructured material is loaded to a shear strain 𝜀23 of 0.5% in
40 equidistant load steps. The results are summarized in Figure 6. Upon plastification, the relative errors in the effective
stresses increase consistently, see Figure 6A. More precisely, the relative error increases almost by an order of magnitude.
In particular, resolutions which provide a high fidelity for the elastic predictions, that is, N = 64, may not be sufficiently
accurate in the nonlinear regime.

Such conclusions may also be drawn when investigating the relative errors of the local strain field, see Figure 6B. As
for the previously studied microstructures, the overall error level of the local strains is significantly higher than for the
effective properties.

Taking a closer look at the convergence rates, shown in Figure 6C, we observe that the local stress and strain
fields converge with a rate that is close to h1∕2. More precisely, the local strain fields converge at a slightly slower rate,
whereas the stresses enjoy a slightly higher convergence rate. This behavior may be a consequence of the power-law
hardening (60), as such a constitutive model fosters high strains, yet moderate increases in stress. Moreover, it appears
as if this slightly higher rate of convergence is also reflected in the effective stresses. Indeed, the convergence-rate
exponents for the effective stresses are roughly twice as high as their local counterparts, and increase up to
almost 1.5.
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16 SCHNEIDER and WICHT

(A) (B) (C)

F I G U R E 6 Relative error and convergence rates for 40 load steps and the metal-matrix composite, see Figure 1C. (A) ||𝜎 − 𝜎ref||∕||𝜎ref||

in %; (B) ||𝜀 − 𝜀ref||L2∕||𝜀||L2 in %; (C) Convergence-rate exponents

To sum up, we observe a slightly higher convergence rate for the stresses and a slightly slower convergence rate for
the strains.

3.5 Copper polycrystal

Last but not least, we consider an oxygen-free high thermal conductivity (OFHC) copper. The microstructure, shown
in Figure 1D, consists of 512 grains of equal volume and was generated by a Laguerre tessellation whose grain volumes
may be optimized in terms of a convex program.63,64 Subsequently, the individual grains were furnished with crystal
orientations constituting an isotropic orientation state, see Kuhn et al.65 for a precise description of the method employed.

The material follows a single-crystal elastoviscoplastic model with the Hutchinson flow rule

�̇�
𝛼

= �̇�0 sgn(𝜏
𝛼
)
|
|
|
|

𝜏
𝛼

𝜏
F

|
|
|
|

n
, (61)

for the plastic slip 𝛾
𝛼

in the 𝛼th slip system and a linear-exponential hardening in terms of the accumulated plastic slip

𝜏

F = 𝜏0 + (𝜏∞ − 𝜏0)
(

1 − exp
(

−Θ0 − Θ∞
𝜏∞ − 𝜏0

𝛾

))

+ Θ∞𝛾. (62)

We refer to Wicht et al.66 for more background on the model, whose statically condensed stress function (2) is Lip-
schitz continuous but not monotone. The elastic moduli correspond to OFHC copper at room temperature following
Simmons-Wang.67 The elastoviscoplastic parameters originate from Eghtesad et al.68 The used material parameters are
listed in Table 3. Please note that the algorithmic tangent (5) of the investigated material is not symmetric, adding further
interest in this study.

We consider resolutions N3 with N = 16, 32, … , 512, and the highest resolution serves as the reference. The polycrys-
talline material is loaded to a shear strain 𝜀23 of 0.5% in 25 equidistant load steps. The results are summarized in Figure 7.
The relative errors of the effective stresses, see Figure 7A, increase slightly after the onset of plastification. However, they
stabilize for more than 0.1% applied strain. Moreover, the overall level of the error is rather low. Even for the coarsest
resolution of 163 voxels, the relative errors do not exceed 1%.

This degree of fidelity is not shared by the local strain fields, see Figure 7B. Even for the finest considered resolution,
these errors exceed 10%. However, these errors do not significantly increase during loading, but remain on the same level.

A look at the convergence-rate exponents, see Figure 7C, reveals that both the local strain and stress fields
converge with a rate h1∕2 rather precisely. The effective stresses show a higher rate of convergence, that is, an empirical
h3∕2 relationship.
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SCHNEIDER and WICHT 17

T A B L E 3 Material parameters for the polycrystalline microstructure67,68

Cubic stiffness C11 = 170.2 GPa C12 = 114.9 GPa C44 = 61.0 GPa

Flow rule �̇�0 = 0.001s−1 n = 20

Hardening Θ0 = 250 MPa Θ∞ = 14 MPa 𝜏∞ = 113.5 MPa

Yield stress 𝜏0 = 14.5 MPa

Lattice type FCC

Slip systems {111}⟨110⟩.

(A) (B) (C)

F I G U R E 7 Relative error and convergence rates for 25 load steps and the polycrystalline microstructure, see Figure 1D. (A)
||𝜎 − 𝜎ref||∕||𝜎ref|| in %; (B) ||𝜀 − 𝜀ref||L2∕||𝜀||L2 in %; (C) Convergence-rate exponents

These investigations thus may shed light on the effectiveness of regular grid type methods for computational crystal
plasticity.69,70 In particular, the results demonstrate that the required resolution depends strongly on the purpose of the
computation. For instance, in concurrent multiscale simulations71 where the effective stress is of interest, only a few
voxels per grain are sufficient, whereas investigations of local fields routinely operate on microstructures resolved by
several thousand voxels per grain.72-74

4 CONCLUSION

This work was concerned with the question whether the effective Cauchy stress in the computational homogenization of
inelastic material models converges faster than the local fields. Computational experiments in the isothermal, quasistatic
and small-strain setting with popular FFT-based computational homogenization methods indicate that the L2-error of
both the local strain and stress fields converge as the square root of the voxel edge-length h, whereas the effective stresses
converge linearly in h. Moreover, we provided theoretical arguments for this superconvergence in case of Galerkin dis-
cretizations based on a close inspection of the macroscopic stress power. Unfortunately, there is still a gap between the
theoretical results and the computational experiments, as underintegrated discretizations are typically favored over (fully
integrated) Galerkin schemes due to performance reasons. Further ideas are required to close this gap.

Both the computational experiments and the theoretical developments should increase the confidence that regular
grid based methods may be safely used for inelastic homogenization. However, the results also indicate that caution has to
be taken with quantities different from the effective stress (or energy). For instance, investigations on local fields should
be considered with caution.

During the finalization of the article, we became aware that there appears still to be a lack of theoretical work
on modern computational homogenization methods, for instance on explicit convergence rates for the trigonometric
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18 SCHNEIDER and WICHT

discretization of Moulinec-Suquet.7,48 Indeed, most of the work is concerned with the approximation of smooth func-
tions75 or does not provide explicit rates.14,50 Yet, the discretization is used with confidence for almost three decades,
indicating stable convergence with h of the effective properties for nonporous materials.

Similarly, convergence (without rate) of Willot’s discretization56 was established by Ye-Chung,14 but explicit rates
appear to be unknown. Possibly, the equivalence of the discretized systems corresponding to Willot’s discretization on a
rotated staggered grid and the nonconforming P1-finite element76,77 may be exploited.

It might also be of interest what happens for non-quadratic energies78,79 or whether it is possible to utilize the
theoretical framework to speed up computational schemes, as done in the linear elastic context.37
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