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Abstract

While arti�cial neural networks have reached immense advances over the last decade, the

underlying approach to training neural networks, that is, solving the credit assignment

problem by computing gradients with back-propagation, has remained largely the same.

Nonetheless, back-propagation has long been criticized for being biologically implausible

as it relies on concepts that are not viable in the brain. With delayed error forward pro-

jection (DEFP), I introduce a feed-forward-only training algorithm that solves two core

issues for biological plausibility: the weight transport and the update locking problem.

It is based on the similarly plausible direct random target projection algorithm but im-

proves the approximated gradients by using delayed error information as a sample-wise

scaling factor in place of the targets. By evaluating delayed error forward projection on

image classi�cation with fully-connected and convolutional neural networks, I �nd that

it can achieve higher accuracy than direct random target projection, especially for fully-

connected networks. Interestingly, scaling the updates with the error yields signi�cantly

better results than scaling with the gradient of the loss for all networks and datasets. In

total, delayed error forward projection demonstrates the applicability of feed-forward-only

training algorithms. This o�ers exciting new possibilities for both in-the-loop training on

neuromorphic devices and pipelined parallelization.
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Zusammenfassung

Obwohl künstliche neuronale Netze in den letzten Jahren beeindruckende Fortschritte er-

zielen konnten, ist der für ihr Training verwendete Ansatz – eine Optimierung mit dem Gra-

dientenverfahren basierend auf dem Backpropagation-Algorithmus – weitestgehend gleich

geblieben. Aus biologischer Sicht wird Backpropagation allerdings als unplausibel kritisiert,

da die zugrunde liegenden Konzepte nicht in dieser Form im menschlichen Gehirn ablaufen

können. Mit Delayed-Error-Forward-Projection (DEFP) stelle ich einen neuen Trainingsal-

gorithmus vor, der ausschließlich Vorwärtspropagierung verwendet und zwei Kernproble-

me der biologischen Plausibilität von Backpropagation löst: das Gewichtstransport- und

das Update-Locking-Problem. Delayed-Error-Forward-Projection beruht auf dem ähnlich

plausiblen Direct-Random-Target-Projection-Algorithmus, verbessert aber die Gradienten-

approximation durch eine Skalierung mit verzögerten Fehlerinformationen anstelle einer

rein auf den Zielvariablen basierenden Skalierung. Bei der experimentellen Evaluation

anhand von Bildklassi�kationsproblemen unter Verwendung von vollständig verbundenen

sowie Faltungsnetzwerken zeigt sich, dass Delayed-Error-Forward-Projection eine höhere

Genauigkeit als Direct-Random-Target-Projection erreichen kann. Dies gilt insbesondere

für vollständig verbundene Netzwerke. Interessanterweise führt die Skalierung der Ak-

tualisierungsschritte mit dem Fehler bei allen getesteten Netzwerken und Datensätzen zu

einer deutlichen Verbesserung im Vergleich zu einer Skalierung mit dem Gradienten der

Verlustfunktion. Diese Ergebnisse zeigen das große Potential reiner Vorwärtsalgorithmen

wie Delayed-Error-Forward-Projection zum Training neuronaler Netze auf. Damit erö�nen

sich vielfältige neue Trainingsmöglichkeiten sowohl auf neuromorphen Geräten als auch

für die Parallelisierung durch Pipelining.
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1. Introduction

Within the last decade, there has been a surge of interest in arti�cial neural networks.

Facilitated by the availability of large datasets, increased computing power, and new

methodological approaches, there has been an immense increase in the predictive perfor-

mance and prevalence of neural networks. Used in a wide array of applications, they often

outperform previous approaches, thus setting a new state-of-the-art. These applications

include computer vision tasks like image recognition [28, 70, 43], object detection and

segmentation [24, 49], and image captioning [78] but also tasks in natural language pro-

cessing (NLP) such as speech recognition [31, 1] and machine translation [37]. With these

tasks, arti�cial neural networks solve many di�erent practical problems, from self-driving

cars [3, 10] to biomedical applications like detecting tumors [66, 63].

While there has been immense progress with how neural networks are trained and

designed [40, 54, 28, 32], the underlying algorithms used to train them have remained

mostly the same. Today, the vast majority of neural networks is still trained using a

gradient-descent-based optimization algorithm combined with back-propagation [64]

for computing the required gradients [26]. The forward pass determines the network’s

output, which a loss function compares to the desired target value. In the backward pass,

back-propagation computes the gradient of the resulting loss with respect to the model

parameters. Based on these gradients, the optimization algorithm adjusts the parameters

in the direction of the negative gradient to reduce the loss and improve the network’s

output. Alternating these forward and backward passes iteratively, the training seeks to

minimize the loss over all training samples.

Back-propagation o�ers many advantages by e�ciently computing the exact gradient

of the loss with respect to all model parameters. However, it also comes with several

disadvantages that hinder both its computational performance and make it biologically

implausible. Two of the most signi�cant issues are the weight transport and the update

locking problem. In back-propagation, the forward weights are reused in the backward

pass to propagate the gradients backward. This is, however, biologically implausible as

synapses are unidirectional and separate forward and backward pathways would require

a synchronization of the weights between these pathways while the brain is inherently

asynchronous and event-based [79, 72]. This implausibility is referred to as the weight
transport problem [27]. The update locking problem [36, 33, 22] relates to the dependencies

between the forward and backward passes. Having been processed in the forward pass,

a layer needs to wait until all its downstream layers have been processed by both the

forward and the backward pass before it can be updated. This can take a considerable

amount of time and thus cause earlier layers to become desynchronized with the error.

Several approaches to solving these problems exist. One such approach is feed-forward-
only training, which attempts to solve the weight transport and update locking problems

by e�ectively removing the backward pass, thus training neural networks with only a
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1. Introduction

forward pass. With feedback alignment (FA), Lillicrap et al. [48] provide a possible solution

to the weight transport problem. They demonstrate that the backward weights can be

replaced by �xed random feedback weights, as the forward weights come to align with

these feedback weights enabling e�ective training. With this strategy, FA is competitive

to back-propagation on multiple di�erent tasks, including multi-layer networks with non-

linear layers, and can even achieve higher accuracy on some. Direct feedback alignment
(DFA) by Nøkland [56] is an extension to FA. It replaces the feedback pathways, which

propagate the feedback backward layer-by-layer, with direct pathways passing the error

directly from the output layer to all hidden layers. This solves the non-locality of back-

propagation, relaxes constraints on the memory access pattern [15, 22], and reduces the

dependency on the initialization of the forward weights [56]. Direct feedback alignment

can train deep neural networks on di�erent image classi�cation datasets and comes at

only a low cost in accuracy compared to back-propagation. Both FA and DFA solve the

weight transport problem but still su�er from update locking. They are thus no feed-

forward-only algorithms as updates have to wait until the full forward pass is complete.

The latest feedback-alignment-based training algorithm, direct random target projection
(DRTP) by Frenkel et al. [22], overcomes this issue by introducing a purely feed-forward

algorithm. It is based on DFA and solves both the weight transport and the update locking

problem by using the targets instead of the error as feedback signals. Since the targets

are already known, no complete forward pass is required, allowing for updates of earlier

layers independently of the forward pass in later layers.

Even though biological plausibility is not a necessary requirement for training arti�-

cial neural networks, there has been much interest in methods that combine biological

plausibility with e�ective training [76, 59, 8, 74, 46, 47]. In addition, there are incentives

for exploring alternatives to back-propagation, even from a purely machine-learning

motivated standpoint. Using deeper networks or stronger non-linearities, neural net-

works compute increasingly non-linear up to almost discrete functions [46]. This can lead

to vanishing and exploding gradients, as the gradients are almost zero for most inputs

and extremely large at the few points of discrete changes in the function’s output. As

a result, optimizing such networks with back-propagation can be challenging [46]. Be-

yond that, back-propagation also exhibits technical constraints, such as the bu�ering of

activations and outputs required due to update locking, which negatively impacts the

memory overhead, communication, and energy consumption [53]. Thanks to their reduced

power and resource consumption, feed-forward-only training algorithms have a great

potential to overcome these limitations in edge computing scenarios and neuromorphic

engineering [22, 23].

1.1. Contributions

This thesis introduces delayed error forward projection (DEFP), a DRTP-based feed-forward-

only training algorithm for neural networks that solves both the weight transport and the

update locking problem. DRTP replaces the gradients with an approximation based on

the feedback weights and the targets. With DEFP, I aim to increase the resulting model’s

accuracy by improving the information used to approximate the gradient while retaining

2



1.2. Structure

the biological plausibility and purely feed-forward computation. Due to update locking, a

feed-forward-only training algorithm cannot access the current loss value. It can, however,

store the loss from a previous epoch. DEFP uses this delayed error information as an

additional sample-wise scaling factor in place of the targets to more accurately model the

loss. Compared to using only the targets, this can give a more accurate approximation

of the current error by including the error magnitude. While there has been discussion

on the biological plausibility of delayed errors, especially in combination with non-local

errors [53], the argument that the neurons need to store the input for the duration of

the delay does not apply to DEFP as the feed-forward nature allows updating each layer

immediately. Furthermore, the delayed information could be seen as an additional input,

passed from one epoch to the next.

Evaluating DEFP on di�erent neural networks and classi�cation datasets, I �nd that

it can improve the top-1-accuracy by up to 2.02% compared to DRTP while being less

than one percent below back-propagation on fully-connected neural networks. This thesis

presents two variants of DEFP, using either the gradient of the delayed loss or the delayed

error to scale the updates. Surprisingly, error-scaling yields signi�cantly better results

than loss-based scaling for all networks and datasets. I presume that loss-scaled updates

require a more careful selection of the learning rate or even a learning rate scheduler

due to the substantially wider range of potential scaling factors compared to the error

or the targets values. Additionally, I explore di�erent initialization approaches for the

feedback weights based on distributions typically used for initializing the forward weights

of neural networks. Computing the gradient with the chain rule requires the weights and

activation derivatives of all downstream layers. With the direct feedback pathways, the

feedback weights summarize the whole backward pass. Based on these considerations,

I test alternative initialization schemes for the feedback weights. I �nd only a marginal

impact of the initialization method, which further depends on the network topology and

dataset at hand. The observed behavior provides no clear indication of a general best choice

but suggests that selecting the initialization as a hyper-parameter similarly to the learning

rate might yield a slight increase in performance. Comparing the technical performance

of the di�erent algorithms, I �nd that the execution time per epoch di�ers only slightly on

typical network architectures. Only in very deep networks with one thousand layers, back-

propagation leads to notably faster epochs than the feed-forward-only approach. This is

most likely caused by the overhead of separate update steps in the current implementation

compared to the highly optimized backward pass used by back-propagation and might be

alleviated using an implementation tuned for fast epoch times. Furthermore, I �nd that

the memory overhead for storing the delayed error information is negligible compared to

the overall memory consumption.

1.2. Structure

The remainder of this thesis is structured as follows. Chapter 2 serves as an outline of

neural network training, summarizing the de�nitions and approaches used in later parts of

this thesis. An overview of relevant related work is provided in Chapter 3, which discusses

why back-propagation is biologically implausible and introduces di�erent approaches

3



1. Introduction

to solving these issues. Additionally, the three predecessors of DEFP, namely FA, DFA,

and DRTP, are compared in detail. Chapter 4 introduces DEFP, a weight-transport and

update-locking agnostic feed-forward-only training approach for neural networks, and

the primary contribution of this thesis. It is evaluated on di�erent datasets and network

topologies in Chapter 5, followed by a discussion of the results in Chapter 6. Finally,

Chapter 7 summarizes my �ndings and gives an outlook on possible next steps.

4



2. Preliminaries

This chapter gives an overview of the preliminary knowledge required to understand the

remainder of this thesis, including what a neural network is, how it makes predictions, and

what it means to train a neural network. Additionally, Section 2.3 introduces a running

example used to compare the di�erent training algorithms in the following chapters.

2.1. Neural Networks

Arti�cial neural networks are inspired by the human brain. While complex processes

within the brain are still not understood in their entirety, the basic functionality can be

summarized as follows. The brain consists of a large number of neurons interconnected in

a biological neural network. Current estimates suggest that the human brain consists of

about 100 billion neurons, each connected to thousands of other neurons via synapses [2,

73]. A neuron receives information—a stimulus—from other neurons via its dendrites.

This stimulus is processed by the neuron. If the corresponding output exceeds the action

potential threshold, the neuron spikes and emits the action potential via its axon [71, 72].

Figure 2.1 illustrates such a biological neuron.

Like their biological inspiration, arti�cial neural networks consist of a myriad of in-

terconnected neurons. Each neuron receives inputs from other neurons, processes these

inputs, and emits an output based on the result. This output may again be used as input to

another neuron. The connections between neurons are weighted to adjust the impact of

incoming values on a neuron’s output. To compute its output, a neuron takes the weighted

Dendrites
Axon

Terminal Axon

Cell Body

(a) Biological neuron [51]

Synapse

(b) Synapse [51]

Figure 2.1.: Illustration of a biological neuron and a synapse connecting two neurons by

Maltarollo et al. [51, Figure 1]. The neuron receives input via its dendrites.

These stimuli are then processed within the neuron’s cell body, and the output

is emitted to another neuron via the axon.

5



2. Preliminaries

Figure 2.2.: An arti�cial neuron receives an input G via weighted connections. It computes

a weighted sum

∑#
8=1F8G8 and passes it through a non-linear activation function

5 to generate its output ~.

sum of all its inputs and passes it through a non-linear function, the so-called activation

function. Figure 2.2 illustrates a simple arti�cial neuron. Neurons can be organized into

layers where all neurons of a layer receive their input from the previous layer and pass their

output on to the next layer. The input layer receives the input to the network, for example,

an input image, while the output layer provides the network’s output, such as the detected

class. Usually, there are multiple intermediate layers—so-called hidden layers—between

the input and the output layer. The depth of the network, that is, the number of layers, has

an important impact on its performance. The area of deep learning focuses speci�cally

on deep networks with more than one hidden layer. Such networks have been shown to

perform exceptionally well on a multitude of tasks as their hierarchical architecture can

leverage structures within the data by building a hierarchy of reusable features [25, 44].

This thesis focuses on feed-forward neural networks where the connection of neurons

is acyclic; that is, the connections of all neurons build a directed acyclic graph (DAG).

Information in such a network moves in a single direction from the input layer through the

hidden layers to the output layer. In contrast, recurrent neural networks allow connections

to neurons of the same or previous layers, making cycles possible. Feed-forward neural

networks are not to be confused with the feed-forward-only training discussed in this

thesis. In a feed-forward network, the term “feed-forward” refers to the �ow of information

during the inference, that is, the forward pass through the network. By contrast, feed-

forward-only training focuses on eliminating the backward pass typically required to train

neural networks with back-propagation.

Di�erent types of layers can be distinguished depending on how the neurons are

connected to the previous layer. In this thesis, I focus on two of them, namely fully-

connected and convolutional layers. A fully-connected (FC) layer, also known as linear

layer, connects # input neurons G to" output neurons ~ through an" ×# weight matrix

, . Every input neuron 8 of the layer is linked to each output neuron 9 via a connection

with the weightF 98 . Fully-connected layers are thus de�ned through their weights, and

biases 1 and compute the linear function

~ =,G + 1. (2.1)

Figure 2.3a illustrates such a fully-connected layer. Since all neurons are mutually con-

nected, independent of their relative position, fully-connected layers have a high number

6



2.1. Neural Networks

Input Output 

Weights 

(a) Fully-connected layer

Input Output 

Convolutional
Filter 

(b) Convolutional layer

Figure 2.3.: Illustration of a fully-connected and convolutional layer. The fully-connected

layer (a) connects each input neuron with each output neuron, resulting in

a high number of connections and thus parameters, . In contrast, the con-

volutional layer (b) shifts a �lter kernel across the input, reusing the kernel

weights, for each position.

of parameters and lack locality. As a result, they cannot di�erentiate between input coming

from neighboring neurons and input from completely unrelated neurons. This increases

memory consumption and can inhibit training. The lack of locality is especially detrimental

when solving visual tasks, as the interpretation of an input pixel is highly dependent on

its surroundings.

Convolutional layers can solve this problem using a discrete convolution operation. Such

a convolution combines the input G to the layer with a so-called kernel  via

(G ∗  ) (8) =
∞∑

<=−∞
G (8 −<) (<). (2.2)

In neural networks, both the input and the kernel are typically �nite, resulting in a �nite

sum over the available values. The kernel values correspond to the learnable weights

, of the layer. The output obtained from applying the kernel to the input is known as

feature map [26]. Convolutions for image processing are best explained at the example of

applying a two-dimensional convolution to an input image G , as illustrated in Figure 2.3b.

The kernel  of size : , typically a small, odd integer, is de�ned by a : × : weight matrix

, . It is shifted across the input image, computing the weighted sum of the current pixel

and its surrounding neighbors in a : × : patch. Thus, for the pixel at position [8, 9], the

result is de�ned as

~ [8, 9] = (G ∗  ) [8, 9] =
:∑

<=1

:∑
==1

G [8 −< + 0, 9 − = + 0] (<,=) with 0 =

⌊
:

2

⌋
. (2.3)

Convolutional layers o�er multiple advantages compared to a fully-connected layer. Since

the output value for a pixel is based directly on its neighbors, convolutional layers take

account of locality. This is important as it is often less relevant where something is within

the image than what surrounds it. Reusing the convolution kernel for di�erent sections of

the input, a concept known as weight sharing, not only signi�cantly reduces the number
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(c) ReLU relu(G) = max(0, G)

Figure 2.4.: The sigmoid, hyperbolic tangent, and recti�ed linear unit activation functions

for neural networks.

of parameters but can also improve the model’s generalization. The intuition behind this

is similar to locality: the same features can occur at di�erent positions in the input; for

example, a car may have multiple wheels visible at di�erent pixel locations. A convolutional

layer can consist of multiple such kernels, thus producing a number of di�erent activation

maps for the same input. Neural networks containing convolutional layers are also referred

to as convolutional neural networks. Such networks often contain multiple di�erent layer

types. For example, typical networks for image classi�cation employ several convolutional

layers as feature extractors. Subsequent fully-connected layers generate the network’s

output by converting the extracted features into the predicted class.

After combining the inputs from the previous layer with a weighted sum, the result is

passed through an activation function. Without non-linear activation functions, a network

of multiple linear layers is just a composition of linear functions, which again is a linear

function. Non-linear activations are thus required to utilize multiple layers, to begin with.

Di�erent activation functions exist, such as the sigmoid function, the hyperbolic tangent,

or the more recently used recti�ed linear unit [54], illustrated in Figure 2.4. Multiple

factors can in�uence the choice of the activation function. In general, we seek e�cient

computation and e�cient propagation of the results through the network. One particular

issue is the vanishing gradient problem: If the gradient of the activation function is almost

zero for some inputs, it can hinder the gradient propagation to previous layers.

Neural networks can be used to solve a multitude of di�erent tasks. Typically, we

di�erentiate between supervised and unsupervised tasks. For supervised tasks, the ex-

pected output, the so-called ground truth ~∗, is known in advance. This requires labeled

training data where each input is labeled with the corresponding ground truth. During

the training, these labels can be used to compute the current output error and adjust the

model accordingly. An example of a supervised task is classi�cation, where we aim to

categorize data into one (or more) of multiple previously known discrete classes. Another

example is regression, which uses continuous instead of discrete outputs. In contrast, for

unsupervised tasks, the correct labels are not known to the training algorithm. Training

the model thus has to rely on other measures. An example of an unsupervised task is

clustering, where the data is grouped into previously unknown clusters, usually aiming to

maximize the separation of data points in di�erent clusters while minimizing it within

each cluster.

In this thesis, I restrict myself to the classi�cation problem, focusing primarily on

image classi�cation for increased comparability to prior works. In image classi�cation, the

8
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network receives an input image and determines the correct class depicted in the image. An

example would be distinguishing between images of cats and dogs. An image classi�cation

dataset thus consists of a set of images, each labeled with the correct class. Typically, we

separate the dataset into at least a training set and a test set. While the training set is used

during the training, the test set remains unseen by the training algorithm and is used to

evaluate the trained model. Well-known examples of such datasets are the MNIST [45]

and CIFAR-10 [42] datasets, described in more detail in Section 5.1.1, and the large-scale

ImageNet [18] dataset.

2.2. Training Neural Networks

Training a neural network is the process of adjusting the model’s parameters \ , such as the

weights and biases of the layers, to improve its predictive accuracy. It can be formulated

as an optimization problem, where we try to minimize the error of the model, typically

measured with a loss function, by adjusting its parameters. In a neural network with

thousands of parameters and multiple layers, it is non-trivial to identify how much each

parameter contributed to the error. This is known as the credit assignment problem [52].

By solving the credit assignment problem, we can determine which parameters need to be

changed to improve the network’s performance. Typically, neural networks are trained

with iterative algorithms, alternatingly computing the model’s output, evaluating the

current error, and updating the parameters accordingly.

The forward pass determines the output for a given input sample G by propagating it

forward through the network. The input is passed layer-by-layer from the input layer

through all hidden layers to the output layer. This process is also known as forward

propagation, in accordance with the back-propagation performed by the backward pass.

Consider the forward pass for a fully-connected layer 8 with weights,8 , bias 18 , and an

activation function 58 . The layer receives the output ℎ8−1 of the previous layer 8 − 1 and

computes its own output ℎ8 based on ℎ8−1. This output is then passed on to the next layer

8+1. In the fully-connected layer 8 , the output is obtained by �rst passing the input through

the linear function de�ned by the weights,8 and biases 18 , computing the intermediate

result I8 as

I8 =,8ℎ8−1 + 18 . (2.4)

This intermediate result is then passed through the activation function 58 to compute the

output ℎ8 of the layer as

ℎ8 = 58 (I8). (2.5)

The output ~ = ℎ: of the last layer :—the output layer—corresponds to the output of the

whole network. Figure 2.5 illustrates this forward pass on a four-layer neural network.

By comparing the output ~ of the forward pass to the actual label ~∗, we can measure

how far the model deviates from the desired output. Usually, this error is measured through

a loss function � (\ ) = � (~,~∗), where \ comprises all trainable model parameters. The

training objective is to adjust the model parameters \ such that the total loss over all input

samples in the training set is minimized. Multiple di�erent loss functions exist, and the

choice of loss typically depends on both the task at hand and the output format of the

9
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Figure 2.5.: The forward pass in a fully-connected neural network with four layers. The

network receives an input G = ℎ0. Each layer 8 computes its output ℎ8 . The

result of the last layer corresponds to the output of the network ~ = ℎ4.

model. For regression, one might use the mean squared error (MSE), while for classi�cation,

categorical cross-entropy loss (CE) or its variant, binary cross-entropy (BCE), is more

common [75].

Most training approaches for neural networks utilize gradient-based optimization meth-

ods such as gradient descent [13]. To minimize the loss with gradient descent, we need to

compute the gradient of the loss with respect to the model parameters. When training

neural networks, we typically use the back-propagation algorithm [64] to compute these

gradients e�ciently without unnecessary re-computations. Back-propagation is based on

the chain rule for computing the derivative of function compositions and is explained in

more detail in Section 2.2.1. Computing the gradient with back-propagation is done in the

backward pass after the forward pass has computed the loss.

Having computed the gradients, we can adjust the model parameters in an optimization
step based on the chosen optimization algorithm. Gradient descent is based on the idea of

stepping in the direction of the negative gradient, as this is the direction of the steepest

descent. The optimization step adjusts the model parameters \ as

\ ← \ − [ m� (\ )
m\

, (2.6)

where [ is the learning rate.

The learning rate [ is a scaling factor that determines the step size of the update and

is typically a small positive scalar. Selecting the right learning rate can have a crucial

impact on the training [67, 7, 68, 41]—setting the learning rate too small might lead to

slow convergence, whereas choosing it too large can lead to slow convergence, oscillation,

or even divergence. The learning rate can be either constant or adjusted dynamically by a

learning rate scheduler throughout the training. Such a learning rate scheduler can update

the learning rate based on the current training state, for example, reducing the learning

rate at �xed epochs or updating it dynamically based on the current loss.

In addition to the basic update rule stated above, modern optimization algorithms also

utilize additional concepts such as momentum and adaptive learning rates. Section 2.2.2

10
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gives an overview of the di�erent optimization algorithms used in this thesis. Usually,

neural networks are trained in multiple epochs, where one epoch equals one iteration

through all samples of the training set. The training samples can be processed in batches of

a certain batch size. All samples in a batch are processed simultaneously, and the resulting

gradients are accumulated over the samples in the batch.

2.2.1. Back-Propagation and the Chain Rule

The back-propagation algorithm is used to compute the gradients in a multi-layer neural

network e�ciently. It is based on the chain rule for computing the derivative of function

compositions, which states that for two univariate functions, 5 and 6, the derivative of

their composition ℎ = 5 ◦ 6, with ~ = 6(G) and I = ℎ(G) = 5 (~), corresponds to

3I

3G
=
3I

3~

3~

3G
. (2.7)

This can be generalized to vectors and even tensors of arbitrary dimensionality. The

derivative of the value I with respect to a tensor - is then de�ned as

∇-I =
∑
9

(
∇-.9

) mI
m.9

(2.8)

with . = 6(- ) and I = 5 (. ) [26].

In a neural network, we need to compute the gradient of the loss value � (\ ), obtained

from the forward pass, with respect to all model parameters \ . The gradient of the loss

with respect to a value G is often also denoted as

XG =
m� (\ )
mG

. (2.9)

Applying the chain rule to the fully-connected layer 8 from the example above yields the

following gradients for the intermediate result I8 , the input from the previous layer ℎ8−1,
the weights,8 , and the bias 18 :

XI8 =
m� (\ )
mI8

=
m� (\ )
mℎ8

mℎ8

mI8
= Xℎ8 � 5 ′8 (I8) (2.10)

Xℎ8−1 =
m� (\ )
mℎ8−1

=
m� (\ )
mI8

mI8

mℎ8−1
=, )

8 XI8 (2.11)

X,8 =
m� (\ )
m,8

=
m� (\ )
mI8

mI8

m,8

= XI8ℎ
)
8−1 (2.12)

X18 =
m� (\ )
m18

=
m� (\ )
mI8

mI8

m18
= XI8, (2.13)

where � is the element-wise product, also known as Hadamard product. Figure 2.6

illustrates the information �ow through a fully-connected layer 8 for both the forward and

the backward pass.

As is already apparent from the example above, there can be subexpressions that

are required multiple times to compute all gradients in the network. In this example,

11
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Forward Backward

Figure 2.6.: A detailed look into the forward and backward pass within a fully-connected

layer 8 with weights,8 , bias 18 , and activation function 58 .

Forward Pass: The layer receives the output ℎ8−1 of the previous layer 8 − 1.

Passing it through the linear function ��8 creates the intermediate output I8 ,

which is passed through the activation function 58 to compute the output ℎ8 of

this layer 8 . The output ℎ8 is then passed forward to the next layer 8 + 1.

Backward Pass: The layer receives the gradient Xℎ8 from the next layer 8 + 1.

The gradients XI8 and therefrom X,8 , X18 , and Xℎ8−1 are computed by applying

the chain rule. The gradient Xℎ8−1 is passed backward to the previous layer

8 − 1, which computes its gradients accordingly.

the gradient XI8 is required to compute the gradients for the input from the previous

layer, the weights, and the biases. There can be an exponential amount of such repeated

subexpressions, making an e�cient implementation necessary for large networks [26]. The

back-propagation algorithm (BP) [64] is such an implementation of the chain rule. It focuses

on computing the gradients in an e�cient order and reusing repeated subexpressions

in later computations instead of recomputing them. Back-propagation computes the

gradients in precisely the reverse order of the forward pass. This means it starts at the loss

function and proceeds layer-by-layer backward through the network up to the �rst layer.

With this approach, all gradients need to be computed only once. Consider, for example,

the gradient XI8 of the loss with respect to I8 as given by Equation (2.10). Computing it

requires the gradient Xℎ8 of the loss with respect to ℎ8 and the gradient of ℎ8 with respect

to I8 . Since Xℎ8 has already been computed in the previous step, it can be reused, and only

mℎ8/mI8 , the gradient of ℎ8 with respect to I8 , needs to be computed in this step.

The backward pass computes the gradients for all model parameters \ in this manner

with back-propagation. When training a neural network, forward and backward passes

are performed alternatingly, �rst computing the loss with the forward pass, then the

gradients in the backward pass. Algorithm 1 describes training a neural network with

back-propagation in more detail. Processing a batch containing the samples with indices

1, the forward pass (Lines 5 to 7) determines the output ~ = ℎ: for the input G = ℎ0
with a forward propagation through the layers !8 of the model. After computing the loss,

12
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Algorithm 1: Training a model " with layers !1, . . . , !: on a dataset � with

the optimizer $?C for Cmax epochs using back-propagation.

Input :model " = (!1, . . . , !:), optimizer $?C , dataset � , epochs Cmax

1 for C ← 1 to Cmax do
2 foreach 1 ∈ �.10C2ℎ4B do
3 ℎ0 ← �.G [1]
4 ~∗ ← �.~∗ [1]
5 for 8 ← 1 to : do
6 ℎ8 ← !8 .5 >AF0A3 (ℎ8−1)
7 end
8 ;>BB ← � (ℎ: , ~∗)
9 Xℎ: ← m;>BB/mℎ:

10 for 8 ← : to 1 do
11 Xℎ8−1 ← !8 .102:F0A3 (Xℎ8)
12 end
13 $?C .update_step(")
14 end
15 end

the backward pass (Lines 10 to 12) processes the layers in reverse order, computing the

gradients of the loss with respect to all model parameters.

2.2.2. Optimization Algorithms

After computing the gradients with back-propagation, the parameters are updated accord-

ing to the chosen optimization algorithm. Section 2.2 already introduced gradient descent,

a �rst-order optimization algorithm that steps in the direction of the steepest descent,

that is, in the direction of the negative gradient. There are several approaches to further

accelerate the optimization compared to the general gradient descend step. This section

introduces four popular optimization algorithms: Stochastic gradient descent, Nesterov’s

Accelerated Gradient, RMSProp, and Adam.

In the context of neural networks, we can di�erentiate between batch, mini-batch, and

stochastic gradient descent. In batch gradient descent, all training examples are processed

simultaneously. This corresponds to a batch size equal to the number of training samples.

Stochastic gradient descent (SGD) selects training samples at random without replacement.

In its original form, SGD uses only a single training sample at a time, corresponding to a

batch size of one. Mini-batch gradient descent lies between these two extremes. It uses

batches containing more than one but not all the training samples. Today, mini-batch

and stochastic gradient descent are often used interchangeably. Choosing the batch size

depends on multiple factors. While larger batches o�er a more accurate gradient estimate,

smaller batches can positively impact the generalization through a regularization e�ect [77,

39, 26]. Additionally, there are technical constraints: while larger batch sizes usually speed

up the training time per epoch, the maximum batch size is limited by the available memory.
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BP FA DFA DRTP

Figure 2.7.: Example of back-propagation on a four-layer network. In the forward pass

(blue), the input G is passed through the network layer-by-layer until the output

layer generates the output ~. The output is compared to the target ~∗ using

the loss function � . To compute the gradient of the loss with respect to each

weight, the backward pass (red) processes the layers in reverse order compared

to the forward pass.

Momentum [62] is a method to speed up the training by considering the current mo-

mentum of the gradient in the update step. The moving average of the gradient with

exponential decay is accumulated as velocity and used to update the parameters instead

of the gradient itself. If the gradients remain largely the same for multiple steps, mo-

mentum speeds up the training by e�ectively increasing the step size. If the direction

of the gradient varies wildly, momentum avoids a zigzag course by averaging over the

past gradients, which also automatically reduces the step size. A variant of momentum is

Nesterov’s Accelerated Gradient (NAG) [55, 69] which evaluates the gradient after applying

the current velocity instead of before.

Another approach is using adaptive learning rates. This introduces a separate learning

rate for each parameter instead of a single combined value for all parameters and adapts

these learning rates automatically based on the current state of the training. RMSProp [30]

again accumulates the gradient in an exponentially weighted moving average. This

gradient is then used to decrease the learning rate of the parameters based on the magnitude

of the corresponding part of the gradient. For parameters with a large gradient, the learning

rate is decreased more than for parameters with a relatively small gradient. This speeds up
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the training in the shallower directions of the parameters space compared to the steeper

directions. Adam [40] is another optimization algorithm based on adaptive learning rates.

2.3. Running Example

Throughout this thesis, a fully-connected neural network with four layers is used as

a running example to compare the di�erent training algorithms. Figure 2.7 illustrates

training this neural network with back-propagation. For simplicity, the biases are omitted.

This is without loss of generality, as the bias can be encoded in the weights by applying the

bias-trick and changing the input ℎ8−1 to ℎ+8−1 = [ℎ8−1, 1] and the weights to, +8 = [,8, 18].
In the forward pass (blue), information �ows forward through the layers from the input G

to the output ~ based on the forward weights,8 of each layer. The loss is computed by

comparing the actual output ~ to the expected output or target ~∗. In the backward pass

(red), the gradient information �ows backward layer-by-layer based on the transpose of

the forward weights, )
8 . The derivative of the 8-th layer’s output ℎ8 thus corresponds to

Xℎ8 =,
)
8+1XI8+1 (2.14)

as shown in Section 2.2.1. The computations within each fully-connected layer are sum-

marized in Figure 2.6.
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This chapter gives an overview of prior work related to feed-forward-only training. First,

Section 3.1 discusses why training neural networks with back-propagation is biologically

implausible. Then, Section 3.2 introduces di�erent approaches to biologically inspired

training. Finally, Section 3.3 discusses feedback alignment and derived algorithms in detail

as the foundation for the approach introduced in the subsequent chapter.

3.1. On the Biological Plausibility of Back-Propagation

While the back-propagation algorithm is very successful in training arti�cial neural net-

works to a high degree of accuracy, it is improbable that the same mechanism is used for

learning within the human brain. Back-propagation relies on multiple factors that are, with

our current understanding, thought to be impossible to implement in the brain, making

back-propagation biologically implausible. An overview of these factors is given, for

example, by Bengio et al. [8] and Hunsberger [33]. In addition to the biological plausibility,

some of these factors also a�ect the computational performance of back-propagation,

such as memory usage or execution time. This section focuses primarily on the weight

transport and the update locking problem. Further biologically implausible factors are

discussed brie�y at the end of this section.

3.1.1. Weight Transport Problem

Recalling the de�nition of the forward and backward path through a fully-connected layer

from Chapter 2,

ℎ8 = 5 (,8ℎ8−1 + 18) forward (3.1)

Xℎ8−1 =,
)
8

(
Xℎ8 � 5 ′8 (I8)

)
backward, (3.2)

we notice that the weights ,8 are used in both the forward and the backward steps.

This symmetry of forward and backward weights is biologically implausible because

synapses are unidirectional [33], meaning a synapse is never used in both the forward

and the backward path. Using separate pathways—one for the forward pass and one for

the backward pass—is not plausible either, as this would require a synchronization or

transportation of the weights between the two paths [27, 33, 22]. This issue is known as

the weight transport problem [27], also called the weight symmetry problem [47], and is

illustrated in Figure 3.1.

Besides being biologically implausible, the weight transport problem can also negatively

impact the hardware e�ciency of back-propagation. Following the chain rule, the gradient
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Figure 3.1.: The weight transport problem: Back-propagation uses the same weights,8 in

both the forward (blue) and the backward pass (red). This is not biologically

plausible as synapses are unidirectional.

Xℎ8−1 depends not only on the forward weights of layer 8 but also on the forward weights

of all downstream layers via the gradient Xℎ8 . This non-locality of the weights constrains

the memory access patterns, as computing the update for one layer requires reading the

weights of all downstream layers. Especially on non-von-Neumann architectures with

in-memory computing, this can severely impact the computational e�ciency [15, 22].

3.1.2. Update Locking Problem

To compute the gradients in the backward pass, the training algorithm �rst needs to �nish

the complete forward pass. Consequently, every layer has to wait until the forward pass

has processed all succeeding layers to compute the output and the backward pass has

returned through all downstream layers. This problem is known as the update locking [36]

or timing problem [33] and is illustrated in Figure 3.2. It is biologically implausible, as

a full forward and backward pass requires a signi�cant amount of time. This applies to

both arti�cial neural networks as well as the neural connections in the brain. The activity

of the layer might have already changed when the backward pass reaches it again. This

can be a critical problem, especially for earlier layers with a considerable distance to the

output layer, and thus a high delay between forward and backward pass. As a result, the

activation becomes out of sync with the error signal [33].

When training with back-propagation, there is a clear separation between the forward

and backward passes, and no forward pass starts before the previous backward pass has

been completed. Thus, update locking might not lead to out-of-sync problems, yet it still

impacts the training of arti�cial neural networks. For one, this clear separation between

forward and backward passes might not be desirable as it restricts computation and

prevents pipelining. On top of that, it can lead to memory and communication overheads,

which can also impact the energy consumption, as explained in detail by Mostafa et al. [53].

Since the backward pass requires both the input ℎ8−1 to the layer and the derivative of the

activation function 5 ′8 (I8), the corresponding data needs to be bu�ered from the forward

pass. This bu�ering would not be necessary without update locking as the updates could

be performed immediately after �nishing the forward pass on the current layer [53, 22].

Furthermore, when training on a graphical processing unit (GPU), update locking can

cause GPU under-utilization. In modern GPU computing, the CPU can o�oad computation

to the GPU by asynchronously enqueuing kernel execution requests in a workload queue,
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Figure 3.2.: The update locking problem: To update a layer, the training algorithm �rst

needs to �nish the complete forward pass (blue), compute the loss, and return

to the layer in the backward pass (red). This is biologically implausible as it

would cause a delay between the forward step and the update of a single layer,

potentially leading to desynchronization.

the so-called CUDA stream [58]. The GPU processes requests from these streams and

multiple requests can be performed in parallel if they do not depend on each other and

do not fully utilize the GPU on their own. The more requests are queued, the more

scheduling options exist to optimize the GPU utilization. Since the requests are enqueued

asynchronously, the CPU can continue computation unless it requires the result of a kernel

execution. Without update locking, the backward pass of a layer could start immediately

after its forward pass has been completed and would not need to wait for later layers. The

computations required for the update could thus be queued in parallel to the forward pass

for the next layer, improving the overall GPU utilization, especially on smaller networks

where a single layer does not utilize the GPU to its capacity.

3.1.3. Further Implausibilities

In addition to the weight transport and update locking problems discussed above, there

are further issues impacting the biological plausibility of back-propagation. This section

brie�y discusses some of these problems but is not meant as an exhaustive list. The

derivative transport problem [33] is due to back-propagation requiring the derivative of

the activation 5 ′8 (I8), used to modulate the error signal with

XI8 = Xℎ8 � 5 ′8 (I8), (3.3)

which is then passed on backward through the network. However, it is unclear how

the brain could compute this derivative or use it to modulate the error signals [8, 33].

The linear feedback problem [33] relates to the fact that back-propagation has a purely

linear feedback path, while biological neurons are non-linear [8, 33]. It is known that

biological neurons are spiking; that is, they encode information into the frequency and

timing of binary pulses [17]. Arti�cial neural networks, on the other hand, traditionally
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use continuous values, typically between −1 and 1. This di�erence is known as the spiking

problem [8, 33]. The area of spiking neural networks tries to address this problem and is

discussed brie�y in Section 3.2. Furthermore, back-propagation violates Dale’s Law [20],

stating that a neuron outputs either excitatory or inhibitory signals but never both [35].

In the context of arti�cial neural networks, this corresponds to the outgoing weights of a

neuron [72]. Since the outgoing weights can be both positive and negative and can even

change their sign during training, back-propagation con�icts with Dale’s Law [4, 33].

A frequent problem in supervised learning is obtaining a su�cient amount of labeled

data. Back-propagation often requires millions of labeled examples to generalize to unseen

inputs. In contrast, the human brain can learn from only a handful of labeled examples.

This issue was coined the target problem by Hunsberger [33]. The brain might solve this

problem by combining a large amount of unlabeled data with a few labeled examples, yet

it is still unclear how exactly this semi-supervised learning would work in the brain [8,

33].

3.2. Biologically Inspired Neural Networks

As discussed in the previous section, back-propagation is biologically implausible. While

this is not a necessary requirement for training arti�cial neural networks, there has been

much interest in methods that combine biological plausibility with e�ective training [76, 59,

8, 74, 46, 47]. This section gives an overview of di�erent approaches to more biologically

inspired arti�cial neural networks, tackling some of the issues described in Section 3.1.

Spiking neural networks are inspired by the fact that biological neurons like those in

the human brain use discrete spikes instead of continuous outputs as used by standard

arti�cial neural networks. They encode information into the spikes via their timing and

frequency [72]. Besides being more biologically plausible, spiking neural networks are also

more e�cient by using fewer operations and less energy. However, their non-di�erentiable

nature makes training with traditional back-propagation di�cult [74, 71]. Instead, multiple

alternative training approaches exist, including unsupervised learning, for example, with

spike timing-dependent plasticity (STDP) [12], and supervised methods like SpikeProp

[9] and ReSuMe [38]. An overview of di�erent training algorithms for spiking neural

networks is given by Tavanaei et al. [74].

To solve the weight transport problem, target propagation by Lee et al. [46] replaces

the loss gradients with layer-wise target values computed by auto-encoders. Using an

additional linear correction of these auto-encoders called di�erence target propagation,

they reach results comparable to back-propagation on deep networks. On stochastic neural

networks, they even achieve state-of-the-art performance [46]. Ororbia and Mali [59] take

a similar approach, but instead of generating the layer-wise targets with auto-encoders,

they employ the pre-activation ℎ8 of the current layer and the post-activation I8+1 of the

next layer. Further solutions to the weight transport problem include the FA [48] and

DFA [56] algorithms described in the following section.

Multiple algorithms solving update locking have been proposed. Mostafa et al. [53] use

an approach based on local errors generated for each layer with the help of �xed random

classi�ers. These auxiliary classi�ers receive the output of a layer and generate a local error.
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With this strategy, they outperform FA and approach near back-propagation performance.

Improving upon this, Nøkland and Eidnes [57] demonstrate that combining local classi�ers

with a so-called local similarity matching loss can close the gap to back-propagation. With

decoupled greedy learning (DGL), Belilovsky et al. [5] follow a similar approach based

on greedy objectives, which even scales to large-scale datasets such as ImageNet [18].

They focus speci�cally on the parallelization of the training, including an extension to

asynchronous settings.

Another approach to solving update locking uses synthetic gradients, introduced by

Jaderberg et al. [36] and Czarnecki et al. [16]. Synthetic gradients model a subgraph of the

network and predict its future output based on only local information. By replacing back-

propagation with these synthetic gradients, they decouple the layers, resulting in so-called

decoupled neural interfaces (DNIs) and solving the update locking problem. Using the same

approach, they can also predict inputs and thus solve the forward locking problem [36] by

employing a synthetic input signal.

Approaching biologically inspired computing from the hardware perspective, neuromor-
phic devices are a novel hardware architecture inspired by the human brain emulating the

interactions of biological neurons and synapses with CMOS integrated circuits [72]. With

Moore’s law slowing down due to power constraints, we can no longer expect similar

increases in the e�ciency of devices as in the past. On top of that, the von-Neumann-

bottleneck caused by physically separating memory and data processing increases the cost

of memory movements and is further intensi�ed by the increasing gap in the performance

of memory and processors, known as the memory wall [72, 34]. These developments are

some of the main contributing factors in the recent interest in neuromorphic devices. With

massive parallelization, these devices could signi�cantly accelerate the training of neural

networks but also come with several challenges, such as complex architectures with high

energy consumption and required chip area [72]. Frenkel et al. [23] demonstrate how

biologically plausible algorithms like DRTP can be deployed on neuromorphic devices for

low-cost adaptive edge computing.

3.3. Feedback Alignment and Related Approaches

This section introduces the feedback alignment algorithm and two derived approaches

in detail. First, Section 3.3.1 discusses feedback alignment by Lillicrap et al. [48], demon-

strating that symmetric feedback weights are not necessary to train neural networks and

thus solving the weight transport problem. Subsequently, Section 3.3.2 introduces direct

feedback alignment by Nøkland [56], which replaces the feedback paths by propagating

the error directly to the hidden layers. Section 3.3.3 then discusses direct random target

projection by Frenkel et al. [22], which further improves upon direct feedback alignment

by resolving the update locking problem. Finally, Section 3.3.4 summarizes the di�erences

between the three approaches. As this thesis is based primarily on direct random target

projection, these three approaches can be seen as direct predecessors to the training

algorithm introduced in Chapter 4.
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BP FA DFA DRTP

Figure 3.3.: Training the neural network introduced in Section 2.3 with FA. In contrast to

back-propagation, FA uses �xed random feedback weights �8 on the backward

path (red). Since these feedback weights are independent of the forward

weights,8+1, FA solves the weight transport problem. The forward path (blue)

remains unchanged.

3.3.1. Feedback Alignment

Feedback alignment (FA) by Lillicrap et al. [48] solves the weight transport problem by

replacing the transposed forward weights, )
8+1 in the backward pass with �xed random

feedback weights �8 . Lillicrap et al. show that symmetric backward weights are not

necessary and that these �xed random feedback weights are su�cient for e�ective training.

Figure 3.3 illustrates FA on the running example introduced in Section 2.3. Feedback

alignment is based on the idea that we can use any feedback weights �8 as long as the

training signal Xℎ8—also denoted the modulator or modulatory signal—is within 90° of the

actual training signal prescribed by back-propagation. In other words, for the training

signals de�ned by FA

XFAℎ8 = �8XI8+1 (3.4)

and back-propagation

XBPℎ8 =,
)
8+1XI8+1 (3.5)

holds (
XBPℎ8

))
XFAℎ8 = XI

)
8+1,8+1�8XI8+1 > 0. (3.6)
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1

2

3

Figure 3.4.: A two-layer network demonstrating how the forward weights, )
2

come into

alignment with the feedback weights �1, based on [48, Figure 5b]. In phase

one, information �ows from �1 to,1. In phase two, this information is used

to adjust,2. In phase three, the forward and backward weights are aligned,

allowing e�ective training.

The intuition behind this condition is that if the direction of the training signal is within

90° of the correct direction, the training still moves in roughly the same direction as

back-propagation would.

While this condition is su�cient to train neural networks, better alignment is necessary

for faster training. To achieve this and increase the alignment, one can either adjust the

feedback weights �8 or the forward weights,8+1. With FA, Lillicrap et al. [48] opt for

adjusting the forward weights while keeping the feedback weights �xed. When training a

neural network with FA, the forward weights are modi�ed to achieve a soft alignment

with the feedback weights. This means that the modulator signals used by FA become

more similar to those used by back-propagation, and the angle between them decreases.

Since the angle never reaches zero, the authors conclude that exact symmetry between

the forward and feedback weights is not necessary.

To illustrate how the forward and feedback weights can come to an alignment without

direct communication, Lillicrap et al. [48] demonstrate how information can �ow from

the feedback weights to the forward weights via previous layers. While there is no

direct communication between the forward weights,8+1 and the feedback weights �8 , the

feedback weights �8 can in�uence the forward weights,8+1 indirectly over the course of

multiple iterations via the weights of the previous layer,8 . Information �rst moves from

�8 into,8 via the update rule

Δ,8 ∝ XFAI8ℎ
)
8−1 =

(
XFAℎ8 � 5 ′8 (I8)

)
ℎ)8−1 =

(
�8X

FAI8+1 � 5 ′8 (I8)
)
ℎ)8−1. (3.7)

This information can then move from,8 into,8+1 via

ℎ8 = 58 (,8ℎ8−1 + 18) (3.8)
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and the update rule

Δ,8+1 ∝ XI8+1ℎ)8 . (3.9)

Lillicrap et al. [48] were able to visualize this process in a two-layer network by arti�cially

breaking the training into three phases and alternately freezing the forward weights,1

and,2. By monitoring the error throughout the three phases, they illustrate how the

forward weights come to an alignment with the �xed feedback weights. This process is

also illustrated in Figure 3.4. In phase one, only,1 is trained while,2 remains frozen.

The information from �1 is accumulated in,1. The overall error remains unchanged

as, )
2

and �1 are not yet aligned. In phase two,,1 is frozen while,2 is adjusted. The

information from �1, previously collected in ,1, can now �ow into ,2, bringing it in

alignment with �1. The overall error improves as the two weight matrices begin to align.

Finally, in phase three,,1 is trained again while,2 is frozen. Since, )
2

and �1 are now

aligned,,1 can learn e�ectively from the feedback signals via �1, further reducing the

error. This separation into training phases is only for demonstration purposes. The three

phases happen simultaneously when training a neural network with FA, and it is not

necessary to freeze any layers.

3.3.2. Direct Feedback Alignment

Feedback alignment solves the weight transport problem, yet the training signals remain

non-local, meaning the gradient estimates are propagated backward layer-by-layer through

the hidden layers. As discussed in Section 3.1, this is biologically implausible and comes

with additional constraints on the memory access pattern. Direct feedback alignment (DFA)
by Nøkland [56] builds upon FA to solve this problem by propagating the error directly

from the output layer to each hidden layer. Like FA, DFA uses �xed random feedback

weights �8 instead of the transpose of the forward weights, )
8+1 to compute the updates.

However, instead of propagating the feedback information successively through all layers,

the error 4 is passed directly to the hidden layers. This results in the following training

signals

XDFAℎ8 = �84 (3.10)

and is illustrated in Figure 3.5. Compared to FA, the feedback pathways through the

downstream layers are no longer necessary.

Nøkland [56] identi�es some necessary constraints and helpful conditions for e�cient

training with DFA. The feedback weights �8 should be selected randomly, as this yields a

very high probability of having full rank. If �8 has full rank, the training signals XDFAℎ8 are

non-zero as long as the error 4 is non-zero. As shown by Nøkland [56], this is necessary to

achieve an alignment angle within 90°. Fixed feedback weights o�er multiple advantages

over variable feedback weights. First, with �8 being constant, its rank also remains constant,

preserving the fact that �84 is non-zero. Furthermore, it keeps the direction of XDFAℎ8
more consistent, which additionally helps with the alignment. Finally, when solving a

task with target labels in {0, 1}, for example, classi�cation with one-hot encoding and

cross-entropy loss, the sign of the error sign(4 9 ) is constant for each sample 9 . Thus,

�8sign(4 9 ) is constant for each sample 9 , and the magnitude of the update direction XDFAℎ8
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BP FA DFA DRTP

Figure 3.5.: Training the neural network introduced in Section 2.3 with DFA. In contrast

to FA, illustrated in Figure 3.3, DFA uses direct feedback pathways (red) to

pass the loss directly to the hidden layers instead of propagating it backward

layer-by-layer. As for FA, the forward pass (blue) remains unchanged.

varies only with the magnitude of the error. In the case of classi�cation, �8sign(4 9 ) is even

constant for all samples of a class.

Direct feedback alignment does not depend on a sophisticated initialization of the

forward weights. In fact, zero-initialized weights o�er a good starting point as they result

in exactly orthogonal modulator signals

4),8+1�84 = 4
)0�84 = 0, (3.11)

which helps to align the weights quickly. Zero-initialization is, however, not necessary for

e�ective training. Nøkland [56] demonstrates experimentally that DFA can even recover

from particularly bad initializations. Zero-initialized weights would, however, not work in

conjunction with an activation function like the recti�ed linear unit, where the gradient

at zero is zero, resulting in update steps of zero and thus no training progress.

Even without zero-initialization, the recti�ed linear unit is not necessarily a good �t for

DFA. In training algorithms without direct feedback pathways, such as back-propagation

or FA, the hidden layers are implicitly bounded by the layers above them. If the training

signal Xℎ8+1, coming from the next layer, is zero, the signal for the current layer

Xℎ8 =,
)
8+1XI8+1 =,

)
8+1

(
Xℎ8+1 � 5 ′8+1(I8+1)

)
(3.12)

becomes zero, too. This also holds for FA with, )
8+1 = �8 . However, due to the direct

feedback, this does not apply to DFA. As already established previously, the training signals
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XDFAℎ8 are non-zero as long as the error 4 is non-zero. To limit the growth of the hidden

layers, Nøkland [56] suggests using a squashing activation function such as the hyperbolic

tangent or sigmoid. Being a zero-centered function, the hyperbolic tangent works best,

especially in combination with zero-initialization.

Finally, networks can only be trained e�ectively by DFA if the whole network is trained

collectively. This is related to the intuition on FA, explained brie�y in Section 3.3.1. With

,2 remaining frozen, the training remains in phase two. The feedback weights �1 will

never align with ,2 and ,1 cannot be trained e�ectively. This is in contrast to back-

propagation, where arbitrary layers may be frozen, and the remaining layers can still be

trained.

Nøkland [56] evaluates DFA on the MNIST [45] and CIFAR [42] datasets. The author

demonstrates that DFA achieves near back-propagation performance even without weight

initialization. Even very deep networks can be trained with zero-initialization while back-

propagation and FA struggle without a sophisticated weight initialization scheme. However,

DFA has di�culties training convolutional networks where it results in noticeably higher

error rates on the test set. This might be related to the bottleneck training of DRTP

discussed in Section 3.3.3.

3.3.3. Direct Random Target Projection

Direct random target projection (DRTP) by Frenkel et al. [22] aims to solve not only the

weight transport problem but also the update locking problem. It is based on DFA but uses

the targets ~∗ instead of the error 4 . The key advantages of DRTP are increased biological

plausibility and decreased hardware requirements. While the �nal test error rate tends

to be slightly higher than for previous approaches, DRTP performs signi�cantly better

than shallow learning, demonstrating its ability to train multi-layer networks. This shows

that the weight transport and the update locking problem are solvable at the expense of

a slightly decreased accuracy. Solving both of these problems makes DRTP biologically

more plausible than back-propagation. Not su�ering from update locking, DRTP is a

feed-forward-only training algorithm, as all information required to update a layer is

available immediately after the forward pass through that layer. In contrast, both FA and

DFA need to �nish the complete forward pass to compute the error and then communicate

it to the hidden layers.

Additionally, DRTP also decreases the computational and memory demands. Solving

the weight transport problem relaxes constraints on the memory access patterns, which

can improve performance, especially on non-von-Neumann architectures [15, 22] but also

on standard hardware for su�ciently large networks [53]. Solving the update locking

problem decreases the memory overhead, as it is no longer necessary to bu�er the inputs

and activations for all layers computed in the forward pass until the backward pass

performs the weight updates. Furthermore, the approximate gradients can be computed

very e�ciently. In contrast to approaches like error locality and synthetic gradients, no

side networks are required. Compared to DFA, the multiplication of the error with the

weights can be replaced by simply selecting the corresponding entry in the feedback

weights based on the target.
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Frenkel et al. [22] �rst introduce sDFA, a variant of DFA using the sign of the error

instead of the actual error. The modulatory signal for sDFA thus corresponds to

XsDFAℎ8 = �8sign(4) . (3.13)

The sDFA approach can be seen as an intermediate step between DFA and DRTP. The

authors demonstrate experimentally that sDFA can train multi-layer networks on both

regression and classi�cation tasks and that the modulatory signals remain within 90° of

back-propagation.

Comparing sDFA to other training algorithms, they make the following observations.

In general, sDFA performs worse than the other tested training algorithms, yet still

signi�cantly better than shallow training of only the output layer. A potential problem of

sDFA is that the error’s magnitude is lost when using only its sign. Usually, the magnitude

of the error would decrease over the course of the training, automatically decreasing the

size of the update steps. The authors observe this e�ect especially on the regression dataset,

where sDFA stagnates earlier than the other approaches. Frenkel et al. [22] thus suggest

testing a learning rate scheduler. An advantage of the direct feedback pathways is that

they protect both DFA and sDFA against vanishing gradients, while both back-propagation

and FA are a�ected by these. This aligns with the observations on activation functions

by Nøkland [56] discussed in Section 3.3.2. While there are e�ective approaches against

vanishing gradients, such as activation functions like the recti�ed linear unit or batch

normalization, Frenkel et al. [22] argue that algorithms based on direct feedback pathways

need no additional mitigation techniques, thus reducing the hardware requirements.

Having shown the error sign to be su�cient for training with sDFA, they demonstrate

that for classi�cation, the error sign can be deduced directly from the one-hot encoded

class labels as long as the output is strictly bounded between 0 and 1. This condition

can be met by, for example, using a sigmoid or softmax activation function in the output

layer. Under these constraints, the targets correspond to rescaling and shifting the error

sign. Frenkel et al. [22] argue that the rescaling can be included in the �xed random

feedback weights and that the shift operation is actually bene�cial to the training. First,

the targets improve the computational e�ciency. While the error sign can take the value

±1, the targets ~∗ are always 1 for the correct class and 0 for all other classes. Thus, the

approximate gradient

XDRTPℎ8 = �8~
∗

(3.14)

can be computed with a label-dependent selection from the feedback weights instead of a

multiplication. Second, using the targets instead of the error sign improves the training

results, as experiments show that DRTP systematically outperforms sDFA on both the

MNIST and the CIFAR-10 dataset. According to Frenkel et al. [22], this is caused by the

� − 1 incorrect classes outweighing the single correct class when the magnitude of the

error is the same for all classes and only the sign changes. In contrast, with the targets ~∗,
incorrect classes are assigned 0, thus reducing their impact compared to the correct class.

Figure 3.6 summarizes the DRTP training approach.

Note that since both the targets ~∗ and the feedback weights �8 are �xed and do not

change over the course of the training, the estimated gradient XDRTPℎ8 is constant through-

out the training and for each sample of a class. Changes to the estimated gradients for
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BP FA DFA DRTP

Figure 3.6.: Training the neural network introduced in Section 2.3 with DRTP. Compared

to DFA, the backward pass is no longer required since DRTP uses the targets

~∗ instead of the error 4 to train the hidden layers. Thus, the hidden layers can

be trained during the forward pass (blue). This resolves update locking and

makes DRTP a purely feed-forward algorithm.

the parameters X,8 and X18 thus depend only on the output of the previous layer ℎ8−1 and

the derivative of the activation function 5 ′8 (I8). This is best illustrated in Figure 3.7: With

DRTP, Xℎ8 is constant for each class; thus, XI8 changes only with 5 ′8 (I8).
Frenkel et al. [22] extend the mathematical proof by Lillicrap et al. [48] to show that

the modulatory signals of DRTP on multi-layer networks with linear hidden layers and a

non-linear output layer are always within 90° of those prescribed by back-propagation.

This guarantees that DRTP reaches a soft alignment between the forward and feedback

weights. The proof is limited to a single training example, and the activation function

for the output layer is limited to either sigmoid or softmax with a binary or categorical

cross-entropy loss.

In their experiments, Frenkel et al. [22] compare DRTP to back-propagation, FA, and

DFA. They train both fully-connected and convolutional networks on the MNIST and

CIFAR-10 datasets and observe the following results: While DRTP cannot reach the same

accuracy as the other training algorithms, it still signi�cantly outperforms shallow learning,

demonstrating the ability to train hidden layers. A likely reason for the decreased accuracy

compared to DFA is that with the restriction to the error sign (through the targets), the

class-dependent magnitude of the error is lost. To mitigate this e�ect, they suggest either

tracking the magnitude of the error over the last samples to modulate the learning rate or

28



3.3. Feedback Alignment and Related Approaches

DRTP

Figure 3.7.: The backward pass within a single fully-connected layer 8 trained with DRTP.

In contrast to back-propagation, illustrated in Figure 2.6, the approximate

gradient XDRTPℎ8 = �8~
∗

is constant for each class. Changes to XI8 thus depend

only on 5 ′8 (I8).

using a learning rate scheduler. However, tracking the error of previous samples would

breach the feed-forward-only nature. While the update step would not have to wait for the

forward pass of the current sample, it would still have to wait for the forward pass of the

last samples. Especially in very deep networks, this could lead to a high delay compared

to an actual feed-forward update.

As already observed by Nøkland [56], all feedback-alignment-based algorithms have

di�culties training convolutional layers. Frenkel et al. [22] investigate this further by

comparing random kernels—untrained convolutional layers frozen with their random

initialization—to trained kernels. They observe that training the convolutional layer gener-

ally does not improve the results for feedback-alignment-based algorithms and might even

negatively impact them. In contrast, training all layers, including the convolutional layers,

brings a signi�cant advantage for back-propagation as expected. As a potential reason,

Frenkel et al. [22] identify the bottleneck e�ect, stating that convolutional layers lack

the parameter redundancy required for feedback-alignment-based algorithms. Another

interesting observation is that in contrast to the other tested algorithms, DRTP does not

pro�t from dropout and might even be impaired by it.

3.3.4. Comparison

This section summarizes the di�erences between back-propagation and the three more

biologically inspired algorithms introduced in the previous sections, feedback alignment, di-

rect feedback alignment, and direct random target projection. Figure 3.9 gives an overview

of how the forward and backward passes change for the di�erent algorithms. With back-

propagation, the backward pass, depicted in red, computes the gradients with the chain

rule, propagating them backward from layer 8 + 1 to 8 based on the transposed forward

weights, )
8+1. FA releases this dependency on the forward weights by exchanging them

with the �xed random feedback weights �8 , thus solving the weight transport problem.
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As with back-propagation, the training signals Xℎ8 are propagated backward layer by

layer. DFA replaces this propagation with direct feedback paths communicating the error

straight to the hidden layers. By substituting the error with the targets, DRTP exchanges

these direct backward paths with direct forward paths to the hidden layers. This allows

updating the hidden layers immediately after the forward step. The general forward

pass, depicted in blue, used to determine the network’s output remains the same for all

algorithms. However, DRTP additionally allows updating the hidden layers during the

forward pass.

All three feedback-alignment-based approaches only replace the gradients in between

two layers with approximations. This means that for a layer 8 , solely the gradient Xℎ8
coming from the downstream layer 8 + 1 is replaced, while all other gradients within

the layer are computed as with back-propagation. The other gradients—such as for the

weights and biases—are computed using the chain rule as with back-propagation but based

on an approximated gradient Xℎ8 . The algorithms, therefore, di�er exclusively in their

computation of the gradient Xℎ8 passed between layers:

XBPℎ8 =,
)
8+1X

BPI8+1 (3.15)

XFAℎ8 = �8X
FAI8+1 (3.16)

XDFAℎ8 = �84 (3.17)

XDRTPℎ8 = �8~
∗. (3.18)

Figure 3.8 gives a detailed look into the backward pass for a single fully-connected layer,

highlighting these di�erences and similarities between the training algorithms.

FA solves the weight transport problem by using the feedback weights �8 instead of the

forward weights, )
8+1. However, with the dependency on XI8+1, feedback is still propagated

backward throughout the whole network, and update locking applies. DFA introduces

direct feedback paths by replacing the gradient XI8+1 with the error 4 . This removes the

dependency on downstream layers but does not solve update locking. Finally, DRTP

releases update locking by using the targets ~∗ instead of the error. These gradual improve-

ments are summarized in Table 3.1. The next chapter introduces delayed error forward

projection, which is based directly on DRTP, thus extending this chain of biologically

plausible training algorithms.

Table 3.1.: Problems solved by back-propagation, feedback alignment, direct feedback

alignment, and direct random target projection.

BP FA DFA DRTP

No Weight Transport × X X X
Direct Feedback Paths × × X X
No Update Locking × × × X
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BP FA DFA

(a) Back-propagation

BP FA DFA

(b) Feedback alignment

BP FA DFA

(c) Direct feedback alignment

Figure 3.8.: A detailed look into the backward pass within a single fully-connected layer

8 with weights,8 , bias 18 , and activation function 58 , trained with di�erent

algorithms. With back-propagation (a), the layer receives the gradient Xℎ8
from the downstream layer 8 + 1, computes the gradients based on the chain

rule, and passes the gradient Xℎ8−1 on to the upstream layer 8 − 1. With FA

(b), the computation of the gradients Xℎ8 changes, that is, �xed random feed-

back weights �8 are used instead of the transposed forward weights, )
8+1. As

with back-propagation, the gradients Xℎ8 are passed layer-by-layer backward

through the network. With the direct feedback paths introduced by DFA (c),

gradients are no longer passed backward through the hidden layers of the net-

works. Instead, each layer 8 receives the gradient Xℎ8 directly via the feedback

weights �8 . No gradients need to be passed to the upstream layer 8 − 1, as it

also receives the corresponding gradient Xℎ8−1 via a direct feedback path. Since

DRTP is also based on direct feedback pathways, its backward pass within a

layer matches that of DFA. In summary, the gradient computations within a

layer—XI8 , X,8 , and X18—remain the same for all approaches. The algorithms

di�er only in how the gradient Xℎ8 is passed to the corresponding layer.
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BP FA DFA DRTP

(a) Back-propagation

BP FA DFA DRTP

(b) Feedback alignment

BP FA DFA DRTP

(c) Direct feedback alignment

BP FA DFA DRTP

(d) Direct random target projection

Figure 3.9.: An overview of the di�erent algorithms discussed in this section illustrated on the running example for a four-layer

fully-connected network. Figure adapted from [22, Figure 1]. Back-propagation (a) is used as a baseline. The forward pass

(blue) computes the output ~ using the forward weights,8 . The backward pass (red) computes the gradients with the chain

rule based on the transposed forward weights, )
8 and updates them accordingly. Feedback alignment (b) solves the weight

transport problem by replacing the transposed forward weights, )
8+1 in the backward path with �xed random feedback

weights �8 . The forward pass remains the same. Direct feedback alignment (c) replaces the feedback paths with direct

connections to the hidden layers. Finally, DRTP (d) solves the update locking problem by replacing the error 4 with the

targets ~∗ for all hidden layers, thus releasing the dependency on the output of the forward pass. Each layer can be updated

during the forward pass, making DRTP a feed-forward-only training algorithm.
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This chapter introduces delayed error forward projection (DEFP), my approach to increase

the accuracy of direct random target projection by improving how the error information

and feedback weights are modeled. First, Section 4.1 analyzes the di�erences between back-

propagation and feed-forward-only algorithms such as DRTP. I explore which information

is inaccessible to feed-forward-only approaches and which additional information could

be available that is not yet used by DRTP. After that, Section 4.2 introduces DEFP, an

extension of DRTP that scales the update steps with delayed error information from the

previous epoch. Like DRTP, DEFP is a feed-forward-only training algorithm for neural

networks, solving both the weight transport and the update locking problem, which

make back-propagation biologically implausible. By using this additional delayed error

information, DEFP can increase the resulting accuracy of the training by modeling the

loss more accurately. Finally, Sections 4.3 and 4.4 discuss di�erent approaches to modeling

the feedback weights and activation derivatives.

4.1. Approximating Back-Propagation with
Feed-Forward-Only Training

To compare the information used by back-propagation and DRTP, I examine how the

gradient for the output ℎ8 of layer 8 is computed. Back-propagation computes the gradient

as prescribed by the chain rule via

Xℎ8 =,
)
8+1XI8+1 =,

)
8+1

(
Xℎ8+1 � 5 ′8+1(I8+1)

)
=
m� (\ )
m~

, )
8+1

(
m~

mℎ8+1
� 5 ′8+1(I8+1)

)
. (4.1)

This requires the gradient of the loss m� (\ )/m~ and for all downstream layers 9 ∈ {8 +
1, . . . , :} both the transpose of the forward weights, )

9 and the derivative of the activation

5 9 at the input I 9 . This information is not available to a feed-forward-only algorithm. To

solve the weight transport problem, the algorithm cannot rely on symmetric feedback

weights and thus cannot utilize the forward weights,9 or their transpose. To overcome

update locking, the update step furthermore cannot wait until the downstream layers have

computed their output. Thus, neither the intermediate values I 9 nor the �nal output ~ nor

the loss � (\ ) are available. An entire forward pass would be necessary to obtain the loss.

Even for the intermediate values I 9 , the forward pass needs to reach the downstream layer

9 , making the derivative 5 ′9
(
I 9

)
inaccessible.
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Direct random target projection approximates the gradient with

XDRTPℎ8 = �8~
∗. (4.2)

As discussed in Section 3.3.3, the targets~∗ correspond under certain conditions to rescaling

and shifting the error sign. Compared to the actual error, this lacks information on the error

magnitude, which is essential in scaling the update steps appropriately. The remaining

information, that is, the forward weights and the derivatives of the activation functions

for all downstream layers, are encoded by the feedback weight matrix �8 .

Based on these observations, I identify three possible approaches to improve upon DRTP

by enhancing the information used to approximate the gradients.

Error information The gradient of the loss m� (\ )/m~ is inaccessible to a feed-forward-only

algorithm since computing the loss � (\ ) requires a complete forward pass, which

would con�ict with update locking. DRTP thus approximates the gradient of the loss

with the targets ~∗. However, �nding a better approximation of the current error

could improve the overall update direction and thus the resulting accuracy.

Feedback weights The feedback weights �8 are a crucial component of the training as

they determine how the error information is communicated to the hidden layers and

the forward weights need to come to an alignment with them. Di�erent initialization

methods thus have the potential to impact the training results considerably.

Activation derivatives The derivatives of the activation functions 5 ′8+1(I8+1) are modeled

only implicitly in the feedback weights �8 . A more explicit modeling could improve

the training accuracy.

All three approaches aim to achieve models with higher accuracy while retaining the

solutions to the weight transport and update locking problems. The subsequent sections

discuss these approaches in more detail. First, I focus on re�ning the error information,

especially considering the progress made during the training. Based on this idea, Section 4.2

introduces DEFP, a feed-forward-only training algorithm that improves upon DRTP by

using the error information computed during the previous epoch. Section 4.3 explores

di�erent methods to model the feedback weights. Finally, Section 4.4 discusses ideas on

how the statistical behavior of activation functions could be utilized for a more explicit

approximation of their derivatives.

Besides improving the update direction, adjusting the step size through an improved

learning rate is also a promising strategy, as already suggested by Frenkel et al. [22].

Currently, all feedback-alignment-based algorithms tested here employ a �xed learning

rate. However, it has been shown that even with standard back-propagation, learning rate

schedulers can provide a signi�cant boost to performance [41]. In combination with the

�xed targets as used by DRTP, decreasing the learning rate dynamically with a learning

rate scheduler might yield an even greater improvement.

4.2. Scaling the Update Steps with Delayed Error Information

Based on the considerations in Section 4.1, this section discusses how to approximate the

loss used to scale the update steps with additional error information. The loss measures
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how close the model output is to the desired target values. In this thesis, I use the term error

information to refer collectively to such measures, including both the loss and the error.

As already established, a feed-forward-only algorithm has no access to exact, up-to-date

error information since that would require waiting until the forward pass is �nished. To

compute the loss on a batch of training samples, one �rst needs to compute the model

output by performing a complete forward pass through all layers of the model and then

compare this output to the expected targets. Relying on this loss to update the parameters

is thus in con�ict with solving the update locking problem.

By solving the credit assignment problem, back-propagation determines how much of

the loss can be attributed to the individual parameters and how they should be changed

consequentially. With DRTP, Frenkel et al. [22] demonstrate that an exact solution to the

credit assignment problem is not necessary and that neural networks can be trained even

without the loss by using the targets instead. The objective of this thesis is to improve upon

DRTP without reintroducing update locking. Note that I do not expect an improvement

over DFA with this approach because the latter has access to the exact loss. In contrast

to DFA, the loss can only be approximated with the delayed error information to remain

una�ected by update locking.

I propose delayed error forward projection (DEFP), which approximates the loss by storing

the sample-wise error information 4C−1 from the previous epoch C − 1 and applying it

in place of the actual current loss. The feedback is thus always delayed by one epoch.

Algorithm 2 describes DEFP more formally, while Figure 4.1 illustrates it on the previously

introduced running example. In contrast to back-propagation, DEFP requires no backward

pass, and computations are performed during the forward pass in Lines 6 to 16. The

incoming gradient Xℎ8 for a layer !8 is approximated as

XDEFPℎ8 = �84C−1 (4.3)

and thus independent of other layers. As for the other feedback-alignment-based algo-

rithms, the remaining gradient computations within the layer remain the same. This is

represented by the backward call in Line 14. The last layer !: receives the actual gradient

of the loss Xℎ: = m;>BB/mℎ: . After processing the last layer, the error information 4C is

updated for the next epoch C + 1. The advantage of this approach is that the delayed

loss is a much more accurate representation of the actual loss than the targets because it

includes the magnitude of the error. This magnitude helps with di�erentiating samples

that are already solved quite well from problematic samples with high error. Moreover,

it reintroduces the gradual reduction in error as the network gets better throughout the

training, which is lacking for DRTP, as already noted by Frenkel et al. [22].

To implement DEFP, I store the error information for each training sample at the end

of the forward pass. As the loss is already used to train the last layer, this requires no

additional computation. Storing one additional real value per sample also has no signi�cant

memory overhead compared to the neural network and the training data themselves unless

the samples are very small. Especially in the �eld of computer vision, where a single input

image consists of at least a few hundred but often many more real-valued pixels, this

additional memory consumption is negligible. The error information is initialized with the

targets ~∗. Thus, the �rst epoch of DEFP, until the delayed information has been updated
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4. Feed-Forward-Only Training of Neural Networks

Algorithm 2: Training a model " with layers !8 on a dataset � with the

optimizer $?C for Cmax epochs using DEFP to approximate the gradients.

Input :model " = (!1, . . . , !:), optimizer $?C , dataset � , epochs Cmax

1 40 ← �.~∗

2 for C ← 1 to Cmax do
3 foreach 1 ∈ �.10C2ℎ4B do
4 ℎ0 ← �.G [1]
5 ~∗ ← �.~∗ [1]
6 for 8 ← 1 to : do
7 ℎ8 ← !8 .5 >AF0A3 (ℎ8−1)
8 if 8 ≠ : then
9 Xℎ8 ← �84C−1 [1]

10 else
11 ;>BB ← � (ℎ: , ~∗)
12 Xℎ: ← m;>BB/mℎ:
13 end
14 !8 .102:F0A3 (Xℎ8)
15 $?C .D?30C4_BC4? (!8)
16 end
17 4C [1] ← 4AA>A_8=5 >A<0C8>=(ℎ: , ~∗)
18 end
19 end

with the actual error, is equivalent to DRTP. Alternatively, one could determine the initial

error with an additional epoch C = 0, computing only the error without updating any

model parameters.

With this approach, each epoch remains free of update locking as all weights in every

layer can be updated immediately without waiting until the forward pass computes the

model output. However, it introduces a dependency between epochs, as processing a

sample requires the delayed error information for that sample computed during the

previous epoch. Since samples are usually shu�ed between epochs, the sample processed

last by one epoch could be processed �rst by the next epoch. Nonetheless, this is generally

not a problem when training neural networks as there typically is a clear separation

between epochs, and consecutive epochs are usually not executed concurrently. Often,

there is even additional auxiliary computation in between epochs, such as intermediate

evaluation or check-pointing. One could even relax this requirement at the cost of a

potentially higher delay of the error information by using whatever loss is available for

the current sample, be it from the previous or any earlier epoch. In summary, DEFP

promises an improved approximation of the loss while remaining free of update locking,

as demonstrated in Chapter 5.

There are multiple di�erent possibilities of which error information to store.
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4.2. Scaling the Update Steps with Delayed Error Information

DEFP DRTP

Figure 4.1.: Training the neural network introduced in Section 2.3 with DEFP. As with

DRTP, the hidden layers are trained immediately during the forward pass (blue).

However, instead of the targets ~∗, DEFP uses the delayed error information

4C−1 from the last epoch. At the end of the forward pass, this error information

is updated for the next epoch. Using the delayed error 4C−1 instead of the

current error 4C , DEFP still solves the update locking problem.

Loss Gradient The sample-wise delayed loss gradient is the most natural information

available to model the actual loss and its gradient. This corresponds to the information

back-propagation would use, just delayed by one epoch.

Error Instead of the loss gradient, one can also use the error 4 = ~∗ − ~, which essentially

corresponds to the gradient of the MSE loss. Surprisingly, using the error seems to

yield better results than using the actual gradient of the loss, which would more

accurately conform to back-propagation. Section 6.2 discusses this observation and

potential reasons in more detail.

Aggregated Error Information Instead of sample-wise information, one could also aggre-

gate the error over all samples in the last epoch. This would reduce the already small

memory overhead to just a single value for the whole training set, which could be

bene�cial in applications with severe hardware constraints. While losing the ability

to di�erentiate between samples with low and high error, this still adjusts the update

step size as the error decreases throughout the training, which is an advantage over

DRTP.
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4. Feed-Forward-Only Training of Neural Networks

Besides the loss gradient and the error, further scaling factors are possible, for example,

the loss itself.

4.3. Modeling the FeedbackWeights

As discussed in Section 4.1, the feedback weights �8 of a direct feedback pathway model

the backward weights and the derivative of the activations for all downstream layers. That

is, the feedback weights �8 approximate the full feedback path
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Both DFA and DRTP initialize all feedback weights with a He uniform distribution [29].

This section examines di�erent approaches to model the feedback weights �8 .

First, I explore di�erent initialization schemes for the feedback weights. There has been

much research on initializing the forward weights,8 in neural networks trained with back-

propagation [25, 65, 29]. A good initialization of the forward weights is essential to ensure

good propagation of information in both the forward and the backward pass by avoiding

vanishing and exploding values and leads to faster and better convergence, especially for

very deep networks [25, 26]. The Xavier initialization by Glorot and Bengio [25] draws the

weights from the uniform distribution

U[−0, 0] with 0 =

√
6

fan-in + fan-out (4.5)

but is based on a model with only linear activations. The He or Kaiming initialization
by He et al. [29] was developed speci�cally for networks with recti�ed linear units as

activation functions. It draws weights from a normal distribution with

N
(
`, f2

)
with ` = 0 and f =

gain√
fan-mode

. (4.6)

It is not entirely clear whether normal or uniform distributions are a better choice for

initializing the forward weights, but the di�erences are not too signi�cant [26]. Trans-

ferring these observations for forward weights to the feedback weights, I compare the

di�erent training algorithms initialized with both Xavier and He distributions in both the

uniform and normal form and, additionally, with a normal distribution with mean ` = 0

and standard deviation f = 1.

Instead of using the same initialization method for each layer, the initialization could

also be varied based on the layer’s depth. This is motivated by the observation that the

chain of multiplications in equation 4.4 extends with increasing distance from the output

layer. Potential parameters to adjust are the standard deviation for normal distributions or

the interval of a uniform distribution, both a�ecting the width of the distribution. However,

research on initializing the forward weights actually aims to keep a relatively consistent

distribution of gradients independent of the layer depth [25, 29].
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Another approach is making the feedback weights variable instead of �xed. One could,

for example, periodically update them with the current forward weights. This would rein-

troduce the weight transport problem and thus is biologically implausible. However, some

of the technical advantages would still apply as the weight transport occurs signi�cantly

less often. One could also re-roll the feedback weights by drawing new random weights.

The new weights could be drawn from either the same distribution, for example, when

the training is stuck in a plateau, or from a di�erent distribution adjusted based on the

current training state. However, I �nd variable feedback weights to perform signi�cantly

worse compared to �xed weights. This is most likely related to the observations made by

Nøkland [56] for DFA, where �xed weights help with the alignment between forward and

feedback weights, as already discussed in Section 3.3. I, therefore, did not pursue variable

weights any further.

4.4. Modeling the Activation Derivatives

The third strategy to improve the accuracy of the approximate gradients is a more explicit

modeling of the activation functions and their derivatives X 5 ′8 (I8). This could be based on

the behavior of the chosen activation function for certain inputs. For example, with the

recti�ed linear unit, the derivative is either one for positive inputs or zero for negative

inputs. Since the derivative of the activation function is incorporated into the overall

gradient via an element-wise multiplication, it either has no e�ect on the gradient or

sets it to zero. Moreover, once the input I8 is negative and the gradient becomes zero,

further modi�cations to any upstream weights are impossible. This is known as the dying

ReLU problem [50]. To increase the similarity to back-propagation, a feed-forward-only

algorithm could emulate this behavior by deactivating connections throughout the training

and setting the corresponding feedback weights to zero—either temporarily or permanently.

Similar considerations apply to any activation function with a zero gradient section and

also relate to the vanishing gradient problem. This is only one example of incorporating

the derivatives of the activation functions more explicitly into the feed-forward-only

update steps. Other approaches could consider further characteristics of the activation,

improve how the dying ReLU behavior is modeled, or focus on entirely di�erent activation

functions.
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This chapter evaluates the performance of delayed error forward projection by training

di�erent neural networks on multiple classi�cation datasets. With DEFP, I aim to increase

the accuracy of direct random target projection while retaining its biological plausibility

and purely feed-forward computation. Comparing the test error of networks trained

by the di�erent algorithms, I �nd that DEFP can achieve higher accuracy than DRTP,

especially on fully-connected neural networks. Interestingly, DEFP with error-scaling

yields signi�cantly better results than with loss-scaling for all networks and datasets.

Potential causes for this are examined further in Chapter 6. I also compare di�erent

distributions to initialize the feedback weights. However, the overall impact of the exact

initialization method is marginal and depends on the network topology and dataset at hand.

Finally, I examine the technical performance of the di�erent algorithms by comparing the

execution time per epoch and the total memory usage.

5.1. Methodology

This section summarizes the methodology used to obtain the results presented in the

following sections. In general, I follow the methodology of Frenkel et al. [22] for better

comparability to previous work.

5.1.1. Datasets

I evaluate the training algorithms on three di�erent classi�cation tasks, namely a syn-

thetically generated dataset and the well-known image classi�cation datasets MNIST [45]

and CIFAR-10 [42]. While larger and more complex datasets, such as CIFAR-100 [42] or

ImageNet [18], exist, I reuse the same datasets used in prior works for increased compara-

bility. One can also argue that the biologically motivated training algorithms examined

here are more suited to edge computing where MNIST and CIFAR-10 represent the required

complexity more accurately [22].

5.1.1.1. Synthetic Classification

I reuse the synthetic classi�cation dataset generated by Frenkel et al. [22, Section 4.2]

using sklearn’s [61] make_classification function. It has 25,000 training samples and

5000 test samples with 256 features, 128 of which are informative. It contains ten classes

with �ve clusters per class and a class separation factor of 4.5.
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Figure 5.1.: Examples of images and classes for the MNIST and CIFAR-10 datasets.

5.1.1.2. MNIST

MNIST [45] is an image classi�cation dataset of handwritten digits. It contains 60,000

training images and 10,000 test images, initially collected by the American National

Institute of Standards and Technology (NIST). Each image contains a single digit from

the classes zero to nine. The samples are provided as 28 px × 28 px, gray-scale images and

have been normalized and centered. MNIST has long been solved with an error rate of less

than one percent [45]; the most recent results achieve a test error of 0.13% [11]. Figure 5.1a

gives some examples of images and classes contained in MNIST.

5.1.1.3. CIFAR-10

CIFAR-10 [42] is another image classi�cation dataset of 32 px × 32 px color images. The

50,000 training images and 10,000 test images contain ten mutually exclusive classes of

animals and vehicles. Examples for each of the ten classes are depicted in Figure 5.1b.

Current approaches achieve a test error of 0.5% [19].

5.1.2. Models and Training Parameters

For the sake of comparability, I reuse the neural network topologies and training con�gura-

tions used by Frenkel et al. [22]. Table 5.1 gives an overview of the con�guration for each

dataset. Generally, I train between 100 and 500 epochs with batch sizes between 50 and

100. Unless otherwise speci�ed, I use the Adam optimizer [40] and binary cross-entropy

loss. All models use the hyperbolic tangent as activation function for both fully-connected

and convolutional hidden layers and sigmoid activation for the output layer. This keeps my

results comparable to prior work and follows the observations by Nøkland [56] discussed

in Section 3.3.2 that squashing activation functions limit the growth of hidden layers

trained with direct feedback connections.

I apply the di�erent training algorithms to both fully-connected and convolutional

neural networks with up to �ve layers. These are the same networks as used by Frenkel
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Table 5.1.: Training con�guration and hyper-parameters used for the training unless oth-

erwise speci�ed. BCE refers to the binary cross-entropy loss.

Synth MNIST CIFAR-10

Batch size 50 60 100

Epochs 500 100 200

Optimizer Adam Adam Adam

Hidden layer activation tanh tanh tanh

Output layer activation Sigmoid Sigmoid Sigmoid

Loss BCE BCE BCE

et al. [22]. All networks have a fully-connected output layer with ten neurons since

all datasets used in these experiments have ten classes. The fully-connected networks

consist of only fully-connected layers with 256 to 1000 neurons in the hidden layers. To

di�erentiate between them, they are named based on the number of hidden layers and the

maximum number of neurons per layer. Two di�erent convolutional networks are used,

one for each MNIST and CIFAR-10. The convolutional layers have between 32 and 256

activation maps, kernel sizes between : = 3 and : = 5, and a stride of one. The edges are

padded with zeros to keep the image size consistent: for a kernel size : , the padding is set

to b:/2c. The network topologies are summarized in Table 5.2.

Table 5.2.: Neural network topologies: FC 10 is a fully-connected layer with ten neurons.

CONV 32, 5 × 5 is a convolutional layer with a kernel size of : = 5 and 32

activation maps. All convolutional layers use a stride of one and zero padding

to retain the image size.

Topology Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

FC1-500 FC 500 FC 10 – – –

FC1-1000 FC 1000 FC 10 – – –

FC2-500 FC 500 FC 500 FC 10 – –

FC2-1000 FC 1000 FC 1000 FC 10 – –

FC3-500 FC 256 FC 500 FC 500 FC 10 –

CONV-MNIST CONV 32, 5 × 5 FC 1000 FC 10 – –

CONV-CIFAR CONV 64, 3 × 3 CONV 256, 3 × 3 FC 1000 FC 1000 FC 10

Depending on the dataset and network topology, a �xed learning rate is selected based

on those determined by Frenkel et al. [22]. Di�erent learning rates are chosen for back-

propagation and feed-forward-only approaches such as DRTP and DEFP. Table 5.3 states

the selected learning rates. All fully-connected networks of a certain depth use the same

learning rate, independent of their maximum width.
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Table 5.3.: Fixed learning rate depending on the dataset, the network topology, and the

training algorithm as determined by [22].

Dataset Topology Back-Propagation Feed-Forward-Only

Synth FC3 5 × 10−4 5 × 10−4

MNIST FC1 1.5 × 10−4 1.5 × 10−4
MNIST FC2 5 × 10−4 1.5 × 10−4
MNIST CONV 5 × 10−4 1.5 × 10−4

CIFAR-10 FC1 1.5 × 10−5 1.5 × 10−4
CIFAR-10 FC2 5 × 10−6 5 × 10−5
CIFAR-10 CONV 1.5 × 10−4 5 × 10−5

5.1.3. Execution Environment

All experiments are conducted on a single accelerated compute node of the HoreKa

supercomputing system. The CPU is an Intel Xeon Platinum 8368 with two sockets, 38

cores per socket, and two threads per core. It has 64 KB L1 and 1MB L2 cache per core and

57MB shared L3 cache per CPU. The node has 512GB of main memory and a 960GB NVMe

SSD. Four NVIDIA A100-40 GPUs with 40GB memory each, driver version 470.57.02, and

CUDA version 11.4 are available, of which I only ever use one. The operating system is Red

Hat Enterprise Linux 8.2 with kernel version 4.18.0-193.60.2.el8_2.x86_64. All experiments

are implemented in Python 3.8.0 compiled with GCC 8.3.1 20191121 (Red Hat 8.3.1-5) using

the PyTorch framework [60] with version 1.11.0.dev20210929+cu111. The implementation

is available open-source at https://github.com/fluegelk/DEFP and is based on the DRTP

implementation by Frenkel et al. [22].

5.1.4. Quality and Performance Metrics

I use the accuracy and error rate of the resulting models to compare the di�erent training

methods. The top-1-accuracy is the percentage of samples where the predicted class, that

is, the class with the highest output, is correct. Correspondingly, the error rate is the

number of incorrectly classi�ed samples. These metrics can be calculated with

022DA02~ =
Correct Classi�cations

Total Samples
(5.1)

error =
Incorrect Classi�cations

Total Samples
= 1 − 022DA02~. (5.2)

To infer how well a model generalizes to new inputs, I evaluate the models on the test set

unless otherwise speci�ed.

In addition, I analyze the technical performance during the training, such as memory us-

age and execution time. To measure the execution time, I use Python’s time perf_counter,

a monotonic, non-adjustable clock with a resolution of 10
−9

. For memory usage, I measure

the peak GPU memory allocated during the training as reported by the PyTorch memory

allocator and reset the peak before each training run.
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Figure 5.2.: The best test error for di�erent optimization and training algorithms. Mean

and standard error aggregated over three independent runs.

5.2. Delayed Error Forward Projection

First, I evaluate delayed error forward projection, the scaled feed-forward-only training

algorithm introduced in Section 4.2. I compare DEFP to the standard back-propagation

algorithm and DRTP by Frenkel et al. [22]. For DEFP, I compare two versions, either

error-scaled using the error ~∗ − ~ or loss-scaled using the loss gradient as delayed error

information from the previous epoch. For this, I examine di�erent optimization algorithms

and their impact on the training in Section 5.2.1, followed by a detailed comparison of the

training algorithms using the di�erent error information in Section 5.2.2.

5.2.1. Optimization Algorithms

I compare four di�erent optimization algorithms: the standard stochastic gradient descend

(SGD), Nesterov’s Accelerated Gradient (NAG) [55, 69], RMSprop [30], and Adam [40].

Section 2.2.2 gives an overview of these optimization algorithms with a focus on how they

di�er and their typical impact on training.

Figure 5.2 depicts the best test error achieved on a representative subset of the tested

network topologies and datasets. The results are aggregated over three runs with di�erent

random seeds, using the same seeds for all algorithms; the error bars indicate the standard

error from the mean. For back-propagation, momentum seems to have no signi�cant

impact on the test error. There is no substantial di�erence between either SGD without

momentum and NAG or RMSprop and Adam. However, adaptive learning rates have an

essential e�ect on the results. This becomes especially clear on the image classi�cation

task MNIST, where RMSprop and Adam outperform SGD and NAG by about a factor of

ten on the achieved test error.

Compared to back-propagation, the feed-forward-only approaches are generally less

a�ected by the selected optimization algorithm. For example, on MNIST with the con-

volutional network, back-propagation improves from an error of almost 10% to about
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Figure 5.3.: Test error over the course of the training for di�erent optimizers and training

algorithms when training a neural network with topology FC1-500 on the

MNIST dataset. Mean aggregated over three independent runs.

1% when introducing adaptive learning rates. In comparison, the feed-forward-only ap-

proaches remain between 1.5% and 2.5% error independent of the chosen optimizer. As

for back-propagation, momentum has no signi�cant impact, while there are noticeable

di�erences with adaptive learning rates. However, adaptive learning rates do not always

come with an improvement. Both DRTP and DEFP with loss-scaling lose accuracy com-

pared to optimization without adaptive learning rates on the synthetic dataset. Of all

feed-forward-only approaches, DEFP with error-scaling behaves most similar to back-

propagation: neither momentum nor adaptive learning rates impair the results, and there

is a signi�cant improvement from using adaptive learning rates.

Figure 5.3 illustrates the development of the test error over the course of the training

for a neural network with the FC1-500 topology on the MNIST dataset. Comparing the

results achieved with adaptive learning rates, using RMSprop and Adam, to those without,

adaptive learning rates appear to lead to a larger decrease in the test error and thus to

faster convergence. With adaptive learning rates, back-propagation converges at a similar

pace as the feed-forward-only approaches. After epoch 50 the network converges, no

longer showing any signi�cant changes. In contrast, without adaptive learning rates, back-

propagation has not converged even after 100 epochs. The di�erence is not as notable for

the feed-forward-only approaches, but adaptive learning rates still lead to overall better

accuracy.

In their experiments, Frenkel et al. [22] use Adam when training on MNIST and CIFAR

but NAG for the synthetic classi�cation. However, based on these results, I use Adam for

all datasets as it is clearly the best for back-propagation, and there is no valid reason to

make an exception for the synthetic classi�cation. Unless otherwise speci�ed, all following

results thus use the Adam optimizer.

5.2.2. Error Information

Figure 5.4 compares the di�erent training algorithms on a more extensive set of networks

and depicts the mean and standard error of the best test error over three independent runs.

46



5.2. Delayed Error Forward Projection

Synth MNIST CIFAR-10

FC3-500 CONV FC1-500 FC1-1000 FC2-500 FC2-1000 CONV FC1-500 FC1-1000 FC2-500 FC2-1000

0%

20%

40%

0.0%

1.0%

2.0%

3.0%

4.0%

0.0%

2.0%

4.0%

6.0%

Topology

T
es

t E
rr

or

Training Algorithm BP DRTP Error-Scaled Loss-Scaled

Figure 5.4.: Comparison of the best test error for di�erent training algorithms. Aggregated

over three independent runs.

I make multiple interesting observations. First, back-propagation remains better than all

feed-forward-only solutions on all tested networks. It appears that ensuring biological

plausibility comes at the cost of reduced accuracy.

Section 4.2 introduced two new approaches to handle the error information based on

information from the previous epoch, namely DEFP with loss- and with error-scaling.

While the update steps are scaled based on the loss gradient in loss-scaled DEFP, the

error-scaled version uses the error instead. In both cases, the delayed value from the

previous epoch is used. Even though loss-scaling is more similar to back-propagation than

error-scaling from a theoretical point of view, the latter yields signi�cantly better results

over all networks and datasets. The only exception where loss-scaling improves over

DRTP is for fully-connected networks on the MNIST dataset. In contrast, error-scaling

o�ers a notable improvement over DRTP for both MNIST and the synthetic classi�cation

on all fully-connected networks. Only on the convolutional networks, DRTP appears to

be better than error-scaling.

For CIFAR-10, none of the algorithms or networks can solve the task to a satisfying

level. For the fully-connected networks, the test error remains at approximately 50%.

While better than plain guessing—with ten classes and balanced class frequencies, one

would expect a top-1-error of 90% when randomly selecting a class—correctly classifying

only every second image on average is still unacceptable. Although achieving slightly

better results, even back-propagation cannot reasonably train these networks, implying

that the feed-forward-only training approaches are not the problem here. As expected,

the convolutional network yields better results. However, even with back-propagation, a

test error of 25% is far from the current state-of-the-art, which is in the order of 0.5% as

achieved by Dosovitskiy et al. [19].

Figure 5.5 illustrates the test error throughout the training for a subset of selected

networks representing the di�erent behaviors observed. The fully-connected networks

not shown here generally exhibit a behavior highly similar to the FC1-500 topology.

A comparison of all networks can be found in supplementary Figure A.1. The data
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Figure 5.5.: Test error over the course of the training for di�erent training algorithms.

Aggregated over three independent runs.

is aggregated over three independent runs. Displayed here are the mean and the 95%

con�dence interval. With numerous spikes throughout the curve, the test error for loss-

scaled DEFP is signi�cantly more volatile than for the other algorithms. This behavior is

particularly pronounced for CIFAR-10 and the convolutional networks. For error-scaled

DEFP, the test error is also less smooth than for DRTP and back-propagation but to a much

lesser extent than for loss-scaling. For CIFAR-10, I observe back-propagation over�tting

on the fully-connected networks while the feed-forward-only approaches never improve

over back-propagation, even after it over�ts.

5.3. FeedbackWeight Initialization

This section explores the impact of the feedback weight initialization on the models’ �nal

results. As discussed in Section 4.3, I initialize the feedback weights used to approximate

the gradient once before starting the training. Weights for di�erent layers are initialized

independently, meaning I do not reuse feedback weights as proposed by Nøkland [56].

I test two types of distributions, namely normal and uniform distributions. All normal

distributions are centered around 0, that isN
(
`, f2

)
with ` = 0, but di�er in their standard

deviation f . The normal distribution without any further designation refers to the distri-

bution with a standard deviation of f = 1. The Xavier normal distribution is based on the

Xavier uniform distribution [25] introduced in Section 4.3. It has a standard deviation of

f =

√
2

fan-in + fan-out . (5.3)
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Figure 5.6.: Comparison of the best test error for initializations of the feedback weights.

All weights are initialized independently with the speci�ed distribution. Ag-

gregated over three independent runs.

The He normal distribution [29] has a standard deviation of

f =
gain√

fan-mode
. (5.4)

In my experiments, I use a gain of

√
2 and the fan-in mode. The uniform distributions

are also centered around 0 but vary in their interval length. The Xavier uniform distribu-

tion [25] uses an interval of

±
√

6

fan-in + fan-out , (5.5)

while the He uniform distribution [29] uses the interval

± gain ·
√
3√

fan-mode
. (5.6)

Figure 5.6 compares the test error for di�erent distributions to initialize the feedback

weights. Generally, the errors di�er only marginally, with a maximum di�erence of 1% be-

tween any two initialization schemes. For fully-connected networks, normal distributions

seem to perform slightly better than uniform distributions. This choice is less clear for

convolutional networks, which occasionally bene�t from using uniform distributions, for

example, on the MNIST dataset.

5.4. Training Performance

This section explores the technical performance of di�erent feed-forward-only training

methods compared to back-propagation in terms of per-epoch execution time and required

GPU memory.
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Figure 5.7.: Execution time per epoch for fully-connected and convolutional neural net-

works.

5.4.1. Execution Time

To evaluate the training algorithms regarding their technical performance, I �rst examine

the impact of the training algorithm on the average execution time per epoch for di�erent

datasets and network topologies. I compare two implementations of the feed-forward-

only approach. Frenkel’s original implementation of DRTP [22] replaces the gradients

during the backward pass with approximate gradients based on the feedback weights.

As separate forward and backward passes are still required, it is actually not completely

free of update locking. My novel implementation, in contrast, is purely feed-forward,

allowing each layer to be trained directly after �nishing its forward pass. Note that

neither of the implementations has been optimized speci�cally for technical performance.

Figure 5.7 shows the execution time for the topologies introduced in Section 5.1.2. With

the di�erences between the algorithms and implementations being relatively small, there

is no clear best pick.

To investigate these di�erences more thoroughly, I compare the execution times on three

additional fully-connected networks. They are chosen as rather extreme topologies, i.e.,

very small, very wide, or very deep, to examine how this impacts the training time. The �rst

network consists of a single output layer with ten neurons. The wide network contains ten

hidden layers with 10,000 neurons each, while the deep network uses 1000 hidden layers,

each consisting of 1000 neurons. Thus, the number of parameters in the hidden layers of

the wide and deep networks is approximately equal. Figure 5.8 illustrates the execution

time on these additional networks, which paints a much clearer picture of how the training

approach and network topology relate to the execution time. With average epoch times of

slightly more than a second, there are only marginal di�erences between the implementa-

tions on the single-layer network. The di�erences between the approaches are slightly

more pronounced on the ten-layer network. An epoch takes approximately 25 s, with

the di�erent methods being less than two seconds apart. Interestingly, back-propagation

and gradient replacement exhibit almost equal execution times of approximately 25.0 s,
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Figure 5.8.: Execution time per epoch for fully-connected neural networks with extreme

topologies.

while the feed-forward implementation is slightly faster at 23.6 s. On the deep network

with one thousand layers, I observe a distinct ordering of the implementations. With the

average execution time ranging between 100 s and 165 s per epoch, there appear to be

signi�cant di�erences between the training methods. Traditional back-propagation is

the fastest option, followed by replacing the gradients in the backward pass, which takes

approximately 30 s longer per epoch. The purely feed-forward implementation has an

even higher overhead of approximately 65 s compared to back-propagation.

5.4.2. Memory Consumption

Table 5.4 gives the peak consumption of GPU memory for the di�erent training methods on

both fully-connected and convolutional neural networks. In general, there is no signi�cant

di�erence in memory consumption between back-propagation and the feed-forward-only

algorithms. While I observe a slight increase in memory for DRTP compared to back-

propagation, this amounts to less than one percent of the total memory consumption. The

memory used to store the additional feedback weights �8 seems to be mostly compensated

by the remaining gradient computations. For DEFP, there is an additional overhead of 1 to

Table 5.4.: Peak GPU memory consumption of the di�erent training algorithms for fully-

connected and convolutional networks.

Dataset Topology BP DRTP DEFP

Synth FC3-500 11.94MB 11.99MB 12.95MB

MNIST FC2-500 18.70MB 18.74MB 21.03MB

CIFAR-10 FC2-500 45.40MB 45.44MB 46.83MB

MNIST CONV 291.27MB 292.27MB 294.56MB

CIFAR-10 CONV 842.04MB 847.12MB 849.03MB
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2.3MB compared to DRTP to store the delayed error information. Thus, using feed-forward-

only algorithms appears to be neither advantageous nor signi�cantly disadvantageous

in terms of memory usage compared to back-propagation, at least when using high-level

frameworks such as PyTorch without explicitly optimizing for memory consumption.

52



6. Discussion

With delayed error forward projection, I introduced a feed-forward-only training algorithm

for neural networks. Like DRTP, DEFP solves both the weight transport and the update

locking problem. Using the delayed error from the previous epoch as an additional sample-

wise scaling factor, DEFP can improve upon the accuracy of DRTP by up to 2.02%, a relative

improvement of more than 40%. This chapter discusses the results presented in Chapter 5

and sketches possible next steps for future work.

6.1. Comparison to Existing Approaches

Delayed error forward projection is a purely feed-forward, biologically plausible training

algorithm for feed-forward neural networks. It comes with only a slight decrease in

accuracy compared to the biologically implausible back-propagation. As discussed in

Section 3.1, back-propagation requires symmetry between forward and backward weights—

the so-called weight transport problem—and updates have to wait until both the forward

and the backward pass have fully processed all downstream layers, known as the update

locking problem. With DEFP, I aim to solve these issues.

Compared to the previous feedback-alignment-based training algorithms introduced in

Section 3.3, DEFP retains the biological plausibility of DRTP while improving the achieved

accuracy. Figure 6.1 gives a conceptual comparison of DEFP and DRTP. Instead of the

targets ~∗, DEFP propagates the delayed error 4C−1 to the hidden layers. In each epoch C ,

the current error 4C is computed by comparing the network’s output ~ to the targets ~∗. In

DRTP, this error is used only to train the output layer, while all hidden layers are trained

based on the targets alone. In contrast, DEFP records this error for each sample and stores

it as delayed error to be used in the next epoch. The approximate gradient Xℎ8 passed to

each hidden layer 8 is thus de�ned as

XDRTPℎ8 = �8~
∗

(6.1)

XDEFPℎ8 = �84C−1. (6.2)

With this approach, DEFP can use the actual error of each sample—albeit delayed by one

epoch—while remaining free of update locking. While this comes with a slight memory

overhead from storing the delayed error, it is generally negligible compared to the overall

memory usage as observed in Section 5.4.2. With this additional delayed error information,

DEFP can notably increase its accuracy over DRTP.

In the context of brain-inspired neuromorphic devices, training neural networks with

back-propagation has to happen out-of-the-loop due to back-propagation’s biological

implausibility. After the network has been trained on separate hardware, it needs to be
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DEFP DRTP

(a) Direct random target projection

DEFP DRTP

(b) Delayed error forward projection

Figure 6.1.: A comparison of DRTP (a) and DEFP (b). DEFP stores the error information

4C−1 from the previous epoch C −1, which can then be used in the current epoch

C instead of the targets ~∗ at virtually no cost.

converted to and deployed on the neuromorphic device to handle the inference. Feed-

forward-only training algorithms like DEFP and DRTP close this training loop. By solving

the weight transport and the update locking problem, they enable training the neural

network directly on the neuromorphic device without the need for external hardware.

6.2. Comparison of Loss- and Error-Scaling

I introduced two versions of delayed error forward projection, using either the gradient of

the loss or the error itself, that is, the di�erence between the expected and the actual output,

as additional error information. Both variants use the delayed error information from

the previous epoch, allowing DEFP to avoid update locking. As illustrated in Section 5.2,

this can provide a signi�cant boost to the model’s accuracy. However, contrary to my

expectations, scaling the updates with the error consistently outperforms loss-based

scaling.

When training neural networks, loss functions are used to penalize incorrect predictions

so the model parameters can be adjusted to improve the overall accuracy. How severe

a speci�c misprediction is, and thus which loss function should be selected, depends on

the task at hand. When solving regression problems, the output values are continuous,

whereas a classi�cation model predicts discrete classes. This distinction impacts how

incorrect outputs are perceived. For example, when predicting a continuous value from 1
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to 100, an output of 5 instead of 6 is almost correct. In contrast, selecting the �fth instead

of the sixth class is entirely wrong.

By choosing the correct loss function, a network can be penalized accordingly. For

regression, the mean squared error (MSE) loss

"(� (~,~∗) = 1

#

#∑
8=1

(
~∗8 − ~8

)
2

(6.3)

is a common choice. It increases quadratically with the di�erence between the expected

value ~∗ and the actual output ~. For classi�cation tasks, we often use a cross-entropy loss

based on information theory. In the binary form, it is de�ned as

��� (~,~∗) = − 1

#

#∑
8=1

~∗8 log(~8) +
(
1 − ~∗8

)
log(1 − ~8). (6.4)

Figure 6.2 illustrates the behavior of cross-entropy and mean squared error loss for one

sample of a binary classi�cation problem. For an incorrect classi�cation, the cross-entropy

loss is signi�cantly higher than the mean squared error and approaches in�nity when

predicting the opposite class. This behavior is also represented in the gradients: the

gradient of mean squared error scales linearly with the error, whereas the gradient of

cross-entropy increases signi�cantly the closer the error gets to one, again approaching

±∞.
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Figure 6.2.: Mean squared error and binary cross-entropy loss with corresponding gradi-

ents for a binary classi�cation sample with target 0 (blue) or 1 (red).

For DEFP, error-scaling is equivalent to loss-scaling with a mean squared error loss, as

already noted in Section 4.2. Since all experiments in this work use a binary cross-entropy

loss, the di�erence between error- and loss-scaling corresponds to the di�erence between

the gradients depicted in Figures 6.2c and 6.2d. At this point, I can only presume why loss-

scaling performs worse than error-scaling. A probable cause is that with loss-scaling, the
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e�ective step size varies too much due to the non-linearity of the gradient, not accounted

for by the learning rate. This could also explain why the error curve of loss-scaled training

in Figure 5.5 contains so many spikes compared to the other approaches. A potential

solution to this is using better learning rates or even a learning rate scheduler. Currently,

I use the same �xed learning rate for all feed-forward-only algorithms. However, the

magnitude of the error information, which can be considered a scaling factor to the update

steps, di�ers widely: DRTP corresponds to using the targets as error information which

are either 0 or 1. Similarly, the error ranges between -1 and 1. In contrast, the gradient of

the cross-entropy loss ranges from ±1 to ±∞. It is thus likely that loss-scaling requires a

substantially di�erent learning rate compared to the other two approaches. In addition

to the learning rate, a future study could investigate adjusting the e�ective step size via

other loss functions with di�erent gradients.

6.3. FeedbackWeight Initialization

Section 5.3 compares di�erent distributions to initialize the feedback weights. I test zero-

centered normal and uniform distributions with di�erent widths as prescribed by the Xavier

and He distributions. While some distributions o�er a slight improvement over others, I

�nd the overall impact to be marginal. There is no clear indication of which initialization

methods are more suitable, as their relative performance varies by dataset and network

topology. For example, with the fully-connected networks trained on MNIST, normal

distributions consistently outperform uniform distributions. In contrast, the convolutional

network seems to work best with the Xavier uniform distributions.

This behavior is somewhat unsurprising since even for traditional neural networks

trained with back-propagation, it is still unclear if the forward weights should be initialized

with a normal and uniform initialization [26]. A potential approach is choosing the

distribution of the feedback weights as a hyper-parameter explicitly tailored to the network

and dataset, similarly to the learning rate.

6.4. Hardware Performance

As demonstrated in Section 5.4, even straightforward implementations of feed-forward-

only training algorithms such as DEFP can compete with back-propagation in terms of

memory usage and execution time on conventional machines. Choosing to train with a

feed-forward-only approach thus brings no signi�cant disadvantages for the technical

performance. Further optimizations might be possible to increase the e�ciency even

in less restricted settings. The current implementation is based on PyTorch’s autograd

framework [60], which is intended to be used with back-propagation. While it can easily

be adjusted to train in a feed-forward-only fashion, further care might be necessary for

an optimized implementation. Under stricter hardware constraints, Frenkel et al. [23]

demonstrate a highly e�cient, low-cost implementation on an event-driven processor

enabled by DRTP.
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6.5. Layer-Wise Parallel Training with Pipelining

Feed-forward-only training algorithms o�er intriguing possibilities for layer-wise parallel

training of neural networks. Currently, there are two main strategies to parallelize the train-

ing of a neural network: data parallelism and model parallelism. An extensive overview of

parallelization in neural networks, including data, model, and pipeline parallelization, is

given by Ben-Nun and Hoe�er [6].

In data parallelism [6, 14], the training is parallelized over the samples in a batch.

A batch is partitioned and distributed to the di�erent processing units, which process

these parts in parallel. Each processing unit has its own copy of the neural network and

computes a complete forward and backward pass on its assigned samples, communicating

with the other units when necessary to keep the copies consistent. To achieve an e�cient

parallelization, data parallelism requires a su�ciently large batch size to counterbalance the

communication and synchronization overhead. However, choosing an overly large batch

size can negatively impact the quality of the trained networks due to the regularization

e�ect of smaller batches [77, 26, 6].

The second fundamental parallelization technique is model parallelism [21, 6]. In model

parallelism, the network itself is partitioned and distributed across di�erent processing

units. In contrast to data parallelism, each processing unit holds only a part of the model but

processes all data samples. There is communication between units holding adjacent model

parts, similar to how the corresponding neurons interact in the forward and backward

passes. Model parallelism comes with the additional advantage of enabling the training of

larger models that would not �t on a single processing unit. However, its parallelization

capabilities are limited by the dependencies between the layers since two consecutive

layers depend on their reciprocal output in both the forward and the backward pass.

Thus, model parallelism mainly pro�ts from partitioning the model along the data path by

splitting each layer across the processing units instead of separating the network layer-

wise. A further challenge to model parallelism is reversing the communication for the

backward pass in arbitrary neural networks [6].

A third parallelization strategy is pipelining [6], which can be interpreted as both a form

of data parallelism and model parallelism. Overlapping the computations for multiple

samples, pipelining employs data parallelism while partitioning the layers of a network

across the pipeline stages corresponds to model parallelism [6]. Feed-forward-only training

algorithms relax the inter-dependency of layers by solving the update locking problem and

replacing the backward pass with individual update steps. While a layer still depends on

the output of the previous layer during the forward pass, the update step is independent of

other layers and can thus be performed immediately after the forward step. This enables

an improved layer-wise parallelization of the training based on pipelining. To illustrate

how this layer-wise pipelining works, recall the running example of a four-layer neural

network and consider its training on four batches of training samples. For simpli�cation,

this illustration assumes that the forward and backward steps in all layers require the

same amount of time, which is abstractly referred to as a time step. While this is an

abstraction from reality, the computational costs of forward and backward steps are mostly

the same [26]. However, in most networks, the compute intensity varies by layer, which

can result in load balancing issues.
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Figure 6.3.: Training a four-layer neural network on four di�erent batches (colored blue,

yellow, green, and red) with back-propagation. The forward pass processes the

layers in order (F1–F4), followed by the backward pass in reverse order (B4–B1).

Because of the inter-dependency of adjacent layers in both the forward and

the backward pass, a batch cannot be parallelized. Furthermore, the next batch

may only enter a layer once it has been updated by the previous batch. Thus,

processing the four batches requires 32 time slots.

Figure 6.3 outlines training the four-layer network on the four batches with back-

propagation. The forward pass for each batch consists of four forward steps, F1 to F4, for

the four layers. Conversely, the backward pass processes the layers in reverse order B4 to

B1. As each layer requires the previous layer’s output in the forward pass, the forward

steps successively depend on each other, prescribing a �xed step order. The backward

steps similarly depend on the downstream layer’s gradient, restricting their order as well.

With the gradients depending on the loss, the forward pass needs to be �nished before any

backward step can start. Additionally, there is a dependency between the batches as a batch

may only enter a layer after the previous batch has updated it. These restrictions force

back-propagation to perform the required steps sequentially: �rst �nish the forward pass,

followed by the backward pass, and only then start the next batch. With this approach,

processing the four batches requires 32 time slots.

In contrast, feed-forward-only algorithms solving the update locking problem allow

training the same network in only 11 time slots using pipelining. This pipelined paral-

lelization is illustrated in Figure 6.4. While the inter-layer dependency in the forward pass

remains, a layer can now be updated immediately after its forward step. As it is no longer

required to wait for the forward pass to complete or the backward pass to return to this

layer, it can be updated in parallel to the remaining forward pass. Furthermore, layers no

longer need to be updated in reverse order. This allows us to start processing the next

batch long before the current batch has been �nished. After only two steps, the �rst layer

has processed the current batch, updated its weights accordingly, and can continue with

the next batch. In contrast, the second batch can only be started after eight time steps

when training with back-propagation. This delay is even higher for deeper networks.

In total, feed-forward-only training allows overlapping multiple batches as well as the

forward pass and update steps of a single batch. In the example, this reduces the total

time to process the four batches from 32 to only 11 time units using four processing units,

corresponding to a relative speedup of

(? =
)1

)?
=
32

11

≈ 2.9 (6.5)
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Figure 6.4.: One possibility of training the same four-layer neural network on the four

batches (colored blue, yellow, green, and red) with a feed-forward-only algo-

rithm free of update locking. In the forward pass (F1–F4), layers still depend on

the output of the previous layer. However, without update locking, the update

steps (U1–U4) can occur anytime after the corresponding forward step in that

layer has been completed, independent of the progress of either forward or

update steps in other layers. This allows updating the layers in parallel to the

remaining forward pass. Furthermore, since the updates no longer have to be

performed in reverse order, the next batch (yellow) can be started only two

time steps after starting the �rst batch (blue). This adds an additional layer

of parallelization, allowing an overlap of both forward and update passes and

separate batches. In total, pipelining reduces the required time slots to 11.

and an e�ciency of

�? =
(?

?
=
2.9

4

≈ 0.73. (6.6)

In most real-world examples, an epoch contains signi�cantly more than four batches,

increasing the scalability even further. Generally speaking, a pipeline with : stages

processing = elements requires

: + = − 1 (6.7)

time steps to process all elements while a sequential approach takes

: · = (6.8)

time steps. With the presented strategy to layer-wise pipelined training, the number of

stages : corresponds to the number of layers, and the number of elements = corresponds

to twice the number of batches 1 since a batch requires two steps per layer—forward and

update. Starting a new batch every second time slot, this approach can utilize up to :

processing units in parallel, yielding a theoretical speedup and e�ciency of

(: =
)1

):
=

2:1

: + 21 − 1 (6.9)

�: =
(:

:
=

21

: + 21 − 1 . (6.10)
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The allocation of steps to processing units and time slots described here is only one of

multiple possibilities intended to outline how solving update locking enables layer-wise

parallelization through pipelining. In an actual implementation, another allocation might

be preferable. This layer-wise parallelization brings several advantages. In contrast to

data parallelism, it does not depend on su�ciently large batches. While it can be seen

as a form of model parallelism, relaxing the dependencies between layers opens a whole

new dimension to parallelization. Moreover, this pipelining approach should work in

conjunction with both data and model parallelism and can thus complement existing

parallelization approaches for even higher e�ciency.
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Arti�cial neural networks have reached immense advances in performance over the

last decade, leading to a wide range of practical applications. However, the underlying

approach to training neural networks, that is, solving the credit assignment problem by

computing gradients with back-propagation, has remained largely the same. Nonetheless,

back-propagation has long been criticized for being biologically implausible as it relies on

concepts that are not viable in the brain. In this thesis, I focus primarily on two core issues

of back-propagation: the weight transport and the update locking problem. In addition

to being biologically implausible, these issues lead to technical constraints impacting

the memory overhead, communication, and energy consumption of back-propagation,

thus limiting its viability under strict hardware and resource constraints. Even from an

optimization point of view, back-propagation can become impeded by the increasingly

deeper networks with stronger non-linearities, as demonstrated by the vanishing and

exploding gradient problem.

With delayed error forward projection, I introduced a feed-forward-only training al-

gorithm for multi-layer neural networks. DEFP solves the weight transport problem

of back-propagation by implementing direct random feedback connections and avoids

update locking by using the error information from the previous epoch. This makes it

more biologically plausible than back-propagation and increases the resulting accuracy

compared to the similarly plausible DRTP algorithm.

I evaluated DEFP on di�erent neural networks, consisting of both fully-connected and

convolutional layers, and three di�erent classi�cation datasets. Comparing the test error, I

found that DEFP can achieve higher accuracy than DRTP, especially on fully-connected

neural networks. Surprisingly, DEFP with error-scaling yields signi�cantly better results

than with loss-scaling for all networks and datasets. A probable cause for this is that loss-

scaling requires a more careful selection of the learning rate, as the range of potential values

for the loss gradient is substantially larger than for the error or targets. An interesting

future step entails a more thorough investigation of this e�ect, including determining a

better learning rate or even employing a learning rate scheduler. I also compared di�erent

feedback weight initialization schemes, where I found their overall impact to be only

marginal. With a further dependency on the network topology and dataset at hand, there

was no clear indication of a general best choice. Comparing the technical performance

of feed-forward-only training to back-propagation, I found that the execution time per

epoch di�ers only slightly on most tested network architectures. However, in very deep

networks with one thousand layers, back-propagation clearly outperformed the feed-

forward-only approach. This is most likely caused by an implementation not optimized for

pure execution time. In terms of memory consumption, I found the overhead to store the

delayed error information to be negligible compared to the overall memory consumption.

61



7. Conclusion

By improving upon DRTP, DEFP demonstrates that feed-forward-only algorithms can

train neural networks e�ectively, lacking only slightly behind back-propagation in terms

of accuracy. Since no backward pass is required, this enables on-device training with

highly promising neuromorphic devices, a new generation of AI hardware that emulates

the neural structure and operation of the human brain. Thanks to their high e�ciency,

training neural networks directly on neuromorphic devices instead of out-of-the-loop

on separate hardware has the potential to not only economize compute resources and

energy tremendously but also to simplify the training process signi�cantly. By releasing

update locking and thus the inter-layer dependencies when computing the gradients, feed-

forward-only algorithms like DEFP furthermore o�er great possibilities for parallelization,

an ever-important topic with increasingly large networks and datasets. As outlined in

Section 6.5, replacing the layer-by-layer backward propagation with direct forward paths

allows for a layer to be updated immediately after its forward step and thus facilitates a

pipelined parallelization approach.

Based on my �ndings, multiple interesting follow-up steps can be taken. As already

mentioned, a more thorough investigation of why error-scaling consistently outperforms

loss-scaling would be necessary. This includes testing whether this e�ect can be reduced

using better learning rates or a learning rate scheduler. Furthermore, I intend to extend

my experiments to more realistic use cases by considering more complicated network

topologies, larger datasets, and more challenging problems. Considering the sub-par

performance of all training algorithms, including back-propagation, on CIFAR-10, it would

be interesting to compare the results on larger networks, where at least back-propagation

achieves a satisfying result. Similarly, applying DEFP to networks with residual con-

nections would be of interest. Given that the current implementation o�ers no notable

increase in technical performance over back-propagation, it would be interesting whether

a more optimized implementation can achieve a performance improvement even on tra-

ditional hardware without the restrictions of edge computing. Finally, having proposed

the pipelined parallelization of DEFP in theory, implementing it and demonstrating its

practical performance would be an obvious next step.
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Figure A.1.: Test error over the course of the training for di�erent training algorithms.

Aggregated over three independent runs. An extension of Figure 5.5 including

all network topologies.
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