
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Uncertainty-aware Confidentiality
Analysis Using Architectural Variations

Bachelor’s Thesis of

Tizian Bitschi

at the Department of Informatics

KASTEL – Institute of Information Security and Dependability

Reviewer: Prof. Dr. Ralf H. Reussner

Second reviewer: Prof. Dr.-Ing. Anne Koziolek

Advisor: M.Sc. Sebastian Hahner

Second advisor: M.Sc. Maximilian Walter

June 21, 2022 – October 21, 2022

I declare that I have developed and written the enclosed thesis completely by myself. I

have submitted neither parts of nor the complete thesis as an examination elsewhere. I

have not used any other than the aids that I have mentioned. I have marked all parts of

the thesis that I have included from referenced literature, either in their original wording

or paraphrasing their contents. This also applies to figures, sketches, images and similar

depictions, as well as sources from the internet.

Karlsruhe, 2022.10.21

. .

(Tizian Bitschi)

Abstract

When planning software architectures, many aspects of the system to be developed are

still unclear. The larger the architecture, the more design decisions it contains and the

more uncertainty exists about the system. Even if a detailed design of the architecture

already exists, there may still be uncertain aspects, such as user inputs Software systems

usually contain data that only authorized persons should have access to. In addition,

companies have to comply with laws that specify the usage or storage policies of data.

Violations of confidentiality requirements can cost companies high fines. Therefore, it is

strongly advised to consider confidentiality compliance in the design process, even if the

architecture is not yet fully defined.

Previous approaches that analyze confidentiality provide skewed results when uncer-

tainties are attempted to be included, or ignore uncertainty entirely. Currently, to be

able to check whether violations of confidentiality policies occur in an architecture, it

must be examined where uncertainty occurs and what effect it has on elements in the

architecture. Furthermore, a large architecture can become very complex, making it more

difficult to find all the places where confidentiality violations can occur. This poses a

hurdle for software architects to intercept violations of confidentiality in their entirety

and to maintain confidentiality after changes in the design.

In this thesis, we present an approach that combines the results of existing confiden-

tiality analyses with modeling capabilities about uncertainties. For this, we develop

an algorithm that receives information about the uncertainty, the architecture and the

confidentiality breaches that have occurred as input. This results in an analysis that

examines uncertainties regarding their impact on a violation of confidentiality and shows

a software architect more quickly where and why violations of confidentiality occur. The

algorithm is designed for the possibility of future expansion.

We evaluate our approach by applying it to case studies and checking its usability

and feasibility. Under the assumption that we can describe architectural uncertainty as

variations that lead to scenarios of the architecture, the results indicate that the approach

can filter uncertainty impacts that are not responsible for confidentiality violations.

i

Zusammenfassung

Bei der Planung von Software-Architekturen sind viele Aspekte des zu entwickelnden

Systems noch unklar. Je größer die Architektur ist, desto mehr Entwurfsentscheidungen

enthält sie und desto mehr Ungewissheiten bestehen über das System. Selbst wenn bereits

ein Feinentwurf der Architektur existiert, kann es immernoch ungewisse Aspekte geben,

wie z. B. Nutzereingaben. Softwaresysteme enthalten in der Regel Daten, auf die nur

autorisierte Personen Zugriff haben sollen. Darüber hinaus müssen Unternehmen Gesetze

einhalten, die die Verwendung oder Speicherung von Daten vorschreiben. Verstöße gegen

die Vertraulichkeit von Daten können Unternehmen teuer zu stehen kommen. Daher

ist es dringend ratsam, die Einhaltung von Vertraulichkeitsanforderungen bereits im

Entwurfsprozess zu berücksichtigen, auch wenn die Architektur noch nicht vollständig

definiert ist.

Bisherige Ansätze zur Analyse der Vertraulichkeit liefern verfälschte Ergebnisse, wenn

Ungewissheiten einbezogen werden sollen oder ignorieren Ungewissheit vollständig.

Um überprüfen zu können, ob in einer Architektur Verstöße gegen Vertraulichkeits-

Richtlinien auftreten, muss derzeit untersucht werden, wo die Ungewissheit auftritt und

welche Auswirkungen sie auf die Elemente der Architektur hat. Außerdem kann eine

große Architektur sehr komplex werden, so dass es schwieriger wird, alle Stellen zu

finden, an denen Vertraulichkeitsverletzungen auftreten können. Dies stellt eine Hürde

für Softwarearchitekten dar, Vertraulichkeitsverletzungen in ihrer Gesamtheit abzufangen

und Vertraulichkeit nach Änderungen im Entwurf zu erhalten.

In dieser Arbeit stellen wir einen Ansatz vor, der die Ergebnisse bestehender Vertrau-

lichkeitsanalysen mit Modellierungsfähigkeiten über Ungewissheiten kombiniert. Hierfür

entwickeln wir einen Algorithmus, der als Eingabe Informationen über die Ungewissheit,

die Architektur und die aufgetretenen Vertraulichkeitsverletzungen erhält. Das Ergebnis

ist eine Analyse, die Ungewissheiten hinsichtlich ihrer Auswirkungen auf eine Vertrau-

lichkeitsverletzung untersucht und einem Softwarearchitekten schneller zeigt, wo und

warum Vertraulichkeitsverletzungen auftreten. Der Algorithmus ist auf die Möglichkeit

einer zukünftigen Erweiterung ausgelegt.

Wir evaluieren unseren Ansatz, indem wir ihn auf Fallstudien anwenden und die

Nutzbarkeit und Durchführbarkeit prüfen. Unter der Annahme, dass wir architektonische

Ungewissheit als Variationen beschreiben können, die zu Szenarien der Architektur

führen, zeigen die Ergebnisse, dass der Ansatz Ungewissheitseinflüsse herausfiltern kann,

die nicht für Vertraulichkeitsverletzungen verantwortlich sind.

ii

Contents

Abstract i

Zusammenfassung ii

1. Introduction 1

2. Foundations 3
2.1. Palladio Component Model . 3

2.2. Data Flow Diagrams . 3

2.3. Uncertainty . 4

3. State of the Art 5
3.1. Interpretation of Results . 5

3.2. Impact of Uncertainty . 6

3.3. Confidentiality Analyses . 6

4. Running Example 7

5. Uncertainty-aware Confidentiality Analysis 14
5.1. Overview . 14

5.2. Required Model for the Approach . 14

5.3. Reusing Existing Approaches for Confidentiality Analyses 16

5.4. Uncertainty Impact Filter . 18

6. Evaluation 24
6.1. Evaluation Plan . 24

6.2. Design . 26

6.2.1. Case Studies used for evaluation 26

6.2.2. Goal G1 - Feasibility . 26

6.2.3. Goal G2 - Accuracy . 27

6.2.4. Goal G3 - Usability . 28

6.3. Results . 29

6.3.1. Goal G1 - Feasibility . 29

6.3.2. Goal G2 - Accuracy . 30

6.3.3. Goal G3 - Usability . 32

6.4. Threats to Validity . 35

6.5. Limitations . 37

7. Conclusion 38
7.1. Summary . 38

7.2. Future Work . 39

iii

Contents

Bibliography 40

A. Appendix 43
A.1. Abbreviations . 43

iv

List of Figures

2.1. Simple example of a data flow diagram showing a newsletter registration 4

4.1. OnlineShop use case diagram under uncertainty in the input of data . . . 8

4.2. OnlineShop component diagram showing uncertainty in the choice of

the database . 9

4.3. OnlineShop sequence diagram . 10

4.4. OnlineShop deployment diagram showing uncertainty in database de-

ployment location . 11

4.5. Backend activity diagram under uncertainty of encryption choice 12

4.6. Table of allowed and forbidden configurations of the architecture 12

4.7. System data flow diagram under uncertainty represented by options of

labels . 13

5.1. Class diagram of the model used for the combination algorithm 15

5.2. Example data flow from our running example without violation 19

5.3. Example data flow from our running example with a violation 20

5.4. Example of splitting data flows into sequences 21

5.5. Example data flow from our running example with a violation and anno-

tated uncertainty impacts . 23

6.1. The two scenarios in the presented model of the TravelPlanner (M1), the
left without a violation - the right with a violation of confidentiality . . . 29

6.2. A scenario from the model of the Onlineshop containing two violations . 34

v

List of Tables

4.1. Occuring uncertainties in the OnlineShop described with varying subjects 12

6.1. Scenarios of the models for the naive approach 31

6.2. Results of the scenario rejection . 31

6.3. Results of the uncertainty impact filter 32

6.4. Comparing required knowledge in the scenario rejection to the uncer-

tainty impact filter . 33

vi

1. Introduction

In a world where more and more information is shared and more devices are connected,

maintaining confidentiality becomes increasingly important. If companies do not follow

the guidelines of confidentiality (e.g. the GDPR [25]), they suffer great damage. The

punishments harm them both financially and in public confidence. In May 2020 alone,

violations of the General Data Protection Regulation (GDPR) imposed fines of around

€315 million in the UK and around €25 million in Germany [28]. The later companies

repair such violations, the more expensive it becomes for them [4]. Therefore, it is

strongly advised to include confidentiality early in the planning of software.

When planning software architectures, many aspects of the system to be developed are

still unclear. We distinguish between uncertainty that stems from external circumstances

and uncertainty that stems from not yet knowing how elements in the software architec-

ture will be modeled in the final system. An example of external circumstances would

be that a server can no longer be operated in a certain country due to an unforeseeable

political decision. In order to keep the situation simple for this thesis, we focus on the

uncertainties that can be described by concrete scenarios. These scenarios arise from the

variation modeling of uncertainty. To model variations, the impact of an uncertainty is

described by a collection of concrete Architectural Design Decisions (ADDs). A scenario

then can be generated by choosing one of the ADDs for each uncertainty.

The larger the architecture, the more ADDs it contains and the more uncertainty exists

about the system. If you want to check whether violations of confidentiality occur in

the architecture, you are faced with a difficult task. First, it must be examined where

uncertainty occurs and what effect it has on elements in the architecture. However, this

may require extensive knowledge that is not yet available or difficult to predict at this

point in time. Therefore, such analyses are only carried out when sufficient knowledge is

available, but then it might already be too late to revert questionable ADDs. Also, previous

approaches that analyze confidentiality yield skewed results when attempting to include

uncertainties, or ignore uncertainties entirely. A large architecture can become very

complex, making it more difficult to find all the places where confidentiality violations can

occur. This poses a hurdle for software architects to intercept violations of confidentiality

in their entirety and to maintain confidentiality after changes in the design.

The contribution of this thesis is to introduce a concept that bridges the gap between

existing confidentiality analyses and uncertainty. The approach consists of using results

from existing confidentiality analyses and relating them to the uncertainty impacts. With

our approach, we want to achieve that architectures can be analyzed for confidentiality

under uncertainty at design time. The analysis is intended to help a software architect to

find the causes of violations of confidentiality more quickly.

We evaluate our approach by applying it to case studies and determining the usability

of the approach for a software architect. We also check whether our approach is funda-

mentally feasible, i.e. whether it delivers a result and whether uncertainty impacts can

1

1. Introduction

be linked to scenarios. Applying the approach to case studies gives us the accuracy with

which our approach can classify uncertainty impacts as potentially responsible. Under

the assumption that we can describe architectural uncertainty as variations that lead to

scenarios of the architecture, the results indicate that the approach can filter uncertainty

impacts that are not responsible for confidentiality violations. The concept is designed

for the possibility of future expansion.

This thesis is divided into seven chapters. In this chapter, the topic was introduced and

motivated. In Chapter 2 we explain the foundations of our work. This includes the Palladio

ComponentModel (PCM), data flowwith data flow diagrams and uncertainty. In Chapter 3

we present the state of the art in the interpretation of the results of confidentiality analyses,

the influence of uncertainty and confidentiality analyses. To illustrate our concept, we

present an example model in Chapter 4 that serves as a running example. In Chapter 5 we

present our approach. We explain the data model used, how we reuse existing approaches

in our algorithm and how our contribution, the uncertainty impact filter, is structured.

We evaluate our approach in Chapter 6, draw our conclusion in Chapter 7 and give an

outlook on future work.

2

2. Foundations

This chapter describes the basics that are necessary for this thesis. The PCM is presented

in Section 2.1. We explain data flow diagrams and their representation in Section 2.2.

Section 2.3 deals with uncertainty and what it means for a software architecture.

2.1. Palladio Component Model

The PCM is part of the Palladio approach, with which software architectures are modeled

and simulated [20]. It consists of five different models that can be used to represent

the structure, deployment, execution environment, usage profile, and behavior. In the

Palladio approach, the task of a component developer is to develop components. A

software architect then assembles these into architectures. "A software component is a

contractually specified building block for software, which can be composed, deployed,

and adapted without understanding its internals" [20]. This means that the interior of the

component does not play any further role when planning the software architecture for the

time being. Components offer interfaces and use the interfaces of other components. Only

the pre- and post-conditions of the components are modeled in the software architecture.

For this, components can be given properties in PCM that may be functional or qualitative.

We use the PCM to model architectures and to develop our prototype [3].

2.2. Data Flow Diagrams

A data flow diagram describes the flow of data through a system [8]. A flow of data

is created by data being input, forwarded and output. This is described in a data flow

diagram without requiring control flow. The system is therefore presented from the point

of view of the data. Graphical notations are used to represent these data flows. DeMarco

presents the following element types that are used in the graphical representation [8]:

• Storage represented by two parallel lines in the name

• Data flow represented by arrows and names

• Functions in a system represented by circles or ovals

• Interfaces, i.e. input and output of data, creates rectangles

A typical data flow is created by entering data at a data source. This data is forwarded

to storage and processed by processes in the system. Finally, data can also be released

from the system again by being transferred to a data sink.

3

2. Foundations

Figure 2.1.: Simple example of a data flow diagram showing a newsletter registration

In Figure 2.1 we see a simple example of a data flow diagram. Here the customer

registers in a newsletter. To do this, he gives his e-mail address. It is then verified by the

system and the verified email address is then saved in the newsletter storage.

Data flows provide the basis for detecting breaches of confidentiality [24]. For this

purpose, the data flow diagrams are extended to express the properties of processes or

data. By defining policies, the data flow in an architecture can be used to check whether

violations of these policies occur [11].

2.3. Uncertainty

Walker et al. define uncertainty as "any deviation from the unachievable ideal of com-

pletely deterministic knowledge of the relevant system" [26]. In the following, we always

consider uncertainty in the context of a software architecture. In software architec-

tures, uncertainty arises from different or unknown design options in the design of the

architecture.

Perez-Palacin and Mirandola define an uncertainty taxonomy that can be used to model

software architectures [17]. They divide uncertainty into three dimensions:

• Location

• Level

• Nature

Location describes the place where uncertainty occurs. In the software architecture,

this can be, for example, a specific area such as a database that is to be used in an as yet

unknown location. The Level describes how precisely the uncertainty can be expressed.

For that, Perez-Palacin and Mirandola introduce orders into which the level of uncertainty

can be classified. They range from a lack of knowledge to uncertainty about the orders

of uncertainty. The Nature of the uncertainty describes whether uncertainty is because

there is not enough data to fill in the missing knowledge or whether there is such great

variability that uncertainty persists. The former is called epistemic and the latter aleatory.
Uncertainty in software architectures can take various forms. Uncertainty can arise,

for example, between elements of the architecture - e.g. in the choice of the path from

component to component - or concern properties of an element, such as the location of a

server. However, uncertainty can also occur in such a way that it cannot be described at

all since the subject of the uncertainty is not yet known.

For this thesis, we concentrate on a special form of uncertainty. It is expressed by

listing a finite number of options, which is given as an example. These options represent

elements in the architecture such as components or properties. By being able to choose

between different options, the architecture is influenced in different ways. The description

of the uncertainty through elements of the architecture is therefore an uncertain impact.

4

3. State of the Art

In this chapter, we discuss the current state of the art. In Section 3.1 we give an overview

of different approaches to interpreting analysis results of confidentiality analyses. The

impact of uncertainty is discussed in Section 3.2. Finally, we discuss confidentiality

analyses in Section 3.3.

3.1. Interpretation of Results

In current research on uncertainty in software architectures, uncertainty is often analyzed

with detailed inputs in the uncertainty model. For example, values such as the probability

that a particular component is used to analyze uncertainty [9]. Determining such values

requires a great deal of knowledge and forethought about the system being built. The

larger and more complex software systems become, the more difficult it is to estimate

the input values. Risk analyses are then carried out, for example, on the basis of these

probability values [19]. In the approach of this bachelor thesis, however, it should be

possible to make evaluations at runtime that do not require any further knowledge about

the probability of using a component.

Walter et al. extend a model evaluation process with the property confidentiality

[27]. PerOpteryx is used for this. "PerOpteryx is an optimization framework to improve

component-based software architectures based on model-based quality prediction tech-

niques" [18]. A software architecture with uncertainty is analyzed using PerOpteryx.

Scenarios of the model that violate confidentiality constraints are filtered out and evalu-

ated as unusable. Unlike in this approach, scenarios that contain violations should not

necessarily be filtered. It should be possible to differentiate between these scenarios in

terms of the severity of the violations.

Hinton and Lee present a study of the compatibility of policies [12]. A policy is a

statement of the goals for the behavior of a system. Policies are compatible if each will

not interfere with the other’s goals. Each component will receive and produce events,

represented by an event sequence to represent what is "knowable". Events are treated as

propositions, meaning they are true or false. If an event occurs, then a corresponding

proposition is true. If an event does not occur then the corresponding proposition will

be false. If there is at least one possible sequence of events that violates a property

then the property is not valid for the given system. In the case of this bachelor thesis,

policies can be viewed as the set of confidentiality constraints. Event sequences would

be the scenarios of the uncertainty model and events would be the data flows through

the components. Hinton and Lee provide theorems and axioms for evaluating whether a

policy is compatible. The logical expressions contained therein could be used or expanded

in the bachelor thesis.

5

3. State of the Art

3.2. Impact of Uncertainty

In their master’s thesis, Benkler presents an approach that analyses and assesses the

impact of uncertainties on confidentiality at design time [2]. For this purpose, the

relationship between architectural design decisions and uncertainty is analyzed. It

examines how uncertainty can be represented and how the distribution of uncertainty

affects the components. Furthermore, uncertainties are classified. Benkler’s approach

differs from this bachelor thesis in that no analysis of the impact of uncertainty is made.

Software architectures will not be evaluated directly based on their uncertainty, but

scenarios of the uncertainty model are analyzed.

Boltz et al. deal with the characterization of uncertainties in Access Control [5]. It

is examined how existing characteristics of uncertainty taxonomies can be applied in a

software architecture. The goal was to find out what types of uncertainty exist in access

control and how access control analyses can deal with them. In this thesis, we deal with

uncertainty in the form of expressing it through variation modeling. We then generate

scenarios and carry out analyses of the scenarios. By bringing together the assessments

of the scenarios, a statement is made about the uncertainty of the architecture in terms

of confidentiality.

3.3. Confidentiality Analyses

Confidentiality "is the property, that information is not made available or disclosed to

unauthorized individuals, entities, or processes" [13]. The GDPR [25] provides an example

of confidential information [25]. The processing of personal data such as location, genetic

or biometric data of a person is generally not permitted unless certain conditions have

been met. Unless those conditions for processing are met, this information must not be

available to unauthorized individuals, entities or processes.

The later violations of confidentiality are determined, the more expensive the solutions

become [4]. Therefore, it makes sense to consider confidentiality early on and to model

it in the design of a system.

Approaches like Privacy by Design (PbD) include confidentiality in the design phase of

a system architecture [22]. This reduces costly updates. Seifermann et al. present one way

how this can be implemented in system architectures [23]. Here, Data Flow Diagrams

(DFDs) are used to model confidentiality in system architectures. The modeling is done

in the PCM and is then translated into a logical program in Prolog. This makes it possible

to check general confidentiality constraints in a system architecture. In the following, we

understand a confidentiality-preserving architecture as one that has no violations against

confidentiality requirements. Non-confidentiality-preserving architectures are those that

have a violation of confidentiality policies. We note that previous approaches do not

include uncertainty in the analysis. Our approach enables an analysis of confidentiality

under architectural uncertainty.

6

4. Running Example

To illustrate the theoretical contents of this thesis, we use a motivating example of a

software architecture. Most of the model and the basis comes from Hahner [10]. We

adjust some elements of the model to cover as many aspects of our concept in Chapter 5

as possible. The software architecture represents a simplified version of an online shop.

It also includes uncertainty impacts at five different points. The uncertainty impacts

arise from the fact that in the presented state of the architecture no decision has yet been

made as to which variant of the implementation will be chosen. However, we can already

model the different variants because we assume that we are familiar with all variants.

Each uncertainty impact is marked with a question mark in the following figures.

In our example, we only deal with the use case seen in Figure 4.1. This is an excerpt from

the ordering process of an online shop. In this excerpt, the user enters a delivery address

to which a product should be delivered. The user can either enter their personal home

address or, for example, an anonymous pick-up station. When sending to a personal

address, personal data is transferred. When sending to a non-personal address, no

personal data is accordingly transferred. In this case, the uncertainty is not necessarily

caused by design decisions that have not yet been made. One simply does not know

whether the user specifies a private address or not. So this factor has to be taken into

account because user behavior influences whether breaches of confidentiality occur.

In the diagram, the distinction is marked with a question mark between the arrows.

In the following, we call this distinction the sensitivity of the data and it is the first

uncertainty impact in the system.

In Figure 4.2, we show the component diagram of the system. We have a frontend that

passes data to the backend and handles user interactions. The data is processed in the

backend and then passed on to two places. The BackupService backs up the same data

as the DatabaseService. As we use a component-based architecture, we can use different

components if they implement the same interface. In the case of our database service,

we add two options to choose between. The backend either uses Database A or Database
B. Such an ADD occurs e.g. because the design process of the architecture is in a more

large-grained state [16]. This means that in the current state of the architecture it is

still uncertain which option will be chosen in the later implementation. However, we

assume that there exists an agreement that one of these options will be implemented.

This allows us to model them as deterministic variants, with the user entering either

personal information or non-personal information.

7

4. Running Example

OnlineShop

Provide Personal Delivery Address

Provide Non-Personal Delivery Address
User

?

Figure 4.1.: OnlineShop use case diagram under uncertainty in the input of data

8

4. Running Example

OnlineShop
Frontend

OnlineShop
Backend

Backup Database

DatabaseService

Database A Database B

?

Figure 4.2.: OnlineShop component diagram showing uncertainty in the choice of the

database

9

4.
Running

Exam
ple

User

User

Frontend

Frontend

Backend

Backend

BackupService

BackupService

Backup Database

Backup Database

DatabaseService

DatabaseService

Database A/B

Database A/B

provideDeliveryAddress()

transferDeliveryAddress()

processDeliveryAddressBackup()

processDeliveryAddressDB()

storeDeliveryAddress()

storeDeliveryAddress()

Figure 4.3.: OnlineShop sequence diagram

1
0

4. Running Example

OnlineShop
Frontend

OnlineShop
Backend

BackupServiceDatabase A Database B

Non-EU Server EU Server EU Garage Server

«deploy» «deploy» «deploy»«deploy»«deploy» «deploy» «deploy»

? ?

Figure 4.4.: OnlineShop deployment diagram showing uncertainty in database deploy-

ment location

The procedure for transferring the delivery address through the system can be seen

in Figure 4.3. The user enters the delivery address in the frontend. The address is then

transferred to the backend. From there, the same data is sent to the BackupService and

the DatabaseService. The BackupService saves the data in the Backup Database. The

DatabaseService stores the data in Database A or B.
In Figure 4.4 we see the deployment diagram of the architecture. The frontend of the

online shop is deployed on a server that is not in the EU. Database B and the backend

are always on a server in the EU. We see two more uncertainty impacts marked by

the question marks. Database A can either be deployed in the EU or not in the EU. The

BackupService is always in the EU, either on the EU Server or on the EU Garage Server.
The Backend is responsible for the encryption of the data. The data is processed in

two ways, as seen in Figure 4.5. For the backup service, they are always encrypted before

they are transferred. For the DatabaseService, it can be decided in the design whether the

data should be encrypted or not. Choosing to encrypt the data in the database would

increase safety in case of an attack on the database. However, encrypting data would

increase the complexity of the implementation. We again assume that the final decision

on this uncertainty has not been done yet. Therefore, we model the options as another

uncertainty impact.

In Table 4.1, we see a list of the uncertainties that occur in the OnlineShop. There are
a total of five different places where uncertainty occurs. Each uncertainty is named in

the "Uncertainty" column according to what the uncertainty is about. In the "Varying

Subjects" column we see the list of architectural elements that can be used to describe

the uncertainty.

We define constraints to be followed in the architecture. In order to make any data safe

from attacks on the database, data stored in a database should always be encrypted. In

addition, we adhere to the EU directive that the personal data of EU citizens may only be

stored in the EU. In Figure 4.6 we see a table listing which combination of properties lead

to violations. For better representation, we see two tables instead of a four-dimensional

representation. The table on the left shows the sensitivity of the data (left side) compared

to the deployment location of the database (top right). Only if the user’s personal data is

stored on a database that is not in the EU is there a violation. In the table on the right, the

architecture element (left side) is compared with the encryption of the data (top right). If

the architectural element under consideration is a database and the data is not encrypted,

a violation occurs.

11

4. Running Example

BackupService DatabaseService

Add Encryption

Transfer to BackupService

Encrypt Data?
yes no

Add Encryption Do Noting

Transfer to DatabaseService

?

Figure 4.5.: Backend activity diagram under uncertainty of encryption choice

Uncertainty Varying Subjects
1 User Input Sensitivity [Personal, Non-Personal]
2 Encryption Choice [Encrypted, Unencrypted]
3 Database Choice [Database A, Database B]
4 Deployment Location

Backup Database
[EU Garage Server, EU Cloud
Server]

5 Deployment Location

Database A
[EU Cloud Server, Non-EU
Server]

Table 4.1.: Occuring uncertainties in the OnlineShop described with varying subjects

EU Non-EU

Personal allowed forbidden

Non-Personal allowed allowed

Encrypted Unencrypted

On Database allowed forbidden

Not on
Database

allowed allowed

Figure 4.6.: Table of allowed and forbidden configurations of the architecture

12

4. Running Example

Backend

BackupService DatabaseService

provide delivery address process for backup process for database

User

store address store address

Frontend

P/NP, U
userData

P/NP, U
userData

P/NP, U
userData

P/NP, U
userData

P/NP, U
userData

P/NP, E/U
userData

P/NP, E
userData

transfer delivery address

P/NP, U
userData

P/NP, E
userData

P/NP, E/U
userDataData Labels: Personal (P) | Non-Personal (NP), Encrypted (E) | Unencrypted (U)

Loca�on Labels: EU (EU) | Non-EU (NEU)

EU EU/NEU

Figure 4.7.: System data flow diagram under uncertainty represented by options of labels

In Figure 4.7 we see the possible data flow through the system. The user’s delivery

address entered is transferred as userData through the various components. In doing

so, userData can adopt the properties that are listed as Data Labels in the legend at

the bottom left. These labels determine whether the data is personal or non-personal,

encrypted or unencrypted. We also assign Location Labels for storing the shipping

address. This can be either in the EU or non-EU.

13

5. Uncertainty-aware Confidentiality
Analysis

In this chapter we explain the concept of our approach. Section 5.1 gives an overview of

what the goal of the concept is and the combination algorithm is presented fundamentally.

Section 5.2 explains the whole data structure that we use for the combination algorithm.

In Section 5.3 we show how we reuse existing approaches to make them suitable for

use under uncertainty. Then we explain in Section 5.4 how we can use our approach to

make more precise statements about the causes of violations of confidentiality than the

previous approaches in Section 5.3. All theoretical explanations are illustrated with our

running example from Chapter 4.

5.1. Overview

The aim of the concept is to be able to gain more information about violations against

confidentiality than the scenario recetion in Peropteryx [27] has already been able to do

up to now. More information means that we not only gain knowledge about where and

why violations occur but can also filter uncertainty impacts that cause violations in a

scenario. We first define the naive approachwith which an architecture can be analyzed

for confidentiality. An entire architecture is rejected as soon as a scenario contains a

violation. Compared to the scenario rejection, individual scenarios of the architecture

that contain violations of confidentiality are filtered. Instead of rejecting and no longer

using scenarios with violations, we want to use information about the violations to enable

the analysis of uncertainty impacts.

We define a combination algorithm that uses the information about violations for

the interpretation of the analysis results of confidentiality analyses. In the combination

algorithm, information about the architecture and violations of confidentiality are used

as input parameters to systematically extract inferences from the input. The combination

algorithm is built up incrementally. I.e. that it consists of several stages that build on one

another. Each stage can extend the algorithm with new input or output parameters to

provide a more precise analysis. We start building the algorithm with pre-existing result

interpretations from Chapter 3, which are described in more detail below in Section 5.3.

5.2. Required Model for the Approach

14

5.
U
ncertainty-aw

are
C
onfidentiality

A
nalysis

Confidentiality

Interpretation

Uncertainty

Literal

Violation

Sequence

ViolatingSequenceViolatingScenario
ArchitectureElement

Scenario

InterpretationResult

toString() : string

NaiveInterpretation

hasViolation : boolean

toString() : string

ScenarioRejection

toString() : string

UncertaintyFilter

toString() : string

UncertaintyImpactInfluencingImpact

UncertaintyModel VariationPoint

impacts

uncertainties

scenario

occuringElements

elements

literals

varyingSubjects

sequences

acceptedScenarios

rejectedScenarios

violations

variationPoints

varyingSubjects

Figure 5.1.: Class diagram of the model used for the combination algorithm

1
5

5. Uncertainty-aware Confidentiality Analysis

In this section, we describe the model used in the combination algorithm, which can be

seen in Figure 5.1. Attributes like identifier or name are intentionally omitted and the focus

is on how the classes work. We start with the explanation that determines the format of

the confidentiality analysis result. These are in the package Confidentiality. At the top of

the package is the Scenario class. Because we express uncertainty in terms of variations,

a scenario emerges from choosing a variation at each uncertainty impact. The Scenario

class, therefore, contains the analysis results of a scenario. The ViolatingSequence class

inherits from Scenario and represents the scenario in which a violation occurs within

the scenario. It extends the Scenario class in that it owns the Violations that trigger this
violation. Each Violation contains the ArchitectureElements where the violation occurs.

The ArchitectureElement class contains information about an element in the architecture.

These can be different types of elements, such as a method call, an allocation element, a

repository element or a procedure, such as storing data. For the concept presented here,

we summarize all these elements in one class, since the type of element has no influence

on the interpretation. A ArchitectureElement can contain literals that describe further

properties of the ArchitectureElement. One feature could be the location. The literal then
contains the location (e.g. EU or Non-EU). Each scenario has sequences that represent the

flow of data through the architecture. A Sequence consists of the ArchitectureElements
sorted in the order in which they are called. The class modelViolatingSequence is a

specialized Sequence in that it is a sequence that contains a confidentiality violation. The

exact use of this is explained in Section 5.4. From the package Confidentiality we get the

analysis results in the format we need for the analysis in our approach.

The ResultInterpretation interface is on the top of the Interpretation package and only

contains the toString() method, because the result interpretation of our approach should

be output in human-readable form. At each stage of our combination algorithm, we

use a separate class that summarizes our result. These each implement the interface

ResultInterpretation. On the left, we have the NaiveInterpretation. It is distinguished by the

fact that it only has a boolean in which it is recorded whether the architecture contains

violations or not. On the right, we see the ScenarioRejection. It has two lists, acceptedSce-
narios and rejectedScenarios. In the middle is the UncertaintyImpact class. This contains a
list of InfluencingImpact. The InfluencingImpact class connects UncertaintyImpacts with a

Scenario. Thus we get a model in interpretation that reassembles and links the existing

results of confidentiality analyses. From this, our concept reads the interpretation of

confidentiality under uncertainty.

The remaining package Uncertainty contains classes needed to represent uncertainty in

the architecture. The class UncertaintyModel contains the uncertainty in the architecture

which is defined as variations in the variation model. These variations are modeled by

the class VariationPoint and contain the varying subjects of an uncertainty impact. The

subjects are elements of the architecture, hence the connection to ArchitectureElement is
made.

5.3. Reusing Existing Approaches for Confidentiality Analyses

As described in Chapter 3, previous confidentiality analyses provide skewed results or

ignore uncertainty entirely as soon as they account for it. In this section, we show how

16

5. Uncertainty-aware Confidentiality Analysis

we reuse the named approaches to deal with uncertainty. At the same time, they form

the basis for the combination algorithm.

The first part is the naive approach in Algorithm 1, which rejects the entire software

architecture as soon as at least one violation occurs in any scenario. We implement this

first stage by receiving a list of ViolatingScenarios. The output is an interpretation of the

type NaiveInterpretation. If the length of the list is exactly zero, then we know that there

is no violation in the architecture and we set hasViolation to false. If the length of the list

is greater than zero, the result is that the architecture contains at least one violation and

should therefore not be used. We set the boolean hasViolation respectively to true. Using
hasViolation we get the information on whether the architecture is usable or not. We find

that this analysis is an overestimate. Just because e.g. a small part of the architecture

causes a violation it does not mean that the whole concept of the architecture is unusable.

This poses a problem for software architects because they receive no further information

other than that a violation has occurred. The effort to find this violation and its causes

still needs to be fully accomplished.

Algorithm 1: Naive Approach
Data: ViolatingScenario[] violations
Result: NaiveInterpretation interpretation

if 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠.𝑙𝑒𝑛𝑔𝑡ℎ == 0 then
interpretation.hasViolation← false;

else
interpretation.hasViolation← true;

end
return interpretation

Demonstration
We use our example from Chapter 4 to demonstrate the Algorithm 2. We get all

ViolatingScenarios as input from the sensitivity analysis. This corresponds to a list of 17

ViolationScenarios. Since the length of the list is greater than 0, the result is an object

NaiveInterpretation with the attribute hasViolation = true. The software architect receives
as a result: The architecture of the online shop should not be used, since violations of

confidentiality occur in it.

The next step to improve the naive approach is to filter out individual scenarios that

involve violations of confidentiality. We call this analysis scenario rejection because

individual scenarios are rejected. We see the implementation of the analysis in Algo-

rithm 2. In this, we receive the analysis of the scenarios as an input parameter. As an

output we get the interpretation ScenarioRejection. It contains two lists: rejected scenarios
and accepted scenarios. If a scenario is a violation, we add the scenario to the rejected

scenarios. Otherwise, we add it to the accepted scenarios. A software architect now learns

more from the returned interpretation than in the naive approach in Algorithm 1. From

the accepted scenarios they learn which architecture variants do not cause a violation.

Inside rejectedScenarios all rejected scenarios are the scenarios that lead to violations.

The ViolatingScenarios contains information about the location and reason for the vio-

lation. This is still a hurdle for the architect. Just from the information about which

final architecture scenarios have violations or not, it is not possible to deduce which

17

5. Uncertainty-aware Confidentiality Analysis

uncertainty impacts need to be examined more closely. This still has to be done manually

by examining all the sequences in the scenarios.

Algorithm 2: Scenario Rejection

Data: Scenario[] scenarios
Result: ScenarioRejection interpretation

for scenario : scenarios do
if scenario instanceof ViolatingScenario then

interpretation.addRejected(scenario);

else
interpretation.addAccepted(scenario);

end
end
return interpretation;

Demonstration
For the demonstration of the Algorithm 2, we use two selected scenarios from the

32 available. These fully represent how scenario rejection works, because we have one

scenario that contains a violation and one that does not. We receive the scenarios as

input, which can be seen in Figure 5.2 and Figure 5.3. Both show a simplified data flow of

the input user address which is represented by the arrows. We define the sensitivity at the

first input of the data. In the first Scenario we have no violation of confidentiality because

the personal data is stored within the EU and the data is encrypted on all databases.

Therefore this Scenario is not a ViolatingScenario. This will add it to the list of accepted

scenarios. The second Scenario contains a violation, which is marked in red. Here data is

stored unencrypted on a database. Therefore this Scenario is a ViolatingScenario. Thus it
is added to the list of rejected scenarios.

5.4. Uncertainty Impact Filter

The uncertainty impact filter is the next extension of the combination algorithm. The aim

of this extension is to create a link between the violations and the uncertainty defined

as variations in the variation model. For this purpose, it is checked which uncertainty

impacts are relevant for a sequence that leads to a violation. We make an important

precondition before explaining the algorithm for it. In Algorithm 1 and Algorithm 2, it

was not relevant what the sequences should be structured like since only occurrences of

violations were necessary to generate the result interpretation. Now it is important that

data flows are divided into sequences that contain violations and do not contain violations.

From the point at which violation occurs in a data flow, all preceding elements are part

of the violated sequence. If there are branches in the data flow that occur before the

violation, the data flow at the branch is again a non-violation sequence. This also applies

to the subsequent data flow directly after the violation. We see an example of translating

a simplified data flow from Chapter 4 to Figure 5.4. The violation of confidentiality arises

at the point where the warning sign is placed. Here unencrypted data is stored in the

database, which violates the policy. The "Encrypt Data for Database" branch does not

18

5. Uncertainty-aware Confidentiality Analysis

Figure 5.2.: Example data flow from our running example without violation

contain any violation, so this part is not marked. From this, we get two sequences from

one data flow. The sequence with a violation is circled in red, and the sequence without

a violation is circled in blue. Both sequences now belong to one scenario.

To now make a connection to the uncertainty, the uncertainty model that contains

the varying subjects is required as a new input parameter. We continue to receive all

scenarios. As seen in Algorithm 3, we start iterating over each scenario. For every

scenario, we collect information about the uncertainty impacts and their effects of them

on the existing violations in the sequences of the scenario. For this, we create a new

InfluencingImpact and set its scenario to the one in the current iteration. Now we iterate

over each sequence of the scenario. If a sequence contains no violations, we cannot find

any uncertainty impacts responsible for a violation, so we skip this case. If a sequence

containing violations is an instance of ViolatingSequence, we check for each element

in the sequence whether it is a varying subject of an uncertainty impact. If this is the

case, the uncertainty impact is added to the uncertainties of the InfluencingImpact. Each
InfluencingImpact is added to the interpretation after the scenario has been processed.

This enables us to limit the number of uncertainty impacts to a set that is influential

for the violation in a scenario. Any impacts that are not in this set are unrelated to the

violations since no elements varied by the impact occur in the sequences leading up to

the violation.

A software architect now learns which uncertainty impacts potentially various ele-

ments that lead to a violation. They also knowwhich impacts are definitely not responsible

19

5. Uncertainty-aware Confidentiality Analysis

Figure 5.3.: Example data flow from our running example with a violation

for a violation. Therefore, they can make more targeted changes in the architecture based

on our analysis.

There is another hurdle here because it is not yet clear at this point whether uncertainty

impacts are identified as a potential cause, even though they do not contribute to the

violation. This is further treated as future work in Section 7.2.

Demonstration
To demonstrate the Algorithm 3, we use one selected violation scenario from the 32

available running examples from Chapter 4. This scenario can be seen in Figure 5.5. The

uncertainty impacts are marked by the question marks. The uncertainty impact that

decides whether the Database A is deployed in the EU or not in the EU is missing. The

reason for this is that Database B is used in this scenario. We get this scenario together

with the UncertaintyModel from Chapter 4. We create a new InfluencingImpact and set the

scenario attribute to the received scenario. There is a violation of confidentiality because

data is stored in unencrypted form on Database B. So we have a Sequence that contains a

violation (marked red) and one that does not contain a violation (marked green). Since

only the red Sequence is of type ViolatingSequence, we don’t iterate over the elements of

the green sequence. For each element of the red Sequence, we now check whether the

element occurs in the varying subjects of a VariationPoint. This is the case for the literal
personal, Database B and Process with Encryption. Thereby we add the uncertainty impacts

marked with 1, 2 and 3 to the InfluencingImpact.

20

5. Uncertainty-aware Confidentiality Analysis

Figure 5.4.: Example of splitting data flows into sequences

21

5. Uncertainty-aware Confidentiality Analysis

Algorithm 3: Uncertainty Impact Filter

Data: Scenario[] scenarios, UncertaintyModel uncertainties

Result: Interpretation interpretation

for scenario : scenarios do
i← new InfluencingImpact;

i.scenario← scenario;

for sequence : scenario.sequences do
if sequence instanceof ViolatingSequence then

for element : violation.sequence do
for impact : uncertainties do

if impact.varyingSubjects.contains(element) then
i.uncertainties.add(impact);

end
end

end
end

end
interpretation.impacts.add(i);

end
return interpretation;

A software architect now knows which uncertainty impacts are potentially responsible

for the violation in this scenario. Furthermore, you know that the choice of the location

of the deployment of database A and the backup database is not responsible.

This procedure can be continued analogously for each scenario. Scenarios that do not

contain any violation produce an InfluencingImpact with an empty list uncertainties. No
included Sequence of the Scenario is then of the type ViolatingScenario.

22

5. Uncertainty-aware Confidentiality Analysis

1

2

3

4

Figure 5.5.: Example data flow from our running example with a violation and annotated

uncertainty impacts

23

6. Evaluation

In this section, we discuss the results of our evaluation. First, we provide our evaluation

plan containing the goals and questions to assess these goals in Section 6.1. For this we

use the goal-question-metric approach as presented by Basili, Caldiera, and Rombach

[1]. In Section 6.2 we explain the design we use to answer the questions from Section 6.1.

Afterward, the results for our respective goals from Section 6.1 in Subsection 6.3.1, 6.3.2

and 6.3.3 are presented. Finally, in Section 6.4 and 6.5, we discuss the threats to validity

and limitations that we assume for our approach.

6.1. Evaluation Plan

In this section, we explain the goals with which we evaluate the combination algorithm

as presented in Chapter 5. To this end, we have defined the following goals:

G1 The interpretation on a non-binary scale that the combination algorithm gives is

feasible. This means we want to find out whether the approach in Chapter 5 is

fundamentally possible to execute.

G2 The results of the combination algorithm are accurate.

G3 The combination algorithm can be used by a software architect.

With the planned approach, we want to interpret the results of the confidentiality

analysis in more detail than previous approaches. The naive approach in Chapter 3

interprets results on a binary scale. The possible interpretations in this scale are either

"reject" or "accept". The scenario rejection also interprets the results of the confidentiality

analysis on a binary scale. This then takes place at the level of the scenarios of an

architecture. Here, too, scenarios are either accepted or rejected. Our approach in

Section 5.4 has the task of not rejecting architectures that contain violations in scenarios

but considering them individually. This results in individual interpretations for each

scenario of an architecture. These are then combined into an overall interpretation of

the architecture. With goal G1 we want to evaluate the feasibility of our approach to

deliver results in a non-binary way. In order to carry out an interpretation with the

naive approach, a software architect needs the confidentiality constraints that are to be

observed in the architecture. Furthermore, the architecture itself is a necessary input

parameter. To do this, we ask the following question:

Q1.1 Is it possible to analyze a software architecture that contains architectural uncertainty
on a more differentiated scale than a binary scale?

24

6. Evaluation

We want to determine whether the approach presented in this thesis achieves the tasks

for which it is intended. For this, we set the goal G2. Since the combination algorithm is

divided into several stages, we need to examine each stage for accuracy. This means that

we want to examine how good the three implementations from Chapter 5 are at delivering

the relevant results and how many of the relevant results are found. Relevant results are

the proportion of interpretation results that we expect to be rated positively e.g. without

violation. In the case of the naive interpretation in Section 5.3, an architecture should be

classified as "rejected" if it contains at least one violation in a scenario. It is classified as

"accepted" if there are no violations in the scenarios. For the naive approach, we provide

Q2.1. The next step of the combination algorithm is scenario rejection (Section 5.3). In

this case, the individual scenarios are checked for violating sequences (Q2.2). Scenarios
should be rejected if at least one violation occurs. The scenario is accepted if there is no

violation. In Section 5.4 Uncertainty Impacts that potentially contribute to a violation

in a scenario are filtered out. This gives a software architect more precise feedback on

maintaining confidentiality in the software architecture. In order for this step of the

combination algorithm to be used, the set of uncertainty impacts potentially leading to a

violation must match the expected set Q2.3.

Q2.1 Does our approach at least has the same accuracy as the naive approach?

Q2.2 Does our approach at least has the same accuracy as the scenario rejection?

Q2.3 What is the accuracy with which our approach identifies the influencing uncertainty
impacts?

With goal G3 we want to evaluate the usability of the approach. The aim of our

approach from Chapter 5 is to give a software architect conclusions about which uncer-

tainty impacts are responsible for violations of confidentiality. It generates the connection

between violations of confidentiality and architectural uncertainty. By examining the

approach for usability, we check whether our approach makes this connection at all. To

evaluate, whether it is possible to use our approach, we identify the required information

a software architect has to provide for the combination algorithm (Q3.1, Q3.2). Fur-
thermore, we evaluate whether a software architect receives the information about the

influence of uncertainty impacts on violations from our results of the approach (Q3.3).
We also check whether a software architect receives this information faster than is the

case with the current state of the art. If that is the case, then our approach is effectively

capable of being used to analyze architectures. This not only guarantees the theoretical

implementation, but also the practical applicability of our approach. To evaluate goal G3
we ask the following questions:

Q3.1 What is the required information to be able to apply the combination algorithm?

Q3.2 When can a software architect know the additional information we need for the
combination algorithm?

Q3.3 Does a software architect know more quickly what causes violations in the architecture
to occur than with previous approaches?

25

6. Evaluation

6.2. Design

In this section, we describe how we evaluate the goals from Section 6.1. We also explain

how we answer the questions to validate the goals.

6.2.1. Case Studies used for evaluation

In this section, we present the case studies used in the evaluation. We use both individual

scenarios of the models and the complete architecture. All models presented come from

external sources and thus strengthen our evaluation in which it has fewer weaknesses

due to the fact that the models and examples used were constructed by us.

TravelPlanner (M1) The TravelPlanner is an application that users can use to find

flight connections for an airline. When booking a flight, the payment is made by credit

card. The user gives their credit card information to the airline when booking. He then

authorizes the airline to make a booking on their credit card by using a credit card service.

The model is a confidentiality model and the credit card information is confidential

data. It may only be processed if the user agrees to the circumstances. The model is

introduced by Katkalov [14]. Besides, the model is also used in “Data-Driven Software

Architecture for Analyzing Confidentiality” by Seifermann, Heinrich, and Reussner [23].

For the evaluation here we use the slight modification by Walter et al. in “Architectural

Optimization for Confidentiality under Structural Uncertainty” [27]. An uncertainty

impact is added by having a situation where the airline can treat the user’s credit card

information differently. Either in the way that the user has agreed to or in a way that

the user has not consented to. This creates an uncertainty impact, which allows the case

study model to be checked by our approach.

DistanceTracker (M2) The DistanceTracker is an app that can be used to record

the distance covered while jogging. This model is also a confidentiality model. The

user’s GPS data is confidential data. The processing of the GPS data should take place

exclusively on the user’s smartphone and must not reach the tracker app. This model is

also from Katkalov [14]. Again we use the modification by Walter et al. in “Architectural

Optimization for Confidentiality under Structural Uncertainty” [27]. In this case, the GPS

data is processed either on the smartphone or on a DistanceTracker server. By adding

this uncertainty impact, our approach can also be carried out here.

The two applications TravelPlanner and DistanceTracker only have one uncertainty

impact and overall have little complexity. Nevertheless, they are suitable for evaluation,

since fundamental errors are easier to identify with smaller models. The low complexity

also helps to understand the model quickly and without tools.

Running Example (M3) We also use our own running example from Chapter 4. The

approach in Section 5.4 was developed using this model. Therefore, the running example

serves as a confirmation of how the approach works. The model has five uncertainty

impacts that result in 32 scenarios.

6.2.2. Goal G1 - Feasibility

With target G1 we want to check the feasibility of the approach. Specifically, we want to

evaluate whether the approach is capable of making a non-binary statement about the

26

6. Evaluation

confidentiality of a software architecture under uncertainty. We separate feasibility into

the following aspects:

F1 The approach can be executed

F2 The approach delivers results

F3 The delivered results are to be classified on a non-binary scale

F4 The approach can be implemented in reality

By examining our approach on these four points, we ensure that it forms a basis that

represents an evolution of the state of the art. To answer Question Q1.1, we check the

points F1-F4 by using exemplary scenarios from the presented modelM1 and refer to

our prototypical implementation of the approach [3].

6.2.3. Goal G2 - Accuracy

For goal G2 we evaluate the accuracy of the approach. The output of the approach

is examined for accuracy, i.e. the interpretation results of analysis results from the

confidentiality analysis. A high degree of accuracy thus corresponds to a high level of

agreement between our results and the expected results.

For all questions Q2.1, Q2.2 and Q2.3 we use the models presented in the case studies.

For question Q2.1 we want to find out whether architectures are correctly recognized as

architecture with or without violation by implementing the naive approach in Section 5.3.

All four models contain at least one scenario that causes a violation of confidentiality.

Therefore, for each model, we select a scenario that has no violation. As a result, we

have an equal number of cases where the implementation either rejects or accepts the

architecture. Question Q2.2 deals with the individual scenarios of the architectures. By

evaluating Q2.2 we determine whether we can achieve at least the same result as e.g. the

existing approach from Liu [15].

For the models M1 and M2 we show the scenarios with their data flows. For the

modelM3we choose example scenarios to illustrate the evaluation. We use precision and

recall as metrics. For each model, we create a reference output i.e. which scenarios have

violations and which do not. This reference output is then compared to the output of

the prototypical implementation [3]. Each correctly identified scenario is a true positive

𝑇𝑃 and each incorrectly identified scenario is a false positive 𝐹𝑃 . A missing result is

considered a false negative 𝐹𝑁 .

For Question Q2.3 we also create a reference output i.e. which uncertainty impacts are

influencing the violations in a scenario with violations. This means that we only create

a reference set for scenarios that actually contain a violation. Any set of uncertainty

impacts that contains the correct (and no other) uncertainty impacts counts as a true

positive 𝑇𝑃 . Any set that contains either less or more uncertainty impacts than expected

counts as a false positive 𝐹𝑃 . Any missing set counts as a false negative 𝐹𝑁 .

To calculate the accuracy for Q2.2 and Q2.3, we use the following formulas:

Precision = 𝑇𝑃
𝑇𝑃+𝐹𝑃 Recall = 𝑇𝑃

𝑇𝑃+𝐹𝑁

27

6. Evaluation

6.2.4. Goal G3 - Usability

With goal G3 we evaluate the usability of the approach. Usability is mostly determined

by user studies. Due to the effort involved in finding experts in the field of software

architecture design and conducting the studies, we evaluate the usability here through

objective argumentation.

For question Q3.1 we compare our uncertainty impact filter approach, as implemented

in Algorithm 3, with the state of the art from Chapter 3. That means we examine

what knowledge is necessary to carry out the previous approaches and to carry out our

approach. More precisely, we compare with the approach of scenario rejection from

Section 5.3. This represents the latest state of research and provides the most detailed

interpretation of the analysis results of the confidentiality analysis to date. It is then

examined whether more knowledge is required for the approach we have presented

compared to the scenario rejection.

Since it is difficult to quantify knowledge, we choose subject areas to find out what

knowledge is necessary. Within the subject areas, there is then a discussion of how the

knowledge can be quantified.

For this we define the following concepts:

K1 Data Flow, e.g. to know how the elements of the architecture communicate with

each other.

K2 Architecural Model and Characteristics, e.g. to know how the architecture is modeled

and what characteristics the elements of the architecture have.

K3 Uncertainty, e.g. knowing how to express uncertainty in the modeling and which

elements are affected by uncertainty.

We use exemplary scenarios from our running example from Chapter 4 to assess the

necessary knowledge. These are used to work out what knowledge is required to carry

out the scenario rejection and for comparing it to the uncertainty impact filter.

Through question Q3.2 we find out when a software architect can know the additional

information to execute the approach. For this, we use the knowledge gained from

answering the question Q3.1 and argue objectively when the necessary quantity of

knowledge can be available. Our evaluation of the question is illustrated using the

example scenarios that we use for question Q3.1.
With question Q3.3 we want to find out whether our uncertainty impact filter rep-

resents an improvement compared to the state of the art. For this, we want to find out

whether a software architect receives more information than with previous approaches.

In addition, we examine whether the information obtained helps to know more quickly

about the effects of uncertainty in the event of violations of confidentiality.

For this, we first examine which information is obtained by applying the scenario

rejection from Section 5.3. We also check this for our uncertainty impact filter from

Section 5.4. The information is then compared. We use the additional information that

our approach provides to assess whether uncertainty can be drawn more quickly. The

same scenarios as to answer the question Q3.1 will be used for this.

28

6. Evaluation

1 1

Figure 6.1.: The two scenarios in the presented model of the TravelPlanner (M1), the left
without a violation - the right with a violation of confidentiality

6.3. Results

In this section, the results of our evaluation are discussed.

6.3.1. Goal G1 - Feasibility

The first goal G1 examines the feasibility of our concept. Question Q1.1 evaluates

whether the approach is feasible in such a way that the resulting interpretation results

can be classified on a non-binary scale. For this purpose we have listed aspects F1-F4
in Subsection 6.2.2 with which we want to answer the question. We already show in

Chapter 5 using the running example from Chapter 4 that the theoretical execution of our

concept is possible. In addition, we now show that a model M1 that we did not construct

can also be analyzed with the approach. The model was provided with uncertainty by

Walter et al. and comes from Katkalov [27, 14]

It has one uncertainty and the uncertainty impact is described by a variation of archi-

tectural elements. Two scenarios arise from these two variations. Either the credit card

data is used by the airline as the user has consented to or contrary to the consent. In

Figure 6.1 we see the two simplified data flows that occur in this architecture. A data flow

also corresponds to a scenario, since there is only one data flow per emerging scenario.

29

6. Evaluation

The point of uncertainty is marked by the question mark. On the left, we see the scenario

where no violation occurs. On the right is the scenario that causes an infraction.

If we follow the implementation from Algorithm 3 we pass these two scenarios along

with the uncertainty model. For each scenario, we review the data flow in the scenario.

For the first scenario, there is no influencing uncertainty impact, since there is no violation

of confidentiality. In the second scenario, a scenario is created in the last element of the

right branch. Now it is examined for each element of the data flow whether it lies in the

varying subjects of an uncertainty impact. This is the case for the last element of the

right branch. It lies in the varying subjects of the single uncertainty impact. Therefore,

for this scenario, the uncertainty impact is added to the influencing impacts. We now

have the complete result of our analysis.

Aspect F1 aims at whether the approach is executable. From the implementation just

mentioned, we conclude that the approach is executable by showing that an architecture

model that we did not design can also be analyzed.

Aspect F2 examines whether the approach delivers results. We have shown through

the case study that this is the case.

Aspect F3 evaluates whether the results should be classified on a non-binary scale. To

do this, we consider the data structure again, as described in Section 5.2. As a result, we

get a UncertaintyFilter object that links the uncertainty impacts with the scenarios. This

represents a collection of facts from which a software architect can draw conclusions.

Therefore, the result obtained cannot be classified on a binary scale.

Aspect F4 evaluates the implementation in reality. For this purpose, a prototypical

implementation of the concept was made while working on the thesis. Within these,

architectural models and their uncertainty can bemodeledwith PCM. Based on an existing

confidentiality analysis, the architecture is first analyzed for violations of confidentiality.

These results are then passed as input to the implementation of our concept. The prototype

was tested and developed with our running example from Chapter 4. It delivers the same

results as the theoretical processing on paper. Nevertheless, it should be mentioned here

that the prototype is also based on a prototype and only a small amount of PCM was used

for modeling the architecture. This limitation is discussed in more detail in Section 6.5.

By answering the four aspects F1-F4 asked, the question Q1.1 is answered. We find

that the approach is workable and the results can be categorized on a non-binary scale.

6.3.2. Goal G2 - Accuracy

For question Q2.1 we check whether the naive approach from Section 5.3 correctly

rejects or accepts the architectures. Since all architectures have violations, we choose

individual scenarios to show that they do in fact violate confidentiality. Even if we only

pick out individual scenarios from the architectures, we do not falsify the result. For the

naive approach, an architecture is rejected as soon as there is an advance in at least one

scenario. Thus, a violating architecture will be rejected if all scenarios are considered

because within those scenarios there must be one that involves a violation. Likewise, an

architecture that considers only one scenario that includes a violation will be rejected.

To show that our implementation of the naive approach accepts architectures that have

no violations, we choose one scenario from each model that does not involve a violation

As we see in Table 6.1, all violations are exactly what we expect.

30

6. Evaluation

Model Scenario Violation Violation
expected?

TravelPlanner Credit card information

used as the user agreed

to

none no

TravelPlanner Credit card information

used against the agree-

ment of the user

Credit card information

may only be used as the

user agrees to

yes

DistanceTracker GPS-Data is processed

on the users smart-

phone

none no

DistanceTracker GPS-Data is processed

on a server

GPS-Data may only be

processed on the user’s

smartphone

yes

OnlineShop The user enters a per-

sonal address and it is

stored inside the EU

none no

OnlineShop The user enters a per-

sonal address and it is

stored outside the EU

Personal data may only

be stored inside the EU

yes

Table 6.1.: Scenarios of the models for the naive approach

Model True Positive False Positive False Negative Precision Recall
OnlineShop 32 0 0 1.0 1.0

TravelPlanner 2 0 0 1.0 1.0

DistanceTracker 2 0 0 1.0 1.0

Table 6.2.: Results of the scenario rejection

For Question Q2.2 we want to calculate the accuracy of the scenario rejection from

Section 5.3. Therefore, the scenario rejection from Section 5.3 can correctly identify all

scenarios. Question Q2.3 asks for the accuracy of our presented approach in Section 5.4.

We calculate precision and recall by inserting the values from Table 6.3 into the formulas

from Subsection 6.2.3. We calculate the precision for the OnlineShop model as an example:

Precision = 32

32+0 = 1. We do the same for the recall: Recall = 32

32+0 = 1. As we can see in

Table 6.2, we get a value of 1.0 for precision and recall for each model. This corresponds

to the perfect result. Both for question Q2.2 and for Q2.3 it must be mentioned that the

models are still small despite five uncertainty impacts in M3. This is because the use
cases and processes within the modelsM1, M2 and M3 are kept small and simple.

31

6. Evaluation

Model True Positive False Positive False Negative Precision Recall

OnlineShop 18 0 0 1.0 1.0

TravelPlanner 1 0 0 1.0 1.0

DistanceTracker 1 0 0 1.0 1.0

Table 6.3.: Results of the uncertainty impact filter

6.3.3. Goal G3 - Usability

The third goal G3 examines the usability of the approach. Question Q3.1 discusses

what knowledge is required to carry out the approach and compares it with the state

of the art. Question Q3.2 evaluates when the additional knowledge is known. With

question Q3.3 we check whether a software architect can draw faster conclusions from

our interpretation results.

For question Q3.1we discuss which knowledge is necessary for the uncertainty impact

filter. In Subsection 6.2.4 we have identified three concepts C1-C3with which we analyze

knowledge. Table 6.4 shows what knowledge we consider necessary to perform scenario

rejection. In the "Uncertainty Impact Filter" column, we list whether our approach

requires more or more specific knowledge than scenario rejection.

For conceptC1Data Flow we find that the data flow has to be fully modeled through the

architecture. The analysis of confidentiality is based on the data flows in the architecture

being analyzed for violations [24]. For our approach, no more is necessary for the area of

Data Flow than for scenario rejection.

In the case of the C2 Architectural model and characteristics concept, it must be clear

for scenario rejection which architectural elements are required to communicate with

one another and thereby generate data flows in the scenarios. For this, it is also necessary

to know the characteristics of the respective elements. These determine properties for

architectural elements that are decisive for whether violations occur or not. This is

necessary, as the scenarios are a required input parameter in Algorithm 2. The same

knowledge is necessary for the uncertainty impact filter.

For concept C3 Uncertainty it is necessary to enter the scenarios of the architecture

for the scenario rejection as input paramaters in Algorithm 2. It is not assumed that all

scenarios have to follow the same structure. In principle, the respective scenarios could

differ fundamentally from one another. Distinguishing the scenarios can be one way in

which uncertainty can be expressed. In contrast, for the uncertainty impact filter, it is

necessary to specify the uncertainty model as input. The uncertainty model expresses

uncertainty in the form of variations at specific points in the architecture. This means

that to apply our approach, a software architect must express the uncertainty in terms

of variations. By specifically determining the points (i.e. uncertainty impacts) at which

uncertainty occurs, our approach can establish a relationship between the occurrence of

violations and the uncertainty impacts affected.

We show this using our running example from Chapter 4 and introduce another

scenario in Figure 6.2. This scenario contains two violations of confidentiality and

includes all five uncertainty impacts of the model. The first violation occurs because

32

6. Evaluation

Concept Scenario Rejection Uncertainty Impact Fil-
ter

Data Flow The complete data flow

must be known, otherwise,

no analysis of confidential-

ity can take place

No change

Architectural

model and char-

acteristics

Architectural elements

that are necessary to es-

tablish data flow must be

known. Their characteris-

tics must also be known,

as they lead to violations

of confidentiality, among

other things

No change

Uncertainty Uncertainty must be able

to be expressed in a way

that scenarios can be ex-

amined. Scenarios do not

necessarily have to contain

the same structures

Uncertainty must be ex-

pressed in the form of a

variational model

Table 6.4.: Comparing required knowledge in the scenario rejection to the uncertainty

impact filter

33

6. Evaluation

1

2

3

4 5

Figure 6.2.: A scenario from the model of the Onlineshop containing two violations

database A stores unencrypted data and the second violation occurs because personal

data is not stored in the EU. If we use this scenario for the scenario rejection approach

from Algorithm 2, it is not relevant to be able to precisely define the uncertainty impacts.

It is only checked whether the confidentiality analysis has identified violations and based

on this the scenario is classified. This is different for the uncertainty impact filter from

Algorithm 3. This requires the uncertainty impacts since the architectural elements of

the sequence with violation mimicking the varying subjects of the uncertainty impacts

are compared.

To answer Q3.2 in which we check, when it is possible to know the required additional

knowledge, we use the findings from question Q3.1. The additionally required informa-

tion can be broken down into the uncertainty model. Variations of architectural elements

must be described in the uncertainty model. An uncertainty model can be made if the

software architect can specify a deterministic choice for as yet undetermined ADD. This

represents a limitation of our approach and is taken up again in Section 6.5. With the

models M1-M3 we show that it is possible to build an architecture that expresses uncer-

tainty in such a way that a set of points is defined at which uncertainty can be expressed

by varying architectural elements. In Table 4.1 the five uncertainties are explicitly listed,

which show uncertainty in the example of the online shop. In Subsection 6.2.1 we explain

the uncertainties of M1 and M2.

34

6. Evaluation

For question Q3.3 we evaluate whether a software architect can draw conclusions

about uncertainty faster with our approach than with scenario rejection. For this purpose,

we first consider what information the scenario rejection from Algorithm 2 provides. As

described in Section 5.2 and Section 5.3, we get the ScenarioRejection interpretation as a

return for scenario rejection. This includes the accepted and rejected scenarios. From

the rejected scenarios, the software architect learns where and why violations occur in

this scenario. From the accepted scenarios, they learn which scenarios do not lead to

violations. This information does not immediately provide any conclusions as to which

uncertainty impacts lead to violations.

Now we look at our approach from Section 5.4. We get an interpretation of the type

UncertaintyFilter as output. It contains a list of InfluencingUncertainties. The task of the

InfluencingUncertainties is to examine a scenario to determine which uncertainty impacts

are passed through by a data flow before the violation occurs. This gives us a link between

uncertainty impacts and individual scenarios with the interpretation result. From this,

a software architect can see which uncertainty impacts should be checked in order to

prevent violations of confidentiality. To do this, they can either look at the respective

scenarios or summarize the influencing uncertainties of each scenario.

We show this using the scenario Figure 5.5, which was already presented in Section 5.4.

For this scenario, our analysis indicates that uncertainties 1, 2 and 3 are responsible for

the violation and a violation occurred when storing unencrypted data in the database. In

contrast, the scenario rejection states that this scenario creates a violation when storing

unencrypted data in the database. We find that a software architect would initially have

had to create the connection that he received from our analysis in scenario rejection

himself.

From this, we conclude that our approach can provide a software architect with faster

information about the affected uncertainty impacts than scenario rejection. Our analysis

directly provides the architect with a set of potential architectural elements that could be

responsible for this violation. This shortens the design time because the architect saves

the step of finding influencing uncertainty impacts.

6.4. Threats to Validity

We use the guidelines presented by Runeson and Höst in “Guidelines for conducting and

reporting case study research in software engineering” [21]. In this section, we discuss

the threats to construct, internal and external validity and the reliability of our evaluation.

Construct Validity "[...] reflects to what extent the operational measures that are studied

really represent what the researcher have in mind and what is investigated according to

the research questions" [21, p. 23]. The operational measures used here are the metrics of

precision and recall. These are also used in the confidentiality analysis of Seifermann et al.

and in the presented approach by Liu [24, 15]. This reduces the risk that we use invalid

properties to answer our questions. Furthermore, we use the Goal-Question-Metric

approach, with which we set questions, explain how we answer these questions and

finally give the answer to the questions to limit this risk.

Internal Validity deals with whether factors other than those investigated influence the

result. If this is the case, the evaluation of our concept will be weakened.

35

6. Evaluation

This could be the case for aspect F4 in question Q1.1. The prototype was not imple-

mented exactly as presented in Section 5.2. This was the case because the implementation

depended on the structures of the prototypical confidentiality analysis. As a result, the

readout of the confidentiality analysis was not implemented exactly in the data structures

as proposed in our concept. Furthermore, the modeling of architectures with PCM turns

out to be complex. Many possibilities to describe an architecture more precisely were

left out for the implementation. As a result, details could have been overlooked, which,

however, are essential for the realization of the concept in reality.

The same problem exists with question Q2.3. In our concept, we abstract all architec-

tural elements to one level. This may not be an adequate abstraction and relevant factors

not leading to biased results in our used models. Furthermore, we assume that varying

subjects of uncertainty impacts are always passed through by the data flow as soon as

they occur in the scenario. As a result, we assume that the uncertainty impacts are always

due to the data flow. However, there may be other side effects caused by uncertainty

impacts that are not related to the data flow. As a result, an influencing uncertainty

impact would not be located on the data flow but still be responsible for a violation.

Nevertheless, the evaluation shows that our approach is applicable to architectures

that use the same details as in our models and have uncertainty impacts that lie on data

flows.

External Validity "[...] is concerned with to what extent it is possible to generalize the

findings [...]" [21, p. 24]. There is a risk for that when answering the questions Q2.2 and

Q2.3. The models for the answer of them are small and of low complexity, despite five

uncertainty impacts in model M3. This is because the use cases and processes within the

modelsM1, M2 andM3 are kept small and simple. Due to significantly more complex

models, it could be that our analysis can no longer deliver results or the results are

falsified.

We also use a self-constructed model of the online shop (M3) for the evaluation. There
could be a risk here that the approach cannot be used for other models due to the close

development based on the example model. Since the basis of the model does not come

from this thesis, but from Hahner [10] and we were able to prove at least the basic

function on the two other modelsM1 and M2 that we did not create, we see the risk as

reduced.

The question Q3.3 is also affected. It may be that the concepts we have chosen are

not sufficient to adequately describe the information required for the usability of the

combination algorithm. Since we only need the uncertainty model as an additional

input parameter in the uncertainty impact filter in Algorithm 3 compared to the scenario

rejection in Algorithm 2, we assume that we can sufficiently differentiate with our choice

of concepts.

Reliability "[...] is concerned with to what extent the data and the analysis are dependent

on the specific researchers" [21, p. 24]. This means that other people may get different

results than we do. We provide the source code and the models used for the evaluation

[3]. This reduces the threat of reliability.

36

6. Evaluation

6.5. Limitations

Required data flows We assume that software architectures analyzed by our approach

always involve data flows. Without data flows, it is currently not possible to apply the

confidentiality analysis presented. Furthermore, we use dataflows to get a sorted list of

called architecture elements, in the order in which they are called. This is the only way

we can draw conclusions in our concept about which uncertainty impacts are possible

for a violation.

Expressing uncertainty For our approach, we assume that architectural uncertainty

can be expressed through varying architectural elements. This limits the scope of the

approach because all the uncertainty that cannot be expressed by a variational model so

far cannot be analyzed by our approach either. It is the task of future work to analyze

other expressions of architectural uncertainty.

Uncertainty impacts on data flows In the uncertainty impact filter as presented in

Section 5.4, we identify uncertainty impacts that could be influential for the occurrence

of violations against uncertainty. We do this by analyzing the data flow through the

architecture. As a result, we assume that architectural elements that are varied by

uncertainty impacts are always inevitably located on the data flow. Otherwise, it would

not be possible to establish the connection between an uncertainty impact and a violation

of confidentiality.

Technical limitation We closely linked the development of our approach to the develop-

ment of the prototype implementation [3]. As a result, we were forced to examine only

models whose uncertainties are described by variational modeling. Since there are cur-

rently not many models that are modeled in this way in the prototypical implementation,

we were technically limited.

37

7. Conclusion

To conclude this thesis, we summarize the contents of our approach in Section 7.1. Finally,

we give an outlook on future work in Section 7.2.

7.1. Summary

The goal of this thesis was to provide an approach that establishes a connection between

uncertainty impacts and results of confidentiality analyses at design time. The connection

corresponds to an analysis result that provides potential uncertainty impacts as the cause

of confidentiality violations. With this, we wanted to achieve that a software architect

receives information about confidentiality under uncertainty more quickly.

We first reused existing approaches to present violations of confidentiality under

uncertainty. This resulted in an expandable combination algorithm consisting of several

stages. We extend the previous approaches by introducing the uncertainty impact filter.

Compared to previous approaches, we need a new input parameter for our approach,

the uncertainty model. From this model, we get scenarios that express the uncertainty

of a software architecture. In scenarios that contain a violation of confidentiality, we

review the data flow in the scenario. The data flow is represented by different sequences.

Sequences are characterized by the fact that architectural elements are sorted in the way

data flows through them. We separate architectural elements based on whether they

occur in a sequence before or after the element where the violation occurs. For each

architectural element, that is located before the element where a violation occurs, we

check whether it is varied by an uncertainty impact. If this is the case, we identify the

uncertainty impact as influencing. The remaining uncertainty impacts are identified as

not influencing.

Our approach enables software architects to point out architectural elements poten-

tially involved in confidentiality violations. This is done at design time and while there is

architectural uncertainty. The prototypical implementation can automatically analyze

models designed with Palladio. As a result, a software architect can conclude the preser-

vation of confidentiality in the architecture at any time in the design process. For this,

uncertainty must be expressed in terms of variations in architectural models.

We evaluated our approach for feasibility, usability and case studies. It turns out that

our approach is feasible and provides results that relate architectural uncertainty to

violations of confidentiality. To do this, we demonstrated the approach using a model that

we did not create. The approach can be used with the addition of new information and

provides a software architect with information more quickly than previous approaches

do. To identify the new information, the knowledge required for previous approaches was

compared with our approach. Our approach was able to identify the expected uncertainty

impacts that are potentially responsible for a violation in all case studies. We calculate

precision and recall with 1.0.

38

7. Conclusion

7.2. Future Work

A first step that could take place in the future is the creation of further models that

can be analyzed with our approach to test it further. For example, the model for a port

communication system already exists [6]. Given the origin of the port model [7], policies

for confidentiality could be derived, which would allow our approach to analyze the

model. What is important for this is a better implementation of the concept than was

done in the prototype as part of this thesis.

Future work may elaborate extensions of our combination algorithm. A first step would

be to examine uncertainty impacts more closely. Currently, this is read directly from

the data flows in which violations of confidentiality occur. By comparing the sequences

with and without violations, it might be possible to sort out uncertainty impacts that we

identify as potentially affecting as not affecting.

Furthermore, it can be examined whether the abstraction of the architectural ele-

ments on one level is appropriate. For this purpose, the influence of different types of

architectural elements must be differentiated more precisely.

In the long run, new insights into architectural uncertainty can lead to new extensions

of the algorithm. This would then be able to take into account not only uncertainty

that can be described by varying architectural models. This could probably also identify

uncertainty impacts that are not based on data flows.

39

Bibliography
[1] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. “The goal question

metric approach”. In: Encyclopedia of software engineering (1994), pp. 528–532.

[2] Niko Benkler. Architecture-based Uncertainty Impact Analysis for Confidentiality (Re-
production Set). 2022. doi: 10.5281/zenodo.6202285. url: https://publikationen.
bibliothek.kit.edu/1000144639 (visited on 05/10/2022).

[3] Tizian Bitschi. Prototype Implementation: Palladio-Addons-Uncertainty-VariationAnalysis.
May 2022. url: https://doi.org/10.5281/zenodo.7236106.

[4] B. Boehm and V.R. Basili. “Software Defect Reduction Top 10 List”. In: Computer
34.1 (Jan. 2001). Conference Name: Computer, pp. 135–137. issn: 1558-0814. doi:

10.1109/2.962984.

[5] Nicolas Boltz et al. “Handling Environmental Uncertainty in Design Time Access

Control Analysis”. In: (2022).

[6] Case Study Port Communication System. en. url: https://github.com/FluidTrust/

CaseStudies (visited on 06/07/2022).

[7] Case Study Port Communication System. url: https://github.com/FluidTrust/

CaseStudies/tree/main/bundles/edu.kit.kastel.dsis.fluidtrust.casestudy.

pcs.model/model (visited on 06/07/2022).

[8] Tom DeMarco. “Structure Analysis and System Specification”. en. In: Pioneers and
Their Contributions to Software Engineering: sd&m Conference on Software Pioneers,
Bonn, June 28/29, 2001, Original Historic Contributions. Ed. by Manfred Broy and

Ernst Denert. Berlin, Heidelberg: Springer, 2001, pp. 255–288. isbn: 978-3-642-48354-

7. doi: 10.1007/978-3-642-48354-7_9. url: https://doi.org/10.1007/978-3-

642-48354-7_9 (visited on 10/13/2022).

[9] K. Goseva-Popstojanova and S. Kamavaram. “Assessing uncertainty in reliability of

component-based software systems”. In: 14th International Symposium on Software
Reliability Engineering, 2003. ISSRE 2003. 14th International Symposium on Software

Reliability Engineering, 2003. ISSRE 2003. ISSN: 1071-9458. Nov. 2003, pp. 307–320.

doi: 10.1109/ISSRE.2003.1251052.

[10] SebastianHahner. “Architectural Access Control Policy Refinement and Verification

under Uncertainty”. In: Companion Proceedings of the 15th European Conference
on Software Architecture. 15th European Conference on Software Architecture

(ECSA 2021), Online, 13.09.2021 – 17.09.2021. ISSN: 1613-0073. 2021. url: https:

//publikationen.bibliothek.kit.edu/1000139152 (visited on 05/07/2022).

[11] Sebastian Hahner. Domain-specific Language for Data-driven Design Time Analyses
and Result Mappings for Logic Programs. de. 2020. doi: 10.5445/IR/1000123271.
url: https : / / publikationen . bibliothek . kit . edu / 1000123271 (visited on

09/27/2022).

40

https://doi.org/10.5281/zenodo.6202285
https://publikationen.bibliothek.kit.edu/1000144639
https://publikationen.bibliothek.kit.edu/1000144639
https://doi.org/10.5281/zenodo.7236106
https://doi.org/10.1109/2.962984
https://github.com/FluidTrust/CaseStudies
https://github.com/FluidTrust/CaseStudies
https://github.com/FluidTrust/CaseStudies/tree/main/bundles/edu.kit.kastel.dsis.fluidtrust.casestudy.pcs.model/model
https://github.com/FluidTrust/CaseStudies/tree/main/bundles/edu.kit.kastel.dsis.fluidtrust.casestudy.pcs.model/model
https://github.com/FluidTrust/CaseStudies/tree/main/bundles/edu.kit.kastel.dsis.fluidtrust.casestudy.pcs.model/model
https://doi.org/10.1007/978-3-642-48354-7_9
https://doi.org/10.1007/978-3-642-48354-7_9
https://doi.org/10.1007/978-3-642-48354-7_9
https://doi.org/10.1109/ISSRE.2003.1251052
https://publikationen.bibliothek.kit.edu/1000139152
https://publikationen.bibliothek.kit.edu/1000139152
https://doi.org/10.5445/IR/1000123271
https://publikationen.bibliothek.kit.edu/1000123271

Bibliography

[12] Heather M. Hinton and E. Stewart Lee. The compatibility of policies | Proceedings
of the 2nd ACM Conference on Computer and communications security. 1994. url:
https://dl.acm.org/doi/10.1145/191177.191243 (visited on 04/29/2022).

[13] ISO/IEC 27000:2018. ISO. 2018. url: https://www.iso.org/cms/render/live/
en/sites/isoorg/contents/data/standard/07/39/73906.html (visited on

06/04/2022).

[14] Kuzman Katkalov. “Ein modellgetriebener Ansatz zur Entwicklung informations-

flusssicherer Systeme”. de. In: (2017). url: https : / / opus . bibliothek . uni -

augsburg.de/opus4/frontdoor/index/index/docId/4339 (visited on 10/13/2022).

[15] Oliver Liu. Design Space Evaluation for Confidentiality under Architectural Un-
certainty. 2021. doi: 10 . 5445 / IR / 1000139590. url: https : / / publikationen .
bibliothek.kit.edu/1000139590 (visited on 04/29/2022).

[16] Steve McConnell. Software project survival guide. Pearson Education, 1998.

[17] Diego Perez-Palacin and Raffaela Mirandola. “Uncertainties in the modeling of

self-adaptive systems: a taxonomy and an example of availability evaluation”. In:

Proceedings of the 5th ACM/SPEC international conference on Performance engi-
neering. ICPE ’14. New York, NY, USA: Association for Computing Machinery,

Mar. 22, 2014, pp. 3–14. isbn: 978-1-4503-2733-6. doi: 10.1145/2568088.2568095.

url: https://doi.org/10.1145/2568088.2568095 (visited on 05/30/2022).

[18] PerOpteryx. url: https://sdqweb.ipd.kit.edu/wiki/PerOpteryx (visited on

05/31/2022).

[19] Alisson Puska, Michele Nogueira, and Aldri Santos. “Confidentiality-Aware Deci-

sion on Handoffs under Uncertainty on Heterogeneous Wireless Networks”. In:

2018 IEEE Symposium on Computers and Communications (ISCC). 2018 IEEE Sym-

posium on Computers and Communications (ISCC). ISSN: 1530-1346. June 2018,

pp. 00884–00889. doi: 10.1109/ISCC.2018.8538677.

[20] Ralf H. Reussner et al.Modeling and Simulating Software Architectures – The Palladio
Approach. ISBN: 9780262034760. 2016. url: https://publikationen.bibliothek.
kit.edu/1000071486 (visited on 06/07/2022).

[21] Per Runeson and Martin Höst. “Guidelines for conducting and reporting case

study research in software engineering”. en. In: Empirical Software Engineering
14.2 (Dec. 2008), p. 131. issn: 1573-7616. doi: 10.1007/s10664-008-9102-8. url:

https://doi.org/10.1007/s10664-008-9102-8 (visited on 10/14/2022).

[22] Peter Schaar. Privacy by Design. Apr. 1, 2022. url: https://link.springer.com/
article/10.1007/s12394-010-0055-x (visited on 06/02/2022).

[23] Stephan Seifermann, Robert Heinrich, and Ralf Reussner. “Data-Driven Software

Architecture for Analyzing Confidentiality”. In: 2019 IEEE International Conference
on Software Architecture (ICSA). 2019 IEEE International Conference on Software

Architecture (ICSA). Mar. 2019, pp. 1–10. doi: 10.1109/ICSA.2019.00009.

41

https://dl.acm.org/doi/10.1145/191177.191243
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/39/73906.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/39/73906.html
https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/4339
https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/4339
https://doi.org/10.5445/IR/1000139590
https://publikationen.bibliothek.kit.edu/1000139590
https://publikationen.bibliothek.kit.edu/1000139590
https://doi.org/10.1145/2568088.2568095
https://doi.org/10.1145/2568088.2568095
https://sdqweb.ipd.kit.edu/wiki/PerOpteryx
https://doi.org/10.1109/ISCC.2018.8538677
https://publikationen.bibliothek.kit.edu/1000071486
https://publikationen.bibliothek.kit.edu/1000071486
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://link.springer.com/article/10.1007/s12394-010-0055-x
https://link.springer.com/article/10.1007/s12394-010-0055-x
https://doi.org/10.1109/ICSA.2019.00009

Bibliography

[24] Stephan Seifermann et al. “Detecting violations of access control and information

flow policies in data flow diagrams”. In: Journal of Systems and Software 184 (Feb. 1,
2022), p. 111138. issn: 0164-1212. doi: 10.1016/j.jss.2021.111138. url: https:

//www.sciencedirect.com/science/article/pii/S0164121221002351 (visited on

04/29/2022).

[25] Verarbeitung besonderer Kategorien personenbezogener Daten. url: https://dejure.
org/gesetze/DSGVO/9.html (visited on 06/07/2022).

[26] W.E. Walker et al. “Defining Uncertainty: A Conceptual Basis for Uncertainty Man-

agement in Model-Based Decision Support”. In: Integrated Assessment 4.1 (Mar. 1,

2003). Publisher: Taylor & Francis _eprint: https://doi.org/10.1076/iaij.4.1.5.16466,

pp. 5–17. issn: 1389-5176. doi: 10.1076/iaij.4.1.5.16466. url: https://doi.

org/10.1076/iaij.4.1.5.16466 (visited on 05/17/2022).

[27] Maximilian Walter et al. “Architectural Optimization for Confidentiality under

Structural Uncertainty”. In: (2022).

[28] Josephine Wolff and Nicole Atallah. “Early GDPR Penalties: Analysis of Implemen-

tation and Fines Through May 2020”. In: Journal of Information Policy 11.1 (Jan. 1,

2021), pp. 63–103. issn: 2381-5892. doi: 10.5325/jinfopoli.11.2021.0063. url:

https://doi.org/10.5325/jinfopoli.11.2021.0063 (visited on 06/07/2022).

42

https://doi.org/10.1016/j.jss.2021.111138
https://www.sciencedirect.com/science/article/pii/S0164121221002351
https://www.sciencedirect.com/science/article/pii/S0164121221002351
https://dejure.org/gesetze/DSGVO/9.html
https://dejure.org/gesetze/DSGVO/9.html
https://doi.org/10.1076/iaij.4.1.5.16466
https://doi.org/10.1076/iaij.4.1.5.16466
https://doi.org/10.1076/iaij.4.1.5.16466
https://doi.org/10.5325/jinfopoli.11.2021.0063
https://doi.org/10.5325/jinfopoli.11.2021.0063

A. Appendix

A.1. Abbreviations

ADD Architectural Design Decision

DFD Data Flow Diagram

GDPR General Data Protection Regulation

PbD Privacy by Design

PCM Palladio Component Model

43

	Abstract
	Zusammenfassung
	Introduction
	Foundations
	Palladio Component Model
	Data Flow Diagrams
	Uncertainty

	State of the Art
	Interpretation of Results
	Impact of Uncertainty
	Confidentiality Analyses

	Running Example
	Uncertainty-aware Confidentiality Analysis
	Overview
	Required Model for the Approach
	Reusing Existing Approaches for Confidentiality Analyses
	Uncertainty Impact Filter

	Evaluation
	Evaluation Plan
	Design
	Case Studies used for evaluation
	Goal G1 - Feasibility
	Goal G2 - Accuracy
	Goal G3 - Usability

	Results
	Goal G1 - Feasibility
	Goal G2 - Accuracy
	Goal G3 - Usability

	Threats to Validity
	Limitations

	Conclusion
	Summary
	Future Work

	Bibliography
	Appendix
	Abbreviations

