
Sublinear-Time Cellular Automata

and Connections to Complexity Theory

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von

Augusto Casagrande Viapiana Modanese

Tag der mündlichen Prüfung: 11. November 2022

Erster Gutachter: Prof. Dr. Jörn Müller-Quade,
Karlsruher Institut für Technologie (KIT)

Zweiter Gutachter: Prof. Dr. Martin Kutrib,
Justus-Liebig-Universität Gießen

Abstract

Distributed computing studies models in which multiple computational units coordinate
themselves towork towards some common goal while having only limited resources at their
disposal—be it time, space, or communication. The main object of study of this dissertation
is the arguably simplest such model there is: (one-dimensional) cellular automata. Our goal
is to obtain a better picture of the capabilities and limitations of the model and its variants
in the case where the overall processing time is significantly smaller than the size of the
input (i.e., sublinear time). We carry out our analysis from the perspective of computational
complexity theory and also establish connections between cellular automata and other
fields such as distributed computing and streaming algorithms.

Sublinear-time cellular automata. A cellular automaton (CA) is composed of identical
cells arranged on a line. Each cell is essentially a very primitive computational unit (namely
a deterministic finite automaton) that may interact with its two neighbors. Computation
occurs by the cells updating their state according to the same local transition function all
across the automaton. The variants we consider include shrinking CAs, which are CAs
that are dynamically reconfigurable (to some extent) by means of cell deletion, and also a
probabilistic variant in which each cell is equipped with access to a fair coin.

Despite remarkable interest on CAs in the linear- and real-time cases, the setting of
sublinear time appears to have been neglected by the community at large. We review the
little previous work on the topic there is and further develop some techniques originating
from it so as to widen the scope of applications. This effort yields, among others, a time
hierarchy theorem for the deterministic model. We also transfer lower bound techniques
from complexity theory over to the shrinking CA model as well as develop new ones to
analyze the capabilities of probabilistic sublinear-time CAs.

A connection to hardness magnification. One connection to complexity theory we estab-
lish along the way is a hardness magnification theorem for shrinking CAs. Here hardness
magnification refers to a recent line of work that shows how even slightly nontrivial
lower bounds might have very surprising consequences for complexity theory. Ours is a
recasting of a recent result of McKay, Murray, and Williams (STOC, 2019) for streaming
algorithms. As we also show, the result may be equally stated in terms of shrinking CAs,
which provably strengthens it.

i

Abstract

A connection to sliding-window algorithms. We relate the distributed model of cellular
automata to the sequential model of streaming algorithms. As we show, (certain variants
of) CAs can be simulated by streaming algorithms that are subject to certain locality
restrictions. Concretely, the current state of the algorithm is exclusively dependent on a
(fixed-size) window that contains the last few symbols that have been processed. We dub
this restricted form of streaming algorithm a sliding-window algorithm, accordingly. We
prove that sliding-window algorithms can simulate CAs quite efficiently and, in particular,
in such a way that their space complexity is tightly connected to the time complexity of
the simulated CA.

Derandomization results. We prove derandomization results for the model of sliding-
window algorithms that draw randomness from a binary source. To do so, we rely on the
robust machinery of branching programs that forms the standard approach for derandom-
ization of space-bounded computation in complexity theory. As an application, using the
aforementioned connection to cellular automata, we derive derandomization results for
sublinear-time probabilistic CAs.

Predicting fungal sandpiles. A final problem we tackle and that relates to sublinear-time
complexity in relation to cellular automata (albeit not sublinear-time cellular automata
per se) is the prediction problem in sandpile automata. These automata are defined based
on two-dimensional CAs and model a deterministic process in which particles (usually
thought of as grains of sand) spread across space. The prediction problem asks whether,
given the number 𝑦 of a cell and some initial configuration for the sandpile, the cell with
the number 𝑦 will eventually assume a non-zero state in a set amount of time.

The complexity of the prediction problem (for two-dimensional sandpiles) has been re-
markably open for at least two decades. We effectively settle the question for a variant of
sandpiles called fungal sandpiles recently proposed by Goles et al. (Phys. Lett. A, 2020).
Our result is of particular relevance since it provides fresh insights and new techniques
that could be highly relevant towards obtaining a solution for the open problem in the
general case.

ii

Zusammenfassung

Im Gebiet des verteilten Rechnens werden Modelle untersucht, in denen sich mehrere
Berechnungseinheiten koordinieren, um zusammen ein gemeinsames Ziel zu erreichen,
wobei sie aber nur über begrenzte Ressourcen verfügen — sei diese Zeit-, Platz- oder
Kommunikationskapazitäten. Das Hauptuntersuchungsobjekt dieser Dissertation ist das
wohl einfachste solche Modell überhaupt: (eindimensionale) Zellularautomaten. Unser
Ziel ist es, einen besseren Überblick über die Fähigkeiten und Einschränkungen des
Modells und ihrer Varianten zu erlangen in dem Fall, dass die gesamte Bearbeitungszeit
deutlich kleiner als die Größe der Eingabe ist (d. h. Sublinear-Zeit). Wir führen unsere
Analyse von dem Standpunkt der Komplexitätstheorie und stellen dabei auch Bezüge
zwischen Zellularautomaten und anderen Gebieten wie verteiltes Rechnen und Streaming-
Algorithmen her.

Sublinear-Zeit Zellularautomaten. Ein Zellularautomat (ZA) besteht aus identischen
Zellen, die entlang einer Linie aneinandergereiht sind. Jede Zelle ist im Wesentlichen eine
sehr primitive Berechnungseinheit (nämlich ein deterministischer endlicher Automat), die
mit deren beiden Nachbarn interagieren kann. Die Berechnung entsteht durch die Aktua-
lisierung der Zustände der Zellen gemäß derselben Zustandsüberführungsfunktion, die
gleichzeitig überall im Automaten angewendet wird. Die von uns betrachteten Varianten
sind unter anderem schrumpfende ZAs, die (gewissermaßen) dynamisch rekonfigurierbar
sind, sowie eine probabilistische Variante, in der jede Zelle mit Zugriff auf eine faire Münze
ausgestattet ist.

Trotz überragendem Interesse an Linear- und Real-Zeit-ZAs scheint der Fall von Sublinear-
Zeit im Großen und Ganzen von der wissenschaftlichen Gemeinschaft vernachlässigt
worden zu sein. Wir arbeiten die überschaubare Anzahl an Vorarbeiten zu dem Thema
auf, die vorhanden ist, und entwickeln die daraus stammenden Techniken weiter, sodass
deren Spektrum an Anwendungsmöglichkeiten wesentlich breiter wird. Durch diese Be-
mühungen entsteht unter anderem ein Zeithierarchiesatz für das deterministische Modell.
Außerdem übertragen wir Techniken zum Beweis unterer Schranken aus der Komplexi-
tätstheorie auf das Modell der schrumpfenden ZAs und entwickeln neue Techniken, die
auf probabilistische Sublinear-Zeit-ZAs zugeschnitten sind.

Ein Bezug zu Härte-Magnifizierung. Ein Bezug zu Komplexitätstheorie, die wir im Laufe
unserer Untersuchungen herstellen, ist ein Satz über Härte-Magnifizierung (engl. hardness
magnification) für schrumpfende ZAs. Hier bezieht sich Härte-Magnifizierung auf eine

iii

Zusammenfassung

Reihe neuerer Arbeiten, die bezeugen, dass selbst geringfügig nicht-triviale untere Schran-
ken sehr beeindruckende Konsequenzen in der Komplexitätstheorie haben können. Unser
Satz ist eine Abwandlung eines neuen Ergebnisses von McKay, Murray und Williams
(STOC, 2019) für Streaming-Algorithmen. Wie wir zeigen kann die Aussage dabei genauso
in Bezug auf schrumpfende ZAs formuliert werden, was sie auch beweisbar verstärkt.

Eine Verbindung zu Sliding-Window Algorithmen. Wir verknüpfen das verteilte Zellular-
automatenmodell mit dem sequenziellen Streaming-Algorithmen-Modell. Wie wir zeigen,
können (gewisse Varianten von) ZAs von Streaming-Algorithmen simuliert werden, die
bestimmten Lokalitätseinschränkungen unterliegen. Konkret ist der aktuelle Zustand des
Algorithmus vollkommen bestimmt durch den Inhalt eines Fensters fester Größe, das
wenige letzte Symbole enthält, die vom Algorithmus verarbeitet worden sind. Dement-
sprechend nennen wir diese eingeschränkte Form eines Streaming-Algorithmus einen
Sliding-Window-Algorithmus. Wir zeigen, dass Sliding-Window-Algorithmen ZAs sehr
effizient simulieren können und insbesondere in einer solchen Art und Weise, dass deren
Platzkomplexität eng mit der Zeitkomplexität des simulierten ZA verbunden ist.

Derandomisierungsergebnisse. Wir zeigen Derandomisierungsergebnisse für das Modell
von Sliding-Window-Algorithmen, die Zufall aus einer binären Zufallsquelle beziehen.
Dazu stützen wir uns auf die robuste Maschinerie von Branching-Programmen, die den
gängigen Ansatz zur Derandomisierung von Platz-beschränkten Maschinen in der Komple-
xitätstheorie darstellen. Als eine Anwendung stellen sich Derandomisierungsergebnisse
für probabilistische Sublinear-Zeit-ZAs heraus, die durch die oben genannten Verknüpfung
erlangt werden.

Vorhersageproblem für Pilz-Sandhaufen. Ein letztes Problem, das wir behandeln und das
auch einen Bezug zu Sublinear-Zeitkomplexität im Rahmen von Zellularautomaten hat
(obwohl nicht zu Sublinear-Zeit-Zellularautomaten selber), ist das Vorhersageproblem für
Sandhaufen-Zellularautomaten. Diese Automaten sind basierend auf zweidimensionalen
ZAs definiert und modellieren einen deterministischen Prozess, in dem sich Partikel (in der
Regel denkt man an Sandkörnern) durch den Raum verbreiten. Das Vorhersageproblem
fragt ob, gegeben eine Zellennummer𝑦 und eine initiale Konfiguration für den Sandhaufen,
die Zelle mit Nummer 𝑦 irgendwann vor einer gewissen Zeitschranke einen von Null
verschiedenen Zustand erreichen wird.

Die Komplexität dieses mindestens zwei Jahrzehnte alten Vorhersageproblems ist für
zweidimensionelle Sandhaufen bemerkenswerterweise nach wie vor offen. Wir lösen diese
Frage im Wesentlichen für eine neue Variante von Sandhaufen namens Pilz-Sandhaufen,
die von Goles u. a. (Phys. Lett. A, 2020) vorgeschlagen worden ist. Unser Ergebnis ist
besonders relevant, weil es innovative Erkenntnisse und neue Techniken liefert, die für
die Lösung des offenen Problems im allgemeinen Fall von hoher Relevanz sein könnten.

iv

Acknowledgments

This dissertation crowns my 11 years of study in Karlsruhe. Given the long time period,
the reader is asked to excuse the fact that some of these acknowledgments extend well
beyond what concerns this work alone.

First and foremost, I thank Dr. Thomas Worsch for introducing me to the topic of cellular
automata, for his mentorship during a great part of my studies in Karlsruhe, for many,
many lively conversations about research, career advice, and several other miscellaneous
topics, for being in essence one of the best teachers I have ever met, and (of course!) for a
very nice and fashionable cap.

Secondly, I would like to thank Prof. Dr. Jörn Müller-Quade for serving as the first reviewer
to this dissertation as well as for the occasional discussion about my research and for the
suberb lectures during my bachelor’s and master’s. Thanks are also due to Prof. Dr. Martin
Kutrib of Gießen for accepting the role of second reviewer and for writing many works
that directly or indirectly influenced and inspired quite a few topics of this dissertation
and the two theses that preceded it.

Next I shouldmention Prof. Dr. Ralf Reussner and Jun.-Prof. Dr. FranziskaMathis-Ullrich for
contributing with quite insightful conversations prior to the submission of this dissertation.
I am particularly thankful to Prof. Reussner for very valuable tips concerning the defense
(which inspired not only the structure of the presentation but also of Chapter 1 of this
dissertation) as well as for accepting the role of examiner. I also thank Prof. Dr. Michael
Beigl and Prof. Dr. Jörg Henkel for their roles in the examination board of my defense.

A next round of thanks goes to all my colleagues at KASTEL, even if we did not have
all that many day-to-day dealings in common except for the occasional greeting while
walking down the aisle to the printer room. My warmest thanks to Frau Manietta for her
great and infallible help when dealing with all matters regarding paperwork, which was
called upon several times indeed.

I would also like to thank Dr. Ján Pich and Prof. Rahul Santhanam as well as all the others
I met at Oxford for their hospitality while I tended to the final details of this dissertation.
Yet another round of thanks goes to Prof. Yuichi Yoshida, Hiraki-san, and the others at the
NII for all their help in making my stay in Tokyo an absolutely thrilling experience. I look
forward to seeing you all again soon.

On a more personal note, I thank Nagatou-sensei for all her help, advice, and mentorship
during virtually the entirety of my studies in Karlsruhe. I also thank all my German
teachers—Adilsom, Avelino, Christoph, and Stefan—for their invaluable help in making

v

Acknowledgments

a life of study in Germany possible. Special mention goes to Adilsom, of course, for
suggesting and encouraging me to follow this path as well as to Christoph for assisting
me in applying for the B.Sc. back in 2011.

Last but not least, I would like to say thank you to my parents for all their support and
care during my studies as well as to a special someone for cheering every success of mine,
as small as it may be, and for reassuring me in the times I needed the most. I love you all
so much.

Coimbra, November 22nd, 2022

vi

Contents

Abstract . i

Zusammenfassung . iii

Acknowledgments . v

I. Introduction 1

1. Introduction . 3
1.1. Background and Motivation . 3
1.2. Models Studied . 4

1.2.1. Cellular Automata and their Variants 4
1.2.2. Streaming Algorithms . 7

1.3. Main Contributions . 8
1.3.1. Sublinear-Time Cellular Automata 8
1.3.2. Sliding-Window Algorithms . 12
1.3.3. Fungal Sandpile Automata . 14

1.4. Common Themes and Techniques . 14
1.4.1. Locality and Anonymity . 15
1.4.2. Locally Verifiable Padding . 16
1.4.3. The Inclusion-Exclusion Principle 17
1.4.4. Simulation Techniques . 17
1.4.5. Shattering and Interleaving . 19

1.5. Organization . 20

II. Contents 23

2. Sublinear-Time Recognition and Decision by One-Dimensional Cellular Automata 25
2.1. Introduction . 25
2.2. Definitions . 26

2.2.1. (Strictly) Locally Testable Languages 26
2.2.2. Cellular Automata . 27

2.3. First Observations . 29
2.4. Main Results . 32

2.4.1. Time Hierarchy . 32

vii

Contents

2.4.2. Intersection with the Regular Languages 33
2.4.3. Relation to Parallel Complexity Classes 35

2.5. Decider ACA . 38
2.5.1. The Constant-Time Case . 40
2.5.2. Beyond Constant Time . 41

2.6. Conclusion and Open Problems . 42

3. Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular
Automata . 45
3.1. Introduction . 45

3.1.1. The Model . 47
3.1.2. Techniques . 49
3.1.3. Organization . 50

3.2. Preliminaries . 50
3.2.1. Cellular Automata . 51

3.3. Capabilities and Limitations of Sublinear-Time SCAs 54
3.3.1. Block Languages . 54
3.3.2. Block Languages and Parallel Computation 57
3.3.3. An Optimal SCA Lower Bound for a Block Language 59

3.4. Simulation of an SCA by a Streaming Algorithm 62
3.5. Hardness Magnification for Sublinear-Time SCAs 66
3.6. Concluding Remarks . 69

4. Sublinear-Time Probabilistic Cellular Automata 71
4.1. Introduction . 71

4.1.1. The Model . 72
4.1.2. Results . 73
4.1.3. Further Directions . 75
4.1.4. Organization . 76

4.2. Preliminaries . 76
4.2.1. Cellular Automata . 77

4.3. Fundamentals . 78
4.3.1. Robustness of Definition . 82
4.3.2. One- vs. Two-Sided Error . 85

4.4. The Constant-Time Case . 86
4.4.1. Critical Cells . 86
4.4.2. Characterization . 88

4.5. The General Sublinear-Time Case . 100

5. Pseudorandom Generators for Sliding-Window Algorithms 103
5.1. Introduction . 103

5.1.1. Branching Programs . 105
5.1.2. Our Results . 106
5.1.3. Technical Overview . 110
5.1.4. Related Work . 112

viii

Contents

5.1.5. Organization . 113
5.2. Preliminaries . 114
5.3. De Bruijn Graphs Fully Characterize SWBPs 115
5.4. Pseudorandom Generators for General SWBPs 116
5.5. Pseudorandom Generators for 𝛿-critical SWBPs 119
5.6. Application to Sublinear-Time Probabilistic Cellular Automata 122

5.6.1. Probabilistic Cellular Automata 122
5.6.2. Simulating a PACA with a Low-Space Sliding-Window Algorithm 124
5.6.3. Derandomizing Sublinear-Time PACAs with Small Space 127

6. Embedding Arbitrary Boolean Circuits into Fungal Automata 133
6.1. Introduction . 133

6.1.1. Boolean circuits and the CVP . 134
6.1.2. Challenges . 135
6.1.3. Overview of the construction . 135

6.2. Layer 0: The Fungal Automaton . 136
6.3. Layer 1: Coarse-Graining Space and Time 137
6.4. Layer 2: Polarized Components . 138

6.4.1. Polarized Signals and Wires . 138
6.4.2. Diodes . 139
6.4.3. Duplicating, Merging, and Crossing Wires 141
6.4.4. Switches . 142
6.4.5. Delays and Retarders . 143

6.5. Layer 3: Working With Bits . 143
6.5.1. Representation of Bits . 144
6.5.2. Bit Duplication . 145
6.5.3. Nand Gates . 145
6.5.4. Cable Crossings . 147

6.6. Layer 4: Layout of a Whole Circuit . 147
6.6.1. Arranging the Circuit in Tiles . 147
6.6.2. Layout for Tile 𝑖 . 148
6.6.3. Choosing Suitable Delays for All Gates 148
6.6.4. Constructor . 150

Bibliography . 151

ix

Part I.

Introduction

1. Introduction

1.1. Background and Motivation

The relevance of distributed—and especially local—computational models in the modern
era cannot be understated. Oftentimes a large chunk of data is spread across a network
of several computers—potentially all across the globe—that do not have the resources to
communicate with one another, be it due to constraints in time, space, or even in the
number of communication lines. This is in line with the contemporary paradigm shift
of data being so large and complex that we cannot hope to process all of it in a single
machine.

These trends motivate the study of models of distributed computation that must operate
very efficiently but nevertheless in a local fashion. In theoretical computer science, a
natural translation for such efficiency may be found in sublinear-time models, which (as
the name already suggests) must operate in fewer steps than the size of their input. As for
locality, this is usually modeled by augmenting the computational model at hand so as to
render it aware of the state of its immediate neighbors and capable of interacting with
them (e.g., by exchanging messages).

Arguably the simplest model capturing systems as described above are cellular automata,
in particular their one-dimensional variant. A cellular automaton is composed of a certain
number of identical computational units—its cells—that are arranged according to a path
topology. Each cell is a deterministic finite automaton (DFA), essentially the most basic
model of computation there is. The communication lines are laid in-between immediate
neighbors according to their positions in the underlying one-dimensional array. Evidently,
cellular automata are a model that is compatible with the notions of sublinear-time local
computing previously described—but one that has been stripped down to the bareminimum
amount of resources.

Although there is great motivation to investigate sublinear-time computation by (one-
dimensional) cellular automata and the model is by all means a novel one (as it is but less
than a couple decades “younger” than Turing machines), the topic has been seemingly
neglected by the community at large. (We review the relevant literature in Section 1.2.1.)
This dissertation is an attempt at narrowing this knowledge gap. Although our primary
focus is the study of cellular automata, our results are at the intersection of multiple fields,
bringing together the worlds of computational complexity theory, distributed computing,
sublinear-time algorithms, and streaming algorithms.

3

1. Introduction

The next section (Section 1.2) introduces the models studied in this dissertation. Following
that, in Section 1.3 we present our results and in Section 1.4 we discuss a selection of
overarching themes and techniques that are central in obtaining them. At the end (Sec-
tion 1.5) we also give a summary of the contents of Part II for the reader’s convenience.
To avoid repetition, we refrain from giving a “monolithic” section on related work; rather
we mention and discuss it directly next to the relevant passages of the text.

1.2. Models Studied

This dissertation is concerned with the study of several models of computation. This
section gives a broad overview of all models considered. Most of these are based on
cellular automata and are covered in Section 1.2.1. However, another prominent model
featured are streaming algorithms and, in particular, their subclass of sliding-window
algorithms, which are addressed in Section 1.2.2.

1.2.1. Cellular Automata and their Variants

The classical model of (one-dimensional) cellular automata (CAs) is a very basic model of
distributed computation. The units of the system are deterministic finite automata (DFAs)
and are named cells. Cells are connected to other cells in their neighborhood according
to a path topology. All cells are identical, though in bounded CA a distinct behavior for
the bordering cells (i.e., the start and end nodes in the underlying path graph) is possible
in practice. Unlike most prominent models in distributed computing (e.g., the celebrated
LOCAL model of Linial [72]), cells are oblivious to their identity and their position in the
automaton.1 It is possible to circumvent this limitation by encoding this information in
the machine’s input, which is indeed an approach we explore in Chapters 2 and 3.

The problem of language recognition has been extensively studied in cellular automata [69,
111]. With the notable exception of [60, 66, 105], however, these efforts have been almost
exclusively focused on the linear- or real-time case (to the detriment of the sublinear- or
constant-time one).

At this junction one might object by arguing that sublinear-time computations have been
studied in the context of picture languages (see, e.g., [28]) since the cellular automata there
operate in time that is sublinear in the number of input symbols. However, our perspective
is that these do not qualify as a “true” sublinear-time model since there there is enough
time for any cell to propagate a message to the entire automaton (something which is
crucially not possible in the cellular automata models we consider). In addition, the term

1 In this regard cellular automata are very similar to the so-called port-numbering model [57]. The difference
is that, in cellular automata, the underlying communication graph is always a path and the computational
units are equipped with a sense of direction (whereas in the port-numbering model the ports of each unit
may be labeled arbitrarily).

4

1.2. Models Studied

“sublinear” evaporates if we count time in function of the side length of the input’s support.
Indeed, the literature seems to agree with us in referring to these automata as linear- or
real-time automata [9, 54–56, 96]. An exception might be the characterization of the picture
language class REC𝑑 , which bases on constant-time nondeterministic cellular automata
[56]. Nonetheless, this is but a simple generalization of a result from the aforementioned
work by Sommerhalder and Westrhenen [105].

ACAs. In Chapter 2, we investigate our first model of CAs as language acceptors. The
model considered is that of ACA, which is a CA with the acceptance condition of simulta-
neous unanimity; that is, the automaton accepts if and only if all cells are simultaneously
accepting. As discussed in Chapter 2, this kind of acceptance condition is necessary for
non-trivial sublinear-time computation.

The ACA model is by all means novel; Rosenfeld already mentions it in his book from 1979,
for instance [98]. In the setting of sublinear-time computation, ACAs have been previously
studied in [60, 66, 105]. (The works [66, 105] are in fact restricted to the constant-time case.)
Besides the ACA acceptance condition of unanimity being very natural, it incidentally
coincides with the usual one used for similar problems in the sister field of distributed
computing.2

In Chapter 2 we also propose a decider version of ACA that we call DACA. The acceptance
condition of DACA is the same as that of ACA, whereas the condition for rejection is
the analogue of the acceptance one: The automaton rejects if and only if all cells are
simultaneously rejecting. To the best of our knowledge, ACA and DACA are the first
example in CA literature for (natural) models in which the acceptor and decider variants
differ in their capabilities.

Shrinking CAs. In Chapter 3 our attention is turned to another CA-based model capable
of sublinear-time computation. A shrinking CA (SCA) is a CA variant in which cells may
spontaneously delete themselves. This is modeled by a distinguished state that may be
assumed as a function of the local configuration. In the underlying path topology, the
corresponding operation is node deletions. In order to maintain connectedness, at each
step we reconfigure the remaining nodes so as to connect them with the nearest neighbors
left standing.

The SCA model was originally proposed by Rosenfeld and Wu [99]. For a recent study
involving SCA as language acceptors, we refer to the paper of Kutrib, Malcher, and
Wendlandt [71]. A generalization of SCAs was also considered by the present author in
his bachelor’s thesis [79]. (See also the corresponding conference paper [85].)

2 For concrete examples, we refer the reader to the topics of distributed decision (see [35] for an excellent
survey) or distributed proof systems (see, e.g., [36, 40, 68, 87, 88] for recent work in the area).

5

1. Introduction

Probabilistic ACAs. As most deterministic machine models, it is natural to consider a
probabilistic version of the ACA model. In Chapter 4 we analyze such a model which
we accordingly refer to as probabilistic ACA (PACA). The model is highly inspired on the
definition of probabilistic Turing machines (see, e.g., [5]) and also resembles a model that
was previously studied by Arrighi, Schabanel, and Theyssier [7].

Unlike its deterministic counterpart, a PACA possesses two local transition functions. Each
cell is given access to a fair coin, which it tosses at each time step. The outcome of this
coin toss then determines which local transition function is applied by the cell. Hence it is
admissible to view PACAs as a form of non-uniform CA model (in the classical sense of
non-uniformity), but where the non-uniformity is dynamic (i.e., it may change from one
step to the other) and is controlled by an external randomness source.

An alternative natural form of obtaining a probabilistic ACA model would be lifting the
cells from DFAs to probabilistic finite machines (e.g., based on [97]). One reason we
opt for not doing so is that models with an explicit binary randomness source are more
amenable to a complexity-theoretical analysis. (Indeed, this choice paves the way for the
derandomization results of Chapter 5.) Another reason for our choice is that an explicit
binary random input is a more accurate representation of randomness sources in modern
computers (rather than the aforementioned version based on probabilistic finite machines,
which are allowed to follow arbitrary distributions).

As usual for probabilistic models, one may consider both one- and two-sided error ver-
sions of the model (in the same spirit as the classical complexity classes RP and BPP,
respectively).

Sandpile automata. Chapter 6 covers a relatively distinct model in comparison to the
previous ones. Namely we study a question concerning sandpile automata, which are
cellular automata roughly modeling the behavior of piles of grains of sand in space. The
cells of the automaton have states that count the number of grain of cells present in them;
if the number exceeds a certain threshold, then the pile collapses and the excess sand
is transferred to its neighbors. More specifically, in Chapter 6 we consider the recently
proposed model of fungal sandpile automata, which is a variant of the model in which
sand transfer is only possible along the horizontal or vertical axis, alternatingly.

The model of sandpile automata is due to Bak, Tang, and Wiesenfeld [10] and has been
intensively studied from various perspectives. For the literature on sandpile automata in
relation to the problems we study, we refer to the survey by Formenti and Perrot [39].
Fungal sandpile automata were recently introduced by Goles et al. [53]. The model is
related to the (one-dimensional) model of fungal automata due to the same authors [1]. As
the name suggests, these models are partially motivated by their likeliness in behavior
to the biological processes inherent to certain species of fungi. (Again, we refer the
reader to the previously cited works [1, 53] for a detailed discussion.) Regardless of these
motivations, the model is interesting to consider as a stepping stone towards settling open
questions regarding the predictability of (standard) two-dimensional sandpile automata.

6

1.2. Models Studied

1.2.2. Streaming Algorithms

In addition to the aforementioned models of cellular automata, we will also address
streaming algorithms. These are sequential algorithms that operate on an input stream
which is read one symbol at a time and in order. Streaming algorithms are usually subject
to space limitations (using much less space than the length of their input stream). One can
also consider streaming algorithms that perform multiple passes over their input; in this
work we focus on single-pass algorithms.

Streaming algorithms have been the subject of intense study in the past few years, in
particular due to their applicability to the processing of massive streams of data. Giving
an overview of the field is beyond the scope of this dissertation. For an introduction to the
particular case of graph algorithms, one might consult [74].

Sliding-window algorithms. A particular restriction of streaming algorithms that we
consider in more detail are sliding-window algorithms. In the literature, the term usually
refers to a model in which a contiguous window of fixed size 𝑡 is passed over the data
stream. The current operation or output of the algorithm depends only on the contents of
its window; any preceding symbols are perceived as “outdated” and discarded. Usually the
goal is to solve the task at hand while using an optimal amount of space, ideally much
smaller than the window size 𝑡 .

Sliding-window algorithms model computational processes where the data stream is
perceived as “very large” (as in streaming algorithms), but only the more recent data is
considered relevant or of use. The model as presented above is due to Datar et al. [29]. See
also the survey by Braverman [16] for the main line of work in the area.

The kind of sliding-window algorithms that we shall consider in Chapter 5 moderately
differs from the standard model just described. In particular, we shall consider a proba-
bilistic variant of the model that is equipped with access to a binary randomness source.
The window is then passed not over the algorithm’s data stream but over its randomness
source. sliding-window algorithms. This gives a fundamentally different model than other
work on probabilistic (See Chapter 5 for a more in-depth discussion.)

Regarding the relevance of sliding-window algorithms to the main object of study of this
dissertation (i.e., sublinear-time cellular automata), it certainly suffices to mention the very
recent paper by Pacut et al. [94]. In their work (which, to the best of our knowledge, is the
first to do so), Pacut et al. point out a connection between sliding-window algorithms (in
[94] called “time-local” algorithms) and one-dimensional local distributed models such
as cellular automata. We exploit this connection to obtain derandomization results as
discussed in the next section.

7

1. Introduction

1.3. Main Contributions

This section provides a broad overview of the main results presented in Part II. We also
briefly discuss the consequences of each result and how it contributes to the preexisting
state of the art. Most results are presented only informally or in a condensed manner. For
greater details and a more formal treatment, we refer the reader to the respective chapters
in Part II.

1.3.1. Sublinear-Time Cellular Automata

The results on sublinear-time cellular automata form the core contribution of this work.
We present the results for the deterministic and probabilistic variants separately.

In the following, 𝑛 always stands for the input length.

1.3.1.1. Deterministic Automata

ACAs. Let ACA[𝑡] denote the class of languages that can be accepted by an ACA in at
most 𝑡 steps. As mentioned previously, to the best of the present author’s knowledge
there are only a few works that predate this dissertation in investigating the landscape
of the sublinear-time ACA classes. Sommerhalder and Westrhenen [105] proved a char-
acterization of ACA[1] based on subregular languages. (Kim and McCloskey [66] also
proved a similar characterization but for ACAs with a different acceptance condition.)
Meanwhile, Ibarra, Palis, and Kim [60] showed that every language in ACA[𝑜 (log𝑛)] is
regular and that there is a non-regular language in ACA[log𝑛]. Nothing was known for
the classes between 𝑂 (log𝑛) and 𝑂 (𝑛) time other than trivial inclusion relations. (Note
ACA[𝑛] coincides with the class of languages that can be accepted by cellular automata in
𝑂 (𝑛) time under the standard acceptance condition.)

The results in Chapter 2 provide a much finer picture of the sublinear-time ACA classes.
A first result in this sense is a time hierarchy for the classes in-between ACA[log𝑛] and
ACA[𝑛]:

Theorem 2.13 (informal). Let 𝑡 be a “nice” function that is asymptotically in-between
Ω(log𝑛) and 𝑂 (𝑛). Then, for any 𝑡 ′ = 𝑜 (𝑡), ACA[𝑡 ′] ⊊ ACA[𝑡] holds.

“Nice” functions include, for instance, 𝑡 (𝑛) = (log𝑛)𝑎 and 𝑡 (𝑛) = 𝑛1/𝑎 for any reasonable
(e.g., rational) choice of 𝑎 > 1.

As a result of Theorem 2.13, starting from ACA[log𝑛] (if the distance between levels is
“large enough”) we get an ever-increasing hierarchy of language classes all the way up
to the linear-time class ACA[𝑛]. A question that arises is, of course, what kind of new
languages are obtained by doing so. (The proof of Theorem 2.13 already gives concrete
examples, but we are asking this from a holistic perspective.) In particular, it is natural to

8

1.3. Main Contributions

ask whether any of these languages are regular. It turns out that, if any are indeed regular,
then we can narrow them down to a very specific superclass of ACA[1] = SLT∪:

Theorem 2.15. Let LT ⊊ REG be the Boolean closure of the constant-time class SLT∪, and
let REG denote the regular languages. Then ACA[𝑜 (𝑛)] ∩ REG ⊊ LT.

(Note we actually even show the inclusion is strict.) This leaves only a narrow “gap” for
the existence of a language 𝐿 ∈ REG that is decidable by an ACA in sublinear but not
constant time (if any does indeed exist).

In the work of Ibarra, Palis, and Kim [60] it was also shown that ACA[𝑜 (log𝑛)] ⊆ REG.
Together with their example for a non-regular language in ACA[log𝑛], this suggested that
there was some fundamental distinction between the classes below and above logarithmic
time. We settle this by proving that ACA[𝑜 (log𝑛)] fully collapses to constant time:

Theorem 2.16. ACA[𝑜 (log𝑛)] = ACA[1].

Other results on the sublinear-time ACA classes of note are strict inclusions for ACA[𝑜 (𝑛)]
in the parallel computation classes SC and AC. In summary, this all gives a much more
fine-grained perspective of the sublinear-time ACA hierarchy.

Yet another topic covered in Chapter 2 are decider ACAs (DACA), which we propose as a
decider counterpart to ACA (i.e., as machines that must not only recognize words in their
target language but also timely reject words that are not). For DACA we prove results
similar to the ones above. Let DACA[𝑡] denote the class of languages decidable by a DACA
in time at most𝑂 (𝑡). The first main result on DACAs is the following characterization:

Theorem 2.25. DACA[1] = LT.

Recall that LT is defined as the Boolean closure of ACA[1] = SLT∪; this means that, when
it comes to constant-time complexity, DACAs are (rather counterintuitively) strictly more
powerful than ACAs (despite apparently having to function under stronger constraints).
Our second result is the following, which is in the same spirit as the aforementioned result
of Ibarra, Palis, and Kim [60]:

Theorem 2.26. DACA[𝑜 (
√
𝑛)] = DACA[1].

The reader should compare this with Theorem 2.16.

9

1. Introduction

Shrinking CAs. Our results on SCAs are at the intersection of the fields of cellular autom-
ata, complexity theory, and streaming algorithms. The main contributions are two-fold:

1. Strengthening previous work by McKay, Murray, and Williams [75] on streaming
algorithms, we establish that showing even slightly nontrivial lower bounds for SCAs
has surprising consequences for outstanding problems in complexity theory.

2. We unconditionally prove that SCAs are a weaker model than streaming algorithms
(thus justifying the use of the term “strengthening” in the previous item).

We further elaborate on these two points.

Starting with the work of Oliveira and Santhanam [93], quite a few recent works in
complexity theory have presented results of the following form: Say some very low (albeit
non-trivial) lower bound holds for a computational modelM; then a very surprising
separation of complexity classes (e.g., P ≠ NP) follows. In the aforementioned work by
Oliveira and Santhanam, the authors identified a few results of this type and also coined
the term hardness magnification for them. As for subsequent works in this same vein,
[20–24, 41, 92] may be named.

A problem that prominently features among the results on hardness magnification (and
that has also received quite a deal of attention in other contexts; see, e.g., the recent survey
by Allender [2]) is the minimum circuit size problemMCSP. Having a fixed a parameter
𝑠 (𝑛), the question is, given the truth table of a Boolean function 𝑓 , whether there is a
Boolean circuit of size at most 𝑠 (𝑛) that computes 𝑓 . (We refer to Chapter 3 for the
precise definition.) Recall that the update time of a streaming algorithm is the maximum
amount of time it spends computing between reading one symbol and the next. In the
aforementioned work by McKay, Murray, and Williams, the authors show the following
hardness magnification result forMCSP in the context of streaming algorithms:

Theorem 3.2 ([75], informal). If there is no poly(𝑠 (𝑛))-space streaming algorithm with
poly(𝑠 (𝑛)) update time for (the search version of)MCSP, then P ≠ NP.

We strengthen this result by proving that we can essentially replace “streaming algorithms”
with “SCAs” in its statement. For a function 𝑡 , let SCA[𝑡] denote the class of languages
that can be accepted by an SCA in 𝑂 (𝑡) time.

Theorem 3.3 (informal). If (an adequately presented version of)MCSP ∉ SCA[poly(𝑠 (𝑛))],
then P ≠ NP.

The need for an adequate presentation ofMCSP to SCAs is due to limitations in the model
that originate from the underlying model of cellular automata. In particular, sublinear-
time SCAs are insensitive to the length of long unary substrings in their input, thus
ruling out the existence of efficient SCAs for simple problems (e.g., parity) if the input
word is presented as-is. Nevertheless, as we argue in Chapter 3, these limitations can be
circumvented by presenting the input in a block word format, which is a locally verifiable
encoding of the original input. In particular, (as alluded to in Section 1.2.1) this allows the

10

1.3. Main Contributions

cells to be locally aware of the input length and their absolute position, which is otherwise
not possible in general.

The second point above (i.e., showing that Theorem 3.3 is indeed a strengthening of
Theorem 3.2) is proven by two results. In the first one, we show how a streaming algorithm
can efficiently (in both time and space) simulate an SCA. Recall that the reporting time of a
streaming algorithm is the time the algorithm spends computing between reading the last
symbol in its stream and finally presenting its output.

Theorem 3.4 (informal). For every constructible function 𝑡 and any 𝐿 ∈ SCA[𝑡 (𝑛)],
there is an 𝑂 (𝑡 (𝑛))-space streaming algorithm for 𝐿 with 𝑂 (𝑡 (𝑛) log 𝑡 (𝑛)) update and
𝑂 (𝑡 (𝑛)2 log 𝑡 (𝑛)) reporting time.

Conversely, there are languages which can be decided efficiently by a streaming algorithm
(even if they are presented in a block word format) but which require nearly linear time
on an SCA.

Theorem 3.5 (informal). There is a language 𝐿1 for which (an adequately presented version
of) 𝐿1 ∉ SCA[𝑜 (𝑛/log𝑛)] can be accepted by an 𝑂 (log𝑛)-space streaming algorithm with
�̃� (log𝑛) update time.

1.3.1.2. Probabilistic Automata

In Chapter 4 we show a number of results on sublinear-time PACAs. As we discuss further
below, special attention is given to the constant-time case, which is already very rich and
allows us to draw some interesting parallels to the deterministic case.

We first compare one- and two-sided error PACAs with respect to their computational
power and effectively separate the two of them all the way up to 𝑜 (

√
𝑛) time. Twomachines

are said to be equivalent if they accept the same language.

Theorem 4.1. The following hold:

1. If 𝐶 is a one-sided error PACA with time complexity 𝑇 , then there is an equivalent
two-sided error PACA 𝐶′ with time complexity 𝑂 (𝑇).

2. There is a language 𝐿 recognizable by constant-time two-sided error PACA but not by
any 𝑜 (

√
𝑛)-time one-sided error PACA.

It is relevant to note the first item is not a direct consequence of the definitions; rather, we
must first show how to implement error reduction by a constant factor, which requires a
non-trivial construction.

We also show consequences of derandomizing PACAs with respect to time complexity for
open problems in complexity theory. The results obtained are as the following:

11

1. Introduction

Theorem 4.2 (excerpt). If there is 𝜀 > 0 such that every 𝑛𝜀-time (one- or two-sided error)
PACA can be converted into an equivalent 𝑛𝑂 (1)-time deterministic CA, then P = RP.

The main relevance we see in this result is in directing further efforts on derandomizing
probabilistic cellular automata. Since the case of derandomization for RP is still wide
open, this damps hopes for obtaining time-efficient derandomization of PACAs in the near
future. Nevertheless, it does not rule out space-efficient derandomization, which is indeed
a point we explore later in Chapter 5 (see also Section 1.3.2 below). This does not come as
a surprise since along the years there has been much more significant progress towards
derandomizing RL than RP.

The most prominent results obtained in Chapter 4 are on the constant-time case. For
one-sided error PACAs, we prove a full derandomization.

Theorem 4.3. For any constant-time one-sided error PACA𝐶 , there is an equivalent constant-
time deterministic ACA.

In turn, we significantly narrow down the set of languages that can be accepted by two-
sided error PACAs in constant time. To this end we first identify a natural class LLT of
subregular languages we call the locally linearly testable languages. The name is due
to the central defining condition for these classes, which characterizes words based on
whether the weighted sum of the number of infixes in a word exceeds some predefined
(constant) threshold. Let LLT∪∩ denote the closure over LLT under union and intersection,
and let LTT denote the class of locally threshold testable languages, which can be shown to
coincide with the Boolean closure of LLT (i.e., its closure under union, intersection, and
complement).

Theorem 4.4. The class of languages that can be accepted by a constant-time two-sided
error PACA contains LLT∪∩ and is strictly contained in LTT.

1.3.2. Sliding-Window Algorithms

A pseudorandom generator (PRG) is a function 𝐺 : {0, 1}𝑑 → {0, 1}𝑛 that “looks random”
to a class of distinguishers. Ideally, 𝑑 ≪ 𝑛 and 𝐺 is efficiently computable (in our context,
using a linear amount of space). One central application of PRGs is in replacing the random
input of a machine modelM, in which case we say 𝐺 foolsM. Concretely, suppose that
M receives a regular input 𝑥 and a random input 𝑟 uniformly chosen from {0, 1}𝑛 . Then
the PRG 𝐺 guarantees that, if we choose 𝑠 uniformly at random from {0, 1}𝑑 , then the
probability ofM accepting on the same input 𝑥 but using 𝑟 = 𝐺 (𝑠) as random input instead
is approximately the same as that when we pick 𝑟 uniformly at random from {0, 1}𝑛 .

Suppose now that an execution ofM is efficiently computable (in the same sense as 𝐺 is).
Then we can obtain a derandomization result forM by looping over every possible seed
of 𝐺 and tallying up the results. This is because using 𝐺 to generate random inputs for

12

1.3. Main Contributions

M gives us an approximation for the probability ofM accepting in the general case (i.e.,
where we choose the random input ofM completely at random).

Our main contribution in Chapter 5 is the construction of a PRG specifically designed
for fooling sliding-window algorithms. As an example, for sliding-window algorithms
where the window size is polynomial in its space complexity 𝑠 , our PRG has a seed length
of 𝑂 (log 𝑠), which is essentially optimal. We refer the reader to Chapter 5 for a formal
presentation of the results.

In Chapter 5 we also construct PRGs that fool sliding-window satisfying an additional
property we dub 𝛿-criticality. In a nutshell, an algorithm 𝐴 satisfies this property if, for
every random input 𝑟 , every single section of 𝑟 either has a significant impact on the
decision of 𝐴 (by a probability gap of at least 𝛿) or no impact at all (i.e., the section is non-
critical). This investigation is mostly motivated by its application to the derandomization
of PACAs, which we discuss next.

Application to PACAs. The greater relevance of the results from Chapter 5 for the broader
scope of this dissertation are in that they yield space-efficient derandomizations of the
PACA model. This is a direct consequence of the following result:

Theorem 5.25. Let𝐶 be a (one- or two-sided error) PACA with state set𝑄 and𝑇 ∈ N0. Then
there is a 𝑂 (𝑇 log|𝑄 |)-space randomized non-uniform sliding-window algorithm 𝑆 = 𝑆𝑇 of
window size 𝑂 (𝑇 2) such that

Pr[𝑆 (𝑥) = 1] = Pr[𝐶 accepts 𝑥 in time step 𝑇] .

The derandomization obtained in the case of one-sided error PACAs is particularly sur-
prising.

Theorem 5.9 (informal). For any 𝑇 -time one-sided error PACA 𝐶 , there is a deterministic
algorithm for 𝐿(𝐶) with space complexity 𝑂 (𝑇 + (log𝑛)2).

For comparison, the state of the art for derandomizing space-bounded algorithms in general
falls short of achieving even quasilinear space (whereas here we obtain linear space when
𝑇 = Ω(log𝑛)2). We also remark that Theorem 5.9 can be extended to the case where the
acceptance probability of 𝐶 is inversely polynomial in 𝑇 (and not simply constant). As
always, we refer to Chapter 5 for a more in-depth discussion.

The direct application to two-sided error PACAs appears to be more limited; nevertheless,
it does merit mention regarding the case of 𝛿-critical PACAs. A PACA 𝐶 is said to be
𝛿-critical if, for any given input, if a cell of 𝐶 is such that it does not always accept, then
the probability that it does is at most 1 − 𝛿 .

Theorem 5.11 (informal). Let 𝛿 > 0. For any𝑇 -time 𝛿-critical two-sided error PACA𝐶 , there
is a deterministic algorithm for 𝐿(𝐶) with space complexity �̃� (𝑇 · (log(1/𝛿))2) +𝑂 (log𝑛).

13

1. Introduction

The result of Theorem 5.11 can be shown to hold as well when the gap between the
probabilities for 𝐶 accepting or rejecting is only exponentially small in 𝑇 (and not just
constant).

1.3.3. Fungal Sandpile Automata

Obviously the model of sandpile automata (or its fungal automata variant) does not qualify
as a sublinear-time model. Rather our object of study in Chapter 6 are prediction problems
and—more specifically—whether these are solvable in sublinear time or not.

The standard prediction problem Π in these types of automata is the following: Given a
cell index 𝑖 , a number of time steps 𝑡 , and a starting configuration 𝑐 , determine whether
the cell corresponding to 𝑖 is in a non-zero state after 𝑡 steps of the automaton. In standard
sandpile automata, it is known that Π is solvable in sublinear time when the underlying
sandpile automaton is one-dimensional [78], whereas it is P-complete (and hence unlikely
to be solvable in sublinear time) if the automaton is three-dimensional [89]. In-between
the two lies the two-dimensional case, which has been open for quite some time.

Goles et al. [53] recently showed that Π is P-complete in the case of two-dimensional
fungal sandpile automata, but only for a restricted variant of the model. In particular, the
result of Goles et al. only applies to fungal sandpile automata that operate following a
specific sequence of horizontal and vertical transitions. In Chapter 6, we greatly improve
on this result by showing P-completeness also in the case where horizontal and vertical
transitions are strictly alternating, which is the most general case possible.

More than just being a generalization of the aforementioned result of Goles et al., we
argue our result is a major contribution because of the techniques developed in the proof.
The overall strategy we follow, of course, is the same as that of previous works, namely
by showing how to realize arbitrary Boolean circuits in the underlying model. (This is
sufficient because evaluating a circuit for a given set of inputs is a famous P-complete
problem.) Of prime importance, however, is how this realization of circuits is carried
out. We exploit the characteristics of the model in an ingenious way, completely avoiding
barriers that were previously shown to hold for the two-dimensional case [43]. These new
ideas could prove themselves to be of high relevance for attacking the open case of general
two-dimensional sandpile automata. We refer the reader to Chapter 6 for details.

1.4. Common Themes and Techniques

In this section we discuss a few overarching themes and techniques that are central in
obtaining the results presented in Sections 1.3.1 and 1.3.2. (We stress that this is not an
attempt at giving detailed proof ideas for the results, which is rather the subject of the
respective chapters.) Almost all of these are used or present in the context of results that
belong to two or more chapters of this dissertation. The single exception is the shattering
technique (Section 1.4.5), which only appears in Chapter 5 but merits being addressed

14

1.4. Common Themes and Techniques

here since it appears to be a very useful tool for the further study of sliding-window
algorithms.

1.4.1. Locality and Anonymity

As already mentioned in Section 1.2.1, the cells of a CA can only communicate with those
in their vicinity (locality) and are also initially unaware of their position or identity in
the automaton (anonymity).3 These limitations already pose a certain challenge in the
linear-time or real-time setting, but generally it is possible to overcome them by using a
set of standard techniques. For instance, to cope with anonymity, one can use signals to
pinpoint the location of a particular cell (e.g., to find the “middle” cell in the automaton)
or also resort to more elaborate counter constructions (see, e.g., [106, 114]).

In the sublinear-time case the limitations turns out to be much more severe. Although the
aforementioned methods remain valid for a variety of purposes, they fall flat in overcoming
locality and anonymity. For instance, since in 𝑡 steps a cell can only receive signals that
were started from 𝑡 cells away, a sublinear-time bound immediately prevents every cell
from “seeing” more than just a very small portion of the input.4 Meanwhile, the aspect
of anonymity implies this restricted view must be a local one and (except for the border
cells and those in their vicinity) completely detached from the cell’s relative position in
the automaton.

These observations are present in previous work on sublinear-time ACAs [60, 66, 105] in
one form or the other. Indeed, locality is the driving aspect in the characterization from
[105]; in Chapter 2 we extend the relevant result there from the case of constant to that of
sublinear time (Lemmas 2.9 and 2.11). Meanwhile, in the work by Ibarra, Palis, and Kim
[60] we find a partial solution to the issue of anonymity, which we discuss afterwards in
Section 1.4.2.

It is interesting to note that shrinking CAs are still subject to the locality limitation to
a considerable extent. Admittedly, unlike the other models from Section 1.2.1, one can
overcome the distance between two cells by deleting everything in-between them. The
price to pay, however, is that any information stored between the two cells is irrecoverably
lost. In a sense, this is similar to the space restrictions that a streaming algorithm is
subject to (i.e., having to choose what information to store and what to throw away).
As Theorem 3.5 shows, in shrinking cellular automata this restriction has more extreme
consequences.

The issue of locality is also present in sliding-window algorithms as a consequence of
the algorithm’s window being but a local view of the input. From this perspective one

3 An exception to the anonymity restriction are the two border cells and the ones in their vicinity. This
explains the occasional need to handle prefixes and suffixes of a word separately (in the results of
Chapters 2 and 4, for instance).

4 The corresponding phenomenon in physics is called causality and is also tightly connected to the workings
of cellular automata in other contexts; see, e.g., [6, 34].

15

1. Introduction

can say the algorithm is local with respect to the current contents of the window. As for
anonymity, there does not appear to be any equivalent in sliding-window algorithms. In
fact, there should not be one at all since there is nothing that prevents the algorithm from
maintaining a counter that indicates its current position in the input stream.

1.4.2. Locally Verifiable Padding

In [60], Ibarra, Palis, and Kim show the existence of a non-regular language 𝐿 that can be
accepted by an ACA in 𝑂 (log𝑛) time. The words of 𝐿 are of the following form:

𝑤0#𝑤1#𝑤2# · · · #𝑤2𝑘−1

where 𝑘 is a non-negative integer and𝑤𝑖 is the binary representation of 𝑖 of length 𝑘 .5 Let
us refer to each 𝑤𝑖 as a block and 𝑘 as the block length. The words of 𝐿 exhibit two key
properties:

1. The structure of a word can be verified in parallel in a number of steps that is linear
in the block length. This is because each block only has to check if the contents of
its two neighbors are consistent with its own; that is, a block containing 𝑤𝑖 must
only verify that the preceding block contains 𝑤𝑖−1 and the subsequent one 𝑤𝑖+1.
Additionally, the leftmost (resp., rightmost) block must verify that it contains 𝑤0
(resp.,𝑤2𝑘−1). A block is aware that it is the left- or rightmost block since it “sees”
the word’s borders.

2. The word structure forces a specific number of blocks. Namely, for 𝐿 as defined above,
the number of blocks must be a power of two.

With these two observations it is straightforward to see that this word format can be used
to implement a locally verifiable form of padding. Among others, this is used to obtain
several results in Chapter 2 and it also forms the basis for the adapted presentation of
inputs developed in Chapter 3. Note the format admits generalizations; for instance:

1. Replacing 2𝑘 − 1 with 𝑔(𝑘) for any function 𝑔 that is efficiently computable (for some
adequate notion thereof). This allows us to control the word length as we desire:
The resulting words must be Θ(𝑔(𝑘) |𝑤𝑔(𝑘) |) long (parameterized on 𝑘).

2. Padding each block with any desirable (but globally fixed) number of (properly
padded) trailing zeroes 𝑏 (𝑘) for any efficiently computable function 𝑏. This forces
each block to be Θ(𝑏 (𝑘)) long.

These generalizations are used to prove, among others, Theorems 2.13 and 4.2.

5 To be more accurate, Ibarra, Palis, and Kim actually let the𝑤𝑖 be minimal binary representations (and also
sort the𝑤𝑖 in reverse order); however, using fixed-length representations instead has several advantages.
Besides them being more simple to work with (e.g., it is simpler to state the resulting word’s length), they
also give us a local encoding of the parameter 𝑘 , which is very useful to have in some cases (e.g., padding,
as discussed later in the text).

16

1.4. Common Themes and Techniques

1.4.3. The Inclusion-Exclusion Principle

The inclusion-exclusion principle is a basic identity in combinatorics. For a positive integer
𝑛, let [𝑛] denote the set of the first 𝑛 positive integers. The principle states that, given any
events 𝐸1, . . . , 𝐸𝑛 , we can rewrite the probability that any of the 𝐸𝑖 occurs in terms of the
probabilities of the 𝐸𝑖 occurring simultaneously:6

Pr
[︄
𝑛⋃︂
𝑖=1

𝐸𝑖

]︄
=

𝑛∑︂
𝑗=1

Pr[𝐸 𝑗] −
∑︂
𝐽⊆[𝑛]
|𝐽 |=2

Pr
[︄⋂︂
𝑖∈𝐽

𝐸𝑖

]︄
+ · · · + (−1)𝑛+1 Pr

[︄
𝑛⋂︂
𝑖=1

𝐸𝑖

]︄
.

Suppose we wish to analyze the probability that a 𝑇 -time PACA 𝐶 accepts some fixed
input 𝑥 . Recall that 𝐶 accepts if and only if it reaches a configuration in at most 𝑇 steps in
which every cell is accepting. This means that we may not know in which step the PACA
accepts (as a function of its input 𝑥 and randomness 𝑟), and indeed it might even accept in
multiple time steps (prior to its 𝑇 -th step).7

To deal with this uncertainty, one first measure is to simply fix a time step 𝑡 < 𝑇 and
exclusively consider whether 𝐶 accepts in time step 𝑡 or not. The parameter 𝑡 can be
set non-uniformly, which leads to a clean construction. Now identify 𝐸𝑡 with the event
that 𝐶 accepts 𝑥 in step 𝑡 . Then we immediately notice that the principle allows us to
determine the probability that 𝐶 accepts 𝑥 (in the sense of the PACA definition) in terms
of the probabilities of the 𝐸𝑡 occurring simultaneously. Moreover, it turns out that the
latter quantities are often easier to work with. This observation is a key ingredient in the
proofs of Theorems 4.4 and 5.11.

One downside of the approach above is that the number of terms in the right-hand
side of the equality grows exponentially in 𝑇 . This leads to problems if our goal is to
algorithmically determine (or estimate) the probability of𝐶 accepting. Therefore (although
the same approach would still be valid) in Theorem 5.10 we use an alternative, simpler
analysis with the added benefit that it leads to an improved result.

1.4.4. Simulation Techniques

As often the case in theoretical computer science, we develop simulation techniques for
certain machines to simulate others in the same or in less powerful classes. Here we
present two such constructions that are used in this dissertation in more than a single
context.

6 The principle is more commonly stated in terms of set cardinality. Here we present the same identity in
terms of probabilities to better relate it to the subsequent discussion.

7 It is of interest to note that, when the PACA does accept in multiple time steps, say in steps 𝑡1 and 𝑡2, we
cannot even be sure whether the events of 𝐶 accepting in steps 𝑡1 and 𝑡2 (respectively) are correlated or
not. For instance, it may be that the cells of 𝐶 accept in 𝑡2 if and only if they accepted in 𝑡1, but it is also
possible that their behavior in 𝑡2 depends exclusively on coin tosses after 𝑡1.

17

1. Introduction

1.4.4.1. Simulating Multiple Automata in Parallel

One very standard form of simulation in CA theory is that of a CA simulating multiple
copies of other CAs. Here we will address the case in which we wish to simulate a constant
number of other CAs.

We start from the underlying construction, which is certainly not new and is best attributed
to folklore. Let the CAs 𝐶1, . . . ,𝐶𝑛 be given (for some constant 𝑛). The task is to construct
a CA 𝑆 that simulates the 𝐶𝑖 in parallel in the sense that, for each 𝑖 , the configurations
that 𝐶𝑖 assumes over time can be observed in the time-state diagram of 𝑆 . (We keep the
discussion considerably abstract for now.) To do so, we let the state set of 𝑆 contain 𝑛 many
components, where we associate the 𝑖-th component with 𝐶𝑖 ; indeed, the value of the 𝑖-th
component is equal to the state that the respective cell would have in 𝐶𝑖 . To perform the
actual simulation, we then advance each𝐶𝑖 according to some global update scheme (using
the values of the 𝑖-th components in the neighborhood of each cell to compute the cell’s
next value). We note that, in our constructions, we only need to update one 𝐶𝑖 at a time,
but it is also natural to consider other schemes (e.g., updating all the𝐶𝑖 simultaneously).

The appropriate choice of an update scheme depends on the context in which the simulation
technique is used. In the deterministic setting of ACA, we use a simple round-robin scheme
to show closure under union in Proposition 2.7 and Theorem 2.25. The same approach
applies to PACA in Proposition 4.21. More interestingly, the same strategy extends to error
reduction on one-sided error PACA (Proposition 4.12).

To obtain closure under intersection, a more involved update scheme is needed. In partic-
ular, the scheme involves rewinding copies so as to explore every possible combination
of time steps. For example, for 𝑛 = 2, we need 𝑆 to visit step 𝑡1 of 𝐶1 and step 𝑡2 of 𝐶2
simultaneously at least once for every combination of values of 𝑡1 and 𝑡2 (up to some
constant). This is the approach we take in Proposition 4.21. It also applies to the setting of
ACA, of course, but said result was already shown in [105].

An even more complex update scheme is needed for error reduction for two-sided error
PACA (Proposition 4.13). In that case we need to consider not only every possible com-
bination (as in the aforementioned case of closure under union) but also every possible
majority over the 𝐶𝑖 . We refer to the respective discussion in Chapter 4 for the details.

1.4.4.2. Simulation by Streaming Algorithms

The second simulation we describe is the simulation of (variants of) CAs by streaming
algorithms.

For a moment, let us step back and suppose we are in the classical setting of CAs that
operate in an unbounded amount of time. The folklore strategy for simulating CAs by
Turing machines in this setting is to have the Turing machine maintain on its tape a copy
of the configuration of the CA. For each step of the CA, the Turing machine head visits

18

1.4. Common Themes and Techniques

one cell at a time and updates its state. Once it has updated every cell, it returns to the
first one and the process begins anew.

This strategy is tailored to the case where the time-space diagram is arbitrarily deep but not
very wide. In sublinear-time CAs, however, we have the exact opposite: The time-space
diagram is very wide but also very shallow. This suggests there might be a more efficient
simulation by Turing machines, which is indeed the case.

In the classical simulation, we explore the time-space diagram row by row, that is, horizon-
tally. When the dimensions are reversed, however, it should make more sense to explore it
vertically—if we could. The problem is that, unlike the case of rows, we cannot compute a
column of the time-space diagram from its previous one. Nevertheless, one can compute a
diagonal from the previous one, which is indeed the approach we follow.

The efficiency of the construction comes from the fact that the shallowness of the time-
space diagram implies the diagonals we need to maintain are also not very long. In fact, to
simulate a 𝑇 -time CA (with the standard neighborhood), we need only maintain at most
two diagonals of size at most𝑇 . This means there is a connection between the efficiency in
time of the CA and the space required to simulate it. Such a connection is to be expected, of
course, as the literature that connects space-efficient to parallel machines is quite vast.

This kind of simulation is used in two contexts in this dissertation. In the first one, we use
it to show that streaming algorithms can simulate shrinking CAs efficiently (Theorem 3.4).
The additional challenge to overcome there is to show that the simulation is also compatible
with the setting of shrinking CAs, in which cells might vanish without any previous
notice. The second context is that of sliding-window algorithms in connection to PACAs
(Theorem 5.25) and which forms the core of our approach to show derandomization results
for PACAs (i.e., Theorems 5.9 and 5.11).

1.4.5. Shattering and Interleaving

The last techniques we discuss are shattering and interleaving. Unlike the others, which
apply to cellular automata, these are targeted at sliding-window algorithms. In particular,
they are one of the key ingredients in our construction of pseudorandom generators in
Chapter 5 (i.e., Theorems 5.5 and 5.7).

Recall the current state of a sliding-window algorithm 𝐴 depends exclusively on the
contents of its window of size 𝑡 . This means that, if we fix any substring 𝑦 of length 𝑡 in
the input to 𝐴, then necessarily the state of 𝐴 after reading 𝑦 is uniquely determined by 𝑦
alone.

Let us formalize this idea. Assume that 𝑥 = 𝑥1𝑦𝑥2 is an input to 𝐴 where |𝑦 | = 𝑡 , and let
𝐴(𝑧) denote the state of 𝐴 after having read input 𝑧. (For now, we assume the algorithm 𝐴

is deterministic.) Then the sliding-window property implies that𝐴(𝑥1𝑦) = 𝐴(𝑧𝑦) holds for
any string 𝑧. Since the state 𝐴(𝑥𝑦) is uniquely determined, we may shatter the algorithm
𝐴 into two pieces: one that processes 𝑥1𝑦 (i.e., working as 𝐴 on input 𝑥1𝑦) and another
that processes 𝑥2 (i.e., working as 𝐴 on input 𝑥2 from the initial state 𝐴(𝑥𝑦)).

19

1. Introduction

The above gives us shattering in the context of deterministic algorithms; however, the
interesting application is to randomized sliding-window algorithms. Consider thus the
case where 𝐴 is randomized and obtains its randomness from an auxiliary binary input
string 𝑟 . In addition, assume the input stream 𝑥 to 𝐴 is fixed.8 Then we apply the same
observation as above, fixing 𝑡 many bits in 𝑟 to shatter 𝐴 into two algorithms 𝐴1 and 𝐴2.
In particular, we may then analyze the acceptance probabilities of the two parts 𝐴1 and 𝐴2
independently from one another (as they are, indeed, two distinct algorithms, even if they
originate from the same algorithm 𝐴).

The point is that we may perform this operation not only in one position but all across 𝑟 .
Suppose that 𝐴 expects a random string 𝑟 of length 𝑛𝑡 . Then we fix every other substring
of 𝑡 bits by interleaving fixed and “free” strings as follows:

𝑟 = 𝑥1𝑦1𝑥2𝑦2 · · · 𝑥𝑛𝑦𝑛

where the 𝑦𝑖 are fixed and the 𝑥𝑖 are free in the sense that they originate from a binary
randomness source. By doing so, we have shattered 𝐴 into 𝑛 many algorithms 𝐴1, . . . , 𝐴𝑛 ,
each expecting a random string of size 𝑡 . Since the 𝐴𝑖 operate independently from one
another—and also using much less random bits than the algorithm 𝐴—, we may expect to
generate pseudorandom strings for them much more easily (than if we had tried to fool 𝐴
as a whole).

Having to fix half of the bits in 𝑟 may sound rather excessive; however, we stress this is
not an issue at all since we may generate 𝑥 = 𝑥1 · · · 𝑥𝑛 and 𝑦 = 𝑦1 · · ·𝑦𝑛 using independent
seeds. That is, we can first fix 𝑥 to an arbitrary string and, using the shattering argument,
replace 𝑦 with a pseudorandom string. Having done so, we then fix 𝑦 and replace 𝑥 with a
pseudorandom string (using the same shattering argument) that is generated independently
from 𝑦. The resulting 𝑟 is then completely pseudorandom. We refer the reader to Chapter 5
for the details.

1.5. Organization

Part II of this dissertation is subdivided into five chapters, each of which is taken verbatim
(up to minor changes in notation and references in order to improve cohesion) from a stand-
alone contribution to international conferences or journals. Chapters 2 and 3 are already
published work whereas the most recent ones, that is, Chapters 4 and 5 are currently
under peer review or, in the case of Chapter 6, are pending publication. If applicable, the
corresponding published or preprint versions are given at the beginning of the chapter.
Each chapter is self-contained and may be read independently of the others.

8 This is a very standard approach taken in derandomization. Having fixed the ordinary input, we will
produce a pseudorandom set of values 𝑅 such that, if we run 𝐴 with a random input 𝑟 uniformly chosen
from 𝑅, then the algorithm’s behavior is “approximately the same” as if 𝑟 is drawn at random from the
uniform distribution over all possible random inputs to 𝐴.

20

1.5. Organization

All chapters are the fruit of independent work by the author of this dissertation. The sole
exception is Chapter 6, which is co-authored with Thomas Worsch. The key aspects of the
construction there are all due to the present author.

In Section 1.3 we already described the contents of the subsequent chapters, which we
now repeat in a succinct manner for the reader’s convenience. The first three chapters are
directly concerned with the sublinear-time CA models previously mentioned: Chapter 2
addresses deterministic ACAs, Chapter 3 shrinking CAs (SCAs), and Chapter 4 probabilistic
ACAs (PACAs). Subsequently, in Chapter 5 we state and prove our results on sliding-
window algorithms as well as the low-space derandomization results for PACAs. Finally,
Chapter 6 covers the result on the prediction problem for fungal sandpile automata.

21

Part II.

Contents

2. Sublinear-Time Recognition and
Decision by One-Dimensional Cellular
Automata

Published versions: [81, 83]

Abstract

After an apparent hiatus of roughly 30 years, we revisit a seemingly neglected subject
in the theory of (one-dimensional) cellular automata: sublinear-time computation. The
model considered is that of ACAs, which are language acceptors whose acceptance
condition depends on the states of all cells in the automaton. We prove a time hierarchy
theorem for sublinear-time ACA classes, analyze their intersection with the regular
languages, and, finally, establish strict inclusions in the parallel computation classes
SC and (uniform) AC. As an addendum, we introduce and investigate the concept of
a decider ACA (DACA) as a candidate for a decider counterpart to (acceptor) ACAs.
We show the class of languages decidable in constant time by DACAs equals the
locally testable languages, and we also determine Ω(

√
𝑛) as the (tight) time complexity

threshold for DACAs up to which no advantage compared to constant time is possible.

2.1. Introduction

While there have been several works on linear- and real-time language recognition by
cellular automata over the years (see, e.g., [69, 111] for an overview), interest in the
sublinear-time case has been scanty at best. We can only speculate that this has been due
to a certain obstinacy concerning what is now the established acceptance condition for
cellular automata, namely that the first cell determines the automaton’s response, despite
alternatives being long known [98]. Under this condition, only a constant-size prefix can
ever influence the automaton’s decision, which effectively dooms sublinear time to be
but a trivial case just as it is for (classical) Turing machines, for example. Nevertheless,
at least in the realm of Turing machines, this shortcoming was readily circumvented by
adding a random access mechanism to the model, thus sparking rich theories on parallel
computation [26, 103], probabilistically checkable proofs [108], and property testing [37,
101].

In the case of cellular automata, the adaptation needed is an alternate (and by all means
novel) acceptance condition, covered in Section 2.2. Interestingly, in the resulting model,

25

2. Sublinear-Time Recognition and Decision by One-Dimensional Cellular Automata

called ACA, parallelism and local behavior seem to bemoremarked features, taking priority
over cell communication and synchronization algorithms (which are the dominant themes
in the linear- and real-time constructions). As mentioned above, the body of theory on
sublinear-time ACAs is very small and, to the best of our knowledge, resumes itself to [60,
66, 105]. Ibarra, Palis, and Kim [60] show sublinear-time ACAs are capable of recognizing
non-regular languages and also determine a threshold (namely Ω(log𝑛)) up to which no
advantage compared to constant time is possible. Meanwhile, Kim and McCloskey [66]
and Sommerhalder and van Westrhenen [105] analyze the constant-time case subject to
different acceptance conditions and characterize it based on the locally testable languages,
a subclass of the regular languages.

Indeed, as covered in Section 2.3, the defining property of the locally testable languages,
that is, that words which locally appear to be the same are equivalent with respect to
membership in the language at hand, effectively translates into an inherent property of
acceptance by sublinear-time ACAs. In Section 2.4, we prove a time hierarchy theorem
for sublinear-time ACAs as well as further relate the language classes they define to the
regular languages and the parallel computation classes SC and (uniform) AC. In the same
section, we also obtain an improvement on a result of [60]. Finally, in Section 2.5 we
consider a plausible model of ACAs as language deciders, that is, machines which must
not only accept words in the target language but also explicitly reject those which do not.
Section 2.6 concludes the chapter.

2.2. Definitions

We assume the reader is familiar with the theory of formal languages and cellular automata
as well as with computational complexity theory (see, e.g., standard references [5, 30]).
This section reviews basic concepts and introduces ACAs.

The set of integers is denoted byZ and that of (strictly) positive integers byN+. Furthermore,
N0 = N+ ∪ {0}. For a function 𝑓 : 𝐴→ 𝐵 and 𝐴′ ⊆ 𝐴, 𝑓 |𝐴′ indicates the restriction of 𝑓 to
𝐴′. The set of functions 𝑓 : 𝐴→ 𝐵 is denoted by 𝐵𝐴. For a word𝑤 ∈ Σ∗ over an alphabet
Σ,𝑤 (𝑖) is the 𝑖-th symbol of𝑤 (starting with the 0-th symbol), and |𝑤 |𝑥 is the number of
occurrences of 𝑥 ∈ Σ in𝑤 . For 𝑘 ∈ N0, 𝑝𝑘 (𝑤), 𝑠𝑘 (𝑤), and 𝐼𝑘 (𝑤) are the prefix, suffix and
set of infixes of length 𝑘 of𝑤 , respectively, where 𝑝𝑘 ′ (𝑤) = 𝑠𝑘 ′ (𝑤) = 𝑤 and 𝐼𝑘 ′ (𝑤) = {𝑤}
for 𝑘′ ≥ |𝑤 |. Also, Σ≤𝑘 is the set of words 𝑤 ∈ Σ∗ for which |𝑤 | ≤ 𝑘 . Unless otherwise
noted, 𝑛 stands for the input length.

2.2.1. (Strictly) Locally Testable Languages

The class REG of regular languages is defined in terms of (deterministic) automata with
finite memory and which read their input in a single direction (i.e., from left to right),
one symbol at a time; once all symbols have been read, the machine outputs a single bit
representing its decision. In contrast, a scanner is a memoryless machine which reads a

26

2.2. Definitions

span of 𝑘 ∈ N+ symbols at a time of an input provided with start and end markers (so it can
handle prefixes and suffixes separately); the scanner validates every such substring it reads
using the same predicate, and it accepts if and only if all these validations are successful.
The languages accepted by these machines are the strictly locally testable languages.1

Definition 2.1 (strictly locally testable). Let Σ be an alphabet. A language 𝐿 ⊆ Σ∗ is
strictly locally testable if there is some 𝑘 ∈ N+ and sets 𝜋, 𝜎 ⊆ Σ≤𝑘 and 𝜇 ⊆ Σ𝑘 such that,
for every word 𝑤 ∈ Σ∗, 𝑤 ∈ 𝐿 if and only if 𝑝𝑘 (𝑤) ∈ 𝜋 , 𝐼𝑘 (𝑤) ⊆ 𝜇, and 𝑠𝑘 (𝑤) ∈ 𝜎 . The
class of strictly locally testable languages is denoted by SLT.

A more general notion of locality is provided by the locally testable languages. Intuitively,
𝐿 is locally testable if a word𝑤 being in 𝐿 or not is entirely dependent on a property of the
substrings of𝑤 of some constant length 𝑘 ∈ N+ (that depends only on 𝐿, not on𝑤). Thus,
if any two words have the same set of substrings of length 𝑘 , then they are equivalent
with respect to being in 𝐿:

Definition 2.2 (locally testable). Let Σ be an alphabet. A language 𝐿 ⊆ Σ∗ is locally
testable if there is some 𝑘 ∈ N+ such that, for every 𝑤1,𝑤2 ∈ Σ∗ with 𝑝𝑘 (𝑤1) = 𝑝𝑘 (𝑤2),
𝐼𝑘 (𝑤1) = 𝐼𝑘 (𝑤2), and 𝑠𝑘 (𝑤1) = 𝑠𝑘 (𝑤2) we have that𝑤1 ∈ 𝐿 if and only if𝑤2 ∈ 𝐿. The class
of locally testable languages is denoted by LT.

The class LT is the Boolean closure of SLT, that is, its closure under union, intersection,
and complement [77]. In particular, the inclusion SLT ⊊ LT is proper [76].

2.2.2. Cellular Automata

We are strictly interested in one-dimensional cellular automata with the standard neigh-
borhood. For 𝑟 ∈ N0, let

𝑁𝑟 (𝑧) = {𝑧′ ∈ Z | |𝑧 − 𝑧′| ≤ 𝑟 }
denote the extended neighborhood of radius 𝑟 of the cell 𝑧 ∈ Z.

Definition 2.3 (cellular automaton). A cellular automaton (CA) 𝐶 is a triple (𝑄, 𝛿, Σ)
where 𝑄 is a finite, non-empty set of states, 𝛿 : 𝑄3 → 𝑄 is the local transition function, and
Σ ⊆ 𝑄 is the input alphabet. An element of 𝑄3 (resp., 𝑄Z) is called a local (resp., global)
configuration of 𝐶 . The function 𝛿 induces the global transition function Δ : 𝑄Z → 𝑄Z on
the configuration space 𝑄Z by

Δ(𝑐) (𝑧) = 𝛿 (𝑐 (𝑧 − 1), 𝑐 (𝑧), 𝑐 (𝑧 + 1)),

where 𝑧 ∈ Z is a cell and 𝑐 ∈ 𝑄Z.

1 The term “(locally) testable in the strict sense” ((L)TSS) is also common [66, 76, 77].

27

2. Sublinear-Time Recognition and Decision by One-Dimensional Cellular Automata

Our interest in CAs is as machines which receive an input and process it until a final state
is reached. The input is provided from left to right, with one cell for each input symbol.
The surrounding cells are inactive and remain so for the entirety of the computation (i.e.,
the CA is bounded). It is customary for CAs to have a distinguished cell, usually cell
zero, which communicates the machine’s output. As mentioned in the introduction, this
convention is inadequate for computation in sublinear time; instead, we require the finality
condition to depend on the entire (global) configuration (modulo inactive cells):

Definition 2.4 (CA computation). There is a distinguished state 𝑞 ∈ 𝑄 \ Σ, called the
inactive state, which, for every 𝑧1, 𝑧2, 𝑧3 ∈ 𝑄 , satisfies 𝛿 (𝑧1, 𝑧2, 𝑧3) = 𝑞 if and only if 𝑧2 = 𝑞.
A cell not in state 𝑞 is said to be active. For an input 𝑤 ∈ Σ∗, the initial configuration
𝑐0 = 𝑐0(𝑤) ∈ 𝑄Z of 𝐶 for𝑤 is 𝑐0(𝑖) = 𝑤 (𝑖) for 𝑖 ∈ {0, . . . , |𝑤 | − 1} and 𝑐0(𝑖) = 𝑞 otherwise.
For 𝐹 ⊆ 𝑄 \ {𝑞}, a configuration 𝑐 ∈ 𝑄Z is 𝐹 -final (for 𝑤) if there is a (minimal) 𝜏 ∈ N0
such that 𝑐 = Δ𝜏 (𝑐0) and 𝑐 contains only states in 𝐹 ∪ {𝑞}. In this context, the sequence
𝑐0, . . . ,Δ

𝜏 (𝑐0) = 𝑐 is the trace of𝑤 , and 𝜏 is the time complexity of𝐶 (with respect to 𝐹 and
𝑤).

Because we effectively consider only bounded CAs, the computation of𝑤 involves exactly
|𝑤 | active cells. The surrounding inactive cells are needed only as markers for the start
and end of𝑤 . As a side effect, the initial configuration 𝑐0 = 𝑐0(𝜀) for the empty word 𝜀 is
stationary (i.e., Δ(𝑐0) = 𝑐0) regardless of the choice of 𝛿 . Since this is the case only for 𝜀,
we disregard it for the rest of the chapter; that is, we assume 𝜀 is not contained in any of
the languages considered.

Finally, we relate final configurations and computation results. We adopt an acceptance
condition as in [98, 105] and obtain a so-called ACA; here, the “A” of “ACA” refers to the
property that all (active) cells are relevant for acceptance.

Definition 2.5 (ACA). An ACA is a CA 𝐶 with a non-empty subset 𝐴 ⊆ 𝑄 \ {𝑞} of accept
states. For 𝑤 ∈ Σ+, if 𝐶 reaches an 𝐴-final configuration, we say 𝐶 accepts 𝑤 . We write
𝐿(𝐶) for the set of words accepted by 𝐶 . For a function 𝑡 : N+ → N0, ACA[𝑡] denotes the
class of languages that can be accepted by an ACA with time complexity at most 𝑡 ; that is,
𝐿 ∈ ACA[𝑡] if and only if there is an ACA𝐶 with 𝐿 = 𝐿(𝐶) and such that, for every𝑤 ∈ 𝐿,
the time complexity of 𝐶 with respect to 𝐴 and𝑤 is ≤ 𝑡 (|𝑤 |).

The inclusion ACA[𝑡1] ⊆ ACA[𝑡2] is immediate for functions 𝑡1, 𝑡2 : N+ → N0 with 𝑡1(𝑛) ≤
𝑡2(𝑛) for every 𝑛 ∈ N+. Because Definition 2.5 allows multiple accept states, it is possible
for each state 𝑧 (that is not an accept state) to have a corresponding accept state 𝑧𝐴. In the
rest of this chapter, when we say a cell becomes (or marks itself as) accepting (without
explicitly mentioning its state), we intend to say it changes from such a state 𝑧 to 𝑧𝐴.

Figure 2.1 illustrates the computation of an ACA with input alphabet Σ = {0, 1} and which
accepts {01}+ with time complexity equal to one (step). The local transition function is
such that

𝛿 (0, 1, 0) = 𝛿 (1, 0, 1) = 𝛿 (𝑞, 0, 1) = 𝛿 (0, 1, 𝑞) = 𝑎,
𝑎 being the (only) accept state, and 𝛿 (𝑧1, 𝑧2, 𝑧3) = 𝑧2 for 𝑧2 ≠ 𝑎 and arbitrary 𝑧1 and 𝑧3.

28

2.3. First Observations

q 0 1 0 1 0 1 q

q a a a a a a q

q 0 0 1 0 1 0 q

q 0 0 a a a 0 q✓

Figure 2.1.: Computation of an ACA which recognizes 𝐿 = {01}+. The input words are 010101 ∈ 𝐿 and
001010 ∉ 𝐿, respectively.

2.3. First Observations

This section recalls results on sublinear-time ACA computation (i.e., ACA[𝑡] where 𝑡 (𝑛) =
𝑜 (𝑛)) from [60, 66, 105] and provides some additional remarks. We start with the constant-
time case (i.e., ACA[𝑂 (1)]). Here, the connection between scanners and ACAs is apparent:
If an ACA accepts an input𝑤 in time 𝜏 = 𝜏 (𝑤), then𝑤 can be verified by a scanner with
an input span of 2𝜏 + 1 symbols and using the predicate induced by the local transition
function of the ACA (i.e., the predicate is true if and only if the symbols read correspond
to 𝑁𝜏 (𝑧) for some cell 𝑧 in the initial configuration and 𝑧 is accepting after 𝜏 steps).

Constant-time ACA computation has been studied in [66, 105]. Although in [66] we find
a characterization based on a hierarchy over SLT, the acceptance condition there differs
slightly from that in Definition 2.5; in particular, the automata there run for a number of
steps which is fixed for each automaton, and the outcome is evaluated (only) in the final
step. In contrast, in [105] we find the following, where SLT∪ denotes the closure of SLT
under union:

Theorem 2.6 ([105]). ACA[𝑂 (1)] = SLT∪.

Thus, ACA[𝑂 (1)] is closed under union. In fact, more generally:

Proposition 2.7. For any 𝑡 : N+ → N0, ACA[𝑂 (𝑡)] is closed under union.

Proof. Let 𝐿1 and 𝐿2 be languages accepted by the ACAs 𝐶1 and 𝐶2, respectively, in 𝑂 (𝑡)
time. Furthermore, let 𝑄𝑖 (resp., 𝑄𝑎𝑖) denote the set of states (resp., accept states) of 𝐶𝑖 . We
construct an ACA𝐶 which accepts 𝐿1 ∪𝐿2 as follows: 𝐶 simulates𝐶1 and𝐶2 in interleaved
fashion, alternating between one step of𝐶1 and one step of𝐶2, and accepts whenever either
𝐶𝑖 does. To this end, each cell maintains components 𝑞1 ∈ 𝑄1, 𝑞2 ∈ 𝑄2, and 𝑟 ∈ {1, 2},
where 𝑟 indicates which of the two simulations is to be updated next; that is, at each step,
a cell next updates 𝑞𝑟 according to the local transition function of 𝐶𝑟 and the 𝑞𝑟 states of
its neighbors. At the start of the computation, all cells simultaneously initialize 𝑟 = 1. The
set of accept states of 𝐶 is

𝑄1 ×𝑄𝑎2 × {1} ∪𝑄𝑎1 ×𝑄2 × {2}.

Thus, if𝐶𝑖 accepts in exactly 𝜏 steps, then𝐶 will accept in exactly 2𝜏 + 𝑖 − 1 steps and vice-
versa. It follows that 𝐿(𝐶) = 𝐿1 ∪ 𝐿2 and the time complexity of 𝐶 is in 𝑂 (2𝑡) = 𝑂 (𝑡).

29

2. Sublinear-Time Recognition and Decision by One-Dimensional Cellular Automata

The class ACA[𝑂 (1)] is closed under intersection [105]. It is an open question whether
ACA[𝑂 (𝑡)] is also closed under intersection for every 𝑡 (𝑛) = 𝑜 (𝑛). In particular, note that
taking the construction of the proof above and setting, for example, 𝑄𝑎1 ×𝑄𝑎2 × {1} as the
set of accept states is insufficient (as it is not guaranteed that 𝐶1 and 𝐶2 accept at the same
time).

Moving beyond constant time, in [60] we find the following:

Theorem 2.8 ([60]). For 𝑡 (𝑛) = 𝑜 (log𝑛), ACA[𝑡] ⊆ REG.

In [60] we also find an example for a non-regular language in ACA[𝑂 (log𝑛)] which is
essentially a variation of the language

BIN = {bin𝑘 (0)# bin𝑘 (1)# · · · # bin𝑘 (2𝑘 − 1) | 𝑘 ∈ N+}

where bin𝑘 (𝑚) is the 𝑘-digit binary representation of𝑚 ∈ {0, . . . , 2𝑘 − 1}.

To illustrate the ideas involved, we present an example related to BIN (though it results in
a different time complexity) and which is also useful in later discussions in Section 2.5. Let
𝑤𝑘 (𝑖) = 0𝑖10𝑘−𝑖−1 and consider the language

IDMAT = {𝑤𝑘 (0)#𝑤𝑘 (1)# · · · #𝑤𝑘 (𝑘 − 1) | 𝑘 ∈ N+}

of all identity matrices in line-for-line representations, where the lines are separated by #
symbols.2

We now describe an ACA for IDMAT; the construction closely follows the aforementioned
one for BIN found in [60] (and the difference in complexity is only due to the different
number and size of blocks in the words of IDMAT and BIN). Denote each group of cells
initially containing a (maximally long) {0, 1}+ substring of𝑤 ∈ IDMAT by a block. Each
block of size 𝑏 propagates its contents to the neighboring blocks (in separate registers);
using a textbook CA technique, this requires exactly 2𝑏 steps. Once the strings align, a
block initially containing 𝑤𝑘 (𝑖) verifies it has received 𝑤𝑘 (𝑖 − 1) and 𝑤𝑘 (𝑖 + 1) from its
left and right neighbor blocks (if either exists), respectively. The cells of a block and its
delimiters become accepting if and only if the comparisons are successful and there is a
single # between the block and its neighbors. This process takes linear time in 𝑏; since
any 𝑤 ∈ IDMAT has 𝑂 (

√︁
|𝑤 |) many blocks, each with 𝑏 = 𝑂 (

√︁
|𝑤 |) cells, it follows that

IDMAT ∈ ACA[𝑂 (
√
𝑛)].

To show the above construction is time-optimal, we use the following observation, which
is also central in proving several other results in this chapter:

Lemma 2.9. Let 𝐶 be an ACA, and let𝑤 be an input which 𝐶 accepts in exactly 𝜏 = 𝜏 (𝑤)
steps. Then, for every input 𝑤 ′ such that 𝑝2𝜏 (𝑤) = 𝑝2𝜏 (𝑤 ′), 𝐼2𝜏+1(𝑤 ′) ⊆ 𝐼2𝜏+1(𝑤), and
𝑠2𝜏 (𝑤) = 𝑠2𝜏 (𝑤 ′), 𝐶 accepts𝑤 ′ in at most 𝜏 steps.

2 Alternatively, one can also think of IDMAT as a (natural) problem on graphs presented in the adjacency
matrix representation.

30

2.3. First Observations

The lemma is intended to be used with 𝜏 < |𝑤 |/2 since otherwise we have𝑤 = 𝑤 ′ and the
statement is trivial. We can apply the lemma, for instance, to show that

SOMEONE =
{︁
𝑤 ∈ {0, 1}+ | |𝑤 |1 ≥ 1

}︁
is not in ACA[𝑡] for any 𝑡 (𝑛) = 𝑜 (𝑛) (e.g., set𝑤 = 0𝑘10𝑘 and𝑤 ′ = 02𝑘+1 for large 𝑘 ∈ N+).
It follows that REG ⊈ ACA[𝑡] for any 𝑡 (𝑛) = 𝑜 (𝑛).

Proof. Let𝐴 be the set of accept states of𝐶 , and let 𝑐0 and 𝑐′0 denote the initial configurations
for𝑤 and𝑤 ′, respectively. We prove that 𝑐′𝜏 = Δ𝜏 (𝑐′0) is 𝐴-final.

Let 𝑖 ∈ Z. If all of 𝑐′0 |𝑁𝜏 (𝑖) is inactive, then cell 𝑖 is also inactive in 𝑐′𝜏 (i.e., 𝑐′𝜏 (𝑖) = 𝑞). If
𝑐′0 |𝑁𝜏 (𝑖) contains both inactive and active states, then 𝑖 < 𝜏 or 𝑖 ≥ |𝑤 ′| − 𝜏 , in which
case 𝑝2𝜏 (𝑤) = 𝑝2𝜏 (𝑤 ′) and 𝑠2𝜏 (𝑤) = 𝑠2𝜏 (𝑤 ′) imply 𝑐′0 |𝑁𝜏 (𝑖) = 𝑐0 |𝑁𝜏 (𝑖). Finally, if 𝑐′0 |𝑁𝜏 (𝑖)
is purely active, 𝑐′0 |𝑁𝜏 (𝑖) (seen as a word over the input alphabet of 𝐶) is in 𝐼2𝜏+1(𝑤 ′) ⊆
𝐼2𝜏+1(𝑤); as a result, there is 𝑗 ∈ Z with 𝜏 ≤ 𝑗 < |𝑤 | − 𝜏 and such that 𝑐′0 |𝑁𝜏 (𝑖) = 𝑐0 |𝑁𝜏 (𝑗).
In both the previous cases, since 𝑐𝜏 is 𝐴-final, it follows that 𝑐′𝜏 (𝑖) ∈ 𝐴, thus implying 𝑐′𝜏 is
𝐴-final.

Since the complement of SOMEONE (respective to {0, 1}+) is {0}+ and {0}+ ∈ ACA[𝑂 (1)]
(e.g., simply set 0 as the ACA’s accept state), ACA[𝑡] is not closed under complement for
any 𝑡 (𝑛) = 𝑜 (𝑛). Also, SOMEONE is a regular language and BIN ∈ ACA[𝑂 (log𝑛)] is not,
so we have:

Proposition 2.10. For any function 𝑡 : N+ → N0 with 𝑡 (𝑛) = Ω(log𝑛) and 𝑡 (𝑛) = 𝑜 (𝑛),
ACA[𝑡] and REG are incomparable.

If the inclusion of infixes in Lemma 2.9 is strengthened to an equality, one may apply it in
both directions and obtain the following stronger statement:

Lemma 2.11. Let𝐶 be an ACA with time complexity bounded by 𝑡 : N+ → N0 (i.e.,𝐶 accepts
any input of length 𝑛 in at most 𝑡 (𝑛) steps). Then, for any two inputs𝑤 and𝑤 ′ with 𝑝2𝜇 (𝑤) =
𝑝2𝜇 (𝑤 ′), 𝐼2𝜇+1(𝑤) = 𝐼2𝜇+1(𝑤 ′), and 𝑠2𝜇 (𝑤) = 𝑠2𝜇 (𝑤 ′) where 𝜇 = max{𝑡 (|𝑤 |), 𝑡 (|𝑤 ′|)}, we
have that𝑤 ∈ 𝐿(𝐶) if and only if𝑤 ′ ∈ 𝐿(𝐶).

Proof. The key idea is that, for any 𝑘 ∈ N0, 𝑝𝑘 (𝑤) = 𝑝𝑘 (𝑤 ′) implies 𝑝𝑘 ′ (𝑤) = 𝑝𝑘 ′ (𝑤 ′)
for every 𝑘′ ≤ 𝑘 , and the same is true for 𝑠𝑘 (𝑤) = 𝑠𝑘 (𝑤 ′) and 𝐼𝑘 (𝑤) = 𝐼𝑘 (𝑤 ′). Hence, if
𝑤 ∈ 𝐿(𝐶) and𝐶 accepts𝑤 in exactly 𝜏 = 𝜏 (𝑤) ≤ 𝑡 (|𝑤 |) steps, then by Lemma 2.9 we have
that 𝐶 accepts𝑤 ′ in at most 𝜏 ≤ 𝜇 many steps. Conversely, if𝑤 ′ ∈ 𝐿(𝐶) and 𝐶 accepts𝑤 ′
in exactly 𝜏 = 𝜏 (𝑤 ′) ≤ 𝑡 (|𝑤 ′|) steps, then using Lemma 2.9 again (with 𝑤 in place of 𝑤 ′
and vice-versa) we obtain that 𝐶 accepts𝑤 in at most 𝜏 ≤ 𝜇 many steps.

Finally, we can show our ACA for IDMAT is time-optimal (asymptotically speaking):

Proposition 2.12. For any 𝑡 (𝑛) = 𝑜 (
√
𝑛), IDMAT ∉ ACA[𝑡].

31

2. Sublinear-Time Recognition and Decision by One-Dimensional Cellular Automata

Proof. Let 𝑛 ∈ N+ be such that 𝑡 (𝑛) <
√
𝑛/8, and let𝑤 ∈ IDMAT be given with |𝑤 | = 𝑛. In

particular,𝑤 ∈ IDMAT implies there is 𝑘 ∈ N+ such that

𝑤 = 𝑤𝑘 (0)# · · · #𝑤𝑘 (𝑘 − 1)

and |𝑤 | = 𝑘2 + 𝑘 − 1; without restriction, we also assume 𝑘 is even. Let 𝑤 ′ be the
word obtained from 𝑤 by replacing its (𝑘/2 − 1)-th block with 𝑤𝑘 (𝑘/2). Then we have
𝑝2𝑡 (𝑛) (𝑤) = 𝑝2𝑡 (𝑛) (𝑤 ′), 𝑠2𝑡 (𝑛) (𝑤) = 𝑠2𝑡 (𝑛) (𝑤 ′), and 𝐼2𝑡 (𝑛)+1(𝑤) ⊆ 𝐼2𝑡 (𝑛)+1(𝑤 ′), where the
latter follows from 𝑤𝑘 (𝑘/2) = 0𝑘/210𝑘/2−1, |𝑤𝑘 (𝑖) | = 𝑘 , and 𝑡 (𝑛) < (𝑘 + 1)/8. Thus, by
Lemma 2.9, if an ACA with time complexity bounded by 𝑡 accepts𝑤 , so does it accept the
word𝑤 ′ ∉ IDMAT.

2.4. Main Results

In this section, we present various results regarding ACA[𝑡] where 𝑡 (𝑛) = 𝑜 (𝑛). First, we
obtain a time hierarchy theorem; that is, (under plausible conditions) ACA[𝑡 ′] ⊊ ACA[𝑡]
for 𝑡 ′(𝑛) = 𝑜 (𝑡 (𝑛)). Next, we show ACA[𝑡] ∩ REG is (strictly) contained in LT and also
present an improvement to Theorem 2.8. Finally, we study inclusion relations between
ACA[𝑡] and the SC and (uniform) AC hierarchies. Save for the material covered so far, all
three subsections stand out independently from one another.

2.4.1. Time Hierarchy

For functions 𝑓 , 𝑡 : N+ → N0, we say 𝑓 is time-constructible by CAs in 𝑡 (𝑛) time if there
is a CA 𝐶 which, on input 1𝑛 , reaches a configuration containing the value 𝑓 (𝑛) (binary-
encoded) in at most 𝑡 (𝑛) steps.3 Note that, since CAs can simulate (one-tape) Turing
machines in real-time, any function constructible by Turingmachines (in the corresponding
sense) is also constructible by CAs.

Theorem 2.13. Let 𝑓 , 𝑔 : N+ → N0 be functions with 𝑓 (𝑛) = 𝜔 (𝑛), 𝑓 (𝑛) ≤ 2𝑛 , 𝑔(𝑛) =
2𝑛−⌊log 𝑓 (𝑛)⌋ , and let 𝑓 and 𝑔 be time-constructible (by CAs) in 𝑓 (𝑛) time. Furthermore, let
𝑡 : N+ → N0 be such that

3𝑓 (𝑘) ≤ 𝑡 (𝑓 (𝑘) · 𝑔(𝑘)) ≤ 𝑐 𝑓 (𝑘)

for some constant 𝑐 ≥ 3 and all but finitely many 𝑘 ∈ N+. Then, for every 𝑡 ′(𝑛) = 𝑜 (𝑡 (𝑛)),
ACA[𝑡 ′] ⊊ ACA[𝑡].

3 Just as is the case for Turing machines, there is not a single definition for time-constructibility by CAs
(see, e.g., [63] for an alternative). Here, we opt for a plausible variant which has the benefit of simplifying
the ensuing line of argument.

32

2.4. Main Results

Given 𝑎 > 1, this can be used, for instance, with any time-constructible 𝑓 ∈ Θ(𝑛𝑎) (resp.,
𝑓 ∈ Θ(2𝑛/𝑎), in which case 𝑎 = 1 is also possible) and 𝑡 ∈ Θ(log𝑛)𝑎 (resp., 𝑡 ∈ Θ(𝑛1/𝑎)).
The proof idea is to construct a language 𝐿 similar to BIN (see Section 2.3) in which every
𝑤 ∈ 𝐿 has length exponential in the size of its blocks while the distance between any two
blocks is Θ(𝑡 (|𝑤 |)). Due to Lemma 2.9, the latter implies 𝐿 is not recognizable in 𝑜 (𝑡 (|𝑤 |))
time.

Proof. For simplicity, let 𝑓 (𝑛) > 𝑛. Consider 𝐿 = {𝑤𝑘 | 𝑘 ∈ N+} where

𝑤𝑘 = bin𝑘 (0)#𝑓 (𝑘)−𝑘 bin𝑘 (1)#𝑓 (𝑘)−𝑘 · · · bin𝑘 (𝑔(𝑘) − 1)#𝑓 (𝑘)−𝑘

and note |𝑤𝑘 | = 𝑓 (𝑘) · 𝑔(𝑘). Because 𝑡 (|𝑤𝑘 |) = 𝑂 (𝑓 (𝑘)) and 𝑓 (𝑘) = 𝜔 (𝑘), given any
𝑡 ′(𝑛) = 𝑜 (𝑡 (𝑛)), setting𝑤 = 𝑤𝑘 ,𝑤 ′ = 0𝑘#|𝑤𝑘 |−𝑘 , and 𝜏 = 𝑡 ′(|𝑤𝑘 |) and applying Lemma 2.9
for sufficiently large 𝑘 yields 𝐿 ∉ ACA[𝑡 ′].

By assumption, it suffices to show 𝑤 = 𝑤𝑘 ∈ 𝐿 is accepted by an ACA 𝐶 in at most
3𝑓 (𝑘) ≤ 𝑡 (|𝑤 |) steps for sufficiently large 𝑘 ∈ N+. The cells of 𝐶 perform two procedures
𝑃1 and 𝑃2 simultaneously: The procedure 𝑃1 is as in the ACA for BIN (see Section 2.3) and
ensures that the blocks of𝑤 have the same length, that the respective binary encodings are
valid, and that the last value is correct (i.e., equal to 𝑔(𝑘) − 1). In 𝑃2, each block computes
𝑓 (𝑘) as a function of its block length 𝑘 . Subsequently, the value 𝑓 (𝑘) is decreased using a
real-time counter (see, e.g., [63] for a construction). Every time the counter is decremented,
a signal starts from the block’s leftmost cell and is propagated to the right. This allows
every group of cells of the form 𝑏𝑠 with 𝑏 ∈ {0, 1}+ and 𝑠 ∈ {#}+ to assert there are
precisely 𝑓 (𝑘) symbols in total (i.e., |𝑏𝑠 | = 𝑓 (𝑘)). A cell is accepting if and only if it is
accepting both in 𝑃1 and 𝑃2. The proof is complete by noticing either procedure takes a
maximum of 3𝑓 (𝑘) steps (again, for sufficiently large 𝑘).

2.4.2. Intersection with the Regular Languages

In light of Proposition 2.10, we now consider the intersection ACA[𝑡]∩REG for 𝑡 (𝑛) = 𝑜 (𝑛)
(in the same spirit as a conjecture by Straubing [107]). For this section, we assume the
reader is familiar with the theory of syntactic semigroups (see, e.g., [33] for an in-depth
treatment).

Given a language 𝐿, let SS(𝐿) denote the syntactic semigroup of 𝐿. It is well-known that
SS(𝐿) is finite if and only if 𝐿 is regular. A semigroup 𝑆 is a semilattice if 𝑥2 = 𝑥 and
𝑥𝑦 = 𝑦𝑥 for every 𝑥,𝑦 ∈ 𝑆 . Additionally, 𝑆 is locally semilattice if 𝑒𝑆𝑒 is a semilattice for
every idempotent 𝑒 ∈ 𝑆 , that is, 𝑒2 = 𝑒 . We use the following characterization of locally
testable languages:

Theorem 2.14 ([17, 76]). We have 𝐿 ∈ LT if and only if SS(𝐿) is finite and locally semilattice.

In conjunction with Lemma 2.9, this yields the following, where the strict inclusion is due
to SOMEONE ∉ ACA[𝑡] (since SOMEONE ∈ LT; see Section 2.3):

33

2. Sublinear-Time Recognition and Decision by One-Dimensional Cellular Automata

Theorem 2.15. For every 𝑡 (𝑛) = 𝑜 (𝑛), ACA[𝑡] ∩ REG ⊊ LT.

Proof. Let 𝐿 ∈ ACA[𝑡] be a language over the alphabet Σ and, in addition, let 𝐿 ∈ REG,
that is, 𝑆 = SS(𝐿) is finite. By Theorem 2.14, it suffices to show 𝑆 is locally semilattice. To
that end, let 𝑒 ∈ 𝑆 be idempotent, and let 𝑥,𝑦 ∈ 𝑆 .

To show (𝑒𝑥𝑒) (𝑒𝑦𝑒) = (𝑒𝑦𝑒) (𝑒𝑥𝑒), let 𝑎, 𝑏 ∈ Σ∗ and consider the words 𝑢 = 𝑎(𝑒𝑥𝑒) (𝑒𝑦𝑒)𝑏
and 𝑣 = 𝑎(𝑒𝑦𝑒) (𝑒𝑥𝑒)𝑏. For𝑚 ∈ N+, let

𝑢′𝑚 = 𝑎(𝑒𝑚𝑥𝑒𝑚) (𝑒𝑚𝑦𝑒𝑚)𝑏,

and let 𝑟 ∈ N+ be such that 𝑟 > max{|𝑥 |, |𝑦 |, |𝑎 |, |𝑏 |} and also

𝑡
(︁|︁|︁𝑢′2𝑟+1|︁|︁)︁ < |︁|︁𝑢′2𝑟+1|︁|︁

16|𝑒 | < 𝑟 .

Since 𝑒 is idempotent, 𝑢 and 𝑢′ = 𝑢′2𝑟+1 belong to the same class in 𝑆 ; that is, 𝑢′ ∈ 𝐿 if and
only if 𝑢 ∈ 𝐿. The same is true for 𝑣 and

𝑣′ = 𝑎(𝑒2𝑟+1𝑦𝑒2𝑟+1) (𝑒2𝑟+1𝑥𝑒2𝑟+1)𝑏.

Furthermore, 𝑝2𝑟 (𝑢′) = 𝑝2𝑟 (𝑣′), 𝐼2𝑟+1(𝑢′) = 𝐼2𝑟+1(𝑣′), and 𝑠2𝑟 (𝑢′) = 𝑠2𝑟 (𝑣′) hold. Since
𝐿 ∈ ACA[𝑡], Lemma 2.11 applies.

The proof of (𝑒𝑥𝑒) (𝑒𝑥𝑒) = 𝑒𝑥𝑒 is analogous. Simply consider the words 𝑎(𝑒𝑚𝑥𝑒𝑚)𝑏 and
𝑎(𝑒𝑚𝑥𝑒𝑚) (𝑒𝑚𝑥𝑒𝑚)𝑏 for sufficiently large𝑚 ∈ N+ and use, again, Lemma 2.11 and the fact
that 𝑒 is idempotent.

For 𝑡 (𝑛) = 𝑜 (log𝑛), Theorems 2.8 and 2.15 imply that ACA[𝑡] ⊊ LT. It turns out we can
tighten this bound to ACA[𝑂 (1)] = SLT∪, which is a proper subset of LT:

Theorem 2.16. For every 𝑡 (𝑛) = 𝑜 (log𝑛), ACA[𝑡] = ACA[𝑂 (1)].

Essentially, we show that an ACA 𝐶 with 𝑜 (log𝑛) time complexity actually has 𝑂 (1) time
complexity. The key observation is that, if a (long enough) word 𝑤 ∈ 𝐿(𝐶) is accepted
in 𝑜 (log𝑛) time, then it must be locally identical (in the sense of Lemma 2.9) to some
strictly shorter𝑤 ′ ∈ 𝐿(𝐶). Concretely, this is established by a careful analysis of the De
Bruijn graph that corresponds to the neighborhoods of the cells of𝐶 when given input𝑤 .4
Since |𝑤 ′| < |𝑤 |, by induction we obtain that𝑤 is locally identical to some word in 𝐿(𝐶)
whose length is bounded by a constant 𝑛0. As there are only finitely many such words, it
immediately follows that 𝐶 has 𝑂 (1) time complexity.

4 The application of De Bruijn graphs to cellular automata has a long history; the reader is referred to [104,
110] for various examples.

34

2.4. Main Results

Proof. As stated above, we prove everyACA𝐶 with time complexity atmost 𝑡 (𝑛) = 𝑜 (log𝑛)
actually has 𝑂 (1) time complexity. Let 𝑄 be the state set of 𝐶 and assume |𝑄 | ≥ 2.
Furthermore, let 𝑛0 ∈ N+ be such that 𝑡 (𝑛) < (log|𝑄 | 𝑛)/9 for 𝑛 ≥ 𝑛0. Setting 𝑘 (𝑛) =
2𝑡 (𝑛) + 1 and assuming 𝑡 (𝑛) ≥ 1, we then have

|𝑄 |3𝑘 (𝑛) ≤ |𝑄 |9𝑡 (𝑛) < 𝑛,

which shall be needed later in the proof.

Our key goal is to establish the following: For any word𝑤 ∈ 𝐿 of length |𝑤 | ≥ 𝑛0, either
𝑤 is accepted in at most max𝑛′≤𝑛0 𝑡 (𝑛′) steps, or there is a word𝑤 ′ ∈ 𝐿 of length |𝑤 ′| ≤ 𝑛0
and 𝜏 > 𝑡 (|𝑤 ′|) for which 𝑝2𝜏 (𝑤) = 𝑝2𝜏 (𝑤 ′), 𝐼2𝜏+1(𝑤) = 𝐼2𝜏+1(𝑤 ′), and 𝑠2𝜏 (𝑤) = 𝑠2𝜏 (𝑤 ′).
Assuming this holds, using that 𝑝𝑟 (𝑤) = 𝑝𝑟 (𝑤 ′) (resp., 𝐼𝑟 (𝑤) = 𝐼𝑟 (𝑤 ′); resp., 𝑠𝑟 (𝑤) =
𝑠𝑟 (𝑤 ′)) implies 𝑝𝑟 ′ (𝑤) = 𝑝𝑟 ′ (𝑤 ′) (resp., 𝐼𝑟 ′ (𝑤) = 𝐼𝑟 ′ (𝑤 ′); resp., 𝑠𝑟 ′ (𝑤) = 𝑠𝑟 ′ (𝑤 ′)) for any
𝑟 ′ ≤ 𝑟 , we apply Lemma 2.9 and obtain that𝐶 must accept𝑤 in at most 𝑡 (|𝑤 ′|) steps. Since
the set of all such𝑤 ′ is finite (and max𝑛′≤𝑛0 𝑡 (𝑛′) is constant), this implies that 𝐶 has 𝑂 (1)
time complexity.

Now let 𝑤 be as above, and let 𝐶 accept 𝑤 in exactly 𝜏 = 𝜏 (𝑤) ≤ 𝑡 (|𝑤 |) steps where
𝜏 > 𝑡 (𝑛′) for every 𝑛′ ≤ 𝑛0. We prove the claim by induction on |𝑤 |. The base case
|𝑤 | = 𝑛0 is trivial, so let 𝑛 > 𝑛0 and assume the claim holds for every word in 𝐿 of length
strictly less than 𝑛. Consider the De Bruijn graph𝐺 over the words in |𝑄 |𝜅 where 𝜅 = 2𝜏 +1.
To𝑤 then corresponds a path 𝑃 in 𝐺 which starts at the leftmost infix (of length 𝜅) in𝑤 ,
visits every subsequent one in order of appearance in𝑤 , and ends at the rightmost one.

Let 𝐺′ be the induced subgraph of 𝐺 containing exactly the nodes visited by 𝑃 . We then
observe the following holds: For every such 𝑃 and𝐺′, there is a path 𝑃 ′ in𝐺′ with the same
starting and ending points as 𝑃 and that visits every node of 𝐺′ at least once while having
length at most𝑚2 ≤ |𝑄 |2𝜅 , where𝑚 is the number of nodes in 𝐺′. To see this, number the
nodes of 𝐺′ from 1 to𝑚 according to the order in which they are first visited by 𝑃 . Then
there is a path in𝐺′ from 𝑖 to 𝑖 + 1 for every 𝑖 ∈ {1, . . . ,𝑚− 1}, and a shortest such path has
length at most𝑚. Piecing these paths together along with a last (shortest) path from𝑚 to
the ending point of 𝑃 , we obtain a path of length at most𝑚2 with the purported property.

Finally, to the path 𝑃 ′ corresponds a word𝑤 ′ of length |𝑤 ′| ≤ 𝜅 + |𝑄 |2𝜅 < |𝑄 |3𝜅 for which,
by construction of 𝑃 ′ and𝐺′, 𝑝𝜅−1(𝑤 ′) = 𝑝𝜅−1(𝑤), 𝐼𝜅 (𝑤 ′) = 𝐼𝜅 (𝑤), and 𝑠𝜅−1(𝑤 ′) = 𝑠𝜅−1(𝑤 ′).
Since 𝜅 ≤ 𝑘 (|𝑤 |) and |𝑄 |3𝑘 (|𝑤 |) < |𝑤 |, we have |𝑤 ′| < |𝑤 |. Then either |𝑤 ′| ≤ 𝑛0 already
holds, or we can apply the induction hypothesis. The claim follows in either case.

2.4.3. Relation to Parallel Complexity Classes

In this section, we relate ACA[𝑡] to other classes which characterize parallel computation,
namely the SC and (uniform) AC hierarchies. In this context, SC𝑘 is the class of problems
decidable by deterministic Turing machines in 𝑂 (log𝑛)𝑘 space and polynomial time,
whereas AC𝑘 is that decidable by Boolean circuits with polynomial size, 𝑂 (log𝑛)𝑘 depth,
and gates with unbounded fan-in. The class SC (resp., AC) is the union of all SC𝑘 (resp.,

35

2. Sublinear-Time Recognition and Decision by One-Dimensional Cellular Automata

AC𝑘) for 𝑘 ∈ N0. Here, we consider only uniform versions of AC; when relevant, we state
the respective uniformity condition. Although SC1 = L ⊆ AC1 is known, it is unclear
whether any other containment holds between SC and AC.

One should not expect to include SC or AC in ACA[𝑡] for any 𝑡 (𝑛) = 𝑜 (𝑛). Conceptually
speaking, whereas the models of SC and AC are capable of random access to their input,
ACAs are inherently local (as evinced by Lemmas 2.9 and 2.11). Explicit counterexamples
may be found among the unary languages: For any fixed𝑚 ∈ N+ and𝑤1,𝑤2 ∈ {1}+ with
|𝑤1 |, |𝑤2 | ≥ 𝑚, trivially 𝑝𝑚−1(𝑤1) = 𝑝𝑚−1(𝑤2), 𝐼𝑚 (𝑤1) = 𝐼𝑚 (𝑤2), and 𝑠𝑚−1(𝑤1) = 𝑠𝑚−1(𝑤2)
hold. Hence, by Lemma 2.9, if an ACA 𝐶 accepts𝑤 ∈ {1}+ in 𝑡 (𝑛) = 𝑜 (𝑛) time and |𝑤 | is
large (e.g., |𝑤 | > 4𝑡 (|𝑤 |)), then 𝐶 accepts any𝑤 ′ ∈ {1}+ with |𝑤 ′| ≥ |𝑤 |. Thus, extending
a result from [105]:

Proposition 2.17. If 𝑡 (𝑛) = 𝑜 (𝑛) and 𝐿 ∈ ACA[𝑡] is a unary language (i.e., 𝐿 ⊆ Σ+ and
|Σ| = 1), then 𝐿 is either finite or co-finite.

In light of the above, the rest of this section is concerned with the converse type of inclusion
(i.e., of ACA[𝑡] in the SC or AC hierarchies). For 𝑓 , 𝑠, 𝑡 : N+ → N0 with 𝑓 (𝑛) ≤ 𝑠 (𝑛), we
say 𝑓 is constructible (by a Turing machine) in 𝑠 (𝑛) space and 𝑡 (𝑛) time if there is a Turing
machine 𝑇 which, on input 1𝑛 , outputs 𝑓 (𝑛) in binary using at most 𝑠 (𝑛) space and 𝑡 (𝑛)
time. Also, recall a Turing machine can simulate 𝜏 steps of a CA with𝑚 (active) cells in
𝑂 (𝑚) space and 𝑂 (𝜏𝑚) time.

Proposition 2.18. Let 𝐶 be an ACA with time complexity bounded by 𝑡 (𝑛) = 𝑜 (𝑛), 𝑡 (𝑛) ≥
log𝑛, and let 𝑡 be constructible in 𝑡 (𝑛) space and poly(𝑛) time. Then there is a Turing machine
which decides 𝐿(𝐶) in 𝑂 (𝑡 (𝑛)) space and poly(𝑛) time.

Proof. We construct a machine 𝑇 with the purported property. Given an input 𝑤 , 𝑇
first determines the input length |𝑤 | and computes the value 𝑡 (|𝑤 |) in time bounded
by a polynomial 𝑝 : N+ → N0, thus requiring 𝑂 (𝑡 (|𝑤 |) + log|𝑤 |) = 𝑂 (𝑡 (|𝑤 |)) space and
𝑂 (|𝑤 | + 𝑝 (|𝑤 |)) time. The rest of the computation of𝑇 takes place in stages, where stage 𝑖
corresponds to step 𝑖 of 𝐶 . The machine 𝑇 maintains a counter for 𝑖 , incrementing it after
each stage, and rejects whenever 𝑖 > 𝑡 (|𝑤 |) holds. In stage 𝑖 , 𝑇 iterates over every (active)
cell 𝑧 ∈ {0, . . . , |𝑤 | − 1} of 𝐶 and, by iteratively applying the local transition function of
𝐶 on 𝑁𝑖 (𝑧), determines the state of 𝑧 in step 𝑖 of 𝐶; since |𝑁𝑖 (𝑧) | = 2𝑖 + 1, this requires
𝑂 (𝑖) space and 𝑂 (𝑖2) time for each 𝑧. If all states computed in the same stage are accept
states, then 𝑇 accepts. Since 𝑇 runs for at most 𝑡 (|𝑤 |) stages, it uses 𝑂 (𝑡 (|𝑤 |)) space and
𝑂 (|𝑤 | · 𝑡 (|𝑤 |)3 + 𝑝 (|𝑤 |)) time in total.

Thus, for polylogarithmic 𝑡 (where the strict inclusion is due to Proposition 2.17):

Corollary 2.19. For 𝑘 ∈ N+, ACA[𝑂 (log𝑛)𝑘] ⊊ SC𝑘 .

36

2.4. Main Results

Moving on to the AC classes, we employ some notions from descriptive complexity theory
(see, e.g., [62] for an introduction). Let FOL [𝑡] be the class of languages describable by
first-order formulas with numeric relations in L (i.e., logarithmic space) and quantifier
block iterations bounded by 𝑡 : N+ → N0. For𝐶 ,𝑄 , 𝛿 , and Δ as in Definition 2.3, we extend
Δ so Δ(𝑐) is also defined for 𝑐 ∈ 𝑄2𝜏+1 with 𝜏 ∈ N+ by

Δ(𝑐) (𝑖) = 𝛿 (𝑐 (𝑖), 𝑐 (𝑖 + 1), 𝑐 (𝑖 + 2))

where 𝑖 ∈ {0, . . . , 2𝜏 − 1}; in particular, Δ(𝑐) ∈ 𝑄2𝜏−1. Additionally, let DELTA𝐶 (𝑐, 𝑠) be
the relation which is true if and only if 𝑐 ∈ 𝑄2𝜏+1 for some 𝜏 ∈ N0, 𝑠 ∈ 𝑄 , and Δ𝜏 (𝑐) = 𝑠
(where Δ0 is the identity). Note DELTA𝐶 is computable by a Turing machine in𝑂 (𝜏) space
and 𝑂 (𝜏2) time.

Theorem 2.20. Let 𝑡 : N+ → N0 with 𝑡 (𝑛) ≥ log𝑛 be constructible in logarithmic space
(and arbitrary time). For any ACA 𝐶 whose time complexity is bounded by 𝑡 ,

𝐿(𝐶) ∈ FOL

[︃
𝑂

(︃
𝑡 (𝑛)
log𝑛

)︃]︃
.

In the following proof, we let “≐” denote the equality relation inside a formula.

Proof. Let 𝑄 be the state set of 𝐶 and let 𝐴 ⊆ 𝑄 be the set of accept states of 𝐶; without
restriction, we may assume |𝑄 | ≥ 2. In addition, let𝑤 be an input for 𝐶 and 𝑟 = log|𝑄 | |𝑤 |.
Assume we have a predicate STATE𝐶,𝑤 (𝑧, 𝑠, 𝑡 ′) which is true if and only if cell 𝑧 of𝐶 , when
given input𝑤 , is in state 𝑠 after 𝑡 ′ steps. Then we may express whether𝐶 accepts𝑤 or not
by the following formula:

𝜑𝐶,𝑤 = (∃𝑡 ′ ≤ 𝑡 (|𝑤 |)) (∀𝑧) (∃𝑠 ∈ 𝐴) STATE𝐶,𝑤 (𝑧, 𝑠, 𝑡 ′).

Note 𝜑𝐶,𝑤 is true if and only if the initial configuration 𝑐0 = 𝑐0(𝑤) of 𝑤 is such that an
𝐴-final configuration is reached in at most 𝑡 ′ ≤ 𝑡 (|𝑤 |) steps of 𝐶 (i.e., 𝐶 accepts𝑤 in (at
most) 𝑡 ′ steps). In turn, STATE𝐶,𝑤 may be expressed as follows:

STATE𝐶,𝑤 (𝑧, 𝑠, 𝑡 ′) = [𝐵] ⌊𝑡
′/𝑟⌋ (∃𝑟 ′ ≐ 𝑡 ′ mod 𝑟) DELTA𝐶 (𝑐0 |𝑁𝑟 ′ (𝑧), 𝑠)

where 𝐵 is a quantifier block (iterated ⌊𝑡 ′/𝑟⌋ times) in which the state 𝑠 of 𝑧 is traced back
𝑟 steps to a former subconfiguration 𝑐 (of size 2𝑟 + 1) such that the state of every cell 𝑧′ in
𝑐 is consistent with the computation of 𝐶:

𝐵 =
(︁
∃𝑐 ∈ 𝑄2𝑟+1 DELTA𝐶 (𝑐, 𝑠)

)︁
(∀𝑧′ |𝑧 − 𝑧′| ≤ 𝑟) (∃𝑠 ≐ 𝑐 (𝑧′ − 𝑧 + 𝑟)) (∃𝑧 ≐ 𝑧′) .

Note all numeric predicates in𝜑𝐶,𝑤 are computable in logarithmic space, includingDELTA𝐶 .
Since𝑤 ∈ 𝐿(𝐶) if and only if𝑤 |= 𝜑𝐶,𝑤 holds, the claim follows.

Since FOL [𝑂 (log𝑛)𝑘] equals L-uniform AC𝑘 [62], by Proposition 2.17 we have:

37

2. Sublinear-Time Recognition and Decision by One-Dimensional Cellular Automata

Corollary 2.21. For 𝑘 ∈ N+, ACA[𝑂 (log𝑛)𝑘] ⊊ L-uniform AC𝑘−1.

Because SC1 ⊈ AC0 (regardless of non-uniformity) [42], this is an improvement on
Corollary 2.19 for at least 𝑘 = 1. Nevertheless, note the usual uniformity condition
for AC0 is not L- but the more restrictive DLOGTIME-uniformity [115], and there is
good evidence that these two versions of AC0 are distinct [18]. Using methods from
[12], Corollary 2.21 may be rephrased for AC0 in terms of TIME[polylog(𝑛)]- or even
TIME[(log𝑛)2]-uniformity (sinceDELTA𝐶 is computable by a Turing machine in quadratic
time), but the DLOGTIME-uniformity case remains unclear.

2.5. Decider ACA

So far, we have considered ACAs strictly as language acceptors. As such, their time
complexity for inputs not in the target language (i.e., those which are not accepted) is
entirely disregarded. In this section, we investigate ACAs as deciders, that is, as machines
whichmust also (explicitly) reject invalid inputs. We analyze the case inwhich these decider
ACAs must reject under the same condition as acceptance (i.e., all cells are simultaneously
in a final rejecting state):

Definition 2.22 (DACA). A decider ACA (DACA) is an ACA 𝐶 which, in addition to its
set 𝐴 of accept states, has a non-empty subset 𝑅 ⊆ 𝑄 \ {𝑞} of reject states that is disjoint
from 𝐴 (i.e., 𝐴 ∩ 𝑅 = ∅). Every input 𝑤 ∈ Σ+ of 𝐶 must lead to an 𝐴- or an 𝑅-final
configuration (or both). We say 𝐶 accepts 𝑤 if it leads to an 𝐴-final configuration 𝑐𝐴 and
none of the configurations prior to 𝑐𝐴 are 𝑅-final. Similarly, 𝐶 rejects 𝑤 if it leads to an
𝑅-final configuration 𝑐𝑅 and none of the configurations prior to 𝑐𝑅 are 𝐴-final. The time
complexity of 𝐶 (with respect to𝑤) is the number of steps elapsed until 𝐶 reaches an 𝑅-
or 𝐴-final configuration (for the first time). The class DACA[𝑡] is the DACA analogue of
ACA[𝑡].

In contrast to Definition 2.5, here we must be careful so that the accept and reject results
do not overlap (i.e., a word cannot be both accepted and rejected). We opt for interpreting
the first (chronologically speaking) of the final configurations as the machine’s response.
Since the outcome of the computation is then irrelevant regardless of any subsequent
configurations (whether they are final or not), this is equivalent to requiring, for instance,
that the DACA must halt once a final configuration is reached.

One peculiar consequence of Definition 2.22 is the relation between languages which can
be recognized by acceptor ACAs and DACAs (i.e., the classes ACA[𝑡] and DACA[𝑡]). As
it turns out, the situation is quite different from what is usually expected of restricting
an acceptor model to a decider one, that is, that deciders yield a (possibly strictly) more
restricted class of machines. In fact, one can show DACA[𝑡] ⊈ ACA[𝑡] holds for 𝑡 (𝑛) =
𝑜 (𝑛) since SOMEONE ∉ ACA[𝑜 (𝑛)] (see discussion after Lemma 2.9) but surprisingly
SOMEONE ∈ DACA[𝑂 (1)]. For example, the local transition function 𝛿 of the DACA

38

2.5. Decider ACA

q 0 0 0 0 0 0 q

q r r r r r r q

q 0 0 1 0 1 0 q

q r r a r a r q

q a a a a a a q ✓

✗

Figure 2.2.: Computation of a DACA 𝐶 which decides SOMEONE. The inputs words are 000000 ∈ 𝐿(𝐶) and
001010 ∉ 𝐿(𝐶), respectively.

can be chosen as 𝛿 (𝑧1, 0, 𝑧2) = 𝑟 and 𝛿 (𝑧1, 𝑧, 𝑧2) = 𝑎 for 𝑧 ∈ {1, 𝑎, 𝑟 }, where 𝑧1 and 𝑧2
are arbitrary states, and 𝑎 and 𝑟 are the (only) accept and reject states, respectively;
see Figure 2.2. Choosing the same 𝛿 for an (acceptor) ACA does not yield an ACA for
SOMEONE since then all words of the form 0+ are accepted in the second step (as they are
not rejected in the first one). We stress this rather counterintuitive phenomenon occurs
only in the case of sublinear time (as ACA[𝑡] = CA[𝑡] = DACA[𝑡] for 𝑡 (𝑛) = Ω(𝑛)).

Similar to (acceptor) ACAs (Lemma 2.9), sublinear-time DACAs operate locally:

Lemma 2.23. Let𝐶 be a DACA and let𝑤 ∈ {0, 1}+ be a word which𝐶 decides in exactly 𝜏 =
𝜏 (𝑤) steps. Then, for every word𝑤 ′ ∈ {0, 1}+ with 𝑝2𝜏 (𝑤) = 𝑝2𝜏 (𝑤 ′), 𝐼2𝜏+1(𝑤 ′) = 𝐼2𝜏+1(𝑤),
and 𝑠2𝜏 (𝑤) = 𝑠2𝜏 (𝑤 ′), 𝐶 decides 𝑤 ′ in exactly 𝜏 steps, and 𝑤 ∈ 𝐿(𝐶) holds if and only if
𝑤 ′ ∈ 𝐿(𝐶).

Proof. Let 𝐴 and 𝑅 be the set of accept and reject states of 𝐶 , respectively, and let 𝑐0 and
𝑐′0 denote the initial configurations for 𝑤 and 𝑤 ′, respectively. Given 𝑤 ∈ 𝐿(𝐶) (resp.,
𝑤 ∉ 𝐿(𝐶)), it suffices to prove that, on input𝑤 ′, the following holds:

1. 𝑐′𝜏 = Δ𝜏 (𝑐′0) is 𝐴-final (resp., 𝑅-final).

2. 𝑐′
𝜏 ′ = Δ𝜏

′ (𝑐′0) is neither 𝐴- nor 𝑅-final for 𝜏′ < 𝜏 .

The proof of (1) is essentially the same as that of Lemma 2.9. For (2), it suffices to prove
that, in every such 𝑐′

𝜏 ′ , there is a cell 𝑧1 which is not accepting as well as a cell 𝑧2 which
is not rejecting. Since the trace of 𝐶 for𝑤 is such that only the last configuration 𝑐𝜏 can
be 𝐴- or 𝑅-final, there is 𝑧1 which is not accepting as well as 𝑧2 which is not rejecting in
Δ𝜏
′ (𝑐0). An argument as in the proof of Lemma 2.9 yields this is also the case for 𝑐′

𝜏 ′ .

One might be tempted to relax the requirements above to 𝐼2𝜏+1(𝑤 ′) ⊆ 𝐼2𝜏+1(𝑤) (as in
Lemma 2.9). We stress, however, the equality 𝐼2𝜏+1(𝑤) = 𝐼2𝜏+1(𝑤 ′) is crucial for the
existence of 𝑧1 and 𝑧2 in the proof. Indeed, otherwise it might be the case that 𝐶 takes
strictly less than 𝜏 steps to decide 𝑤 ′ and, hence, 𝑤 ∈ 𝐿(𝐶) may not be equivalent to
𝑤 ′ ∈ 𝐿(𝐶) (despite 𝑐′𝜏 being 𝐴- or 𝑅-final).

We note that, in addition to Lemmas 2.9 and 2.11, the results from Section 2.4 are extendable
to decider ACAs; however, a more systematic treatment is left as a topic for future work.
The remainder of this section is concerned with characterizing DACA[𝑂 (1)] computation
(as a parallel to Theorem 2.6) as well as establishing the time threshold for DACAs to
decide languages other than those in DACA[𝑂 (1)] (as Theorem 2.16 and the result BIN ∈
ACA[𝑂 (log𝑛)] do for acceptor ACAs).

39

2. Sublinear-Time Recognition and Decision by One-Dimensional Cellular Automata

2.5.1. The Constant-Time Case

We note that, for any DACA 𝐶 , swapping the accept and reject states yields a DACA with
the same time complexity and which decides the complement of 𝐿(𝐶). Hence, in contrast
to ACAs (see discussion following Lemma 2.9):

Proposition 2.24. For any 𝑡 : N+ → N0, DACA[𝑡] is closed under complement.

Using this, we can prove the following, which characterizes constant-time DACA compu-
tation as a parallel to Theorem 2.6:

Theorem 2.25. DACA[𝑂 (1)] = LT.

Hence, we obtain the rather surprising inclusion ACA[𝑂 (1)] ⊊ DACA[𝑂 (1)]; that is,
for constant time, DACAs constitute a strictly more powerful model than their acceptor
counterparts.

Proof. The inclusion DACA[𝑂 (1)] ⊆ LT is easily obtained by using the locally testable
property (see Definition 2.2) together with Lemma 2.23. Conversely, we obtain LT ⊆
DACA[𝑂 (1)] by proving the following:

1. ACA[𝑂 (1)] ⊆ DACA[𝑂 (1)].

2. DACA[𝑂 (1)] is closed under union.

Since DACA[𝑂 (1)] is also closed under complement (by Proposition 2.24 above), it is then
closed under intersection as well. Using that LT is the Boolean closure of SLT ⊆ ACA[𝑂 (1)]
(see Theorem 2.6) completes the proof.

For the first claim above, let 𝐶 be an ACA with time complexity bounded by 𝑡 ∈ N0. Since
𝐶 must accept any input 𝑤 in at most 𝑡 steps, if 𝑡 + 1 steps elapse without 𝐶 accepting,
then necessarily𝑤 ∉ 𝐿(𝐶). Hence, since 𝑡 is constant, 𝐶 can be transformed into a DACA
𝐶′ with 𝐿(𝐶) = 𝐿(𝐶′) by having all cells unconditionally become rejecting in step 𝑡 + 1.

To prove the second claim, let 𝐶1 and 𝐶2 be DACAs with time complexity bounded by
constants 𝑡1, 𝑡2 ∈ N0, respectively. We construct a DACA 𝐶 for 𝐿(𝐶1) ∪ 𝐿(𝐶2) as follows:
𝐶 saves its input𝑤 in a second register and then simulates 𝐶1 on𝑤 for 𝑡1 steps, accepting
if 𝐶1 does. (Note 𝐶 does not yet reject, even if 𝐶1 does so.) Following that, if it has not
yet accepted, 𝐶 simulates 𝐶2 for 𝑡2 steps and accepts if 𝐶2 does. Finally, if 𝑡1 + 𝑡2 + 1 steps
elapse and 𝐶 has not accepted, it rejects unconditionally. Hence, 𝐶 accepts𝑤 ∈ 𝐿(𝐶1) in
at most 𝑡1 steps,𝑤 ∈ 𝐿(𝐶2) in at most 𝑡1 + 𝑡2 steps, and rejects any𝑤 ∉ 𝐿(𝐶1) ∪ 𝐿(𝐶2) in
(exactly) 𝑡1 + 𝑡2 + 1 steps.

40

2.5. Decider ACA

2.5.2. Beyond Constant Time

Theorem 2.16 establishes a logarithmic time threshold for (acceptor) ACAs to recognize
languages not in ACA[𝑂 (1)]. We now turn to obtaining a similar result for DACAs. As it
turns out, in this case the bound is considerably larger:

Theorem 2.26. For any 𝑡 (𝑛) = 𝑜 (
√
𝑛), DACA[𝑡] = DACA[𝑂 (1)].

One immediate implication is that DACA[𝑡] and ACA[𝑡] are incomparable if 𝑡 (𝑛) = 𝑜 (
√
𝑛)

and 𝑡 (𝑛) = 𝜔 (1) (since, e.g., BIN ∈ ACA[𝑂 (log𝑛)]; see Section 2.3). The proof idea is that
any DACA whose time complexity is not constant admits an infinite sequence of words
with increasing time complexity; however, the time complexity of each such word can be
traced back to a critical set of cells which prevent the automaton from either accepting or
rejecting. By contracting the words while keeping the extended neighborhoods of these
cells intact, we obtain a new infinite sequence of words which the DACA necessarily takes
Ω(
√
𝑛) time to decide:

Proof. Let 𝐶 be a DACA with time complexity bounded by 𝑡 and assume 𝑡 (𝑛) = 𝜔 (1). We
show 𝑡 (𝑛) = Ω(

√
𝑛). Since 𝑡 (𝑛) = 𝜔 (1), for every 𝑖 ∈ N0 there is a 𝑤𝑖 such that 𝐶 takes

strictly more than 𝑖 steps to decide𝑤𝑖 . In particular, when𝐶 receives𝑤𝑖 as input, there are
cells 𝑥𝑖𝑗 and 𝑦𝑖𝑗 for 𝑗 ∈ {0, . . . , 𝑖} such that 𝑥𝑖𝑗 (resp., 𝑦𝑖𝑗) is not accepting (resp., not rejecting)
in step 𝑗 . Let 𝐽𝑖 be the set of all 𝑧 ∈ {0, . . . , |𝑤𝑖 | − 1} for which

min
{︁|︁|︁𝑧 − 𝑥𝑖𝑗 |︁|︁, |︁|︁𝑧 − 𝑦𝑖𝑗 |︁|︁}︁ ≤ 𝑗,

that is, 𝑧 ∈ 𝑁 𝑗 (𝑥𝑖𝑗) ∪ 𝑁 𝑗 (𝑦𝑖𝑗) for some 𝑗 . Consider the restriction𝑤 ′𝑖 of𝑤𝑖 to the symbols
having index in 𝐽𝑖 , that is,𝑤 ′𝑖 (𝑘) = 𝑤𝑖 (𝑗𝑘) for 𝐽𝑖 = { 𝑗0, . . . , 𝑗𝑚−1} and 𝑗0 < · · · < 𝑗𝑚−1, and
notice 𝑤 ′𝑖 has the same property as 𝑤𝑖 (i.e., 𝐶 takes strictly more than 𝑖 steps to decide
𝑤𝑖). Since |𝑤 ′𝑖 | = |𝐽𝑖 | ≤ 2(𝑖 + 1)2, 𝐶 has Ω(

√
𝑛) time complexity on the (infinite) set

{𝑤 ′𝑖 | 𝑖 ∈ N0}.

The language IDMAT from Section 2.3 now turns out to be useful in showing the bound
from Theorem 2.26 is optimal:

Proposition 2.27. IDMAT ∈ DACA[𝑂 (
√
𝑛)].

We already have IDMAT ∈ ACA[𝑂 (
√
𝑛)] (see Section 2.3) and most ideas from the ACA

construction can be adapted to a DACA. The non-trivial part, however, is ensuring the
DACA also rejects every𝑤 ∉ IDMAT in 𝑂 (

√︁
|𝑤 |) time. In particular, in such strings the

delimiters may be an arbitrary number of cells apart or even absent altogether; hence,
naively comparing every pair of blocks is not an option. Rather, we additionally check
the existence of a particular set of substrings of increasing length and which must be
present if the input is in IDMAT. Every 𝑂 (1) steps the existence of a different substring is
verified; the result is that the input length must be at least quadratic in the length of the
last substring tested (and the input is timely rejected if it does not contain any one of the
required substrings).

41

2. Sublinear-Time Recognition and Decision by One-Dimensional Cellular Automata

Proof. We construct a DACA 𝐴 which, given an input 𝑤 , decides whether 𝑤 ∈ IDMAT
holds or not in 𝑂 (

√︁
|𝑤 |) time.

As a warm-up, first consider the case in which every block 𝐵 of 𝑤 has the same length
𝑏 = 𝑂 (

√︁
|𝑤 |) and that every neighboring pair of blocks is separated by a single #. The

leftmost cell in 𝐵 creates a special marker symbol𝑚. During this first procedure, every cell
which does not contain such an𝑚 is rejecting. At each step, if𝑚 is on a cell containing a 0
or it determines the string it has read so far does not match the regular expression 0∗10∗,
then it marks the cell as rejecting; otherwise, it does nothing (i.e., the cell remains not
rejecting). The signal𝑚 propagates itself to the right with speed 1, the result being that 𝐴
does not reject in 𝑖 > 0 steps if and only if for every 𝑝 ∈ {1, 01, . . . , 0𝑖−11} there is a block
in 𝑤 for which 𝑝 is a prefix. It follows that |𝑤 | ≥ 𝑖 (𝑖 + 1)/2 and, in particular, if 𝑏 steps
have elapsed, then |𝑤 | > 𝑏2/2. Thus, if 𝐴 rejects a word during this procedure, then it
does so in 𝑂 (

√︁
|𝑤 |) time. Once𝑚 encounters #, it triggers a block comparison procedure

as in the ACA 𝐴′ which accepts IDMAT. This requires𝑂 (𝑏) time. If a violation is detected,
𝐵 becomes rejecting and maintains that state. Finally, if a number of steps have elapsed
such that 𝐴′ would already have accepted (which by construction of 𝐴′ can be determined
in 𝑂 (𝑏) time as a function of 𝑏), 𝐵 becomes rejecting and maintains that result, even if it
contains cells which had been previously marked as accepting. Thus, 𝐴 accepts if and only
if 𝐴′ does (and rejects otherwise).

For the general case in which the block lengths vary, we let the two procedures run in
parallel, with the cells of 𝐴 switching between the two back and forth. More precisely, the
computation of 𝐴 is subdivided into rounds, with each round consisting of two phases,
both taking constant time each; the time complexity of 𝐴, then, is directly proportional
to the number of rounds elapsed until a final configuration is reached. The two phases
correspond to the two aforementioned procedures: Phase one (𝑃1) checks that the blocks
satisfy the regular expression 0∗10∗ as well as ensures the presence of the 0∗1 prefixes,
and phase two (𝑃2) checks the blocks are of the same length and have valid contents. 𝑃1
advances its procedure one step at a time, while 𝑃2 advances two steps (as in the ACA
construction; see Section 2.3). In addition, we separate the two so as to not interfere
with each other; namely, if a cell is accepting (resp., rejecting) in phase 𝑃𝑖 , then it is
not necessarily so in 𝑃 𝑗 (where 𝑖 ≠ 𝑗); rather, it is only accepting or rejecting in 𝑃 𝑗 if
the procedure corresponding to 𝑃 𝑗 requires it to be so. If 𝑤 ∈ IDMAT, the two phases
end simultaneously after 3𝑏 ∈ 𝑂 (

√︁
|𝑤 |) steps, and 𝐴 accepts. Conversely, if 𝐴 rejects,

then it also does so in at most 3𝑏′ ∈ 𝑂 (
√︁
|𝑤 |) steps where 𝑏′ ∈ N+ is maximal such that

#1, #01, . . . , #0𝑏′−11 are all substrings of𝑤 ∉ IDMAT.

2.6. Conclusion and Open Problems

Following the definition of ACAs in Section 2.2, Section 2.3 reviewed existing results
on ACA[𝑡] for sublinear 𝑡 (i.e., 𝑡 (𝑛) = 𝑜 (𝑛)); we also observed that sublinear-time ACAs
operate in an inherently local manner (Lemmas 2.9 and 2.11). In Section 2.4, we proved a

42

2.6. Conclusion and Open Problems

time hierarchy theorem (Theorem 2.13), narrowed down the languages in ACA[𝑡] ∩ REG
(Theorem 2.15), improved Theorem 2.8 to ACA[𝑜 (log𝑛)] = ACA[𝑂 (1)] (Theorem 2.16),
and, finally, obtained (strict) inclusions in the parallel computation classes SC and AC
(Corollaries 2.19 and 2.21, respectively). The existence of a hierarchy theorem for ACAs
is of interest because obtaining an equivalent result for NC and AC is an open problem
in computational complexity theory. Also of note is that the proof of Theorem 2.13 does
not rely on diagonalization (the prevalent technique for most computational models) but,
rather, on a quintessential property of sublinear-time ACA computation (i.e., locality as in
the sense of Lemma 2.9).

In Section 2.5 we considered DACAs, which are a plausible variant of ACAs as language
deciders (as opposed to simply acceptors). The respective constant-time class is LT (The-
orem 2.25), which surprisingly is a (strict) superset of ACA[𝑂 (1)] = SLT∪. Meanwhile,
Ω(
√
𝑛) is the time complexity threshold for deciding languages other than those in LT

(Theorem 2.26 and Proposition 2.27).

As for future work, the primary concern is extending the results of Section 2.4 to DACAs.
DACA[𝑂 (1)] = LT is closed under union and intersection and we saw that DACA[𝑡]
is closed under complement for any 𝑡 (𝑛) = 𝑜 (𝑛); a further question would be whether
DACA[𝑡] is also closed under union and intersection. Finally, we have ACA[𝑂 (1)] ⊊
DACA[𝑂 (1)], ACA[𝑂 (𝑛)] = CA[𝑂 (𝑛)] = DACA[𝑂 (𝑛)], and that ACA[𝑡] and DACA[𝑡]
are incomparable if 𝑡 (𝑛) = 𝑜 (

√
𝑛) and 𝑡 (𝑛) = 𝜔 (1); it remains open what the relation

between the two classes is for 𝑡 such that 𝑡 (𝑛) = Ω(
√
𝑛) and 𝑡 (𝑛) = 𝑜 (𝑛).

43

3. Lower Bounds and Hardness
Magnification for Sublinear-Time
Shrinking Cellular Automata

Published version: [82]

Abstract

The minimum circuit size problem (MCSP) is a string compression problem with
a parameter 𝑠 in which, given the truth table of a Boolean function over inputs of
length 𝑛, one must answer whether it can be computed by a Boolean circuit of size
at most 𝑠 (𝑛) ≥ 𝑛. Recently, McKay, Murray, and Williams (STOC, 2019) proved a
hardness magnification result for MCSP involving (one-pass) streaming algorithms: For
any reasonable 𝑠 , if there is no poly(𝑠 (𝑛))-space streaming algorithm with poly(𝑠 (𝑛))
update time forMCSP[𝑠], then P ≠ NP. We prove an analogous result for the (provably)
strictly less capable model of shrinking cellular automata (SCAs), which are cellular
automata whose cells can spontaneously delete themselves. We show every language
accepted by an SCA can also be accepted by a streaming algorithm of similar complexity,
and we identify two different aspects in which SCAs are more restricted than streaming
algorithms. We also show there is a language which cannot be accepted by any SCA
in 𝑜 (𝑛/log𝑛) time, even though it admits an 𝑂 (log𝑛)-space streaming algorithm with
𝑂 (log𝑛) update time.

3.1. Introduction

The ongoing quest for lower bounds in complexity theory has been an arduous but by no
means unfruitful one. Recent developments have brought to light a phenomenon dubbed
hardness magnification [20, 21, 25, 75, 92, 93], giving several examples of natural problems
for which even slightly non-trivial lower bounds are as hard to prove as major complexity
class separations such as P ≠ NP. Among these, the preeminent example appears to be
the minimum circuit size problem:

Definition 3.1 (MCSP). For a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1}, let tt(𝑓) denote the
truth table representation of 𝑓 (as a binary string in {0, 1}+ of length |tt(𝑓) | = 2𝑛). For
𝑠 : N+ → N+, the minimum circuit size problem MCSP[𝑠] is the problem where, given
such a truth table tt(𝑓), one must answer whether there is a Boolean circuit 𝐶 on inputs

45

3. Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular Automata

of length 𝑛 and size at most 𝑠 (𝑛) that computes 𝑓 , that is, 𝐶 (𝑥) = 𝑓 (𝑥) for every input
𝑥 ∈ {0, 1}𝑛 .

It is a well-known fact that there is a constant 𝐾 > 0 such that, for any function 𝑓 on
𝑛 variables as above, there is a circuit of size at most 𝐾2𝑛/𝑛 that computes 𝑓 ; hence,
MCSP[𝑠] is only non-trivial for 𝑠 (𝑛) < 𝐾2𝑛/𝑛. Furthermore, MCSP[𝑠] ∈ NP for any
constructible 𝑠 and, since every circuit of size at most 𝑠 (𝑛) can be described by a binary
string of 𝑂 (𝑠 (𝑛) log 𝑠 (𝑛)) length, if 2𝑂 (𝑠 (𝑛) log 𝑠 (𝑛)) ≤ poly(2𝑛) (e.g., 𝑠 (𝑛) = 𝑂 (𝑛/log𝑛)), by
enumerating all possibilities we have MCSP[𝑠] ∈ P. (Of course, such a bound is hardly
useful since 𝑠 (𝑛) = 𝑂 (𝑛/log𝑛) implies the circuit is degenerate and can only read a strict
subset of its inputs.) For large enough 𝑠 (𝑛) < 𝐾2𝑛/𝑛 (e.g., 𝑠 (𝑛) ≥ 𝑛), it is unclear whether
MCSP[𝑠] is NP-complete (under polynomial-time many-one reductions); see also [64, 90].
Still, we remark there has been some recent progress regarding NP-completeness under
randomized many-one reductions for certain variants of MCSP [61].

Oliveira and Santhanam [93] and Oliveira, Pich, and Santhanam [92] recently analyzed
hardness magnification in the average-case as well as in the worst-case approximation
(i.e., gap) settings of MCSP for various (uniform and non-uniform) computational models.
Meanwhile, McKay, Murray, and Williams [75] showed similar results hold in the standard
(i.e., exact or gapless) worst-case setting and proved the following magnification result for
(single-pass) streaming algorithms (see Definition 3.6), which is a very restricted uniform
model; indeed, as mentioned in [75], even string equality (i.e., the problem of recognizing
{𝑤𝑤 | 𝑤 ∈ {0, 1}+}) cannot be solved by streaming algorithms (with limited space).

Theorem 3.2 ([75]). Let 𝑠 : N+ → N+ be time constructible and 𝑠 (𝑛) ≥ 𝑛. If there is no
poly(𝑠 (𝑛))-space streaming algorithm with poly(𝑠 (𝑛)) update time for (the search version
of)MCSP[𝑠], then P ≠ NP.

In this chapter, we present the following hardness magnification result for a (uniform)
computational model which is provably even more restricted than streaming algorithms:
shrinking cellular automata (SCAs). Here, Block𝑏 refers to a slightly modified presentation
of MCSP[𝑠] that is only needed due to certain limitations of the model (see further
discussion as well as Section 3.3.1).

Theorem 3.3. For a certain𝑚 ∈ poly(𝑠 (𝑛)), if Block𝑏 (MCSP[𝑠]) ∉ SCA[𝑛𝑓 (𝑚)] for every
𝑓 ∈ poly(𝑚) and 𝑏 = 𝑂 (𝑓), then P ≠ NP.

Furthermore, we show every language accepted by a sublinear-time SCA can also be
accepted by a streaming algorithm of comparable complexity:

Theorem 3.4. Let 𝑡 : N+ → N+ be computable by an𝑂 (𝑡)-space random access machine (as
in Definition 3.6) in 𝑂 (𝑡 log 𝑡) time. Then, if 𝐿 ∈ SCA[𝑡], there is an 𝑂 (𝑡)-space streaming
algorithm for 𝐿 with 𝑂 (𝑡 log 𝑡) update and 𝑂 (𝑡2 log 𝑡) reporting time.

46

3.1. Introduction

Finally, we identify and prove two distinct limitations of SCAs compared to streaming
algorithms (under sublinear-time constraints):

1. They are insensitive to the length of long unary substrings in their input (Lemma 3.17),
which means (standard versions of) fundamental problems such as parity, modulo,
majority, and threshold cannot be solved in sublinear time (Proposition 3.18 and
Corollary 3.20).

2. Only a limited amount of information can be transferred between cells which are far
apart (in the sense of one-way communication complexity; see Lemma 3.23).

Both limitations are inherited from the underlying model of cellular automata. The first
can be avoided by presenting the input in a special format (the previously mentioned
Block𝑛) that is efficiently verifiable by SCAs, which we motivate and adopt as part of the
model (see the discussion below). The second is more dramatic and results in lower bounds
even for languages presented in this format:

Theorem 3.5. There is a language 𝐿1 for which Block𝑛 (𝐿1) ∉ SCA[𝑜 (𝑁 /log𝑁)] (𝑁 being
the instance length) can be accepted by an𝑂 (log𝑁)-space streaming algorithmwith �̃� (log𝑁)
update time.

From the above, it follows that any proof of P ≠ NP based on a lower bound for solving
MCSP[𝑠] with streaming algorithms and Theorem 3.2 must implicitly contain a proof of
a lower bound for solving MCSP[𝑠] with SCAs. From a more “optimistic” perspective
(with an eventual proof of P ≠ NP in mind), although not as widely studied as streaming
algorithms, SCAs are thus at least as good as a “target” for proving lower bounds against
and, in fact, should be an easier one if we are able to exploit their aforementioned limi-
tations. Refer to Section 3.6 for further discussion on this, where we take into account a
recently proposed barrier [20] to existing techniques and which also applies to our proof
of Theorem 3.5.

From the perspective of cellular automata theory, our results further knowledge in
sublinear-time cellular automata models, a topic seemingly neglected by the commu-
nity at large (as pointed out in Chapter 2). Although this is certainly not the first result
in which complexity-theoretical results for cellular automata and their variants have
consequences for classical models (see, e.g., [70, 95] for results in this sense), to the best
of our knowledge said results address only necessary conditions for separating classical
complexity classes. Hence, our result is also novel in providing an implication in the other
direction, that is, a sufficient condition for said separations based on lower bounds for
cellular automata models.

3.1.1. The Model

(One-dimensional) cellular automata (CAs) are a parallel computational model composed
of identical cells arranged in an array. Each cell operates as a deterministic finite automaton

47

3. Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular Automata

(DFA) that is connected with its left and right neighbors and operates according to the
same local rule. In classical CAs, the cell structure is immutable; shrinking CAs relax
the model in that regard by allowing cells to spontaneously vanish (with their contents
being irrecoverably lost). The array structure is conserved by reconnecting every cell with
deleted neighbors to the nearest non-deleted ones in either direction.

SCAs were introduced by Rosenfeld, Wu, and Dubitzki in 1983 [100], but it was not until
recent years that the model received greater attention by the CA community [71, 85].
SCAs are a natural and robust model of parallel computation which, unlike classical CAs,
admit (non-trivial) sublinear-time computations.

We give a brief intuition as to how shrinking augments the classical CA model in a signifi-
cant way. Intuitively speaking, any two cells in a CA can only communicate by signals,
which necessarily requires time proportional to the distance between them. Assuming the
entire input is relevant towards acceptance, this imposes a linear lower bound on the time
complexity of the CA. In SCAs, however, this distance can be shortened as the computation
evolves, thus rendering acceptance in sublinear time possible. As a matter of fact, the
more cells are deleted, the faster distant cells can communicate and the computation can
evolve. This results in a trade-off between space (i.e., cells containing information) and
time (i.e., amount of cells deleted).

Comparison with Related Models. Unlike other parallel models such as random access
machines, SCAs are incapable of random access to their input. In a similar sense, SCAs
are constrained by the distance between cells, which is an aspect usually disregarded in
circuits and related models except perhaps for VLSI complexity [19, 112], for instance. In
contrast to VLSI circuits, however, in SCAs distance is a fluid aspect, changing dynamically
as the computation evolves. Also of note is that SCAs are a local computational model in a
quite literal sense of locality that is coupled with the above concept of distance (instead of
more abstract notions such as that from [116], for example).

These limitations hold not only for SCAs but also for standard CAs. Nevertheless, SCAs
are more powerful than other CA models capable of sublinear-time computation such
as ACAs (see Chapter 2 as well as [60]), which are CAs with their acceptance behavior
such that the CA accepts if and only if all cells simultaneously accept. This is because
SCAs can efficiently aggregate results computed in parallel (by combining them using some
efficiently computable function); in ACAs any such form of aggregation is fairly limited as
the underlying cell structure is static.

Block Words. Asmentioned above, there is an input format which allows us to circumvent
the first of the limitations of SCAs compared to streaming algorithms and which is essential
in order to obtain a more serious computational model. In this format, the input is
subdivided into blocks of the same size andwhich are separated by delimiters and numbered
in ascending order from left to right. Words with this structure are dubbed block words
accordingly, and a set of such words is a block language. There is a natural presentation of

48

3.1. Introduction

any (ordinary) word as a block word (by mapping every symbol to its own block), which
means there is a block language version to any (ordinary) language. (See Section 3.3.1.)

The concept of block words seems to arise naturally in the context of sublinear-time (both
shrinking and standard) CAs (as in Chapter 2 or also [60]). The syntax of block words
is very efficiently verifiable (more precisely, in time linear in the block length) by a CA
(without need of shrinking). In addition, the translation of a language to its block version
(and its inverse) is a very simple map; one may frame it, for instance, as an AC0 reduction.
Hence, the difference between a language and its block version is solely in presentation.

Block words coupled with CAs form a computational paradigm that appears to be sub-
stantially diverse from linear- and real-time CA computation (see Chapter 2 for examples).
Often we shall describe operations on a block (rather than on a cell) level and, by making
use of block numbering, two blocks with distinct numbers may operate differently even
though their contents are the same; this would be impossible at a cell level due to the
locality of CA rules. In combination with shrinking, certain block languages admit merg-
ing groups of blocks in parallel; this gives rise to a form of reduction we call blockwise
reductions and which we employ in a manner akin to downward self-reducibility as in
[3].

An additional technicality which arises is that the number of cells in a block is fixed at
the start of the computation; this means a block cannot “allocate extra space” (beyond a
constant multiple of the block length). This is the same limitation as that of linear bounded
automata (LBAs) compared to Turing machines with unbounded space, for example. We
cope with this limitation by increasing the block length in the problem instances as needed,
that is, by padding each block so that enough space is available from the outset.1 This is
still in line with the considerations above; for instance, the resulting language is still AC0

reducible to the original one (and vice-versa).

3.1.2. Techniques

We give a broad overview of the proof ideas behind our results.

Theorem 3.3 is a direct corollary of Theorem 3.24, proven is Section 3.5. The proof closely
follows [75] (see the discussion in Section 3.5 for a comparison) and, as mentioned above,
bases on a scheme similar to self-reducibility as in [3].

The lower bounds in Section 3.3.2 are established using Lemma 3.17, which is a generic
technical limitation of sublinear-time models based on CAs (the first of the two aforemen-
tioned limitations of SCAs with respect to streaming algorithms) and which we also show
to hold for SCAs.

1 An alternative solution is allowing the CA to “expand” by dynamically creating new cells between existing
ones; however, this may result in a computational model which is dramatically more powerful than
standard CAs [80, 85].

49

3. Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular Automata

One of the main technical highlights is the proof of Theorem 3.4, where we give a streaming
algorithm to simulate an SCA with limited space. Our general approach bases on dynamic
programming and is able to cope with the unpredictability of when, which, or even how
many cells are deleted during the simulation. The space efficiency is achieved by keeping
track of only as much information as needed as to determine the state of the SCA’s decision
cell step for step.

A second technical contribution is the application of one-way communication complexity
to obtain lower bounds for SCAs, which yields Theorem 3.5. Essentially, we split the
input in some position 𝑖 of our choice (which may even be non-uniformly dependent on
the input length) and have 𝐴 be given as input the symbols preceding 𝑖 while 𝐵 is given
the rest, where 𝐴 and 𝐵 are (non-uniform) algorithms with unbounded computational
resources. We show that, in this setting, 𝐴 can determine the state of the SCA’s decision
cell with only 𝑂 (1) information from 𝐵 for every step of the SCA. Thus, an SCA with
time complexity 𝑡 for a language 𝐿 yields a protocol with 𝑂 (𝑡) one-way communication
complexity for the above problem. Applying this in the contrapositive, Theorem 3.5 then
follows from the existence of a language 𝐿1 (in some contexts referred to as the indexing
or memory access problem) that has nearly linear one-way communication complexity
despite admitting an efficient streaming algorithm.

3.1.3. Organization

The rest of the chapter is organized as follows: Section 3.2 presents the basic definitions. In
Section 3.3 we introduce block words and related concepts and discuss the aforementioned
limitations of sublinear-time SCAs. Following that, in Section 3.4 we address the proof
of Theorem 3.4 and in Section 3.5 that of Theorem 3.3. Finally, Section 3.6 concludes the
chapter.

3.2. Preliminaries

We denote the set of integers by Z, that of positive integers by N+, and N+ ∪ {0} by N0.
For 𝑎, 𝑏 ∈ N0,

[𝑎, 𝑏] = {𝑥 ∈ N0 | 𝑎 ≤ 𝑥 ≤ 𝑏}.
For sets 𝐴 and 𝐵, 𝐵𝐴 is the set of functions 𝐴→ 𝐵. Unless otherwise noted, the base of the
logarithm is two.

We assume the reader is familiar with cellular automata as well as with the fundamentals
of computational complexity theory (see, e.g., standard references [5, 30, 50]). Words
are indexed starting with index zero. For a finite, non-empty set Σ, Σ∗ denotes the set of
words over Σ, and Σ+ the set Σ∗ \ {𝜀}. For 𝑤 ∈ Σ∗, we write 𝑤 (𝑖) for the 𝑖-th symbol of
𝑤 (and, in general,𝑤𝑖 stands for another word altogether, not the 𝑖-th symbol of𝑤). For
𝑎, 𝑏 ∈ N0,𝑤 [𝑎, 𝑏] is the subword𝑤 (𝑎)𝑤 (𝑎 + 1) · · ·𝑤 (𝑏 − 1)𝑤 (𝑏) of𝑤 (where𝑤 [𝑎, 𝑏] = 𝜀
for 𝑎 > 𝑏). |𝑤 |𝑎 is the number of occurrences of 𝑎 ∈ Σ in 𝑤 . bin𝑛 (𝑥) stands for the

50

3.2. Preliminaries

binary representation of 𝑥 ∈ N0, 𝑥 < 2𝑛 , of length 𝑛 ∈ N+ (padded with leading zeros).
poly(𝑛) is the class of functions polynomial in 𝑛 ∈ N0. REG denotes the class of regular
languages, and TISP[𝑡, 𝑠] (resp., TIME[𝑡]) that of problems decidable by a Turing machine
(with one tape and one read-write head) in 𝑂 (𝑡) time and 𝑂 (𝑠) space (resp., unbounded
space). Without restriction, we assume the empty word 𝜀 is not a member of any of the
languages considered.

An 𝜔-word is a map N0 → Σ, and a 𝜔𝜔-word is a map Z → Σ. We write Σ𝜔 = ΣN0 for
the set of 𝜔-words over Σ. For 𝑥 ∈ Σ, 𝑥𝜔 denotes the (unique) 𝜔-word with 𝑥𝜔 (𝑖) = 𝑥

for every 𝑖 ∈ N0. To each 𝜔𝜔-word 𝑤 corresponds a unique pair (𝑤−,𝑤+) of 𝜔-words
𝑤−,𝑤+ ∈ Σ𝜔 with 𝑤+(𝑖) = 𝑤 (𝑖) for 𝑖 ≥ 0 and 𝑤−(𝑖) = 𝑤 (−𝑖 − 1) for 𝑖 < 0. (Partial)
𝜔-word homomorphisms are extendable to (partial) 𝜔𝜔-word homomorphisms as follows:
Let 𝑓 : Σ𝜔 → Σ𝜔 be an𝜔-word homomorphism; then there is a unique 𝑓𝜔𝜔 : ΣZ → ΣZ such
that, for every𝑤 ∈ ΣZ,𝑤 ′ = 𝑓𝜔𝜔 (𝑤) is the 𝜔𝜔-word with𝑤 ′+ = 𝑓 (𝑤+) and𝑤 ′− = 𝑓 (𝑤−).

For a circuit 𝐶 , |𝐶 | denotes the size of 𝐶 , that is, the total number of gates in 𝐶 . It is
well-known that any Boolean circuit𝐶 can be described by a binary string of𝑂 (|𝐶 | log|𝐶 |)
length.

Definition 3.6 (Streaming algorithm). Let 𝑠,𝑢, 𝑟 : N+ → N+ be functions. An 𝑠-space
streaming algorithm 𝐴 is a random access machine which, on input𝑤 , works in 𝑂 (𝑠 (|𝑤 |))
space and, on every step, can either perform an operation on a constant number of bits in
memory or read the next symbol of 𝑤 . 𝐴 has 𝑢 update time if, for every 𝑤 , the number
of operations it performs between reading 𝑤 (𝑖) and 𝑤 (𝑖 + 1) is at most 𝑢 (|𝑤 |). 𝐴 has 𝑟
reporting time if it performs at most 𝑟 (|𝑤 |) operations after having read𝑤 (|𝑤 | − 1) (until
it terminates).

Our interest lies in 𝑠-space streaming algorithms that, for an input𝑤 , have poly(𝑠 (|𝑤 |))
update and reporting time for sublinear 𝑠 (i.e., 𝑠 (|𝑤 |) = 𝑜 (|𝑤 |)).

3.2.1. Cellular Automata

We consider only CAs with the standard neighborhood. The symbols of an input 𝑤
are provided from left to right in the cells 0 to |𝑤 | − 1 and are surrounded by inactive
cells, which conserve their state during the entire computation (i.e., the CA is bounded).
Acceptance is signaled by cell zero (i.e., the leftmost input cell).

Definition 3.7 (Cellular automaton). A cellular automaton (CA) 𝐶 is a tuple (𝑄, 𝛿, Σ, 𝑞, 𝐴)
where:

• 𝑄 is a non-empty and finite set of states.

• 𝛿 : 𝑄3 → 𝑄 is the local transition function.

• Σ ⊊ 𝑄 is the input alphabet of 𝐶 .

51

3. Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular Automata

• 𝑞 ∈ 𝑄 \ Σ is the inactive state, that is, 𝛿 (𝑞1, 𝑞, 𝑞2) = 𝑞 for every 𝑞1, 𝑞2 ∈ 𝑄 .

• 𝐴 ⊆ 𝑄 \ {𝑞} is the set of accepting states of 𝐶 .

A cell which is not in the inactive state is said to be active. The elements of 𝑄Z are the
(global) configurations of 𝐶 . 𝛿 induces the global transition function Δ : 𝑄Z → 𝑄Z of 𝐶 by

Δ(𝑐) (𝑖) = 𝛿 (𝑐 (𝑖 − 1), 𝑐 (𝑖), 𝑐 (𝑖 + 1))

for every cell 𝑖 ∈ Z and configuration 𝑐 ∈ 𝑄Z.

𝐶 accepts an input 𝑤 ∈ Σ+ if cell zero is eventually in an accepting state, that is, there
is 𝑡 ∈ N0 such that (Δ𝑡 (𝑐0)) (0) ∈ 𝐴, where 𝑐0 = 𝑐0(𝑤) is the initial configuration (for 𝑤):
𝑐0(𝑖) = 𝑤 (𝑖) for 𝑖 ∈ [0, |𝑤 | − 1], and 𝑐0(𝑖) = 𝑞 otherwise. For a minimal such 𝑡 , we say
𝐶 accepts 𝑤 with time complexity 𝑡 . 𝐿(𝐴) ⊆ Σ+ denotes the set of words accepted by 𝐶 .
For 𝑡 : N+ → N0, CA[𝑡] is the class of languages accepted by CAs with time complexity
𝑂 (𝑡 (𝑛)), 𝑛 being the input length.

For convenience, we extend Δ in the obvious manner (i.e., as a map induced by 𝛿) so it
is also defined for every (finite) word 𝑤 ∈ 𝑄∗. For |𝑤 | ≤ 2, we set Δ(𝑤) = 𝜀; for longer
words, |Δ(𝑤) | = |𝑤 | − 2 holds.

We state some remarks concerning the classes CA[𝑡]: CA[poly] = TISP[poly, 𝑛] (i.e.,
the class of polynomial-time LBAs), and CA[𝑡] = CA[1] ⊊ REG for every sublinear 𝑡 .
Furthermore, CA[𝑡] ⊆ TISP[𝑡2, 𝑛] (where 𝑡2(𝑛) = (𝑡 (𝑛))2) and TISP[𝑡, 𝑛] ⊆ CA[𝑡].

Definition 3.8 (Shrinking CA). A shrinking CA (SCA) 𝑆 is a CA with a delete state ⊗ ∈
𝑄 \ (Σ ∪ {𝑞}). The global transition function ΔS of 𝑆 is given by applying the standard
CA global transition function Δ (as in Definition 3.7) followed by removing all cells in the
state ⊗; that is, ΔS = Φ ◦ Δ, where Φ : 𝑄Z → 𝑄Z is the (partial) 𝜔𝜔-word homomorphism
resulting from the extension to 𝑄Z of the map 𝜑 : 𝑄 → 𝑄 with 𝜑 (⊗) = 𝜀 and 𝜑 (𝑥) = 𝑥 for
𝑥 ∈ 𝑄 \ {⊗}. For 𝑡 : N+ → N0, SCA[𝑡] is the class of languages accepted by SCAs with
time complexity 𝑂 (𝑡 (𝑛)), where 𝑛 denotes the input length.

Note that Φ is only partial since, for instance, any 𝜔𝜔-word in ⊗𝜔Σ∗⊗𝜔 has no proper
image (as it is not mapped to a 𝜔𝜔-word). Hence, ΔS is also only a partial function (on𝑄Z);
nevertheless, Φ is total on the set of 𝜔𝜔-words in which ⊗ occurs only finitely often and,
in particular, ΔS is total on the set of configurations arising from initial configurations for
finite input words (which is the setting we are interested in).

The acceptance condition of SCAs is the same as in Definition 3.7 (i.e., acceptance is
dictated by cell zero). Unlike in standard CAs, the index of one same cell can differ
from one configuration to the next; that is, a cell index does not uniquely determine a
cell on its own (rather, only in conjunction with a time step). This is a consequence of
applying Φ, which contracts the global configuration towards cell zero. More precisely, for
a configuration 𝑐 ∈ 𝑄Z, the cell with index 𝑖 ≥ 0 in Δ(𝑐) corresponds to that with index
𝑖 + 𝑑𝑖 in 𝑐 , where 𝑑𝑖 is the number of cells with index ≤ 𝑖 in 𝑐 that were deleted in the

52

3.2. Preliminaries

q 0 1 0 1 0 0 qc

q 0′ ⊗ ⊗ ⊗ ⊗ 0′ q∆(c)

q 0′ 0′ q∆S(c) = Φ(∆(c))

q a 0′ q∆S(∆S(c)) ✓

Figure 3.1.: Computation of an SCA that recognizes 𝐿 = {𝑤 ∈ {0, 1}+ | 𝑤 (0) = 𝑤 (|𝑤 | − 1)} in 𝑂 (1) time.
Here, the input word is 010100 ∈ 𝐿.

transition to Δ(𝑐). This also implies the cell with index zero in Δ(𝑐) is the same as that in
𝑐 with minimal positive index that was not deleted in the transition to Δ(𝑐); thus, in any
time step, cell zero is the leftmost active cell (unless all cells are inactive; in fact, cell zero
is inactive if and only if all other cells are inactive). Granted, what indices a cell has is of
little importance when one is interested only in the configurations of an SCA and their
evolution; nevertheless, they are relevant when simulating an SCA with another machine
model (as we do in Sections 3.3.3 and 3.4).

Naturally,CA[𝑡] ⊆ SCA[𝑡] for every function 𝑡 , and SCA[poly] = CA[poly]. For sublinear
𝑡 , SCA[𝑡] contains non-regular languages if, for instance, 𝑡 (𝑛) = Ω(log𝑛) (see below);
hence, the inclusion of CA[𝑡] in SCA[𝑡] in strict. In fact, this is the case even if we consider
only regular languages. One simple example is

𝐿 = {𝑤 ∈ {0, 1}+ | 𝑤 (0) = 𝑤 (|𝑤 | − 1)},

which is in SCA[1] and regular but not in CA[𝑜 (𝑛)] = CA[𝑂 (1)]. One obtains an SCA for
𝐿 by having all cells whose both neighbors are active delete themselves in the first step;
the two remaining cells then compare their states, and cell zero accepts if and only if this
comparison succeeds or if the input has length 1 (which it can notice immediately since it
is only for such words that it has two inactive neighbors). Formally, the local transition
function 𝛿 is such that, for 𝑧1, 𝑧3 ∈ {0, 1, 𝑞} and 𝑧2 ∈ {0, 1}, 𝛿 (𝑧1, 𝑧2, 𝑧3) = ⊗ if both 𝑧1 and
𝑧3 are in {0, 1}, 𝛿 (𝑧1, 𝑧2, 𝑧3) = 𝑧′2 if 𝑧1 = 𝑞 or 𝑧3 = 𝑞, and 𝛿 (𝑞, 𝑧′2, 𝑧′2) = 𝛿 (𝑞, 𝑧′2, 𝑞) = 𝑎; in all
other cases, 𝛿 simply conserves the cell’s state. See Figure 3.1 for an example.

Using a textbook technique to simulate a (bounded) CA with an LBA (simply skipping
deleted cells), we have:

Proposition 3.9. For every function 𝑡 : N+ → N+ computable by an LBA in 𝑂 (𝑛 · 𝑡 (𝑛))
time, SCA[𝑡 (𝑛)] ⊆ TISP[𝑛 · 𝑡 (𝑛), 𝑛].

The inclusion is actually proper (see Corollary 3.19). Using the well-known result that
TIME[𝑜 (𝑛 log𝑛)] = REG [67], it follows that at least a logarithmic time bound is needed
for SCAs to recognize languages which are not regular:

Corollary 3.10. SCA[𝑜 (log𝑛)] ⊊ REG.

53

3. Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular Automata

This bound is tight: It is relatively easy to show that any language accepted by ACAs in
𝑡 (𝑛) time can also be accepted by an SCA in 𝑡 (𝑛) +𝑂 (1) time. Since there is a non-regular
language recognizable by ACAs [60] in 𝑂 (log𝑛) time, the same language is recognizable
by an SCA in 𝑂 (log𝑛) time.

For any finite, non-empty set Σ, we say a function 𝑓 : Σ+ → Σ+ is computable in place
by an (S)CA if there is an (S)CA 𝑆 which, given 𝑥 ∈ Σ+ as input (surrounded by inactive
cells), produces 𝑓 (𝑥). Additionally, 𝑔 : N+ → N+ is constructible in place by an (S)CA if
𝑔(𝑛) ≤ 2𝑛 and there is an (S)CA 𝑆 which, given 𝑛 ∈ N0 in unary, produces bin𝑛 (𝑔(𝑛) − 1)
(i.e., 𝑔(𝑛) − 1 in binary). Note the set of functions computable or constructible in place
by an (S)CA in at most 𝑡 (𝑛) time, where 𝑛 is the input length and 𝑡 : N+ → N+ is some
function, includes (but is not limited to) all functions computable by an LBA in at most
𝑡 (𝑛) time.

3.3. Capabilities and Limitations of Sublinear-Time SCAs

3.3.1. Block Languages

Let Σ be a finite, non-empty set. For Σ𝜀 = Σ ∪ {𝜀} and 𝑥,𝑦 ∈ Σ+,
(︁𝑥
𝑦

)︁
denotes the (unique)

word in (Σ𝜀 × Σ𝜀)+ of length max{|𝑥 |, |𝑦 |} for which
(︁𝑥
𝑦

)︁
(𝑖) = (𝑥 (𝑖), 𝑦 (𝑖)), where 𝑥 (𝑖) =

𝑦 (𝑗) = 𝜀 for 𝑖 ≥ |𝑥 | and 𝑗 ≥ |𝑦 |.

Definition 3.11 (Block word). Let 𝑛,𝑚,𝑏 ∈ N+ be such that 𝑏 ≥ 𝑛 and𝑚 ≤ 2𝑛 . A word𝑤
is said to be an (𝑛,𝑚,𝑏)-block word (over Σ) if it is of the form

𝑤 = 𝑤0#𝑤1# · · · #𝑤𝑚−1

with
𝑤𝑖 =

(︃
bin𝑛 (𝑥𝑖)
𝑦𝑖

)︃
,

where 𝑥0 ≥ 0, 𝑥𝑖+1 = 𝑥𝑖 + 1 for every 𝑖 , 𝑥𝑚−1 < 2𝑛 , and 𝑦𝑖 ∈ Σ𝑏 . In this context, 𝑤𝑖 is the
𝑖-th block of𝑤 .

Hence, every (𝑛,𝑚,𝑏)-block word𝑤 has𝑚 many blocks of length 𝑏, and its total length is
|𝑤 | = (𝑏 + 1)𝑚 − 1 ∈ Θ(𝑏𝑚). For example,

𝑤 =

(︃
01
0100

)︃
#
(︃
10
1100

)︃
#
(︃
11
1000

)︃
is a (2, 3, 4)-block word with 𝑥0 = 1, 𝑦0 = 0100, 𝑦1 = 1100, and 𝑦2 = 1000. 𝑛 is implicitly
encoded by the entries in the upper track (i.e., the 𝑥𝑖) and we shall see𝑚 and𝑏 as parameters
depending on 𝑛 (see Definition 3.12 below), so the structure of each block can be verified
locally (i.e., by inspecting the immediate neighborhood of every block). Note the block

54

3.3. Capabilities and Limitations of Sublinear-Time SCAs

numbering starts with an arbitrary 𝑥0; this is intended so that, for𝑚′ < 𝑚, an (𝑛,𝑚,𝑏)-
block word admits (𝑛,𝑚′, 𝑏)-block words as infixes (which would not be the case if we
required, say, 𝑥0 = 0).

When referring to block words, we use 𝑁 for the block word length |𝑤 | and reserve 𝑛 for
indexing block words of different block length, overall length, or total number of blocks
(or any combinations thereof). With𝑚 and 𝑏 as parameters depending on 𝑛, we obtain
sets of block words:

Definition 3.12 (Block language). Let𝑚,𝑏 : N+ → N+ be non-decreasing and constructible
in place by a CA in 𝑂 (𝑚(𝑛) + 𝑏 (𝑛)) time. Furthermore, let 𝑏 (𝑛) ≥ 𝑛 and𝑚(𝑛) ≤ 2𝑛 . Then,
𝔅𝑚
𝑏
denotes the set of all (𝑛,𝑚(𝑛), 𝑏 (𝑛))-block words for 𝑛 ∈ N+, and every subset 𝐿 ⊆ 𝔅𝑚

𝑏

is an ((𝑛,𝑚,𝑏)-)block language (over Σ).

An SCA can verify its input is a valid block word in 𝑂 (𝑏 (𝑛)) time, that is, locally check
that the structure and contents of the blocks are consistent (i.e., as in Definition 3.11). This
can be realized using standard CA techniques without need of shrinking (see Chapter 2 as
well as [60] for constructions). Recall Definition 3.8 does not require an SCA 𝑆 to explicitly
reject inputs not in 𝐿(𝑆), that is, the time complexity of 𝑆 on an input𝑤 is only defined
for𝑤 ∈ 𝐿(𝑆). As a result, when 𝐿(𝑆) is a block language, the time spent verifying that𝑤
is a block word is only relevant if𝑤 ∈ 𝐿(𝑆) and, in particular, if𝑤 is a (valid) block word.
Provided the state of every cell in 𝑆 eventually impacts its decision to accept (which is the
case for all constructions we describe), it suffices to have a cell mark itself with an error
flag whenever a violation in𝑤 is detected (even if other cells continue their operation as
normal); since every cell is relevant towards acceptance, this eventually prevents 𝑆 from
accepting (and, since𝑤 ∉ 𝐿(𝑆), it is irrelevant how long it takes for this to occur). Thus,
for the rest of this chapter, when describing an SCA for a block language, we implicitly
require that the SCA checks its input is a valid block word beforehand.

As stated in the introduction, our interest in block words is as a special input format. There
is a natural bijection between any language and a block version of it, namely by mapping
each word 𝑧 to a block word𝑤 in which each block𝑤𝑖 contains a symbol 𝑧 (𝑖) of 𝑧 (padded
up to the block length 𝑏) and the blocks are numbered from 0 to |𝑧 | − 1:

Definition 3.13 (Block version of a language). Let 𝐿 ⊆ Σ+ be a language and 𝑏 as in
Definition 3.12. The block version Block𝑏 (𝐿) of 𝐿 (with blocks of length 𝑏) is the block
language for which, for every 𝑧 ∈ Σ+, 𝑧 ∈ 𝐿 holds if and only if we have 𝑤 ∈ Block𝑏 (𝐿)
where 𝑤 is the (𝑛,𝑚,𝑏 (𝑛))-block word (as in Definition 3.11) with𝑚 = |𝑧 |, 𝑛 = ⌈log𝑚⌉,
𝑥0 = 0, and 𝑦𝑖 = 𝑧 (𝑖)0𝑏 (𝑛)−1 for every 𝑖 ∈ [0,𝑚 − 1].

Note that, for any such language 𝐿, Block𝑏 (𝐿) ∉ REG for any 𝑏 (since 𝑏 (𝑛) ≥ 𝑛 is not
constant); hence, Block𝑏 (𝐿) ∈ SCA[𝑡] only for 𝑡 (𝑛) = Ω(log𝑛) (and constructible 𝑏). For
𝑏 (𝑛) = 𝑛, Block𝑛 (𝐿) is the block version with minimal padding.

For any two finite, non-empty sets Σ1 and Σ2, say a function 𝑓 : Σ+1 → Σ+2 is non-stretching
if |𝑓 (𝑥) | ≤ |𝑥 | for every 𝑥 ∈ Σ+1 . We now define 𝑘-blockwise maps, which are maps that

55

3. Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular Automata

operate on block words by grouping 𝑘 (𝑛) many blocks together and mapping each such
group (in a non-stretching manner) to a single block of length at most (𝑏 (𝑛) +1)𝑘 (𝑛) −1.

Definition 3.14 (Blockwise map). Let 𝑘 : N+ → N+, 𝑘 (𝑛) ≥ 2, be a non-decreasing
function and constructible in place by a CA in 𝑂 (𝑘 (𝑛)) time. A map 𝑔 : 𝔅𝑘𝑚

𝑏
→ 𝔅𝑚

𝑏
is a

𝑘-blockwise map if there is a non-stretching 𝑔′ : 𝔅𝑘
𝑏
→ Σ+ such that, for every 𝑤 ∈ 𝔅𝑘𝑚

𝑏

(as in Definition 3.11) and𝑤 ′𝑖 = 𝑤𝑖𝑘# · · · #𝑤 (𝑖+1)𝑘−1:

𝑔(𝑤) =
(︃
bin𝑛 (𝑥0)
𝑔′(𝑤 ′0)

)︃
· · ·

(︃
bin𝑛 (𝑥𝑚−1)
𝑔′(𝑤 ′

𝑚−1)

)︃
.

Using blockwise maps, we obtain a very natural form of reduction operating on block
words and which is highly compatible with sublinear-time SCAs as a computational model.
The reduction divides an (𝑛, 𝑘𝑚,𝑏)-block word in𝑚 many groups of 𝑘 many contiguous
blocks and, as a 𝑘-blockwise map, maps each such group to a single block (of length 𝑏):

Definition 3.15 (Blockwise reducible). For block languages 𝐿 and 𝐿′, 𝐿 is (𝑘-)blockwise
reducible to 𝐿′ if there is a computable 𝑘-blockwise map 𝑔 : 𝔅𝑘𝑚

𝑏
→ 𝔅𝑚

𝑏
such that, for

every𝑤 ∈ 𝔅𝑘𝑚
𝑏

, we have𝑤 ∈ 𝐿 if and only if 𝑔(𝑤) ∈ 𝐿′.

Since every application of the reduction reduces the instance length by a factor of approxi-
mately 𝑘 , logarithmically many applications suffice to produce a trivial instance (i.e., an
instance consisting of a single block). This gives us the following computational paradigm
of chaining blockwise reductions together:

Lemma 3.16. Let 𝑘, 𝑟 : N+ → N0 be functions, and let 𝐿 ⊆ 𝔅𝑘𝑟

𝑏
be such that there is a series

𝐿 = 𝐿0, 𝐿1, . . . , 𝐿𝑟 (𝑛) of languages with 𝐿𝑖 ⊆ 𝔅𝑘𝑟−𝑖

𝑏
and such that 𝐿𝑖 is 𝑘 (𝑛)-blockwise reducible

to 𝐿𝑖+1 via the (same) blockwise reduction 𝑔. Furthermore, let 𝑔′ be as in Definition 3.14, and
let 𝑡𝑔′ : N+ → N+ be non-decreasing and such that, for every𝑤 ′ ∈ 𝔅𝑟

𝑏
, 𝑔′(𝑤 ′) is computable

in place by an SCA in 𝑂 (𝑡𝑔′ (|𝑤 ′|)) time. Finally, let 𝐿𝑟 (𝑛) ∈ SCA[𝑡] for some function
𝑡 : N+ → N+. Then,

𝐿 ∈ SCA
[︁
𝑟 (𝑛)𝑡𝑔′ (𝑂 (𝑘 (𝑛)𝑏 (𝑛))) +𝑂 (𝑏 (𝑛)) + 𝑡 (𝑏 (𝑛))

]︁
.

Proof. We consider the SCA 𝑆 which, given𝑤 ∈ 𝔅𝑘𝑟

𝑏
, repeatedly applies the reduction 𝑔,

where each application of 𝑔 is computed by applying 𝑔′ on each group of relevant blocks
(i.e., the𝑤 ′𝑖 from Definition 3.14) in parallel.

One detail to note is that this results in the same procedure 𝑃 being applied to different
groups of blocks in parallel, but it may be so that 𝑃 requires more time for one group
of blocks than for the other. Thus, we allow the entire process to be carried out asyn-
chronously but require that, for each group of blocks, the respective results be present
before each execution of 𝑃 is started. (One way of realizing this, for instance, is having
the first block in the group send a signal across the whole group to ensure all inputs are

56

3.3. Capabilities and Limitations of Sublinear-Time SCAs

available and, when it arrives at the last block in the group, another signal is sent to trigger
the start of 𝑃 .)

Using that 𝑡𝑔′ is non-decreasing and that 𝑔′ is non-stretching, the time needed for each
execution of 𝑃 is 𝑡𝑔′ (|𝑤 ′𝑖 |) ∈ 𝑡𝑔′ (𝑂 (𝑘 (𝑛)𝑏 (𝑛))) (which is not impacted by the considerations
above) and, since there are 𝑟 (𝑛) reductions in total, we have 𝑟 (𝑛) · 𝑡𝑔′ (𝑂 (𝑘 (𝑛)𝑏 (𝑛))) time
in total. Once a single block is left, the cells in this block synchronize themselves and
then behave as in the SCA 𝑆′ for 𝐿𝑟 (𝑛) guaranteed by the assumption; using a standard
synchronization algorithm, this requires 𝑂 (𝑏 (𝑛)) for the synchronization, plus 𝑡 (𝑏 (𝑛))
time for emulating 𝑆′.

3.3.2. Block Languages and Parallel Computation

In this section, we prove the first limitation of SCAs discussed in the introduction (i.e.,
Lemma 3.17) and which renders them unable of accepting the languages PAR,MOD𝑞 ,MAJ,
and THR𝑘 (defined next) in sublinear time. Nevertheless, as is shown in Proposition 3.21,
the block versions of these languages can be accepted quite efficiently. This motivates
the block word presentation for inputs; that is, this first limitation concerns only the
presentation of instances (and, hence, is not a computational limitation of SCAs).

Let 𝑞 > 2 and let 𝑘 : N+ → N+ be constructible in place by a CA in at most 𝑡𝑘 (𝑛) time
for some 𝑡𝑘 : N+ → N+. Additionally, let PAR (resp., MOD𝑞; resp., MAJ; resp., THR𝑘) be
the language consisting of every word𝑤 ∈ {0, 1}+ for which |𝑤 |1 is even (resp., |𝑤 |1 = 0
(mod 𝑞); resp., |𝑤 |1 ≥ |𝑤 |0; resp., |𝑤 |1 ≥ 𝑘 (|𝑤 |)).

The following is a simple limitation of sublinear-time CA models such as ACAs (see also
[105]) which we show also to hold for SCAs.

Lemma 3.17. Let 𝑆 be an SCA with input alphabet Σ, and let 𝑥 ∈ Σ be such that there is a
minimal 𝑡 ∈ N+ for which Δ𝑡S(𝑦) = 𝜀, where 𝑦 = 𝑥2𝑡+1 (i.e., the symbol 𝑥 concatenated 2𝑡 + 1
times with itself). Then, for every 𝑧1, 𝑧2 ∈ Σ+,𝑤 = 𝑧1𝑦𝑧2 ∈ 𝐿(𝑆) holds if and only if for every
𝑖 ∈ N0 we have𝑤𝑖 = 𝑧1𝑦𝑥𝑖𝑧2 ∈ 𝐿(𝑆).

Proof. Given 𝑤 and 𝑖 as above, we show 𝑤𝑖 ∈ 𝐿(𝑆); the converse is trivial. Since 𝑤 and
𝑤𝑖 both have 𝑧1𝑦 as prefix and Δ𝑡

′

S (𝑦) ≠ 𝜀 for 𝑡 ′ < 𝑡 , if 𝑆 accepts 𝑤 in 𝑡 ′ steps, then it
also accepts 𝑤𝑖 in 𝑡 ′ steps. Thus, assume 𝑆 accepts 𝑤 in 𝑡 ′ ≥ 𝑡 steps, in which case it
suffices to show Δ𝑡S(𝑤) = Δ𝑡S(𝑤𝑖). To this end, let 𝛼 𝑗 for 𝑗 ∈ [0, 𝑡] be such that 𝛼0 = 𝑥 and
𝛼 𝑗+1 = 𝛿 (𝛼 𝑗 , 𝛼 𝑗 , 𝛼 𝑗). Hence, Δ(𝛼𝑘+2𝑗) = 𝛼𝑘𝑗+1 holds for every 𝑘 ∈ N+ (and 𝑗 < 𝑡) and, by an
inductive argument as well as by the assumption on 𝑦 (i.e., 𝛼𝑡 = ⊗),

Δ𝑡S
(︁
𝑦𝑥𝑖

)︁
= Δ𝑡S

(︁
𝛼2𝑡+𝑖+10

)︁
= 𝜀.

Using this along with |𝑦 | ≥ 𝑡 and 𝑦 ∈ {𝑥}+, we have

Δ𝑡S
(︁
𝑞𝑡𝑧1𝑦𝑥

𝑖
)︁
= Δ𝑡S

(︁
𝑞𝑡𝑧1𝑦

)︁
57

3. Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular Automata

and
Δ𝑡S

(︁
𝑦𝑥𝑖𝑧2𝑞

𝑡
)︁
= Δ𝑡S

(︁
𝑥𝑖𝑦𝑧2𝑞

𝑡
)︁
= Δ𝑡S

(︁
𝑦𝑧2𝑞

𝑡
)︁
;

hence, Δ𝑡S(𝑤) = Δ𝑡S(𝑤𝑖) follows.

An implication of Lemma 3.17 is that every unary language𝑈 ∈ SCA[𝑜 (𝑛)] is either finite
or cofinite. As PAR ∩ {1}+ is neither finite nor cofinite, we can prove:

Proposition 3.18. PAR ∉ SCA[𝑜 (𝑛)] (where 𝑛 is the input length).

Proof. Let 𝑆 be an SCA with 𝐿(𝑆) = PAR. We show 𝑆 must have Ω(𝑛) time complexity on
inputs from the infinite set

𝑈 = {12𝑚 | 𝑚 ∈ N+} ⊂ PAR.

If Δ𝑡S(1
2𝑡+1) = 𝜀 for some 𝑡 ∈ N0, then, by Lemma 3.17, 𝐿(𝑆) ∩ {1}+ is either finite or

cofinite, which contradicts 𝐿(𝑆) = PAR. Hence, Δ𝑡S(1
2𝑡+1) ≠ 𝜀 for every 𝑡 ∈ N0. In this case,

the trace of cell zero on input𝑤 = 112𝑡+11 in the first 𝑡 steps is the same as that on input
𝑤 ′ = 112𝑡+111. Since 𝑤 ∈ PAR if and only if 𝑤 ′ ∉ PAR, it follows that 𝑆 has Ω(𝑡) = Ω(𝑛)
time complexity on𝑈 .

Corollary 3.19. REG ⊈ SCA[𝑜 (𝑛)].

The argument above generalizes to MOD𝑞 , MAJ, and THR𝑘 with 𝑘 ∈ 𝜔 (1). For MOD𝑞 ,
consider 𝑈 = {1𝑞𝑚 | 𝑚 ∈ N+}. For MAJ and THR𝑘 , set 𝑈 = {0𝑚1𝑚 | 𝑚 ∈ N+} and
𝑈 = {0𝑛−𝑘 (𝑛)1𝑘 (𝑛) | 𝑛 ∈ N+}, respectively; in this case, 𝑈 is not unary, but the argument
easily extends to the unary suffixes of the words in𝑈 .

Corollary 3.20. MOD𝑞,MAJ ∉ SCA[𝑜 (𝑛)]. Also, THR𝑘 ∈ SCA[𝑜 (𝑛)] if and only if
𝑘 = 𝑂 (1).

The block versions of these languages, however, are not subject to the limitation above:

Proposition 3.21. For 𝐿 ∈ {PAR,MOD𝑞,MAJ}, Block𝑛 (𝐿) ∈ SCA[(log𝑁)2], where 𝑁 =

𝑁 (𝑛) is the input length. Also, Block𝑛 (THR𝑘) ∈ SCA[(log𝑁)2 + 𝑡𝑘 (𝑛)].

Proof. Given 𝐿 ∈ {PAR,MOD𝑞,MAJ, THR𝑘}, we construct an SCA 𝑆 for 𝐿′ = Block𝑛 (𝐿)
with the purported time complexity. Let𝑤 ∈ 𝔅𝑚

𝑛 be an input of 𝑆 . For simplicity, we assume
that, for every such 𝑤 ,𝑚 = 𝑚(𝑛) = 2𝑛 is a power of two; the argument extends to the
general case in a simple manner. Hence, we have 𝑁 = |𝑤 | = 𝑛𝑚 and 𝑛 = log𝑚 ∈ Θ(log𝑁).

Let 𝐿0 ⊂ 𝔅𝑚
𝑛 be the language containing every such block word𝑤 ∈ 𝔅𝑚

𝑛 for which, for𝑦𝑖 as
in Definition 3.11 and 𝑦 =

∑︁𝑚−1
𝑖=0 𝑦𝑖 , we have 𝑓𝐿 (𝑦) = 𝑓𝐿,𝑛 (𝑦) = 0, where 𝑓PAR(𝑦) = 𝑦 mod 2,

𝑓MOD𝑞 (𝑦) = 𝑦 mod 𝑞, 𝑓MAJ(𝑦) = 0 if and only if 𝑦 ≥ 2𝑛−1, and 𝑓THR𝑘 (𝑦) = 0 if and only if

58

3.3. Capabilities and Limitations of Sublinear-Time SCAs

𝑦 ≥ 𝑘 (𝑛). Thus, (under the previous assumption) we have 𝐿0 = 𝐿′ (and, in the general case,
𝐿0 = 𝐿

′ ∩𝔅2𝑛
𝑛).

Then, 𝐿0 is 2-blockwise reducible to a language 𝐿1 ⊆ 𝔅
𝑚/2
𝑛 by mapping every (𝑛, 2, 𝑛)-block

word of the form (︃
bin𝑛 (2𝑥)
𝑦2𝑥

)︃
#
(︃
bin𝑛 (2𝑥 + 1)

𝑦2𝑥+1

)︃
with 𝑥 ∈ [0, 2𝑛−1 − 1] to (︃

bin𝑛 (𝑥)
𝑦2𝑥 + 𝑦2𝑥+1

)︃
.

To do so, it suffices to compute bin𝑛 (𝑥) from bin𝑛 (2𝑥) and add the𝑦2𝑥 and𝑦2𝑥+1 values in the
lower track; using basic CA arithmetic and cell communication techniques, this is realizable
in 𝑂 (𝑛) time. Repeating this procedure, we obtain a chain of languages 𝐿0, . . . , 𝐿𝑛 such
that 𝐿𝑖 is 2-blockwise reducible to 𝐿𝑖+1 in 𝑂 (𝑛) time. By Lemma 3.16, 𝐿′ ∈ SCA[𝑛2 + 𝑡 (𝑛)]
follows, where 𝑡 : N+ → N0 is such that 𝐿𝑛 ∈ SCA[𝑡]. For 𝐿 ∈ {PAR,MOD𝑞,MAJ},
checking the above condition on 𝑓𝐿 (𝑦) can be done in 𝑡 (𝑛) = 𝑂 (𝑛) time; as for 𝐿 = THR𝑘 ,
we must also compute 𝑘 , so we have 𝑡 (𝑛) = 𝑂 (𝑛 + 𝑡𝑘 (𝑛)).

The general case follows from adapting the above reductions so that words with an odd
number of blocks are also accounted for (e.g., by ignoring the last block of𝑤 and applying
the reduction on the first𝑚 − 1 blocks).

3.3.3. An Optimal SCA Lower Bound for a Block Language

Corollary 3.19 already states SCAs are strictly less capable than streaming algorithms.
However, the argument bases exclusively on long unary subwords in the input (i.e.,
Lemma 3.17) and, therefore, does not apply to block languages. Hence Theorem 3.5,
which shows SCAs are more limited than streaming algorithms even considering only block
languages:

Theorem 3.5. There is a language 𝐿1 for which Block𝑛 (𝐿1) ∉ SCA[𝑜 (𝑁 /log𝑁)] (𝑁 being
the instance length) can be accepted by an𝑂 (log𝑁)-space streaming algorithmwith �̃� (log𝑁)
update time.

Let 𝐿1 be the language of words 𝑤 ∈ {0, 1}+ such that |𝑤 | = 2𝑛 is a power of two and,
for 𝑖 = 𝑤 (0)𝑤 (1) · · ·𝑤 (𝑛 − 1) (seen as an 𝑛-bit binary integer),𝑤 (𝑖) = 1. It is not hard to
show that its block version Block𝑛 (𝐿1) can be accepted by an 𝑂 (log𝑚)-space streaming
algorithm with �̃� (log𝑚) update time.

The𝑂 (𝑁 /log𝑁) upper bound for Block𝑛 (𝐿1) is optimal since there is an𝑂 (𝑁 /log𝑁) time
SCA for it: Shrink every block to its respective bit (i.e., the𝑦𝑖 fromDefinition 3.11), reducing
the input to a word𝑤 ′ of 𝑂 (𝑁 /log𝑁) length; while doing so, mark the bit corresponding
to the 𝑛-th block. Then shift the contents of the first 𝑛 bits as a counter that decrements
itself every new cell it visits and, when it reaches zero, signals acceptance if the cell it is

59

3. Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular Automata

currently at contains a 1. Using counter techniques as in [106, 114], this requires 𝑂 (|𝑤 ′|)
time.

The proof of Theorem 3.5 bases on communication complexity. The basic setting is a game
with two players 𝐴 and 𝐵 (both with unlimited computational resources) which receive
inputs𝑤𝐴 and𝑤𝐵 , respectively, and must produce an answer to the problem at hand while
exchanging a limited amount of bits. We are interested in the case where the concatenation
𝑤 = 𝑤𝐴𝑤𝐵 of the inputs of 𝐴 and 𝐵 is an input to an SCA and 𝐴 must output whether the
SCA accepts 𝑤 . More importantly, we analyze the case where only 𝐵 is allowed to send
messages, that is, the case of one-way communication.2

Definition 3.22 (One-way communication complexity). Let𝑚, 𝑓 : N+ → N+ be functions
with 0 < 𝑚(𝑁) ≤ 𝑁 . A language 𝐿 ⊆ Σ+ is said to have (𝑚-)one-way communication
complexity 𝑓 if there are families of algorithms (with unlimited computational resources)
(𝐴𝑁)𝑁∈N+ and (𝐵𝑁)𝑁∈N+ such that the following holds for every𝑤 ∈ Σ∗ of length |𝑤 | = 𝑁 ,
where𝑤𝐴 = 𝑤 [0,𝑚(𝑁) − 1] and𝑤𝐵 = 𝑤 [𝑚(𝑁), 𝑁 − 1]:

1. |𝐵𝑁 (𝑤𝐵) | ≤ 𝑓 (𝑁).

2. 𝐴𝑁 (𝑤𝐴, 𝐵(𝑤𝐵)) = 1 (i.e., accept) if and only if𝑤 ∈ 𝐿.

ℭ𝑚ow(𝐿) indicates the (pointwise) minimum over all such functions 𝑓 .

Note that 𝐴𝑁 and 𝐵𝑁 are nonuniform, so the length 𝑁 of the (complete) input𝑤 is known
implicitly by both algorithms.

Lemma 3.23. For any computable 𝑡 : N+ → N+ and𝑚 as in Definition 3.22, if 𝐿 ∈ SCA[𝑡],
then ℭ𝑚ow(𝐿) (𝑁) = 𝑂 (𝑡 (𝑁)).

The proof idea is to have𝐴 and𝐵 simulate the SCA for𝐿 simultaneously, with𝐴maintaining
the first half 𝑐𝐴 of the SCA configuration and 𝐵 the second half 𝑐𝐵 . (Hence, 𝐴 is aware
of the leftmost active state in the SCA and can detect whether the SCA accepts or not.)
The main difficulty is guaranteeing that 𝐴 and 𝐵 can determine the states of the cells
on the right (resp., left) end of 𝑐𝐴 (resp., 𝑐𝐵) despite the respective local configurations
“overstepping the boundary” between 𝑐𝐴 and 𝑐𝐵 . Hence, for each step in the simulation,
𝐵 communicates the states of the two leftmost cells in 𝑐𝐵 ; with this, 𝐴 can compute the
states of all cells of 𝑐𝐴 in the next configuration as well as that of the leftmost cell 𝛼 of 𝑐𝐵 ,
which is added to 𝑐𝐴. (See Figure 3.2 for an illustration.) This last technicality is needed
due to one-way communication, which renders it impossible for 𝐵 to determine the next
state of 𝛼 (since its left neighbor is in 𝑐𝐴 and 𝐵 cannot receive messages from 𝐴). As the
simulation requires at most 𝑡 (𝑁) steps and 𝐵 sends 𝑂 (1) information at each step, this
yields the purported 𝑂 (𝑡 (𝑁)) upper bound.

2 One-way communication complexity can also been defined as the maximum over both communication
directions (i.e., 𝐵 to 𝐴 and 𝐴 to 𝐵; see [31] for an example in the setting of CAs). Since our goal is to prove
a lower bound on communication complexity, it suffices to consider a single (arbitrary) direction (in this
case 𝐵 to 𝐴).

60

3.3. Capabilities and Limitations of Sublinear-Time SCAs

• •
• •

• •
• •

A B

Figure 3.2.: Simulating an SCAwith low one-way communication complexity. (For simplicity, in this example
the SCA does not shrink.) 𝐵 communicates the states of the cells marked with “•”. The colors indicate which
states are computed by each player.

The attentive reader may have noticed this discussion does not address the fact that the
SCA may shrink; indeed, we shall also prove that shrinking does not interfere with this
strategy.

Proof. Let 𝑆 be an SCA for 𝐿 with time complexity𝑂 (𝑡). Furthermore, let𝑄 be the state set
of 𝑆 and 𝑞 ∈ 𝑄 its inactive state. We construct algorithms 𝐴𝑁 and 𝐵𝑁 as in Definition 3.22
and such that |𝐵𝑁 (𝑤𝐵) | ≤ 2 log(|𝑄 |)𝑡 (𝑁).

Fix 𝑁 ∈ N+ and an input𝑤 ∈ Σ𝑁 . For𝑤0
𝐵
= 𝑤𝐵𝑞

2𝑡 (𝑁)+2 and𝑤 𝑖+1
𝐵

= ΔS(𝑤 𝑖
𝐵
) for 𝑖 ∈ N0, 𝐵𝑁

computes and outputs the concatenation

𝐵𝑁 (𝑤𝐵) = 𝑤0
𝐵 (0)𝑤

0
𝐵 (1)𝑤

1
𝐵 (0)𝑤

1
𝐵 (1) · · ·𝑤

𝑡 (𝑁)
𝐵
(0)𝑤 𝑡 (𝑁)

𝐵
(1) .

Similarly, let 𝑤0
𝐴
= 𝑞2𝑡 (𝑁)+2𝑤𝐴 and 𝑤 𝑖+1

𝐴
= ΔS(𝑤 𝑖

𝐴
𝑤 𝑖
𝐵
(0)𝑤 𝑖

𝐵
(1)) for 𝑖 ∈ N0. 𝐴 computes

𝑡 (𝑁) and 𝑤 𝑖
𝐴
for 𝑖 ∈ [0, 𝑡 (𝑁)] and accepts if there is any 𝑗 such that 𝑤 𝑖

𝐴
(𝑗) is an accept

state of 𝑆 and𝑤 𝑖
𝐴
(𝑗 ′) = 𝑞 for all 𝑗 ′ < 𝑗 ; otherwise, 𝐴 rejects.

To prove the correctness of 𝐴, we show by induction on 𝑖 ∈ N0:

𝑤 𝑖
𝐴𝑤

𝑖
𝐵 = Δ𝑖S(𝑞

2𝑡 (𝑛)+2𝑤𝑞2𝑡 (𝑛)+2).

Hence, the𝑤 𝑖
𝐴
(𝑗) of above corresponds to the state of cell zero in step 𝑖 of 𝑆 , and it follows

that 𝐴 accepts if and only if 𝑆 does. The induction basis is trivial. For the induction step,
let 𝑤 ′ = ΔS(𝑤 𝑖

𝐴
𝑤 𝑖
𝐵
). Using the induction hypothesis, it suffices to prove 𝑤 𝑖+1

𝐴
𝑤 𝑖+1
𝐵

= 𝑤 ′.
Note first that, due to the definition of𝑤 𝑖+1

𝐴
and𝑤 𝑖+1

𝐵
, we have

𝑤 ′ = ΔS
(︁
𝑤 𝑖
𝐴

)︁
𝛼𝛽ΔS

(︁
𝑤 𝑖
𝐵

)︁
,

where 𝛼, 𝛽 ∈ 𝑄 ∪{𝜀}. Let 𝛼1 = 𝑤 𝑖
𝐴
(|𝑤 𝑖

𝐴
| −2), 𝛼2 = 𝑤 𝑖

𝐴
(|𝑤 𝑖

𝐴
| −1), and 𝛼3 = 𝑤 𝑖

𝐵
(0) and notice

𝛼 = 𝛿 (𝛼1, 𝛼2, 𝛼3); the same is true for 𝛽 and 𝛽1 = 𝛼2, 𝛽2 = 𝛼3, and 𝛽3 = 𝑤 𝑖
𝐵
(1). Hence, we

have𝑤 𝑖+1
𝐴

= ΔS(𝑤 𝑖
𝐴
)𝛼𝛽 , and the claim follows.

We are now in position to prove Theorem 3.5.

Proof of Theorem 3.5. We prove that, for our language 𝐿1 of before and𝑚(𝑛) = 𝑛(𝑛 + 1)
(i.e., 𝐴𝑁 receives the first 𝑛 input blocks), ℭ𝑚ow(Block𝑛 (𝐿1)) (𝑁) ≥ 2𝑛 − 𝑛. Since the input
length is 𝑁 ∈ Θ(𝑛 · 2𝑛), the claim then follows from the contrapositive of Lemma 3.23.

61

3. Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular Automata

The proof is by a counting argument. Let 𝐴𝑁 and 𝐵𝑁 be as in Definition 3.22, and let
𝑌 = {0, 1}2𝑛−𝑛 . The basic idea is that, for the same input𝑤𝐴, if 𝐵𝑁 is given different inputs
𝑤𝐵 and𝑤 ′𝐵 but 𝐵𝑁 (𝑤𝐵) = 𝐵𝑁 (𝑤 ′𝐵), then𝑤 = 𝑤𝐴𝑤𝐵 is accepted if and only if𝑤 ′ = 𝑤𝐴𝑤 ′𝐵 is
accepted. Hence, for any 𝑦,𝑦′ ∈ 𝑌 with 𝑦 ≠ 𝑦′, we must have 𝐵𝑁 (𝑤𝐵) ≠ 𝐵𝑁 (𝑤 ′𝐵), where
𝑤𝐵,𝑤

′
𝐵
∈ 𝔅2𝑛−𝑛

𝑛 are the block word versions of 𝑦 and 𝑦′, respectively; this is because,
letting 𝑗 ∈ [0, 2𝑛 − 𝑛] be such that 𝑦 (𝑗) ≠ 𝑦′(𝑗) and 𝑧 = bin𝑛 (𝑛 + 𝑗), precisely one of the
words 𝑧𝑦 and 𝑧𝑦′ is in 𝐿1 (and the other not). Finally, note there is a bijection between
𝑌 and the set 𝑌 ′ of block words in 𝔅2𝑛−𝑛

𝑛 whose block numbering starts with 𝑛 + 1 (i.e.,
𝑥0 = 𝑛 + 1, where 𝑥0 is as in Definition 3.11) and with block entries of the form 𝑎0𝑛−1 where
𝑎 ∈ {0, 1} (i.e., 𝑌 ′ is essentially the block version of 𝑌 as in Definition 3.13 but where we
set 𝑥0 = 𝑛 + 1 instead of 𝑥0 = 0). We conclude

ℭ𝑚ow(Block𝑛 (𝐿1)) (𝑁) ≥ |𝑌 ′| = |𝑌 | = 2𝑛 − 𝑛,

from which the claim follows.

3.4. Simulation of an SCA by a Streaming Algorithm

In this section, we recall and prove:

Theorem 3.4. Let 𝑡 : N+ → N+ be computable by an𝑂 (𝑡)-space random access machine (as
in Definition 3.6) in 𝑂 (𝑡 log 𝑡) time. Then, if 𝐿 ∈ SCA[𝑡], there is an 𝑂 (𝑡)-space streaming
algorithm for 𝐿 with 𝑂 (𝑡 log 𝑡) update and 𝑂 (𝑡2 log 𝑡) reporting time.

Before we state the proof, we first introduce some notation. Having fixed an input𝑤 , let
𝑐𝑡 (𝑖) denote the state of cell 𝑖 in step 𝑡 on input𝑤 . Note that here we explicitly allow 𝑐𝑡 (𝑖)
to be the state ⊗ and also disregard any changes in indices caused by cell deletion; that is,
𝑐𝑡 (𝑖) refers to the same cell 𝑖 as in the initial configuration 𝑐0 (of Definition 3.7; see also
the discussion following Definition 3.8). For a finite, non-empty 𝐼 = [𝑎, 𝑏] ⊆ Z and 𝑡 ∈ N0,
let

nndcl𝑡 (𝐼) = max {𝑖 | 𝑖 < 𝑎, 𝑐𝑡 (𝑖) ≠ ⊗}
denote the nearest non-deleted cell to the left of 𝐼 ; similarly,

nndcr𝑡 (𝐼) = min {𝑖 | 𝑖 > 𝑏, 𝑐𝑡 (𝑖) ≠ ⊗}

is the nearest such cell to the right of 𝐼 .

Proof. Let 𝑆 be an 𝑂 (𝑡)-time SCA for 𝐿. Using 𝑆 , we construct a streaming algorithm 𝐴

(Algorithm 1) for 𝐿 and prove it has the purported complexities.

62

3.4. Simulation of an SCA by a Streaming Algorithm

Algorithm 1: Streaming algorithm 𝐴

Compute 𝑡 (|𝑤 |);
Initialize lists leftIndex, centerIndex, leftState, and centerState;
leftIndex[0] ← −1;
leftState[0] ← 𝑞;
centerIndex[0] ← 0;
centerState[0] ← 𝑤 (0);
next← 1;
𝑗0 ← 0;
for 𝜏 ← 0, . . . , 𝑡 (|𝑤 |) − 1 do

A 𝑗 ← 𝑗0;
B if next < |𝑤 | then
C rightIndex← next;

rightState← 𝑤 (next);
next← next + 1;

else
D rightIndex← |𝑤 |;

rightState← 𝑞;
𝑗0 ← 𝑗0 + 1;

end
while 𝑗 ≤ 𝜏 do

E newRightIndex← centerIndex[𝑗];
newRightState← 𝛿 (leftState[𝑗], centerState[𝑗], rightState);
leftIndex[𝑗] ← centerIndex[𝑗];
leftState[𝑗] ← centerState[𝑗];
centerIndex[𝑗] ← rightIndex;
centerState[𝑗] ← rightState;
rightIndex← newRightIndex;
rightState← newRightState;

F if rightState = ⊗ then goto A;
𝑗 ← 𝑗 + 1;

end
leftIndex[𝜏 + 1] ← −1;
leftState[𝜏 + 1] ← 𝑞;
centerIndex[𝜏 + 1] ← rightIndex;
centerState[𝜏 + 1] ← rightState;

G if centerState[𝜏 + 1] = 𝑎 then accept;
end
reject;

63

3. Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular Automata

Construction. Let 𝑤 be an input to 𝐴. To decide 𝐿, 𝐴 computes the states of the cells
of 𝑆 in the time steps up to 𝑡 (|𝑤 |). In particular, 𝐴 sequentially determines the state of
the leftmost active cell in each of these time steps (starting from the initial configuration)
and accepts if and only if at least one of these states is accepting. To compute these states
efficiently, we use an approach based on dynamic programming, reusing space as the
computation evolves.

𝐴 maintains lists leftIndex, leftState, centerIndex, and centerState and which are
indexed by every step 𝑗 starting with step zero and up to the current step 𝜏 . The
lists leftIndex and centerIndex store cell indices while leftState and centerState

store the states of the respective cells, that is, leftState[𝑗] = 𝑐 𝑗 (leftIndex[𝑗]) and
centerState[𝑗] = 𝑐 𝑗 (centerIndex[𝑗]).

Recall the state 𝑐 𝑗+1(𝑦) of a cell 𝑦 in step 𝑗 + 1 is determined exclusively by the previous
state 𝑐 𝑗 (𝑦) of 𝑦 as well as the states 𝑐 𝑗 (𝑥) and 𝑐 𝑗 (𝑧) of the left and right neighbors 𝑥 and
𝑧 (respectively) of 𝑦 in the previous step 𝑗 (i.e., 𝑥 = nndcl 𝑗 (𝑦) and 𝑧 = nndcr 𝑗 (𝑦)). In the
variables maintained by 𝐴, 𝑥 and 𝑐 𝑗 (𝑥) correspond to leftIndex[𝑗] and leftState[𝑗],
respectively, and 𝑦 and 𝑐 𝑗 (𝑦) to centerIndex[𝑗] and centerState[𝑗], respectively. 𝑧 and
𝑐 𝑗 (𝑧) are not stored in lists but, rather, in the variables rightIndex and rightState (and
are determined dynamically). The cell indices computed (i.e., the contents of the lists
leftIndex and centerIndex and the variables rightIndex and newRightIndex) are not
actually used by 𝐴 to compute states and are inessential to the algorithm itself; we use
them only to simplify the proof of correctness below (and, hence, do not count them
towards the space complexity of 𝐴).

In each iteration of the for loop, 𝐴 determines 𝑐𝜏+1(𝑧𝜏0), where 𝑧𝜏0 is the leftmost active cell
of 𝑆 in step 𝜏 , and stores it centerState[𝜏 + 1]. next is the index of the next symbol of
𝑤 to be read (or |𝑤 | once every symbol has been read), and 𝑗0 is the minimal time step
containing a cell whose state must be known to determine 𝑐𝜏+1(𝑧𝑡0) and remains 0 as long
as next < |𝑤 |. Hence, the termination of 𝐴 is guaranteed by the finiteness of 𝑤 , that is,
next can only be increased a finite number of times and, once all symbols of𝑤 have been
read (i.e., the condition in line B no longer holds), by the increment of 𝑗0 in line D.

In each iteration of the while loop, the algorithm starts from a local configuration in step
𝑗 of a cell 𝑦 = centerIndex[𝑗] with left neighbor 𝑥 = leftIndex[𝑗] = nndcl 𝑗 (𝑦) and right
neighbor 𝑧 = rightIndex[𝑗] = nndcl 𝑗 (𝑦). It then computes the next state 𝑐 𝑗+1(𝑦) of 𝑦 and
sets 𝑦 as the new left cell and 𝑧 as the new center cell for step 𝑗 . As long as it is not deleted
(i.e., 𝑐 𝑗+1(𝑦) ≠ ⊗), 𝑦 then becomes the right cell for step 𝑗 + 1. In fact, this is the only place
(line F) in the algorithm where we need to take into consideration that 𝑆 is a shrinking
(and not just a regular) CA. The strategy we follow here is to continue computing states
of cells to the right of the current center cell (i.e., 𝑦 = centerIndex[𝑗]) until the first cell
to its right which has not deleted itself (i.e., nndcr 𝑗 (𝑦)) is found. With this non-deleted
cell we can then proceed with the computation of the state of centerIndex[𝑗 + 1] in step
𝑗 + 1. Hence, if 𝑦 has deleted itself, to compute the state of the next cell to its right we
must either read the next symbol of𝑤 or, if there are no symbols left, use quiescent cell
number |𝑤 | as right neighbor in step 𝑗0, computing states up until we are at step 𝑗 again
(hence the goto instruction).

64

3.4. Simulation of an SCA by a Streaming Algorithm

Correctness. The following invariants hold for both loops in 𝐴:

1. centerIndex[𝜏] = min{𝑧 ∈ N0 | 𝑐𝜏 (𝑧) ≠ ⊗}, that is, centerIndex[𝜏] is the leftmost
active cell of 𝑆 in step 𝑗 .

2. If 𝑗 ≤ 𝜏 , then:

• rightIndex = nndcr 𝑗 (centerIndex[𝑗]).

• rightState = 𝑐 𝑗 (rightIndex).

3. For every 𝑗 ′ ∈ [𝑗0, 𝜏]:

• leftIndex[𝑗 ′] = nndcl 𝑗 ′ (centerIndex[𝑗 ′]).

• leftState[𝑗 ′] = 𝑐 𝑗 ′ (leftIndex[𝑗 ′]).

• centerState[𝑗 ′] = 𝑐 𝑗 ′ (centerIndex[𝑗 ′]).

These can be shown together with the observation that, following the assignment of
newRightIndex and newRightState in line E, we have

newRightState = 𝑐 𝑗+1 (newRightIndex)

and, in case newRightState ≠ ⊗ and 𝑗 < 𝜏 , then also

newRightIndex = nndcr 𝑗 (centerIndex[𝑗 + 1]) .

Using the above, it follows that after the execution of the while loop we have 𝑗 = 𝜏 + 1,
rightState ≠ ⊗, and rightState = 𝑐𝜏+1(rightIndex). Since then

rightIndex = centerIndex[𝑗 − 1] = centerIndex[𝜏],

we obtain
rightIndex = min {𝑧 ∈ N0 | 𝑐𝜏+1(𝑧) ≠ ⊗} .

Hence, as
centerState[𝜏 + 1] = rightState = 𝑐𝜏+1(rightIndex)

holds in line G, if 𝐴 then accepts, so does 𝑆 accept 𝑤 in step 𝜏 . Conversely, if 𝐴 rejects,
then 𝑆 does not accept𝑤 in any step 𝜏 ≤ 𝑡 (|𝑤 |).

Complexity. The space complexity of 𝐴 is dominated by the leftState and centerState

lists, both of which have 𝑂 (𝑡 (|𝑤 |)) many entries of 𝑂 (1) size. As mentioned above, we ig-
nore the space used by the lists leftIndex and centerIndex and the variables rightIndex
and newRightIndex since they are inessential (i.e., if we remove them as well as all instruc-
tions in which they appear, the algorithm obtained is equivalent to 𝐴).

As for the update time, note each list access or arithmetic operation costs𝑂 (log 𝑡 (|𝑤 |)) time
(since 𝑡 (|𝑤 |) upper bounds all numeric variables). Every execution of the while loop body
requires then𝑂 (log 𝑡 (|𝑤 |)) time and, since, there are at most𝑂 (𝑡 (|𝑤 |)) executions between

65

3. Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular Automata

any two subsequent reads (i.e., line C), this gives us the purported 𝑂 (𝑡 (|𝑤 |) log 𝑡 (|𝑤 |))
update time.

Finally, for the reporting time of 𝐴, as soon as 𝑖 = |𝑤 | holds after execution of line C (i.e.,
𝐴 has completed reading its input) we have that the while loop body is executed at most
𝜏 − 𝑗 +1 times before line C is reached again. Every time this occurs (depending on whether
line C is reached by the goto instruction or not), either 𝑗0 or both 𝑗0 and 𝜏 are incremented.
Hence, since 𝜏 ≤ 𝑡 (|𝑤 |), we have an upper bound of 𝑂 (𝑡 (|𝑤 |)2) executions of the while
loop body, resulting (as above) in an 𝑂 (𝑡 (|𝑤 |)2 log 𝑡 (|𝑤 |)) reporting time in total.

3.5. Hardness Magnification for Sublinear-Time SCAs

Let 𝐾 > 0 be constant such that, for any function 𝑠 : N+ → N+, every circuit of size at
most 𝑠 (𝑛) can be described by a binary string of length at most ℓ (𝑛) = 𝐾𝑠 (𝑛) log 𝑠 (𝑛).
In addition, let ⊥ denote a string (of length at most ℓ (𝑛)) such that no circuit of size at
most 𝑠 (𝑛) has ⊥ as its description. Furthermore, let Merge[𝑠] denote the following search
problem (adapted from [75]):

Given: the binary representation of 𝑛 ∈ N+, the respective descriptions (padded to length
ℓ (𝑛)) of circuits 𝐶0 and 𝐶1 such that |𝐶𝑖 | ≤ 𝑠 (𝑛), and 𝛼, 𝛽,𝛾 ∈ {0, 1}𝑛 with 𝛼 ≤ 𝛽 ≤
𝛾 < 2𝑛 .

Find: the description of a circuit 𝐶 with |𝐶 | ≤ 𝑠 (𝑛) and such that ∀𝑥 ∈ [𝛼, 𝛽 − 1] : 𝐶 (𝑥) =
𝐶0(𝑥) and ∀𝑥 ∈ [𝛽,𝛾 − 1] : 𝐶 (𝑥) = 𝐶1(𝑥); if no such 𝐶 exists or 𝐶𝑖 = ⊥ for any 𝑖 ,
answer with ⊥.

Note that the decision version of Merge[𝑠], that is, the problem of determining whether a
solution to an instance Merge[𝑠] exists is in Σ

𝑝

2 . Moreover, Merge[𝑠] is Turing-reducible
(in polynomial time) to a decision problem very similar toMerge[𝑠] and which is also in
Σ
𝑝

2 , namely the decision version of Merge[𝑠] but with the additional requirement that the
description of 𝐶 admits a given string 𝑣 of length |𝑣 | ≤ 𝑠 (𝑛) as a prefix.3

We now formulate our main theorem concerning SCAs and MCSP:

Theorem 3.24. Let 𝑠 : N+ → N+ be constructible in place by a CA in𝑂 (𝑠 (𝑛)) time. Further-
more, let𝑚 =𝑚(𝑛) denote the maximum instance length ofMerge[𝑠], and let 𝑓 , 𝑔 : N+ → N+
with 𝑓 (𝑚) ≥ 𝑔(𝑚) ≥ 𝑚 be constructible in place by a CA in 𝑂 (𝑓 (𝑚)) time and 𝑂 (𝑔(𝑚))
space. Then, for 𝑏 (𝑛) = ⌊𝑔(𝑚)/2⌋, if Merge[𝑠] is computable in place by a CA in at most
𝑓 (𝑚) time and 𝑔(𝑚) space, then the search version of Block𝑏 (MCSP[𝑠]) is computable by
an SCA in 𝑂 (𝑛𝑓 (𝑚)) time, where the instance size of the latter is in Θ(2𝑛𝑏 (𝑛)).

3 This is a fairly common construction in complexity theory for reducing search to decision problems; refer
to [50] for the same idea applied in other contexts.

66

3.5. Hardness Magnification for Sublinear-Time SCAs

We are particularly interested in the repercussions of Theorem 3.24 taken in the contrapos-
itive. Since P = NP implies P = Σ

𝑝

2 , it also implies there is a poly-time Turing machine for
Merge[𝑠]; since a CA can simulate a Turing machine with no time loss, for𝑚 as above we
obtain:

Theorem 3.3. For a certain𝑚 ∈ poly(𝑠 (𝑛)), if Block𝑏 (MCSP[𝑠]) ∉ SCA[𝑛𝑓 (𝑚)] for every
𝑓 ∈ poly(𝑚) and 𝑏 = 𝑂 (𝑓), then P ≠ NP.

We now turn to the proof of Theorem 3.24, which follows [75] closely. First, we generalize
blockwise reductions (see Definition 3.15) to search problems:

Definition 3.25 (Blockwise reducible (for search problems)). Let 𝐿 and 𝐿′ be block lan-
guages that correspond to search problems 𝑆 and 𝑆′, respectively. Also, for an instance
𝑥 , let 𝑆 (𝑥) (resp., 𝑆′(𝑥)) denote the set of solutions for 𝑥 under the problem 𝑆 (resp., 𝑆′).
Then 𝐿 is said to be (𝑘-)blockwise reducible to 𝐿′ if there is a computable 𝑘-blockwise map
𝑔 : 𝔅𝑘𝑚

𝑏
→ 𝔅𝑚

𝑏
such that, for every𝑤 ∈ 𝔅𝑘𝑚

𝑏
, we have 𝑆 (𝑤) = 𝑆′(𝑔(𝑤)).

Notice Lemma 3.16 readily generalizes to blockwise reductions in this sense.

Next, we describe the set of problems that we reduceBlock𝑏 (MCSP[𝑠]) to. Let 𝑟 : N+ → N+
be a function. There is a straightforward 1-blockwise reduction from Block𝑏 (MCSP[𝑠]) to
(a suitable block version of) the following search problemMerge𝑟 [𝑠]:

Given: the binary representation of 𝑛 ∈ N+ and the respective descriptions (padded to
length ℓ (𝑛)) of circuits 𝐶1, . . . ,𝐶𝑟 , where |𝐶𝑖 | ≤ 𝑠 (𝑛) for every 𝑖 and 𝑟 = 𝑟 (𝑛).

Find: (the description of) a circuit 𝐶 with |𝐶 | ≤ 𝑠 (𝑛) and such that, for every 𝑖 and every
𝑥 ∈ [(𝑖 − 1)2𝑛/𝑟, 𝑖2𝑛/𝑟 − 1], 𝐶 (𝑥) = 𝐶𝑖 (𝑥); if no such 𝐶 exists or 𝐶𝑖 = ⊥ for any 𝑖 ,
answer with ⊥.

In particular, for the reduction mentioned above, we shall use 𝑟 = 2𝑛 . Evidently,Merge𝑟 [𝑠]
is a generalization of the problem Merge[𝑠] defined previously and, more importantly,
every instance of Merge𝑟 [𝑠] is simply a concatenation of 𝑟/2 many Merge[𝑠] instances
where 𝛼 , 𝛽 , and 𝛾 are given implicitly. Using the assumption that Merge[𝑠] is computable
by a CA in at most 𝑓 (𝑚) time and 𝑔(𝑚) space, we can solve each such instance in parallel,
thus producing an instance of Merge𝑟/2 [𝑠] (i.e., halving 𝑟). This yields a 2-blockwise
reduction from (the respective block versions of)Merge𝑟 [𝑠] toMerge𝑟/2 [𝑠] (cnf. the proof
of Proposition 3.21). Using Lemma 3.16 and that Merge1 [𝑠] is trivial, we obtain the
purported SCA for Block𝑏 (MCSP[𝑠]).

Proof. Let 𝑛 be fixed, and let 𝑟 = 2𝑛 . First, we describe the 1-blockwise reduction from
Block𝑏 (MCSP[𝑠]) to a block version ofMerge𝑟 [𝑠] (which we shall describe along with the
reduction). Let 𝑇𝑎 denote the (description of the) trivial circuit that is constant 𝑎 ∈ {0, 1},
that is, 𝑇𝑎 (𝑥) = 𝑎 for every 𝑥 ∈ {0, 1}𝑛 . Then we map each block(︃

bin𝑛 (𝑥)
𝑦0𝑏 (𝑛)−1

)︃
67

3. Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular Automata

with 𝑦 ∈ {0, 1} to the block (︃
bin𝑛 (𝑥)
𝑇𝑦𝜋

)︃
,

where 𝜋 ∈ {0}∗ is a padding string so that the block length 𝑏 (𝑛) is preserved. (This is
needed to ensure enough space is available for the construction; see the details further
below.) It is evident this can be done in time 𝑂 (𝑏 (𝑛)) and (since we just translate the
truth-table 0 and 1 entries to the respective trivial circuits) that the reduction is correct, that
is, that every solution to the original Block𝑏 (MCSP[𝑠]) instance must also be a solution
of the produced instance of (the resulting block version of)Merge𝑟 [𝑠] and vice-versa.

Next, maintaining the block representation described above, we construct the 2-blockwise
reduction from the respective block versions ofMerge𝜌 [𝑠] toMerge𝜌/2 [𝑠], where 𝜌 = 2𝑘
for some 𝑘 ∈ [1, 𝑛]. Let 𝐴 denote the CA that, by assumption, computes a solution
to an instance of Merge[𝑠] in place in at most 𝑓 (𝑚) time and 𝑔(𝑚) space. Then, for
𝑗 ∈ [0, 𝜌/2 − 1], we map each pair(︃

bin𝑛 (2 𝑗)
𝐶0𝜋0

)︃
#
(︃
bin𝑛 (2 𝑗 + 1)

𝐶1𝜋1

)︃
of blocks (where 𝜋0, 𝜋1 ∈ {0}∗ again are padding strings) to(︃

bin𝑛 (𝑗)
𝐶𝜋

)︃
,

where 𝜋 ∈ {0}∗ is a padding string (as above) and 𝐶 is the circuit produced by 𝐴 for
𝛼 = 2 𝑗2𝑛/𝜌 , 𝛽 = (2 𝑗 + 1)2𝑛/𝜌 , and 𝛾 = (2 𝑗 + 2)2𝑛/𝜌 .

To actually execute 𝐴, we need 𝑔(𝑚) space (which is guaranteed by the block length 𝑏 (𝑛))
and, in addition, to prepare the input so it is in the format expected by 𝐴 (i.e., eliminating
the padding between the two circuit descriptions and writing the representations of 𝛼 ,
𝛽 , and 𝛾), which can be performed in 𝑂 (𝑏 (𝑛)) ≤ 𝑂 (𝑔(𝑚)) ≤ 𝑂 (𝑓 (𝑚)) time. For the
correctness, suppose the above reduces an instance of Merge𝜌 [𝑠] with circuits 𝐶1, . . . ,𝐶𝜌
to an instance of Merge𝜌 ′ [𝑠] with circuits 𝐷1, . . . , 𝐷𝜌 ′ (and no ⊥ was produced), where
𝜌′ = 𝜌/2. Then, a circuit 𝐸 is a solution to the latter if and only if 𝐸 (𝑥) = 𝐷𝑖 (𝑥) for every
𝑖 and 𝑥 ∈ [(𝑖 − 1)𝜎′, 𝑖𝜎′ − 1], where 𝜎′ = 2𝑛/𝜌′. Using the definition of Merge[𝑠], every
𝐷𝑖 must satisfy 𝐷𝑖 (𝑥) = 𝐶2𝑖−1(𝑥) and 𝐷𝑖 (𝑦) = 𝐶2𝑖 (𝑦) for 𝑥 ∈ [(2𝑖 − 2)𝜎, (2𝑖 − 1)𝜎 − 1] and
𝑦 ∈ [(2𝑖 − 1)𝜎, 2𝑖𝜎 − 1], where 𝜎 = 2𝑛/𝜌 . Hence, 𝐸 agrees with 𝐶1, . . . ,𝐶𝜌 if and only if it
agrees with 𝐷1, . . . , 𝐷𝜌 ′ (on the respective intervals).

Since 𝑠 (𝑛) ≥ 𝑛 and Merge1 [𝑠] is trivial (i.e., it can be accepted in 𝑂 (𝑏 (𝑛)) time), applying
the generalization of Lemma 3.16 to blockwise reductions for search problems completes
the proof.

Comparison with [75]. We conclude this section with a comparison of our result and
proof with [75]. The most evident difference between the statements of Theorems 3.3
and 3.24 and the related result from [75] (i.e., Theorem 3.2) is that our results concern CAs

68

3.6. Concluding Remarks

(instead of Turing machines) and relate more explicitly to the time and space complexities
of Merge[𝑠]; in particular, the choice of the block length is tightly related with the space
complexity of computing Merge[𝑠]. As for the proof, notice that we only merge two
circuits at a time, which makes for a smaller instance size𝑚 (ofMerge[𝑠]); this not only
simplifies the proof but also minimizes the resulting time complexity of the SCA (as 𝑓 (𝑚)
is then smaller). Also, in our case, we make no additional assumptions regarding the
first reduction from Block𝑏 (MCSP[𝑠]) to Merge𝑟 [𝑠]; in fact, this step can be performed
unconditionally. Finally, we note that our proof renders all blockwise reductions explicit
and the connection to the self-reductions of [3] more evident. Despite these simplifications,
the argument extends to generalizations of MCSP with similar structure and instance size
(e.g., MCSP in the setting of Boolean circuits with oracle gates as in [75] or MCSP for
multi-output functions as in [61]).

3.6. Concluding Remarks

Proving SCA Lower Bounds for MCSP[𝑠]. Recalling the language 𝐿1 from the proof of
Theorem 3.5, consider the intersection 𝐿1 [𝑠] = 𝐿1 ∩MCSP[𝑠]. Evidently, 𝐿1 [𝑠] is compara-
ble in hardness to MCSP[𝑠] (e.g., it is solvable in polynomial time using a single adaptive
query to MCSP[𝑠]). By adapting the construction from the proof of Theorem 3.24 so
the SCA additionally checks the 𝐿1 property at the end in poly(𝑠 (𝑛)) time (e.g., using
the circuit 𝐶 produced to check whether 𝐶 (𝑥) = 1 for 𝑥 = 𝐶 (0) · · ·𝐶 (𝑛 − 1)), we can
derive a hardness magnification result for 𝐿1 [𝑠] too: If Block𝑏 (𝐿1 [𝑠]) ∉ SCA[poly(𝑠 (𝑛))]
(for every 𝑏 ∈ poly(𝑠 (𝑛))), then P ≠ NP. Using the methods from Section 3.3.3 and
that there are 2Ω(𝑠 (𝑛)) many (unique) circuits of size 𝑠 (𝑛) or less,4 this means that, if
Block𝑏 (𝐿1 [𝑠]) ∈ SCA[𝑡 (𝑛)] for some 𝑏 ∈ poly(𝑛) and 𝑡 : N+ → N+, then 𝑡 (𝑛) = Ω(𝑠 (𝑛)).
Hence, for an eventual proof of P ≠ NP based on Theorem 3.3, one would need to develop
new techniques (see also the discussion below) to raise this bound at the very least beyond
poly(𝑠 (𝑛)).

Seen from another angle, this demonstrates that, although we can prove a tight SCA worst-
case lower bound for 𝐿1 (Theorem 3.5), establishing similar lower bounds on instances
of 𝐿1 with low circuit complexity (i.e., instances which are also in MCSP[𝑠]) is at least as
hard as showing P ≠ NP. In other words, it is straightforward to establish a lower bound
for 𝐿1 using arbitrary instances, but it is absolutely non-trivial to establish similar lower
bounds for easy instances of 𝐿1 where instance hardness is measured in terms of circuit
complexity.

4 Let 𝐾 > 0 be constant such that every Boolean function on𝑚 variables admits a circuit of size at most
𝐾2𝑚/𝑚. Setting𝑚 = ⌊log 𝑠 (𝑛)⌋, notice that, for sufficiently large 𝑛 (and 𝑠 (𝑛) = 𝜔 (1) and 𝑠 (𝑛) = 𝑂 (2𝑛/𝑛)),
this gives us 𝑠 (𝑛) ≥ 𝐾2𝑚/𝑚, thus implying that every Boolean function on𝑚 ≤ 𝑛 variables admits a
circuit of size at most 𝑠 (𝑛). Since there are 22𝑚 many such (unique) functions, it follows there are 2Ω (𝑠 (𝑛))
(unique) circuits of size at most 𝑠 (𝑛).

69

3. Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular Automata

The Proof of Theorem 3.24 and the Locality Barrier. In a recent paper [20], Chen et
al. propose the concept of a locality barrier to explain why current lower bound proof
techniques (for a variety of non-uniform computational models) do not suffice to show
the lower bounds needed for separating complexity classes in conjunction with hardness
magnification (i.e., in our case above a poly(𝑠 (𝑛)) lower bound that proves P ≠ NP). In a
nutshell, the barrier arises from proof techniques relativizing with respect to local aspects
of the computational model at hand (in [20], concretely speaking, oracle gates of small
fan-in), whereas it is known that a proof of P ≠ NP must not relativize [11].

The proof of Theorem 3.24 confirms the presence of such a barrier also in the uniform
setting and concerning the separation of P from NP. Indeed, the proof mostly concerns the
construction of an SCA where the overall computational paradigm of blockwise reductions
(using Lemma 3.16) is unconditionally compatible with the SCA model (as exemplified
in Proposition 3.21); the P = NP assumption is needed exclusively so that the local
algorithm for Merge[𝑠] in the statement of the theorem exists. Hence, the result also
holds unconditionally for SCAs that are, say, augmented with oracle access (in a plausible
manner, e.g., by using an additional oracle query track and special oracle query states)
to Merge[𝑠]. (Incidentally, the same argument also applies to the proof of the hardness
magnification result for streaming algorithms (i.e., Theorem 3.2) in [75], which also builds
on the existence of a similar locally computable function.) In particular, this means the
lower bound techniques from the proof of Theorem 3.5 do not suffice since they extend to
SCAs having oracle access to any computable function.

Open Questions. We conclude with a few open questions:

• By weakening SCAs in some aspect, certainly we can establish an unconditional
MCSP lower bound for the weakened model which, were it to hold for SCAs, would
imply the separation P ≠ NP (using Theorem 3.3). What forms of weakening (con-
ceptually speaking) are needed for these lower bounds? How are these related to the
locality barrier discussed above?

• Secondly, we saw SCAs are strictly more limited than streaming algorithms. Proceed-
ing further in this direction, can we identify further (natural) models of computation
that are more restricted than SCAs (whether CA-based or not) and for which we can
prove results similar to Theorem 3.24?

• Finally, besides MCSP, what other (natural) problems admit similar SCA hardness
magnification results? More importantly, can we identify some essential property of
these problems that would explain these results? For instance, in the case of MCSP
there appears to be some connection to the length of (minimal) witnesses being
much smaller than the instance length. Indeed, one sufficient condition in this sense
(disregarding SCAs) is sparsity [21]; nevertheless, it seems rather implausible that this
would be the sole property responsible for all hardness magnification phenomena.

70

4. Sublinear-Time Probabilistic Cellular
Automata

Preprint version: [84]

Abstract

We propose and investigate a probabilistic model of sublinear-time one-dimensional
cellular automata. In particular, we modify the model of ACA (which are cellular
automata that accept if and only if all cells simultaneously accept) so that every cell
changes its state not only dependent on the states it sees in its neighborhood but also
on an unbiased coin toss of its own. The resulting model is dubbed probabilistic ACA
(PACA). We consider one- and two-sided error versions of the model (in the same spirit
as the classes RP and BPP) and establish a separation between the classes of languages
they can recognize all the way up to 𝑜 (

√
𝑛) time. We also prove that the derandom-

ization of 𝑇 (𝑛)-time PACA (to polynomial-time deterministic cellular automata) for
various regimes of 𝑇 (𝑛) = 𝜔 (log𝑛) implies non-trivial derandomization results for
the class RP (e.g., P = RP). The main contribution is an almost full characterization
of the constant-time PACA classes: For one-sided error, the class is equal to that of
the deterministic model; that is, constant-time one-sided error PACA can be fully
derandomized with only a constant multiplicative overhead in time complexity. As
for two-sided error, we prove that the respective class is “sandwiched” in-between the
class of strictly locally testable languages (SLT) and that of locally threshold testable
languages (LTT).

4.1. Introduction

Cellular automata (CAs) have been extensively studied as a natural model of distributed
computation. A one-dimensional CA is composed of a row of fairly limited computational
agents—the cells—which, by interacting with their immediate neighbors, realize a global
behavior and work towards a common goal.

As every model of computation, CAs have been widely studied as language acceptors
[69, 111]. These efforts apparently were almost exclusively devoted to the linear- or real-
time case—to the detriment of the sublinear-time one (as discussed in Chapter 2). This is
unfortunate since, as shown in Chapter 3, the study of sublinear-time CA variants might
help better direct efforts in resolving outstanding problems in computational complexity
theory.

71

4. Sublinear-Time Probabilistic Cellular Automata

In this chapter, we consider a probabilistic sublinear-time CA model. Our main goal is
to analyze to what extent—if at all—the addition of randomness to the model is able to
make up for inherent limitations of it. (For instance, sublinear-time CA models are usually
restricted to a local view of their input and are also unable to cope with long unary
subwords; see Chapters 2 and 3, in particular Lemmas 2.9, 2.11 and 3.17.) With our results
we show yet another connection between randomness and counting—as has been observed
in the past in multiple areas of complexity theory (for various examples thereof, see [5,
50]).

4.1.1. The Model

The usual acceptance condition for CA-based language recognizers is that of a distinguished
cell (usually the leftmost one) entering an accepting state [69]. This is unsuitable for
sublinear-time computation since then the automaton is limited to verifying prefixes of a
constant length (as mentioned in Chapter 2). The most widely studied acceptance condition
for sublinear-time (see [60, 66, 105] as well as Chapter 2) is that of all cells simultaneously
accepting, yielding the model of ACA (where the first “A” in the acronym indicates that all
cells must accept).

We propose a probabilistic version of the ACA model inspired by the stochastic automata
of [7] and the definition of probabilistic Turing machines (see, e.g., [5]). In the model of
probabilistic ACA (PACA), at every step, each cell tosses a fair coin 𝑐 ∈ {0, 1} and then
changes its state based on the outcome of 𝑐 . There is a nice interplay between this form of
randomness access and the overall theme of locality in CAs: Random events pertaining to
a cell 𝑖 depend exclusively on what occurs in the vicinity of 𝑖 , while those Furthermore,
events corresponding to distinct cells 𝑖 and 𝑗 can only be dependent if 𝑖 and 𝑗 are near
each other; otherwise, they are necessarily independent (Lemma 4.11). We consider both
one- and two-sided error versions of the model (as natural counterparts to their Turing
machine analogues).

Although a PACA is a conceptually simple extension of an ACA, the definition requires
certain care. In particular, an offhand realization runs into trouble when defining the
model’s time complexity. To see why, recall that, in deterministic ACA (DACA),1 time
complexity of an automaton 𝐶 is defined as the upper bound on the number of steps that
𝐶 takes to accept an input in its language 𝐿(𝐶). In contrast, in a PACA 𝐶′ there may be
multiple computational branches (depending on the cells’ coin tosses) for the same input
𝑥 ∈ 𝐿(𝐶′), and it may be the case that there is no upper bound on the number of steps for
a branch starting at 𝑥 to reach an accepting configuration. In non-distributed models such
as Turing machines, these pathological cases can be dealt with by counting the number
of steps computed and stopping if this exceeds a certain bound. In PACA, that would
either require an extrinsic global agent that informs the cells when this is the case (which
is undesirable since we would like a strictly distributed model) or it would need to be

1 not to be confused with the decider ACA of Chapter 2

72

4.1. Introduction

handled by the cells themselves, which is impossible in sublinear-time in general (since the
cells cannot directly determine the input length). See Section 4.3 for further discussion.

Finally, we should also mention our model is more restricted than a stochastic CA,2 which
is a CA in which the next state of a cell is chosen according to an arbitrary distribution
that depends on the cell’s local configuration (remitting to the probabilistic finite automata
of [97]). For a survey on stochastic CAs, see [73].

4.1.2. Results

Inclusion relations. As can be expected, two-sided error PACA are more powerful than
their one-sided error counterparts. (Refer to Definition 4.9 for the precise definitions of
one- and two-sided error PACA.) Say a DACA 𝐶 is equivalent to a PACA 𝐶′ if they accept
the same language (i.e., 𝐿(𝐶) = 𝐿(𝐶′)). We are able to prove this all the way up to 𝑜 (

√
𝑛)

time:

Theorem 4.1. The following hold:

1. If 𝐶 is a one-sided error PACA with time complexity 𝑇 , then there is an equivalent
two-sided error PACA 𝐶′ with time complexity 𝑂 (𝑇).

2. There is a language 𝐿 recognizable by constant-time two-sided error PACA but not by
any 𝑜 (

√
𝑛)-time one-sided error PACA.

We stress the first item does not follow immediately from the definitions since it requires
error reduction by a constant factor, which requires a non-trivial construction. It remains
open whether in the second item we can improve the separation all the way up to 𝑜 (𝑛)
time.

Another result we show is how time-efficient derandomization of PACA classes imply
derandomization results for RP (with a trade-off between the PACA time complexity and
the efficiency of the derandomization).

Theorem 4.2. Let 𝑑 ≥ 1. The following hold:

• If there is 𝜀 > 0 such that every 𝑛𝜀-time (one- or two-sided error) PACA can be converted
into an equivalent 𝑛𝑑-time deterministic CA, then P = RP.

• If every polylog(𝑛)-time PACA can be converted into an equivalent𝑛𝑑-time deterministic
CA, then, for every 𝜀 > 0, RP ⊆ TIME[2𝑛𝜀].

• If there is 𝑏 > 2 so that any (log𝑛)𝑏-time PACA can be converted into an equivalent
𝑛𝑑-time deterministic CA, then, for every 𝑎 ≥ 1 and 𝛼 > 𝑎/(𝑏 − 1), RPTIME[𝑛𝑎] ⊆
TIME[2𝑂 (𝑛𝛼)].

2 Unfortunately, the literature uses the terms stochastic and probabilistic CA interchangeably. We deem
“probabilistic” more suitable since it is intended as a CA version of a probabilistic Turing machine.

73

4. Sublinear-Time Probabilistic Cellular Automata

Note we deliberately write “deterministic CA” instead of “DACA” since, for 𝑇 (𝑛) = Ω(𝑛),
a 𝑇 -time DACA is equivalent to an 𝑂 (𝑇)-time deterministic CA with the usual acceptance
condition (as mentioned in Chapter 2).

Characterization of constant time. As the first step towards a deeper study of sublinear-
time PACA, we analyze and almost completely characterize constant-time PACA. The
constant-time case is already very rich and worth considering in and of itself. This may
not come as a surprise since other models of distributed computing (e.g., local graph
algorithms [109]) also exhibit behavior in the constant-time case that is far from trivial.

In Section 4.3 we give an example of a one-sided error PACA that recognizes a language 𝐿
strictly faster than any DACA for 𝐿. Nonetheless, we prove that one-sided error PACA
can be derandomized with only a constant multiplicative overhead in time complexity.

Theorem 4.3. For any constant-time one-sided error PACA𝐶 , there is a constant-time DACA
𝐶′ such that 𝐿(𝐶) = 𝐿(𝐶′).

In turn, the class of languages accepted by constant-time two-sided error PACA can
be considerably narrowed down in terms of a novel subregular class LLT, dubbed the
locally linearly testable languages. Below, LLT∪∩ is the closure over LLT under union and
intersection and LTT its Boolean closure (i.e., its closure under union, intersection, and
complement).

Theorem 4.4. The class of languages that can be accepted by a constant-time two-sided
error PACA contains LLT∪∩ and is strictly contained in LTT.

It is known that the constant-time class of DACA equals the closure under union SLT∪
of the strictly local languages SLT [105]. (We refer to Section 4.4.2.2 for the definitions.)
Since SLT∪ ⊊ LLT∪ is a proper inclusion, this gives a separation of the deterministic and
probabilistic classes in the case of two-sided error and starkly contrasts with Theorem 4.3.

The class LLT. As far as we are aware of, the class LLT does not previously appear in
the literature. In Section 4.4.2.2 we show LLT lies in-between SLT∪ and the class of locally
threshold testable languages LTT. In this regard LLT is similar to the class LT of locally
testable languages; however, as we also prove, both LLT and LLT∪ are incomparable to LT.
The relation between LLT∪∩ and LT is left as a topic for future work.

The languages in LLT are defined based on sets of allowed prefixes and suffixes (as, e.g., the
languages in SLT) together with a linear threshold condition (hence their name): For the
infixes𝑚 of a fixed length ℓ ∈ N+ there are coefficients 𝛼 (𝑚) ∈ R+0 as well as a threshold
𝜃 ≥ 0 such that every word𝑤 in the language satisfies the following:∑︂

𝑚∈Σℓ
𝛼 (𝑚) · |𝑤 |𝑚 ≤ 𝜃,

74

4.1. Introduction

where |𝑤 |𝑚 is the number of occurrences of𝑚 in𝑤 .

As the classes SLT, LT, and LTT (see, e.g., [14]), LLT may also be characterized in terms of
scanners, that is, memoryless devices that process their input by passing a sliding window
of ℓ symbols over it. Namely, the class LLT corresponds to the languages that can be
recognized by scanners possessing a single counter 𝑐 with maximum value 𝜃 ; the counter
𝑐 is incremented by 𝛼 (𝑚) for every infix 𝑚 ∈ Σℓ read, and the scanner accepts if and
only if 𝑐 ≤ 𝜃 holds at the end of the input (and the prefix and suffix of the input are also
allowed).

A related restriction of the LTT languages that we should mention is that of the locally
threshold testable languages in the strict sense (LTTSS) [48, 102]. The key difference
between these languages and our class LLT is that, in the former, one sets a threshold
condition for each infix separately (which corresponds to using multiple counters in their
characterization in terms of scanners). In turn, in LLT there is a single threshold condition
(i.e., the inequality above) and in which different infixes may have distinct weights (i.e., the
coefficients 𝛼 (𝑚)). For instance, this allows counting distinct infixes𝑚1 and𝑚2 towards
the same threshold 𝑡 , which is not possible in the LTTSS languages (as there each infix is
considered separately).

4.1.3. Further Directions

LLT and two-sided error PACA. Besides giving a separation between one- and two-sided
error, Theorem 4.4 considerably narrows down the position of the class of languages
accepted by constant-time two-sided error PACA. Nevertheless, even though we now
know the class is “sandwiched” in-between LLT∪∩ and LTT, a full characterization remains
outstanding. Generalizing the proof of Theorem 4.4 is challenging because the strategy we
follow in the proof relies on closure under complement, but (as we also prove) the class
of two-sided error PACA is not closed under complement. It appears that clarifying the
relation between it and LLT∪∩ as well as LLT∪∩ itself and LLT∪ or also LT may give some
“hints” on how to proceed.

The general sublinear-time case. Theorem 4.2 indicates that even polylogarithmic-time
PACA can recognize languages for which no deterministic polynomial-time algorithm is
currently known. Although the proof of Proposition 4.22 does yield explicit examples of
such languages, they are rather unsatisfactory since the construction does not seem to rely
on the full capabilities of the PACA model. (Namely, communication between blocks of
cells is only required to check certain syntactic properties of the input; once this is done,
the blocks operate independently from one another.) A promising next step would be to
identify languages where the capabilities of the PACA model are put to more extensive
use.

75

4. Sublinear-Time Probabilistic Cellular Automata

Pseudorandom generators. From the opposite direction, to investigate the limitations of
the PACAmodel, one possibilitywould be to construct pseudorandom generators (PRGs) that
fool sublinear-time PACA. Informally, such a PRG is a function𝐺 : {0, 1}𝑠 (𝑛) → {0, 1}𝑟 (𝑛)
with 𝑠 (𝑛) ≪ 𝑟 (𝑛) and having the property that PACA (under given time constraints) are
incapable of distinguishing 𝐺 (𝑥) from uniform when the seed 𝑥 is chosen uniformly at
random. PRGs have found several applications in complexity theory (see, e.g., [113] for an
introduction).

Theorem 4.2 indicates that unconditional time-efficient derandomization of PACA is
beyond reach of current techniques, so perhaps space-efficient derandomization should
be considered instead. Indeed, as a PACA can be simulated by a space-efficient machine
(e.g., by adapting the algorithm from Theorem 3.4), it is possible to recast PRGs that fool
space-bounded machines (e.g., [59, 91]) as PRGs that fool PACA. Nevertheless, we expect to
obtain even better constructions by exploiting the locality of PACA (which space-bounded
machines do not suffer from).

4.1.4. Organization

The rest of the chapter is organized as follows: Section 4.2 introduces basic concepts and
notation and defines the underlying CA and ACA models. Following that, in Section 4.3
we introduce PACA and prove standard error reduction results as well as Theorem 4.1. In
Section 4.4 we address the constant-time case and prove Theorems 4.3 and 4.4. Finally, in
Section 4.5 we briefly address the general sublinear-time case and prove Theorem 4.2.

4.2. Preliminaries

It is assumed the reader is familiar with the theory of cellular automata as well as with
basic notions of computational complexity theory (see, e.g., the standard references [5, 30,
50]).

All logarithms are to base 2. The set of integers is denoted by Z, that of non-negative
integers by N0, and that of positive integers by N+. For a set 𝑆 and 𝑛,𝑚 ∈ N+, 𝑆𝑛×𝑚 is the
set of 𝑛-row,𝑚-column matrices over 𝑆 . For 𝑛 ∈ N+,

[𝑛] = {𝑖 ∈ N0 | 𝑖 < 𝑛}

is the set of the first 𝑛 non-negative integers. Also, for 𝑎, 𝑏 ∈ Z, by

[𝑎, 𝑏] = {𝑖 ∈ Z | 𝑎 ≤ 𝑖 ≤ 𝑏}

we always refer to an interval containing only integers.

Symbols in words are indexed starting with zero. The 𝑖-th symbol of a word𝑤 is denoted
by𝑤𝑖 . For an alphabet Σ and 𝑛 ∈ N0, Σ≤𝑛 contains the words𝑤 ∈ Σ∗ for which |𝑤 | ≤ 𝑛. For
an infix𝑚 ∈ Σ≤|𝑤 | of𝑤 , |𝑤 |𝑚 is the number of occurrences of𝑚 in𝑤 . Without restriction,

76

4.2. Preliminaries

the empty word is not an element of any language that we consider. (This is needed for
definitional reasons; see Definitions 4.6 and 4.7 below.) We write 𝑈𝑛 (resp., 𝑈𝑛×𝑚) for a
random variable distributed uniformly over {0, 1}𝑛 (resp., {0, 1}𝑛×𝑚).

Many of our low-level arguments make use of the notion of a lightcone.3 For a set 𝑆 and
non-negative integers 𝑛 ≤ 𝑚, a lightcone 𝐿 = (ℓ𝑖, 𝑗) of radius𝑚 and height 𝑛 over 𝑆 is a
trapezoidal (when 𝑛 < 𝑚) or triangular (when 𝑛 = 𝑚) array of elements ℓ𝑖, 𝑗 ∈ 𝑆 , where
𝑖 ∈ [0, 𝑛] and 𝑗 ∈ [−𝑚,𝑚]:

ℓ0,−𝑚 ℓ0,−𝑚+1 · · · · · · · · · ℓ0,0 · · · · · · · · · ℓ0,𝑚−1 ℓ0,𝑚
ℓ1,−𝑚+1 · · · · · · · · · ℓ1,0 · · · · · · · · · ℓ1,𝑚−1

. . .
... . .

.

ℓ𝑛,−𝑚+𝑛 · · · ℓ𝑛,0 · · · ℓ𝑛,𝑚−𝑛

The element ℓ0,0 is the center of the lightcone. The layers of 𝐿 are indexed by 𝑖 , where the
𝑖-th layer contains 2(𝑚 − 𝑖) + 1 elements. Hence, the top layer contains 2𝑚 + 1 elements
and the bottom one 2(𝑚 − 𝑛) + 1; in particular, the bottom layer is a single element if and
only if 𝑛 =𝑚. There are

𝑛∑︂
𝑖=0
(2(𝑚 − 𝑖) + 1) = (𝑛 + 1) (2𝑚 − 𝑛 + 1)

elements in a lightcone in total.

We shall also need the following variant of the Chernoff bound (see, e.g., [113]):

Theorem 4.5 (Chernoff bound). Let 𝑋1, . . . , 𝑋𝑛 be independently and identically distributed
Bernoulli variables and 𝜇 = E[𝑋𝑖]. There is a constant 𝑐 > 0 such that the following holds for
every 𝜀 = 𝜀 (𝑛) > 0:

Pr
[︃|︁|︁|︁|︁∑︁𝑖 𝑋𝑖

𝑛
− 𝜇

|︁|︁|︁|︁ > 𝜀]︃ < 2−𝑐𝑛𝜀2 .

4.2.1. Cellular Automata

We consider only bounded one-dimensional cellular automata.

Definition 4.6 (Cellular automaton). A cellular automaton (CA) is a triple 𝐶 = (𝑄, $, 𝛿)
where 𝑄 is the finite set of states, $ ∉ 𝑄 is the boundary symbol, and 𝛿 : 𝑄$ ×𝑄 ×𝑄$ → 𝑄

is the local transition function, where 𝑄$ = 𝑄 ∪ {$}. The elements in the domain of 𝛿 are
the possible local configurations of the cells of 𝐶 . For a fixed width 𝑛 ∈ N+, the global
configurations of 𝐶 are the elements of 𝑄𝑛 . The cells 0 and 𝑛 − 1 are the border cells of 𝐶 .

3 Some sources distinguish between future and past lightcones. Here we shall need only past lightcones.

77

4. Sublinear-Time Probabilistic Cellular Automata

s

∆(s)

∆2(s)

∆3(s)

...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4.1.: Space-time diagram of a CA with 16 cells for an initial configuration 𝑠 . (The states have been
omitted for simplicity.) The cells marked in red form the 2-neighborhood of cell 3, the ones in blue the
3-lightcone of cell number 11.

The global transition function Δ : 𝑄𝑛 → 𝑄𝑛 is obtained by simultaneous application of 𝛿
everywhere; that is, if 𝑠 ∈ 𝑄𝑛 is the current global configuration of 𝐶 , then

Δ(𝑠) = 𝛿 ($, 𝑠0, 𝑠1) 𝛿 (𝑠0, 𝑠1, 𝑠2) · · · 𝛿 (𝑠𝑛−2, 𝑠𝑛−1, $).

For 𝑡 ∈ N0, Δ𝑡 denotes the 𝑡-th iterate of Δ. For an initial configuration 𝑠 ∈ 𝑄𝑛 , the
sequence 𝑠 = Δ0(𝑠),Δ(𝑠),Δ2(𝑠), . . . is the orbit of 𝐶 (for 𝑠). Writing the orbit of 𝐶 line for
line yields its space-time diagram. For 𝑖 ∈ [𝑛] and 𝑟 ∈ N0, the interval [𝑖 − 𝑟, 𝑖 + 𝑟] ∩ [𝑛]
forms the 𝑟 -neighborhood of 𝑖; for 𝑡 ∈ N0, the 𝑡-lightcone of 𝑖 is the lightcone of radius
and height 𝑡 centered at 𝑖 in the 0-th row (i.e., the initial configuration) of the space-time
diagram of 𝐶 .4

Definition 4.7 (DACA). A DACA is a CA 𝐶 with an input alphabet Σ ⊆ 𝑄 as well as a
subset 𝐴 ⊆ 𝑄 of accepting states. We say 𝐶 accepts an input 𝑥 ∈ Σ+ if there is 𝑡 ∈ N0 such
that Δ𝑡 (𝑥) ∈ 𝐴𝑛 , and we denote the set of all such 𝑥 by 𝐿(𝐶). In addition, 𝐶 is said to have
time complexity (bounded by) 𝑇 : N+ → N0 if, for every 𝑥 ∈ 𝐿(𝐶) ∩ Σ𝑛 , there is 𝑡 < 𝑇 (|𝑥 |)
such that Δ𝑡 (𝑥) ∈ 𝐴𝑛 .

4.3. Fundamentals

In this section, we introduce the definition of PACA. Following that, we prove basic error
reduction results and conclude with the proof of Theorem 4.1.

As is customary for randomized models of computation, there are both online and offline
views of our model. Since it gives a more natural presentation, in the definition below we
first present the online model and then address the definitional issue mentioned in the
introduction. In the last part, we switch to the offline view of the model, which will be
more comfortable to work with since we can then refer to the cells’ coin tosses explicitly.

4 If the lightcone’s dimensions overstep the boundaries of the space-time diagram (i.e., 𝑖 is too close to
either of the borders of 𝐶 (e.g., 𝑖 < 𝑡)), then some cells in the 𝑡-lightcone will have undefined states. In
this case, we set the undefined states to $, which ensures consistency with 𝛿 .

78

4.3. Fundamentals

Definition 4.8 (PACA). Let Σ be an alphabet and 𝑄 a finite set of states with Σ ⊆ 𝑄 . A
probabilistic ACA (PACA) 𝐶 is a CA with two local transition functions 𝛿0, 𝛿1 : 𝑄3 → 𝑄 .
At each step of 𝐶 , each cell tosses a fair coin 𝑐 ∈ {0, 1} and updates its state according
to 𝛿𝑐 ; that is, if the current configuration of 𝐶 is 𝑠 ∈ 𝑄𝑛 and the result of the cells’ coin
tosses is 𝑟 = 𝑟0 · · · 𝑟𝑛−1 ∈ {0, 1}𝑛 (where 𝑟𝑖 is the coin toss of the 𝑖-th cell), then the next
configuration of 𝐶 is

Δ𝑟 (𝑠) = 𝛿𝑟0 ($, 𝑠0, 𝑠1) 𝛿𝑟1 (𝑠0, 𝑠1, 𝑠2) · · · 𝛿𝑟𝑛−1 (𝑠𝑛−2, 𝑠𝑛−1, $).

Seeing this process as a Markov chain 𝑀 over 𝑄𝑛 , we recast the global transition func-
tion Δ = Δ𝑈𝑛 as a family of random variables (Δ(𝑠))𝑠∈𝑄𝑛 parameterized by the current
configuration 𝑠 of 𝐶 , where Δ(𝑠) is sampled by starting in state 𝑠 and performing a single
transition on𝑀 (having drawn the cells’ coin tosses according to𝑈𝑛). Similarly, for 𝑡 ∈ N0,
Δ𝑡 (𝑠) is sampled by starting in 𝑠 and performing 𝑡 transitions on𝑀 .

A computation of 𝐶 for an input 𝑥 ∈ Σ𝑛 is a path in 𝑀 starting at 𝑥 . The computation is
accepting if the path visits 𝐴𝑛 at least once. In addition, in order to be able to quantify
the probability of a PACA accepting an input, we additionally require for every PACA
𝐶 that there is a function 𝑇 : N+ → N0 such that, for any input 𝑥 ∈ Σ𝑛 , every accepting
computation for 𝑥 visits𝐴𝑛 for the first time in strictly less than𝑇 (𝑛) steps; that is, if there
is 𝑡 ∈ N0 with Δ𝑡 (𝑥) ∈ 𝐴𝑛 , then Δ𝑡1 (𝑥) ∈ 𝐴𝑛 for some 𝑡1 < 𝑇 (𝑛). (Hence, every accepting
computation for 𝑥 has an initial segment with endpoint in 𝐴𝑛 and whose length is strictly
less than 𝑇 (𝑛).) If this is the case for any such 𝑇 , then we say 𝐶 has time complexity
(bounded by) 𝑇 .

With this restriction in place, we may now equivalently replace the coin tosses of𝐶 with a
matrix 𝑅 ∈ {0, 1}𝑇 (𝑛)×𝑛 of bits with rows 𝑅0, . . . , 𝑅𝑇 (𝑛)−1 and such that 𝑅 𝑗 (𝑖) corresponds
to the coin toss of the 𝑖-th cell in step 𝑗 . (If𝐶 accepts in step 𝑡 , then the coin tosses in rows
𝑡, . . . ,𝑇 (𝑛) − 1 are ignored.) We refer to 𝑅 as a random input to 𝐶 . Blurring the distinction
between the two perspectives (i.e., online and offline randomness), we write 𝐶 (𝑥, 𝑅) = 1 if
𝐶 accepts 𝑥 when its coin tosses are set according to 𝑅, or 𝐶 (𝑥, 𝑅) = 0 otherwise.

Observe that, for different choices of 𝑇 , the random input matrix 𝑅 also has a different
number of rows. This is not an issue since (as required above) any superficial rows are
ignored by𝐶 ; that is, without restriction we may take𝑇 to be such that every value𝑇 (𝑛) is
minimal and set the number of rows of 𝑅 to𝑇 (𝑛). The reason for letting 𝑅 be larger is that,
when simulating a PACA, it may be the case that it is more convenient to compute only an
upper bound 𝑇 ′(𝑛) ≥ 𝑇 (𝑛) instead of the actual minimal value 𝑇 (𝑛). By the convention
above then, it does not matter if 𝑅 has 𝑇 (𝑛) or 𝑇 ′(𝑛) rows (as the behavior of 𝐶 is the
same).

As another remark, notice that in Definition 4.8 we opt for using binary coin tosses along
with only two local transition functions. Nonetheless, this is sufficient to realize a set of
2𝑘 local transition functions 𝛿0, . . . , 𝛿2𝑘−1 for constant 𝑘 with a multiplicative overhead of
𝑘 . (Namely, by having each cell collect 𝑘 coins in 𝑘 steps, interpret these as the binary
representation of 𝑖 ∈ [2𝑘], and then change its state according to 𝛿𝑖 .)

79

4. Sublinear-Time Probabilistic Cellular Automata

Definition 4.8 states the acceptance condition for a single computation (i.e., one fixed choice
of a random input); however, we must still define acceptance based on all computations
(i.e., for random inputs picked according to a uniform distribution). The two most natural
candidates are the analogues of the well-studied classes RP and BPP, which we define
next.

Definition 4.9 (𝑝-error PACA). Let 𝐿 ⊆ Σ∗ and 𝑝 ∈ [0, 1). A one-sided 𝑝-error PACA for 𝐿
is a PACA 𝐶 with time complexity 𝑇 = 𝑇 (𝑛) such that, for every 𝑥 ∈ Σ𝑛 ,

𝑥 ∈ 𝐿 ⇐⇒ Pr[𝐶 (𝑥,𝑈𝑇×𝑛) = 1] ≥ 1 − 𝑝 and 𝑥 ∉ 𝐿 ⇐⇒ Pr[𝐶 (𝑥,𝑈𝑇×𝑛) = 1] = 0.

If 𝑝 = 1/2, then we simply say 𝐶 is a one-sided error PACA. Similarly, for 𝑝 < 1/2, a
two-sided 𝑝-error PACA for 𝐿 is a PACA 𝐶 with time complexity 𝑇 = 𝑇 (𝑛) for which

𝑥 ∈ 𝐿 ⇐⇒ Pr[𝐶 (𝑥,𝑈𝑇×𝑛) = 1] ≥ 1 − 𝑝 and 𝑥 ∉ 𝐿 ⇐⇒ Pr[𝐶 (𝑥,𝑈𝑇×𝑛) = 1] ≤ 𝑝

hold for every 𝑥 ∈ Σ∗. If 𝑝 = 1/3, then we simply say 𝐶 is a two-sided error PACA. In both
cases, we write 𝐿(𝐶) = 𝐿 and say 𝐶 accepts 𝐿.

Note that, to each 0-error PACA 𝐶 , one can obtain an equivalent DACA 𝐶′ with the same
time complexity by setting the local transition function to 𝛿0.

In the rest of the chapter, if it is not specified which of the two variants above (i.e., one- or
two-sided error) is meant, then we mean both variants collectively.

The next example shows that, in some cases, PACAs can be more efficient than DACAs.

Example 4.10. Let Σ = {0, 1, 2, 3} and consider the language

𝐿 = {0𝑘1𝑙2𝑚3𝑛 | 𝑘, 𝑙,𝑚, 𝑛 ∈ N0 and ((𝑙 ≥ 2 and𝑚 ≥ 3) or (𝑙 ≥ 3 and𝑚 ≥ 2))}.

There is no DACA 𝐶 that accepts 𝐿 in at most 2 steps. This can be shown using methods
from Chapter 2 as well as [66, 105]. Namely, given a DACA 𝐶 with time complexity at
most 2 we can fully determine if 𝐶 accepts a word 𝑥 ∈ Σ∗ by looking only at the infixes of
length 5 (and the prefix and suffix of length 4) of 𝑥 . Consider the words 𝑥 = 05132235 ∈ 𝐿,
𝑦 = 05122335 ∈ 𝐿, and 𝑧 = 05122235 ∉ 𝐿. (See Figure 4.2.) Then every infix of length 5 (and
the prefix and suffix of length 4) of 𝑧 appears in 𝑥 except for the infixes 00112 and 01122,
which both appear in 𝑦. Hence, it follows that, if 𝐶 accepts 𝑥 and 𝑦, it must also accept 𝑧,
which proves there is no DACA for 𝐿 with time complexity (at most) 3.

Nevertheless, there is a 3-time one-sided 7/8-error PACA𝐶′ for 𝐿. Checking that the input
𝑥 = 0𝑘1𝑙2𝑚3𝑛 is such that (𝑥 is of the form 0∗1∗2∗3∗ and) 𝑙,𝑚 ≥ 2 can be done without need
of randomness simply by analyzing the infixes of length 5. (Again, we refer to Chapter 2
and [66, 105] for the general method.) Now we show how to use randomness to check
the additional property that𝑚 ≥ 3 or 𝑙 ≥ 3 hold. In time step 1, we have every cell of 𝐶′
expose its coin toss of step 0 so that any of its neighbors can read it and use it to choose
their state in step 2. Let 𝑐𝜎 denote the leftmost cell in𝐶′ in which 𝜎 ∈ Σ appears, and let 𝑙𝜎

80

4.3. Fundamentals

x ∈ L 0 0 0 0 0 1 1 1 2 2 3 3 3 3 3

z /∈ L 0 0 0 0 0 1 1 2 2 3 3 3 3 3

y ∈ L 0 0 0 0 0 1 1 2 2 2 3 3 3 3 3

=

=

Figure 4.2.: Comparing the words 𝑥 = 05132235 ∈ 𝐿, 𝑦 = 05122335 ∈ 𝐿, and 𝑧 = 05122235 ∉ 𝐿, we notice that
every infix of length 5 of 𝑧 appears in either 𝑥 or 𝑦. This implies there is no DACA that accepts 𝐿 with time
complexity 3 or less.

and 𝑟𝜎 be the coin tosses of the left and right neighbors of 𝑐𝜎 , respectively. We have 𝑐1
accept if and only if 𝑟1 = 1, 𝑐3 if and only if 𝑙3 = 1, and 𝑐2 if and only if 𝑙2 + 𝑟2 < 2. All other
cells of𝐶′ accept regardless of the coin tosses they see (as long as 𝑥 satisfies the conditions
we specified above).

For 𝑖 ∈ {1, 2, 3}, let 𝐴𝑖 denote the event of cell 𝑐𝑖 accepting. The above results in the
following behavior: If 𝑙 =𝑚 = 2, we have 𝑟1 = 𝑙2 and 𝑟2 = 𝑙3 since the coin tosses belong
to the same cells, in which case 𝐶′ never accepts. If 𝑙 ≥ 3 and 𝑟2 and 𝑙3 belong to the same
cell (i.e., 𝑟2 = 𝑙3), then 𝑟1 and 𝑙2 do not belong to the same cell and we have

Pr[𝐶 (𝑥,𝑈𝑇×|𝑥 |) = 1] = Pr[𝐴1] Pr[𝐴2 ∧𝐴3] = Pr[𝑟1 = 1] Pr[𝑙2 = 0 ∧ 𝑟2 = 𝑙3 = 1] = 1
8 .

The case𝑚 ≥ 3 and 𝑟1 and 𝑙2 belonging to the same cell is similar. Finally, if 𝑙 ≥ 3 and
𝑚 ≥ 3, the values 𝑟1, 𝑙2, 𝑟2, and 𝑙3 are all independent and we have

Pr[𝐶 (𝑥,𝑈𝑇×|𝑥 |) = 1] =
3∏︂
𝑖=1

Pr[𝐴𝑖] = Pr[𝑟1 = 1] Pr[𝑙2 + 𝑟2 < 2] Pr[𝑙3 = 1] > 1
8 .

Lemma 4.11 (Independence of local events). Let 𝐶 be a one- or two-sided error PACA, let
𝑥 ∈ Σ𝑛 be an input to𝐶 , and let𝑇 ∈ N+. In addition, let 𝑖, 𝑗 ∈ [𝑛] be such that |𝑖− 𝑗 | > 2(𝑇−1)
and 𝐸𝑖 (resp., 𝐸 𝑗) be an event described exclusively by the states of the 𝑖-th (resp., 𝑗-th) cell of
𝐶 in the time steps 0, . . . ,𝑇 − 1 (e.g., the 𝑖-th cell accepts in some step 𝑡 where 𝑡 < 𝑇). Then 𝐸𝑖
and 𝐸 𝑗 are independent.

Proof. For any random input 𝑅, the states of 𝑘 ∈ {𝑖, 𝑗} in the time steps between 0 and
𝑇 − 1 is uniquely determined by the values of 𝑅(𝑡, 𝑘 −𝑇 + 𝑡 + 1), . . . , 𝑅(𝑡, 𝑘 +𝑇 − 𝑡 − 1) for
𝑡 ∈ [𝑇]. Without loss of generality, suppose 𝑖 ≤ 𝑗 . Since 𝑖 +𝑇 − 1 < 𝑗 −𝑇 + 1, 𝐸𝑖 and 𝐸 𝑗
are conditioned on disjoint sets of values of 𝑅, thus implying independence.

Note the proof still holds in case 𝑇 = 1, in which case the events 𝐸𝑖 and 𝐸 𝑗 occur with
probability either 0 or 1, thus also (trivially) implying independence.

81

4. Sublinear-Time Probabilistic Cellular Automata

4.3.1. Robustness of Definition

We now prove that the definition of PACA is robust with respect to the choice of 𝑝 = 1/2
(resp., 𝑝 = 1/3) for the error of one-sided (resp., two-sided) error PACA.

4.3.1.1. One-Sided Error

For one-sided error, we can reduce the error 𝑝 to any desired constant value 𝑝′.

Proposition 4.12. Let 𝑝, 𝑝′ ∈ (0, 1) be constant and 𝑝′ < 𝑝 . For every one-sided 𝑝-error
PACA 𝐶 , there is a one-sided 𝑝′-error PACA 𝐶′ such that 𝐿(𝐶) = 𝐿(𝐶′). Furthermore, if 𝐶
has time complexity 𝑇 (𝑛), then 𝐶′ has time complexity 𝑂 (𝑇 (𝑛)).

Setting 𝑝′ = 1/2, it follows that the definition of PACA is robust under the choice of 𝑝 (as
long as it is constant) and regardless of the time complexity (up to constant factors).

The proof is essentially a generalization of the idea from Proposition 2.7 to show that
the sublinear-time DACA classes are closed under union. Namely, 𝐶′ simulates several
copies𝐶0, . . . ,𝐶𝑚−1 of𝐶 in parallel and accepting if and only if at least one𝐶𝑖 accepts. This
idea is particularly elegant because𝑚 can be chosen to be constant and we update the 𝐶𝑖
in a round-robin fashion (i.e., first 𝐶0, then 𝐶1, 𝐶2, etc., and finally 𝐶0 again after 𝐶𝑚−1).
The alternative is to simulate each 𝐶𝑖 for 𝑇 (𝑛) steps at a time, which is not possible in
general since it requires computing 𝑇 (𝑛) first. The construction we give avoids this issue
entirely.

Proof. We construct a PACA 𝐶′ with the desired properties. Let𝑚 = ⌈log(1/𝑝′ − 1/𝑝)⌉.
Furthermore, let 𝑄 be the state set of 𝐶 and Σ its input alphabet. We set the state set of 𝐶′
to 𝑄𝑚 × [𝑚] ∪ Σ. Given an input 𝑥 , every cell of 𝐶′ initially changes its state from 𝑥 (𝑖) to
(𝑥 (𝑖), . . . , 𝑥 (𝑖), 0). The cells of 𝐶′ simulate𝑚 copies of 𝐶 as follows: If the last component
of a cell contains the value 𝑗 , then its 𝑗-th component5 𝑞0 is updated to 𝛿 (𝑞−1, 𝑞0, 𝑞1), where
𝑞−1 and 𝑞1 are the 𝑗-th components of the left and right neighbors, respectively (or $ in
case of a border cell); at the same time, the last component of the cell is set to 𝑗 + 1 if 𝑗 < 𝑚
or 0 in case 𝑗 =𝑚. A cell of 𝐶′ is accepting if and only if its last component is equal to 𝑗
and its 𝑗-th component is an accepting state of 𝐶 .

Denote the 𝑖-th simulated copy of 𝐶 by 𝐶𝑖 . Clearly, 𝐶′ accepts in step 𝑚𝑡 + 𝑖 + 1 for
𝑖 ∈ [𝑚] if and only if 𝐶𝑖 accepts in step 𝑡 , so we immediately have that 𝐶′ has 𝑂 (𝑇 (𝑛))
time complexity. For the same reason and since 𝐶′ never accepts in step 0, 𝐶′ does not
accept any input 𝑥 ∉ 𝐿(𝐶). As for 𝑥 ∈ 𝐿(𝐶), note the𝑚 copies of 𝐶 are all simulated using
independent coin tosses, thus implying

Pr[𝐶′ does not accept 𝑥] = Pr[∀𝑖 ∈ [𝑚] : 𝐶𝑖 does not accept 𝑥] < 𝑝𝑚 ≤ 𝑝′.

Hence, 𝐶′ accepts 𝑥 with probability at least 1 − 𝑝′, as desired.

5 In the same manner as we do for the indices of a word, we number the components starting with zero.

82

4.3. Fundamentals

4.3.1.2. Two-Sided Error

For two-sided error, we show the definition of PACA is robust for every choice of 𝑝 for
constant-time PACA. The construction is considerably more complex than the previous
one.

Proposition 4.13. Let 𝑝, 𝑝′ ∈ (0, 1/2) be constant and 𝑝′ < 𝑝 . For every two-sided 𝑝-error
PACA 𝐶 with constant time complexity 𝑇 = 𝑂 (1), there is a two-sided 𝑝′-error PACA 𝐶′ with
time complexity 𝑂 (𝑇) = 𝑂 (1) and such that 𝐿(𝐶) = 𝐿(𝐶′).

To reduce the error, we use the standard method based on the Chernoff bound (Theo-
rem 4.5); that is, the PACA 𝐶′ simulates𝑚 independent copies 𝐶0, . . . ,𝐶𝑚−1 of 𝐶 (for an
adequate choice of 𝑚) and then accepts if and only if the majority of the 𝐶𝑖 do. More
precisely, 𝐶′ loops over every possible majorityM ⊆ [𝑚] (i.e., every setM ⊆ [𝑚] with
|M| ≥ 𝑚/2) over the 𝐶𝑖 and checks whether 𝐶𝑖 accepts for every 𝑖 ∈ M (thus reducing
majority over the 𝐿(𝐶𝑖) to intersection over the 𝐿(𝐶 𝑗) where 𝑗 ∈ M). In turn, to check
whether every 𝐶 𝑗 accepts for 𝑗 ∈ M, 𝐶′ tries every possible combination of time steps
for the 𝐶 𝑗 to accept and accepts if such a combination is found. If this entire process fails,
then the majority of the 𝐶𝑖 do not accept, and thus 𝐶′ does not accept as well. (Obviously,
this idea is only feasible if𝑚 as well as the time complexities of the 𝐶𝑖 are constant.)

Proof. Let 𝑄 be the state set of 𝐶 and Σ its input alphabet. We also fix a constant 𝑚
depending only on 𝑝 and 𝑝′ which will be set later and let𝑀 =

(︁ 𝑚
⌈𝑚/2⌉

)︁
.

Construction. The state set of 𝐶′ is 𝑄′ ∪ Σ, where 𝑄′ is a set of states consisting of the
following components:

• an𝑚-tuple from 𝑄𝑚 of states of 𝐶

• an𝑚-tuple from [𝑇]𝑚 representing an𝑚-digit, 𝑇 -ary counter 𝑖0 · · · 𝑖𝑚−1
• a value from [𝑀] representing a counter modulo𝑀

• an input symbol from Σ

• a (𝑇 ×𝑚)-matrix of random bits, which are all initially set to an undefined value
different from 0 or 1

Given an input 𝑥 , in the first step of 𝐶′ every cell changes its state from 𝑥 (𝑖) to a state
in 𝑄′ where the 𝑄𝑚 components are all set to 𝑥 (𝑖), the numeric ones (i.e., with values
in [𝑇]𝑚 and [𝑀]) set to 0, and the value 𝑥 (𝑖) is stored in the Σ component. In the first
phase of 𝐶′, which lasts for𝑚𝑇 steps, the cells fill their (𝑇 ×𝑚)-matrix with random bits.
This is the only part of the operation of 𝐶′ in which its random input is used (i.e., in all
subsequent steps, 𝐶′ operates deterministically and the outcome of the remaining coin
tosses is ignored).

83

4. Sublinear-Time Probabilistic Cellular Automata

In this next phase, 𝐶′ simulates𝑚 copies 𝐶0, . . . ,𝐶𝑚−1 of 𝐶 in its 𝑄𝑚 components (as in
the proof of Proposition 4.12). The random bits for the simulation are taken from the
previously filled (𝑇 ×𝑚)-matrix, where the 𝑇 entries in the 𝑖-th column are used as the
coin tosses in the simulation of 𝐶𝑖 (with the entry in the respective 𝑗-th row being used in
the 𝑗-th step of the simulation). Meanwhile, the 𝑖0 · · · 𝑖𝑚−1 counter is taken to represent
that the simulation of 𝐶 𝑗 is in its 𝑖 𝑗 -th step.

The cells update their states as follows: At each step, the counter is incremented and the
respective simulations are updated accordingly; more precisely, if 𝐶 𝑗 is in step 𝑖 𝑗 and 𝑖 𝑗
was incremented (as a result of the counter being incremented), then the simulation of 𝐶 𝑗
is advanced by one step; if the value 𝑖 𝑗 is reset to 0, then the simulation of 𝐶 𝑗 is restarted
by setting the respective state to 𝑥 (𝑖). Every time the counter has looped over all possible
values, the [𝑀] component of the cell is incremented (and the process begins anew with
the counter set to all zeroes). When the value of the [𝑀] component is equal to𝑀 − 1 and
the counter reaches its final value (i.e., 𝑖 𝑗 = 𝑇 − 1 for every 𝑗), then the cell conserves its
current state indefinitely.

We agree upon an enumerationM0, . . . ,M𝑀−1 of the subsets of [𝑚] of size ⌈𝑚/2⌉ and
identify a value of 𝑖 in the [𝑀] component withM𝑖 . A cell whose [𝑀] component is equal
to 𝑖 is then accepting if and only if, for every 𝑗 ∈ M𝑖 , its 𝑗-th component is an accepting
state of 𝐶 .

Correctness. By construction, if 𝐶′ accepts in a time step where the 𝑇 -ary counters have
the value 𝑖0 · · · 𝑖𝑚−1 and the [𝑀] component the value 𝑗 , then this is the case if and only if
𝐶𝑘 accepts in step 𝑖𝑘 for every 𝑘 ∈ M 𝑗 . Hence, 𝐶′ accepts if and only if at least ⌈𝑚/2⌉ of
the simulated copies of 𝐶 accept (which, by definition, must occur in a time step prior to
𝑇); that is, 𝐶′ accepts if and only if a majority of the 𝐶0, . . . ,𝐶𝑚−1 accept.

Finally, we turn to setting the parameter𝑚 so that 𝐶′ only errs with probability at most
𝑝′. Let 𝑋𝑖 be the random variable that indicates whether 𝐶𝑖 accepts conditioned on its
coin tosses. Then the probability that 𝐶′ errs is upper-bounded by the probability that
(∑︁𝑖 𝑋𝑖)/𝑚 deviates from the mean

𝜇 = Pr[𝐶 (𝑥, 𝑟) = 1] ≥ 1 − 𝑝
bymore than 𝜀 = 1/2−𝑝 . By the Chernoff bound (Theorem 4.5), this occurs with probability
at most 2−𝑐𝑚𝜀2 for some constant 𝑐 > 0, so setting𝑚 such that𝑚 ≥ log(1/𝑝′)/𝑐𝜀2 completes
the proof.

It remains open whether a similar result holds for general (i.e., non-constant-time) two-
sided error PACA. Generalizing the proof would require at the very least a construction for
intersecting non-constant-time PACA languages. If such a construction were to be known,
then extending the idea above one could use that the union of constantly many 𝑇 -time
PACA languages can be recognized in 𝑂 (𝑇) time (as we prove later in Proposition 4.21)
and represent the majority over 𝑚 PACA languages 𝐿0, . . . , 𝐿𝑚−1 as the union over all
possible intersections of ⌈𝑚/2⌉ many 𝐿𝑖 . Note that closure under intersection is open in
the deterministic setting (i.e., of DACA) as well (see Chapter 2).

84

4.3. Fundamentals

4.3.2. One- vs. Two-Sided Error

The results of Section 4.3.1 are useful in establishing the following:

Theorem 4.1. The following hold:

1. If 𝐶 is a one-sided error PACA with time complexity 𝑇 , then there is an equivalent
two-sided error PACA 𝐶′ with time complexity 𝑂 (𝑇).

2. There is a language 𝐿 recognizable by constant-time two-sided error PACA but not by
any 𝑜 (

√
𝑛)-time one-sided error PACA.

Proof. The first item follows from Proposition 4.12: Transform 𝐶 into a one-sided error
PACA 𝐶′ with error at most 1/3 and then notice that 𝐶′ also qualifies as a two-sided error
PACA (as it simply never errs on “no” instances).

For the second item, consider the language

𝐿 = {𝑥 ∈ {0, 1}+ | |𝑥 |1 ≤ 1}.

We obtain a constant-time two-sided error PACA for 𝐿 by having its cells behave as follows:
If a cell receives a 0 as input, then it immediately accepts; otherwise, it collects two random
bits in the first two steps and then, seeing the bits as the binary representation of an integer
𝑡 ∈ [4], it accepts (only) in the subsequent 𝑡-th step. Hence, if the input 𝑥 is such that
|𝑥 |1 ≤ 1, the PACA always accepts; conversely, if |𝑥 |1 ≥ 2, then the PACA only accepts if
all 1 cells pick the same value for 𝑡 , which occurs with probability at most 1/4.

It remains to show that 𝐿(𝐶) ≠ 𝐿 for any one-sided error PACA 𝐶 with time complexity
𝑇 = 𝑜 (

√
𝑛). Let 𝑛 be large enough so that 𝑇 = 𝑇 (𝑛) ≤

√
𝑛/2. Notice that

𝐿 ∩ {0, 1}𝑛 = {0𝑛, 𝑥1, . . . , 𝑥𝑛}

where 𝑥𝑖 = 0𝑖−110𝑛−𝑖 . Let us now assume that 𝑥𝑖 ∈ 𝐿(𝐶) holds for every 𝑖 . Since 𝐶 accepts
with probability at least 1/2, by the pigeonhole principle there is a random input 𝑟 such
that 𝐶 (𝑥𝑖, 𝑟) = 1 for at least a 1/2 fraction of the 𝑥𝑖 . In addition, there are only 𝑇 steps in
which 𝐶 may accept, which also implies there is a step 𝑡 < 𝑇 such that at least a 1/2𝑇
fraction of the 𝑥𝑖 is accepted by𝐶 in step 𝑡 . Since there are 𝑛/2𝑇 ≥ 2𝑇 ≥ 2𝑡 + 2 such 𝑥𝑖 , we
can find 𝑖, 𝑗 ∈ [𝑛] such that 𝑗 ≥ 𝑖 + 2𝑡 + 1 and 𝑥𝑖, 𝑥 𝑗 ∈ 𝐿(𝐶).

Consider now the input
𝑥∗ = 0𝑖−110 𝑗−𝑖−110𝑛− 𝑗 ,

which is not in 𝐿. We argue 𝐶 (𝑥∗, 𝑟) = 1, thus implying 𝐿(𝐶) ≠ 𝐿 and completing the
proof. We can see this by comparing the local views of the “bad” word 𝑥∗ with the “good”
ones 𝑥𝑖 and 𝑥 𝑗 (see Figure 4.3 for an illustration): Let 𝑘 ∈ [𝑛] be any cell of 𝐶 . If 𝑘 < 𝑗 − 𝑡 ,
then the configuration of the 𝑡-neighborhood of 𝑘 in 𝑥∗ is identical to that it has in 𝑥𝑖 , so 𝑘
must be accepting in step 𝑡 . Similarly, if 𝑘 ≥ 𝑗 − 𝑡 , then the 𝑡-neighborhood of 𝑘 in 𝑥∗ is
the same as in 𝑥 𝑗 , so 𝑘 must be accepting as well. It follows that all cells of𝐶 are accepting
in step 𝑡 when 𝐶 is given the inputs 𝑥∗ and 𝑟 .

85

4. Sublinear-Time Probabilistic Cellular Automata

xi ∈ L 0 0 0 0 0 0 0 0 0 0 0 01· · · · · · · · · · · ·

x∗ /∈ L 0 0 0 0 0 0 0 0 0 0 01 1· · · · · · · · · · · ·

xj ∈ L 0 0 0 0 0 0 0 0 0 0 0 01· · · · · · · · · · · ·

0 i j − t j n− 1

≥ t = t

=

=

Figure 4.3.: Constructing 𝑥∗ ∉ 𝐿 from 𝑥𝑖 , 𝑥 𝑗 ∈ 𝐿. The numbers above the cells indicate their respective
indices. Since every 𝑡-neighborhood of 𝑥∗ appears in either 𝑥𝑖 or 𝑥 𝑗 and both 𝑥𝑖 and 𝑥 𝑗 are accepted in
(exactly) 𝑡 steps, it follows that 𝐶 accepts 𝑥∗ in 𝑡 steps.

4.4. The Constant-Time Case

In this section we now focus on constant-time PACA. Our goal will be to characterize the
constant-time classes of both one- and two-sided error PACA (i.e., Theorems 4.3 and 4.4).
First, we introduce the concept of critical cells, which is central to our analysis.

4.4.1. Critical Cells

Definition 4.14 (Critical cell). Let 𝐶 be a one- or two-sided error PACA, and let 𝑥 ∈
𝐿(𝐶) ∩ Σ𝑛 . We say a cell 𝑖 ∈ [𝑛] is critical for 𝑥 in step 𝑡 ∈ N0 if there are random inputs
𝑅, 𝑅′ ∈ {0, 1}𝑡×𝑛 such that 𝑖 is accepting in step 𝑡 of 𝐶 (𝑥, 𝑅) but not in step 𝑡 of 𝐶 (𝑥, 𝑅′).

In other words, if 𝐸 is the event of 𝑖 being accepting in step 𝑡 of 𝐶 on input 𝑥 , then
0 < Pr[𝐸] < 1 (where the probability is taken over the coin tosses of 𝐶). We should stress
that whether a cell is critical or not may be highly dependent on 𝑥 and 𝑡 ; for instance, there
may be inputs 𝑥1 ≠ 𝑥2 where the cell 𝑖 is critical for 𝑥1 but not for 𝑥2.

As it turns out, the number of critical cells of a constant-time PACA is also constant.

Lemma 4.15. Let 𝐶 be a 𝑇 -time (one- or two-sided error) PACA for 𝑇 ∈ N+, and let
𝑥 ∈ 𝐿(𝐶) ∩ Σ𝑛 . In addition, let 𝑡 ∈ [𝑇] be a time step in which 𝑥 is accepted by 𝐶 with
non-zero probability. Then there are 2𝑂 (𝑇 2) cells that are critical for 𝑥 in step 𝑡 . It follows
there are 𝑇 · 2𝑂 (𝑇 2) = 2𝑂 (𝑇 2) critical cells for 𝑥 in total (i.e., all such time steps comprised).

Proof. For 𝑖 ∈ [𝑛], let 𝐸𝑖 denote the event in which the 𝑖-th cell accepts in step 𝑡 . Assume
towards a contradiction that there is 𝑥 ∈ 𝐿(𝐶) in which strictly more than

2𝑇 · (1 + log𝑇) · 2𝑇 2
= 2𝑂 (𝑇 2)

cells are critical for 𝑥 (in step 𝑡). By inspection, this implies there is a set 𝐾 ⊆ [𝑛] of
|𝐾 | ≥ (1 + log𝑇) · 2𝑇 2 cells such that every 𝑘 ∈ 𝐾 is critical for 𝑥 and, for every distinct

86

4.4. The Constant-Time Case

𝑖, 𝑗 ∈ 𝐾 , |𝑖 − 𝑗 | ≥ 2𝑇 .6 Since there are at most 𝑇 2 coin tosses that determine whether
a cell 𝑖 ∈ 𝐾 accepts or not (i.e., those in the 𝑇 -lightcone of 𝑖), Pr[𝐸𝑖] < 1 if and only if
Pr[𝐸𝑖] ≤ 1 − 2−𝑇 2 . By Lemma 4.11, the events 𝐸𝑖 are all independent, implying

Pr[𝐶 accepts 𝑥 in step 𝑡] ≤ Pr[∀𝑖 ∈ 𝐾 : 𝐸𝑖] =
∏︂
𝑖∈𝐾

Pr[𝐸𝑖] ≤
(︃
1 − 1

2𝑇 2

)︃ |𝐾 |
<

1
𝑒1+log𝑇

<
1
2𝑇 .

Since 𝑡 was arbitrary, by a union bound it follows that the probability that 𝐶 accepts 𝑥
in step 𝑡 is strictly less than 1/2. This contradicts 𝑥 ∈ 𝐿(𝐶) both when 𝐶 is a one- and a
two-sided error PACA.

We remark that, for one-sided error PACA, the upper bound above can be slightly improved
to 2𝑂 (𝑇) critical cells. To show this, we prove a result akin to a pumping lemma for the
languages accepted by these machines and which may be of independent interest.

Lemma 4.16. Let 𝐶 be a 𝑇 -time one-sided error PACA for some 𝑇 ∈ N+, and let 𝑥 ∈ 𝐿(𝐶).
Then, for any strings 𝑢, 𝑣,𝑤,𝑦, 𝑧 ∈ Σ∗ with |𝑦 |, |𝑧 | ≥ 𝑇 − 1 and such that

𝑥 = 𝑢𝑦𝑧𝑤𝑦𝑧𝑣,

we have that, for every 𝑖 ∈ N0,

𝑥𝑖 = 𝑢𝑦 (𝑧𝑤𝑦)𝑖𝑧𝑣 ∈ 𝐿(𝐶).

Moreover, none of the cells in the 𝑧𝑤𝑦 segments of 𝑥𝑖 are critical (in any time step in which
𝐶 accepts 𝑥𝑖 with non-zero probability). In particular, there are at most 2𝑂 (𝑇) cells that are
critical for 𝑥 (in any such time step).

Proof. First we prove that 𝑥𝑖 ∈ 𝐿(𝐶) for every 𝑖 . Let 𝑅 ∈ {0, 1}𝑇×|𝑥 | such that 𝐶 (𝑥, 𝑅) = 1,
and let 𝑛 = |𝑥 | and 𝑛𝑖 = |𝑥𝑖 |. We argue that, for any cell 𝑗 ∈ [𝑛𝑖], there is a corresponding
𝑗 ′ ∈ [𝑛] such that the (𝑇 − 1)-lightcones of 𝑗 and 𝑗 ′ are identical. This can be easily
observed using |𝑦 |, |𝑧 | ≥ 𝑇 − 1:

• The cells of 𝑢 (resp., 𝑣) in 𝑥𝑖 correspond to the cells of 𝑢 (resp., 𝑣) in 𝑥 .

• The cells of the first occurrence of 𝑦 (resp., last occurrence of 𝑧) in 𝑥𝑖 correspond to
the cells of the first occurrence of 𝑦 (resp., last occurrence of 𝑧) in 𝑥 .

• For 𝑖 ≥ 1, the cells of any occurrence of 𝑧𝑤𝑦 in 𝑥𝑖 correspond to the cells of 𝑧𝑤𝑦 in 𝑥 .

As a result, we have 𝐶 (𝑥𝑖, 𝑅) = 1 and, by definition, 𝑥𝑖 ∈ 𝐿(𝐶).

Next we show that none of the cells in the 𝑧𝑤𝑦 segments are critical (in any fixed time step
𝑡 ∈ [𝑇] in which 𝑥𝑖 is accepted with non-zero probability). Assume towards a contradiction
that there is a critical cell 𝑘 in the 𝑧𝑤𝑦 segment of 𝑥 . (The proof for 𝑥𝑖 is similar.) As in the
proof of Lemma 4.15, the probability that 𝑘 accepts is at most 1 − 2−𝑇 2 . Consider the input

6 For instance, in the extreme case where every 0 ≤ 𝑖 < 2𝑇 · 2𝑇 2 is critical, pick 𝐾 = {2 𝑗𝑇 | 𝑗 ∈ [2𝑇 2]}.

87

4. Sublinear-Time Probabilistic Cellular Automata

𝑥𝑚 for𝑚 = 2 · (1 + log𝑇) · 2𝑇 2 . Then the cells 𝑘 + 𝑗𝑟 for 𝑗 ∈ [𝑚/2] and 𝑟 = 2|𝑧𝑤𝑦 | accept
independently of one another (due to Lemma 4.11 and 𝑟 > 2(𝑇 − 1)). In addition, their
(𝑇 − 1)-neighborhoods are identical, and so their acceptance probabilities are exactly the
same. Using an argument as in the proof of Lemma 4.15, this implies

Pr[𝐶 accepts 𝑥𝑚 in step 𝑡] ≤
(︃
1 − 1

𝑚

)︃𝑚
<

1
𝑒1+log𝑇

<
1
2𝑇 .

Since 𝑡 was arbitrary, (again, by a union bound) this contradicts 𝐶 being a one-sided error
PACA.

Finally, we turn to the upper bound on the number of critical cells. Identify the (𝑇 − 1)-
neighborhood of a critical cell 𝑘 with 𝑦𝑧 where |𝑦 | = 𝑇 − 1, |𝑧 | = 𝑇 , and 𝑘 is the first cell of
𝑧. Then it follows from the above that any critical cell 𝑘′ whose (𝑇 − 1)-neighborhood is
identical to 𝑘 cannot be more than 2(𝑇 − 1) cells away from 𝑘 (i.e., |𝑘 − 𝑘′| ≤ 2(𝑇 − 1)). As
there can be at most |Σ|2𝑇−1 = 2𝑂 (𝑇) many substrings of the type 𝑦𝑧, this means there are
at most (2𝑇 − 1) · 2𝑂 (𝑇) = 2𝑂 (𝑇) critical cells in total.

4.4.2. Characterization

We now almost fully characterize the constant-time PACA languages by proving Theo-
rems 4.3 and 4.4.

4.4.2.1. One-Sided Error PACA

Theorem 4.3. For any constant-time one-sided error PACA𝐶 , there is a constant-time DACA
𝐶′ such that 𝐿(𝐶) = 𝐿(𝐶′).

Lemma 4.15 implies that, given any input 𝑥 ∈ 𝐿(𝐶), the decision of 𝐶 accepting can be
traced back to a set 𝐾 of critical cells where |𝐾 | is constant. To illustrate the idea behind
the result, suppose that, if 𝐶 accepts, then it always does so in a fixed time step 𝑡 < 𝑇 and
also that the cells in 𝐾 are all far apart (e.g., more than 2(𝑇 − 1) cells away from each other
as in Lemma 4.11). Let us locally inspect the space-time diagram of 𝐶 for 𝑥 , that is, by
looking at the 𝑡-lightcone of each cell 𝑖 . Then we notice that, if 𝑖 ∈ 𝐾 , there is a choice of
random bits in the 𝑡-lightcone of 𝑖 that causes 𝑖 to accept; conversely, if 𝑖 ∉ 𝐾 , then any
setting of random bits results in 𝑖 accepting. Consider how this changes when 𝑥 ∉ 𝐿(𝐶)
while assuming 𝐾 remains unchanged. Every cell 𝑖 ∉ 𝐾 still behave the same; that is, it
accepts regardless of the random input it sees. As for the cells in 𝐾 , however, since they
are all far apart, it cannot be the case that we still find random bits for every 𝑖 ∈ 𝐾 that
cause 𝑖 to accept; otherwise 𝐶 would accept 𝑥 with non-zero probability, contradicting the
definition of one-sided error PACA. Hence, there must be at least some 𝑖 ∈ 𝐾 that never
accepts. In summary, (under these assumptions) we can locally distinguish 𝑥 ∈ 𝐿(𝐶) from
𝑥 ∉ 𝐿(𝐶) by looking at the cells of 𝐾 and checking whether, for every 𝑖 ∈ 𝐾 , there is at
least one setting of the random bits in the 𝑡-lightcone of 𝑖 that causes it to accept.

88

4.4. The Constant-Time Case

In the proof we generalize this idea to handle the case where the cells in 𝐾 are not
necessarily far from each other—which in particular means we can no longer assume that
the events of them accepting are independent—as well as of 𝐾 varying with the input.
Since Lemma 4.15 only gives an upper bound for critical cells when the input is in 𝐿(𝐶),
we must also account for the case where the input is not in 𝐿(𝐶) and |𝐾 | exceeds said
bound.

Proof. Let 𝑇 ∈ N+ be the time complexity of 𝐶 , and let 𝑀 be the upper bound on the
number of critical cells (for inputs in 𝐿(𝐶)) from Lemma 4.15. Without restriction, we may
assume 𝑇 > 1. We first give the construction for 𝐶′ and then prove its correctness.

Construction. Given an input 𝑥 ∈ Σ𝑛, the automaton 𝐶′ operates in two phases. In the
first one, the cells communicate so that, in the end, each cell is aware of the inputs in its
𝑟 -neighborhood, where 𝑟 = (2𝑀 − 1) (𝑇 − 1). (Note this is possible because 𝑟 is constant.)
The second phase proceeds in 𝑇 steps, with the cells assuming accepting states or not
depending on a condition we shall describe next. After the second phase is over (and 𝐶′
has not yet accepted), all cells unconditionally enter a non-accepting state and maintain it.
Hence, 𝐶′ only ever accepts during the second phase.

We now describe when a cell 𝑖 ∈ [𝑛] is accepting in the 𝑡-th step of the second phase,
where 𝑡 ∈ [𝑇]. Let 𝐾 be the set of critical cells of 𝑥 in step 𝑡 . The decision process is as
follows:

• First the cell checks whether there are strictly more than𝑀 cells in its 𝑟 -neighborhood
𝑁 that are critical in step 𝑡 of 𝐶 . (If 𝑖 cannot determine this for any cell 𝑗 ∈ 𝑁 (since
it did not receive the entire 𝑡-neighborhood of 𝑗 during the first phase), then 𝑗 is
simply ignored.) If this is the case, then 𝑖 enters a non-accepting state and maintains
it.

• The cell then determines whether it is critical itself in step 𝑡 of 𝐶 . If this is not the
case, then it becomes accepting if and only if it is accepting in step 𝑡 of 𝐶 (regardless
of the random input).

• Otherwise 𝑖 is critical in step 𝑡 . Let 𝐵𝑖 ⊆ [𝑛] be the subset of cells that results from
the following sequence of operations:

1. Initialize 𝐵𝑖 to {𝑖}.

2. For every cell 𝑗 ∈ 𝐵𝑖 , add to 𝐵𝑖 every 𝑘 ∈ 𝐾 such that | 𝑗 − 𝑘 | ≤ 2(𝑇 − 1).

3. Repeat step 2 until a fixpoint is reached.

(This necessarily terminates since there are at most𝑀 critical cells in 𝑁 .) By choice
of 𝑟 , we have that |𝑖 − 𝑗 | ≤ 2(𝑀 − 1) (𝑇 − 1) for every 𝑗 ∈ 𝐵𝑖 . In particular, we have
that the 𝑡-neighborhood of every 𝑗 ∈ 𝐵𝑖 is completely contained in 𝑁 , which means

89

4. Sublinear-Time Probabilistic Cellular Automata

cell 𝑖 is capable of determining 𝐵𝑖 .7 The cell 𝑖 then accepts if and only if there is a
setting of random bits in the lightcone 𝐿𝑖 of radius 𝑟 and height 𝑡 centered at 𝑖 that
causes every cell in 𝐵𝑖 to accept in step 𝑡 of 𝐶 .

This process repeats itself in every step 𝑡 of the second phase. Note that it can be performed
by 𝑖 instantaneously (i.e., without requiring any additional time steps of𝐶′) since it can be
hardcoded into the local transition function 𝛿 .

Correctness. It is evident that 𝐶′ is a constant-time PACA, so all that remains is to verify
its correctness. To that end, fix an input 𝑥 and consider the two cases:

𝑥 ∈ 𝐿(𝐶). Then there is a random input 𝑅 such that 𝐶 accepts 𝑥 in step 𝑡 ∈ [𝑇]. This
means that, for every critical cell 𝑖 ∈ 𝐾 , if we set the random bits in 𝐿𝑖 according to
𝑅, then every cell in 𝐵𝑖 accepts in step 𝑡 of 𝐶 . Likewise, every cell 𝑖 ∉ 𝐾 is accepting
in step 𝑡 of 𝐶 by definition. In both cases we have that 𝑖 also accepts in the 𝑡-th step
of the second phase of 𝐶′, thus implying 𝑥 ∈ 𝐿(𝐶′).

𝑥 ∉ 𝐿(𝐶). Then, for every random input 𝑅 and every step 𝑡 ∈ [𝑇], there is at least one
cell 𝑖 ∈ [𝑛] that is not accepting in the 𝑡-th step of 𝐶 (𝑥, 𝑅). If 𝑖 is not critical, then
𝑖 is also not accepting in the 𝑡-th step of the second phase of 𝐶′ (regardless of the
random input), and thus 𝐶′ also does not accept 𝑥 . Hence, assume that every such 𝑖
(i.e., every 𝑖 such that there is a random input 𝑅 for which 𝑖 is not accepting in the
𝑡-th step of 𝐶 (𝑥, 𝑅)) is a critical cell.

Let 𝐽 ⊆ [𝑛] denote the set of all such cells and, for 𝑖 ∈ 𝐽 , let 𝐷𝑖 ⊆ 𝐽 be the subset
that contains every 𝑗 ∈ 𝐽 such that the events of 𝑖 and 𝑗 accepting in step 𝑡 are not
independent (conditioned on the random input to 𝐶). In addition, let 𝐴𝑖 denote the
event in which every cell of 𝐷𝑖 is accepting in step 𝑡 of 𝐶 (𝑥,𝑈𝑇×𝑛). We shall show
the following holds:

Claim. There is an 𝑖 ∈ 𝐽 such that Pr[𝐴𝑖] = 0; that is, for every 𝑅, there is at least one
cell in 𝐷𝑖 that is not accepting in step 𝑡 of 𝐶 (𝑥, 𝑅).

This will complete the proof since then 𝑖 is also not accepting in the 𝑡-th step of the
second phase of 𝐶′ (since any cell in 𝐷𝑖 is necessarily at most 2(𝑀 − 1) (𝑇 − 1) cells
away from 𝑖), thus implying 𝑥 ∉ 𝐿(𝐶′).

To see the claim is true, suppose towards a contradiction that, for every 𝑖 ∈ 𝐽 , we
have Pr[𝐴𝑖] > 0. If there are 𝑖, 𝑗 ∈ 𝐽 such that 𝑗 ∉ 𝐷𝑖 (and similarly 𝑖 ∉ 𝐷 𝑗), then by
definition

Pr[𝐶 (𝑥,𝑈𝑇×𝑛) = 1] ≥ Pr[𝐴𝑖 ∧𝐴 𝑗] = Pr[𝐴𝑖] Pr[𝐴 𝑗] > 0,

7 Note it is not necessary for 𝑖 to be aware of the actual numbers of the cells in 𝐵𝑖 ; it suffices for it to
compute their positions relative to itself. For example, if 𝑖 = 5 and 𝐵𝑖 = {4, 5}, then it suffices for 𝑖 to
regard 𝑗 = 4 as cell −1 (relative to itself). Hence, by “determining 𝐵𝑖” here we mean that 𝑖 computes only
these relative positions (and not the absolute ones, which would be impossible to achieve in only constant
time).

90

4.4. The Constant-Time Case

contradicting 𝑥 ∉ 𝐿(𝐶). Thus, there must be 𝑖 ∈ 𝐽 such that 𝐽 = 𝐷𝑖 ; however, this
then implies

Pr[𝐶 (𝑥,𝑈𝑇×𝑛) = 1] = Pr[𝐴𝑖] > 0.

As this is also a contradiction, the claim (and hence the theorem) follows.

4.4.2.2. Two-Sided Error PACA

This section in divided into two parts. In the first, we introduce the class LLT of locally
linearly testable languages and relate it to other classes of subregular languages. The
second part covers the proof of Theorem 4.4 proper.

Local languages. We introduce some notation. For ℓ ∈ N0 and a word𝑤 ∈ Σ∗, 𝑝ℓ (𝑤) is
the prefix of𝑤 of length ℓ if |𝑤 | ≥ ℓ , or𝑤 otherwise; similarly, 𝑠ℓ (𝑤) is the suffix of length
ℓ if |𝑤 | ≥ ℓ , or𝑤 otherwise. The set of infixes of𝑤 of length ℓ is denoted by 𝐼ℓ (𝑤).

The subregular language classes from the next definition are due to McNaughton and
Papert [77] and Beauquier and Pin [13].

Definition 4.17 (SLT, LT, LTT). A language 𝐿 ⊆ Σ∗ is strictly locally testable if there is
ℓ ∈ N+ and sets 𝜋, 𝜎 ⊆ Σ≤ℓ and 𝜇 ⊆ Σℓ such that, for every 𝑤 ∈ Σ∗, 𝑤 ∈ 𝐿 if and only if
𝑝ℓ−1(𝑤) ∈ 𝜋 , 𝐼ℓ (𝑤) ⊆ 𝜇, and 𝑠ℓ−1(𝑤) ∈ 𝜎 . The class of all such languages is denoted by
SLT.

A language 𝐿 ⊆ Σ∗ is locally testable if there is ℓ ∈ N+ such that, for every 𝑤1,𝑤2 ∈ Σ∗

with 𝑝ℓ−1(𝑤1) = 𝑝ℓ−1(𝑤2), 𝐼ℓ (𝑤1) = 𝐼ℓ (𝑤2), and 𝑠ℓ−1(𝑤1) = 𝑠ℓ−1(𝑤2), we have that𝑤1 ∈ 𝐿
if and only if𝑤2 ∈ 𝐿. The class of locally testable languages is denoted by LT.

A language 𝐿 ⊆ Σ∗ is locally threshold testable if there are 𝜃, ℓ ∈ N+ such that, for any two
words𝑤1,𝑤2 ∈ Σ∗ for which the following conditions hold,𝑤1 ∈ 𝐿 if and only if𝑤2 ∈ 𝐿:

1. 𝑝ℓ−1(𝑤1) = 𝑝ℓ−1(𝑤2) and 𝑠ℓ−1(𝑤1) = 𝑠ℓ−1(𝑤2).

2. For every𝑚 ∈ Σℓ , if |𝑤𝑖 |𝑚 < 𝜃 for any 𝑖 ∈ {1, 2}, then |𝑤1 |𝑚 = |𝑤2 |𝑚 .

The class of locally threshold testable languages is denoted by LTT.

The class LT equals the closure of SLT under Boolean operations (i.e., union, intersection,
and complement) and the inclusion SLT ⊊ LT is proper. As for LTT, it is well-known that
it contains every one of the languages

Th(𝑚,𝜃) = {𝑤 ∈ Σ∗ | |𝑤 |𝑚 ≤ 𝜃 }

for𝑚 ∈ Σ∗ and 𝜃 ∈ N0. Also, we have that LT ⊊ LTT and that LTT is closed under Boolean
operations. We write SLT∪ (resp., LTT∪) for the closure of SLT (resp., LTT) under union
and LLT∪∩ for the closure of LTT under union and intersection.

91

4. Sublinear-Time Probabilistic Cellular Automata

SLT∪SLT LT LTT REG

LLT LLT∪ LLT∪∩
?

Figure 4.4.: Placement of the class LLT in the subregular hierarchy. The arrows indicate inclusion relations.
Every inclusion is strict except for the one with a question mark (i.e., LLT∪ ⊆ LLT∪∩). The dashed lines
indicate the respective classes are incomparable.

Definition 4.18 (LLT). For ℓ ∈ N0, 𝜃 ∈ R+0 , 𝜋, 𝜎 ⊆ Σ≤ℓ−1, and𝛼 : Σℓ → R+0 , LLinℓ (𝜋, 𝜎, 𝛼, 𝜃)
denotes the language of all𝑤 ∈ Σ+ that satisfy 𝑝ℓ−1(𝑤) ∈ 𝜋 , 𝑠ℓ−1(𝑤) ∈ 𝜎 , and∑︂

𝑚∈Σℓ
𝛼 (𝑚) · |𝑤 |𝑚 ≤ 𝜃 .

A language 𝐿 ⊆ Σ+ is said to be locally linearly testable if there are ℓ , 𝜋 , 𝜎 , 𝛼 , and 𝜃 as
above such that 𝐿 = LLinℓ (𝜋, 𝜎, 𝛼, 𝜃). We denote the class of all such languages by LLT.

Proposition 4.19. The following hold:

1. SLT∪ ⊆ LLT ⊆ LLT∪ ⊆ LLT∪∩ ⊆ LTT.

2. LLT and LT as well as LLT∪ and LT are incomparable.

3. LTT equals the Boolean closure over LLT.

4. LLT∪∩ is properly contained in LTT.

Some relations between the classes are still open (see Figure 4.4) and are left as a topic for
future work.

Proof. We skip the proof of the inclusion SLT∪ ⊆ LLT as well as the last item in the claim
since both follow from Theorem 4.4 andwhose proof does not depend on the results at hand.
Furthermore, the inclusions LLT ⊆ LLT∪ and LLT∪ ⊆ LLT∪∩ are trivial, so we need only
prove LLT ⊆ LTT (and, since LTT is closed under union and intersection, LLT∪∩ ⊆ LTT
will follow).

To that end, let 𝐿 = LLinℓ (𝜋, 𝜎, 𝛼, 𝜃) be given. The proof is by induction on the number
𝑘 of words𝑚 ∈ Σℓ such that 𝛼 (𝑚) ≠ 0. If 𝑘 = 0, then the linear condition of 𝐿 is always
satisfied, directly implying 𝐿 ∈ LTT (or, better yet, 𝐿 ∈ SLT). For the induction step,
suppose the claim has been proven up to a number 𝑘 , and let there be 𝑘 + 1 words𝑚 ∈ Σℓ
with 𝛼 (𝑚) ≠ 0. In addition, let 𝜇 ∈ Σℓ with 𝛼 (𝜇) ≠ 0 be arbitrary, and let 𝑟 ∈ N0 be
maximal with 𝑟𝛼 (𝜇) ≤ 𝜃 . Consider the languages 𝐿𝑖 = LTTℓ (𝜋, 𝜎, 𝛼𝑖, 𝜃𝑖) for 𝑖 ∈ [0, 𝑟],
𝜃𝑖 = 𝜃 − 𝑖𝛼 (𝜇), and 𝛼𝑖 such that, for every𝑚 ∈ Σℓ ,

𝛼𝑖 (𝑚) =
{︄
𝛼 (𝑚), 𝑚 ≠ 𝜇;
0, 𝑚 = 𝜇.

92

4.4. The Constant-Time Case

By the induction hypothesis, the 𝐿𝑖 are all in LTT. On the other hand, we have

𝐿 =

𝑟⋃︂
𝑖=0
(Th(𝜇, 𝑖) ∩ 𝐿𝑖) \ Th(𝜇, 𝑖 − 1),

which implies 𝐿 ∈ LTT since LTT is closed under Boolean operations.

For the second item in the claim, we show there are 𝐿1 and 𝐿2 such that 𝐿1 ∈ LLT \ LT and
𝐿2 ∈ LT \ LLT∪. For the first one, probably the simplest is to set 𝐿1 = Th(1, 1) (where the
underlying alphabet is Σ = {0, 1}). The language is clearly not in LT (because otherwise
either both 0𝑛10𝑛 and 0𝑛10𝑛10𝑛 would be in 𝐿1 or not (for sufficiently large 𝑛)); meanwhile,
we have 𝐿1 ∈ LLT since ℓ = 1, 𝜋 = 𝜎 = {𝜀}, 𝛼 (0) = 0, 𝛼 (1) = 1, and 𝜃 = 1 satisfy
𝐿1 = LLinℓ (𝜋, 𝜎, 𝛼, 𝜃). As for 𝐿2, consider

𝐿2 = {𝑤 ∈ {0, 1}∗ | 𝑤 ∉ {0}∗},

which is in LT because 𝐿2 = {0, 1}∗ \ {0}∗ (and LT is closed under Boolean operations).
To argue that 𝐿2 ∉ LLT∪, suppose towards a contradiction that 𝐿2 =

⋃︁𝑘
𝑖=1 𝐿

′
𝑖 for 𝐿′𝑖 =

LLinℓ𝑖 (𝜋𝑖, 𝜎𝑖, 𝛼𝑖, 𝜃𝑖). Since 𝑘 is finite, there must be at least one 𝐿′𝑖 that contains infinitely
many words of the form 0 𝑗10 𝑗 for 𝑗 ∈ N0. This implies 0ℓ𝑖−1 ∈ 𝜋 𝑗 , 𝜎 𝑗 as well as 𝛼 (0ℓ𝑖) = 0,
from which it follows that∑︂

𝑚∈{0,1}ℓ𝑖
𝛼𝑖 (𝑚) · |0𝑘 |𝑚 = 𝛼𝑖 (0ℓ𝑖) · |0𝑘 |0ℓ𝑖 = 0 ≤ 𝜃𝑖

for any 𝑘 ∈ N0, thus contradicting 0𝑘 ∉ 𝐿′𝑖 .

Finally, the third item directly follows from the following well-known characterization of
LTT: A language 𝐿 is in LTT if and only if it can be expressed as the Boolean combination
of languages of the form Th(𝑚,𝜃), 𝜋Σ∗, and Σ∗𝜎 where𝑚, 𝜋, 𝜎 ∈ Σ∗ and 𝜃 ∈ N0. Obviously
these three types of languages are all contained in LLT; since LLT ⊆ LTT, it follows that
LTT equals the Boolean closure of LLT.

The proof of Theorem 4.4. We restate the result here for the reader’s convenience:

Theorem 4.4. The class of languages that can be accepted by a constant-time two-sided
error PACA contains LLT∪∩ and is strictly contained in LTT.

The theorem is proven by two inclusions, the first being that every LLT∪∩ language
can be recognized by a constant-time two-sided error PACA. The first step is showing
(Lemma 4.20) that we can “tweak” the components of the LLT condition so that it is more
amenable to being tested by a PACA. Having done so, the construction is more or less
straightforward: We collect the subwords of length ℓ in every cell and then accept with
the “correct” probabilities. To lift the construction from LLT to its closure LLT∪∩, we show
(Proposition 4.21) that the constant-time PACA languages are closed under union and
intersection.

93

4. Sublinear-Time Probabilistic Cellular Automata

The second inclusion (i.e., showing that 𝐿(𝐶) ∈ LTT for every constant-time two-sided
error PACA 𝐶) is more complex. The proof again bases on the class LLT and uses the fact
that LTT equals the Boolean closure over LLT (Proposition 4.19). If the cells of𝐶 all accept
independently from one another in time at most 𝑇 , then (as we address as a warm-up in
the proof) things are relatively simple since we need only consider subwords of length
ℓ = 2𝑇 + 1 and set their weight according to the respective acceptance probability. Lifting
this idea to the general case, however, requires quite a bit of care since the LLT condition
does not account for subword overlaps. For instance, there may be cells 𝑐1 and 𝑐2 that
are further than 𝑇 cells apart and that both accept with non-zero probability but where 𝑐𝑖
accepts if and only if 𝑐3−𝑖 does not (recall Example 4.10). We solve this issue by blowing up
ℓ so that a subword covers not only a single cell’s neighborhood but that of an entire group
of cells whose behavior may be correlated with one other. Here we once more resort to
Lemmas 4.11 and 4.15 to upper-bound the size of this neighborhood by a constant.

As discussed above, for the proof we first need to make the linear condition of LLT a bit
more manageable:

Lemma 4.20. For any 𝐿 = LLinℓ (𝜋, 𝜎, 𝛼, 𝜃), there is 𝛼′ such that 𝐿 = LLinℓ (𝜋, 𝜎, 𝛼′, 𝜃 ′) and:

1. The threshold 𝜃 ′ is equal to 1.

2. There is a constant 𝜀 > 0 such that, for every𝑤 ∈ Σ∗, we have either 𝑓 ′(𝑤) < 1 − 𝜀 or
𝑓 ′(𝑤) > 1 + 𝜀, where

𝑓 ′(𝑤) =
∑︂
𝑚∈Σℓ

𝛼′(𝑚) · |𝑤 |𝑚 .

3. There is 𝑘 ∈ N0 such that, for every𝑚, 2𝛼 ′ (𝑚) = 2𝑘/(𝑛 + 1) for some 𝑛 ∈ [2𝑘].

Proof. The case where 𝛼 (𝑚) = 0 for every𝑚 is trivial, so suppose there is at least one𝑚
for which 𝛼 (𝑚) > 0. Because |𝑤 |𝑚 ∈ N0 for every𝑤 and every𝑚,

𝑓 (𝑤) =
∑︂
𝑚∈Σℓ

𝛼 (𝑚) · |𝑤 |𝑚

is such that, given any 𝑏 ∈ R+0 , there are only finitely many values of 𝑓 (𝑤) ≤ 𝑏 (i.e., the
set {𝑓 (𝑤) | 𝑓 (𝑤) ≤ 𝑏} is finite). Hence, by setting

𝑟 =
1
2

(︃
max
𝑓 (𝑤)≤𝜃

𝑓 (𝑤) + min
𝑓 (𝑤)>𝜃

𝑓 (𝑤)
)︃

and 𝛼′′(𝑚) = 𝛼 (𝑚)/𝑟 , we have that

𝑓 ′′(𝑤) =
∑︂
𝑚∈Σℓ

𝛼′′(𝑚) · |𝑤 |𝑚

satisfies the second condition from the claim (i.e., for every𝑤 ∈ Σ∗, either 𝑓 ′′(𝑤) < 1 − 𝜀
or 𝑓 ′′(𝑤) > 1 + 𝜀) for some adequate choice of 𝜀 > 0.

94

4.4. The Constant-Time Case

Now we show how to satisfy the last condition without violating the first two. To that
end, let 𝑎 be the minimal 𝛼′′(𝑚) for which 𝛼′′(𝑚) > 0. In addition, let 𝑘 ∈ N0 be such that
𝛼′′(𝑚) < 𝑘/2 for every𝑚 and that

log(2𝑘/2 + 1) − log(2𝑘/2) = log(2𝑘/2 + 1) − 𝑘2 ≤
𝑎𝜀

2|Σ|ℓ .

(This is possible because log(𝑛 + 1) − log𝑛 tends to zero as 𝑛 → ∞.) Then, for every𝑚,
we set 𝛼′(𝑚) = 𝑘 − log(𝑛 + 1) where 𝑛 ∈ [2𝑘] is minimal such that 𝛼′(𝑚) ≥ 𝛼′′(𝑚). By
construction, 𝑓 ′(𝑤) ≥ 𝑓 ′′(𝑤), so we need only argue that there is 𝜀′ > 0 such that, for
every𝑤 for which 𝑓 ′′(𝑤) < 1 − 𝜀, we also have 𝑓 ′(𝑤) < 1 − 𝜀′. In particular every said𝑤
must be such that, for every𝑚, |𝑤 |𝑚 ≤ 1/𝑎 (otherwise we would have 𝑓 ′′(𝑤) > 1). Noting
that |𝛼′(𝑚) − 𝛼′′(𝑚) | is maximal when 𝛼′(𝑚) = 𝑘/2 and 𝛼′′(𝑚) = 𝑘 − log(2𝑘/2 + 1) + 𝛿 for
very small 𝛿 > 0, we observe that

𝑓 ′(𝑤) =
∑︂
𝑚∈Σℓ

𝛼′(𝑚) · |𝑤 |𝑚 ≤ 𝑓 ′′(𝑤) +
|Σ|ℓ
𝑎

(︃
log(2𝑘/2 + 1) − 𝑘2

)︃
< 1 − 𝜀 + 𝜀2 = 1 − 𝜀2 ,

that is, 𝑓 ′(𝑤) < 1 − 𝜀′ for 𝜀′ = 𝜀/2, as desired.

The next proposition shows that the constant-time two-sided error PACA languages are
closed both under union and intersection.

Proposition 4.21. Let 𝐶1 and 𝐶2 be constant-time two-sided error PACA. Then there are
constant-time two-sided error PACA 𝐶∪ and 𝐶∩ such that 𝐿(𝐶∪) = 𝐿(𝐶1) ∪ 𝐿(𝐶2) and
𝐶∩ = 𝐿(𝐶1) ∩ 𝐿(𝐶2).

Proof. We first address the closure under union. Using Proposition 4.13, we may assume
that𝐶1 and𝐶2 are two-sided 𝜀-error PACA for some 𝜀 < 1/6. As we show further below, it
suffices to have 𝐶∪ simulate both 𝐶1 and 𝐶2 simultaneously (using independent random
bits) and accept if either of them does. To realize this, we can simply adapt the construction
from Proposition 4.12 using𝑚 = 2 to simulate one copy of 𝐶1 and 𝐶2 each (instead of two
independent copies of the same PACA).

The probability that 𝐶∪ accepts an 𝑥 ∈ 𝐿𝑖 \ 𝐿 𝑗 for 𝑖, 𝑗 ∈ {1, 2} and 𝑖 ≠ 𝑗 is at least 1 − 𝜀,
and the probability that 𝐶∪ accepts 𝑥 ∈ 𝐿1 ∩ 𝐿2 is even larger (i.e., at least 1 − 𝜀2 ≥ 1 − 𝜀).
Conversely, the probability that 𝐶∪ accepts an 𝑥 ∉ 𝐿1 ∪ 𝐿2 is

Pr[𝐶∪ accepts 𝑥] ≤ Pr[𝐶1 accepts 𝑥] + Pr[𝐶2 accepts 𝑥] = 2𝜀 < 1
3 .

Since 𝐶∪ has time complexity 2𝑇 = 𝑂 (𝑇), the claim follows.

For the closure under intersection, we will use a similar strategy. This time suppose that
the error probability 𝜀 of 𝐶1 and 𝐶2 is so that (1 − 𝜀)2 ≥ 2/3 (e.g., 𝜀 = 1/10 suffices).
Again we let 𝐶∩ simulate two copies of 𝐶1 of 𝐶2 simultaneously; however, this time we
use a simplified version of the construction from the proof of Proposition 4.13. More

95

4. Sublinear-Time Probabilistic Cellular Automata

specifically, we set𝑚 = 2 and leave out the [𝑀] component from the construction. That is,
𝐶∩ randomly (and independently) picks random inputs 𝑟1 and 𝑟2 for𝐶1 and𝐶2, respectively,
and accepts if and only if 𝐶1 accepts with coin tosses from 𝑟1 and also 𝐶2 accepts with
coin tosses from 𝑟2. (One must also be careful since𝐶1 and𝐶2 may accept in different time
steps, but this is already accounted for in the construction from Proposition 4.13.)

Since the copies of𝐶1 and𝐶2 are simulated independently from one another and𝐶∩ accepts
if and only both do (in the simulation), we have

Pr[𝐶∩ accepts 𝑥] = Pr[𝐶1 accepts 𝑥] Pr[𝐶2 accepts 𝑥] .

In case 𝑥 ∈ 𝐿(𝐶1) ∩ 𝐿(𝐶2), this probability is at least (1 − 𝜀)2 ≥ 2/3; otherwise it is
upper-bounded by 𝜀 < 1/3. Since 𝐶 has time complexity 𝑂 (𝑇 2), which is constant, the
claim follows.

We are now in position to prove Theorem 4.4.

Proof of Theorem 4.4. We prove the two intersections from the theorem’s statement. We
address first the more immediate one, which is the inclusion of LLT∪∩ in the class of
constant-time two-sided error PACA.

First inclusion. Given 𝐿 = LLinℓ (𝜋, 𝜎, 𝛼, 𝜃), we construct a constant-time two-sided error
PACA 𝐶 with 𝐿(𝐶) = 𝐿. This suffices since, by Proposition 4.21, the class of constant-
time two-sided error PACA languages is closed under union and intersection. We apply
Lemma 4.20 and assume 𝜃 = 1 and that there are 𝑘 and 𝜀 as in the statement of Lemma 4.20.
For simplicity, we also assume ℓ = 2𝑘 + 1.

The automaton 𝐶 operates in 𝑘 steps as follows: Every cell sends its input symbol in both
directions as a signal and, at the same time, aggregates the symbols it sees, thus allowing
it to determine the initial configuration𝑚 ∈ Σℓ of its 𝑘-neighborhood. Meanwhile, every
cell also collects 𝑘 random bits 𝑟 ∈ {0, 1}𝑘 . The decision to accept is then simultaneously
made in the 𝑘-th step, where a cell with 𝑘-neighborhood𝑚 accepts with probability 2−𝛼 (𝑚)
(independently of other cells). (This can be realized, for instance, by seeing 𝑟 as the
representation of a 𝑘-bit integer in [2𝑘] and accepting if and only if 𝑟 ≤ 𝑛, where 𝑛 is such
that 2−𝛼 (𝑚) = (𝑛 + 1)/2𝑘 .) In the case of the first (resp., last) cell of 𝐶 , it also checks that
the prefix (resp., suffix) of the input is in 𝜋 (resp., 𝜎), rejecting unconditionally if this is
not the case.

Hence, for an input word𝑤 ∈ Σ+, the probability that 𝐶 accepts is∏︂
𝑚∈Σℓ

(︃
1

2𝛼 (𝑚)

)︃ |𝑤 |𝑚
= 2−𝑓 (𝑤),

where
𝑓 (𝑤) =

∑︂
𝑚∈Σℓ

𝛼 (𝑚) · |𝑤 |𝑚 .

96

4.4. The Constant-Time Case

Thus, if 𝑤 ∈ 𝐿, then 𝐶 accepts with probability 2−𝑓 (𝑤) > (1/2)1−𝜀 ; conversely, if 𝑤 ∉ 𝐿,
the probability that 𝐶 accepts is 2−𝑓 (𝑤) < (1/2)1+𝜀 . Since 𝜀 is constant, we may apply
Proposition 4.13 and reduce the error to 1/3.

Second inclusion. The proof of the second implication is more involved. Let𝐶 be a𝑇 -time
two-sided error PACA for some 𝑇 ∈ N+. We shall obtain the result 𝐿(𝐶) ∈ LTT in three
steps:

1. The first step is a warm-up in which we consider the case where the cells of𝐶 accept
all independently from one another and that, if 𝐶 accepts, then it does so in a fixed
time step 𝑡 < 𝑇 .

2. In the second step, we relax the requirement on independence between the cells
by considering groups of cells (of maximal size) that may be correlated with one
another regarding their acceptance.

3. Finally, we generalize what we have shown so that it also holds in the case where 𝐶
may accept in any step 𝑡 < 𝑇 . This is the only part in the proof where closure under
complement is required. (Here we use item 3 of Proposition 4.19.)

Step 1. Suppose that 𝐶 only accepts in a fixed time step 𝑡 < 𝑇 and that the events of
any two cells accepting are independent from one another. We show that 𝐿(𝐶) =
LLin(𝜋, 𝜎, 𝛼, 𝜃) for an adequate choice of parameters.

Set ℓ = 2𝑡 + 1 and let 𝑝𝑚 be the probability that a cell with 𝑡-neighborhood𝑚 ∈ Σℓ
accepts in step 𝑡 . In addition, let 𝜋 = {𝑝ℓ−1(𝑤) | 𝑤 ∈ 𝐿(𝐶)} and 𝜎 = {𝑠ℓ−1(𝑤) | 𝑤 ∈
𝐿(𝐶)} as well as 𝜃 = log(3/2) and 𝛼 (𝑚) = log(1/𝑝𝑚) for𝑚 ∈ Σℓ . The probability
that 𝐶 accepts a word𝑤 ∈ Σ+ is∏︂

𝑚∈Σℓ
𝑝
|𝑤 |𝑚
𝑚 =

∏︂
𝑚∈Σℓ

(︃
1

2𝛼 (𝑚)

)︃ |𝑤 |𝑚
= 2−𝑓 (𝑤),

which is at least 2/3 if and only if 𝑓 (𝑤) ≤ 𝜃 . It follows that 𝐿(𝐶) = LLinℓ (𝜋, 𝜎, 𝛼, 𝜃).

Step 2. We now relax the requirements from the previous step so that the events of any
two cells accepting need no longer be independent from one another. (However, 𝐶
still only accepts in the fixed time step 𝑡 .)

Let 𝐾 = 2𝑂 (𝑇 2) be the upper bound on critical cells of 𝐶 guaranteed by Lemma 4.15,
and let ℓ = 2(𝐾 + 2)𝑇 . Again, we set 𝜋 = {𝑝ℓ−1(𝑤) | 𝑤 ∈ 𝐿(𝐶)} and 𝜎 = {𝑠ℓ−1(𝑤) |
𝑤 ∈ 𝐿(𝐶)} as well as 𝜃 = log(3/2). As for 𝛼 (𝑚), we set 𝛼 (𝑚) = 0 unless𝑚 is such
that there is 𝑑 ≤ 𝐾 with

𝑚 = 𝑎𝑏𝑟1𝑠1𝑟2𝑠2 · · · 𝑟𝑑𝑠𝑑𝑐
where 𝑎 ∈ Σ𝑇 is arbitrary, 𝑏 ∈ Σ2𝑇 contains no critical cells, each 𝑟 𝑗 ∈ Σ is a critical
cell (for step 𝑡), the 𝑠 𝑗 ∈ Σ≤2𝑇−1 are arbitrary, and 𝑐 ∈ Σ∗ has length |𝑐 | ≥ 𝑇 and, if 𝑐
contains any critical cell, then this cell accepts independently from 𝑟𝑑 . In addition,
we require 𝑐 to be of maximal length with this property.

97

4. Sublinear-Time Probabilistic Cellular Automata

Note that 𝑎 is needed as context to ensure that 𝑏 indeed does not contain any critical
cell (since determining this requires knowledge of the states in the 𝑇 -neighborhood
of the respective cell); the same is true for 𝑟𝑑 and 𝑐 . By construction together with
Lemma 4.11, the group of cells 𝑟1, . . . , 𝑟𝑑 is such that (although the cells in it do not
accept independently from one another) its cells accepts independently from any
other critical cell in 𝐶 . The segment 𝑏 ensures that𝑚 aligns properly with the group
and that we consider every such group exactly once.

Letting 𝑝𝑚 be the probability that every one of the 𝑟 𝑗 accept, for𝑚 as above we set
𝛼 (𝑚) = log(1/𝑝𝑚). Then, as before, the probability that 𝐶 accepts a word𝑤 ∈ Σ+ is∏︂

𝑚∈Σℓ
𝑝
|𝑤 |𝑚
𝑚 =

∏︂
𝑚∈Σℓ

(︃
1

2𝛼 (𝑚)

)︃ |𝑤 |𝑚
= 2−𝑓 (𝑤),

which is at least 2/3 if and only if 𝑓 (𝑤) ≤ 𝜃 , thus implying 𝐿(𝐶) = LLinℓ (𝜋, 𝜎, 𝛼, 𝜃).

Step 3. In this final step we generalize the argument so that it also applies to the case
where 𝐶 may accept in any time step 𝑡 < 𝑇 . The first observation is that, given any
𝑝 > 0, if we set 𝜃 = log(1/𝑝) in the second step above (instead of log(3/2)), then we
have actually shown that

{𝑤 ∈ Σ+ | Pr[𝐶 accepts𝑤 in step 𝑡] ≥ 𝑝} = LLinℓ (𝜋, 𝜎, 𝛼, 𝜃).

In fact, we can generalize this even further: Given any ∅ ≠ 𝜏 ⊆ [𝑇], by setting 𝛼
adequately we can consider the acceptance probability for the steps in 𝜏 altogether:8

𝐿(𝜏, 𝑝) = {𝑤 ∈ Σ+ | Pr[𝐶 accepts𝑤 in every step 𝑡 ∈ 𝜏] ≥ 𝑝} = LLinℓ (𝜋, 𝜎, 𝛼, 𝜃).

This is because the bound on critical cells of Lemma 4.15 holds for all steps where 𝐶
accepts with non-zero probability and, in addition, as defined above𝑚 already gives
enough context to check if the respective critical cells also accept in any previous
step. (That is, we construct𝑚 as above by using 𝑡 = max𝜏 ; however, since the sets
of critical cells for different time steps may not be identical, we must also relax the
condition for the 𝑟𝑖 so that 𝑟𝑖 needs only be a critical cell in at least one of the time
steps of 𝜏 .) Since LTT is closed under complement, we then also have

𝐿(𝜏, 𝑝) = {𝑤 ∈ Σ+ | Pr[𝐶 accepts𝑤 in every step 𝑡 ∈ 𝜏] < 𝑝} ∈ LTT.

Fix some input word𝑤 ∈ Σ+ to 𝐶 . For ∅ ≠ 𝜏 ⊆ [𝑇], let 𝑍𝜏 denote the event where 𝐶
accepts𝑤 in every step 𝑡 ∈ 𝜏 . By the inclusion-exclusion principle, we have

Pr[𝐶 accepts𝑤] = Pr
[︁
∃𝑡 ∈ [𝑇] : 𝑍{𝑡}

]︁
=

∑︂
𝜏⊆[𝑇]
|𝜏 |=1

Pr[𝑍𝜏] −
∑︂
𝜏⊆[𝑇]
|𝜏 |=2

Pr[𝑍𝜏] + · · · + (−1)𝑇+1 Pr[𝑍 [𝑇]]

8 Of course we are being a bit sloppy here since Definition 4.8 demands that a PACA should halt whenever
it accepts. What is actually meant is that, having fixed some random input, if we extend the space-time
diagram of 𝐶 on input𝑤 so that it spans all of its first 𝑇 steps (which we can do simply by applying the
transition function of 𝐶), then, for every 𝑡 ∈ 𝜏 , the 𝑡-th line in the diagram contains only accepting cells.

98

4.4. The Constant-Time Case

(where the probabilities are taken over the coin tosses of 𝐶). This means that, if we
are somehow given values for the Pr[𝑍𝜏] so that the sum above is at least 2/3, then
we can intersect a finite number of 𝐿(𝜏, 𝑝 (𝜏)) languages and their complements and
obtain some language that is guaranteed to contain only words in 𝐿(𝐶). Concretely,
let 𝑝 (𝜏) ≥ 0 for every ∅ ≠ 𝜏 ⊆ [𝑇] be given so that∑︂

∅≠𝜏⊆[𝑇]
|𝜏 | odd

𝑝 (𝜏) −
∑︂
∅≠𝜏⊆[𝑇]
|𝜏 | even

𝑝 (𝜏) ≥ 2
3 .

Let
Todd = {𝜏 ⊆ [𝑇] | 𝜏 ≠ ∅, |𝜏 | odd, 𝑝 (𝜏) > 0}

and similarly
Teven = {𝜏 ⊆ [𝑇] | 𝜏 ≠ ∅, |𝜏 | even, 𝑝 (𝜏) > 0}.

Then necessarily

𝐿(𝑝) =
(︄ ⋂︂
𝜏∈Todd

𝐿(𝜏, 𝑝 (𝜏))
)︄
∩

(︄ ⋂︂
𝜏∈Teven

𝐿(𝜏, 𝑝 (𝜏))
)︄
⊆ 𝐿(𝐶)

contains every 𝑤 ∈ 𝐿(𝐶) for which Pr[𝑍𝜏] ≥ 𝑝 (𝜏) for 𝜏 ∈ Todd and Pr[𝑍𝜏] ≤ 𝑝 (𝜏)
for 𝜏 ∈ Teven.

The punchline is that there are only finitely many values the Pr[𝑍𝜏] may assume. This
is because 𝑍𝜏 only depends on a finite number of coin tosses, namely the ones in the
lightcones of the cells that are critical in at least one of the steps in 𝜏 (which, again,
is finite due to Lemma 4.15). Hence, letting 𝑃 denote the set of all possible mappings
of the 𝜏 subsets to these values, we may write

𝐿(𝐶) =
⋃︂
𝑝∈𝑃

𝐿(𝑝),

which proves 𝐿(𝐶) ∈ LTT.

Strictness of inclusion. The final statement left to prove is that the inclusion just proven
is proper. This is comparatively much simpler to prove. We show that the language

𝐿 = {𝑤 ∈ {0, 1}+ | |𝑤 |1 ≥ 2} ∈ LTT

of binary words with at least two occurrences of a 1 cannot be accepted by two-sided error
PACA in constant time.

For the sake of argument, assume there is such a PACA𝐶 with time complexity𝑇 ∈ N+. Let
us consider which cells in𝐶 are critical based on their initial local configuration. Certainly
a cell with an all-zeroes configuration 02𝑇−1 cannot be critical. Since 0𝑛10𝑛 ∉ 𝐿(𝐶) for any

99

4. Sublinear-Time Probabilistic Cellular Automata

𝑛 (but 0𝑛10𝑛1 ∈ 𝐿(𝐶)), there must be𝑚1,𝑚2 so that𝑚1 +𝑚2 = 2𝑇 − 2 and 𝑐 = 0𝑚110𝑚2 is
the initial local configuration of a critical cell. However, this means that in

𝑥 = 02𝑇 (𝑐02𝑇)𝑇 2𝑇 ∈ 𝐿

we have at least 2𝑇 cells in 𝑥 that are critical for the same time step 𝑡 ∈ [𝑇] (by an averaging
argument) and that are also all independent from one another (by Lemma 4.11). In turn,
this implies

Pr[𝐶 accepts 𝑥] ≤
(︂
1 − 2−𝑇

)︂2𝑇
<

1
𝑒
<

2
3 ,

contradicting 𝑥 ∈ 𝐿(𝐶).

4.5. The General Sublinear-Time Case

Proposition 4.22. There is a constant 𝑐 > 0 such that the following holds: Let monotone
functions 𝑇,𝑇 ′, ℎ, 𝑝 : N+ → N+ be given with ℎ(𝑛) ≤ 2𝑛 , 𝑝 (𝑛) = poly(𝑛), and 𝑝 (𝑛) ≥ 𝑛 and
such that, for every 𝑛 and 𝑝′(𝑛) = Θ(𝑝 (𝑛) logℎ(𝑛)),

𝑇 (6ℎ(𝑛)𝑝 (𝑛)) ≥ 𝑐𝑝′(𝑛).

In addition, let the binary representation of ℎ(𝑛) and 𝑝′(𝑛) be computable in 𝑂 (𝑝′(𝑛)) time
by a Turing machine (given 𝑛 in unary), and let 𝑇 ′(𝑁) be computable in 𝑂 (𝑇 ′(𝑁)) time by
a Turing machine (again, given 𝑁 in unary). Furthermore, suppose that, for every 𝑇 -time
one-sided error PACA 𝐶 , there is a 𝑇 ′-time DACA 𝐶′ such that 𝐿(𝐶) = 𝐿(𝐶′). Then

RPTIME[𝑝 (𝑛)] ⊆ TIME[ℎ(𝑛) · 𝑇 ′(ℎ(𝑛) ·poly(𝑛)) · poly(𝑛)] .

Recall we say a DACA 𝐶 is equivalent to a PACA 𝐶′ if 𝐿(𝐶) = 𝐿(𝐶′). As a corollary of
Proposition 4.22, we get:

Theorem 4.2. Let 𝑑 ≥ 1. The following hold:

• If there is 𝜀 > 0 such that every 𝑛𝜀-time (one- or two-sided error) PACA can be converted
into an equivalent 𝑛𝑑-time deterministic CA, then P = RP.

• If every polylog(𝑛)-time PACA can be converted into an equivalent𝑛𝑑-time deterministic
CA, then, for every 𝜀 > 0, RP ⊆ TIME[2𝑛𝜀].

• If there is 𝑏 > 2 so that any (log𝑛)𝑏-time PACA can be converted into an equivalent
𝑛𝑑-time deterministic CA, then, for every 𝑎 ≥ 1 and 𝛼 > 𝑎/(𝑏 − 1), RPTIME[𝑛𝑎] ⊆
TIME[2𝑂 (𝑛𝛼)].

100

4.5. The General Sublinear-Time Case

The first item is obtained by setting (say) 𝑇 (𝑛) = 𝑛𝜀 , 𝑇 ′(𝑛) = 𝑛𝑑 , and ℎ(𝑛) = 𝑝 (𝑛)2(1/𝜀−1)
(assuming 𝜀 < 1) in Proposition 4.22. For the second one, letting 𝑝 (𝑛) = 𝑛𝑎 where 𝑎 > 0 is
arbitrary and (again) 𝑇 ′(𝑛) = 𝑛𝑑 , set 𝑇 (𝑛) = (log𝑛)2+𝑎/𝜀 and ℎ(𝑛) = 2𝑛𝜀/(𝑑+1) . Finally, for
the last one, letting again 𝑝 (𝑛) = 𝑛𝑎 and 𝑇 ′(𝑛) = 𝑛𝑑 , set 𝑇 (𝑛) = (log𝑛)𝑏 and ℎ(𝑛) = 2𝑛𝛼 .

At the core of the proof of Proposition 4.22 is a padding argument. Nevertheless, we stress
this padding must be cleverly implemented so that it can be verified in parallel and also
without initial knowledge of the input length (since a cell initially knows nothing besides its
input symbol). To do so, we resort to a technique that can be traced back to the work of
Ibarra, Palis, and Kim [60], splitting the input into blocks of the same size that redundantly
encode the input length in a locally verifiable way. More importantly, the blocks are
numbered from left to right in ascending order, which also allows us to verify that we
have the number of blocks that we need (so that the input is “long enough” and the PACA
achieves the time complexity that we desire). We refer the reader to Chapters 2 and 3 (in
particular Section 3.3.1) for other applications of the same technique also in the context of
sublinear-time CA.

Proof. Let 𝐿 ∈ RP be decided by an RP machine 𝑅 whose running time is upper-bounded
by 𝑝 . Without restriction, we assume 𝑝 (𝑛) ≥ 𝑛. Using standard error reduction in RP, there
is then an RP machine 𝑅′ with running time 𝑝′(𝑛) = Θ(𝑝 (𝑛) logℎ(𝑛)) (i.e., polynomial in
𝑛), space complexity at most 𝑝 (𝑛), and which errs on 𝑥 ∈ 𝐿 with probability strictly less
than 1/2ℎ(𝑛). Based on 𝐿 we define the language

𝐿′ = {bin𝑛 (0)#𝑥0#0𝑝 (𝑛)% · · ·%bin𝑛 (ℎ(𝑛) − 1)#𝑥ℎ(𝑛)−1#0𝑝 (𝑛) | 𝑛 ∈ N+, 𝑥𝑖 ∈ 𝐿 ∩ Σ𝑛},

where bin𝑛 (𝑖) denotes the 𝑛-bit representation of 𝑖 < 2𝑛 . Note the length of an instance of
𝐿′ is

𝑁 ≤ 6ℎ(𝑛)𝑝 (𝑛) = 𝑂 (ℎ(𝑛)poly(𝑛)) .

We claim there is 𝑐 > 0 such that 𝐿′ can be accepted in at most 𝑐𝑝′(𝑛) = 𝑂 (𝑝′(𝑛)) (and in
particular less than𝑇 (𝑁)) time by a one-sided error PACA𝐶 . The construction is relatively
straightforward: We refer to each group of cells

bin𝑛 (𝑖)#𝑥𝑖#0𝑝
′ (𝑛)

separated by the % symbols as a block and the three binary strings in each block (separated
by the # symbols) as its components. First each block 𝑎1#𝑎2#𝑎3 checks that its components
have correct sizes, that is, that |𝑎1 | = |𝑎2 | and |𝑎3 | = 𝑝 (|𝑎1 |). Then the block communicates
with its right neighbor 𝑏1#𝑏2#𝑏3 (if it exists) and checks that |𝑎𝑖 | = |𝑏𝑖 | for every 𝑖 and that,
if 𝑎1 = bin𝑛 (𝑗), then 𝑏1 = bin𝑛 (𝑗 + 1). In addition, the leftmost block checks that its first
component is equal to bin𝑛 (0); similarly, the rightmost block computes ℎ(𝑛) (in 𝑂 (𝑝′(𝑛))
time) and checks that its first component is equal to bin𝑛 (ℎ(𝑛) − 1). Following these initial
checks, each block then simulates 𝑅′ (using bits from its random input as needed) on the
input given in its second component using its third component as the tape. If 𝑅′ accepts,
then all cells in the respective block turn accepting. In addition, the delimiter % is always
accepting unless it is a border cell.

101

4. Sublinear-Time Probabilistic Cellular Automata

Clearly 𝐶 accepts if and only if its input is correctly formatted and 𝑅′ accepts every one of
the 𝑥𝑖 (conditioned on the coin tosses that are chosen for it by the respective cells of 𝐶).
Using a union bound, the probability that 𝐶 errs on an input 𝑥 ∈ 𝐿′ is

Pr[𝐶 (𝑥,𝑈𝑇×𝑛) = 0] ≤
ℎ(𝑛)−1∑︂
𝑖=0

Pr[𝑅(𝑥𝑖) = 0] <
ℎ(𝑛)−1∑︂
𝑖=0

1
2ℎ(𝑛) =

1
2 .

In addition, the total running time of𝐶 is the time needed for the syntactic checks (requiring
𝑂 (𝑝′(𝑛)) time), plus the time spent simulating 𝑅′ (again, 𝑂 (𝑝′(𝑛)) time using standard
simulation techniques). Hence, we can implement 𝐶 so that it runs in at most 𝑐𝑝′(𝑛) time
for some constant 𝑐 > 0, as desired.

Now suppose there is a DACA 𝐶′ to 𝐶 as in the statement of the theorem. We shall show
there is a deterministic (multi-tape) Turing machine that decides 𝐿 with the purported
time complexity. Consider namely the machine 𝑆 which, on an input 𝑥 ∈ {0, 1}𝑛 of 𝐿,
produces the input

𝑥′ = bin𝑛 (0)#𝑥#0𝑝 (𝑛)% · · ·%bin𝑛 (ℎ(𝑛) − 1)#𝑥#0𝑝 (𝑛)

of 𝐿′ and then simulates𝐶′ on 𝑥′ for𝑇 ′(𝑁) steps, accepting if and only if𝐶′ does. Producing
𝑥′ from 𝑥 requires 𝑂 (𝑁) time and, using the standard simulation of cellular automata
by Turing machines, 𝐶′ can be simulated in 𝑂 (𝑁 · 𝑇 ′(𝑁)) time. Checking whether 𝐶′
accepts or not can be performed in parallel to the simulation and requires no additional
time. Hence, 𝑆 runs in

𝑂 (𝑁 ·𝑇 ′(𝑁)) = 𝑂 (ℎ(𝑛)poly(𝑛) ·𝑇 ′(ℎ(𝑛)poly(𝑛)))

time, as required.

102

5. Pseudorandom Generators for
Sliding-Window Algorithms

Abstract

A sliding-window algorithm of window size 𝑡 is an algorithm whose current opera-
tion depends solely on the last 𝑡 symbols read. We construct pseudorandom generators
(PRGs) for low-space randomized sliding-window algorithms that have access to a bi-
nary randomness source. More specifically, we lift these algorithms to the non-uniform
setting of branching programs and study them as sliding-window branching programs
(SWBPs), which we propose as the branching program analogue of sliding-window al-
gorithms. For general SWBPs, given a base PRG𝐺base that 𝜀base-fools width-𝑤 , length-𝑡
(general) branching programs, we construct a PRG that fools any same-width SWBP
of length 𝑛 using an additional𝑂 (log(𝑛/𝑡) log(1/𝜀base)) random bits with a (𝑛/2𝑡)𝑂 (1)
multiplicative loss in the error parameter. We also consider a subclass of SWBPs called
𝛿-critical SWBPs, which are SWBPs whose layers must either accept every input or
reject with probability at least 1 − 𝛿 . For 𝛿-critical SWBPs, starting from a PRG 𝐺base
as before, we construct a PRG that fools any width-𝑤 , length-𝑛 SWBP using an addi-
tional 𝑂 (log(𝑡/𝛿)) · �̃� (log(1/𝜀base)) +𝑂 (log(𝑛/𝑡)) random bits and with a (𝑡/𝛿)𝑂 (1)
multiplicative loss in error (up to polylogarithmic factors).
As an application, we show how to decide the language of a sublinear-time proba-

bilistic cellular automaton using small space. Our results target the model of PACAs,
which are probabilistic cellular automata that accept if and only if all cells are simul-
taneously accepting. For sublinear 𝑇 , we prove that the every language accepted by
a 𝑇 -time one-sided error PACA (the PACA equivalent of RP) can be decided using
𝑂 (𝑇 + (log𝑛)2) space. We also introduce 𝛿-critical PACAs, which are PACAs in which
every cell is such that, if a cell does not always accept, then the probability that it does
is bounded away from 1 by at least 𝛿 . For this subclass of PACA, we obtain similar
results for both one-sided and two-sided error PACAs (which are the PACA equivalent
of BPP).

5.1. Introduction

The processing of long streams of data using as little memory resources as possible is
a central computational paradigm of high relevance in the modern age. Through its
presentation as streaming algorithms, the topic has been the subject of intense study within
the realm of theoretical computer science. When dealing with data that ages quickly,
however, it appears a more accurate representation of the process may be found in the

103

5. Pseudorandom Generators for Sliding-Window Algorithms

subclass of sliding-window algorithms. These are algorithms that maintain a window
(hence the name) of only the last few symbols in their stream and model processes where
only the most recent data is considered accurate or of relevance. Natural examples of this
strategy may be found in weather forecasting and social media analysis.

A defining feature of sliding-window algorithms is self-synchronization: If there are two
machines executing the same algorithm with a window of size 𝑡 on the same stream and
they receive faulty, inconsistent data at some point in the process, then the machines will
return to having identical states (i.e., synchronize) after having read at most 𝑡 identical
symbols. It turns out this behavior is not only potentially desirable in practice but, from a
theoretical point of view, it suggests the defining characteristic for these kind of algorithms.
In this chapter, we shall adopt this standpoint and consider low-space algorithms with this
property that are augmented with access to a (binary) randomness source. We will attempt to
answer the following central question: How much (if any) randomness is required by the
class of algorithms with this property in order to perform the tasks required of them?

Randomized sliding-window algorithms. Intuitively, we should obtain a randomized
version of sliding-window algorithms by having the control unit operate according to a
randomized process. Of course, this immediately raises the question of how one should
adapt the sliding-window requirement to this new model. As the defining characteristic
(in the deterministic case) is that the machine’s current operation depends only on the last
𝑡 symbols read, it suggests itself to require the algorithm’s behavior to be dependent not
only on the last 𝑡 symbols but also on the random choices made while reading said bits.
Since a true randomized algorithm (in our setting) is expected to use at least one bit of
randomness for every new symbol it reads, it appears as if the algorithm’s windowwould in
its greater part (or at least as much so) contain bits originating from the randomness source
rather than the input stream. Actually, we altogether forgo referring to the latter when
generalizing the sliding-window property to randomized algorithms. That is, we phrase
the property exclusively in terms of the randomness source and, using non-uniformity,
forgo referencing the input stream altogether. This approach has a couple of advantages:

1. It not only simplifies the presentation (since then the algorithm passes its window
over a single input source instead of two) but also renders the model more amenable
to the usual complexity-theoretical methods for analyzing low-space algorithms.

2. The resulting class of machines is actually stronger than the model where the sliding-
window property applies to both the data stream and the randomness source. Hence,
our results not only hold in the latter case but also in the more general one.

Asmentioned in passing above, wewill rely on classical methods from complexity theory to
analyze low-space algorithms in the context of derandomization, namely the non-uniform
model of branching programs.

104

5.1. Introduction

5.1.1. Branching Programs

Branching programs can be seen as a non-uniform variant of deterministic finite automata
and have found broad application in the derandomization of low-space algorithms.

Definition 5.1. An (ordered, read-once) branching program 𝑃 of length 𝑛 and width𝑤 is
a set of states 𝑄 , |𝑄 | = 𝑤 , of which a subset 𝑄acc ⊆ 𝑄 are accepting states, along with 𝑛
transition functions 𝑃1, . . . , 𝑃𝑛 : 𝑄 × {0, 1} → 𝑄 . The program 𝑃 starts its operation in an
initial state 𝑞0 ∈ 𝑄 and then processes its input 𝑥 = 𝑥1 · · · 𝑥𝑛 ∈ {0, 1}𝑛 from left to right
while updating its state in step 𝑖 according to 𝑃𝑖 . That is, if 𝑃 is in state 𝑞𝑖−1 after having
read 𝑖 − 1 bits of its input, then it next reads 𝑥𝑖 and changes its current state to 𝑃𝑖 (𝑞𝑖−1, 𝑥𝑖).
We say 𝑃 accepts 𝑥 if 𝑞𝑛 ∈ 𝑄acc, where 𝑞𝑛 is state of 𝑃 after processing the final input
symbol 𝑥𝑛 .

Although 𝑃 reuses the same set of states throughout its processing of 𝑥 , it is also natural
to view 𝑃 as a directed acyclic graph with 𝑛 + 1 layers, where the 𝑖-th layer 𝑄𝑖 contains a
node for every state of 𝑄 that is reachable in (exactly) 𝑖 steps of 𝑃 . (We shall refer to 𝑄𝑖 as
a set of nodes and as a subset of 𝑄 interchangeably.) A node 𝑣 ∈ 𝑄𝑖−1 is then connected to
the nodes 𝑢0 = 𝑃𝑖 (𝑣, 0) and 𝑢1 = 𝑃𝑖 (𝑣, 1) of𝑄𝑖 and we label the respective edges with 0 and
1. (If 𝑢0 = 𝑢1, then we have a double edge from 𝑣 to 𝑢0.)

We write 𝑃 (𝑥) for the indicator function {0, 1}𝑛 → {0, 1} of 𝑃 accepting 𝑥 (i.e., 𝑃 (𝑥) = 1
if 𝑃 accepts 𝑥 , or 𝑃 (𝑥) = 0 otherwise). For 𝑦 ∈ {0, 1}∗ with |𝑦 | ≤ 𝑛, we write 𝑃0(𝑦)
to indicate the state of 𝑃 after having read 𝑦 when starting its operation in its initial
state 𝑞0. Letting 𝜆 denote the empty word, this can be defined recursively by setting
𝑃0(𝜆) = 𝑞0 and 𝑃0(𝑦′𝑧) = 𝑃 |𝑦′ |+1(𝑃0(𝑦′), 𝑧) for 𝑦 = 𝑦′𝑧 and 𝑧 ∈ {0, 1}. We extend the
domain of 𝑃𝑖 from 𝑄 × {0, 1} to 𝑄 × {0, 1}≤𝑛−𝑖 in the natural way as follows: 𝑃𝑖 (𝑞, 𝜆) = 𝑞
and 𝑃𝑖 (𝑞,𝑦𝑦′) = 𝑃𝑖+1(𝑃𝑖 (𝑞,𝑦), 𝑦′) for 𝑦𝑦′ ∈ {0, 1}≤𝑛−𝑖 where 𝑦 ∈ {0, 1}.

Unanimity programs [15] are a generalization of branching programs that accept if and only
if every state during its computation is accepting (instead of only its final one). Formally,
this means we mark a subset 𝑄𝑖acc ⊆ 𝑄𝑖 of every 𝑖-th layer as accepting and say that a
unanimity program𝑈 accepts 𝑥 ∈ {0, 1}𝑛 if and only if𝑈0(𝑦) ∈ 𝑄 |𝑦 |acc for every prefix 𝑦 ≠ 𝜆

of 𝑥 . (Note this is indeed a generalization since setting 𝑄𝑖acc = 𝑄 for every 𝑖 < 𝑛 yields a
standard branching program.) It is easy to see that a width-𝑤 unanimity program can be
simulated by a width-(𝑤 + 1) standard branching program (e.g., by adding a “fail” state to
indicate the unanimity program did not accept at some point).

Pseudorandom generators. The key concept connecting branching programs and the
topic of derandomization is that of pseudorandom generators. These are general-purpose
functions that take a (conceptually speaking) small subset of inputs and “scatter” them
across their range in such a way that “appears random” to the class of procedures they
intend to fool. In the definition below,𝑈𝑛 denotes a random variable distributed uniformly
over {0, 1}𝑛 .

105

5. Pseudorandom Generators for Sliding-Window Algorithms

Definition 5.2. Let 𝑛 ∈ N+ and 𝜀 > 0, and let F be a class of functions 𝑓 : {0, 1}𝑛 → {0, 1}.
We say a function 𝐺 : {0, 1}𝑑 → {0, 1}𝑛 is a pseudorandom generator (PRG) that 𝜀-fools F
if the following holds for every 𝑓 ∈ F :

|Pr[𝑓 (𝐺 (𝑈𝑑)) = 1] − Pr[𝑓 (𝑈𝑛) = 1] | ≤ 𝜀.

In addition, we say 𝐺 is explicit if there is a (uniform) linear-space algorithm which, on
input 𝑛 (encoded in binary) and 𝑠 ∈ {0, 1}𝑑 , outputs 𝐺 (𝑠).

The connection between the above and low-space algorithms is as follows: Suppose we
have an 𝑠-space algorithm 𝐴 that takes as input a string 𝑥 along with a stream 𝑟 ∈ {0, 1}𝑛
of random coin tosses. If we take a PRG 𝐺 that 𝜀-fools branching programs of width 2𝑠
and length 𝑛, then𝐴(𝑥,𝐺 (𝑈𝑑)) must be 𝜀-close to𝐴(𝑥,𝑈𝑛). To see why, notice that we can
convert 𝐴(𝑥, ·) into a branching program 𝑃𝑥 by taking as state set for 𝑃𝑥 the configuration
space of 𝐴 and non-uniformly hardcoding the bits of 𝑥 read by 𝐴 (into the transition
function of 𝑃𝑥). The resulting program 𝑃𝑥 then takes as input the random stream of 𝐴
(which might appear counter-intuitive, but yields the desired reduction).

Sliding-window branching programs. In this chapter, our goal is to construct PRGs
against the restricted class of unanimity programs satisfying the sliding-window property.
As previously discussed, the defining feature is self-synchronization.

Definition 5.3. A sliding window branching program (SWBP) is a unanimity program 𝑆

that satisfies the following property: There is a number 𝑡 ∈ N+, called the window size of
𝑆 , such that, for every 𝑖 ≤ 𝑛 − 𝑡 , every 𝑦 ∈ {0, 1}𝑡 , and every pair of states 𝑞, 𝑞′ ∈ 𝑄𝑖 , we
have that 𝑆𝑖 (𝑞,𝑦) = 𝑆𝑖 (𝑞′, 𝑦).

In other words, the current state of 𝑆 depends exclusively on the last 𝑡 bits read. From this
perspective, it is not hard to see that a generalization to unanimity programs is actually
necessary for the sliding-window property to be interesting. Indeed, if an SWBP 𝑆 is a
standard branching program (i.e., not just a unanimity program), then its decision only
depends on the last 𝑡 bits of its input.

5.1.2. Our Results

5.1.2.1. Structural Characterization of SWBPs

Let 𝑛 ∈ N0. Recall the de Bruijn graph of dimension 𝑛 is the directed graph 𝐵𝑛 = (𝑉𝑛, 𝐸𝑛)
with vertex set 𝑉𝑛 = {0, 1}𝑛 and edge set

𝐸𝑛 = {(𝑥𝑤,𝑤𝑦) | 𝑤 ∈ {0, 1}𝑛−1 and 𝑥,𝑦 ∈ {0, 1}}.

Similarly, the prefix tree of dimension 𝑛 is the graph𝑇𝑛 = (𝑉 ′𝑛, 𝐸′𝑛) with𝑉 ′𝑛 = {0, 1}≤𝑛 and

𝐸′𝑛 = {(𝑤,𝑤𝑥) | 𝑤 ∈ {0, 1}≤𝑛−1 and 𝑥 ∈ {0, 1}}.

106

5.1. Introduction

As our first contribution, we observe that, for every fixed window size 𝑡 , there is a “pro-
totypical” SWBP Π whose topology is such that its first 𝑡 layers are isomorphic to the
prefix tree 𝑇𝑡 and its subsequent layers are connected according to (the labeled version of)
the de Bruijn graph 𝐵𝑡 . Thus, every SWBP 𝑆 of window size 𝑡 can be obtained from this
prototypical SWBP Π by merging nodes in the same layer. (Note this process may also
incur merging nodes in subsequent layers as well so as to ensure that, for every 𝑖 , 𝑆𝑖 is
indeed a function.)

Theorem 5.4. A unanimity program 𝑆 is a SWBP of window size 𝑡 if and only if there are
functions 𝛼0, . . . , 𝛼𝑛 : {0, 1}𝑘𝑖 → 𝑄 with

𝑘𝑖 =

{︄
𝑖, 𝑖 < 𝑡 ;
𝑡, 𝑖 ≥ 𝑡

and such that the following are true for every 𝑥,𝑦 ∈ {0, 1} and𝑤 ∈ {0, 1}𝑘𝑖−1:

1. For every 𝑖 < 𝑡 , 𝑆𝑖 (𝛼𝑖 (𝑤), 𝑦) = 𝛼𝑖+1(𝑤𝑦).

2. For every 𝑡 ≤ 𝑖 < 𝑛, 𝑆𝑖 (𝛼𝑖 (𝑥𝑤), 𝑦) = 𝛼𝑖+1(𝑤𝑦).

From this characterization it immediately follows that, as long as 𝑆 does not have redundant
states, we have𝑤 ≤ 2𝑡 .

5.1.2.2. PRGs for SWBPs

We construct PRGs for SWBPs both in the general case and in a restricted one where the
SWBPs are assumed to satisfy an additional property.

General SWBPs. We first present our generator for general SWBPs of window size 𝑡 .

Theorem 5.5. Let 𝑛,𝑤, 𝑡 ∈ N+ with 𝑛 ≤ 𝑤 and 𝜀 > 0 be given, and let 𝐺base : {0, 1}𝑑base →
{0, 1}𝑡 be a PRG that 𝜀base-fools width-𝑤 , length-𝑡 unanimity programs. Then there is an
explicit PRG 𝐺 : {0, 1}𝑑 → {0, 1}𝑛 with seed length

𝑑 = 2𝑑base +𝑂 (log(𝑛/𝑡) log(1/𝜀base))
that 𝜀𝐺 -fools any width-𝑤 , length-𝑛 SWBP of window size 𝑡 , where 𝜀𝐺 = 𝜀base · (𝑛/2𝑡)𝑂 (1) .

Armoni [4] gives an explicit generator𝐺A : {0, 1}𝑑A → {0, 1}𝑛 that (with the improvements
by Kane, Nelson, and Woodruff [65]) 𝜀A-fools any width-𝑤 , length-𝑛 branching program
for any choice of 𝜀A > 0 and 𝑛,𝑤 ∈ N+ (and, in particular, also 𝜀A-fools any width-(𝑤 − 1),
length-𝑛 unanimity program). Assuming 𝑛 ≤ 𝑤 , 𝐺A has seed length

𝑑A = 𝑂

(︃
log(𝑤/𝜀A) log𝑛

max{1, log log𝑤 − log log(𝑛/𝜀A)}

)︃
.

Given 𝜀 > 0, plugging in 𝐺base = 𝐺A in Theorem 5.5 with 𝜀base = 𝜀A = 𝜀 · (2𝑡/𝑛)Ω(1) , we
get:

107

5. Pseudorandom Generators for Sliding-Window Algorithms

Corollary 5.6. For every 𝑛,𝑤, 𝑡 ∈ N+ with 𝑛 ≤ 𝑤 and 𝜀 > 0, there is an explicit PRG
𝐺 : {0, 1}𝑑 → {0, 1}𝑛 with seed length

𝑑 = 𝑂

(︃
log(𝑤/𝜀) log 𝑡

max{1, log log𝑤 − log log(𝑛/𝜀)} + log(𝑛/𝑡) log(𝑛/𝑡𝜀)
)︃

that 𝜀-fools any width-𝑤 , length-𝑛 SWBP of window size 𝑡 .

Hence, in regimes where log𝑤 = Ω(log(𝑛/𝜀))2, we effectively replace a log𝑛 with a log 𝑡
factor in the seed length of Armoni’s PRG. This is a considerable improvement for most
applications, where the window size 𝑡 is much smaller than the input length 𝑛. For instance,
if the window size is 𝑡 = polylog(𝑤) and 𝜀 is constant, then the seed length is 𝑂 (log𝑤),
which is essentially optimal.

𝛿-critical SWBPs. We also construct a PRG that fools a particular subclass of SWBPs.
One motivation for this is that these SWBPs are related to a very natural subclass of
probabilistic cellular automata (see Section 5.1.2.3).

For 𝛿 ∈ [0, 1], a layer 𝐿 of a unanimity program 𝑃 is said to be 𝛿-critical if the fraction of
inputs to 𝑃 that do not pass through an accept state in 𝐿 is at least 𝛿 . A 𝛿-critical SWBP is
an SWBP in which every layer is either 𝛿-critical or contains only accepting states. (That
is, for every layer there is a “gap” of 𝛿 between surely accepting or not.)

Note that, by its structural properties (see Section 5.1.2.1), in an SWBP of window size 𝑡 , if
𝐿 contains at least one non-accepting state, then it must be (2−𝑡)-critical. (In contrast, in
general unanimity programs 𝛿 may be as small as 2−𝑛 .)

Theorem 5.7. Let 𝑛,𝑤, 𝑡 ∈ N+ with 𝑛 ≤ 𝑤 and 𝜀 > 0 be given, and let 𝐺base : {0, 1}𝑑base →
{0, 1}𝑡 be a PRG that 𝜀base-fools width-𝑤 , length-𝑡 unanimity programs where 𝜀base ≤ 𝜀1+log 3.
Then there is an explicit PRG 𝐺 : {0, 1}𝑑 → {0, 1}𝑛 with seed length

𝑑 = 2𝑑base +𝑂 (log(𝑡/𝛿)) · �̃� (log(1/𝜀)) +𝑂 (log(𝑛/𝑡))

that 𝜀𝐺 -fools 𝛿-critical width-𝑤 , length-𝑛 SWBPs of window size 𝑡 , where 𝜀𝐺 = �̃� (𝜀) · (𝑡/𝛿)𝑂 (1) .

Given 𝜀 > 0, plugging in 𝐺base = 𝐺A in Theorem 5.7 as before with 𝜀base = 𝜀A =

(𝛿/𝑡)Ω(1)𝜀1+log 3, we get:

Corollary 5.8. For every 𝑛,𝑤, 𝑡 ∈ N+ with 𝑛 ≤ 𝑤 and 𝜀, 𝛿 > 0, there is an explicit PRG
𝐺 : {0, 1}𝑑 → {0, 1}𝑛 with seed length

𝑑 = 𝑂

(︃
log(𝑤/𝜀𝛿) log 𝑡

max{1, log log𝑤 − log log(𝑛/𝜀𝛿)}

)︃
+𝑂 (log(𝑡/𝛿)) · �̃� (log(𝑡/𝜀𝛿)) +𝑂 (log(𝑛/𝑡))

that 𝜀-fools any 𝛿-critical width-𝑤 , length-𝑛 SWBP of window size 𝑡 .

108

5.1. Introduction

Besides the application we discuss next in Section 5.1.2.3, Corollary 5.8 allows us to
obtain partial results for the case where log𝑤 is in-between Ω(log(𝑛/𝜀)) and𝑂 (log(𝑛/𝜀))2
(cnf. the discussion following Theorem 5.5). Consider, for instance, the regime where
𝑡 = polylog(𝑛), 𝛿 = 1/poly(𝑡), 𝜀 is constant, and log𝑤 = Θ(log𝑛)1+𝜂 for some 𝜂 > 0. Then
using as little as 𝑂 (log𝑤) space we can derandomize any 𝑂 (log𝑤)-space sliding-window
algorithm of window size 𝑡 = polylog(𝑛) that is (1/poly(𝑡))-critical (i.e., conditioned on
the last 𝑡 random bits read, if the algorithm has a non-zero probability of halting and
rejecting its input, then this probability is at least 1/poly(𝑡)).

5.1.2.3. Application to Probabilistic Cellular Automata

As an application, we obtain space-efficient algorithms for deciding the languages accepted
by sublinear-time probabilistic cellular automata. More specifically, our results target the
model of PACAs (probabilistic ACAs; see Chapter 4), which are cellular automata with
two local transition functions 𝛿0 and 𝛿1 and where, at every step, each cell tosses a fair
coin 𝑐 ∈ {0, 1} and then updates its state according to 𝛿𝑐 . The acceptance condition is
that of ACA, which is the most usual one [60, 66, 105] (recall also Chapter 2) that allows
for non-trivial sublinear-time computations: A computation is accepting if and only if a
configuration is reached in which every cell is accepting. Our results target both one-sided
and two-sided error PACAs, which in a sense are the PACA analogues of the classical
complexity classes RP and BPP, respectively. (We refer the reader to Section 5.6.1 for the
definitions.)

These results are interesting because similar positive results in the sister setting of effi-
ciently deciding the language of a PACA where efficiency is measured in terms of time
complexity would have surprising consequences for the derandomization of Turing ma-
chines (e.g., P = RP; see Theorem 4.2).

One-sided error PACAs. As shown in Chapter 2 (Proposition 2.18), every language ac-
cepted by a deterministic ACA with time complexity 𝑇 can be decided using 𝑂 (𝑇) space.
For general one-sided error PACAs, we obtain the following result:

Theorem 5.9. Let 𝑇 : N+ → N+ be a (constructible) function and 𝜀 ≥ 1/poly(𝑇). For any
one-sided 𝜀-error PACA 𝐶 that recognizes its language 𝐿(𝐶) in time at most 𝑇 = 𝑇 (𝑛), there
is a deterministic algorithm for 𝐿(𝐶) with space complexity 𝑂 (𝑇 + (log𝑛)2).

Hence, for𝑇 ∈ Ω(log𝑛)2, with𝑂 (𝑇) space we can also decide languages that are accepted
by 𝑇 -time probabilistic (one-sided error) ACA.

We also consider 𝛿-critical PACAs, which are PACAs in which, for any given input, if a
cell is such that it does not always accept, then the probability that it does is at most 1 − 𝛿 .
For this subclass of PACAs, we prove:

109

5. Pseudorandom Generators for Sliding-Window Algorithms

Theorem 5.10. Let 𝑇 : N+ → N+ be a (constructible) function, and let 𝛿 > 0 and 𝜀 ≥
1/poly(𝑇). For any 𝛿-critical one-sided 𝜀-error PACA 𝐶 that recognizes its language 𝐿(𝐶) in
time at most 𝑇 = 𝑇 (𝑛), there is a deterministic algorithm for 𝐿(𝐶) with space complexity

𝑂

(︃
(𝑇 + log(1/𝛿)) log𝑇

max{1, log𝑇 − log log(𝑛/𝛿)}

)︃
+ �̃� (log(𝑇 /𝛿))2 +𝑂 (log𝑛).

As with Theorem 5.7, here we are able to obtain partial results for efficiently deciding (with
respect to space complexity) the language of a𝑇 -time PACAwhere𝑇 is in-betweenΩ(log𝑛)
and𝑂 (log𝑛)2. For instance, if we take the case where 𝑇 = Θ(log𝑛)1+𝜂 for some 𝜂 > 0 and
the PACA is 𝛿-critical for 𝛿 = 1/poly(𝑇), then we get that 𝑂 (𝑇) space suffices to decide
𝐿(𝐶) (as in the Ω(log𝑛)2 case). Interestingly, in the low-end case where 𝑇 = Θ(log𝑛)
and 𝛿 is may be as small as 1/2𝑂 (

√
𝑇) , the resulting upper bound is 𝑂 (log𝑛 log log𝑛), thus

implying a barely superpolynomial upper bound of 𝑂 (𝑛log log𝑛) on the time complexity.
It remains open whether 𝑂 (𝑇) space always suffices for deciding 𝐿(𝐶) for any PACA
𝐶 with time complexity in-between Ω(log𝑛) and 𝑂 (log𝑛)2 (i.e., without the additional
𝛿-criticality assumption).

Two-sided error PACAs. Our results in the case of two-sided error PACAs are a bit more
modest. In Section 5.6.3.2 we do prove a result similar to Theorem 5.9 but note it does not
actually improve on what already can already be achieved by simply using Armoni’s PRG.
Nonetheless, for 𝛿-critical PACAs we are able to prove the following based on Corollary 5.8:

Theorem 5.11. Let𝑇 : N+ → N+ be a (constructible) function, and let 𝛿 > 0 and 𝜀 ≥ 2−𝑂 (𝑇) .
For any 𝛿-critical two-sided (1/2 − 𝜀)-error PACA 𝐶 that recognizes its language 𝐿(𝐶) in
time at most 𝑇 = 𝑇 (𝑛), there is a deterministic algorithm for 𝐿(𝐶) with space complexity
�̃� (𝑇 · (log(1/𝛿))2) +𝑂 (log𝑛).

In particular, for𝑇 = Ω(log𝑛) and 𝛿 = 1/poly(𝑇), this gives us a �̃� (𝑇)-space algorithm for
every language accepted by a two-sided error PACA even when the gap between accepting
and rejecting is exponentially small in 𝑇 . As in the case of one-sided error, obtaining
a similar result without the 𝛿-criticality assumption is an interesting further research
direction.

5.1.3. Technical Overview

Generators for general SWBPs. Our construction relies on two main ideas, the first of
which is especially suited for exploiting the sliding-window property. With this technique,
which we call interleaving, we are able to effectively “shatter” SWBPs into a collection of
short programs. To visualize the idea, take some SWBP 𝑆 of window size 𝑡 and consider
the behavior on 𝑆 on an input

𝑋 ∥ 𝑌 = 𝑋1𝑌1𝑋2𝑌2 · · ·𝑋𝑛𝑌𝑛

110

5.1. Introduction

where the 𝑋𝑖 and 𝑌𝑖 all have length 𝑡 and 𝑋 = 𝑋1 · · ·𝑋𝑛 and 𝑌 = 𝑌1 · · ·𝑌𝑛 are chosen
independently from one another (but possibly follow the same distribution). The point
is that, since 𝑆 must read the 𝑡 bits of 𝑌𝑖 between reading 𝑋𝑖 and 𝑋𝑖+1, when it starts
processing 𝑋𝑖+1, it has essentially “forgotten” all information about 𝑋𝑖 . In addition, as 𝑋
and 𝑌 are chosen independently from one another, 𝑌𝑖 contains no information about 𝑋𝑖+1
whatsoever; the only relevance 𝑌𝑖 has regarding 𝑋𝑖+1 is in determining which state the
processing of 𝑋𝑖+1 starts in. Hence, when the output of our generator is of the form 𝑋 ∥ 𝑌 ,
we can simply (say) set 𝑌 to some fixed string 𝑦 and then analyze 𝑆 as a collection of 𝑛
many length-𝑡 unanimity programs, each of which receives an 𝑋𝑖 as input.

We have thus reduced our original task to that of fooling a collection of 𝑛 programs
simultaneously; that is, given unanimity programs 𝑃1, . . . , 𝑃𝑛 of the same width and length,
we wish to generate pseudorandom inputs 𝑋1, . . . , 𝑋𝑛 so that|︁|︁|︁|︁|︁Pr[∀𝑖 ∈ [𝑛] : 𝑃𝑖 (𝑋𝑖) = 1] −

𝑛∏︂
𝑖=1

Pr[𝑃𝑖 (𝑈) = 1]
|︁|︁|︁|︁|︁

is small, where𝑈 is the uniform distribution on all possible inputs to 𝑃𝑖 . As it turns out,
here we may employ almost the same idea as that behind the celebrated construction
of Nisan [91]. That is, supposing we have a generator 𝐺 that simultaneously fools 𝑛/2
programs using a random seed 𝑠 of length 𝑑 , we use an adequate extractor (Theorem 5.14)
to generate a fresh seed 𝑠′ using “just a couple more” random bits and then output the
concatenation𝐺 (𝑠)𝐺 (𝑠′). (Refer to Section 5.2 for the definitions.) In our case, this strategy
works even better than in the general setting of Nisan (i.e., we need even fewer random
bits to succeed) because we only give very little entropy away in the first 𝑛/2 programs—
namely, all that can be learned about 𝑠 is that the 𝑃1, . . . , 𝑃𝑛/2 are all accepting. All that is
left then is the base case 𝑛 = 1, in which case we plug in any generator𝐺base for unanimity
programs of our liking, the point being that 𝐺base only has to fool programs that are as
long as the window size 𝑡 of our original SWBP 𝑆 (rather than programs that are as long as
𝑆 itself).

Generators for 𝛿-critical SWBPs. To simplify the discussion, having fixed 𝛿 > 0, we refer
to a 𝛿-critical layer of an SWBP simply as critical and the others as non-critical, accordingly.
For an SWBP 𝑆 of window size 𝑡 , a section of 𝑆 is a sequence of 𝑡 contiguous layers of 𝑆
(i.e., 𝑄𝑖, . . . , 𝑄𝑖+𝑡−1 for some 𝑖 ≤ 𝑛 − 𝑡 + 1).

The first observation we make is the following:

Lemma 5.12. Let 𝑡 ∈ N+ and 𝜀, 𝛿 > 0, and let 𝑆 be a 𝛿-critical SWBP of window size 𝑡 that
accepts at least an 𝜀 fraction of its inputs, that is, Pr[𝑆 (𝑈𝑛) = 1] ≥ 𝜀. Then there are at most
𝑂 ((𝑡/𝛿) log(1/𝜀)) critical layers in 𝑆 .

Hence, provided 𝑆 has non-negligible acceptance probability, we get an upper bound on
the number of sections of 𝑆 containing critical layers.

111

5. Pseudorandom Generators for Sliding-Window Algorithms

Imagine now we can construct a PRG𝐺 that fools (general) unanimity programs no matter
the order in which the bits of 𝐺 are read (e.g., the generator of Forbes and Kelley [38]).
Assuming we know which sections of 𝑆 are critical and which are not, we only need to use
𝐺 to fill in the critical ones; the other ones can be given arbitrary values (since they accept
regardless of what their input is). In particular, this means that we need𝐺 to output much
less bits than the full length 𝑛 of 𝑆 (thus potentially giving us better parameters than in
the general setting).

Of course, since our PRG must fool not only a single SWBP 𝑆 (but any other SWBP with
similar parameters), we cannot simply set some of our generator’s outputs according to 𝐺
and the others to non-arbitrary values. Nevertheless, we may split the output of 𝐺 into
blocks of size 𝑡 and then use a hash function to order the blocks for us, repeating them
as needed to obtain a string that is 𝑛 bits long. As we prove, with the correct choice of
parameters, we can guarantee that most hash functions are such that every critical section
is assigned a unique block (i.e., the restriction of the hash function to the critical sections
of 𝑆 is injective). If we then remove the non-critical sections of 𝑆 , we get a (much shorter)
unanimity program 𝑆′ that is equivalent to 𝑆 (modulo the non-critical sections) and which
is fooled by 𝐺 , thus reducing the correctness of our generator to the pseudorandomness
of 𝐺 .

To obtain the best seed length for our generator, we actually refrain from using a PRG
with as strong a requirement as above. Instead, we show that an adaptation of the same
ideas used to prove Theorem 5.5 suffices. In particular, we use a PRG that simultaneously
fools the critical sections of 𝑆 , the point being that the notion of simultaneously fooling is
not sensitive to reordering the programs that are to be fooled.

5.1.4. Related Work

Branching programs. The standard line of attack in complexity theory when derandom-
izing low-space algorithms is to lift these to the more general model of (non-uniform)
branching programs, which are more amenable to a combinatorial analysis. This approach
can be traced at least 30 years back to the seminal work of Nisan [91]. Since then, there
has been progress in derandomizing branching programs in diverse settings including, for
instance, branching programs in which the transition function at each layer is a permuta-
tion [58] or that may read their input in some fixed but unknown order [38]. Unanimity
programs were recently proposed by Bogdanov et al. [15]. To the best of our knowledge,
ours is the first work to study branching programs with the sliding-window property or
similar.

Sliding-window algorithms. The sliding-window paradigm is a natural form of stream
processing that has been considered in the context of database management systems [8],
network monitoring [27], and reinforcement learning [49]. Starting with the work of Datar
et al. [29], the sliding-window model has also been extensively studied in the context of
maintaining statistics over data streams. (See, e.g., [16] for a related survey.)

112

5.1. Introduction

Sliding-window algorithms have also been studied by Ganardi et al. [44–47] in the setting
of language recognition (among others). We point out a couple fundamental differences
between the model we consider and theirs:

• Their results also apply to the non-uniform case—but parameterized on the window
size. In particular, their model allows radically different behaviors on the same stream
for different window sizes. In our case, non-uniformity is parameterized on the input
size (i.e., the length of the data stream).

• The underlying probabilistic model in the work of Ganardi et al. is the probabilistic
automata model of Rabin [97], which allows state transitions according to arbitrary
distributions. In contrast, our model draws randomness from a binary source and—
most importantly—the sliding-window property applies to the random input (whereas
in the model of Ganardi et al. it only applies to the data stream).

In summary, Ganardi et al. focus on a model that verifies (or computes some quantity for)
every window of fixed size on its stream; we focus on a model that verifies the stream as a
whole.

We also mention a recent paper by Pacut et al. [94] that points out a connection between
distributed and sliding-window algorithms. In our case, we may see our application to
probabilistic cellular automata as a direct consequence of this connection.

Probabilistic cellular automata. Our contribution to probabilistic cellular automata adds
another link to a recent chain of results (Chapters 2 to 4) targeted at the study of sublinear-
time cellular automata. As mentioned in Chapter 2, the topic has been seemingly neglected
by the cellular automata community at large and, as far as we are aware of, the body
of theory on the subject predating these more recent results resumes itself to [60, 66,
105]. A probabilistic model similar to the probabilistic cellular automata we consider
was previously proposed by Arrighi, Schabanel, and Theyssier [7], but the results from
Chapter 4 are the first to address the sublinear-time case.

Finally, note that as in Chapter 4 we use the term “probabilistic” (due to their similarity to
probabilistic Turing machines) to refer to these automata and treat them separately from
the more general stochastic cellular automata in which the local transition function may
follow an arbitrary distribution (in the same spirit as the aforementioned work by Rabin
[97]). Unfortunately, there is no consensus on the distinction between the two terms in
the literature, and the two have been used interchangeably. For a survey on stochastic
cellular automata, see [73].

5.1.5. Organization

The rest of the chapter is organized as follows: In Section 5.2, we recall the basic definitions
and results that we need. The subsequent sections each cover one set of results: Section 5.3
addresses the structural result on SWBPs. In Section 5.4 and Section 5.5 we construct

113

5. Pseudorandom Generators for Sliding-Window Algorithms

the PRGs for general and 𝛿-critical SWBPs, respectively. Finally, Section 5.6 covers the
applications to probabilistic cellular automata.

5.2. Preliminaries

It is assumed the reader is familiar with basic notions of computational complexity theory
and pseudorandomness (see, e.g., the standard references [5, 50, 113]).

All logarithms are to base 2. The set of integers is denoted by Z, that of non-negative
integers by N0, and that of positive integers by N+. For a set 𝑆 and 𝑛,𝑚 ∈ N+, 𝑆𝑛×𝑚 is the
set of 𝑛-row,𝑚-column matrices over 𝑆 . For 𝑛 ∈ N+,

[𝑛] = {𝑖 ∈ N0 | 𝑖 < 𝑛}

is the set of the first 𝑛 non-negative integers.

Symbols in words are indexed starting with one. The 𝑖-th symbol of a word𝑤 is denoted
by 𝑤𝑖 . For an alphabet Σ and 𝑛 ∈ N0, Σ≤𝑛 contains the words 𝑤 ∈ Σ∗ for which |𝑤 | ≤ 𝑛.
Without restriction, the empty word is not an element of any language that we consider.

We write 𝑈𝑛 (resp., 𝑈𝑛×𝑚) for a random variable distributed uniformly over {0, 1}𝑛 (resp.,
{0, 1}𝑛×𝑚). We will need the following variant of the Chernoff bound (see, e.g., [113]):

Theorem 5.13 (Chernoff bound). Let𝑋1, . . . , 𝑋𝑛 be independently and identically distributed
Bernoulli variables and 𝜇 = E[𝑋𝑖]. Then there is a constant 𝑐 > 0 such that the following
holds for every 𝜀 > 0:

Pr
[︃|︁|︁|︁|︁∑︁𝑛

𝑖=1𝑋𝑖
𝑛

− 𝜇
|︁|︁|︁|︁ > 𝜀]︃ < 2−𝑐𝑛𝜀2 .

Hash functions. For 𝑁,𝑀 ∈ N+, a family 𝐻 = {ℎ : [𝑁] → [𝑀]} of functions is said to be
pairwise independent if, for 𝑥1, 𝑥2 ∈ [𝑁] with 𝑥1 ≠ 𝑥2 and ℎ chosen uniformly from 𝐻 , the
random variables ℎ(𝑥1) and ℎ(𝑥2) are independent and uniformly distributed. Equivalently,
𝐻 is pairwise independent if for arbitrary 𝑦1, 𝑦2 ∈ [𝑀] we have

Pr [ℎ(𝑥1) = 𝑦1 ∧ ℎ(𝑥2) = 𝑦2] =
1
𝑀2 .

It is a well-known fact (see, e.g., [113]) that there is a family 𝐻 of pairwise independent
functions such that one can uniformly sample a function ℎ from 𝐻 with 𝑂 (log𝑁 + log𝑀)
bits.

114

5.3. De Bruijn Graphs Fully Characterize SWBPs

Extractors. Let 𝑛 ∈ N+, and let 𝑋 and 𝑌 be random variables taking values in {0, 1}𝑛.
Then the statistical distance between 𝑋 and 𝑌 is

Δ(𝑋,𝑌) = 1
2
∑︂
𝑤

|Pr[𝑋 = 𝑤] − Pr[𝑌 = 𝑤] |.

The min-entropy H∞(𝑋) of 𝑋 is defined by

H∞(𝑋) = min
𝑤∈Supp(𝑋)

log 1
Pr[𝑋 = 𝑤] .

For 𝑘 ≤ 𝑛, if H∞(𝑋) ≥ 𝑘 , then 𝑋 is said to be a 𝑘-source. For 𝑑,𝑚 ∈ N+ and 𝜀 > 0, a
(𝑘, 𝜀)-extractor is a function Ext : {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 such that, for every 𝑘-source
𝑋 , we have that

Δ(Ext(𝑋,𝑈𝑑),𝑈𝑚) ≤ 𝜀.
In this context, the second argument of Ext is its seed and, correspondingly, 𝑑 is its seed
length. The following is due to the work of Goldreich andWigderson [51] (see also [113]):

Theorem 5.14 ([51]). For every 𝑛, 𝑘 ∈ N+ and 𝜀 > 0, there is a (𝑘, 𝜀) extractor Ext : {0, 1}𝑛 ×
{0, 1}𝑑 → {0, 1}𝑛 with seed length 𝑑 = 𝑂 (𝑛 − 𝑘 + log(1/𝜀)) that is computable in 𝑂 (𝑛 + 𝑑)
space.

5.3. De Bruijn Graphs Fully Characterize SWBPs

In this section, we prove:

Theorem 5.4. A unanimity program 𝑆 is a SWBP of window size 𝑡 if and only if there are
functions 𝛼0, . . . , 𝛼𝑛 : {0, 1}𝑘𝑖 → 𝑄 with

𝑘𝑖 =

{︄
𝑖, 𝑖 < 𝑡 ;
𝑡, 𝑖 ≥ 𝑡

and such that the following are true for every 𝑥,𝑦 ∈ {0, 1} and𝑤 ∈ {0, 1}𝑘𝑖−1:

1. For every 𝑖 < 𝑡 , 𝑆𝑖 (𝛼𝑖 (𝑤), 𝑦) = 𝛼𝑖+1(𝑤𝑦).

2. For every 𝑡 ≤ 𝑖 < 𝑛, 𝑆𝑖 (𝛼𝑖 (𝑥𝑤), 𝑦) = 𝛼𝑖+1(𝑤𝑦).

Proof. We prove first the forward implication. Let 𝑆 be an SWBP of window size 𝑡 . The
𝛼𝑖 are defined recursively, the basis case being 𝛼0(𝜆), which is set to be initial state of 𝑆 .
Having defined 𝛼𝑖 for 𝑖 < 𝑛, we set 𝛼𝑖+1 so that

𝛼𝑖+1(𝑤𝑦) =
{︄
𝑆𝑖 (𝛼𝑖 (𝑤), 𝑦), 𝑖 < 𝑡 ;
𝑆𝑖 (𝛼𝑖 (𝑥𝑤), 𝑦), 𝑖 ≥ 𝑡

115

5. Pseudorandom Generators for Sliding-Window Algorithms

for 𝑥,𝑦 ∈ {0, 1} and𝑤 ∈ {0, 1}𝑘𝑖−1 (thus automatically satisfying the requirements in the
statement of the theorem).

It remains to show that the 𝛼𝑖 are well-defined, which we shall prove by induction. The
induction basis 𝑖 = 0 is trivial, and the induction step for 𝑖 < 𝑡 follows easily from
applying the induction hypothesis and 𝑆𝑖 being a function. Hence, suppose 𝑖 ≥ 𝑡 . Letting
𝑤 ∈ {0, 1}𝑡−1 and 𝑦 ∈ {0, 1}, we shall show 𝑆𝑖 (𝛼𝑖 (0𝑤), 𝑦) = 𝑆𝑖 (𝛼𝑖 (1𝑤), 𝑦). Using the
induction hypothesis and the properties of the 𝛼𝑖 , there are states 𝑞0 and 𝑞1 in the (𝑖−𝑡 +1)-
th layer of 𝑆 so that 𝑆𝑖−𝑡+1(𝑞𝑥 ,𝑤) = 𝛼𝑖 (𝑥𝑤) for 𝑥 ∈ {0, 1}. Thus, by the sliding-window
property of 𝑆 (and, again, by the properties of the 𝛼𝑖),

𝑆𝑖 (𝛼𝑖 (0𝑤), 𝑦) = 𝑆𝑖−𝑡+1(𝑞0,𝑤𝑦) = 𝑆𝑖−𝑡+1(𝑞1,𝑤𝑦) = 𝑆𝑖 (𝛼𝑖 (1𝑤), 𝑦) .

For the converse implication, let 𝛼𝑖 as in the statement be given. Then we argue that, for
any 𝑖 and 𝑧 ∈ {0, 1}𝑡 as well as any states 𝑞 and 𝑞′ that are reachable in the 𝑖-th layer of 𝑆 ,
𝑆𝑖 (𝑞, 𝑧) = 𝑆𝑖 (𝑞′, 𝑧) holds. This is simple to see by induction provided that 𝑞 and 𝑞′ are in the
image of 𝛼𝑖 . To see that this is indeed the case, note that, if 𝑞 is reachable in the 𝑖-th layer
by an input 𝑤𝑧 ∈ {0, 1}𝑖 with |𝑧 | = 𝑡 , then 𝑞 = 𝛼𝑖 (𝑧) (again, due to the sliding-window
property) or, in case |𝑧 | = 0 and 𝑖 < 𝑡 , 𝑞 = 𝛼𝑖 (𝑤). In either case, the claim follows.

5.4. Pseudorandom Generators for General SWBPs

In this section, we recall and prove:

Theorem 5.5. Let 𝑛,𝑤, 𝑡 ∈ N+ with 𝑛 ≤ 𝑤 and 𝜀 > 0 be given, and let 𝐺base : {0, 1}𝑑base →
{0, 1}𝑡 be a PRG that 𝜀base-fools width-𝑤 , length-𝑡 unanimity programs. Then there is an
explicit PRG 𝐺 : {0, 1}𝑑 → {0, 1}𝑛 with seed length

𝑑 = 2𝑑base +𝑂 (log(𝑛/𝑡) log(1/𝜀base))

that 𝜀𝐺 -fools any width-𝑤 , length-𝑛 SWBP of window size 𝑡 , where 𝜀𝐺 = 𝜀base · (𝑛/2𝑡)𝑂 (1) .

As discussed in Section 5.1.3, our construction will rely on stretching the output of𝐺base
so as to simultaneously fool as many unanimity programs as possible. Then we use
interleaving to convert the resulting construction into a PRG for SWBPs. We address the
two steps in this order.

Definition 5.15. Let𝑚, 𝑡 ∈ N+ and 𝜀 > 0, and let F be a class of functions 𝑓 : {0, 1}𝑡 →
{0, 1}. We say a distribution 𝑋 = (𝑋1, . . . , 𝑋𝑚) over ({0, 1}𝑡)𝑚 𝑚-simultaneously 𝜀-fools F
if the following holds for every 𝑓1, . . . , 𝑓𝑚 ∈ F :|︁|︁|︁|︁|︁Pr[∀𝑖 ∈ [𝑚] : 𝑓𝑖 (𝑋𝑖) = 1] −

𝑚∏︂
𝑖=1

Pr[𝑓𝑖 (𝑈𝑡) = 1]
|︁|︁|︁|︁|︁ ≤ 𝜀.

Similarly, we say a function 𝐺 : {0, 1}𝑑 → ({0, 1}𝑡)𝑚 𝑚-simultaneously 𝜀-fools F if 𝐺 (𝑈𝑑)
fools F .

116

5.4. Pseudorandom Generators for General SWBPs

Lemma 5.16. Let 𝐺 : {0, 1}𝑑 → ({0, 1}𝑡)𝑚 be a function that 𝑚-simultaneously 𝜀-fools
width-𝑤 , length-𝑡 unanimity programs. Then there is a function 𝐺′ : {0, 1}𝑑 ′ → ({0, 1}𝑡)2𝑚
with 𝑑′ = 𝑑 + 𝑂 (log(1/𝜀)) that 2𝑚-simultaneously 3𝜀-fools width-𝑤 , length-𝑡 unanimity
programs. In addition, if 𝐺 is explicit, then so is 𝐺′.

Proof. Let Ext : {0, 1}𝑑 × {0, 1}𝑑Ext → {0, 1}𝑑 be the (𝑘, 𝜀) extractor of Theorem 5.14 where
𝑘 = 𝑑 − log(1/𝜀) and 𝑑Ext = 𝑂 (log(1/𝜀)). We set

𝐺′(𝑠𝐺 , 𝑠Ext) = 𝐺 (𝑠𝐺)𝐺 (Ext(𝑠𝐺 , 𝑠Ext))

and denote the 𝑖-th component in the output of 𝐺′ by 𝐺′(·)𝑖 . Now let 𝑃1, . . . , 𝑃2𝑚 be
width-𝑤 , length-𝑡 unanimity programs. For 𝑗 ∈ {1, 2}, let

𝐴 𝑗 = {𝑥1 · · · 𝑥𝑚 ∈ {0, 1}𝑚𝑡 | 𝑥1, . . . , 𝑥𝑚 ∈ {0, 1}𝑡 and ∀𝑖 ∈ [𝑚] : 𝑃(𝑗−1)𝑚+𝑖 (𝑥𝑖) = 1}

and 𝜇 𝑗 = 𝜇 (𝐴 𝑗). Observe that 𝜇1𝜇2 =
∏︁2𝑚
𝑖=1 Pr[𝑃𝑖 (𝑈𝑡) = 1]. If 𝜇1 < 2𝜀, then we immediately

have a distance of at most 3𝜀 between 𝜇1𝜇2 < 2𝜀 and

Pr[∀𝑖 ∈ [2𝑚] : 𝑃𝑖 (𝐺′(𝑈𝑑)𝑖) = 1] ≤ Pr[𝐺 (𝑈𝑑) ∈ 𝐴1] ≤ 𝜇1 + 𝜀 < 3𝜀.

Hence, suppose that 𝜇1 ≥ 2𝜀. Observe that, by assumption on 𝐺 , this means

Pr[𝑈𝑑 = 𝑥 | 𝐺 (𝑈𝑑) ∈ 𝐴1] ≤
Pr[𝑈𝑑 = 𝑥]

Pr[𝐺 (𝑈𝑑) ∈ 𝐴1]
≤ 2−𝑑
𝜇1 − 𝜀

≤ 2−𝑑
𝜀

for 𝑥 ∈ {0, 1}𝑑 . In particular, this implies that, if 𝑍 is a random variable that is distributed
according to Pr[𝑍 = 𝑥] = Pr[𝑈𝑑 = 𝑥 | 𝐺 (𝑈𝑑) ∈ 𝐴1], then H∞(𝑍) ≥ 𝑘 . Thus, by the
extraction property,|︁|︁Pr[∀𝑖 ∈ [2𝑚] : 𝑃𝑖 (𝐺′𝑖 (𝑈𝑑)) = 1] − 𝜇1𝜇2

|︁|︁
=

|︁|︁Pr[𝐺 (𝑈𝑑) ∈ 𝐴1 ∧𝐺 (Ext(𝑈𝑑 ,𝑈𝑑Ext)) ∈ 𝐴2] − 𝜇1𝜇2
|︁|︁

≤
|︁|︁Pr[𝐺 (Ext(𝑈𝑑 ,𝑈𝑑Ext)) ∈ 𝐴2 | 𝐺 (𝑈𝑑) ∈ 𝐴1] − 𝜇2

|︁|︁ + 𝜀
≤ |Pr[𝐺 (𝑈𝑑) ∈ 𝐴2] − 𝜇2 | + 2𝜀
≤ 3𝜀.

Starting from a PRG that fools (single) width-𝑤 , length-𝑡 unanimity programs and repeating
𝑟 times the construction of Lemma 5.16, we obtain:

Lemma 5.17. Let 𝐺 : {0, 1}𝑑 → {0, 1}𝑡 be a function that 𝜀-fools width-𝑤 , length-𝑡 una-
nimity programs. For every 𝑟 > 0, there is a function 𝐺′ : {0, 1}𝑑 ′ → ({0, 1}𝑡)2𝑟 with
𝑑′ = 𝑑 +𝑂 (𝑟 log(1/𝜀)) that 2𝑟 -simultaneously 3𝑟𝜀-fools width-𝑤 , length-𝑡 unanimity pro-
grams. In addition, if 𝐺 is explicit, then so is 𝐺′.

In order to convert the PRG 𝐺′ of Lemma 5.17 into a generator for SWBPs, we will show
that interleaving of two independent copies of 𝐺′ is sufficient. To this end, for𝑚, 𝑡 ∈ N+
and tuples 𝑥 = (𝑥1, . . . , 𝑥𝑚) and 𝑦 = (𝑦1, . . . , 𝑦𝑚) in ({0, 1}𝑡)𝑚 , let

𝑥 ∥ 𝑦 = 𝑥1𝑦1𝑥2𝑦2 · · · 𝑥𝑚𝑦𝑚 ∈ {0, 1}2𝑡𝑚 .

117

5. Pseudorandom Generators for Sliding-Window Algorithms

Lemma 5.18. Let𝑚, 𝑡 ∈ N+ and 𝜀 > 0 be arbitrary. Then, for any (independent) random
variables 𝑋 = (𝑋1, . . . , 𝑋𝑚) and 𝑌 = (𝑌1, . . . , 𝑌𝑚) taking values in ({0, 1}𝑡)𝑚 and such that
𝑋 (resp., 𝑌)𝑚-simultaneously 𝜀-fools width-𝑤 , length-𝑡 unanimity programs, we have that
𝑋 ∥ 𝑌 (i.e., the random variable which assumes values 𝑥 ∥ 𝑦 where 𝑥 and 𝑦 are drawn from 𝑋

and 𝑌 , respectively) 2𝜀-fools width-𝑤 , length-2𝑡𝑚 SWBPs of window size 𝑡 .

Proof. Let 𝑆 be a width-𝑤 , length-2𝑡𝑚 SWBP of window size 𝑡 . We prove that Pr[𝑆 (𝑋 ∥𝑌) =
1] is 𝜀-close to Pr[𝑆 (𝑋 ∥𝑈) = 1], where𝑈 is a random variable that is uniformly distributed
on ({0, 1}𝑡)𝑚 . By an analogous argument, we also have that Pr[𝑆 (𝑋 ∥ 𝑈) = 1] is 𝜀-close to
Pr[𝑆 (𝑈 ∥𝑈) = 1] (where the two occurrences of𝑈 denote independent copies of the same
random variable). This then gives the statement of the lemma.

Fix some 𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ Supp(𝑋) and let 𝑆𝑖𝑥 be the width-𝑤 , length-𝑡 unanimity
program defined as follows:

• 𝑆𝑖𝑥 has the same states as 𝑆 .

• The state transition function in the 𝑗-th layer of 𝑆𝑖𝑥 is the same as that in the (𝑘𝑖+𝑡+ 𝑗)-
th layer of 𝑆 , where 𝑘𝑖 = 2(𝑖 − 1)𝑡 .

• The initial state is 𝑆𝑘𝑖 (𝑥𝑖). (Note this is well-defined due to 𝑆 having window size 𝑡
and |𝑥𝑖 | = 𝑡 .)

• For 𝑗 < 𝑡 , the state 𝑠 is accepting in the 𝑗-th layer of 𝑆𝑖𝑥 if and only if it is accepting in
the (𝑘𝑖 + 𝑡 + 𝑗)-th layer of 𝑆 . A state 𝑠 in the 𝑡-th layer of 𝑆𝑖𝑥 is accepting if and only
if it is also accepting in the (𝑘𝑖 + 2𝑡)-th layer of 𝑆 and, in addition, 𝑆𝑘𝑖+2𝑡 (𝑥𝑖+1) = 1.
(If 𝑖 =𝑚, then this last condition holds vacuously.) Furthermore, the initial state of
𝑆1 is only accepting if 𝑆0(𝑥1) = 1.

Note that, by construction, the states that 𝑆 assumes when reading the 𝑦 parts of any input
𝑥 ∥ 𝑦 are the same as the corresponding states of 𝑆𝑖𝑥 . Hence, we observe that 𝑆 (𝑥 ∥ 𝑦) = 1
if and only if 𝑆𝑖𝑥 (𝑦𝑖) = 1 for every 𝑖:

• If 𝑆 (𝑥 ∥ 𝑦) = 0, then the input 𝑥 ∥ 𝑦 passes through a rejecting state in the 𝑟 -th layer
of 𝑆 for some 𝑟 ∈ [𝑛].

– If 𝑟 corresponds to the 𝑦 part of the input, that is, 𝑟 = 𝑘𝑖 + 𝑡 + 𝑗 for some 𝑖 and
𝑗 ∈ [𝑡], then (by construction) 𝑦𝑖 passes through the same state in the 𝑗-th layer
of 𝑆𝑖𝑥 .

– Conversely, if 𝑟 corresponds to the 𝑥 part of the input, then 𝑟 = 𝑘𝑖 + 𝑗 for some
𝑖 and 𝑗 ∈ [𝑡]. If 𝑖 > 1, then 𝑆𝑖−1𝑥 (𝑦𝑖−1) = 0 since the state in the last layer of
𝑆𝑖−1𝑥 rejects; otherwise, 𝑖 = 1 and then 𝑆1𝑥 (𝑦1) = 0 since the initial state of 𝑆1𝑥 is
rejecting.

In either case, we find some 𝑖 so that 𝑆𝑖𝑥 (𝑦𝑖) = 0.

118

5.5. Pseudorandom Generators for 𝛿-critical SWBPs

• If 𝑆𝑖𝑥 (𝑦𝑖) = 0 for some 𝑖 , then there is 𝑗 ∈ [𝑡] such that 𝑦𝑖 passes through a rejecting
state in the 𝑗-th layer of 𝑆𝑖𝑥 . If the corresponding state in the (𝑘𝑖 + 𝑗)-th layer of
𝑆 is also rejecting, then 𝑆 (𝑥 ∥ 𝑦) = 0, so assume otherwise. Then either 𝑗 = 𝑡 and
then 𝑆𝑘+𝑖+2𝑡 (𝑥𝑖+1) = 0 or 𝑗 = 1 and 𝑖 = 1, in which case 𝑆0(𝑥1) = 0. In either case,
𝑆 (𝑥 ∥ 𝑦) = 0 follows.

By the above and using that 𝑋 and 𝑌 are independent, it follows that

|Pr[𝑆 (𝑋 ∥ 𝑌) = 1] − Pr[𝑆 (𝑋 ∥ 𝑈) = 1] |

=

|︁|︁|︁|︁|︁∑︂
𝑥

Pr[𝑋 = 𝑥] (Pr[𝑆 (𝑥 ∥ 𝑌) = 1] − Pr[𝑆 (𝑥 ∥ 𝑈) = 1])
|︁|︁|︁|︁|︁

≤
∑︂
𝑥

Pr[𝑋 = 𝑥]
|︁|︁|︁|︁|︁Pr[∀𝑖 ∈ [𝑚] : 𝑆𝑖𝑥 (𝑌𝑖) = 1] −

𝑚∏︂
𝑖=1

Pr[𝑆𝑖𝑥 (𝑈𝑡) = 1]
|︁|︁|︁|︁|︁

≤ 𝜀.

We now round up the ideas above to prove Theorem 5.5.

Proof of Theorem 5.5. We instantiate two copies of the generator 𝐺base with independent
seeds, stretch each to at least 𝑛/2 bits using Lemma 5.17, and then combine them by
interleaving blocks of 𝑡 bits. Details follow.

For simplicity, we assume 𝑛 is a multiple of 2𝑡 . Plugging in 𝐺base with 𝑟 = log(𝑛/2𝑡) in
Lemma 5.17, we obtain a generator 𝐺′ : {0, 1}𝑑 ′ → ({0, 1}𝑡)𝑛/2𝑡 with

𝑑′ = 𝑑base +𝑂 (log(𝑛/𝑡) log(1/𝜀base))
that (𝑛/2𝑡)-simultaneously 𝜀′-fools width-𝑤 , length-𝑡 unanimity programs, where 𝜀′ =
𝜀base · (𝑛/2𝑡)log 3.

For the actual construction of the generator 𝐺 : {0, 1}𝑑 → {0, 1}𝑛 from the claim, we shall
use two copies of𝐺′ (with independent seeds), which for convenience we denote𝐺1 and𝐺2.
In turn, for 𝑖 ∈ {1, 2}, the components in the output of𝐺𝑖 (·) are denoted𝐺𝑖 (·)1, . . . ,𝐺𝑖 (·)𝑛/2.
Then 𝐺 simply interleaves the outputs of 𝐺1 and 𝐺2; that is,

𝐺 (𝑠1, 𝑠2) = 𝐺1(𝑠1)1𝐺2(𝑠2)1𝐺1(𝑠1)2𝐺2(𝑠2)2 · · ·𝐺1(𝑠1)𝑛/2𝑡𝐺2(𝑠2)𝑛/2𝑡
for 𝑠1, 𝑠2 ∈ {0, 1}𝑑

′ . Hence, the seed length of 𝐺 is 2𝑑′, and naturally 𝐺 is explicit. The
correctness of 𝐺 follows directly from Lemmas 5.17 and 5.18.

5.5. Pseudorandom Generators for 𝛿-critical SWBPs

In this section, we shall prove Theorem 5.7. First we present a couple observations that are
needed for the proof. As in Section 5.1.3, once 𝛿 > 0 is fixed, we refer to a 𝛿-critical layer of
an SWBP simply as critical and the others as non-critical, accordingly. If we have a lower
bound on the acceptance probability of a 𝛿-critical SWBP 𝑆 , then a simple observation
allows us to upper-bound the number of critical layers in 𝑆 :

119

5. Pseudorandom Generators for Sliding-Window Algorithms

Lemma 5.12. Let 𝑡 ∈ N+ and 𝜀, 𝛿 > 0, and let 𝑆 be a 𝛿-critical SWBP of window size 𝑡 that
accepts at least an 𝜀 fraction of its inputs, that is, Pr[𝑆 (𝑈𝑛) = 1] ≥ 𝜀. Then there are at most
𝑂 ((𝑡/𝛿) log(1/𝜀)) critical layers in 𝑆 .

Proof. If 𝑆 has 𝐾 = (𝑡/𝛿) ln(1/𝜀) critical layers (where ln denotes the natural logarithm),
then by the pigeonhole principle it has at least 𝐾/𝑡 layers that are at least 𝑡 layers apart
from one another. Hence, by the sliding-window property, for an uniformly chosen input
𝑥 , the events of 𝑥 passing through an accept or reject state in each of these layers are all
independent. It follows that the probability that 𝑆 accepts a uniformly chosen input is
upper-bounded by (1 − 𝛿)𝐾/𝑡 < 𝜀.

We shall also use the following simple property of hash functions.

Lemma 5.19. LetH = {ℎ : [𝑁] → [𝑀]} be a family of pairwise independent hash functions,
and let 𝑆 ⊆ [𝑁] be some set. Then, for all but at most an |𝑆 |2/𝑀 fraction of ℎ ∈ 𝐻 , we have:

∀𝑥,𝑦 ∈ 𝑆 : 𝑥 ≠ 𝑦 =⇒ ℎ(𝑥) ≠ ℎ(𝑦)

(i.e., the restriction of ℎ to 𝑆 is injective).

Proof. Since 𝐻 is pairwise independent, for any fixed 𝑥,𝑦 ∈ 𝑆 , 𝑥 ≠ 𝑦, and ℎ drawn
uniformly at random from 𝐻 , we have Pr[ℎ(𝑥) = ℎ(𝑦)] = 1/𝑀 . Hence, by a union bound,

Pr[∃𝑥,𝑦 ∈ 𝑆 : 𝑥 ≠ 𝑦 ∧ ℎ(𝑥) = ℎ(𝑦)] < |𝑆 |
2

𝑀
.

We are now in position to prove our result.

Theorem 5.7. Let 𝑛,𝑤, 𝑡 ∈ N+ with 𝑛 ≤ 𝑤 and 𝜀 > 0 be given, and let 𝐺base : {0, 1}𝑑base →
{0, 1}𝑡 be a PRG that 𝜀base-fools width-𝑤 , length-𝑡 unanimity programs where 𝜀base ≤ 𝜀1+log 3.
Then there is an explicit PRG 𝐺 : {0, 1}𝑑 → {0, 1}𝑛 with seed length

𝑑 = 2𝑑base +𝑂 (log(𝑡/𝛿)) · �̃� (log(1/𝜀)) +𝑂 (log(𝑛/𝑡))

that 𝜀𝐺 -fools 𝛿-critical width-𝑤 , length-𝑛 SWBPs of window size 𝑡 , where 𝜀𝐺 = �̃� (𝜀) · (𝑡/𝛿)𝑂 (1) .

Proof. Let 𝐾 = 𝑂 ((𝑡/𝛿) log(1/𝜀)) be the upper bound from Lemma 5.12. We use a similar
strategy as in the proof of Theorem 5.5, using two independent copies of the same generator
𝐺′ together with interleaving. However, since now the number of critical layers is small
compared to𝑛, wewill only need𝐺′ to𝐾-simultaneously (instead of (𝑛/2𝑡)-simultaneously)
fool length-𝑡 unanimity programs. We then “stretch” the output of 𝐺′ to 𝑛/2𝑡 components
by reusing its components in the order dictated by a pairwise independent hash function.
Details follow.

120

5.5. Pseudorandom Generators for 𝛿-critical SWBPs

Construction. Let𝑀 = 𝐾2/𝜀. We start by plugging in𝐺base in Lemma 5.17 with 𝑟 = log𝑀 ,
thus yielding a generator that 𝑀-simultaneously 𝜀′-fools width-𝑤 , length-𝑡 unanimity
programs, where

𝜀′ = 𝜀base ·𝑀 log 3 = �̃� (𝜀) · (𝑡/𝛿)𝑂 (1) .
Again, we instantiate two copies of this generator, denoted 𝐺1 and 𝐺2, which will use
independent seeds 𝑠1 and 𝑠2, respectively. For 𝑖 ∈ {1, 2}, the components in the output
of 𝐺𝑖 (·) are denoted 𝐺𝑖 (·)1, . . . ,𝐺𝑖 (·)𝐾/𝑡 . We independently draw two hash functions
ℎ1, ℎ2 : [𝑛/2𝑡] → [𝑀] and set

𝐺ℎ𝑖 (𝑠𝑖) = 𝐺𝑖 (𝑠𝑖)ℎ(1)𝐺𝑖 (𝑠𝑖)ℎ(2) · · ·𝐺𝑖 (𝑠𝑖)ℎ(𝑛/2𝑡)

for 𝑖 ∈ {1, 2}. Finally, we set

𝐺 (𝑠1, 𝑠2;ℎ1, ℎ2) = 𝐺ℎ1 (𝑠1) ∥ 𝐺ℎ2 (𝑠2).

Correctness. Let 𝑆 be any length-𝑛, 𝛿-critical SWBP of window size 𝑡 , and let 𝐶 ⊆ [𝑛] be
the set of layers that are critical in 𝑆 . For simplicity, we assume 𝑛 is a multiple of 𝑡 . Since
we are dividing the input of 𝑆 into blocks of size 𝑡 , it shall be more natural to think in
terms of the set

𝐵 =

{︃⌊︃
𝑖

𝑡

⌋︃
| 𝑖 ∈ 𝐶

}︃
of critical blocks of 𝑆 . In fact, because 𝐺 results from the interleaving of 𝐺ℎ1 and 𝐺ℎ2 , we
consider

𝐵1 =

{︃
𝑠 + 1
2 | 𝑠 ∈ 𝑆 odd

}︃
and

𝐵2 =
{︂ 𝑠
2 | 𝑠 ∈ 𝑆 even

}︂
separately. By Lemma 5.12, we have |𝐵𝑖 | ≤ 𝐾 for 𝑖 ∈ {1, 2}. Moreover, by Lemma 5.19, the
probability that (the restriction of) ℎ1 is not injective on 𝐵1 or ℎ2 is not injective on 𝐵2 (or
both) is at most 𝑂 (𝜀′).

Hence, suppose that ℎ𝑖 is injective on 𝐵𝑖 for 𝑖 ∈ {1, 2}. We now argue as in the proof of
Lemma 5.18. Letting 𝑋 = 𝐺ℎ1 (𝑈𝑑base) and 𝑌 = 𝐺ℎ2 (𝑈𝑑base) (where the two occurrences of
𝑈𝑑base in𝑋 and𝑌 are independent), we will show that, for every SWBP 𝑆 as in the theorem’s
statement, Pr[𝑆 (𝑋 ∥ 𝑌) = 1] is 𝑂 (𝜀′)-close to Pr[𝑆 (𝑋 ∥ 𝑈) = 1], where 𝑈 is a random
variable that is uniformly distributed on {0, 1}𝑛/2. By a similar argument, Pr[𝑆 (𝑋 ∥𝑈) = 1]
is𝑂 (𝜀′)-close to Pr[𝑆 (𝑈 ∥𝑈) = 1] (where the two occurrences of𝑈 are independent copies
of the same random variable). From this it follows that Pr[𝑆 (𝐺 (𝑈𝑑)) = 1] is 𝑂 (𝜀′)-close to
Pr[𝑆 (𝑈𝑛) = 1], yielding the theorem.

To show the above, fix some 𝑥 = 𝑥1 · · · 𝑥𝑛/2 ∈ Supp(𝑋) and let 𝑆1𝑥 , . . . , 𝑆
𝑛/2𝑡
𝑥 be as in

the proof of Lemma 5.18. The point is that, for any 𝑦 ∈ {0, 1}𝑛/2, 𝑆 (𝑥 ∥ 𝑦) = 1 if and
only if 𝑆𝑖𝑥 (𝑦𝑖) = 1 for every 𝑖 ∈ 𝐵2 (instead of just every 𝑖 ∈ [𝑛/2𝑡]). Using that the
restriction of ℎ2 to 𝐵2 is injective, we find pairwise distinct 𝑧1, . . . , 𝑧𝐾/𝑡 so that ℎ2(𝑧𝑖) = 𝑖

121

5. Pseudorandom Generators for Sliding-Window Algorithms

and 𝐵2 ⊆ {𝑧1, . . . , 𝑧𝐾/𝑡 }.1 Hence, we can “glue” the 𝑆𝑧𝑖𝑥 together and obtain a SWBP 𝑆′ such
that 𝑆′(𝑦𝑧1 · · ·𝑦𝑧𝐾/𝑡) = 1 if and only if 𝑆𝑖𝑥 (𝑦𝑧𝑖) = 1 for every 𝑖 ∈ [𝐾/𝑡]. To construct 𝑆′,
proceed as follows:

1. Concatenate the layers of 𝑆𝑧1𝑥 , . . . , 𝑆
𝑧𝐾/𝑡
𝑥 (in this order). Have a state be accepting in 𝑆′

if and only if it is also accepting in the corresponding layer of 𝑆𝑧𝑖𝑥 .

2. For the states belonging to both 𝑆𝑧𝑖𝑥 and 𝑆𝑧𝑖+1𝑥 , have the state be accepting if and only
if it is accepting in both 𝑆𝑧𝑖𝑥 and 𝑆𝑧𝑖+1𝑥 .

Since 𝑆 (𝑥 ∥ 𝐺ℎ2 (𝑠2)) = 1 if and only if 𝑆′(𝐺2(𝑠2)) = 1, the claim then follows from the
pseudorandomness of 𝐺2.

5.6. Application to Sublinear-Time Probabilistic Cellular
Automata

For the results in this section, we assume the reader is familiar with the theory of cellular
automata. (See, e.g., [30] for a standard reference.)

5.6.1. Probabilistic Cellular Automata

As mentioned in the introduction, the PACA model was defined in Chapter 4. We repeat
here the definitions for the reader’s convenience.

We consider only bounded one-dimensional cellular automata.

Definition 5.20 (Cellular automaton). A cellular automaton is a triple 𝐶 = (𝑄, $, 𝛿) where
𝑄 is the finite set of states, $ ∉ 𝑄 is the boundary symbol, and 𝛿 : 𝑄$ × 𝑄 × 𝑄$ → 𝑄 is
the local transition function, where 𝑄$ = 𝑄 ∪ {$}. The elements in the domain of 𝛿 are
the possible local configurations of the cells of 𝐶 . For a fixed width 𝑛 ∈ N+, the global
configurations of 𝐶 are the elements of 𝑄𝑛. The cells 1 and 𝑛 are the border cells of 𝐶 .
The global transition function Δ : 𝑄𝑛 → 𝑄𝑛 is obtained by simultaneous application of 𝛿
everywhere; that is, if 𝑠 ∈ 𝑄𝑛 is the current global configuration of 𝐶 , then

Δ(𝑠) = 𝛿 ($, 𝑠1, 𝑠2) 𝛿 (𝑠1, 𝑠2, 𝑠3) · · · 𝛿 (𝑠𝑛−1, 𝑠𝑛, $).

For 𝑡 ∈ N0, Δ𝑡 denotes the 𝑡-th iterate of Δ. For an initial configuration 𝑠 ∈ 𝑄𝑛 , the
sequence 𝑠 = Δ0(𝑠),Δ(𝑠),Δ2(𝑠), . . . is the trace of 𝐶 (for 𝑠). Writing the trace of 𝐶 line
for line yields its space-time diagram. Finally, for a cell 𝑖 ∈ [𝑛] and 𝑟 ∈ N0, the cells in
[𝑖 − 𝑟, 𝑖 + 𝑟] ∩ [𝑛] form the 𝑟 -neighborhood of 𝑖 .

1 Here we implicitly assume that ℎ2 is surjective since it is the more interesting case. Nevertheless, even if
ℎ2 is not surjective, the same construction for 𝑆 ′ applies by simply setting the respective layers to the
trivial unanimity program that accepts all inputs.

122

5.6. Application to Sublinear-Time Probabilistic Cellular Automata

Definition 5.21 (DACA). A DACA is a cellular automaton𝐶 with an input alphabet Σ ⊆ 𝑄
as well as a subset 𝐴 ⊆ 𝑄 of accepting states. We say 𝐶 accepts an input 𝑥 ∈ Σ+ if there is
𝑡 ∈ N0 such that Δ𝑡 (𝑥) ∈ 𝐴𝑛 , and we denote the set of all such 𝑥 by 𝐿(𝐶). In addition, 𝐶 is
said to have time complexity (bounded by) 𝑇 : N+ → N0 if, for every 𝑥 ∈ 𝐿(𝐶) ∩ Σ𝑛 , there
is 𝑡 < 𝑇 (|𝑥 |) such that Δ𝑡 (𝑥) ∈ 𝐴𝑛 .

Definition 5.22 (PACA). Let Σ be an alphabet and 𝑄 a finite set of states with Σ ⊆ 𝑄 . A
probabilistic ACA (PACA) 𝐶 is a cellular automaton with two local transition functions
𝛿0, 𝛿1 : 𝑄3 → 𝑄 . At each step of 𝐶 , each cell tosses a fair coin 𝑐 ∈ {0, 1} and updates its
state according to 𝛿𝑐 ; that is, if the current configuration of 𝐶 is 𝑠 ∈ 𝑄𝑛 and the result of
the cells’ coin tosses is 𝑟 = 𝑟1 · · · 𝑟𝑛 ∈ {0, 1}𝑛 (where 𝑟𝑖 is the coin toss of the 𝑖-th cell), then
the next configuration of 𝐶 is

Δ𝑟 (𝑠) = 𝛿𝑟1 ($, 𝑠1, 𝑠2) 𝛿𝑟2 (𝑠1, 𝑠2, 𝑠3) · · · 𝛿𝑟𝑛 (𝑠𝑛−1, 𝑠𝑛, $).

Seeing this process as a Markov chain 𝑀 over 𝑄𝑛 , we recast the global transition func-
tion Δ = Δ𝑈𝑛 as a family of random variables (Δ(𝑠))𝑠∈𝑄𝑛 parameterized by the current
configuration 𝑠 of 𝐶 , where Δ(𝑠) is sampled by starting in state 𝑠 and performing a single
transition on𝑀 (having drawn the cells’ coin tosses according to𝑈𝑛). Similarly, for 𝑡 ∈ N0,
Δ𝑡 (𝑠) is sampled by starting in 𝑠 and performing 𝑡 transitions on𝑀 .

A computation of 𝐶 for an input 𝑥 ∈ Σ𝑛 is a path in 𝑀 starting at 𝑥 . The computation is
accepting if the path visits 𝐴𝑛 at least once. In addition, in order to be able to quantify
the probability of a PACA accepting an input, we additionally require for every PACA
𝐶 that there is a function 𝑇 : N+ → N0 such that, for any input 𝑥 ∈ Σ𝑛 , every accepting
computation for 𝑥 visits𝐴𝑛 for the first time in strictly less than𝑇 (𝑛) steps; that is, if there
is 𝑡 ∈ N0 with Δ𝑡 (𝑥) ∈ 𝐴𝑛 , then Δ𝑡1 (𝑥) ∈ 𝐴𝑛 for some 𝑡1 < 𝑇 (𝑛). (Hence, every accepting
computation for 𝑥 has an initial segment with endpoint in 𝐴𝑛 and whose length is strictly
less than 𝑇 (𝑛).) If this is the case for any such 𝑇 , then we say 𝐶 has time complexity
(bounded by) 𝑇 .

With this restriction in place, we may now equivalently replace the coin tosses of𝐶 with a
matrix 𝑅 ∈ {0, 1}𝑇 (𝑛)×𝑛 of bits with rows 𝑅0, . . . , 𝑅𝑇 (𝑛)−1 and such that 𝑅 𝑗 (𝑖) corresponds
to the coin toss of the 𝑖-th cell in step 𝑗 . (If𝐶 accepts in step 𝑡 , then the coin tosses in rows
𝑡, . . . ,𝑇 (𝑛) − 1 are ignored.) We refer to 𝑅 as a random input to 𝐶 . Blurring the distinction
between the two perspectives (i.e., online and offline randomness), we write 𝐶 (𝑥, 𝑅) = 1 if
𝐶 accepts 𝑥 when its coin tosses are set according to 𝑅, or 𝐶 (𝑥, 𝑅) = 0 otherwise.

Definition 5.23 (𝑝-error PACA). Let 𝐿 ⊆ Σ∗ and 𝑝 ∈ [0, 1). A one-sided 𝑝-error PACA for
𝐿 is a PACA 𝐶 with time complexity 𝑇 such that, for every 𝑥 ∈ Σ𝑛 , the following holds:

𝑥 ∈ 𝐿 ⇐⇒ Pr[𝐶 (𝑥,𝑈𝑇 (𝑛)×𝑛) = 1] ≥ 1 − 𝑝 and
𝑥 ∉ 𝐿 ⇐⇒ Pr[𝐶 (𝑥,𝑈𝑇 (𝑛)×𝑛) = 1] = 0.

123

5. Pseudorandom Generators for Sliding-Window Algorithms

If 𝑝 = 1/2, then we simply say 𝐶 is a one-sided error PACA. Similarly, for 𝑝 < 1/2, a
two-sided 𝑝-error PACA for 𝐿 is a PACA 𝐶 such that, for every 𝑥 ∈ Σ∗, the following holds:

𝑥 ∈ 𝐿 ⇐⇒ Pr[𝐶 (𝑥,𝑈𝑇 (𝑛)×𝑛) = 1] ≥ 1 − 𝑝 and
𝑥 ∉ 𝐿 ⇐⇒ Pr[𝐶 (𝑥,𝑈𝑇 (𝑛)×𝑛) = 1] ≤ 𝑝.

If 𝑝 = 1/3, then we simply say𝐶 is a two-sided error PACA. In both cases, we write 𝐿(𝐶) = 𝐿
and say 𝐶 accepts 𝐿.

A novelty in this chapter are 𝛿-critical PACAs. In a sense, the notion gives a quantita-
tive view of the concept of critical cells that is central to the results of Chapter 4 (see
Lemma 4.15). (A critical cell is a cell that can either accept or not with non-zero probabil-
ity.)

Definition 5.24 (𝛿-critical PACA). Let 𝛿 > 0. For a time step 𝑇 ∈ N0, a PACA 𝐶 is said to
be 𝛿-critical with respect to 𝑇 if, on any input 𝑥 ∈ Σ𝑛 to 𝐶 , the following holds for every
cell 𝑖 ∈ 𝑛:

1. Either 𝑖 is always accepting in time step 𝑇 ; or

2. The probability that 𝑖 is not accepting in time step 𝑇 is at least 𝛿 .

We say 𝐶 is simply 𝛿-critical if it is 𝛿-critical with respect to every time step in which it
accepts with non-zero probability.

5.6.2. Simulating a PACA with a Low-Space Sliding-Window Algorithm

We now show how a PACA can be simulated by a randomized sliding-window algorithm
with low space. This can be achieved with little difficulty simply by adapting the streaming
algorithm from Theorem 3.4. (The algorithm there is geared toward a different variant of
cellular automata, but the same strategy works fairly well in our setting as well.) For the
sake of self-containedness, we provide the adaptation in full.

Theorem 5.25. Let𝐶 be a (one- or two-sided error) PACA with state set𝑄 and𝑇 ∈ N0. Then
there is a 𝑂 (𝑇 log|𝑄 |)-space randomized non-uniform sliding-window algorithm 𝑆 = 𝑆𝑇 of
window size 𝑂 (𝑇 2) such that

Pr[𝑆 (𝑥) = 1] = Pr[𝐶 accepts 𝑥 in time step 𝑇] .

We note the non-uniformity of 𝑆 is required only to set 𝑇 . Every other aspect of 𝑆 is
realized in an uniform manner.

The basic idea involved is that, in order to emulate the behavior of 𝐶 on an input 𝑥 , it
suffices to move a sliding window over its time-space diagram that is𝑇 cells long and𝑂 (1)
cells wide (see Figure 5.1), feeding random bits to the cells as needed. Every time a new
symbol from 𝑥 is read, the window is moved one cell to the right; if it positioned beyond

124

5.6. Application to Sublinear-Time Probabilistic Cellular Automata

x0 x1 x2 · · · · · · xi−1 xi · · ·

SimulationStep

0

1

...

t

t+ 1

...

T

∗

Figure 5.1.: Simulation of 𝐶 by the sliding-window algorithm 𝑆 . In the picture, 𝑆 has last read the input
symbol 𝑥𝑖 and is now determining the state of the cell marked with an asterisk in time step 𝑡 + 1 (depicted in
blue). The light green cells are the ones maintained by 𝑆 in its stateLeft and stateCenter arrays, while the
orange cell is the one corresponding to stateRight.

the borders of 𝐶 , then the respective part of the window is filled with the border symbol $.
If 𝑆 notes that any one cell in step𝑇 is not accepting, then it immediately halts and rejects;
otherwise it reads the entire input and eventually accepts.

Proof. We prove that Algorithm 2, hereafter referred to as 𝑆 , satisfies the properties in the
claim. For simplicity of presentation, in this proof the input 𝑥 = 𝑥0 · · · 𝑥𝑛−1 as well as the
cells of the PACA 𝐶 are indexed starting with zero.

We first address the correctness of 𝑆 . Fix a random input 𝑟 ∈ {0, 1}(𝑛+𝑇)𝑇 to 𝑆 . It shall be
convenient to recast 𝑟 as a matrix 𝑅 ∈ {0, 1}𝑇×(𝑛+𝑇) where 𝑅(𝑖, 𝑗) = 𝑟 (𝑖 + 𝑗𝑇); that is, the
𝑗-th column of 𝑅 corresponds to the randomness used by 𝑆 in the 𝑗-th run of the outer
while loop, and the 𝑖-th row of said column equals the value of 𝑏 in the 𝑖-th run of the
inner while loop. In addition, let 𝑅′ ∈ {0, 1}𝑇×𝑛 be the matrix with 𝑅′(𝑖, 𝑗) = 𝑅(𝑖, 𝑖 + 𝑗 + 1).
As we shall see, 𝑅′ corresponds exactly to the random input to𝐶 in its simulation by 𝑆 and
the bits of 𝑅 that do not have a corresponding entry in 𝑅′ do not affect the outcome of 𝑆 .

By 𝐷 = 𝐷𝑅′ : {0, . . . ,𝑇 } ×Z→ 𝑄$ we denote the time-space diagram of𝐶 when using coin
tosses from 𝑅′ where $ is used to fill states “beyond the borders” of 𝐶; that is, for 𝑖 ∈ [𝑛],
𝐷 (𝑡, 𝑖) equals the state of the 𝑖-th cell in the 𝑡-th step of 𝐶 on input 𝑥 when using the coin
tosses given by 𝑅′, or 𝐷 (𝑡, 𝑖) = $ otherwise. We shall show the following invariants are
satisfied by the outer loop (line A):

𝐼1: For every 𝑡 ∈ {0, . . . ,𝑇 − 1}, stateCenter[𝑡] = 𝐷 (𝑡, 𝑖 − 𝑡 − 1) and stateLeft[𝑡] =

𝐷 (𝑡, 𝑖 − 𝑡 − 2).

𝐼2: 𝑆 has not rejected if and only if, for every 𝑖′ < 𝑖 , 𝐷 (𝑇, 𝑖′ −𝑇) is either accepting or
equal to $.

125

5. Pseudorandom Generators for Sliding-Window Algorithms

Algorithm 2: Randomized sliding-window algorithm 𝑆

for 𝑡 ← 0, . . . ,𝑇 − 1 do
stateLeft[𝑡] ← $;
stateCenter[𝑡] ← $;

end
𝑖 ← 0;

A while 𝑖 < 𝑛 +𝑇 do
if 𝑖 < 𝑛 then

stateRight← 𝑥𝑖 ;
else

stateRight← $;
end
𝑡 ← 0;

B while 𝑡 < 𝑇 do
C sample 𝑏 ∈ {0, 1} from randomness source;

newState← 𝛿𝑏 (stateLeft[𝑡], stateCenter[𝑡], stateRight);
stateLeft[𝑡] ← stateCenter[𝑡];
stateCenter[𝑡] ← stateRight;
stateRight← newState;
𝑡 ← 𝑡 + 1;

end
if stateRight ≠ $ and stateRight is not accepting then

reject;
end
𝑖 ← 𝑖 + 1;

end
accept;

In particular, 𝐼2 directly implies the correctness of 𝑆 (if we also have that 𝑆 depends only
on the random bits of 𝑅 that have a corresponding entry in 𝑅′, which is indeed the case).

We prove 𝐼1 and 𝐼2 by showing the inner loop (line B) satisfies an invariant 𝐼3 of its own,
namely that stateRight = 𝐷 (𝑡, 𝑖 − 𝑡). Concretely, if we have that 𝐼1 and 𝐼2 hold prior to the
𝑖-th execution of the outer loop and 𝐼3 holds at the end of the inner loop, then 𝐼1 and 𝐼2 are
conserved as follows: The invariant 𝐼1 holds since the instructions executed ensure that
stateLeft[𝑡] = 𝐷 (𝑡, 𝑖 − 𝑡 − 1) and stateCenter[𝑡] = 𝐷 (𝑡, 𝑖 − 𝑡) hold for every 𝑡 at the end of
the inner loop and 𝑖 is incremented at the end. Similarly, since 𝑡 = 𝑇 holds after the inner
loop is done, we have then stateRight = 𝐷 (𝑡, 𝑖 −𝑇) after the loop, implying 𝐼2.

To show 𝐼3 is an invariant, suppose 𝐼1 holds for some 𝑖 . Clearly, stateRight = 𝐷 (0, 𝑖) holds
prior to its first execution of the loop since then stateRight = 𝑥 (𝑖) = 𝐷 (0, 𝑖) if 𝑖 < 𝑛, or

126

5.6. Application to Sublinear-Time Probabilistic Cellular Automata

stateRight = $ = 𝐷 (0, 𝑖) otherwise. Subsequently, in the 𝑡-th execution of the loop, if
𝑡 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑡 , then 𝑏 is set to 𝑅(𝑡, 𝑖) = 𝑅′(𝑡, 𝑖 − 𝑡 − 1) and stateRight to

𝛿𝑏 (stateLeft[𝑡], stateCenter[𝑡], stateRight) = 𝛿𝑏 (𝐷 (𝑡, 𝑖 − 𝑡 − 2), 𝐷 (𝑡, 𝑖 − 𝑡 − 1), 𝐷 (𝑡, 𝑖 − 𝑡))
= 𝐷 (𝑡 + 1, 𝑖 − 𝑡 − 1).

If 𝑖 < 𝑡 + 1, then 𝑖 − 𝑡 − 1 < 0, and so stateLeft[𝑡] = stateCenter[𝑡] = $, which means
stateRight is set to $ regardless of the value of 𝑅(𝑡, 𝑖); the same is the case for 𝑖 > 𝑛 + 𝑡 since
then 𝑖 − 𝑡 − 1 > 𝑛 − 1. Hence, the operation of 𝑆 depends only on 𝑅(𝑡, 𝑖) if 𝑡 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑡 ,
which is precisely the case when 𝑅′(𝑡, 𝑖 − 𝑡 − 1) = 𝑅(𝑡, 𝑖). Since 𝑡 is incremented at the end
of the loop, it follows that 𝐼3 is an invariant, as desired.

The space complexity of 𝑆 evident since it is dominated by the arrays stateLeft and stateRight,
which both contain 𝑇 many elements of 𝑄 . Finally, regarding the sliding window size of 𝑆 ,
we can argue based on the invariants above and the properties of the time-space diagram
𝐷 . Clearly, an entry 𝑅′(𝑡, 𝑖) only affects the states 𝐷 (𝑡 + 𝑗, 𝑖 + 𝑘) for 𝑗 ∈ {1, . . . ,𝑇 − 𝑡} and
𝑘 ∈ Z with |𝑘 | < 𝑗 (since, for every 𝑡 and every 𝑖 , 𝑅′(𝑡, 𝑖) only affects 𝐷 (𝑡 + 1, 𝑖) and 𝐷 (𝑡, 𝑖)
only 𝐷 (𝑡 + 1, 𝑖 − 1), 𝐷 (𝑡 + 1, 𝑖), and 𝐷 (𝑡 + 1, 𝑖 + 1)). Hence, after having read 𝑅′(𝑡, 𝑖), if 𝑆
reads another 2𝑇 2 random bits, then its state will be independent of the entry 𝑅′(𝑡, 𝑖). This
means that 𝑆 has a window size of 𝑂 (𝑇 2), as desired.

5.6.3. Derandomizing Sublinear-Time PACAs with Small Space

In this final section, we recall and prove our results on obtaining low-space algorithms
from PACAs. We start with the results Theorems 5.9 and 5.10 on one-sided error PACAs.

5.6.3.1. One-Sided Error PACAs

Theorem 5.9. Let 𝑇 : N+ → N+ be a (constructible) function and 𝜀 ≥ 1/poly(𝑇). For any
one-sided 𝜀-error PACA 𝐶 that recognizes its language 𝐿(𝐶) in time at most 𝑇 = 𝑇 (𝑛), there
is a deterministic algorithm for 𝐿(𝐶) with space complexity 𝑂 (𝑇 + (log𝑛)2).

The proof is more or less straightforward: Given a 𝑇 -time one-sided 𝜀-error PACA 𝐶 as in
the theorem’s statement, we use the construction from Theorem 5.25 together with the
PRG from Corollary 5.6 to obtain good estimates for the probability that 𝐶 accepts for
every time step 𝑡 < 𝑇 . Then we show we can use these estimates to determine whether 𝐶
accepts the input or not. This is where we use that𝐶 has only one-sided error: If𝐶 accepts,
then by an averaging argument there is at least one time step 𝑡 in which 𝐶 accepts with
probability that is “far enough” from 0; conversely, if 𝐶 rejects, then all estimates will be
“near” 0.

Proof. We construct an algorithm 𝐴 for 𝐿(𝐶) with the desired space complexity. Let 𝐺 be
the PRG from Corollary 5.6 that 𝜀𝐺 -fools SWBPs of width 2𝑂 (𝑇) , length𝑚 = (𝑛 +𝑇)𝑇 , and
window size 𝑂 (𝑇 2), where 𝜀𝐺 = 𝜀/4𝑇 ≥ 1/poly(𝑇). In addition, for 𝑡 < 𝑇 , let 𝑆𝑡 be the
sliding-window algorithm of Theorem 5.25. Our algorithm 𝐴 operates as follows:

127

5. Pseudorandom Generators for Sliding-Window Algorithms

1. For every 𝑡 < 𝑇 , enumerate over every possible seed to𝐺 and simulate 𝑆𝑡 on its output
to obtain an estimate 𝜂𝑡 = Pr[𝑆𝑡 (𝐺 (𝑈𝑑)) = 1] that is 𝜀𝐺 -close to Pr[𝑆𝑡 (𝑈𝑚) = 1].

2. If there is 𝑡 such that 𝜂𝑡 ≥ 𝜀/2𝑇 , accept; otherwise reject.

Observe that 𝐴 has the required space complexity because, by our setting of parameters,
𝐺 has seed length 𝑑 = 𝑂 (𝑇 + (log𝑛)2) and, in addition, every 𝑆𝑡 can be executed in 𝑂 (𝑇)
space. For the correctness of 𝐴, fix some input 𝑥 to 𝐶 and consider the two cases:

𝑥 ∈ 𝐿(𝐶). Let 𝑍𝑡 (𝑅) denote the event that 𝐶 accepts 𝑥 in step 𝑡 using coin tosses from
𝑅 ∈ {0, 1}𝑇×𝑛 . By a union bound, we have

Pr[𝐶 (𝑥,𝑈𝑇×𝑛) = 1] ≤
𝑇−1∑︂
𝑡=0

Pr[𝑍𝑡 (𝑈𝑇×𝑛)] =
𝑇−1∑︂
𝑡=0

Pr[𝑆𝑡 (𝑈𝑚) = 1],

where the last equality is due to Theorem 5.25. By an averaging argument, there is 𝑡
such that Pr[𝑆𝑡 (𝑈𝑚) = 1] ≥ 𝜀/𝑇 , which means that

Pr[𝑆𝑡 (𝐺 (𝑈𝑑)) = 1] ≥ 𝜀

𝑇
− 𝜀𝐺 >

𝜀

2𝑇 .

𝑥 ∉ 𝐿(𝐶). Since the probability that 𝐶 accepts 𝑥 is zero, we also have Pr[𝑆𝑡 (𝑈𝑚) = 1] = 0
for every 𝑡 . It follows that

Pr[𝑆𝑡 (𝐺 (𝑈𝑑)) = 1] ≤ 𝜀𝐺 <
𝜀

2𝑇 .

We shall use essentially the same strategy to obtain:

Theorem 5.10. Let 𝑇 : N+ → N+ be a (constructible) function, and let 𝛿 > 0 and 𝜀 ≥
1/poly(𝑇). For any 𝛿-critical one-sided 𝜀-error PACA 𝐶 that recognizes its language 𝐿(𝐶) in
time at most 𝑇 = 𝑇 (𝑛), there is a deterministic algorithm for 𝐿(𝐶) with space complexity

𝑂

(︃
(𝑇 + log(1/𝛿)) log𝑇

max{1, log𝑇 − log log(𝑛/𝛿)}

)︃
+ �̃� (log(𝑇 /𝛿))2 +𝑂 (log𝑛).

The difference is that we now apply Corollary 5.8 while also having to account for 𝛿-
criticiality.

Proof. We use the same algorithm 𝐴 as in the proof of Theorem 5.9. The parameters for
𝐺 are also the same but now we use the PRG from Corollary 5.8 that targets 𝛿-critical
SWBPs. By our setting of parameters, 𝐺 has seed length

𝑑 = 𝑂

(︃
(𝑇 + log(1/𝛿)) log𝑇

max{1, log𝑇 − log log(𝑛/𝛿)}

)︃
+ �̃� (log(𝑇 /𝛿))2 +𝑂 (log𝑛),

which again dominates the space complexity of 𝐴. The same analysis as in the proof of
Theorem 5.9 applies since, as 𝐶 is 𝛿-critical, lifting 𝑆𝑡 to a (non-uniform) SWBP yields a
𝛿-critical SWBP (since each layer of the resulting SWBP simply corresponds in an entry of
the time-space diagram 𝐷 of 𝐶; see the proof of Theorem 5.25).

128

5.6. Application to Sublinear-Time Probabilistic Cellular Automata

5.6.3.2. Two-Sided Error PACAs

For two-sided error PACAs, we would like to achieve a result as Theorem 5.9 using a
similar apporach. Unfortunately, the same strategy as in the proof of Theorem 5.9 fails
even if we have a means of determining the probability that the PACA accepts in every
single time step 𝑡 without any error.

We illustrate why by means of an example. For concreteness, let the input alphabet be
Σ = {0, 1}. Consider the PACAs 𝐶1 and 𝐶2 that operate as follows: Every cell except for
the first one is unconditionally in an accepting state. During the first 8 steps, the leftmost
cell collects random bits to form a random string 𝑟 ∈ {0, 1}8. Following this, in the next
steps, the cell behaves as follows:

• In 𝐶1, the cell turns accepting if and only if the first two bits of 𝑟 are equal to zero
(i.e., 𝑟1 = 𝑟2 = 0). The cell remains accepting for exactly four steps, then changes into
a non-accepting state and maintains it.

• In 𝐶2, in each of the subsequent four steps 𝑗 ∈ [4], the cell turns accepting in step 𝑗
if and only if 𝑟2 𝑗−1 = 𝑟2 𝑗 = 0. After this, the cell assumes a non-accepting state and
maintains it.

It is easy to see that both 𝐶1 and 𝐶2 are two-sided error PACAs that accept completely
different languages: The probability that 𝐶1 accepts any input𝑤 ∈ {0, 1}∗ is 1/4, which
means 𝐿(𝐶1) = ∅; conversely,𝐶2 accepts any input with probability 1− (3/4)4 > 2/3, thus
implying 𝐿(𝐶2) = {0, 1}∗. Nevertheless, the probability that the PACA accepts at any fixed
time step 𝑡 (considered on its own) is the same in either of the 𝐶𝑖 .

This means that a new strategy is called for. One possible solution would be to adapt the
algorithm 𝑆 from Theorem 5.25 so that it checks multiple steps of the PACA for acceptance
(e.g., maintain a Boolean variable accept𝑖 for every step 𝑖 initially set to true and set
it to false if any non-accepting state in step 𝑖 is seen). Unfortunately, it does not seem
to be possible to do so without forgoing the sliding-window property. Nevertheless, this
strategy can be applied (while still yielding a sliding-window algorithm) if instead of a
single time step 𝑡 we have 𝑆 verify that the PACA is accepting in every step that is in a
subset 𝑡 ⊆ [𝑇] (that is provided to 𝑆 non-uniformly). Indeed, this is a straightforward
adaptation and it is not hard to see that the resulting algorithm 𝑆𝑡 is such that

Pr[𝑆𝑡 (𝑥) = 1] = Pr[∀𝑖 ∈ 𝑡 : on input 𝑥 , 𝐶 is accepting in time step 𝑖]

where the second probability is conditioned on the coin tosses of 𝐶 . (Hence, the original
algorithm works in the special case where |𝑡 | = 1.) Using the inclusion-exclusion principle
and our PRGs of before (with appropriate parameters), we can then obtain good estimates
for the probability that 𝐶 accepts and proceed in almost the same fashion as in the proof
of Theorem 5.9.

Theorem 5.26. Let 𝑇 : N+ → N+ be a function and 𝜀 ≥ 2−𝑂 (𝑇) . For any two-sided (1/2 −
𝜀)-error PACA 𝐶 that recognizes its language 𝐿(𝐶) in time at most 𝑇 = 𝑇 (𝑛), there is a
deterministic algorithm for 𝐿(𝐶) with space complexity 𝑂 (𝑇 log𝑇 + (𝑇 + log𝑛) log(𝑛/𝑇 2)).

129

5. Pseudorandom Generators for Sliding-Window Algorithms

Proof. We construct an algorithm 𝐴 for 𝐿(𝐶) with the desired space complexity. Let 𝐺 be
the PRG from Corollary 5.6 that 𝜀𝐺 -fools SWBPs of width 2𝑂 (𝑇) , length𝑚 = (𝑛 +𝑇)𝑇 , and
window size 𝑂 (𝑇 2), where 𝜀𝐺 = 𝜀/22𝑇 ≥ 2−𝑂 (𝑇) . (These are the same parameters as in the
proof of Theorem 5.9 except for 𝜀𝐺 , which we now need to be exponentially small in 𝑇 .)
For ∅ ≠ 𝑡 ⊆ [𝑇], let 𝑆𝑡 be the generalization of algorithm of Theorem 5.25 as previously
described. The algorithm 𝐴 proceeds as follows:

1. For every ∅ ≠ 𝑡 ⊆ [𝑇], enumerate over every possible seed to 𝐺 and simulate
𝑆𝑡 on its output to obtain an estimate 𝜂𝑡 = Pr[𝑆𝑡 (𝐺 (𝑈𝑑)) = 1] that is 𝜀𝐺 -close to
Pr[𝑆𝑡 (𝑈𝑚) = 1].

2. Compute
𝜂 =

∑︂
𝑡⊆[𝑇]
|𝑡 |=1

𝜂𝑡 −
∑︂
𝑡⊆[𝑇]
|𝑡 |=2

𝜂𝑡 + · · · + (−1)𝑇+1𝜂 [𝑇]

and accept if 𝜂 > 1/2; otherwise reject.

By our setting of parameters, 𝐺 has seed length

𝑑 = 𝑂 (𝑇 log𝑇 + (𝑇 + log𝑛) log(𝑛/𝑇 2)) .

This also gives the space complexity of 𝐴 as before. For the correctness, in a similar way
as in the proof of Theorem 5.9 we let 𝑍𝑡 (𝑅) denote the event that𝐶 accepts 𝑥 in every one
of the steps in ∅ ≠ 𝑡 ⊆ [𝑇] when using coin tosses from 𝑅 ∈ {0, 1}𝑇×𝑛 . Note that, by the
inclusion-exclusion principle, we have

Pr[𝐶 (𝑥,𝑈𝑇×𝑛) = 1]
= Pr[∃𝑡 ∈ [𝑇] : 𝑍{𝑡} (𝑈𝑇×𝑛)]
=

∑︂
𝑡⊆[𝑇]
|𝑡 |=1

Pr[𝑍𝑡 (𝑈𝑇×𝑛)] −
∑︂
𝑡⊆[𝑇]
|𝑡 |=2

Pr[𝑍𝑡 (𝑈𝑇×𝑛)] + · · · + (−1)𝑇+1 Pr[𝑍 [𝑇] (𝑈𝑇×𝑛)] .

Since there are strictly less than 2𝑇 terms on the right-hand side in total and replacing
𝑈𝑇×𝑛 with 𝐺 (𝑈𝑑) causes an additive deviation of at most 𝜀𝐺 in each term, it follows that

|𝜂 − Pr[𝐶 (𝑥,𝑈𝑇×𝑛 = 1)] | ≤ 𝜀𝐺2𝑇 < 𝜀.

Unfortunately, (asymptotically speaking) Theorem 5.26 does not give us a better space
complexity thanwewould have had by simply using the PRG of Armoni (see Section 5.1.2.2),
which would already have given us a seed length of 𝑑 = 𝑂 (𝑇 log𝑛). Nevertheless, the
proof of Theorem 5.26 is very valuable since it can be easily generalizes to the case of
𝛿-critical PACAs, in which case we do get an improvement on the space complexity:

Theorem 5.11. Let𝑇 : N+ → N+ be a (constructible) function, and let 𝛿 > 0 and 𝜀 ≥ 2−𝑂 (𝑇) .
For any 𝛿-critical two-sided (1/2 − 𝜀)-error PACA 𝐶 that recognizes its language 𝐿(𝐶) in
time at most 𝑇 = 𝑇 (𝑛), there is a deterministic algorithm for 𝐿(𝐶) with space complexity
�̃� (𝑇 · (log(1/𝛿))2) +𝑂 (log𝑛).

130

5.6. Application to Sublinear-Time Probabilistic Cellular Automata

Proof. Use the same algorithm 𝐴 as in the proof of Theorem 5.26 with the PRG from
Corollary 5.8 (with the same parameters) while noting that, for any 𝑡 , lifting 𝑆𝑡 to a
(non-uniform) SWBP yields a 𝛿-critical SWBP (as in the proof of Theorem 5.7).

131

6. Embedding Arbitrary Boolean Circuits
into Fungal Automata

Co-authored with Thomas Worsch

Published version: [86]

Abstract

Fungal automata are a variation of the two-dimensional sandpile automaton of
Bak, Tang, and Wiesenfeld (Phys. Rev. Lett., 1987). In each step toppling cells emit
grains only to some of their neighbors chosen according to a specific update sequence.
We show how to embed any Boolean circuit into the initial configuration of a fungal
automaton with update sequence 𝐻𝑉 . In particular we give a constructor that, given
the description 𝐵 of a circuit, computes the states of all cells in the finite support of
the embedding configuration in 𝑂 (log|𝐵 |) space. As a consequence the prediction
problem for fungal automata with update sequence 𝐻𝑉 is P-complete. This solves an
open problem of Goles et al. (Phys. Lett. A, 2020).

6.1. Introduction

The two-dimensional sandpile automaton by Bak, Tang, and Wiesenfeld [10] has been
investigated from different points of view. Because of the simple local rule, it is easily
generalized to the 𝑑-dimensional case for any integer 𝑑 ≥ 1.

Several prediction problems for these cellular automata (CA) have been considered in the
literature. Their difficulty varies with the dimensionality. The recent survey by Formenti
and Perrot [39] gives a good overview. For one-dimensional sandpile CA the problems
are known to be easy (see, e.g., [78]). For 𝑑-dimensional sandpile CA where 𝑑 ≥ 3, they
are known to be P-complete [89]. In the two-dimensional case the situation is unclear;
analogous results are not known.

Fungal automata (FA) as introduced by Goles et al. [53] are a variation of the two-
dimensional sandpile automaton where a toppling cell (i.e., a cell with state ≥ 4) emits 2
excess grains of sand either to its two horizontal (“𝐻”) or to its two vertical neighbors (“𝑉 ”).
These two modes of operation may alternate depending on an update sequence specifying
in which steps grains are moved horizontally and in which steps vertically.

133

6. Embedding Arbitrary Boolean Circuits into Fungal Automata

The construction in [53] shows that some natural prediction problem is P-complete for two-
dimensional fungal automata with update sequence 𝐻 4𝑉 4 (i.e., grains are first transferred
horizontally for 4 steps and then vertically for 4 steps, alternatingly). The paper leaves
open whether the same holds for shorter update sequences. The shortest non-trivial
sequence is 𝐻𝑉 (and its complement 𝑉𝐻); at the same time this appears to be the most
difficult to use. By a reduction from the well-known circuit value problem (CVP), which is
P-complete, we will show:

Theorem 6.1. The following prediction problem is P-complete for FA with update sequence
𝐻𝑉 :

Given as inputs initial states for a finite rectangle 𝑅 of cells, a cell index 𝑦 (encoded in binary),
and an upper bound 𝑇 (encoded in unary) on the number of steps of the FA,

decide whether cell 𝑥 is in a state ≠ 0 or not at some time 𝑡 ≤ 𝑇 when the FA is started with
𝑅 surrounded by cells all in state 0.

We assume readers are familiar with cellular automata (see Section 6.2 for the definition).
We also assume knowledge of basic facts about Boolean circuits and complexity theory,
some of which we recall next.

6.1.1. Boolean circuits and the CVP

A Boolean circuit is a directed acyclic graph of gates: not gates (with one input), and and
or gates with two inputs, 𝑛 ≥ 1 input gates and one output gate. The output of a gate
may be used by an arbitrary number of other gates. Since a circuit is a dag and each gate
obtains its inputs from gates in previous layers, ultimately the output of each gate can be
computed from a subset of the input gates in a straightforward way.

It is straightforward to realize not, and, and or gates in terms of nand gates with
two inputs (with an only constant overhead in the number of gates). To simplify the
construction later on, we assume that circuits consist exclusively of nand gates.

Each gate of a circuit is described by a 4-tuple (𝑔, 𝑡, 𝑔1, 𝑔2) where 𝑔 is the number of the
gate, 𝑡 describes the type of the gate, and 𝑔1 and 𝑔2 are the numbers of the gates (called
sources of 𝑔) that produce the inputs for gate 𝑔; all numbers are represented in binary.
If gate 𝑔 has only one input, then 𝑔2 = 𝑔1 by convention. Without loss of generality the
input gates have numbers 1 to 𝑛 and since their predecessors 𝑔1 and 𝑔2 will never be used,
assume they are set to 0. All other gates have subsequent numbers starting at 𝑛 + 1 such
that the inputs for gate 𝑔 are coming from gates with strictly smaller numbers. Following
Ruzzo [103] the description 𝐵 of a complete circuit is the concatenation of the descriptions
of all of its gates, sorted by increasing gate numbers.

Problem instances of the circuit value problem (CVP) consist of the description 𝐵 of a
Boolean circuit 𝐶 with 𝑛 inputs and a list 𝑥 of 𝑛 input bits. The task is to decide whether
𝐶 (𝑥) = 1 holds or not. It is well known that the CVP is P-complete.

134

6.1. Introduction

6.1.2. Challenges

A standard strategy for showing P-completeness of a problem Π in some computational
modelM (and also the one employed by Goles et al. in [53]) is by a reduction from the
CVP to Π, which entails describing how to “embed” circuits inM.

In our setting of fungal automata with update sequence 𝐻𝑉 , while realizing wires and
signals as in [53] is possible, there is no obvious implementation for negation nor for a
reliable wire crossing. Hence, it seems one can only directly construct circuits that are
both planar and monotone. Although it is known that the CVP is P-complete for either
planar or monotone circuits [52], it is unlikely that one can achieve the same under both
constraints. This is because the CVP for circuits that are both monotone and planar lies in
NC2 (and is thus certainly not P-complete unless P ⊆ NC2) [32].

We are able to overcome this barrier by exploiting features that are present in fungal
automata but not in general circuits: time and space. Namely, we deliberately retard signals
in the circuits we implement by extending the length of the wires that carry them. We
show how this allows us to realize a primitive form of transistor. From this, in turn, we
are able to construct a nand gate, thus allowing both wire crossings and negations to be
implemented.

Our construction is not subject to the limitations that apply to the two-dimensional case
that were previously shown byGajardo andGoles in [43] since the FA starting configuration
is not a fixed point. The resulting construction is also significantly more complex than
that of [53].

6.1.3. Overview of the construction

In the rest of the chapter we describe how to embed any Boolean circuit with description
𝐵 and an assignment of values to the inputs into a configuration 𝑐 of a fungal automaton
in such a way that the following holds:

• “Running” the FA for a sufficient number of steps results in the “evaluation” of all
simulated gates. In particular, after reaching a stable configuration, a specific cell of
the FA is in state 1 or 0 if and only if the output of the circuit is 1 or 0, respectively.

• The initial configuration 𝐹 of the FA is simple in the sense that, given the description
of a circuit and an input to it, we can produce its embedding 𝐹 using𝑂 (log𝑛+ log|𝐵 |)
space. Thus we have a log-space reduction from the CVP to the prediction problem
for FA.

The construction consists of several layers:

Layer 0: The underlying model of fungal automata.

Layer 1: As a first abstraction we subdivide the space into blocks of 2 × 2 cells and always
think of update cycles consisting of 4 steps of the CA, using the update sequence
(𝐻𝑉)2.

135

6. Embedding Arbitrary Boolean Circuits into Fungal Automata

Layer 2: On top of that we will implement polarized circuits processing polarized signals
that run along wires.

Layer 3: Polarized circuitry is then used to implement Boolean circuits with delay: bits are
processed by gates connected by cables.1

Layer 4: Finally a given Boolean circuit (without delay) can be embedded in a fungal
automaton (as a circuit with delay) in a systematic fashion that needs only logarithmic
space to construct.

The rest of this chapter has a simple organization: Each layer 𝑖 will be described separately
in section 𝑖 + 2.

6.2. Layer 0: The Fungal Automaton

Let N+ denote the set of positive integers and Z that of all integers. For 𝑑 ∈ N+, a
𝑑-dimensional CA is a tuple (𝑆, 𝑁 , 𝛿) where:

• 𝑆 is a finite set of states

• 𝑁 is a finite subset of Z𝑑 , called the neighborhood

• 𝛿 : 𝑆𝑁 → 𝑆 is the local transition function

In the context of CA, the elements of Z𝑑 are referred to as cells. The function 𝛿 induces
a global transition function Δ : 𝑆Z𝑑 → 𝑆Z

𝑑 by applying 𝛿 to each cell simultaneously. In
the following, we will be interested in the case 𝑑 = 2 and the so-called von Neumann
neighborhood 𝑁 = {(𝑎, 𝑏) ∈ Z2 | |𝑎 | + |𝑏 | ≤ 1} of radius 1.

Except for the updating of cells the fungal automaton is just a two-dimensional CA with
the von Neumann neighborhood of radius 1 and 𝑆 = {0, 1, . . . , 7} as the set of states.2 A
configuration is thus a mapping 𝑐 : Z2 → 𝑆 .

Depending on the their states cells will be depicted as follows in diagrams:

• State 0 as

• State 1 as •

• State 𝑖 ∈ 𝑆 \ {0, 1} as 𝑖

1 Here we slightly deviate from the standard terminology of Boolean circuits and reserve the term wire for
the more primitive wires defined in layer 2.

2 We use states as in [10]; however, the states 6 and 7 never occur in our construction.

136

6.3. Layer 1: Coarse-Graining Space and Time

4 3 3 3 3 3

2 3 3 3 3 3

H • 2 4 3 3 3 3

2 3 3 3 3 3

V

•
• 2 2 3 3 3 3

2 4 3 3 3 3

H

•
• 2 2 3 3 3 3

3 2 4 3 3 3

V

•
• 2 2 4 3 3 3

3 2 2 3 3 3

•

H

•
• 2 3 2 4 3 3

3 2 2 3 3 3

•

Figure 6.1.: Five transitions according to 𝐻𝑉𝐻𝑉𝐻

Wewill use colored background for cells in states 2, 3, and 4 since their presence determines
the behavior of the polarized circuit. The state 1 is only a “side effect” of an empty cell
receiving a grain of sand from some neighbors; hence it is represented as a dot. Cells that
are not included in a figure are always assumed to be in state 0.

For a logical predicate 𝑃 denote by [𝑃] the value 1 if 𝑃 is true and the value 0 if 𝑃 is false.
For 𝑖 ∈ Z2 denote by ℎ(𝑖) the two horizontal neighbors of cell 𝑖 and by 𝑣 (𝑖) its two vertical
neighbors. Cells are updated according to 2 functions 𝐻 and 𝑉 mapping from 𝑆Z

2 to 𝑆Z2

where for each 𝑖 ∈ Z2 the following holds:

𝐻 (𝑐) (𝑖) = 𝑐 (𝑖) − 2 · [𝑐 (𝑖) ≥ 4] +
∑︂
𝑗∈ℎ(𝑖)
[𝑐 (𝑗) ≥ 4];

𝑉 (𝑐) (𝑖) = 𝑐 (𝑖) − 2 · [𝑐 (𝑖) ≥ 4] +
∑︂
𝑗∈𝑣 (𝑖)
[𝑐 (𝑗) ≥ 4] .

The updates are similar to the sandpile model by Bak, Tang, and Wiesenfeld [10], but
toppling cells only emit grains of sand either to their horizontal or their vertical neighbors.
Therefore whenever a cell is non-zero, it stays non-zero forever.

The composition of these functions applying first 𝐻 and then 𝑉 is denoted 𝐻𝑉 . For the
transitions of a fungal automaton with update sequence 𝐻𝑉 these functions are applied
alternatingly, resulting in a computation

𝑐, 𝐻 (𝑐),𝑉 (𝐻 (𝑐)), 𝐻 (𝑉 (𝐻 (𝑐))),𝑉 (𝐻 (𝑉 (𝐻 (𝑐)))),

and so on. In examples we will often skip three intermediate configurations and only show
𝑐 , 𝐻𝑉𝐻𝑉 (𝑐), etc. Figure 6.1 shows a simple first example.

6.3. Layer 1: Coarse-Graining Space and Time

As a first abstraction from now on one should always think of the space as subdivided into
blocks of 2 × 2 cells. Furthermore we will look at update cycles consisting of 4 steps of the
CA, thus using the update sequence 𝐻𝑉𝐻𝑉 , which we will abbreviate as 𝑍 . As an example

137

6. Embedding Arbitrary Boolean Circuits into Fungal Automata

4 3 3 3 3 3

2 3 3 3 3 3

Z 2 2 4 3 3 3

3 2 2 3 3 3

Z 2 3 2 2 4 3

3 2 3 2 2 3

Figure 6.2.: Compact representation of two cycles

4 3

3 3

4 3

2 3

4 3

2 2

4 2

2 2

(a) ⊞ signals

3 3

4 3

2 3

4 3

2 2

4 3

2 2

4 2

(b) ⊟ signals

Figure 6.3.: Representations of ⊞ and ⊟ signals

Figure 6.2 shows the same cycle as Figure 6.1 and the following cycle in a compact way.
Block boundaries are indicated by thicker lines.

Cells outside the depicted area of a figure are assumed to be 0 initially and they will
never become critical and topple during the shown computation.

6.4. Layer 2: Polarized Components

We turn to the second lowest level of abstraction. Here we work with two types of signals,
which we refer to as positive (denoted ⊞) and negative (denoted ⊟). Both types will have
several representations as a block in the FA.

• All representations of a ⊞ signal have in common that the upper left corner of the
block is a 4 and the other cells are 2 or 3 .

• All representations of a ⊟ signal have in common that the lower left corner of the
block is a 4 and the other cells are 2 or 3 .

Not all representations will be appropriate in all situations as will be discussed in the next
subsection.

The rules of fungal automata allow us to perform a few basic operations on these polarized
signals (e.g., duplicating, merging, or crossing them under certain assumptions). The
highlight here is that we can implement a (delay-sensitive) form of transistor that works
with polarized signals, which we refer to as a switch.

As a convention, in the figures in this section, we write 𝑥 and 𝑦 for the inputs of a
component and 𝑧, 𝑧1, and 𝑧2 for the outputs.

6.4.1. Polarized Signals and Wires

Representations of ⊞ and ⊟ signals are shown in Figure 6.3. We will refer to a block initially
containing a ⊞ or ⊟ signal as a ⊞ or ⊟ source, respectively. (This will be used, for instance,
to set the inputs to the embedded CVP instance.)

138

6.4. Layer 2: Polarized Components

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3

3 3 3 3

4 3 3 3 3 3

2 3 3 3 3 3

Z

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3

3 3 3 3

2 2 4 3 3 3

3 2 2 3 3 3

Z

3 3 3 3 3 3

3 3 3 3 3 3

4 3 3 3

2 2 3 3

2 3 3 2 3 3

3 2 3 2 3 3

Z

4 3 4 3 3 3

2 2 2 3 3 3

3 2 3 3

2 3 3 3

2 3 3 2 3 3

3 2 3 2 3 3

Z

2 3 2 2 4 3

2 3 3 2 2 3

3 2 4 3

2 3 3 3

2 3 3 2 3 3

3 2 3 2 3 3

Z

2 3 2 2 2 2

2 3 3 2 3 3

3 2 3 2

2 3 2 2

2 3 3 2 4 3

3 2 3 2 3 3

Figure 6.4.: A ⊞ signal moving along a wire with two right turns.

A comparison of Figure 6.2 and Figure 6.3a shows that in the former a ⊞ signal is “moving
from left to right”. In general we will use wires to propagate signals. Wires extending
horizontally or vertically can be constructed by juxtaposing wire blocks consisting of 2 × 2
blocks of cells in state 3 .

While one can use the same wire blocks for both types of signals, each block is destroyed
upon use and thus can only be used once. In particular, this means a wire will either be
used by a ⊞ or a ⊟ signal. We refer to the respective wires as ⊞ and ⊟ wires, accordingly.

Every representation of a signal is restricted with respect to the possible directions it
can move to along a wire. In our construction each signal will start at the left end of a
horizontal wire. Figure 6.4 shows how a ⊞ signal first “turns left” once and then moves
along a wire that “turns right” two times, changing its representation while meandering
around. (The case of a ⊟ signal is similar and is not shown.)

Figure 6.5 can be seen as the continuation of Figure 6.4. The ⊞ signal moves further down,
“turns left” twice, and then reaches the end of the wire. The composition of both parts can
be seen in Figure 6.11 and will be used as the basic building unit for “retarders”.

6.4.2. Diodes

Note that ⊞ and ⊟ signals do not encode any form of direction in them (regarding their
propagation along a wire). In fact, a signal propagates in any direction a wire is placed in.
In order for our components to operate correctly, it will be necessary to ensure a signal is
propagated in a single direction. To realize this, we use diodes.

A diode is an element on a horizontal wire that only allows a signal to flow from left to
right. A signal coming from right to left is not allowed through. As the other components,
the diode is intended to be used only once. For the implementation, refer to Figure 6.6.

139

6. Embedding Arbitrary Boolean Circuits into Fungal Automata

4 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

Z

3 2 3 3 3 3

2 2 3 3 3 3

4 3 3 3

3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

Z

3 2 3 3 3 3

2 3 3 3 3 3

3 2 3 3

2 2 3 3

4 3 3 3 3 3

3 3 3 3 3 3

Z

3 2 3 3 3 3

2 3 3 3 3 3

3 2 3 3

2 3 3 3

3 2 4 3 3 3

2 2 2 3 3 3

Z

3 2 3 3 3 3

2 3 3 3 3 3

3 2 3 3

2 3 3 3

3 3 2 2 4 3

2 2 3 2 2 3

Z

3 2 3 3 3 3

2 3 3 3 3 3

3 2 4 3

2 3 2 2

3 3 2 2 3 2

2 2 3 2 3 2

Z

3 2 4 3 4 3

2 3 2 2 2 3

3 2 3 2

2 3 2 3

3 3 2 2 3 2

2 2 3 2 3 2

Figure 6.5.: A ⊞ signal moving along with two left turns (continuation of Figure 6.4)

3 3

3 3 3 3

x
2 3

z
3 3 3 3

3 3

(a) ⊞ wires

3 3

x
3 3 3 3

z
2 3

3 3 3 3

3 3

(b) ⊟ wires

Figure 6.6.: Diode implementations

(Recall that 𝑥 denotes the component’s input and 𝑧 its output.) Figure 6.7 illustrates the
operation of a diode for ⊞ signals. (The case of ⊟ signals is similar.)

For all the remaining elements described in this section, we implicitly add diodes to
their inputs and outputs. This ensures that the signals can only flow from left to right
(as intended). This is probably not necessary for all elements, but doing so makes the
construction simpler while the overhead is only a constant factor blowup in the size of the
elements.

140

6.4. Layer 2: Polarized Components

3 3

3 3 3 3

4 3 2 3 3 3

2 3 3 3 3 3 3 3

3 3

Z

4 3
• 2 2 3 3

2 2 2 2 3 3 3

3 2 2 3 3 3 3 3

4 3

Z

•

• 2 2 •

• 2 3 2 2

2 2 2 4 3 3 3

3 2 3 2 2 3 3 3
• 2 2 •

•

Z

•

• 2 2 •

• 2 3 2 2 •

2 2 2 • 2 2 4 3

3 2 3 2 3 2 2 3
• 2 2 • •

•

(a) ⊞ signal comes from the left

3 3

3 3 3 3 •

3 3 2 3 4 2

3 3 3 3 3 3 2 2

3 3 •

HV

3 3

3 3 3 3 • •

3 3 2 2 2 3

3 3 3 3 3 4 2 2

3 3 •

H

3 3

3 3 3 3 • •

3 3 2 2 2 3

3 3 3 3 4 2 3 2

3 3 •

V

3 3

3 3 3 3 • •

3 3 3 2 2 3

3 3 3 3 2 2 3 2

3 3 • •

(b) ⊞ signal comes from the right

Figure 6.7.: Diode operation on ⊞ wires

3 3
z1

3 3 3

x
3 3

3 3 3

3 3
z2

3

(a) Duplicating ⊞ wires

3
z1

3 3

x
3 3 3

3 3

3 3 3
z2

3 3

(b) Duplicating ⊟ wires

x
3 3

3 3 3

3 3
z

3 3 3

y
3 3

3

(c) Merging ⊞ wires

x
3

3 3

3 3 3
z

3 3

y
3 3 3

3 3

(d) Merging ⊟ wires

Figure 6.8.: Duplicating and merging wires

6.4.3. Duplicating, Merging, and Crossing Wires

Wires of the same polarity can be duplicated or merged. By duplicating a wire we mean
we create two wires 𝑧1 and 𝑧2 from a single wire 𝑥 in such a way that, if any signal arrives
from 𝑥 , then this signal is duplicated and propagated on both 𝑧1 and 𝑧2. (Equivalently, one
might imagine that 𝑥 = 𝑧1 and 𝑧2 is a wire copy of 𝑥 .) In turn, a wire merge realizes in
some sense the reverse operation: We have two wires 𝑥 and 𝑦 of the same polarity and
create a wire 𝑧 such that, if a signal arrives from 𝑥 or 𝑦 (or both), then a signal of the same
polarity will emerge at 𝑧. (Hence one could say the wire merge realizes a polarized or
gate.) See Figure 6.8 for the implementations.

141

6. Embedding Arbitrary Boolean Circuits into Fungal Automata

x
3

z1
3 3 3

3 3 3

3 3 3

y
3 3 3

z2
3

(a) ⊞ semicrossing

x
3

z1
3 3 3

3 3 3

3 3 3

y
3 3 3

z2
3

(b) ⊟ semicrossing

Figure 6.9.: Semicrossing implementations

As discussed in the introduction, there is no straightforward realization of a wire crossing
in fungal automata in the traditional sense. Nevertheless, it turns out we can cross wires
under the following constraints:

1. The two wires being crossed are a ⊞ and a ⊟ wire.

2. The crossing is used only once and by a single input wire; that is, once a signal from
either wire passes through the crossing, it is destroyed. (If two signals arrive from
both wires at the same time, then the crossing is destroyed without allowing any
signal to pass through.)

To elicit these limitations, we refer to such crossings as semicrossings.

We actually need two types of semicrossings, one for each choice of polarities for the two
input wires. The semicrossings are named according to the polarity of the top input wire:
A ⊞ semicrossing has a ⊞ wire as its top input (and a ⊟ wire as its bottom one) whereas a ⊟
semicrossing has a ⊟wire at the top (and a ⊞wire at the bottom). For the implementations,
see Figure 6.9.

6.4.4. Switches

A switch is a rudimentary form of transistor. It has two inputs and one output. Adopting
the terminology of field-effect transistors (FETs), we will refer to the two inputs as the
source and gate and the output as the drain. In its initial state, the switch is open and does
not allow source signals to pass through. If a signal arrives from the gate, then it turns the
switch closed. A subsequent signal arriving from the source will then be propagated on to
the drain. This means that switches are delay-sensitive: A signal arriving at the source
only continues on to the drain if the gate signal has arrived beforehand (or simultaneously
to the source).

Similar to semicrossings, our switches come in two flavors. In both cases the top input
is a ⊞ wire and the bottom one a ⊟. The difference is that, in a ⊞ switch, the source (and
thus also the drain) is the ⊞ input and the gate is the ⊟ input. Conversely, in a ⊟ switch
the source and drain are ⊟ wires and the gate is a ⊞ wire. Refer to Figure 6.10 for the
implementation of the two types of switches.

142

6.5. Layer 3: Working With Bits

x
3 3 3

3 2 3 3
z

3 3 3

y
3

(a) ⊞ switch

x
3

3 3 3
z

3 2 3 3

y
3 3 3

(b) ⊟ switch

Figure 6.10.: Switch implementations

6.4.5. Delays and Retarders

As mentioned in the introduction, the circuits we construct are sensitive to the time it
takes for a signal to flow from one point to the other. To render this notion precise, we
define for every component a delay that results from the time taken for a signal to pass
through the component. This is defined as follows:

• The delay of a source is zero.

• The delay of a wire (including bends) at some block 𝐵 is the delay of the wire’s
source 𝑆 plus the length (in blocks) of the shortest contiguous path along the wire
that leads from 𝑆 to 𝐵 according to the von Neumann neighborhood. We will refer
to this length as the wire distance between 𝑆 and 𝐵. For example, the wire distance
between the inputs and outputs in all of Figures 6.6 and 6.8 to 6.10 is 4; similarly, the
distance between 𝑥 and 𝑧 in Figure 6.11 (see below) is 15.

• The delay of a gate (i.e., a diode, wire duplication, wire merge, or semicrossing) is
the maximum over the delays of its inputs plus the gate width (in blocks).

Notice our definition of wire distance may grossly estimate the actual number of steps a
signal requires to propagate from 𝑆 to 𝐵. This is fine for our purposes since we only need
to reason about upper bounds later in Section 6.6.3.

Finally we will also need a retarder element, which is responsible for adding a variable
amount of delay to a wire. Refer to Figure 6.11 for their realization. Retarders can
have different dimensions. Evidently, one can ensure a delay of 𝑡 with a retarder that is
𝑂 (
√
𝑡) ×𝑂 (

√
𝑡) large. We are going to use retarders of delay at most 𝐷 , where 𝐷 depends

on the CVP instance and is set later in Section 6.6.3. Hence, it is safe to assume all retarders
in the same configuration are of the same size horizontally and vertically, but realize
different delays. This allows one to use retarders of a single size for any fixed circuit, which
simplifies the layout significantly (see also Sections 6.6.3 and 6.6.4).

6.5. Layer 3: Working With Bits

We will now use the elements from Section 6.4 (represented as in Figure 6.12) to construct
planar delay-sensitive Boolean circuits. Our circuits will use nand gates as their basis. We

143

6. Embedding Arbitrary Boolean Circuits into Fungal Automata

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3

3 3 3 3

x
3 3 3 3 3 3 3 3

z
3 3 3 3 3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

Figure 6.11.: Implementation of a basic retarder (for both ⊞ and ⊟ signals) that ensures a delay of ≥ 12 at 𝑧
(relative to 𝑥). Retarders for greater delays can be realized by increasing (i) the height of the meanders, (ii)
the number of up-down meanders, and (iii) the positions of the input and output.

+

(a) Source

+

+

+

(b) Wire duplication

+

+

+

(c) Wire merging

+ +

(d) Retarder

+

−

−

+

(e) Semicrossing

+

−

+

(f) Switch

Figure 6.12.: Representations of the elements from abstraction layer 2 as used in layer 3. The polarities
indicate whether the ⊞ or ⊟ version of the component is used.

discuss how to overcome the planarity restriction in Section 6.5.4.

6.5.1. Representation of Bits

For the representation of a bit, we use a pair consisting of a polarized ⊞wire and a polarized
⊟ wire. Such a pair of polarized wires is called a cable. As mentioned earlier, most of the
time signals will travel from left to right. It is straightforward to generalize the notion
of wire distance (see Section 6.4.5) to cables simply by setting it to the maximum of the
respective wire distances.

A signal on a cable’s ⊞ wire represents a binary 1, and a signal on the ⊟ wire represents a
binary 0. By convention we will always draw the ⊞ wire “above” the ⊟ wire of the same
cable. See Figure 6.13 for an example.

When referring to a gate’s inputs and outputs, we indicate the ⊞ and ⊟ components of a
cable with subscripts. For instance, for an input cable 𝑥 , we write 𝑥+ for its ⊞ and 𝑥− for
its ⊟ component.

144

6.5. Layer 3: Working With Bits

4 3 3 3 3 3 3 3

2 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

Z

•

2 2 4 3 3 3 3 3

3 2 2 3 3 3 3 3
•

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

Z

• •

2 3 2 2 4 3 3 3

3 2 3 2 2 3 3 3
• •

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

(a) Binary 1

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

2 3 3 3 3 3 3 3

4 3 3 3 3 3 3 3

Z

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

•

3 2 2 3 3 3 3 3

2 2 4 3 3 3 3 3
•

Z

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

• •

3 2 3 2 2 3 3 3

2 3 2 2 4 3 3 3
• •

(b) Binary 0

Figure 6.13.: Binary representations traveling from left to right along a cable

+x+

−x−

+

+

+

D+

−
−

−
D−

+

−

−

+

X

+ y+

− y−

+ z+

− z−

Figure 6.14.: Boolean branch

6.5.2. Bit Duplication

To duplicate a cable, we use the Boolean branch depicted in Figure 6.14. The circuit consists
of two wire duplications (one of each polarity) and a crossing.

6.5.3. NAND Gates

As a matter of fact the nand gate is inspired by the implementation of such a gate in
cmos technology3. Refer to Figure 6.15 for the implementation. Notice the usage of
switches means these gates are delay-sensitive; that is, the gate only operates correctly (i.e.,

3 e.g., https://en.wikipedia.org/wiki/NAND_gate#/media/File:CMOS_NAND.svg

145

https://en.wikipedia.org/wiki/NAND_gate#/media/File:CMOS_NAND.svg

6. Embedding Arbitrary Boolean Circuits into Fungal Automata

+x+

−x−

+y+

−y−

+

−

+

+ +

− −

+ +

+

−

−

+

X1

+

− −

S2

+

−

+

S3

+

−

+

S1

+

− −

S4

−

+

+

−

X2

+

+

+M + z+

− z−

Figure 6.15.: nand gate

computing the nand function) if the retarders have strictly greater delays than the inputs 𝑥
and 𝑦. In fact, for our construction we will need to instantiate this same construction using
varying values for the retarders’ delays (but not their size as mentioned in Section 6.4.5).
This seems necessary in order to chain nand gates in succession (since each gate in a chain
incurs a certain delay that must be compensated for in the next gate down the chain).

In addition, notice that in principle nand gates have variable size as their dimension
depends on that of the three retarders, As is the case for retarders, in the same embedding
we insist on having all nand gates be of the same size. We defer setting their dimensions
to Section 6.6.3; for now, it suffices to keep in mind that nand gates (and retarder elements)
in the same embedding only vary in their delay (and not their size).

Claim. Assuming the retarders have larger delay than the input cables 𝑥 and 𝑦, the circuit
on Figure 6.15 realizes a nand gate.

Proof. Consider first the case where both 𝑥+ and 𝑦+ are set. Since 𝑥− is not set, 𝑋1 is
consumed by 𝑥+, turning 𝑆4 on. In addition, since 𝑦+ is set, 𝑆2 is also turned on. Hence,
using the assumption on the delay of the inputs, the negative source flows through 𝑆2, 𝑆4,
and 𝑋2 on to 𝑧−. Since both the switches 𝑆1 and 𝑆3 remain open, the 𝑧+ output is never set.
Notice the crossings 𝑋1 and 𝑋2 are each used exactly once.

Let now 𝑥− or 𝑦− (or both) be set. Then either 𝑆2 or 𝑆4 is open, which means 𝑧− is never
set. As a result, 𝑋2 is used at most once (namely in case 𝑦− is set). If 𝑥− is set, then 𝑆1 is
opened, thus allowing the positive source to flow on to𝑀 . The same holds if 𝑦− is set, in
which case𝑀 receives the positive source arriving from 𝑆3. Hence, at least one positive
signal will flow to the𝑀 gate, causing 𝑧+ to be set eventually.

146

6.6. Layer 4: Layout of a Whole Circuit

x

y

⊕

⊕

⊕

y

x

(a) Crossing two cables using xor gates

x

y

x⊕ y

(b) Implementing xor with nand gates

Figure 6.16.: Implementing cable crossings as in [52]

6.5.4. Cable Crossings

There is a more or less well-known idea to cross to bits using three xor gates that can be
found in the paper by Goldschlager [52], for example. Figure 6.16 shows the idea. This
construction can be used in FA. Because of the delays, there is not the crossing gate, but a
whole family of them. Depending on the position in the whole circuit layout, each crossing
needs nand gates with specific builtin delays (that will be set in Section 6.6.3).

6.6. Layer 4: Layout of a Whole Circuit

Finallywe describe one possibility to construct a finite rectangle of cells 𝐹 of a FA containing
the realization of a complete circuit, given its description 𝐵. The important point here is
that, in order to produce 𝐹 from 𝐵, the constructor only needs logarithmic space. (Therefore
the simplicity of the layout has precedence over any form of “optimization”.)

6.6.1. Arranging the Circuit in Tiles

Let 𝐶 be the circuit that is to be embedded as an FA configuration 𝐹 . Letting 𝑛 be the
length of inputs to 𝐶 and𝑚 its number of gates, notice we have an upper bound of𝑚 on
the circuit depth of 𝐶 . Without restriction, we may assume𝑚 ≥ 𝑛, which also implies an
upper bound of𝑚 + 𝑛 = 𝑂 (𝑚) on the number of cables of 𝐶 (since 𝐶 has bounded fan-in).
The logical gates of 𝐶 are denoted by 𝐺1, . . . ,𝐺𝑚 and we assume that 𝐺𝑖 has number 𝑛 + 𝑖
in description 𝐵 of 𝐶 (recall Section 6.1.1).

In the configuration 𝐹 we have cables 𝑥1, . . . , 𝑥𝑛 originating from the input gates as well as
cables 𝑔1, . . . , 𝑔𝑚 coming from (the embedding of) the gates of𝐶 . The 𝑥𝑖 and 𝑔𝑖 flow in and
out of equal-sized tiles 𝑇1, . . . ,𝑇𝑚 , where in the 𝑖-th tile𝑇𝑖 we implement the 𝑖-th gate𝐺𝑖 of
𝐶 . The inputs to 𝑇𝑖 are 𝐼𝑖 = {𝑥1, . . . , 𝑥𝑛, 𝑔1, . . . , 𝑔𝑖−1} and its outputs 𝑂𝑖 = 𝐼𝑖 ∪ {𝑔𝑖}; hence
𝐼𝑖+1 = 𝑂𝑖 .

Recall that, unlike standard circuits, the behavior of our layer 3 circuits is subject to spatial
considerations, that is, to both gate placement and wire length. For the sake of simplicity,
each tile is shaped as a square and all tiles are of the same size. In addition, the tiles are
placed in ascending order from left to right and with no space in-between. The only objects

147

6. Embedding Arbitrary Boolean Circuits into Fungal Automata

Ti

x1 x1

xn xn

g1 g1

gi−1 gi−1

Gi

gi

Figure 6.17.: Overview of the tile 𝑇𝑖 . The upper part of the tile has green background, the lower part has blue
background.

in 𝐹 that lie outside the tiles are the inputs and output of 𝐶 itself. The inputs are placed
immediately next to corresponding cables that go into 𝑇1 whereas the output is placed
next to its corresponding wire 𝑔𝑚 at the outgoing end of 𝑇𝑚 .

6.6.2. Layout for Tile 𝑖

As depicted in Figure 6.17, each tile is subdivided into two areas. The upper part contains
the wires that pass through it, while the lower part implements the gate 𝐺𝑖 proper.

We give a broad overview of the process for constructing 𝑇𝑖 . First determine the numbers
𝑦1 and𝑦2 of the inputs to𝐺𝑖 . Then duplicate the bits on cables𝑦1 and𝑦2 (as in Section 6.5.2)
and cross the copies over to the lower part of the tile. These crossings require setting
adequate delays, which will be addressed in the next section. (In case 𝑦1 = 𝑦2, duplicate
the cable twice and proceed as otherwise described.) Next instantiate 𝐺𝑖 with a proper
amount of delay (again, see the next section) and plug in𝑦1 and𝑦2 as inputs into𝐺𝑖 . Finally
connect all inputs in 𝐼𝑖 as well as the output wire 𝑔𝑖 of𝐺𝑖 to their respective outputs. Notice
the tile contains 𝑂 (𝑚) crossings and thus also 𝑂 (𝑚) nand gates in total.

6.6.3. Choosing Suitable Delays for All Gates

The two details that remain are setting the dimensions and the delays for the retarders in
all nand gates. This requires certain care since we may otherwise end up running into
a chicken-and-egg problem: The retarders’ dimensions are determined by the required
delays (in order to have enough space to realize them); in turn, the delays depend on the
aforementioned dimensions (since the input wires in the nand gates must be laid so as to
“go around” the retarders).

The solution is to assume we already have an upper bound 𝐷 on the maximum delay in 𝐹 .
This allows us to fix the size of the components as follows:

• The retarders and nand gates have side length 𝑂 (
√
𝐷).

148

6.6. Layer 4: Layout of a Whole Circuit

• Each tile has side length 𝑂 (𝑚
√
𝐷).

• The support of 𝐹 fits into a square with side length 𝑂 (𝑚2√𝐷).

With this in place, we determine upper bounds on the delays of the upper gates in a tile
(i.e., the gates in the upper part of the tile), then of the lower gates 𝐺𝑖 , then of the tiles
themselves, and finally of the entire embedding of𝐶 . In the end we obtain an upper bound
for the maximum possible delay in 𝐹 . Simply setting 𝐷 to be at least as large concludes
the construction.

Upper gates. In order to set the delays of a nand gate𝐺 in a tile𝑇𝑖 , we first need an upper
bound 𝑑input on the delays of the two inputs to 𝐺 . Suppose the origins 𝑂1 and 𝑂2 of
these inputs (i.e., either a nand gate output or an input to 𝑇𝑖) have delay at most
𝑑origin. Then certainly we have

𝑑input ≤ 𝑑origin + 𝑑cable,

where 𝑑cable is the maximum of the cable distances between either one of 𝑂1 and 𝑂2
and the switches they are connected to inside𝐺 . Due to the layout of a tile and since
a nand gate has𝑂 (

√
𝐷) side length, we know 𝑑cable is at most𝑂 (

√
𝐷). Hence, if𝐺 is

in the 𝑗-th layer of 𝑇𝑖 , then we may safely upper-bound its delay by 𝑑𝑖 + (𝑗 + 1)𝑑cable,
where 𝑑𝑖 is the maximum over the delays of the inputs to 𝑇𝑖 .

Lower gates. Since there are𝑂 (𝑚) cables inside a tile, there are𝑂 (𝑚) cable crossings and
thus 𝑂 (𝑚) nand gates realizing these crossings. Hence the inputs to the gate 𝐺𝑖 in
the lower part of 𝑇𝑖 have delay at most

𝑑𝑖 +𝑂 (𝑚) · 𝑑cable +𝑂 (𝑚
√
𝐷),

where the last factor is due to the side length of 𝑇 (i.e., the maximum cable length
needed to connect the last of the upper gates with 𝐺𝑖).

Tiles. Clearly the greatest delay among the output cables of 𝑇𝑖 is that of 𝑔𝑖 (since every
other cable originates from a straight path across 𝑇𝑖). As we have determined in the
last paragraph, at its output 𝑔𝑖 has delay

𝑑𝑖+1 ≤ 𝑑𝑖 +𝑂 (𝑚
√
𝐷).

Since the side length of a tile is 𝑂 (𝑚
√
𝐷), we may upper-bound the delays of the

inputs of 𝑇𝑖 by 𝑖 ·𝑂 (𝑚
√
𝐷).

Support of 𝐹 . Since there are 𝑚 tiles in total, it suffices to choose a maximum delay
𝐷 that satisfies 𝐷 ≥ 𝑐𝑚2√𝐷 for some adequate constant 𝑐 (that results from the
considerations above). In particular, this means wemay set𝐷 = Θ(𝑚4) independently
of 𝐶 .

149

6. Embedding Arbitrary Boolean Circuits into Fungal Automata

6.6.4. Constructor

In this final section we describe how to realize a logspace constructor 𝑅 that, given a CVP
instance consisting of the description of a circuit 𝐶 and an input 𝑥 to it, reduces it to an
instance as in Theorem 6.1. Due to the structure of 𝐹 , this is relatively straightforward.

The constructor 𝑅 outputs the description of 𝐹 column for column. (Computing the
coordinates of an element or wire is clearly feasible in logspace.) In the first few columns
𝑅 sets the inputs to the embedded circuit according to 𝑥 . Next 𝑅 constructs 𝐹 tile for
tile. To construct tile 𝑇𝑖 , 𝑅 determines which cables are the inputs to 𝐺𝑖 and constructs
crossings accordingly. To estimate the delays of each wire, 𝑅 uses the upper bounds we
have determined in Section 6.6.3, which clearly are all computable in logspace (since the
maximum delay 𝐷 is polynomial in𝑚).

Finally 𝑅 also needs to produce 𝑦 and 𝑇 as in the statement of Theorem 6.1. Let 𝑐𝑖 be the
cable of 𝑇𝑚 that corresponds to the output of the embedded circuit𝐶 . Then we let 𝑦 be the
index of the cell next to the ⊞ wire of 𝑐𝑖 at the output of 𝑇𝑚 . (Hence 𝑦 assumes a non-zero
state if and only if 𝑐𝑖 contains a 1, that is, 𝐶 (𝑥) = 1.) As for 𝑇 , certainly setting it to the
number of cells in 𝐹 suffices (since a signal needs to visit every cell in 𝐹 at most once).

150

Bibliography

[1] Andrew Adamatzky, Eric Goles Ch., Michail-Antisthenis I. Tsompanas, Genaro
J. Martínez, Han A. B. Wosten, and Martin Tegelaar. “On Fungal Automata.” In:
Automata and Complexity - Essays Presented to Eric Goles on the Occasion of His
70th Birthday. Ed. by Andrew Adamatzky. Vol. 42. Springer, 2022, pp. 455–483.

[2] Eric Allender. “The New Complexity Landscape Around Circuit Minimization.” In:
Language and Automata Theory and Applications - 14th International Conference,
LATA 2020, Milan, Italy, March 4-6, 2020, Proceedings. Ed. by Alberto Leporati, Carlos
Martín-Vide, Dana Shapira, and Claudio Zandron. Vol. 12038. Lecture Notes in
Computer Science. Springer, 2020, pp. 3–16.

[3] Eric Allender and Michal Koucký. “Amplifying lower bounds by means of self-
reducibility.” In: J. ACM 57.3 (2010), 14:1–14:36.

[4] Roy Armoni. “On the Derandomization of Space-Bounded Computations.” In: Ran-
domization and Approximation Techniques in Computer Science, Second International
Workshop, RANDOM’98, Barcelona, Spain, October 8-10, 1998, Proceedings. Ed. by
Michael Luby, José D. P. Rolim, and Maria J. Serna. Vol. 1518. Lecture Notes in
Computer Science. Springer, 1998, pp. 47–59.

[5] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge: Cambridge University Press, 2009.

[6] Pablo Arrighi, Renan Fargetton, Vincent Nesme, and Eric Thierry. “Applying
Causality Principles to the Axiomatization of Probabilistic Cellular Automata.”
In: Models of Computation in Context - 7th Conference on Computability in Europe,
CiE 2011, Sofia, Bulgaria, June 27 - July 2, 2011. Proceedings. Ed. by Benedikt Löwe,
Dag Normann, Ivan N. Soskov, and Alexandra A. Soskova. Vol. 6735. Lecture Notes
in Computer Science. Springer, 2011, pp. 1–10.

[7] Pablo Arrighi, Nicolas Schabanel, and Guillaume Theyssier. “Stochastic Cellular
Automata: Correlations, Decidability and Simulations.” In: Fundam. Informaticae
126.2-3 (2013), pp. 121–156.

[8] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.
“Models and Issues in Data Stream Systems.” In: Proceedings of the Twenty-first
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June
3-5, Madison, Wisconsin, USA. Ed. by Lucian Popa, Serge Abiteboul, and Phokion G.
Kolaitis. ACM, 2002, pp. 1–16.

151

Bibliography

[9] Nicolas Bacquey, Etienne Grandjean, and Frédéric Olive. “Definability by Horn
Formulas and Linear Time on Cellular Automata.” In: 44th International Colloquium
on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, War-
saw, Poland. Ed. by Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca
Muscholl. Vol. 80. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017,
99:1–99:14.

[10] Per Bak, Chao Tang, and Kurt Wiesenfeld. “Self-organized criticality: An explana-
tion of the 1/𝑓 noise.” In: Phys. Rev. Lett. 59.4 (1987), pp. 381–384.

[11] Theodore P. Baker, John Gill, and Robert Solovay. “Relativizations of the P =? NP
Question.” In: SIAM J. Comput. 4.4 (1975), pp. 431–442.

[12] David A. Mix Barrington. “Extensions of an Idea of McNaughton.” In:Mathematical
Systems Theory 23.3 (1990), pp. 147–164.

[13] Danièle Beauquier and Jean-Eric Pin. “Factors of Words.” In: Automata, Languages
and Programming, 16th International Colloquium, ICALP89, Stresa, Italy, July 11-15,
1989, Proceedings. 1989, pp. 63–79.

[14] Danièle Beauquier and Jean-Eric Pin. “Languages and Scanners.” In: Theor. Comput.
Sci. 84.1 (1991), pp. 3–21.

[15] Andrej Bogdanov, William M. Hoza, Gautam Prakriya, and Edward Pyne. “Hitting
Sets for Regular Branching Programs.” In: 37th Computational Complexity Con-
ference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA. Ed. by Shachar Lovett.
Vol. 234. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 3:1–3:22.

[16] Vladimir Braverman. “Sliding Window Algorithms.” In: Encyclopedia of Algorithms.
2016, pp. 2006–2011.

[17] Janusz A. Brzozowski and Imre Simon. “Characterizations of locally testable events.”
In: Discrete Mathematics 4.3 (1973), pp. 243–271.

[18] Hervé Caussinus, Pierre McKenzie, Denis Thérien, and Heribert Vollmer. “Nonde-
terministic NC1 Computation.” In: J. Comput. Syst. Sci. 57.2 (1998), pp. 200–212.

[19] Bernard Chazelle and Louis Monier. “A Model of Computation for VLSI with
Related Complexity Results.” In: J. ACM 32.3 (1985), pp. 573–588.

[20] Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira, Ján Pich, Ninad Rajgopal, and
Rahul Santhanam. “Beyond Natural Proofs: Hardness Magnification and Locality.”
In: 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January
12-14, 2020, Seattle, Washington, USA. Ed. by Thomas Vidick. Vol. 151. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 70:1–70:48.

[21] Lijie Chen, Ce Jin, and R. RyanWilliams. “Hardness Magnification for all Sparse NP
Languages.” In: 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019. Ed. by David Zuckerman.
IEEE Computer Society, 2019, pp. 1240–1255.

152

Bibliography

[22] Lijie Chen, Ce Jin, and R. Ryan Williams. “Sharp threshold results for computa-
tional complexity.” In: Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020. Ed. by
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and
Julia Chuzhoy. ACM, 2020, pp. 1335–1348.

[23] Lijie Chen, DylanM. McKay, Cody D. Murray, and R. RyanWilliams. “Relations and
Equivalences Between Circuit Lower Bounds and Karp-Lipton Theorems.” In: 34th
Computational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick,
NJ, USA. Ed. by Amir Shpilka. Vol. 137. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019, 30:1–30:21.

[24] Lijie Chen and Roei Tell. “Bootstrapping results for threshold circuits "just beyond"
known lower bounds.” In: Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019. Ed. by
Moses Charikar and Edith Cohen. ACM, 2019, pp. 34–41.

[25] Mahdi Cheraghchi, Shuichi Hirahara, Dimitrios Myrisiotis, and Yuichi Yoshida.
“One-Tape Turing Machine and Branching Program Lower Bounds for MCSP.” In:
38th International Symposium on Theoretical Aspects of Computer Science, STACS
2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference). Ed. by Markus
Bläser and BenjaminMonmege. Vol. 187. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021, 23:1–23:19.

[26] Stephen A. Cook. “A Taxonomy of Problems with Fast Parallel Algorithms.” In:
Information and Control 64.1-3 (1985), pp. 2–21.

[27] Graham Cormode. “The continuous distributed monitoring model.” In: SIGMOD
Rec. 42.1 (2013), pp. 5–14.

[28] Stefano Crespi-Reghizzi, Dora Giammarresi, and Violetta Lonati. “Two-dimensional
models.” In: Handbook of Automata Theory. Ed. by Jean-Éric Pin. European Mathe-
matical Society Publishing House, Zürich, Switzerland, 2021, pp. 303–333.

[29] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. “Maintaining
Stream Statistics over Sliding Windows.” In: SIAM J. Comput. 31.6 (2002), pp. 1794–
1813.

[30] Marianne Delorme and Jacques Mazoyer, eds. Cellular Automata. A Parallel Model.
Mathematics and Its Applications 460. Dordrecht: Springer Netherlands, 1999.

[31] Christoph Dürr, Ivan Rapaport, and Guillaume Theyssier. “Cellular automata and
communication complexity.” In: Theor. Comput. Sci. 322.2 (2004), pp. 355–368.

[32] Patrick W. Dymond and Stephen A. Cook. “Hardware Complexity and Parallel
Computation (Preliminary Version).” In: 21st Annual Symposium on Foundations
of Computer Science, Syracuse, New York, USA, 13-15 October 1980. IEEE Computer
Society, 1980, pp. 360–372.

[33] Samuel Eilenberg. Automata, Languages, and Machines. Vol. B. Pure and applied
mathematics. New York: Academic Press, 1976.

153

Bibliography

[34] Terry Farrelly. “A review of Quantum Cellular Automata.” In: Quantum 4 (2020),
p. 368.

[35] Laurent Feuilloley and Pierre Fraigniaud. “Survey of Distributed Decision.” In: Bull.
EATCS 119 (2016).

[36] Laurent Feuilloley, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, Éric
Rémila, and Ioan Todinca. “Compact Distributed Certification of Planar Graphs.”
In: Algorithmica 83.7 (2021), pp. 2215–2244.

[37] Eldar Fischer. “The Art of Uninformed Decisions.” In: Bulletin of the EATCS 75
(2001), p. 97.

[38] Michael A. Forbes and Zander Kelley. “Pseudorandom Generators for Read-Once
Branching Programs, in AnyOrder.” In: 59th IEEEAnnual Symposium on Foundations
of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018. Ed. by Mikkel
Thorup. IEEE Computer Society, 2018, pp. 946–955.

[39] Enrico Formenti and Kévin Perrot. “How Hard is it to Predict Sandpiles on Lattices?
A Survey.” In: Fundam. Informaticae 171.1-4 (2020), pp. 189–219.

[40] Pierre Fraigniaud, Pedro Montealegre, Rotem Oshman, Ivan Rapaport, and Ioan
Todinca. “On Distributed Merlin-Arthur Decision Protocols.” In: Structural Infor-
mation and Communication Complexity - 26th International Colloquium, SIROCCO
2019, L’Aquila, Italy, July 1-4, 2019, Proceedings. Ed. by Keren Censor-Hillel and
Michele Flammini. Vol. 11639. Lecture Notes in Computer Science. Springer, 2019,
pp. 230–245.

[41] Bin Fu. “Hardness of Sparse Sets and Minimal Circuit Size Problem.” In: Computing
and Combinatorics - 26th International Conference, COCOON 2020, Atlanta, GA, USA,
August 29-31, 2020, Proceedings. Ed. by Donghyun Kim, R. N. Uma, Zhipeng Cai,
and Dong Hoon Lee. Vol. 12273. Lecture Notes in Computer Science. Springer,
2020, pp. 484–495.

[42] Merrick L. Furst, James B. Saxe, and Michael Sipser. “Parity, Circuits, and the
Polynomial-Time Hierarchy.” In: Mathematical Systems Theory 17.1 (1984), pp. 13–
27.

[43] Anahí Gajardo and Eric Goles. “Crossing information in two-dimensional Sand-
piles.” In: Theor. Comput. Sci. 369.1-3 (2006), pp. 463–469.

[44] Moses Ganardi, Danny Hucke, and Markus Lohrey. “Randomized Sliding Window
Algorithms for Regular Languages.” In: 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic.
Ed. by Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald
Sannella. Vol. 107. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018,
127:1–127:13.

154

Bibliography

[45] Moses Ganardi, Danny Hucke, and Markus Lohrey. “Sliding Window Algorithms
for Regular Languages.” In: Language and Automata Theory and Applications - 12th
International Conference, LATA 2018, Ramat Gan, Israel, April 9-11, 2018, Proceedings.
Ed. by Shmuel Tomi Klein, Carlos Martín-Vide, and Dana Shapira. Vol. 10792.
Lecture Notes in Computer Science. Springer, 2018, pp. 26–35.

[46] Moses Ganardi, Danny Hucke, and Markus Lohrey. “Derandomization for Sliding
Window Algorithms with Strict Correctness∗.” In: Theory Comput. Syst. 65.3 (2021),
pp. 1–18.

[47] Moses Ganardi, Artur Jez, and Markus Lohrey. “Sliding Windows over Context-
Free Languages.” In: 43rd International Symposium on Mathematical Foundations
of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK. Ed. by Igor
Potapov, Paul G. Spirakis, and James Worrell. Vol. 117. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018, 15:1–15:15.

[48] Pedro García and José Ruiz. “Threshold Locally Testable Languages in Strict Sense.”
In: Grammars and Automata for String Processing: From Mathematics and Computer
Science to Biology, and Back: Essays in Honour of Gheorghe Paun. Ed. by Carlos
Martín-Vide and Victor Mitrana. Vol. 9. Topics in Computer Mathematics. Taylor
and Francis, 2003, pp. 243–252.

[49] Aurélien Garivier and Eric Moulines. “On Upper-Confidence Bound Policies for
Switching Bandit Problems.” In: Algorithmic Learning Theory - 22nd International
Conference, ALT 2011, Espoo, Finland, October 5-7, 2011. Proceedings. Ed. by Jyrki
Kivinen, Csaba Szepesvári, Esko Ukkonen, and Thomas Zeugmann. Vol. 6925.
Lecture Notes in Computer Science. Springer, 2011, pp. 174–188.

[50] Oded Goldreich. Computational Complexity: A Conceptional Perspective. Cambridge:
Cambridge University Press, 2008.

[51] Oded Goldreich and Avi Wigderson. “Tiny families of functions with random
properties: A quality-size trade-off for hashing.” In: Random Struct. Algorithms 11.4
(1997), pp. 315–343.

[52] Leslie M. Goldschlager. “The monotone and planar circuit value problems are log
space complete for P.” In: SIGACT News 9.2 (1977), pp. 25–29.

[53] Eric Goles, Michail-Antisthenis I. Tsompanas, Andrew Adamatzky, Martin Tegelaar,
Han A. B. Wosten, and Genaro J. Martínez. “Computational universality of fungal
sandpile automata.” In: Phys. Lett. A 384.22 (2020), 126541:1–126541:8.

[54] Anaël Grandjean and Victor Poupet. “L-Convex Polyominoes Are Recognizable in
Real Time by 2D Cellular Automata.” In: Cellular Automata and Discrete Complex
Systems - 21st IFIP WG 1.5 International Workshop, AUTOMATA 2015, Turku, Finland,
June 8-10, 2015. Proceedings. Ed. by Jarkko Kari. Vol. 9099. Lecture Notes in Computer
Science. Springer, 2015, pp. 127–140.

155

Bibliography

[55] Anaël Grandjean and Victor Poupet. “A Linear Acceleration Theorem for 2D Cellu-
lar Automata on All Complete Neighborhoods.” In: 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy.
Ed. by Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi. Vol. 55. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016,
115:1–115:12.

[56] Etienne Grandjean and Frédéric Olive. “A logical approach to locality in pictures
languages.” In: J. Comput. Syst. Sci. 82.6 (2016), pp. 959–1006.

[57] Juho Hirvonen and Jukka Suomela. Distributed Algorithms 2020. Available online.
url: https://jukkasuomela.fi/da2020.

[58] William M. Hoza, Edward Pyne, and Salil P. Vadhan. “Pseudorandom Generators
for Unbounded-Width Permutation Branching Programs.” In: 12th Innovations
in Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual
Conference. Ed. by James R. Lee. Vol. 185. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021, 7:1–7:20.

[59] William M. Hoza and David Zuckerman. “Simple Optimal Hitting Sets for Small-
Success RL.” In: SIAM J. Comput. 49.4 (2020), pp. 811–820.

[60] Oscar H. Ibarra, Michael A. Palis, and Sam M. Kim. “Fast Parallel Language Recog-
nition by Cellular Automata.” In: Theor. Comput. Sci. 41 (1985), pp. 231–246.

[61] Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. “NP-Hardness of Circuit
Minimization for Multi-Output Functions.” In: 35th Computational Complexity
Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference).
Ed. by Shubhangi Saraf. Vol. 169. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020, 22:1–22:36.

[62] Neil Immerman. Descriptive Complexity. Graduate Texts in Computer Science. New
York: Springer, 1999.

[63] Chuzo Iwamoto, Tomonobu Hatsuyama, Kenichi Morita, and Katsunobu Imai.
“Constructible functions in cellular automata and their applications to hierarchy
results.” In: Theor. Comput. Sci. 270.1-2 (2002), pp. 797–809.

[64] Valentine Kabanets and Jin-yi Cai. “Circuit minimization problem.” In: Proceedings
of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23,
2000, Portland, OR, USA. Ed. by F. Frances Yao and Eugene M. Luks. ACM, 2000,
pp. 73–79.

[65] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. “Revisiting Norm Estimation
in Data Streams.” In: CoRR abs/0811.3648 (2008). arXiv: 0811.3648.

[66] Sam Kim and Robert McCloskey. “A Characterization of Constant-Time Cellular
Automata Computation.” In: Phys. D 45.1-3 (1990), pp. 404–419.

[67] Kojiro Kobayashi. “On the structure of one-tape nondeterministic turing machine
time hierarchy.” In: Theor. Comput. Sci. 40 (1985), pp. 175–193.

156

https://jukkasuomela.fi/da2020
https://arxiv.org/abs/0811.3648

Bibliography

[68] Gillat Kol, Rotem Oshman, and Raghuvansh R. Saxena. “Interactive Distributed
Proofs.” In: Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, PODC 2018, Egham, United Kingdom, July 23-27, 2018. Ed. by Calvin
Newport and Idit Keidar. ACM, 2018, pp. 255–264.

[69] Martin Kutrib. “Cellular Automata and Language Theory.” In: Encyclopedia of
Complexity and Systems Science. 2009, pp. 800–823.

[70] Martin Kutrib. “Complexity of One-Way Cellular Automata.” In: Cellular Automata
and Discrete Complex Systems - 20th International Workshop, AUTOMATA 2014,
Himeji, Japan, July 7-9, 2014, Revised Selected Papers. Ed. by Teijiro Isokawa, Ka-
tsunobu Imai, Nobuyuki Matsui, Ferdinand Peper, and Hiroshi Umeo. Vol. 8996.
Lecture Notes in Computer Science. Springer, 2014, pp. 3–18.

[71] Martin Kutrib, Andreas Malcher, and Matthias Wendlandt. “Shrinking one-way
cellular automata.” In: Nat. Comput. 16.3 (2017), pp. 383–396.

[72] Nathan Linial. “Locality in Distributed Graph Algorithms.” In: SIAM J. Comput.
21.1 (1992), pp. 193–201.

[73] Jean Mairesse and Irène Marcovici. “Around probabilistic cellular automata.” In:
Theor. Comput. Sci. 559 (2014), pp. 42–72.

[74] Andrew McGregor. “Graph stream algorithms: a survey.” In: SIGMOD Rec. 43.1
(2014), pp. 9–20.

[75] Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. “Weak lower bounds on
resource-bounded compression imply strong separations of complexity classes.” In:
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, June 23-26, 2019. Ed. by Moses Charikar and Edith
Cohen. ACM, 2019, pp. 1215–1225.

[76] Robert McNaughton. “Algebraic Decision Procedures for Local Testability.” In:
Mathematical Systems Theory 8.1 (1974), pp. 60–76.

[77] Robert McNaughton and Seymour Papert. Counter-Free Automata. Cambridge, MA:
The MIT Press, 1971.

[78] Peter Bro Miltersen. “The Computational Complexity of One-Dimensional Sand-
piles.” In: Theory Comput. Syst. 41.1 (2007), pp. 119–125.

[79] Augusto Modanese. “Shrinking and Expanding One-Dimensional Cellular Autom-
ata.” Bachelor’s thesis. Karlsruhe Institute of Technology (KIT), 2016.

[80] Augusto Modanese. “Complexity-Theoretic Aspects of Expanding Cellular Au-
tomata.” In: Cellular Automata and Discrete Complex Systems - 25th IFIP WG 1.5
International Workshop, AUTOMATA 2019, Guadalajara, Mexico, June 26-28, 2019,
Proceedings. Ed. by Alonso Castillo-Ramirez and Pedro Paulo Balbi de Oliveira.
Vol. 11525. Lecture Notes in Computer Science. Springer, 2019, pp. 20–34.

157

Bibliography

[81] Augusto Modanese. “Sublinear-Time Language Recognition and Decision by One-
Dimensional Cellular Automata.” In: Developments in Language Theory - 24th In-
ternational Conference, DLT 2020, Tampa, FL, USA, May 11-15, 2020, Proceedings.
Ed. by Natasa Jonoska and Dmytro Savchuk. Vol. 12086. Lecture Notes in Computer
Science. Springer, 2020, pp. 251–265.

[82] Augusto Modanese. “Lower Bounds and Hardness Magnification for Sublinear-
Time Shrinking Cellular Automata.” In: Computer Science - Theory and Applications
- 16th International Computer Science Symposium in Russia, CSR 2021, Sochi, Russia,
June 28 - July 2, 2021, Proceedings. Ed. by Rahul Santhanam and Daniil Musatov.
Vol. 12730. Lecture Notes in Computer Science. Springer, 2021, pp. 296–320.

[83] Augusto Modanese. “Sublinear-Time Language Recognition and Decision by One-
Dimensional Cellular Automata.” In: Int. J. Found. Comput. Sci. 32.6 (2021), pp. 713–
731.

[84] Augusto Modanese. “Sublinear-Time Probabilistic Cellular Automata.” In: CoRR
abs/2203.14614 (2022). arXiv: 2203.14614.

[85] Augusto Modanese and Thomas Worsch. “Shrinking and Expanding Cellular Au-
tomata.” In: Cellular Automata and Discrete Complex Systems - 22nd IFIP WG 1.5
International Workshop, AUTOMATA 2016, Zurich, Switzerland, June 15-17, 2016,
Proceedings. Ed. by Matthew Cook and Turlough Neary. Vol. 9664. Lecture Notes
in Computer Science. Springer, 2016, pp. 159–169.

[86] Augusto Modanese and Thomas Worsch. “Embedding arbitrary Boolean circuits
into fungal automata.” In: LATIN 2022: Theoretical Informatics - 15th Latin American
Symposium, Guanajuato, Mexico, November 7-11, 2022, Proceedings. Lecture Notes
in Computer Science. Springer, 2022. Forthcoming.

[87] Pedro Montealegre, Diego Ramírez-Romero, and Ivan Rapaport. “Shared vs Private
Randomness in Distributed Interactive Proofs.” In: 31st International Symposium on
Algorithms and Computation, ISAAC 2020, December 14-18, 2020, Hong Kong, China
(Virtual Conference). Ed. by Yixin Cao, Siu-Wing Cheng, and Minming Li. Vol. 181.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 51:1–51:13.

[88] Pedro Montealegre, Diego Ramírez-Romero, and Ivan Rapaport. “Compact Dis-
tributed Interactive Proofs for the Recognition of Cographs andDistance-Hereditary
Graphs.” In: Stabilization, Safety, and Security of Distributed Systems - 23rd Interna-
tional Symposium, SSS 2021, Virtual Event, November 17-20, 2021, Proceedings. Ed. by
Colette Johnen, Elad Michael Schiller, and Stefan Schmid. Vol. 13046. Lecture Notes
in Computer Science. Springer, 2021, pp. 395–409.

[89] CristopherMoore andMartin Nilsson. “The computational complexity of sandpiles.”
In: Journal of Statistical Physics 96.1 (1999), pp. 205–224.

[90] Cody D. Murray and R. Ryan Williams. “On the (Non) NP-Hardness of Computing
Circuit Complexity.” In: Theory of Computing 13.1 (2017), pp. 1–22.

[91] NoamNisan. “Pseudorandom generators for space-bounded computation.” In:Comb.
12.4 (1992), pp. 449–461.

158

https://arxiv.org/abs/2203.14614

Bibliography

[92] Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. “Hardness Magnification
Near State-of-the-Art Lower Bounds.” In: Theory Comput. 17 (2021), pp. 1–38.

[93] Igor Carboni Oliveira and Rahul Santhanam. “Hardness Magnification for Natural
Problems.” In: 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018. Ed. by Mikkel Thorup. IEEE Computer
Society, 2018, pp. 65–76.

[94] Maciej Pacut, Mahmoud Parham, Joel Rybicki, Stefan Schmid, Jukka Suomela,
and Aleksandr Tereshchenko. “Brief Announcement: Temporal Locality in Online
Algorithms.” In: 36th International Symposium on Distributed Computing, DISC 2022,
October 25-27, 2022, Augusta, Georgia, USA. Ed. by Christian Scheideler. Vol. 246.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 52:1–52:3.

[95] Victor Poupet. “A Padding Technique on Cellular Automata to Transfer Inclusions
of Complexity Classes.” In: Computer Science - Theory and Applications, Second
International Symposium on Computer Science in Russia, CSR 2007, Ekaterinburg,
Russia, September 3-7, 2007, Proceedings. Ed. by Volker Diekert, Mikhail V. Volkov,
and Andrei Voronkov. Vol. 4649. Lecture Notes in Computer Science. Springer,
2007, pp. 337–348.

[96] Daniel Průša. “Complexity of Matching Sets of Two-Dimensional Patterns by Two-
Dimensional On-Line Tessellation Automaton.” In: Int. J. Found. Comput. Sci. 28.5
(2017), p. 623.

[97] Michael O. Rabin. “Probabilistic Automata.” In: Inf. Control. 6.3 (1963), pp. 230–245.
[98] Azriel Rosenfeld. Picture Languages: Formal Models for Picture Recognition. New

York: Academic Press, 1979.
[99] Azriel Rosenfeld and Angela Y. Wu. “Reconfigurable Cellular Computers.” In: Infor-

mation and Control 50.1 (1981), pp. 60–84.
[100] Azriel Rosenfeld, Angela Y. Wu, and Tsvi Dubitzki. “Fast language acceptance by

shrinking cellular automata.” In: Inf. Sci. 30.1 (1983), pp. 47–53.
[101] Ronitt Rubinfeld and Asaf Shapira. “Sublinear Time Algorithms.” In: SIAM J. Discrete

Math. 25.4 (2011), pp. 1562–1588.
[102] José Ruiz, Salvador España Boquera, and Pedro García. “Locally Threshold Testable

Languages in Strict Sense: Application to the Inference Problem.” In: Grammatical
Inference, 4th International Colloquium, ICGI-98, Ames, Iowa, USA, July 12-14, 1998,
Proceedings. 1998, pp. 150–161.

[103] Walter L. Ruzzo. “On Uniform Circuit Complexity.” In: J. Comput. Syst. Sci. 22.3
(1981), pp. 365–383.

[104] Juan C. Seck-Tuoh-Mora and Genaro J. Martínez. “Graphs Related to Reversibility
and Complexity in Cellular Automata.” In: Cellular Automata. Ed. by Andrew
Adamatzky. Encyclopedia of Complexity and Systems Science. Springer, 2018.

[105] Rudolph Sommerhalder and S. Christian van Westrhenen. “Parallel Language
Recognition in Constant Time by Cellular Automata.” In:Acta Inf. 19 (1983), pp. 397–
407.

159

Bibliography

[106] Michael Stratmann and Thomas Worsch. “Leader election in 𝑑-dimensional CA in
time diam log(diam).” In: Future Gener. Comput. Syst. 18.7 (2002), pp. 939–950.

[107] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Progress
in Theoretical Computer Science. Boston, MA: Birkhäuser, 1994.

[108] Madhu Sudan. “Probabilistically checkable proofs.” In: Commun. ACM 52.3 (2009),
pp. 76–84.

[109] Jukka Suomela. “Survey of local algorithms.” In: ACM Comput. Surv. 45.2 (2013),
24:1–24:40.

[110] Klaus Sutner. “De Bruijn Graphs and Linear Cellular Automata.” In: Complex Syst.
5.1 (1991).

[111] Véronique Terrier. “Language Recognition by Cellular Automata.” In: Handbook of
Natural Computing. 2012, pp. 123–158.

[112] Clark David Thompson. “A Complexity Theory for VLSI.” PhD thesis. Department
of Computer Science, Carnegie-Mellon University, Aug. 1980.

[113] Salil P. Vadhan. “Pseudorandomness.” In: Found. Trends Theor. Comput. Sci. 7.1-3
(2012), pp. 1–336.

[114] Roland Vollmar. “On two modified problems of synchronization in cellular autom-
ata.” In: Acta Cybern. 3.4 (1977), pp. 293–300.

[115] Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Texts in
Theoretical Computer Science. An EATCS Series. Berlin: Springer, 1999.

[116] Andrew Chi-Chih Yao. “Circuits and Local Computation.” In: Proceedings of the
21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle,
Washington, USA. Ed. by David S. Johnson. ACM, 1989, pp. 186–196.

160

	 Abstract
	 Zusammenfassung
	 Acknowledgments
	Introduction
	Introduction
	Background and Motivation
	Models Studied
	Cellular Automata and their Variants
	Streaming Algorithms

	Main Contributions
	Sublinear-Time Cellular Automata
	Sliding-Window Algorithms
	Fungal Sandpile Automata

	Common Themes and Techniques
	Locality and Anonymity
	Locally Verifiable Padding
	The Inclusion-Exclusion Principle
	Simulation Techniques
	Shattering and Interleaving

	Organization

	Contents
	Sublinear-Time Recognition and Decision by One-Dimensional Cellular Automata
	Introduction
	Definitions
	(Strictly) Locally Testable Languages
	Cellular Automata

	First Observations
	Main Results
	Time Hierarchy
	Intersection with the Regular Languages
	Relation to Parallel Complexity Classes

	Decider ACA
	The Constant-Time Case
	Beyond Constant Time

	Conclusion and Open Problems

	Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular Automata
	Introduction
	The Model
	Techniques
	Organization

	Preliminaries
	Cellular Automata

	Capabilities and Limitations of Sublinear-Time SCAs
	Block Languages
	Block Languages and Parallel Computation
	An Optimal SCA Lower Bound for a Block Language

	Simulation of an SCA by a Streaming Algorithm
	Hardness Magnification for Sublinear-Time SCAs
	Concluding Remarks

	Sublinear-Time Probabilistic Cellular Automata
	Introduction
	The Model
	Results
	Further Directions
	Organization

	Preliminaries
	Cellular Automata

	Fundamentals
	Robustness of Definition
	One- vs. Two-Sided Error

	The Constant-Time Case
	Critical Cells
	Characterization

	The General Sublinear-Time Case

	Pseudorandom Generators for Sliding-Window Algorithms
	Introduction
	Branching Programs
	Our Results
	Technical Overview
	Related Work
	Organization

	Preliminaries
	De Bruijn Graphs Fully Characterize SWBPs
	Pseudorandom Generators for General SWBPs
	Pseudorandom Generators for δ-critical SWBPs
	Application to Sublinear-Time Probabilistic Cellular Automata
	Probabilistic Cellular Automata
	Simulating a PACA with a Low-Space Sliding-Window Algorithm
	Derandomizing Sublinear-Time PACAs with Small Space

	Embedding Arbitrary Boolean Circuits into Fungal Automata
	Introduction
	Boolean circuits and the CVP
	Challenges
	Overview of the construction

	Layer 0: The Fungal Automaton
	Layer 1: Coarse-Graining Space and Time
	Layer 2: Polarized Components
	Polarized Signals and Wires
	Diodes
	Duplicating, Merging, and Crossing Wires
	Switches
	Delays and Retarders

	Layer 3: Working With Bits
	Representation of Bits
	Bit Duplication
	Nand Gates
	Cable Crossings

	Layer 4: Layout of a Whole Circuit
	Arranging the Circuit in Tiles
	Layout for Tile i
	Choosing Suitable Delays for All Gates
	Constructor

	Bibliography

