

Dealing with Uncertainty in Future Power Distribution Grid with Reinforcement Learning

Presenting: ¹Gökhan Demirel

¹Institute for Automation and Applied Informatics (IAI)

@International Workshop:Challenges and Opportunities in Modern European Power SystemsWorkshop Chair:Dr. Amy Liu, Dr. David Laverty, Prof. Sean McLoone

www.kit.edu

Motivation

Dealing with Uncertainty in Future Power Distribution Grids

Energy System in Transition

- Bidirectional Power Supply
- Possible Consequences
 - Overloading and Congestion Problems!

Motivation

Dealing with Uncertainty in Future Power Distribution Grids

- Energy System in Transition
 - Bidirectional Power Supply
- Possible Consequences
 - Overloading and Congestion Problems!

- Resilience based on Flexibility
 - Utilization of Distributed Energy Resources (DERs)
 - Probabilistic Planning and Decision-Making

Challenges

Transformation of Europe's power system

C1: DERs Integration with joint Uncertainty **C2**: Considering Uncertainty in RL for Power Grids Karlsruhe Institute of Technology

Challenges

Transformation of Europe's power system

C1: DERs Integration with joint UncertaintyC2: Considering Uncertainty in RL for Power Grids

C1: DERs Integration with joint Uncertainty

- Uncertainty Formulation of single and joint DERs
 - Bayesian Statistics
 - Forecast Catch-Up Effects of DERs

Charging Station

C2: Considering Uncertainty in RL for Power Grids

Reinforcement Learning

Energy Flexibility increases Resiliency

C2: Considering Uncertainty in RL for Power Grids

Reinforcement Learning

- Energy Flexibility increases Resiliency
- Using Distributed, Decentralized RLs Instead of Centralized

C2: Considering Uncertainty in RL for Power Grids

Reinforcement Learning

- Energy Flexibility increases Resiliency
- Using Distributed, Decentralized RLs Instead of Centralized

Goal

Automation in Energy Systems using AI

- Energy System Data
 - Application of GANs
- Reinforcement Learning
 - How can we control DERs in energy systems?
 - Multi-Agent Reinforcement Learning
 - Safe and Resilience via Shielding
 - Forecast Catch-Up considered

Thank you very much for your attention!

Suggestions, questions, and advice are welcomed!

Research Assistant

Research Area IT Methods and Components for Smart Infrastructures (IT4SI)

Group IT-Methods and Components for Energy Systems (IT4ES)

[] 333 CN 445

⊠ goekhan demirel∂kit edu

Karlsruhe Institute of Technology (KIT) Institute for Automation and Applied Informatics (IAI)

Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Fax: +49 721 608 22602 Building-No.: 445 / 449 / 668